Sample records for ramona-4b computer code

  1. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARCmore » and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.« less

  2. Modeling of two-phase flow instabilities during startup transients utilizing RAMONA-4B methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paniagua, J.; Rohatgi, U.S.; Prasad, V.

    1996-10-01

    RAMONA-4B code is currently under development for simulating thermal hydraulic instabilities that can occur in Boiling Water Reactors (BWRs) and the Simplified Boiling Water Reactor (SBWR). As one of the missions of RAMONA-4B is to simulate SBWR startup transients, where geysering or condensation-induced instability may be encountered, the code needs to be assessed for this application. This paper outlines the results of the assessments of the current version of RAMONA-4B and the modifications necessary for simulating the geysering or condensation-induced instability. The test selected for assessment are the geysering tests performed by Prof Aritomi (1993).

  3. RAMONA-3B application to Browns Ferry ATWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovik, G.C.; Neymotin, L.; Cazzoli, E.

    1984-01-01

    This paper discusses two preliminary MSIV clsoure ATWS calculations done using the RAMONA-3B code and the work being done to create the necessary cross section sets for the Browns Ferry Unit 1 reactor. The RAMONA-3B code employs a three-dimensional neutron kinetics model coupled with one-dimensional, four equation, nonhomogeneous, nonequilibrium thermal hydraulics. To be compatible with 3-D neutron kinetics, the code uses parallel coolant channels in the core. It also includes a boron transport model and all necessary BWR components such as jet pump, recirculation pump, steam separator, steamline with safety and relief valves, main steam isolation valve, turbine stop valve,more » and turbine bypass valve. A summary of RAMONA-3B neutron kinetics and thermal hydraulics models is presented in the Appendix.« less

  4. RAMONA-3B application to Browns Ferry ATWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovik, G.C.; Neymotin, L.Y.; Saha, P.

    1985-01-01

    The Anticipated Transient Without Scram (ATWS) is known to be a dominant accident sequence for possible core melt in a Boiling Water Reactor (BWR). A recent Probabilistic Risk Assessment (PRA) analysis for the Browns Ferry nuclear power plant indicates that ATWS is the second most dominant transient for core melt in BWR/4 with Mark I containment. The most dominant sequence being the failure of long term decay heat removal function of the Residual Heat Removal (RHR) system. Of all the various ATWS scenarios, the Main Steam Isolation Valve (MSIV) closure ATWS sequence was chosen for present analysis because of itsmore » relatively high frequency of occurrence and its challenge to the residual heat removal system and containment integrity. The objective of this paper is to discuss four MSIV closure ATWS calculations using the RAMONA-3B code. The paper is a summary of a report being prepared for the USNRC Severe Accident Sequence Analysis (SASA) program which should be referred to for details. 10 refs., 20 figs., 3 tabs.« less

  5. Command History for 1991 (Naval Personnel Research and Development Center)

    DTIC Science & Technology

    1992-08-01

    years of age. 18 Chronology of 1991Events New Emtlovee Lieutenant Rolando Lim Code 151 Regina G. Bragg Paul J. Carney Library Technician Supply Clerk Code...Awards 35 Years Ben Garcia Gene Stout 30 Years Jim Julius Ramona Mouzon Hal Rosen 32 25 Years Jim Chadbourne Bob Harris Dorothy Martin Jan Reynolds 20

  6. "Ramona Quimby": Adapted by Len Jenkin from the Ramona Books by Beverly Cleary. Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Aguirre-Sacasa, Roberto

    This performance guide is designed for teachers to use with students before and after a performance of "Ramona Quimby," adapted by Len Jenkin from the Ramona books by Beverly Cleary. The guide, called a "Cuesheet," contains seven activity sheets for use in class, addressing: (1) The Characters (introducing the characters in the…

  7. Mitigating PTSD: Emotionally Intelligent Leaders

    DTIC Science & Technology

    2010-05-28

    lower ranking, less educated members, those who had experienced childhood adversity, and who were single, separated or divorced .10 The number of...Pr og ra m R es ea rc h Pr oj ec t MITIGATING PTSD: EMOTIONALLY INTELLIGENT LEADERS BY COLONEL RAMONA M. FIOREY United States Army...COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mitigating PTSD: Emotionally Intelligent Leaders 5b. GRANT NUMBER

  8. RAMONA: a Web application for gene set analysis on multilevel omics data.

    PubMed

    Sass, Steffen; Buettner, Florian; Mueller, Nikola S; Theis, Fabian J

    2015-01-01

    Decreasing costs of modern high-throughput experiments allow for the simultaneous analysis of altered gene activity on various molecular levels. However, these multi-omics approaches lead to a large amount of data, which is hard to interpret for a non-bioinformatician. Here, we present the remotely accessible multilevel ontology analysis (RAMONA). It offers an easy-to-use interface for the simultaneous gene set analysis of combined omics datasets and is an extension of the previously introduced MONA approach. RAMONA is based on a Bayesian enrichment method for the inference of overrepresented biological processes among given gene sets. Overrepresentation is quantified by interpretable term probabilities. It is able to handle data from various molecular levels, while in parallel coping with redundancies arising from gene set overlaps and related multiple testing problems. The comprehensive output of RAMONA is easy to interpret and thus allows for functional insight into the affected biological processes. With RAMONA, we provide an efficient implementation of the Bayesian inference problem such that ontologies consisting of thousands of terms can be processed in the order of seconds. RAMONA is implemented as ASP.NET Web application and publicly available at http://icb.helmholtz-muenchen.de/ramona. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Value Added

    ERIC Educational Resources Information Center

    Welch, Matt

    2004-01-01

    This article profiles retiring values teacher Gene Doxey and describes his foundational contributions to the students of California's Ramona Unified School District. Every one of the Ramona Unified School District's 7,200 students is eventually funneled through Doxey's Contemporary Issues class, a required rite of passage between elementary school…

  10. 77 FR 23007 - Endangered and Threatened Wildlife and Plants; Designation of Revised Critical Habitat for Allium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... Jacinto River between the Ramona Expressway and the mouth of Railroad Canyon for a total of 61 localities... Nichols Road, near the mouth of Walker Canyon (CNDDB 2011b, EO16). A survey in 2005 recorded 10 plants...

  11. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ramona Valley. 9.191 Section 9.191 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...) Borrego Valley, California, 1982 edition; and (2) El Cajon, California, 1979 edition. (c) Boundary. The...

  12. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ramona Valley. 9.191 Section 9.191 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...) Borrego Valley, California, 1982 edition; and (2) El Cajon, California, 1979 edition. (c) Boundary. The...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokhane, A.; Canepa, S.; Ferroukhi, H.

    For stability analyses of the Swiss operating Boiling-Water-Reactors (BWRs), the methodology employed and validated so far at the Paul Scherrer Inst. (PSI) was based on the RAMONA-3 code with a hybrid upstream static lattice/core analysis approach using CASMO-4 and PRESTO-2. More recently, steps were undertaken towards a new methodology based on the SIMULATE-3K (S3K) code for the dynamical analyses combined with the CMSYS system relying on the CASMO/SIMULATE-3 suite of codes and which was established at PSI to serve as framework for the development and validation of reference core models of all the Swiss reactors and operated cycles. This papermore » presents a first validation of the new methodology on the basis of a benchmark recently organised by a Swiss utility and including the participation of several international organisations with various codes/methods. Now in parallel, a transition from CASMO-4E (C4E) to CASMO-5M (C5M) as basis for the CMSYS core models was also recently initiated at PSI. Consequently, it was considered adequate to address the impact of this transition both for the steady-state core analyses as well as for the stability calculations and to achieve thereby, an integral approach for the validation of the new S3K methodology. Therefore, a comparative assessment of C4 versus C5M is also presented in this paper with particular emphasis on the void coefficients and their impact on the downstream stability analysis results. (authors)« less

  14. Boromuscovite, a new member of the mica group, from the Little Three mine pegmatite, Ramona district, San Diego County, California

    USGS Publications Warehouse

    Foord, E.E.; Martin, R.F.; Fitzpatrick, J.J.; Taggart, J.E.; Crock, J.G.

    1991-01-01

    Boromuscovite, ideally KAl2(Si3B)O10(OH,F)2, in which [4]Al is replaced by B relative to muscovite, occurs as a late-stage, postpocket rupture mineral within the New Spaulding Pocket, main Little Three pegmatite dike. The mineral is white to cream colored and occurs as a porcelaneous veneer and coating on primary minerals. The average grain size is less than 3-4 ??m, but the coatings may be as much as 1 cm or more thick. Fragments of topaz, albite, elbaite, and other pocket minerals are included in the coating. The boromuscovite precipitated from a late-stage hydothermal fluid; it occurs only as a snowlike coating. Chemical composition, unit-cell parameters, Mohs hardness, cleavage, fracture, and optical properties are reported. -from Authors

  15. Mineralogy and geochemical evolution of the Little Three pegmatite-aplite layered intrusive, Ramona, California.

    USGS Publications Warehouse

    Stern, L.A.; Brown, Gordon E.; Bird, D.K.; Jahns, R.H.; Foord, E.E.; Shigley, J.E.; Spaulding, L.B.

    1986-01-01

    Several layered pegmatite-aplite intrusives exposed at the Little Three mine, Ramona, display closely associated fine-grained to giant-textured mineral assemblages which are believed to have co-evolved from a hydrous aluminosilicate residual melt with an exsolved supercritical vapour phase. Calculations of phase relations between the major pegmatite-aplite mineral assemblages and supercritical aqueous fluid were made, assuming equilibrium and closed-system behaviour as a first-order model.-J.A.Z.

  16. Final corrective action study for the former CCC/USDA facility in Ramona, Kansas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, L. M.

    Past operations at a grain storage facility formerly leased and operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Ramona, Kansas, resulted in low concentrations of carbon tetrachloride in groundwater that slightly exceed the regulatory standard in only one location. As requested by the Kansas Department of Health and Environment, the CCC/USDA has prepared a Corrective Action Study (CAS) for the facility. The CAS examines corrective actions to address groundwater impacted by the former CCC/USDA facility but not releases caused by other potential groundwater contamination sources in Ramona. Four remedial alternatives were considered in themore » CAS. The recommended remedial alternative in the CAS consists of Environmental Use Control to prevent the inadvertent use of groundwater as a water supply source, coupled with groundwater monitoring to verify the continued natural improvement in groundwater quality. The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) has directed Argonne National Laboratory to prepare a Corrective Action Study (CAS), consistent with guidance from the Kansas Department of Health and Environment (KDHE 2001a), for the CCC/USDA grain storage facility formerly located in Ramona, Kansas. This effort is pursuant to a KDHE (2007a) request. Although carbon tetrachloride levels at the Ramona site are low, they remain above the Kansas Tier 2 risk-based screening level (RBSL) and the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 5 {micro}g/L (Kansas 2003, 2004). In its request for the CAS, the KDHE (2007a) stated that, because of these levels, risk is associated with potential future exposure to contaminated groundwater. The KDHE therefore determined that additional measures are warranted to limit future use of the property and/or exposure to contaminated media as part of site closure. The KDHE further requested comparison of at least two corrective action alternatives to the 'no-action' alternative, as the basis for the Draft Corrective Action Decision for the site. The history and nature of the contamination and previous investigations are summarized in Section 2. Also included in Section 2 is an evaluation of human and environmental targets and potential exposure pathways. Section 3 describes the corrective action goals and applicable or relevant and appropriate requirements (ARARs). Section 4 describes four alternatives, Section 5 analyzes the alternatives in detail, and Section 6 compares the alternatives. Section 6 also includes a summary and a recommended corrective action.« less

  17. Two-dimensional finite-element analyses of simulated rotor-fragment impacts against rings and beams compared with experiments

    NASA Technical Reports Server (NTRS)

    Stagliano, T. R.; Witmer, E. A.; Rodal, J. J. A.

    1979-01-01

    Finite element modeling alternatives as well as the utility and limitations of the two dimensional structural response computer code CIVM-JET 4B for predicting the transient, large deflection, elastic plastic, structural responses of two dimensional beam and/or ring structures which are subjected to rigid fragment impact were investigated. The applicability of the CIVM-JET 4B analysis and code for the prediction of steel containment ring response to impact by complex deformable fragments from a trihub burst of a T58 turbine rotor was studied. Dimensional analysis considerations were used in a parametric examination of data from engine rotor burst containment experiments and data from sphere beam impact experiments. The use of the CIVM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions.

  18. Posttest calculation of the PBF LOC-11B and LOC-11C experiments using RELAP4/MOD6. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrix, C.E.

    Comparisons between RELAP4/MOD6, Update 4 code-calculated and measured experimental data are presented for the PBF LOC-11C and LOC-11B experiments. Independent code verification techniques are now being developed and this study represents a preliminary effort applying structured criteria for developing computer models, selecting code input, and performing base-run analyses. Where deficiencies are indicated in the base-case representation of the experiment, methods of code and criteria improvement are developed and appropriate recommendations are made.

  19. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....25 miles to the 652-meter (2,140-foot) peak of Starvation Mountain, T13S, R1W (Borrego Valley map... approximately 4.4 miles to the 999-meter (3,278-foot) peak of Witch Creek Mountain, T13S, R2E, east of Ballena... miles to the 822-meter (2,697-foot) peak of Iron Mountain, T14S, R1W (El Cajon map); and (7) Proceed...

  20. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....25 miles to the 652-meter (2,140-foot) peak of Starvation Mountain, T13S, R1W (Borrego Valley map... approximately 4.4 miles to the 999-meter (3,278-foot) peak of Witch Creek Mountain, T13S, R2E, east of Ballena... miles to the 822-meter (2,697-foot) peak of Iron Mountain, T14S, R1W (El Cajon map); and (7) Proceed...

  1. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....25 miles to the 652-meter (2,140-foot) peak of Starvation Mountain, T13S, R1W (Borrego Valley map... approximately 4.4 miles to the 999-meter (3,278-foot) peak of Witch Creek Mountain, T13S, R2E, east of Ballena... miles to the 822-meter (2,697-foot) peak of Iron Mountain, T14S, R1W (El Cajon map); and (7) Proceed...

  2. Instructions for the use of the CIVM-Jet 4C finite-strain computer code to calculate the transient structural responses of partial and/or complete arbitrarily-curved rings subjected to fragment impact

    NASA Technical Reports Server (NTRS)

    Rodal, J. J. A.; French, S. E.; Witmer, E. A.; Stagliano, T. R.

    1979-01-01

    The CIVM-JET 4C computer program for the 'finite strain' analysis of 2 d transient structural responses of complete or partial rings and beams subjected to fragment impact stored on tape as a series of individual files. Which subroutines are found in these files are described in detail. All references to the CIVM-JET 4C program are made assuming that the user has a copy of NASA CR-134907 (ASRL TR 154-9) which serves as a user's guide to (1) the CIVM-JET 4B computer code and (2) the CIVM-JET 4C computer code 'with the use of the modified input instructions' attached hereto.

  3. Joint Services Electronics Program Annual Progress Report.

    DTIC Science & Technology

    1985-11-01

    one symbol memory) adaptive lHuffman codes were performed, and the compression achieved was compared with that of Ziv - Lempel coding. As was expected...MATERIALS 8 4. Information Systems 9 4.1 REAL TIME STATISTICAL DATA PROCESSING 9 -. 4.2 DATA COMPRESSION for COMPUTER DATA STRUCTURES 9 5. PhD...a. Real Time Statistical Data Processing (T. Kailatb) b. Data Compression for Computer Data Structures (J. Gill) Acces Fo NTIS CRA&I I " DTIC TAB

  4. MAGIC Computer Simulation. Volume 1: User Manual

    DTIC Science & Technology

    1970-07-01

    vulnerability and MAGIC programs. A three-digit code is assigned to each component of the target, such as armor, gun tube; and a two-digit code is assigned to...A review of the subject Magic Computer Simulation User and Analyst Manuals has been conducted based upon a request received from the US Army...1970 4. TITLE AND SUBTITLE MAGIC Computer Simulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  5. Pretest mediction of Semiscale Test S-07-10 B. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobbe, C A

    A best estimate prediction of Semiscale Test S-07-10B was performed at INEL by EG and G Idaho as part of the RELAP4/MOD6 code assessment effort and as the Nuclear Regulatory Commission pretest calculation for the Small Break Experiment. The RELAP4/MOD6 Update 4 and the RELAP4/MOD7 computer codes were used to analyze Semiscale Test S-07-10B, a 10% communicative cold leg break experiment. The Semiscale Mod-3 system utilized an electrially heated simulated core operating at a power level of 1.94 MW. The initial system pressure and temperature in the upper plenum was 2276 psia and 604/sup 0/F, respectively.

  6. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.

    PubMed

    Yoriyaz, H; Stabin, M G; dos Santos, A

    2001-04-01

    This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)

  7. Design and Analysis of Orthotrophic Ring-Stiffened Cylindrical Shells Subjected to External Hydrostatic Pressure

    DTIC Science & Technology

    2008-03-28

    in plane bending stiffness. Figure 4. Non-Symmetric General Buckling In accordance with equations (4) through (11), the...the DAPS3 version of the code documented in reference 1, the DAPS4 code computes the stresses and deflections, interbay buckling pressure, general ... plane and out- of- plane bending , eliminating the simple support assumption at the bay ends. b. Stresses and deflections at all points between the

  8. Tech Time: Ramona and the Fruit Flies: An Interdisciplinary Approach.

    ERIC Educational Resources Information Center

    Mason, Marguerite; Lloyd, April K.

    1995-01-01

    Reports on how a school-university partnership used Virginia's Public Education Network to help third graders learn about metamorphosis in insects and the scientific method of experimentation, observation, and data collection. (MKR)

  9. The Behavior of Thin Dielectrics Under Electron Irradiation

    DTIC Science & Technology

    1980-03-01

    one of the principal surface materials used in satellites. As such, their behavior is of concern in SGEMP (system- generated electromagnetic pulse ), which...is time-reversible. 4 B. Goplen, R. E. Clark, and B. Fishbine, "MAD2 - A Computer Code for Systems-Generated Electromagnetic Pulse (SGEMP

  10. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part I: boron neutron capture therapy models.

    PubMed

    Culbertson, C N; Wangerin, K; Ghandourah, E; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for neutron capture therapy related modeling. A boron neutron capture therapy model was analyzed comparing COG calculational results to results from the widely used MCNP4B (Monte Carlo N-Particle) transport code. The approach for computing neutron fluence rate and each dose component relevant in boron neutron capture therapy is described, and calculated values are shown in detail. The differences between the COG and MCNP predictions are qualified and quantified. The differences are generally small and suggest that the COG code can be applied for BNCT research related problems.

  11. CAESAR: Commissioned Assignments Executive Support for the US Army.

    DTIC Science & Technology

    1986-03-27

    travel between jobs ? b. Detailed Narrative The documented source code of CAESAR can be found in Appendix B. An explanatory listing of variables used is...Compute Match Preference PREFFORM SSI index a, b a,b Match Match Leave ADSPEC SC2 and Travel a, b Time ab a , b ~~N4 4. ORB Mac Matyh ,. ac ASI ASI SReport...sufficient time between assignments for the officer to 44 take 30 days leave and travel . While this is not a manda- tory consideration, it is common to

  12. Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 5

    DTIC Science & Technology

    1980-02-21

    D. 0. 0 4 DNODD *• : 000.1 • 10 -7o. S0 C O EL4 ? • 4 ....5. 40...... ..... 4..........*............ ........ S....... * RMODEL.7 * 0. 071 4’. 2...while the receiver was a Golay cell mounted at the focus of a 76-cm diameter 80. Arnold, D.H., Lake, D. B., and Sanders, R. (1970) Comparative Measui

  13. A prototype Knowledge-Based System to Aid Space System Restoration Management.

    DTIC Science & Technology

    1986-12-01

    Systems. ......... 122 Appendix B: Computation of Weights With AHP . . .. 132 Appendix C: ART Code .. ............... 138 Appendix D: Test Outputs...45 5.1 Earth Coverage With Geosynchronous Satellites 49 5.2 Space System Configurations ... ........... . 50 5.3 AHP Hierarchy...67 5.4 AHP Hierarchy With Weights .... ............ 68 6.1 TALK Schema Structure ..... .............. 75 6.2 ART Code for TALK Satellite C

  14. 78 FR 68019 - Performance Review Board Appointments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ....; Chasteen, G. Taylor; Christian, Lisa A.; Clanton, Michael W.; Coffee, Richard; Cook, Cheryl L.; Davenport....; Paul, Matt; Pfaeffle, Frederick; Pino, Lisa; Repass, Todd; Robinson, Quinton; Romero, Ramona; Ruiz..., Lisa; Wright, Ann; Young, Benjamin; Young, Mike; Zehren, Christopher J. Marketing and Regulatory...

  15. An Assessment of Current Fan Noise Prediction Capability

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Woodward, Richard P.; Elliott, David M.; Fite, E. Brian; Hughes, Christopher E.; Podboy, Gary G.; Sutliff, Daniel L.

    2008-01-01

    In this paper, the results of an extensive assessment exercise carried out to establish the current state of the art for predicting fan noise at NASA are presented. Representative codes in the empirical, analytical, and computational categories were exercised and assessed against a set of benchmark acoustic data obtained from wind tunnel tests of three model scale fans. The chosen codes were ANOPP, representing an empirical capability, RSI, representing an analytical capability, and LINFLUX, representing a computational aeroacoustics capability. The selected benchmark fans cover a wide range of fan pressure ratios and fan tip speeds, and are representative of modern turbofan engine designs. The assessment results indicate that the ANOPP code can predict fan noise spectrum to within 4 dB of the measurement uncertainty band on a third-octave basis for the low and moderate tip speed fans except at extreme aft emission angles. The RSI code can predict fan broadband noise spectrum to within 1.5 dB of experimental uncertainty band provided the rotor-only contribution is taken into account. The LINFLUX code can predict interaction tone power levels to within experimental uncertainties at low and moderate fan tip speeds, but could deviate by as much as 6.5 dB outside the experimental uncertainty band at the highest tip speeds in some case.

  16. Real-Time Implementation of a Speech Digitization Algorithm Combining Time-Domain Harmonic Scaling and Adaptive Residual Coding. Volume 1.

    DTIC Science & Technology

    1983-06-01

    recomuended values are b1 - 1.79 b2 - -1.40 b3 - 0.57 b4 - -0.15 s - 0.95 abias - 0.001 g - 0.15 The bi are determined using the technique suggested by...R.A. McDonald (1966). The term, max{.), computes the biased percent change desired. The abias term helps the coefficient move from the zero level

  17. Aerodynamic Analysis of a Canard Missile Configuration using ANSYS-CFX

    DTIC Science & Technology

    2011-12-01

    OF A CANARD MISSILE CONFIGURATION USING ANSYS - CFX by Hong Chuan Wee December 2011 Thesis Advisor: Maximilian Platzer Second Reader...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Aerodynamic Analysis of a Canard Missile Configuration using ANSYS - CFX 5. FUNDING NUMBERS 6...distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) This study used the Computational Fluid Dynamics code, ANSYS - CFX to

  18. Remembering the University of Utah.

    ERIC Educational Resources Information Center

    Haglund, Elizabeth, Ed.

    Nineteen essays comprise this personal and historical look at the University of Utah and the relationship between the university, its people, and the community. Essays include: "One Cannot Live Long Enough to Outgrow a University" (Ramona Wilcox Cannon); "Ever in the Freshness of Its Youth" (G. Homer Durham); "The Final…

  19. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.

    PubMed

    Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R

    2000-07-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.

  20. Language-Agnostic Reproducible Data Analysis Using Literate Programming.

    PubMed

    Vassilev, Boris; Louhimo, Riku; Ikonen, Elina; Hautaniemi, Sampsa

    2016-01-01

    A modern biomedical research project can easily contain hundreds of analysis steps and lack of reproducibility of the analyses has been recognized as a severe issue. While thorough documentation enables reproducibility, the number of analysis programs used can be so large that in reality reproducibility cannot be easily achieved. Literate programming is an approach to present computer programs to human readers. The code is rearranged to follow the logic of the program, and to explain that logic in a natural language. The code executed by the computer is extracted from the literate source code. As such, literate programming is an ideal formalism for systematizing analysis steps in biomedical research. We have developed the reproducible computing tool Lir (literate, reproducible computing) that allows a tool-agnostic approach to biomedical data analysis. We demonstrate the utility of Lir by applying it to a case study. Our aim was to investigate the role of endosomal trafficking regulators to the progression of breast cancer. In this analysis, a variety of tools were combined to interpret the available data: a relational database, standard command-line tools, and a statistical computing environment. The analysis revealed that the lipid transport related genes LAPTM4B and NDRG1 are coamplified in breast cancer patients, and identified genes potentially cooperating with LAPTM4B in breast cancer progression. Our case study demonstrates that with Lir, an array of tools can be combined in the same data analysis to improve efficiency, reproducibility, and ease of understanding. Lir is an open-source software available at github.com/borisvassilev/lir.

  1. Language-Agnostic Reproducible Data Analysis Using Literate Programming

    PubMed Central

    Vassilev, Boris; Louhimo, Riku; Ikonen, Elina; Hautaniemi, Sampsa

    2016-01-01

    A modern biomedical research project can easily contain hundreds of analysis steps and lack of reproducibility of the analyses has been recognized as a severe issue. While thorough documentation enables reproducibility, the number of analysis programs used can be so large that in reality reproducibility cannot be easily achieved. Literate programming is an approach to present computer programs to human readers. The code is rearranged to follow the logic of the program, and to explain that logic in a natural language. The code executed by the computer is extracted from the literate source code. As such, literate programming is an ideal formalism for systematizing analysis steps in biomedical research. We have developed the reproducible computing tool Lir (literate, reproducible computing) that allows a tool-agnostic approach to biomedical data analysis. We demonstrate the utility of Lir by applying it to a case study. Our aim was to investigate the role of endosomal trafficking regulators to the progression of breast cancer. In this analysis, a variety of tools were combined to interpret the available data: a relational database, standard command-line tools, and a statistical computing environment. The analysis revealed that the lipid transport related genes LAPTM4B and NDRG1 are coamplified in breast cancer patients, and identified genes potentially cooperating with LAPTM4B in breast cancer progression. Our case study demonstrates that with Lir, an array of tools can be combined in the same data analysis to improve efficiency, reproducibility, and ease of understanding. Lir is an open-source software available at github.com/borisvassilev/lir. PMID:27711123

  2. Single Event Upset Rate Estimates for a 16-K CMOS (Complementary Metal Oxide Semiconductor) SRAM (Static Random Access Memory).

    DTIC Science & Technology

    1986-09-30

    4 . ~**..ft.. ft . - - - ft SI TABLES 9 I. SA32~40 Single Event Upset Test, 1140-MeV Krypton, 9/l8/8~4. . .. .. .. .. .. .16 II. CRUP Simulation...cosmic ray interaction analysis described in the remainder of this report were calculated using the CRUP computer code 3 modified for funneling. The... CRUP code requires, as inputs, the size of a depletion region specified as a retangular parallel piped with dimensions a 9 b S c, the effective funnel

  3. GPU implementation of the linear scaling three dimensional fragment method for large scale electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Jia, Weile; Wang, Jue; Chi, Xuebin; Wang, Lin-Wang

    2017-02-01

    LS3DF, namely linear scaling three-dimensional fragment method, is an efficient linear scaling ab initio total energy electronic structure calculation code based on a divide-and-conquer strategy. In this paper, we present our GPU implementation of the LS3DF code. Our test results show that the GPU code can calculate systems with about ten thousand atoms fully self-consistently in the order of 10 min using thousands of computing nodes. This makes the electronic structure calculations of 10,000-atom nanosystems routine work. This speed is 4.5-6 times faster than the CPU calculations using the same number of nodes on the Titan machine in the Oak Ridge leadership computing facility (OLCF). Such speedup is achieved by (a) carefully re-designing of the computationally heavy kernels; (b) redesign of the communication pattern for heterogeneous supercomputers.

  4. "Celebrate Science" Has Formula for Hands-On Learning

    ERIC Educational Resources Information Center

    Brydolf, Carol

    2012-01-01

    Cost-effective, easily replicated program is a win-win situation for high schoolers who teach science and for their elementary students. The thank-you letter from Leslie, a grade-schooler in San Diego County's Ramona Unified School District, speaks volumes about the excitement generated by "Celebrate Science"--an innovative,…

  5. Trellis coding with multidimensional QAM signal sets

    NASA Technical Reports Server (NTRS)

    Pietrobon, Steven S.; Costello, Daniel J.

    1993-01-01

    Trellis coding using multidimensional QAM signal sets is investigated. Finite-size 2D signal sets are presented that have minimum average energy, are 90-deg rotationally symmetric, and have from 16 to 1024 points. The best trellis codes using the finite 16-QAM signal set with two, four, six, and eight dimensions are found by computer search (the multidimensional signal set is constructed from the 2D signal set). The best moderate complexity trellis codes for infinite lattices with two, four, six, and eight dimensions are also found. The minimum free squared Euclidean distance and number of nearest neighbors for these codes were used as the selection criteria. Many of the multidimensional codes are fully rotationally invariant and give asymptotic coding gains up to 6.0 dB. From the infinite lattice codes, the best codes for transmitting J, J + 1/4, J + 1/3, J + 1/2, J + 2/3, and J + 3/4 bit/sym (J an integer) are presented.

  6. Dental Shade Guide Variability for Hues B, C, and D Using Cross-Polarized Photography.

    PubMed

    Sampaio, Camila S; Gurrea, Jon; Gurrea, Marta; Bruguera, August; Atria, Pablo J; Janal, Malvin; Bonfante, Estevam A; Coelho, Paulo G; Hirata, Ronaldo

    2018-04-20

    This study evaluated the color variability of hues B, C, and D between the VITA Classical shade guide (Vita Zahnfabrik) and four other VITA-coded ceramic shade guides using a digital camera (Canon EOS 60D) and computer software (Adobe Photoshop CC). A cross-polarizing filter was used to standardize external light sources influencing color match. A total of 275 pictures were taken, 5 per shade tab, for 11 shades (B1, B2, B3, B4, C1, C2, C3, C4, D2, D3, and D4), from the following shade guides: VITA Classical (control); IPS e.max Ceram (Ivoclar Vivadent); IPS d.SIGN (Ivoclar Vivadent); Initial ZI (GC); and Creation CC (Creation Willi Geller). Pictures were evaluated using Adobe Photoshop CC for standardization of hue, chroma, and value between shade tabs. The VITA-coded shade guides evaluated here showed an overall unmatched shade in all their tabs when compared to the control, suggesting that shade selection should be made with the corresponding manufacturer guide of the ceramic intended for the final restoration.

  7. HELIOS: A new open-source radiative transfer code

    NASA Astrophysics Data System (ADS)

    Malik, Matej; Grosheintz, Luc; Lukas Grimm, Simon; Mendonça, João; Kitzmann, Daniel; Heng, Kevin

    2015-12-01

    I present the new open-source code HELIOS, developed to accurately describe radiative transfer in a wide variety of irradiated atmospheres. We employ a one-dimensional multi-wavelength two-stream approach with scattering. Written in Cuda C++, HELIOS uses the GPU’s potential of massive parallelization and is able to compute the TP-profile of an atmosphere in radiative equilibrium and the subsequent emission spectrum in a few minutes on a single computer (for 60 layers and 1000 wavelength bins).The required molecular opacities are obtained with the recently published code HELIOS-K [1], which calculates the line shapes from an input line list and resamples the numerous line-by-line data into a manageable k-distribution format. Based on simple equilibrium chemistry theory [2] we combine the k-distribution functions of the molecules H2O, CO2, CO & CH4 to generate a k-table, which we then employ in HELIOS.I present our results of the following: (i) Various numerical tests, e.g. isothermal vs. non-isothermal treatment of layers. (ii) Comparison of iteratively determined TP-profiles with their analytical parametric prescriptions [3] and of the corresponding spectra. (iii) Benchmarks of TP-profiles & spectra for various elemental abundances. (iv) Benchmarks of averaged TP-profiles & spectra for the exoplanets GJ1214b, HD189733b & HD209458b. (v) Comparison with secondary eclipse data for HD189733b, XO-1b & Corot-2b.HELIOS is being developed, together with the dynamical core THOR and the chemistry solver VULCAN, in the group of Kevin Heng at the University of Bern as part of the Exoclimes Simulation Platform (ESP) [4], which is an open-source project aimed to provide community tools to model exoplanetary atmospheres.-----------------------------[1] Grimm & Heng 2015, ArXiv, 1503.03806[2] Heng, Lyons & Tsai, Arxiv, 1506.05501Heng & Lyons, ArXiv, 1507.01944[3] e.g. Heng, Mendonca & Lee, 2014, ApJS, 215, 4H[4] exoclime.net

  8. 78 FR 46599 - Wild Horse and Burro Advisory Board Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLWO2600000 L10600000 XQ0000] Wild Horse and... Bureau of Land Management (BLM) announces that the Wild Horse and Burro Advisory Board will conduct a... mailed to National Wild Horse and Burro Program, WO-260, Attention: Ramona DeLorme, 1340 Financial...

  9. Performance of MCNP4A on seven computing platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, J.S.; Brockhoff, R.C.

    1994-12-31

    The performance of seven computer platforms has been evaluated with the MCNP4A Monte Carlo radiation transport code. For the first time we report timing results using MCNP4A and its new test set and libraries. Comparisons are made on platforms not available to us in previous MCNP timing studies. By using MCNP4A and its 325-problem test set, a widely-used and readily-available physics production code is used; the timing comparison is not limited to a single ``typical`` problem, demonstrating the problem dependence of timing results; the results are reproducible at the more than 100 installations around the world using MCNP; comparison ofmore » performance of other computer platforms to the ones tested in this study is possible because we present raw data rather than normalized results; and a measure of the increase in performance of computer hardware and software over the past two years is possible. The computer platforms reported are the Cray-YMP 8/64, IBM RS/6000-560, Sun Sparc10, Sun Sparc2, HP/9000-735, 4 processor 100 MHz Silicon Graphics ONYX, and Gateway 2000 model 4DX2-66V PC. In 1991 a timing study of MCNP4, the predecessor to MCNP4A, was conducted using ENDF/B-V cross-section libraries, which are export protected. The new study is based upon the new MCNP 25-problem test set which utilizes internationally available data. MCNP4A, its test problems and the test data library are available from the Radiation Shielding and Information Center in Oak Ridge, Tennessee, or from the NEA Data Bank in Saclay, France. Anyone with the same workstation and compiler can get the same test problem sets, the same library files, and the same MCNP4A code from RSIC or NEA and replicate our results. And, because we report raw data, comparison of the performance of other compute platforms and compilers can be made.« less

  10. DEAN: A Program for Dynamic Engine Analysis.

    DTIC Science & Technology

    1985-01-01

    hardware and memory limitations. DIGTEM (ref. 4), a recently written code allows steady-state as well as transient calculations to be performed. DIGTEM has...Computer Program for Generating Dynamic Turbofan Engine Models ( DIGTEM )," NASA TM-83446. 5. Carnahan, B., Luther, H.A., and Wilkes, J.O., Applied Numerical

  11. Computer program for stress, stability, and vibration of complex branched shells of revolution: BOSOR 4

    NASA Technical Reports Server (NTRS)

    Bushnell, D.

    1974-01-01

    Code is easy to use yet is general with respect to: (a) type of analysis to be performed; (b) geometry of shell meridian; (c) type of wall construction; (d) type of boundary conditions, ring supports, and branching configuration; and (e) type of loading.

  12. Simulation of the Reflected Blast Wave froma C-4 Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, W M; Kuhl, A L; Tringe, J W

    2011-08-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 rangesmore » (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.« less

  13. Simulation of the reflected blast wave from a C-4 charge

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael; Kuhl, Allen L.; Tringe, Joseph

    2012-03-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 μm per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 7 ranges (GR = 0, 5.08, 10.16, 15.24, 20.32, 25.4, and 30.48 cm) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 5 cm), which were dominated by jetting effects.

  14. Direct migration motion estimation and mode decision to decoder for a low-complexity decoder Wyner-Ziv video coding

    NASA Astrophysics Data System (ADS)

    Lei, Ted Chih-Wei; Tseng, Fan-Shuo

    2017-07-01

    This paper addresses the problem of high-computational complexity decoding in traditional Wyner-Ziv video coding (WZVC). The key focus is the migration of two traditionally high-computationally complex encoder algorithms, namely motion estimation and mode decision. In order to reduce the computational burden in this process, the proposed architecture adopts the partial boundary matching algorithm and four flexible types of block mode decision at the decoder. This approach does away with the need for motion estimation and mode decision at the encoder. The experimental results show that the proposed padding block-based WZVC not only decreases decoder complexity to approximately one hundredth that of the state-of-the-art DISCOVER decoding but also outperforms DISCOVER codec by up to 3 to 4 dB.

  15. COMPUTER DATA PROCESSING SYSTEM. PROJECT ROVER, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narin, F.

    ABS>A system was created for processing large volumes of data from Project ROVER tests at the Nevada Test Site. The data are compiled as analog, frequency modulated tape, which is translated in a Packard-Bell Tape-to-Tape converter into a binary coded decimal (BCD) IBM 7090 computer input tape. This input tape, tape A5, is processed on the 7090 by the RDH-D FORTRAN-II code and its 20 FAP and FORTRAN subroutines. Outputs from the 7090 run are tapes A3, which is a BCD tape used for listing on the IBM 1401 input-output computer, tape B5 which is a binary tape used asmore » input to a Stromberg-Carlson 40/20 cathode ray tube (CRT) plotter, and tape B6 which is a binary tape used for permanent data storage and input to specialized subcodes. The information on tape B5 commands the 40/20 to write grids, data points, and other information on the face of a CRT; the information on the CRT is photographed on 35 mm film which is subsequently developed; full-size (10" x 10") plots are made from the 35 mm film on a Xerox 1824 printer. The 7090 processes a data channel in approximately 4 seconds plus 4 seconds per plot to be made on the 40/20 for that channel. Up to 4500 data and calibration points on any one channel may be processed in one pass of the RDH-D code. This system has been used to produce more than 100,000 prints on the 1824 printer from more than 10,000 different 40/20 plots. At 00 per minute of 7090 time, it costs 60 to process a typical, 3-plot data channel on the 7090; each print on the 1824 costs between 5 and 10 cents including rental, supplies, and operator time. All automatic computer stops in the codes and subroutines are accompanied by on-line instructions to the operator. Extensive redundancy checking is incorporated in the FAP tape handling subroutines. (auth)« less

  16. FACES (Friday Afternoon Choices for Enrichment for Our Students).

    ERIC Educational Resources Information Center

    Myers, Donna

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: It has been the goal of the staff and parents at Ramona Elementary School to provide more enriching opportunities for our students. We want to stimulate learning and expand our horizons in every area of the curriculum. Parents, community members, and the school staff work together to provide these…

  17. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented in two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.

  18. Gordon Research Conference on Computational Chemistry Held in Plymouth, New Hampshire on 4-8 July 1988

    DTIC Science & Technology

    1988-07-01

    NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) _ R.TR- 90 - 0 4 70 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING...University of Rhode Island Building 410 Kingston, RI 18195 Boiling AFB, DC 20332-6448 . Sa. NAME OF FUNDING / SPONSORING Sb. OFFICE SYMBOL 9, PROCUREMENT...AS RPT. 3 OTIC USERS UNCLASSIFIED 22a- NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL Dr Anthony J. Matuszko (202

  19. Aerodynamic Heating Computations for Projectiles. Volume 2. Swept Wing Calculations Using the Planar Version of the ABRES Shape Change Code (PLNRASCC)

    DTIC Science & Technology

    1984-06-01

    Mt n o ro " g < - OD-O)C 0N v : _grI40N40 O I0 eeg gr, Wn *, c.M b-C N Z ý VN dN N C4 C4 C4 e"Ř!02AWVý 00 0 P- 1( or . . . . . . . . . i...the ABRES Shape Change Code (ASCC)," Acurex Report TM -80-31/AS, July 1980. 3. M. J. Abbett, "Finite Difference Solution of the Subsonic/Supersonic...Development Command US Army AMCCOM Technical Support Activity ATTN: DRSMC- TDC (D) ATTN: DELSD-L DRSMC-TSS (D) Fort Monmouth, NJ 07703 DRSMC-LCA-F (D) Mr. 0

  20. On the error statistics of Viterbi decoding and the performance of concatenated codes

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Deutsch, L. J.; Butman, S. A.

    1981-01-01

    Computer simulation results are presented on the performance of convolutional codes of constraint lengths 7 and 10 concatenated with the (255, 223) Reed-Solomon code (a proposed NASA standard). These results indicate that as much as 0.8 dB can be gained by concatenating this Reed-Solomon code with a (10, 1/3) convolutional code, instead of the (7, 1/2) code currently used by the DSN. A mathematical model of Viterbi decoder burst-error statistics is developed and is validated through additional computer simulations.

  1. DOE Zero Energy Ready Home Case Study: Alliance Green Builders, Casa Aguila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    Alliance Green Builders built this 3,129-ft2 home in the hills above Ramona, California, to the high-performance criteria of the DOE Zero Energy Ready Home (ZERH) program. The home should perform far better than net zero thanks to a super-efficient building shell, a wind turbine, three suntracking solar photovoltaic arrays, and solar thermal water heating.

  2. Fragmentation of DHS Public Corruption Investigations: Options to Leverage Overlapping Jurisdiction and Enhance Collaboration

    DTIC Science & Technology

    2011-12-01

    LAPD Los Angeles Police Department MOU Memorandum of Understanding xii NCA National Crime Agency OIG Office of Inspector General OPR Office...that police departments should not be afforded the same privilege. In 2008, Ramona Ripston, Executive Director of the Los Angeles Chapter of the ...American Civil Liberties Union, praised outgoing Los Angeles Police Department ( LAPD ) Chief

  3. Palynostratigraphy, palaeoclimates and palaeodepositional environments of the Miocene aged Agbada Formation in the Niger Delta, Nigeria

    NASA Astrophysics Data System (ADS)

    Bankole, Samson I.; Schrank, Eckart; Osterloff, Peter L.

    2014-07-01

    A diverse assemblage of palynomorphs dominated by terrestrially derived pollen and spores is reported from three wells penetrating the Miocene Agbada Formation. The pteridophyte and bryophyte spores which form the background assemblages in the three wells are good indicators of humid tropical climates which might have prevailed in the Niger Delta during the Miocene. The abundance and variations of climate-sensitive taxa including mangrove affiliated pollen and spore types Acrostichumsporites, Psilatricolporites crassus, Zonocostites ramonae and Graminidites annulatus representing the savannah vegetation cover indicate a complex interplay between periods of wetter and drier climates. Marine-derived dinoflagellate cysts and foraminiferal test linings are significantly present in the three wells. Taxa indicating freshwater contributions including Botryococcus spp., Chomotriletes minor, Ovoidites parvus and Pediastrum spp. are also represented numerically across the three wells. The presence of age diagnostic palynomorphs such as Crassoretitriletes vanraadshooveni, Retibrevitricolporites obodoensis, Tuberculodinium vancampoae, Zonocostites ramonae and Tuberculodinium vancampoae recovered in the three sections studied suggest a Miocene age for the investigated Agbada Formation. The proposed age is supported by the ranges of key palynomorphs in contemporaneous basins in Africa, northern South America and other parts of the World.

  4. An Evaluation of Characteristics Contributing towards Ease of User- Computer Interface in a Computer-Aided Instruction Exercise

    DTIC Science & Technology

    1987-12-31

    Kent E., Hamel, Cheryl J., and Shrestha, Lisa B. 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT Final FROM...DTIC USERS UNCLASSIFIED 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL Cheryl J. Hamel 407-380-4825 Code 712 DO...Lab ATTN: Dr Alva Bittner, Jr., P. 0. Box 29407 New Orleans, LA 70189 Commanding Officer NETPMSA ATTN: Mr Dennis Knott Pensacola, FL 32509-5000

  5. Analysis of airborne antenna systems using geometrical theory of diffraction and moment method computer codes

    NASA Technical Reports Server (NTRS)

    Hartenstein, Richard G., Jr.

    1985-01-01

    Computer codes have been developed to analyze antennas on aircraft and in the presence of scatterers. The purpose of this study is to use these codes to develop accurate computer models of various aircraft and antenna systems. The antenna systems analyzed are a P-3B L-Band antenna, an A-7E UHF relay pod antenna, and traffic advisory antenna system installed on a Bell Long Ranger helicopter. Computer results are compared to measured ones with good agreement. These codes can be used in the design stage of an antenna system to determine the optimum antenna location and save valuable time and costly flight hours.

  6. Computer codes developed and under development at Lewis

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1992-01-01

    The objective of this summary is to provide a brief description of: (1) codes developed or under development at LeRC; and (2) the development status of IPACS with some typical early results. The computer codes that have been developed and/or are under development at LeRC are listed in the accompanying charts. This list includes: (1) the code acronym; (2) select physics descriptors; (3) current enhancements; and (4) present (9/91) code status with respect to its availability and documentation. The computer codes list is grouped by related functions such as: (1) composite mechanics; (2) composite structures; (3) integrated and 3-D analysis; (4) structural tailoring; and (5) probabilistic structural analysis. These codes provide a broad computational simulation infrastructure (technology base-readiness) for assessing the structural integrity/durability/reliability of propulsion systems. These codes serve two other very important functions: they provide an effective means of technology transfer; and they constitute a depository of corporate memory.

  7. The incorporation of plotting capability into the Unified Subsonic Supersonic Aerodynamic Analysis program, version B

    NASA Technical Reports Server (NTRS)

    Winter, O. A.

    1980-01-01

    The B01 version of the United Subsonic Supersonic Aerodynamic Analysis program is the result of numerous modifications and additions made to the B00 version. These modifications and additions affect the program input, its computational options, the code readability, and the overlay structure. The following are described: (1) the revised input; (2) the plotting overlay programs which were also modified, and their associated subroutines, (3) the auxillary files used by the program, the revised output data; and (4) the program overlay structure.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, Lorraine M.

    This report describes groundwater monitoring in 2014 for the property at Ramona, Kansas, on which a grain storage facility was formerly operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The monitoring was implemented on behalf of the CCC/USDA by Argonne National Laboratory and was conducted as specified in the Long-Term Groundwater Monitoring Plan (Argonne 2012) approved by the Kansas Department of Health and Environment (KDHE 2012).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, Lorraine M.

    This Monitoring Report describes groundwater monitoring for the property at Ramona, Kansas, on which a grain storage facility was formerly operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The monitoring was implemented on behalf of the CCC/USDA by Argonne National Laboratory. Monitoring was conducted as specified in the Long-Term Groundwater Monitoring Plan (Argonne 2012) approved by the Kansas Department of Health and Environment (KDHE 2012).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, Lorraine M.

    This report describes groundwater monitoring in 2015 for the property at Ramona, Kansas, on which a grain storage facility was formerly operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The monitoring was implemented on behalf of the CCC/USDA by Argonne National Laboratory and was conducted as specified in the Long-Term Groundwater Monitoring Plan (Argonne 2012) approved by the Kansas Department of Health and Environment (KDHE 2012).

  11. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens.

    PubMed

    Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D; Volz, Kerstin

    2017-06-01

    We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bistatic radar cross section of a perfectly conducting rhombus-shaped flat plate

    NASA Astrophysics Data System (ADS)

    Fenn, Alan J.

    1990-05-01

    The bistatic radar cross section of a perfectly conducting flat plate that has a rhombus shape (equilateral parallelogram) is investigated. The Ohio State University electromagnetic surface patch code (ESP version 4) is used to compute the theoretical bistatic radar cross section of a 35- x 27-in rhombus plate at 1.3 GHz over the bistatic angles 15 deg to 142 deg. The ESP-4 computer code is a method of moments FORTRAN-77 program which can analyze general configurations of plates and wires. This code has been installed and modified at Lincoln Laboratory on a SUN 3 computer network. Details of the code modifications are described. Comparisons of the method of moments simulations and measurements of the rhombus plate are made. It is shown that the ESP-4 computer code provides a high degree of accuracy in the calculation of copolarized and cross-polarized bistatic radar cross section patterns.

  13. ASR4: A computer code for fitting and processing 4-gage anelastic strain recovery data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    A computer code for analyzing four-gage Anelastic Strain Recovery (ASR) data has been modified for use on a personal computer. This code fits the viscoelastic model of Warpinski and Teufel to measured ASR data, calculates the stress orientation directly, and computes stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and its calculates stress magnitudes using Blanton's approach, assuming sufficient input data are available. The program is written in FORTRAN, compiled with Ryan-McFarland Version 2.4. Graphics use PLOT88 software by Plotworks, Inc., but the graphics software must be obtained by themore » user because of licensing restrictions. A version without graphics can also be run. This code is available through the National Energy Software Center (NESC), operated by Argonne National Laboratory. 5 refs., 3 figs.« less

  14. Desensitizing Flame Structure and Exhaust Emissions to Flow Parameters in an Ultra-Compact Combustor

    DTIC Science & Technology

    2012-03-22

    fuel .... 9 Figure 2.4: UNICORN model of hydrogen in air flame front propagation under the loading condition (a) 10 g’s and (b) 500 g’s...Lean Blowout ...................................................................................8 UNICORN Unsteady Ignition and Combustion with...computationally recreate Lewis’ experimental results. Using the Unsteady Ignition and 9 Combustion with Reactions ( UNICORN ) code, flame propagation

  15. Sci—Thur AM: YIS - 03: irtGPUMCD: a new GPU-calculated dosimetry code for {sup 177}Lu-octreotate radionuclide therapy of neuroendocrine tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montégiani, Jean-François; Gaudin, Émilie; Després, Philippe

    2014-08-15

    In peptide receptor radionuclide therapy (PRRT), huge inter-patient variability in absorbed radiation doses per administered activity mandates the utilization of individualized dosimetry to evaluate therapeutic efficacy and toxicity. We created a reliable GPU-calculated dosimetry code (irtGPUMCD) and assessed {sup 177}Lu-octreotate renal dosimetry in eight patients (4 cycles of approximately 7.4 GBq). irtGPUMCD was derived from a brachytherapy dosimetry code (bGPUMCD), which was adapted to {sup 177}Lu PRRT dosimetry. Serial quantitative single-photon emission computed tomography (SPECT) images were obtained from three SPECT/CT acquisitions performed at 4, 24 and 72 hours after {sup 177}Lu-octreotate administration, and registered with non-rigid deformation of CTmore » volumes, to obtain {sup 177}Lu-octreotate 4D quantitative biodistribution. Local energy deposition from the β disintegrations was assumed. Using Monte Carlo gamma photon transportation, irtGPUMCD computed dose rate at each time point. Average kidney absorbed dose was obtained from 1-cm{sup 3} VOI dose rate samples on each cortex, subjected to a biexponential curve fit. Integration of the latter time-dose rate curve yielded the renal absorbed dose. The mean renal dose per administered activity was 0.48 ± 0.13 Gy/GBq (range: 0.30–0.71 Gy/GBq). Comparison to another PRRT dosimetry code (VRAK: Voxelized Registration and Kinetics) showed fair accordance with irtGPUMCD (11.4 ± 6.8 %, range: 3.3–26.2%). These results suggest the possibility to use the irtGPUMCD code in order to personalize administered activity in PRRT. This could allow improving clinical outcomes by maximizing per-cycle tumor doses, without exceeding the tolerable renal dose.« less

  16. A novel construction scheme of QC-LDPC codes based on the RU algorithm for optical transmission systems

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Liang, Meng-qi; Wang, Yong; Lin, Jin-zhao; Pang, Yu

    2016-03-01

    A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check (QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke (RU) algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by this novel construction scheme. The simulation analyses show that the net coding gain ( NCG) of the novel irregular QC-LDPC(4 288,4 020) code is respectively 2.08 dB, 1.25 dB and 0.29 dB more than those of the classic RS(255, 239) code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate ( BER) of 10-6. The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission systems.

  17. Performance of MIMO-OFDM using convolution codes with QAM modulation

    NASA Astrophysics Data System (ADS)

    Astawa, I. Gede Puja; Moegiharto, Yoedy; Zainudin, Ahmad; Salim, Imam Dui Agus; Anggraeni, Nur Annisa

    2014-04-01

    Performance of Orthogonal Frequency Division Multiplexing (OFDM) system can be improved by adding channel coding (error correction code) to detect and correct errors that occur during data transmission. One can use the convolution code. This paper present performance of OFDM using Space Time Block Codes (STBC) diversity technique use QAM modulation with code rate ½. The evaluation is done by analyzing the value of Bit Error Rate (BER) vs Energy per Bit to Noise Power Spectral Density Ratio (Eb/No). This scheme is conducted 256 subcarrier which transmits Rayleigh multipath fading channel in OFDM system. To achieve a BER of 10-3 is required 10dB SNR in SISO-OFDM scheme. For 2×2 MIMO-OFDM scheme requires 10 dB to achieve a BER of 10-3. For 4×4 MIMO-OFDM scheme requires 5 dB while adding convolution in a 4x4 MIMO-OFDM can improve performance up to 0 dB to achieve the same BER. This proves the existence of saving power by 3 dB of 4×4 MIMO-OFDM system without coding, power saving 7 dB of 2×2 MIMO-OFDM and significant power savings from SISO-OFDM system.

  18. Fast bi-directional prediction selection in H.264/MPEG-4 AVC temporal scalable video coding.

    PubMed

    Lin, Hung-Chih; Hang, Hsueh-Ming; Peng, Wen-Hsiao

    2011-12-01

    In this paper, we propose a fast algorithm that efficiently selects the temporal prediction type for the dyadic hierarchical-B prediction structure in the H.264/MPEG-4 temporal scalable video coding (SVC). We make use of the strong correlations in prediction type inheritance to eliminate the superfluous computations for the bi-directional (BI) prediction in the finer partitions, 16×8/8×16/8×8 , by referring to the best temporal prediction type of 16 × 16. In addition, we carefully examine the relationship in motion bit-rate costs and distortions between the BI and the uni-directional temporal prediction types. As a result, we construct a set of adaptive thresholds to remove the unnecessary BI calculations. Moreover, for the block partitions smaller than 8 × 8, either the forward prediction (FW) or the backward prediction (BW) is skipped based upon the information of their 8 × 8 partitions. Hence, the proposed schemes can efficiently reduce the extensive computational burden in calculating the BI prediction. As compared to the JSVM 9.11 software, our method saves the encoding time from 48% to 67% for a large variety of test videos over a wide range of coding bit-rates and has only a minor coding performance loss. © 2011 IEEE

  19. Evolvix BEST Names for semantic reproducibility across code2brain interfaces

    PubMed Central

    Scheuer, Katherine S.; Keel, Seth A.; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C.; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G.; Moog, Cecilia L.; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist‐Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda‐Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L.; Freiberg, Erika; Waters, Noah P.; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M.; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha

    2016-01-01

    Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general‐purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long‐term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder‐brains to reader‐brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. PMID:27918836

  20. User's manual for three dimensional FDTD version B code for scattering from frequency-dependent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file, a discussion of radar cross section computations, a discussion of some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  1. Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 4

    DTIC Science & Technology

    1978-02-28

    LOWE 74~ A 4L p~i � l A 41 C MI=CbgASEAVEQ ALT ITUDE ( kM) LUO ?F bO A 43- C, HT:’=PLPCE At I I 1( 0KI ( KIM) LOWE iTA A 4.3 C ANGLE: 7ENUNH ANriE AT...ANMr, td 400 21’ , 5P9 1- SPHI/P" ANG4 2410 C 2 191 0:05 151RPM I) ANCL .󈧮 C’ 9 c GO To IANGL 430 2301 5 OtýT 1 -:BEI t ANGI27440O 薷 L *- ANGI

  2. Testimony of E. Ramona Trovato, Deputy Assistant Administrator, Office of Environmental Information, U.S. Environmental Protection Agency before the Committee on Environment and Public Works, United States Senate.

    ERIC Educational Resources Information Center

    2002

    This testimony provides an overview of health and environmental issues in U.S. schools and describes efforts by the Environmental Protection Agency (EPA), in concert with other federal agencies, to help schools address environmental issues. These include the Clear Skies Initiative, Indoor Air Quality Tools for Schools, High Performance Schools,…

  3. Frame Synchronization Without Attached Sync Markers

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  4. Development of an Aeroelastic Analysis Including a Viscous Flow Model

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Bakhle, Milind A.

    2001-01-01

    Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.

  5. Computer Description of the Field Artillery Ammunition Supply Vehicle

    DTIC Science & Technology

    1983-04-01

    Combinatorial Geometry (COM-GEOM) GIFT Computer Code Computer Target Description 2& AfTNACT (Cmne M feerve shb N ,neemssalyan ify by block number) A...input to the GIFT computer code to generate target vulnerability data. F.a- 4 ono OF I NOV 5S OLETE UNCLASSIFIED SECUOITY CLASSIFICATION OF THIS PAGE...Combinatorial Geometry (COM-GEOM) desrription. The "Geometric Information for Tarqets" ( GIFT ) computer code accepts the CO!-GEOM description and

  6. Horizontal vectorization of electron repulsion integrals.

    PubMed

    Pritchard, Benjamin P; Chow, Edmond

    2016-10-30

    We present an efficient implementation of the Obara-Saika algorithm for the computation of electron repulsion integrals that utilizes vector intrinsics to calculate several primitive integrals concurrently in a SIMD vector. Initial benchmarks display a 2-4 times speedup with AVX instructions over comparable scalar code, depending on the basis set. Speedup over scalar code is found to be sensitive to the level of contraction of the basis set, and is best for (lAlB|lClD) quartets when lD  = 0 or lB=lD=0, which makes such a vectorization scheme particularly suitable for density fitting. The basic Obara-Saika algorithm, how it is vectorized, and the performance bottlenecks are analyzed and discussed. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Uranium Metal, Oxide, and Solution Systems on the High Performance Computing Platform Moonlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell

    In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k eff.

  8. User's manual for three dimensional FDTD version B code for scattering from frequency-dependent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONB.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  9. Study of SOL in DIII-D tokamak with SOLPS suite of codes.

    NASA Astrophysics Data System (ADS)

    Pankin, Alexei; Bateman, Glenn; Brennan, Dylan; Coster, David; Hogan, John; Kritz, Arnold; Kukushkin, Andrey; Schnack, Dalton; Snyder, Phil

    2005-10-01

    The scrape-of-layer (SOL) region in DIII-D tokamak is studied with the SOLPS integrated suite of codes. The SOLPS package includes the 3D multi-species Monte-Carlo neutral code EIRINE and 2D multi-fluid code B2. The EIRINE and B2 codes are cross-coupled through B2-EIRINE interface. The results of SOLPS simulations are used in the integrated modeling of the plasma edge in DIII-D tokamak with the ASTRA transport code. Parameterized dependences for neutral particle fluxes that are computed with the SOLPS code are implemented in a model for the H-mode pedestal and ELMs [1] in the ASTRA code. The effects of neutrals on the H-mode pedestal and ELMs are studied in this report. [1] A. Y. Pankin, I. Voitsekhovitch, G. Bateman, et al., Plasma Phys. Control. Fusion 47, 483 (2005).

  10. A novel construction method of QC-LDPC codes based on CRT for optical communications

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Liang, Meng-qi; Wang, Yong; Lin, Jin-zhao; Pang, Yu

    2016-05-01

    A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed based on Chinese remainder theory (CRT). The method can not only increase the code length without reducing the girth, but also greatly enhance the code rate, so it is easy to construct a high-rate code. The simulation results show that at the bit error rate ( BER) of 10-7, the net coding gain ( NCG) of the regular QC-LDPC(4 851, 4 546) code is respectively 2.06 dB, 1.36 dB, 0.53 dB and 0.31 dB more than those of the classic RS(255, 239) code in ITU-T G.975, the LDPC(32 640, 30 592) code in ITU-T G.975.1, the QC-LDPC(3 664, 3 436) code constructed by the improved combining construction method based on CRT and the irregular QC-LDPC(3 843, 3 603) code constructed by the construction method based on the Galois field ( GF( q)) multiplicative group. Furthermore, all these five codes have the same code rate of 0.937. Therefore, the regular QC-LDPC(4 851, 4 546) code constructed by the proposed construction method has excellent error-correction performance, and can be more suitable for optical transmission systems.

  11. Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Civinskas, Kestutis C.

    2004-01-01

    NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.

  12. MPI parallelization of Vlasov codes for the simulation of nonlinear laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Savchenko, V.; Won, K.; Afeyan, B.; Decyk, V.; Albrecht-Marc, M.; Ghizzo, A.; Bertrand, P.

    2003-10-01

    The simulation of optical mixing driven KEEN waves [1] and electron plasma waves [1] in laser-produced plasmas require nonlinear kinetic models and massive parallelization. We use Massage Passing Interface (MPI) libraries and Appleseed [2] to solve the Vlasov Poisson system of equations on an 8 node dual processor MAC G4 cluster. We use the semi-Lagrangian time splitting method [3]. It requires only row-column exchanges in the global data redistribution, minimizing the total number of communications between processors. Recurrent communication patterns for 2D FFTs involves global transposition. In the Vlasov-Maxwell case, we use splitting into two 1D spatial advections and a 2D momentum advection [4]. Discretized momentum advection equations have a double loop structure with the outer index being assigned to different processors. We adhere to a code structure with separate routines for calculations and data management for parallel computations. [1] B. Afeyan et al., IFSA 2003 Conference Proceedings, Monterey, CA [2] V. K. Decyk, Computers in Physics, 7, 418 (1993) [3] Sonnendrucker et al., JCP 149, 201 (1998) [4] Begue et al., JCP 151, 458 (1999)

  13. An Empirical Test of the Modified C Index and SII, O*NET, and DHOC Occupational Code Classifications

    ERIC Educational Resources Information Center

    Dik, Bryan J.; Hu, Ryan S. C.; Hansen, Jo-Ida C.

    2007-01-01

    The present study investigated new approaches for assessing Holland's congruence hypothesis by (a) developing and applying four sets of decision rules for assigning Holland codes of varying lengths for purposes of computing Eggerth and Andrew's modified C index; (b) testing the modified C index computed using these four approaches against Brown…

  14. Computer-Aided Thermohydraulic Design of TEMA Type E Shell and Tube Heat Exchangers for Use in Low Pressure, Liquid-to-Liquid, Single Phase Applications.

    DTIC Science & Technology

    1985-04-01

    and Standards .. ... ....... ....... 9 A. General . ... .. .. ... ..... .. .. ... 9 B. ASME Boiler and Pressure Vessel Code .. .. ......9 C. Foreign...several different sources. B. American Society of Mechanial Engineers (ASME) Boiler and Pressure Vessel Code A shell and tube heat exchanger is indeed a

  15. Solving Guzman's Problem: "An Other" Narrative of "La Gran Familia Puertorriquena" in Judith Ortiz Cofer's "The Line of the Sun"

    ERIC Educational Resources Information Center

    Waldron, John V.

    2009-01-01

    The first half of Judith Ortiz Cofer's novel "The Line of the Sun" (1989) narrates events that take place in the small fictional town of Salud, Puerto Rico, during the 1940s and 50s. In the second part of the novel, starting with chapter six, the readers see how two characters from the first half, Rafael and Ramona, and their young…

  16. TacSat-4 COMMx, Advanced SATCOM Experiment

    DTIC Science & Technology

    2009-01-01

    Schein, M. T. Marley, C. T. Apland, R. E. Lee, B. D . Williams, E. D . Schaefer, S. R. Vernon, P . D . Schwartz , B. L. Kantsiper, E. J. Finnegan;The...Lee, B. D . Williams, E. D . Schaefer, P . D . Schwartz, R. Denissen, B. Kantsiper, E. J. Finnegan; The Johns Hopkins University Applied Physics...Mission Ops Lead, NRL Code 8233 Bob Kuzma, TacSat-4 Payload Controller, NRL Code 8242 Bob Skalitzky, TacSat-4 Power Systems, NRL Code 8244 Doug Bentz

  17. Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Mehdizadeh, S.; Hadad, K.

    Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.

  18. Validation of multi-temperature nozzle flow code NOZNT

    NASA Technical Reports Server (NTRS)

    Park, Chul; Lee, Seung-Ho

    1993-01-01

    A computer code NOZNT (Nozzle in n-Temperatures), which calculates one-dimensional flows of partially dissociated and ionized air in an expanding nozzle, is tested against five existing sets of experimental data. The code accounts for: a) the differences among various temperatures, i.e., translational-rotational temperature, vibrational temperatures of individual molecular species, and electron-electronic temperature, b) radiative cooling, and c) the effects of impurities. The experimental data considered are: 1) the sodium line reversal and 2) the electron temperature and density data, both obtained in a shock tunnel, and 3) the spectroscopic emission data, 4) electron beam data on vibrational temperature, and 5) mass-spectrometric species concentration data, all obtained in arc-jet wind tunnels. It is shown that the impurities are most likely responsible for the observed phenomena in shock tunnels. For the arc-jet flows, impurities are inconsequential and the NOZNT code is validated by numerically reproducing the experimental data.

  19. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-13

    Ramona Travis, NASA Stennis Space Center Chief Technologist, speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Wednesday, July 14, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Carla Cioffi)

  20. Palynology of carcinolites and limestones from the Baunilha Grande Ecofacies of the Pirabas Formation (Miocene of Pará state, northeastern Brazil)

    NASA Astrophysics Data System (ADS)

    Antonioli, Luzia; de Araújo Távora, Vladimir; Dino, Rodolfo

    2015-10-01

    The Pirabas Formation records important transgressive/regressive marine events in northern Brazil during the Miocene. Here, we present the results of a palynological analysis of four samples from finely stratified gray limestone and associated carbonate concretions bearing decapod crustacean remains. These sampled strata are representatives of the Baunilha Grande Ecofacies, and our analysis enhances the knowledge of local biostratigraphy and paleoecology. The palynoflora is dominated by taxa typical of Neogene tropical areas, such as Zonocostites ramonae (the most common species), together with Retitricolpites and Retitricolporites genera. Commonly represented are the smooth and apiculate trilete/monolete spores (Polypodiisporites, Verrucosisporites, Magnastriatites, and Deltoidospora), in conjunction with some freshwater algae (Ovoidites and Botryococcus). Gymnosperm pollen grains were absent. Marine microplankton (dinoflagellate cysts, acritarchs and foraminiferal test linings) are scarce, although present in all samples. The presence of the index species, Malvacipolloides maristellae and Pachydermites diederixii, co-occurring with Zonocostites ramonae and Lanagiopollis crassa, suggests that these sediments and concretions belong to the "T-13 Malvacipolloides maristellae" palynozone (Jaramillo et al., 2011), considered as late-Early Miocene in age. Palynological and sedimentological evidence further points to a predominantly continental depositional environment with a weak marine influence, as indicated by the persistent presence of sparse dinoflagellate cysts, acritarchs and foraminiferal test linings, typical of a mangrove environment.

  1. Boundary modelling of the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Renner, H.; Strumberger, E.; Kisslinger, J.; Nührenberg, J.; Wobig, H.

    1997-02-01

    To justify the design of the divertor plates in W7-X the magnetic fields of finite-β HELIAS equilibria for the so-called high-mirror case have been computed for various average β-values up to < β > = 0.04 with the NEMEC free-boundary equilibrium code [S.P. Hirshman, W.I. van Rij and W.I. Merkel, Comput. Phys. Commun. 43 (1986) 143] in combination with the newly developed MFBE (magnetic field solver for finite-beta equilibria) code. In a second study the unloading of the target plates by radiation was investigated. The B2 code [B.J. Braams, Ph.D. Thesis, Rijksuniversiteit Utrecht (1986)] was applied for the first time to stellarators to provide of a self-consistent modelling of the SOL including effects of neutrals and impurities.

  2. Application of an airfoil stall flutter computer prediction program to a three-dimensional wing: Prediction versus experiment. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Muffoletto, A. J.

    1982-01-01

    An aerodynamic computer code, capable of predicting unsteady and C sub m values for an airfoil undergoing dynamic stall, is used to predict the amplitudes and frequencies of a wing undergoing torsional stall flutter. The code, developed at United Technologies Research Corporation (UTRC), is an empirical prediction method designed to yield unsteady values of normal force and moment, given the airfoil's static coefficient characteristics and the unsteady aerodynamic values, alpha, A and B. In this experiment, conducted in the PSU 4' x 5' subsonic wind tunnel, the wing's elastic axis, torsional spring constant and initial angle of attack are varied, and the oscillation amplitudes and frequencies of the wing, while undergoing torsional stall flutter, are recorded. These experimental values show only fair comparisons with the predicted responses. Predictions tend to be good at low velocities and rather poor at higher velocities.

  3. Evolvix BEST Names for semantic reproducibility across code2brain interfaces.

    PubMed

    Loewe, Laurence; Scheuer, Katherine S; Keel, Seth A; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G; Moog, Cecilia L; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist-Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda-Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L; Freiberg, Erika; Waters, Noah P; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha

    2017-01-01

    Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general-purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long-term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder-brains to reader-brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  4. A Computational Model for Observation in Quantum Mechanics.

    DTIC Science & Technology

    1987-03-16

    Interferometer experiment ............. 17 2.3 The EPR Paradox experiment ................. 22 3 The Computational Model, an Overview 28 4 Implementation 34...40 4.4 Code for the EPR paradox experiment ............... 46 4.5 Code for the double slit interferometer experiment ..... .. 50 5 Conclusions 59 A...particle run counter to fact. The EPR paradox experiment (see section 2.3) is hard to resolve with this class of models, collectively called hidden

  5. Spartan Release Engagement Mechanism (REM) stress and fracture analysis

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria.

  6. Structure Limits for a 30mm Annular Piston.

    DTIC Science & Technology

    1988-05-01

    block at the rear, ending the cycle. III. STRESS ANALYSIS PROCEDURE tress data was generated using the SAAS -II finite element computer code. Applied...Plastics Avenue Rockford, IL 61125 Pittsfield, MA 01201-3698 1 Veritay Technology, Inc. 1 General Electric Company ATTN: E.B. Fisher Armament Systems... VALUATION Slit:ET/CHANGE 01- ADDRESS -hi s laboratoryN undertakes a continuing effort to improve the quality of the( re-ports it publishe,4. Yfour comments

  7. FPGA-based LDPC-coded APSK for optical communication systems.

    PubMed

    Zou, Ding; Lin, Changyu; Djordjevic, Ivan B

    2017-02-20

    In this paper, with the aid of mutual information and generalized mutual information (GMI) capacity analyses, it is shown that the geometrically shaped APSK that mimics an optimal Gaussian distribution with equiprobable signaling together with the corresponding gray-mapping rules can approach the Shannon limit closer than conventional quadrature amplitude modulation (QAM) at certain range of FEC overhead for both 16-APSK and 64-APSK. The field programmable gate array (FPGA) based LDPC-coded APSK emulation is conducted on block interleaver-based and bit interleaver-based systems; the results verify a significant improvement in hardware efficient bit interleaver-based systems. In bit interleaver-based emulation, the LDPC-coded 64-APSK outperforms 64-QAM, in terms of symbol signal-to-noise ratio (SNR), by 0.1 dB, 0.2 dB, and 0.3 dB at spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz, respectively. It is found by emulation that LDPC-coded 64-APSK for spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz is 1.6 dB, 1.7 dB, and 2.2 dB away from the GMI capacity.

  8. Computer code for the optimization of performance parameters of mixed explosive formulations.

    PubMed

    Muthurajan, H; Sivabalan, R; Talawar, M B; Venugopalan, S; Gandhe, B R

    2006-08-25

    LOTUSES is a novel computer code, which has been developed for the prediction of various thermodynamic properties such as heat of formation, heat of explosion, volume of explosion gaseous products and other related performance parameters. In this paper, we report LOTUSES (Version 1.4) code which has been utilized for the optimization of various high explosives in different combinations to obtain maximum possible velocity of detonation. LOTUSES (Version 1.4) code will vary the composition of mixed explosives automatically in the range of 1-100% and computes the oxygen balance as well as the velocity of detonation for various compositions in preset steps. Further, the code suggests the compositions for which least oxygen balance and the higher velocity of detonation could be achieved. Presently, the code can be applied for two component explosive compositions. The code has been validated with well-known explosives like, TNT, HNS, HNF, TATB, RDX, HMX, AN, DNA, CL-20 and TNAZ in different combinations. The new algorithm incorporated in LOTUSES (Version 1.4) enhances the efficiency and makes it a more powerful tool for the scientists/researches working in the field of high energy materials/hazardous materials.

  9. Dynamic Detection of Malicious Code in COTS Software

    DTIC Science & Technology

    2000-04-01

    run the following documented hostile applets or ActiveX of these tools work only on mobile code (Java, ActiveX , controls: 16-11 Hostile Applets Tiny...Killer App Exploder Runner ActiveX Check Spy eSafe Protect Desktop 9/9 blocked NB B NB 13/17 blocked NB Surfinshield Online 9/9 blocked NB B B 13/17...Exploder is an ActiveX control top (@). that performs a clean shutdown of your computer. The interface is attractive, although rather complex, as McLain’s

  10. CFD Simulation on the J-2X Engine Exhaust in the Center-Body Diffuser and Spray Chamber at the B-2 Facility

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert

    2009-01-01

    A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.

  11. User's manual: Subsonic/supersonic advanced panel pilot code

    NASA Technical Reports Server (NTRS)

    Moran, J.; Tinoco, E. N.; Johnson, F. T.

    1978-01-01

    Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.

  12. Determination of performance of non-ideal aluminized explosives.

    PubMed

    Keshavarz, Mohammad Hossein; Mofrad, Reza Teimuri; Poor, Karim Esmail; Shokrollahi, Arash; Zali, Abbas; Yousefi, Mohammad Hassan

    2006-09-01

    Non-ideal explosives can have Chapman-Jouguet (C-J) detonation pressure significantly different from those expected from existing thermodynamic computer codes, which usually allows finding the parameters of ideal detonation of individual high explosives with good accuracy. A simple method is introduced by which detonation pressure of non-ideal aluminized explosives with general formula C(a)H(b)N(c)O(d)Al(e) can be predicted only from a, b, c, d and e at any loading density without using any assumed detonation products and experimental data. Calculated detonation pressures show good agreement with experimental values with respect to computed results obtained by complicated computer code. It is shown here how loading density and atomic composition can be integrated into an empirical formula for predicting detonation pressure of proposed aluminized explosives.

  13. Computer models and output, Spartan REM: Appendix B

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    A computer model of the Spartan Release Engagement Mechanism (REM) is presented in a series of numerical charts and engineering drawings. A crack growth analysis code is used to predict the fracture mechanics of critical components.

  14. Digital Citizenship and Health Promotion Programs: The Power of Knowing.

    PubMed

    Hicks, Elaine R

    2016-11-03

    Patterns of Internet access and use among disadvantaged subgroups of Americans reveal that not all disparities are the same, a distinction crucial for appropriate public policies and health promotion program planning. In their book, Digital Citizenship: The Internet, Society, and Participation, authors Karen Mossberger, Caroline Tolbert, and Ramona McNeal deconstructed national opinion surveys and used multivariate methods of data analysis to demonstrate the impact of exclusion from online society economically, socially, and politically among disadvantaged Americans. © 2016 Society for Public Health Education.

  15. Capacity Maximizing Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged; Jones, Christopher

    2010-01-01

    Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity

  16. Quantitative Measurements of the Effects of Variations in Panel Density and Distributions for Panel Method Computer Programs

    DTIC Science & Technology

    1980-01-01

    AND ADDRESS 1 .PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Aircraft and -.rew Systems Technology Di r. (C:ode 60 E61-.U o A0 Naval Air...0 . . . . . . . . . . . B- 1 B-If Input Statistics For Equations 5 and 6 .... ....... B- 2 B-Ill Computation of Coefficients of...trapezoidal panels and the formula for PAR can be derived for the case where equal spanwise and chordwise divisions are used: PAR (N/2M)/( 1 +X ( 2 = ( 2

  17. On the design of turbo codes

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1995-01-01

    In this article, we design new turbo codes that can achieve near-Shannon-limit performance. The design criterion for random interleavers is based on maximizing the effective free distance of the turbo code, i.e., the minimum output weight of codewords due to weight-2 input sequences. An upper bound on the effective free distance of a turbo code is derived. This upper bound can be achieved if the feedback connection of convolutional codes uses primitive polynomials. We review multiple turbo codes (parallel concatenation of q convolutional codes), which increase the so-called 'interleaving gain' as q and the interleaver size increase, and a suitable decoder structure derived from an approximation to the maximum a posteriori probability decision rule. We develop new rate 1/3, 2/3, 3/4, and 4/5 constituent codes to be used in the turbo encoder structure. These codes, for from 2 to 32 states, are designed by using primitive polynomials. The resulting turbo codes have rates b/n (b = 1, 2, 3, 4 and n = 2, 3, 4, 5, 6), and include random interleavers for better asymptotic performance. These codes are suitable for deep-space communications with low throughput and for near-Earth communications where high throughput is desirable. The performance of these codes is within 1 dB of the Shannon limit at a bit-error rate of 10(exp -6) for throughputs from 1/15 up to 4 bits/s/Hz.

  18. High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Fukui, Kosuke; Tomita, Akihisa; Okamoto, Atsushi; Fujii, Keisuke

    2018-04-01

    To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However, it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code. Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large-scale cluster states for the topologically protected, measurement-based, quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large-scale quantum computation.

  19. OBERON: OBliquity and Energy balance Run on N-body systems

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan H.

    2016-08-01

    OBERON (OBliquity and Energy balance Run on N-body systems) models the climate of Earthlike planets under the effects of an arbitrary number and arrangement of other bodies, such as stars, planets and moons. The code, written in C++, simultaneously computes N body motions using a 4th order Hermite integrator, simulates climates using a 1D latitudinal energy balance model, and evolves the orbital spin of bodies using the equations of Laskar (1986a,b).

  20. An evaluation of TRAC-PF1/MOD1 computer code performance during posttest simulations of Semiscale MOD-2C feedwater line break transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, D.G.: Watkins, J.C.

    This report documents an evaluation of the TRAC-PF1/MOD1 reactor safety analysis computer code during computer simulations of feedwater line break transients. The experimental data base for the evaluation included the results of three bottom feedwater line break tests performed in the Semiscale Mod-2C test facility. The tests modeled 14.3% (S-FS-7), 50% (S-FS-11), and 100% (S-FS-6B) breaks. The test facility and the TRAC-PF1/MOD1 model used in the calculations are described. Evaluations of the accuracy of the calculations are presented in the form of comparisons of measured and calculated histories of selected parameters associated with the primary and secondary systems. In additionmore » to evaluating the accuracy of the code calculations, the computational performance of the code during the simulations was assessed. A conclusion was reached that the code is capable of making feedwater line break transient calculations efficiently, but there is room for significant improvements in the simulations that were performed. Recommendations are made for follow-on investigations to determine how to improve future feedwater line break calculations and for code improvements to make the code easier to use.« less

  1. 28 CFR 802.4 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administration COURT SERVICES AND OFFENDER SUPERVISION AGENCY FOR THE DISTRICT OF COLUMBIA DISCLOSURE OF RECORDS... proprietary interest in the information. (e) Computer software means tools by which records are created, stored, and retrieved. Normally, computer software, including source code, object code, and listings of...

  2. Highly fault-tolerant parallel computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, D.A.

    We re-introduce the coded model of fault-tolerant computation in which the input and output of a computational device are treated as words in an error-correcting code. A computational device correctly computes a function in the coded model if its input and output, once decoded, are a valid input and output of the function. In the coded model, it is reasonable to hope to simulate all computational devices by devices whose size is greater by a constant factor but which are exponentially reliable even if each of their components can fail with some constant probability. We consider fine-grained parallel computations inmore » which each processor has a constant probability of producing the wrong output at each time step. We show that any parallel computation that runs for time t on w processors can be performed reliably on a faulty machine in the coded model using w log{sup O(l)} w processors and time t log{sup O(l)} w. The failure probability of the computation will be at most t {center_dot} exp(-w{sup 1/4}). The codes used to communicate with our fault-tolerant machines are generalized Reed-Solomon codes and can thus be encoded and decoded in O(n log{sup O(1)} n) sequential time and are independent of the machine they are used to communicate with. We also show how coded computation can be used to self-correct many linear functions in parallel with arbitrarily small overhead.« less

  3. Web Services Provide Access to SCEC Scientific Research Application Software

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Gupta, V.; Okaya, D.; Kamb, L.; Maechling, P.

    2003-12-01

    Web services offer scientific communities a new paradigm for sharing research codes and communicating results. While there are formal technical definitions of what constitutes a web service, for a user community such as the Southern California Earthquake Center (SCEC), we may conceptually consider a web service to be functionality provided on-demand by an application which is run on a remote computer located elsewhere on the Internet. The value of a web service is that it can (1) run a scientific code without the user needing to install and learn the intricacies of running the code; (2) provide the technical framework which allows a user's computer to talk to the remote computer which performs the service; (3) provide the computational resources to run the code; and (4) bundle several analysis steps and provide the end results in digital or (post-processed) graphical form. Within an NSF-sponsored ITR project coordinated by SCEC, we are constructing web services using architectural protocols and programming languages (e.g., Java). However, because the SCEC community has a rich pool of scientific research software (written in traditional languages such as C and FORTRAN), we also emphasize making existing scientific codes available by constructing web service frameworks which wrap around and directly run these codes. In doing so we attempt to broaden community usage of these codes. Web service wrapping of a scientific code can be done using a "web servlet" construction or by using a SOAP/WSDL-based framework. This latter approach is widely adopted in IT circles although it is subject to rapid evolution. Our wrapping framework attempts to "honor" the original codes with as little modification as is possible. For versatility we identify three methods of user access: (A) a web-based GUI (written in HTML and/or Java applets); (B) a Linux/OSX/UNIX command line "initiator" utility (shell-scriptable); and (C) direct access from within any Java application (and with the correct API interface from within C++ and/or C/Fortran). This poster presentation will provide descriptions of the following selected web services and their origin as scientific application codes: 3D community velocity models for Southern California, geocoordinate conversions (latitude/longitude to UTM), execution of GMT graphical scripts, data format conversions (Gocad to Matlab format), and implementation of Seismic Hazard Analysis application programs that calculate hazard curve and hazard map data sets.

  4. Preliminary results of 3D dose calculations with MCNP-4B code from a SPECT image.

    PubMed

    Rodríguez Gual, M; Lima, F F; Sospedra Alfonso, R; González González, J; Calderón Marín, C

    2004-01-01

    Interface software was developed to generate the input file to run Monte Carlo MCNP-4B code from medical image in Interfile format version 3.3. The software was tested using a spherical phantom of tomography slides with known cumulated activity distribution in Interfile format generated with IMAGAMMA medical image processing system. The 3D dose calculation obtained with Monte Carlo MCNP-4B code was compared with the voxel S factor method. The results show a relative error between both methods less than 1 %.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, L. M.

    This Work Plan outlines the scope of work that will be conducted to investigate the subsurface contaminant conditions at the property formerly leased by the Commodity Credit Corporation (CCC) in Ramona, Kansas (Figure 1.1). Data obtained during this event will be used to (1) evaluate potential source areas on the property, (2) determine the vertical and horizontal extent of potential contamination, and (3) provide recommendations for future actions, with the ultimate goal of assigning this site No Further Action status. The planned investigation includes groundwater monitoring requested by the Kansas Department of Health and Environment (KDHE), in accordance with Sectionmore » V of the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the United States Department of Agriculture (USDA). The work is being performed on behalf of the CCC/USDA by the Environmental Research Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy. Under the Intergovernmental Agreement, Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne has issued a Master Work Plan (Argonne 2002) that describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. The Master Work Plan was approved by the KDHE. It contains materials common to investigations at locations in Kansas and should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Ramona.« less

  6. Aerothermal modeling program, phase 2. Element B: Flow interaction experiment

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Murthy, S. N. B.; Sullivan, J. P.

    1986-01-01

    The design process was improved and the efficiency, life, and maintenance costs of the turbine engine hot section was enhanced. Recently, there has been much emphasis on the need for improved numerical codes for the design of efficient combustors. For the development of improved computational codes, there is a need for an experimentally obtained data base to be used at test cases for the accuracy of the computations. The purpose of Element-B is to establish a benchmark quality velocity and scalar measurements of the flow interaction of circular jets with swirling flow typical of that in the dome region of annular combustor. In addition to the detailed experimental effort, extensive computations of the swirling flows are to be compared with the measurements for the purpose of assessing the accuracy of current and advanced turbulence and scalar transport models.

  7. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.

    PubMed

    Menicucci, Nicolas C

    2014-03-28

    A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.

  8. 14 CFR 217.10 - Instructions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and the other pertaining to on-flight markets. For example, the routing (A-B-C-D) consists of three..., Singapore A-3—Airport code Origin A-4—Airport code Destination A-5—Service class (mark an X) F G L P Q By aircraft type— B-1—Aircraft type code B-2—Revenue aircraft departures B-3—Revenue passengers transported B...

  9. 14 CFR 217.10 - Instructions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and the other pertaining to on-flight markets. For example, the routing (A-B-C-D) consists of three..., Singapore A-3—Airport code Origin A-4—Airport code Destination A-5—Service class (mark an X) F G L P Q By aircraft type— B-1—Aircraft type code B-2—Revenue aircraft departures B-3—Revenue passengers transported B...

  10. 14 CFR 217.10 - Instructions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and the other pertaining to on-flight markets. For example, the routing (A-B-C-D) consists of three..., Singapore A-3—Airport code Origin A-4—Airport code Destination A-5—Service class (mark an X) F G L P Q By aircraft type— B-1—Aircraft type code B-2—Revenue aircraft departures B-3—Revenue passengers transported B...

  11. How to differentiate collective variables in free energy codes: Computer-algebra code generation and automatic differentiation

    NASA Astrophysics Data System (ADS)

    Giorgino, Toni

    2018-07-01

    The proper choice of collective variables (CVs) is central to biased-sampling free energy reconstruction methods in molecular dynamics simulations. The PLUMED 2 library, for instance, provides several sophisticated CV choices, implemented in a C++ framework; however, developing new CVs is still time consuming due to the need to provide code for the analytical derivatives of all functions with respect to atomic coordinates. We present two solutions to this problem, namely (a) symbolic differentiation and code generation, and (b) automatic code differentiation, in both cases leveraging open-source libraries (SymPy and Stan Math, respectively). The two approaches are demonstrated and discussed in detail implementing a realistic example CV, the local radius of curvature of a polymer. Users may use the code as a template to streamline the implementation of their own CVs using high-level constructs and automatic gradient computation.

  12. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  13. Elbow stress indices using finite element analysis

    NASA Astrophysics Data System (ADS)

    Yu, Lixin

    Section III of the ASME Boiler and Pressure Vessel Code (the Code) specifies rules for the design of nuclear power plant components. NB-3600 of the Code presents a simplified design method using stress indices---Scalar Coefficients used the modify straight pipe stress equations so that they can be applied to elbows, tees and other piping components. The stress indices of piping components are allowed to be determined both analytically and experimentally. This study concentrates on the determination of B2 stress indices for elbow components using finite element analysis (FEA). First, the previous theoretical, numerical and experimental investigations on elbow behavior were comprehensively reviewed, as was the philosophy behind the use of stress indices. The areas of further research was defined. Then, a comprehensive investigation was carried out to determine how the finite element method should be used to correctly simulate an elbow's structural behavior. This investigation included choice of element type, convergence of mesh density, use of boundary restraint and a reconciliation study between FEA and laboratory experiments or other theoretical formulations in both elastic and elasto-plastic domain. Results from different computer programs were also compared. Reasonably good reconciliation was obtained. Appendix II of the Code describes the experimental method to determine B2 stress indices based on load-deflection curves. This procedure was used to compute the B2 stress indices for various loading modes on one particular elbow configuration. The B2 stress indices thus determined were found to be about half of the value calculated from the Code equation. Then the effect on B2 stress indices of those factors such as internal pressure and flange attachments were studied. Finally, the investigation was extended to other configurations of elbow components. A parametric study was conducted on different elbow sizes and schedules. Regression analysis was then used to obtain a modified coefficient and exponent for the Code equation used to calculate B2 index for elbows.

  14. The Use of Neural Networks for Determining Tank Routes

    DTIC Science & Technology

    1992-09-01

    ADDRESS (City, State, and ZIP Code) Monterey, CA 93943-5000 Monterey, CA 93943-5000 &a. NAME OF FUNDINGJSPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT...Weights Figure 1. Neural Network Architecture 6 The back-error propagation technique iteratively assigns weights to connections, computes the errors...neurons as the start. From that we decided to try 4, 6 , 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90 and 100 or until it was obvious that

  15. SINGER: A Computer Code for General Analysis of Two-Dimensional Reinforced Concrete Structures. Volume 1. Solution Process

    DTIC Science & Technology

    1975-05-01

    Conference on Earthquake Engineering, Santiago de Chile, 13-18 January 1969, Vol. I , Session B2, Chilean Association oil Seismology and Earth- quake...Nuclear Agency May 1975 DISTRIBUTED BY: KJ National Technical Information Service U. S. DEPARTMENT OF COMMERCE ^804J AFWL-TR-74-228, Vol. I ...CM o / i ’•fu.r ) V V AFWL-TR- 74-228 Vol. I SINGER: A COMPUTER CODE FOR GENERAL ANALYSIS OF TWO-DIMENSIONAL CONCRETE STRUCTURES Volum« I

  16. A novel construction method of QC-LDPC codes based on the subgroup of the finite field multiplicative group for optical transmission systems

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Zhou, Guang-xiang; Gao, Wen-chun; Wang, Yong; Lin, Jin-zhao; Pang, Yu

    2016-01-01

    According to the requirements of the increasing development for optical transmission systems, a novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on the subgroup of the finite field multiplicative group is proposed. Furthermore, this construction method can effectively avoid the girth-4 phenomena and has the advantages such as simpler construction, easier implementation, lower encoding/decoding complexity, better girth properties and more flexible adjustment for the code length and code rate. The simulation results show that the error correction performance of the QC-LDPC(3 780,3 540) code with the code rate of 93.7% constructed by this proposed method is excellent, its net coding gain is respectively 0.3 dB, 0.55 dB, 1.4 dB and 1.98 dB higher than those of the QC-LDPC(5 334,4 962) code constructed by the method based on the inverse element characteristics in the finite field multiplicative group, the SCG-LDPC(3 969,3 720) code constructed by the systematically constructed Gallager (SCG) random construction method, the LDPC(32 640,30 592) code in ITU-T G.975.1 and the classic RS(255,239) code which is widely used in optical transmission systems in ITU-T G.975 at the bit error rate ( BER) of 10-7. Therefore, the constructed QC-LDPC(3 780,3 540) code is more suitable for optical transmission systems.

  17. Performance of noncoherent MFSK channels with coding

    NASA Technical Reports Server (NTRS)

    Butman, S. A.; Lyon, R. F.

    1974-01-01

    Computer simulation of data transmission over a noncoherent channel with predetection signal-to-noise ratio of 1 shows that convolutional coding can reduce the energy requirement by 4.5 dB at a bit error rate of 0.001. The effects of receiver quantization and choice of number of tones are analyzed; nearly optimum performance is attained with eight quantization levels and sixteen tones at predetection S/N ratio of 1. The effects of changing predetection S/N ratio are also analyzed; for lower predetection S/N ratio, accurate extrapolations can be made from the data, but for higher values, the results are more complicated. These analyses will be useful in designing telemetry systems when coherence is limited by turbulence in the signal propagation medium or oscillator instability.

  18. 40 CFR 265.340 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (b) Integration of the MACT standards. (1) Except as provided by paragraphs (b)(2) and (b)(3) of this... 261, subpart D, of this chapter solely because it is ignitable (Hazard Code I), corrosive (Hazard Code... because it is reactive (Hazard Code R) for characteristics other than those listed in § 261.23(a) (4) and...

  19. 40 CFR 265.340 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (b) Integration of the MACT standards. (1) Except as provided by paragraphs (b)(2) and (b)(3) of this... 261, subpart D, of this chapter solely because it is ignitable (Hazard Code I), corrosive (Hazard Code... because it is reactive (Hazard Code R) for characteristics other than those listed in § 261.23(a) (4) and...

  20. 40 CFR 265.340 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (b) Integration of the MACT standards. (1) Except as provided by paragraphs (b)(2) and (b)(3) of this... 261, subpart D, of this chapter solely because it is ignitable (Hazard Code I), corrosive (Hazard Code... because it is reactive (Hazard Code R) for characteristics other than those listed in § 261.23(a) (4) and...

  1. The Analysis of Visual Motion: From Computational Theory to Neuronal Mechanisms.

    DTIC Science & Technology

    1986-12-01

    neuronb. Brain Res. 151:599-603. Frost, B . J., Nakayama, K . 1983. Single visual neurons code opposing motion independent JW of direction. Science 220:744...Biol. Cybern. 42:195-204. llolden, A. 1. 1977. Responses of directional ganglion cells in the pigeon retina. J. Physiol., 270:2,53 269. Horn. B . K . P...R. Soc. Iond. B . 223:165-175. 51 % Computations Underlying Motion ttildret ik Koch %V. Longuet-Iliggins, H. C., Prazdny. K . 1981. The interpretation

  2. A finite area scheme for shallow granular flows on three-dimensional surfaces

    NASA Astrophysics Data System (ADS)

    Rauter, Matthias

    2017-04-01

    Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.

  3. Prediction of effects of wing contour modifications on low-speed maximum lift and transonic performance for the EA-6B aircraft

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Waggoner, E. G.

    1990-01-01

    Computational predictions of the effects of wing contour modifications on maximum lift and transonic performance were made and verified against low speed and transonic wind tunnel data. This effort was part of a program to improve the maneuvering capability of the EA-6B electronics countermeasures aircraft, which evolved from the A-6 attack aircraft. The predictions were based on results from three computer codes which all include viscous effects: MCARF, a 2-D subsonic panel code; TAWFIVE, a transonic full potential code; and WBPPW, a transonic small disturbance potential flow code. The modifications were previously designed with the aid of these and other codes. The wing modifications consists of contour changes to the leading edge slats and trailing edge flaps and were designed for increased maximum lift with minimum effect on transonic performance. The prediction of the effects of the modifications are presented, with emphasis on verification through comparisons with wind tunnel data from the National Transonic Facility. Attention is focused on increments in low speed maximum lift and increments in transonic lift, pitching moment, and drag resulting from the contour modifications.

  4. Calculation of Water Drop Trajectories to and About Arbitrary Three-Dimensional Bodies in Potential Airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1980-01-01

    Calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Any subsonic, external, non-lifting flow can be accommodated; flow into, but not through, inlets also can be simulated. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Code descriptions include operating instructions, card inputs and printouts for example problems, and listing of the FORTRAN codes. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  5. High-Speed, Low-Cost Workstation for Computation-Intensive Statistics. Phase 1

    DTIC Science & Technology

    1990-06-20

    routine implementation and performance. 5 The two compiled versions given in the table were coded in an attempt to obtain an optimized compiled version...level statistics and linear algebra routines (BSAS and BLAS) that have been prototyped in this study. For each routine, both the C code ( Turbo C...OISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unlimited distribution 13. ABSTRACT (Maximum 200 words) High-performance and low-cost

  6. Collaborative Research: Simulation of Beam-Electron Cloud Interactions in Circular Accelerators Using Plasma Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsouleas, Thomas; Decyk, Viktor

    Final Report for grant DE-FG02-06ER54888, "Simulation of Beam-Electron Cloud Interactions in Circular Accelerators Using Plasma Models" Viktor K. Decyk, University of California, Los Angeles Los Angeles, CA 90095-1547 The primary goal of this collaborative proposal was to modify the code QuickPIC and apply it to study the long-time stability of beam propagation in low density electron clouds present in circular accelerators. The UCLA contribution to this collaborative proposal was in supporting the development of the pipelining scheme for the QuickPIC code, which extended the parallel scaling of this code by two orders of magnitude. The USC work was as describedmore » here the PhD research for Ms. Bing Feng, lead author in reference 2 below, who performed the research at USC under the guidance of the PI Tom Katsouleas and the collaboration of Dr. Decyk The QuickPIC code [1] is a multi-scale Particle-in-Cell (PIC) code. The outer 3D code contains a beam which propagates through a long region of plasma and evolves slowly. The plasma response to this beam is modeled by slices of a 2D plasma code. This plasma response then is fed back to the beam code, and the process repeats. The pipelining is based on the observation that once the beam has passed a 2D slice, its response can be fed back to the beam immediately without waiting for the beam to pass all the other slices. Thus independent blocks of 2D slices from different time steps can be running simultaneously. The major difficulty was when particles at the edges needed to communicate with other blocks. Two versions of the pipelining scheme were developed, for the the full quasi-static code and the other for the basic quasi-static code used by this e-cloud proposal. Details of the pipelining scheme were published in [2]. The new version of QuickPIC was able to run with more than 1,000 processors, and was successfully applied in modeling e-clouds by our collaborators in this proposal [3-8]. Jean-Luc Vay at Lawrence Berkeley National Lab later implemented a similar basic quasistatic scheme including pipelining in the code WARP [9] and found good to very good quantitative agreement between the two codes in modeling e-clouds. References [1] C. Huang, V. K. Decyk, C. Ren, M. Zhou, W. Lu, W. B. Mori, J. H. Cooley, T. M. Antonsen, Jr., and T. Katsouleas, "QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas," J. Computational Phys. 217, 658 (2006). [2] B. Feng, C. Huang, V. K. Decyk, W. B. Mori, P. Muggli, and T. Katsouleas, "Enhancing parallel quasi-static particle-in-cell simulations with a pipelining algorithm," J. Computational Phys, 228, 5430 (2009). [3] C. Huang, V. K. Decyk, M. Zhou, W. Lu, W. B. Mori, J. H. Cooley, T. M. Antonsen, Jr., and B. Feng, T. Katsouleas, J. Vieira, and L. O. Silva, "QUICKPIC: A highly efficient fully parallelized PIC code for plasma-based acceleration," Proc. of the SciDAC 2006 Conf., Denver, Colorado, June, 2006 [Journal of Physics: Conference Series, W. M. Tang, Editor, vol. 46, Institute of Physics, Bristol and Philadelphia, 2006], p. 190. [4] B. Feng, C. Huang, V. Decyk, W. B. Mori, T. Katsouleas, P. Muggli, "Enhancing Plasma Wakefield and E-cloud Simulation Performance Using a Pipelining Algorithm," Proc. 12th Workshop on Advanced Accelerator Concepts, Lake Geneva, WI, July, 2006, p. 201 [AIP Conf. Proceedings, vol. 877, Melville, NY, 2006]. [5] B. Feng, P. Muggli, T. Katsouleas, V. Decyk, C. Huang, and W. Mori, "Long Time Electron Cloud Instability Simulation Using QuickPIC with Pipelining Algorithm," Proc. of the 2007 Particle Accelerator Conference, Albuquerque, NM, June, 2007, p. 3615. [6] B. Feng, C. Huang, V. Decyk, W. B. Mori, G. H. Hoffstaetter, P. Muggli, T. Katsouleas, "Simulation of Electron Cloud Effects on Electron Beam at ERL with Pipelined QuickPIC," Proc. 13th Workshop on Advanced Accelerator Concepts, Santa Cruz, CA, July-August, 2008, p. 340 [AIP Conf. Proceedings, vol. 1086, Melville, NY, 2008]. [7] B. Feng, C. Huang, V. K. Decyk, W. B. Mori, P. Muggli, and T. Katsouleas, "Enhancing parallel quasi-static particle-in-cell simulations with a pipelining algorithm," J. Computational Phys, 228, 5430 (2009). [8] C. Huang, W. An, V. K. Decyk, W. Lu, W. B. Mori, F. S. Tsung, M. Tzoufras, S. Morshed, T. Antonsen, B. Feng, T. Katsouleas, R., A. Fonseca, S. F. Martins, J. Vieira, L. O. Silva, E. Esarey, C. G. R. Geddes, W. P. Leemans, E. Cormier-Michel, J.-L. Vay, D. L. Bruhwiler, B. Cowan, J. R. Cary, and K. Paul, "Recent results and future challenges for large scale particleion- cell simulations of plasma-based accelerator concepts," Proc. of the SciDAC 2009 Conf., San Diego, CA, June, 2009 [Journal of Physics: Conference Series, vol. 180, Institute of Physics, Bristol and Philadelphia, 2009], p. 012005. [9] J.-L. Vay, C. M. Celata, M. A. Furman, G. Penn, M. Venturini, D. P. Grote, and K. G. Sonnad, ?Update on Electron-Cloud Simulations Using the Package WARP-POSINST.? Proc. of the 2009 Particle Accelerator Conference PAC09, Vancouver, Canada, June, 2009, paper FR5RFP078.« less

  7. Benchmark study for charge deposition by high energy electrons in thick slabs

    NASA Technical Reports Server (NTRS)

    Jun, I.

    2002-01-01

    The charge deposition profiles created when highenergy (1, 10, and 100 MeV) electrons impinge ona thick slab of elemental aluminum, copper, andtungsten are presented in this paper. The chargedeposition profiles were computed using existing representative Monte Carlo codes: TIGER3.0 (1D module of ITS3.0) and MCNP version 4B. The results showed that TIGER3.0 and MCNP4B agree very well (within 20% of each other) in the majority of the problem geometry. The TIGER results were considered to be accurate based on previous studies. Thus, it was demonstrated that MCNP, with its powerful geometry capability and flexible source and tally options, could be used in calculations of electron charging in high energy electron-rich space radiation environments.

  8. Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF / B-VII.1

    NASA Astrophysics Data System (ADS)

    Saha, Uttiyoarnab; Devan, K.; Bachchan, Abhitab; Pandikumar, G.; Ganesan, S.

    2018-04-01

    The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.

  9. 26 CFR 1.441-1 - Period for computation of taxable income.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Internal Revenue Code, and the regulations thereunder. (2) Length of taxable year. Except as otherwise provided in the Internal Revenue Code and the regulations thereunder (e.g., § 1.441-2 regarding 52-53-week... and definitions. The general rules and definitions in this paragraph (b) apply for purposes of...

  10. 26 CFR 1.441-1 - Period for computation of taxable income.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Internal Revenue Code, and the regulations thereunder. (2) Length of taxable year. Except as otherwise provided in the Internal Revenue Code and the regulations thereunder (e.g., § 1.441-2 regarding 52-53-week... and definitions. The general rules and definitions in this paragraph (b) apply for purposes of...

  11. 26 CFR 1.441-1 - Period for computation of taxable income.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Internal Revenue Code, and the regulations thereunder. (2) Length of taxable year. Except as otherwise provided in the Internal Revenue Code and the regulations thereunder (e.g., § 1.441-2 regarding 52-53-week... and definitions. The general rules and definitions in this paragraph (b) apply for purposes of...

  12. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    NASA Astrophysics Data System (ADS)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  13. Nonlinear Computational Aeroelasticity: Formulations and Solution Algorithms

    DTIC Science & Technology

    2003-03-01

    problem is proposed. Fluid-structure coupling algorithms are then discussed with some emphasis on distributed computing strategies. Numerical results...the structure and the exchange of structure motion to the fluid. The computational fluid dynamics code PFES is our finite element code for the numerical ...unstructured meshes). It was numerically demonstrated [1-3] that EBS can be less diffusive than SUPG [4-6] and the standard Finite Volume schemes

  14. Extensions and Adjuncts to the BRL-COMGEOM Program

    DTIC Science & Technology

    1974-08-01

    m MAGIC Code, GIFT Code, Computer Simulation, Target Description, Geometric Modeling Techniques, Vulnerability Analysis 20...Arbitrary Quadric Surf ace.. 0Oo „<>. 7 III. BRITL: A GEOMETRY PREPROCESSOR PROGRAM FOR INPUT TO THE GIFT SYSTEM „ 0 18 A. Introduction <, „. ° 18 B...the BRL- GIFT code. The tasks completed under this contract and described in the report are: Ao The addition to the list of available body types

  15. Homemade Buckeye-Pi: A Learning Many-Node Platform for High-Performance Parallel Computing

    NASA Astrophysics Data System (ADS)

    Amooie, M. A.; Moortgat, J.

    2017-12-01

    We report on the "Buckeye-Pi" cluster, the supercomputer developed in The Ohio State University School of Earth Sciences from 128 inexpensive Raspberry Pi (RPi) 3 Model B single-board computers. Each RPi is equipped with fast Quad Core 1.2GHz ARMv8 64bit processor, 1GB of RAM, and 32GB microSD card for local storage. Therefore, the cluster has a total RAM of 128GB that is distributed on the individual nodes and a flash capacity of 4TB with 512 processors, while it benefits from low power consumption, easy portability, and low total cost. The cluster uses the Message Passing Interface protocol to manage the communications between each node. These features render our platform the most powerful RPi supercomputer to date and suitable for educational applications in high-performance-computing (HPC) and handling of large datasets. In particular, we use the Buckeye-Pi to implement optimized parallel codes in our in-house simulator for subsurface media flows with the goal of achieving a massively-parallelized scalable code. We present benchmarking results for the computational performance across various number of RPi nodes. We believe our project could inspire scientists and students to consider the proposed unconventional cluster architecture as a mainstream and a feasible learning platform for challenging engineering and scientific problems.

  16. Final Technical Report for SBIR entitled Four-Dimensional Finite-Orbit-Width Fokker-Planck Code with Sources, for Neoclassical/Anomalous Transport Simulation of Ion and Electron Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R. W.; Petrov, Yu. V.

    2013-12-03

    Within the US Department of Energy/Office of Fusion Energy magnetic fusion research program, there is an important whole-plasma-modeling need for a radio-frequency/neutral-beam-injection (RF/NBI) transport-oriented finite-difference Fokker-Planck (FP) code with combined capabilities for 4D (2R2V) geometry near the fusion plasma periphery, and computationally less demanding 3D (1R2V) bounce-averaged capabilities for plasma in the core of fusion devices. Demonstration of proof-of-principle achievement of this goal has been carried out in research carried out under Phase I of the SBIR award. Two DOE-sponsored codes, the CQL3D bounce-average Fokker-Planck code in which CompX has specialized, and the COGENT 4D, plasma edge-oriented Fokker-Planck code whichmore » has been constructed by Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory scientists, where coupled. Coupling was achieved by using CQL3D calculated velocity distributions including an energetic tail resulting from NBI, as boundary conditions for the COGENT code over the two-dimensional velocity space on a spatial interface (flux) surface at a given radius near the plasma periphery. The finite-orbit-width fast ions from the CQL3D distributions penetrated into the peripheral plasma modeled by the COGENT code. This combined code demonstrates the feasibility of the proposed 3D/4D code. By combining these codes, the greatest computational efficiency is achieved subject to present modeling needs in toroidally symmetric magnetic fusion devices. The more efficient 3D code can be used in its regions of applicability, coupled to the more computationally demanding 4D code in higher collisionality edge plasma regions where that extended capability is necessary for accurate representation of the plasma. More efficient code leads to greater use and utility of the model. An ancillary aim of the project is to make the combined 3D/4D code user friendly. Achievement of full-coupling of these two Fokker-Planck codes will advance computational modeling of plasma devices important to the USDOE magnetic fusion energy program, in particular the DIII-D tokamak at General Atomics, San Diego, the NSTX spherical tokamak at Princeton, New Jersey, and the MST reversed-field-pinch Madison, Wisconsin. The validation studies of the code against the experiments will improve understanding of physics important for magnetic fusion, and will increase our design capabilities for achieving the goals of the International Tokamak Experimental Reactor (ITER) project in which the US is a participant and which seeks to demonstrate at least a factor of five in fusion power production divided by input power.« less

  17. Complexity control algorithm based on adaptive mode selection for interframe coding in high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Yang, Bing; Zhang, Xiaoyun; Gao, Zhiyong

    2017-07-01

    The latest high efficiency video coding (HEVC) standard significantly increases the encoding complexity for improving its coding efficiency. Due to the limited computational capability of handheld devices, complexity constrained video coding has drawn great attention in recent years. A complexity control algorithm based on adaptive mode selection is proposed for interframe coding in HEVC. Considering the direct proportionality between encoding time and computational complexity, the computational complexity is measured in terms of encoding time. First, complexity is mapped to a target in terms of prediction modes. Then, an adaptive mode selection algorithm is proposed for the mode decision process. Specifically, the optimal mode combination scheme that is chosen through offline statistics is developed at low complexity. If the complexity budget has not been used up, an adaptive mode sorting method is employed to further improve coding efficiency. The experimental results show that the proposed algorithm achieves a very large complexity control range (as low as 10%) for the HEVC encoder while maintaining good rate-distortion performance. For the lowdelayP condition, compared with the direct resource allocation method and the state-of-the-art method, an average gain of 0.63 and 0.17 dB in BDPSNR is observed for 18 sequences when the target complexity is around 40%.

  18. Inner-shell photoionization of atomic chlorine near the 2p-1 edge: a Breit-Pauli R-matrix calculation

    NASA Astrophysics Data System (ADS)

    Felfli, Z.; Deb, N. C.; Manson, S. T.; Hibbert, A.; Msezane, A. Z.

    2009-05-01

    An R-matrix calculation which takes into account relativistic effects via the Breit-Pauli (BP) operator is performed for photoionization cross sections of atomic Cl near the 2p threshold. The wavefunctions are constructed with orbitals generated from a careful large scale configuration interaction (CI) calculation with relativistic corrections using the CIV3 code of Hibbert [1] and Glass and Hibbert [2]. The results are contrasted with the calculation of Martins [3], which uses a CI with relativistic corrections, and compared with the most recent measurements [4]. [1] A. Hibbert, Comput. Phys. Commun. 9, 141 (1975) [2] R. Glass and A. Hibbert, Comput. Phys. Commun. 16, 19 (1978) [3] M. Martins, J. Phys. B 34, 1321 (2001) [4] D. Lindle et al (private communication) Research supported by U.S. DOE, Division of Chemical Sciences, NSF and CAU CFNM, NSF-CREST Program. Computing facilities at Queen's University of Belfast, UK and of DOE Office of Science, NERSC are appreciated.

  19. Transport and equilibrium in field-reversed mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, J.K.

    Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integralsmore » in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.« less

  20. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy.

    PubMed

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-07

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm(3) calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  1. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-01

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm3 calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  2. ORNL Resolved Resonance Covariance Generation for ENDF/B-VII.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leal, Luiz C.; Guber, Klaus H.; Wiarda, Dorothea

    2012-12-01

    Resonance-parameter covariance matrix (RPCM) evaluations in the resolved resonance regionwere done at the Oak Ridge National Laboratory (ORNL) for the chromium isotopes, titanium isotopes, 19F, 58Ni, 60Ni, 35Cl, 37Cl, 39K, 41K, 55Mn, 233U, 235U, 238U, and 239Pu using the computer code SAMMY. The retroactive approach of the code SAMMY was used to generate the RPCMs for 233U. For 235U, the approach used for covariance generation was similar to the retroactive approach with the distinction that real experimental data were used as opposed to data generated from the resonance parameters. RPCMs for 238U and 239Pu were generated together with the resonancemore » parameter evaluations. The RPCMs were then converted in the ENDF format using the FILE32 representation. Alternatively, for computer storage reasons, the FILE32 was converted in the FILE33 cross section covariance matrix (CSCM). Both representations were processed using the computer code PUFF-IV. This paper describes the procedures used to generate the RPCM and CSCM in the resonance region for ENDF/B-VII.1. The impact of data uncertainty in nuclear reactor benchmark calculations is also presented.« less

  3. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  4. ICAM (Conceptual Design for Computer-Integrated Manufacturing. Volume 2. Part 6. Task B - Establishment of the Factory of the Future Conceptual Framework Conceptual Framework Document, (MMR)

    DTIC Science & Technology

    1984-06-29

    effort that requires hard copy documentation. As a result, there are generally numerous delays in providing current quality information. In the FoF...process have had fixed controls or were based on " hard -coded" information. A template, for example, is hard -coded information defining the shape of a...represents soft-coded control information. (Although manual handling of punch tapes still possess some of the limitations of " hard -coded" controls

  5. CFL3D Version 6.4-General Usage and Aeroelastic Analysis

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Rumsey, Christopher L.; Biedron, Robert T.

    2006-01-01

    This document contains the course notes on the computational fluid dynamics code CFL3D version 6.4. It is intended to provide from basic to advanced users the information necessary to successfully use the code for a broad range of cases. Much of the course covers capability that has been a part of previous versions of the code, with material compiled from a CFL3D v5.0 manual and from the CFL3D v6 web site prior to the current release. This part of the material is presented to users of the code not familiar with computational fluid dynamics. There is new capability in CFL3D version 6.4 presented here that has not previously been published. There are also outdated features no longer used or recommended in recent releases of the code. The information offered here supersedes earlier manuals and updates outdated usage. Where current usage supersedes older versions, notation of that is made. These course notes also provides hints for usage, code installation and examples not found elsewhere.

  6. Hybrid and concatenated coding applications.

    NASA Technical Reports Server (NTRS)

    Hofman, L. B.; Odenwalder, J. P.

    1972-01-01

    Results of a study to evaluate the performance and implementation complexity of a concatenated and a hybrid coding system for moderate-speed deep-space applications. It is shown that with a total complexity of less than three times that of the basic Viterbi decoder, concatenated coding improves a constraint length 8 rate 1/3 Viterbi decoding system by 1.1 and 2.6 dB at bit error probabilities of 0.0001 and one hundred millionth, respectively. With a somewhat greater total complexity, the hybrid coding system is shown to obtain a 0.9-dB computational performance improvement over the basic rate 1/3 sequential decoding system. Although substantial, these complexities are much less than those required to achieve the same performances with more complex Viterbi or sequential decoder systems.

  7. A Unified View of Global Instability of Compressible Flow over Open Cavities

    DTIC Science & Technology

    2006-03-28

    in terms of number of steps realized by the DNS code per second (S/sec) as the number of processors ( np ) increases. For this comparison the “new...computations). It may clearly be seen that both solutions performed comparably well at low number of processors; however, as np increased, the Myrinet...has subsequently been designed, hard -coded and validated at nu modelling. Design characteristics of the code have been a) high-accuracy, b

  8. A Review of Australian Investigations on Aeronautical Fatigue during the Period April 1979 to March 1981.

    DTIC Science & Technology

    1981-03-01

    RD73 9. COST CODE: b. Sponsoring Agency: 27003 SUPPLY 50/2 10. IMPRINT: 11. COMPUTER PROGRAM(S) Aeronautical Research (Title(s) and language(s...laminates. 9/24 An advanced iso -parametric element is also being Jeveloped specifically for the analysis of disbonds and internal flaws in composite...FAILURE - STATION 119 iso I f FIG. 9.3 NOMAD STRLFCI URAl I AlT 10(L TESI FIG. 9.4 FAILED NOMAD STRUT UPPER END FITTING FIG. 9.5 FRACTURE FACES OF FAILED

  9. A Computer Code for a One-Dimensional Dynamic Model of the Mesosphere and Lower Thermosphere.

    DTIC Science & Technology

    1984-03-07

    electron flux, both at energy 4 The ionization cross section is given by 9 u( ) = S(,W) dW (57) I 2. Nicolet, M., and Aikin, A.C. (1960) The formation of the... energy in ev, and P, y, P, and S are parameters obtained from the best fit of Eq. (58) to experimental and theoretical results. Table B22 lists the values...Chem. 47:1783-1793. .E.. .I 73) Rate constants of thermal energy binary ion-molecule rtactions (of zqeionomic interest, At. Data Nucl. Data Tables 12

  10. A High Performance Computing Approach to the Simulation of Fluid Solid Interaction Problems with Rigid and Flexible Components (Open Access Author’s Manuscript)

    DTIC Science & Technology

    2014-08-01

    searchrequired for SPH are described in Sect. 3. Section 4 contains aperformance analysis of the algorithm using Kepler -type GPUcards. 2. Numerical...generation of Kepler architecture, code nameGK104, which is also implemented in Tesla K10. The Keplerarchitecture relies on a Graphics Processing Cluster (GPC...lat-ter is 512 KB large and has a bandwidth of 512 B/clockcycle. Constant memory (read only per grid): 48 KB per Kepler SM.Used to hold constants

  11. Multi-threading performance of Geant4, MCNP6, and PHITS Monte Carlo codes for tetrahedral-mesh geometry.

    PubMed

    Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Shin, Bangho; Kim, Chan Hyeong; Furuta, Takuya

    2018-05-04

    In this study, the multi-threading performance of the Geant4, MCNP6, and PHITS codes was evaluated as a function of the number of threads (N) and the complexity of the tetrahedral-mesh phantom. For this, three tetrahedral-mesh phantoms of varying complexity (simple, moderately complex, and highly complex) were prepared and implemented in the three different Monte Carlo codes, in photon and neutron transport simulations. Subsequently, for each case, the initialization time, calculation time, and memory usage were measured as a function of the number of threads used in the simulation. It was found that for all codes, the initialization time significantly increased with the complexity of the phantom, but not with the number of threads. Geant4 exhibited much longer initialization time than the other codes, especially for the complex phantom (MRCP). The improvement of computation speed due to the use of a multi-threaded code was calculated as the speed-up factor, the ratio of the computation speed on a multi-threaded code to the computation speed on a single-threaded code. Geant4 showed the best multi-threading performance among the codes considered in this study, with the speed-up factor almost linearly increasing with the number of threads, reaching ~30 when N  =  40. PHITS and MCNP6 showed a much smaller increase of the speed-up factor with the number of threads. For PHITS, the speed-up factors were low when N  =  40. For MCNP6, the increase of the speed-up factors was better, but they were still less than ~10 when N  =  40. As for memory usage, Geant4 was found to use more memory than the other codes. In addition, compared to that of the other codes, the memory usage of Geant4 more rapidly increased with the number of threads, reaching as high as ~74 GB when N  =  40 for the complex phantom (MRCP). It is notable that compared to that of the other codes, the memory usage of PHITS was much lower, regardless of both the complexity of the phantom and the number of threads, hardly increasing with the number of threads for the MRCP.

  12. Extended-MHD Studies of Flow-Profile Effects on Edge Harmonic Oscillations in QH-mode Discharges

    NASA Astrophysics Data System (ADS)

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; Jenkins, T. G.; Kruger, S. E.; Snyder, P. B.

    2012-10-01

    It is desirable to have an ITER H-mode regime that is quiescent to edge-localized modes (ELMs). ELMs deposit large, localized, impulsive, surface heat loads that can damage the divertor. One such quiescent regime with edge harmonic oscillations (EHO) is observed on DIII-D, JET, JT-60U, and ASDEX-U [1]. The physical mechanisms of EHO are not fully understood, but linear MHD calculations suggest EHO may be a saturated kink-peeling mode partially driven by flow-profile shear [2]. We present preliminary EHO computations using the extended-MHD NIMROD code. The model incorporates first-order FLR effects and parallel heat flows. Using reconstructed DIII-D profiles from discharges with EHO, we scan the ExB and polodial flow profiles and compute linear stability. The aim is to ascertain the role of the ExB flow shear, as motivated by experimental results [3], and to compare with theoretical predictions where the growth rate is enhanced at intermediate wavenumbers and cut-off at large wavenumbers by diamagnetic effects [4]. Initial nonlinear computations exploring the EHO saturation mechanism are presented.[4pt] [1] Phys. Plasmas, v19, p056117, 2012 (and refs. within).[0pt] [2] Nucl. Fusion, v47, p961, 2007.[0pt] [3] Nucl. Fusion, v51, p083018, 2011.[0pt] [4] Phys. Plasmas v10, p4405, 2003.

  13. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, R.; Imbriale, W.; Liewer, P.; Lyons, J.; Manshadi, F.; Patterson, J.

    1987-01-01

    The Hypercube Matrix Computation (Year 1986-1987) task investigated the applicability of a parallel computing architecture to the solution of large scale electromagnetic scattering problems. Two existing electromagnetic scattering codes were selected for conversion to the Mark III Hypercube concurrent computing environment. They were selected so that the underlying numerical algorithms utilized would be different thereby providing a more thorough evaluation of the appropriateness of the parallel environment for these types of problems. The first code was a frequency domain method of moments solution, NEC-2, developed at Lawrence Livermore National Laboratory. The second code was a time domain finite difference solution of Maxwell's equations to solve for the scattered fields. Once the codes were implemented on the hypercube and verified to obtain correct solutions by comparing the results with those from sequential runs, several measures were used to evaluate the performance of the two codes. First, a comparison was provided of the problem size possible on the hypercube with 128 megabytes of memory for a 32-node configuration with that available in a typical sequential user environment of 4 to 8 megabytes. Then, the performance of the codes was anlyzed for the computational speedup attained by the parallel architecture.

  14. Construction method of QC-LDPC codes based on multiplicative group of finite field in optical communication

    NASA Astrophysics Data System (ADS)

    Huang, Sheng; Ao, Xiang; Li, Yuan-yuan; Zhang, Rui

    2016-09-01

    In order to meet the needs of high-speed development of optical communication system, a construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on multiplicative group of finite field is proposed. The Tanner graph of parity check matrix of the code constructed by this method has no cycle of length 4, and it can make sure that the obtained code can get a good distance property. Simulation results show that when the bit error rate ( BER) is 10-6, in the same simulation environment, the net coding gain ( NCG) of the proposed QC-LDPC(3 780, 3 540) code with the code rate of 93.7% in this paper is improved by 2.18 dB and 1.6 dB respectively compared with those of the RS(255, 239) code in ITU-T G.975 and the LDPC(3 2640, 3 0592) code in ITU-T G.975.1. In addition, the NCG of the proposed QC-LDPC(3 780, 3 540) code is respectively 0.2 dB and 0.4 dB higher compared with those of the SG-QC-LDPC(3 780, 3 540) code based on the two different subgroups in finite field and the AS-QC-LDPC(3 780, 3 540) code based on the two arbitrary sets of a finite field. Thus, the proposed QC-LDPC(3 780, 3 540) code in this paper can be well applied in optical communication systems.

  15. Calculation of water drop trajectories to and about arbitrary three-dimensional lifting and nonlifting bodies in potential airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1985-01-01

    Subsonic, external flow about nonlifting bodies, lifting bodies or combinations of lifting and nonlifting bodies is calculated by a modified version of the Hess lifting code. Trajectory calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Inlet flow can be accommodated, and high Mach number compressibility effects are corrected for approximately. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  16. Paradigm of Legal Protection of Computer Software Contracts in the United States: Brief Overview of “Principles of the Law of Software Contracts”

    NASA Astrophysics Data System (ADS)

    Furuya, Haruhisa; Hiratsuka, Mitsuyoshi

    This article overviews the historical transition of legal protection of Computer software contracts in the Unite States and presents how it should function under Uniform Commercial Code and its amended Article 2B, Uniform Computer Information Transactions Act, and also recently-approved “Principles of the Law of Software Contracts”.

  17. Criticality Calculations with MCNP6 - Practical Lectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    2016-11-29

    These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input modelmore » for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.« less

  18. Anisn-Dort Neutron-Gamma Flux Intercomparison Exercise for a Simple Testing Model

    NASA Astrophysics Data System (ADS)

    Boehmer, B.; Konheiser, J.; Borodkin, G.; Brodkin, E.; Egorov, A.; Kozhevnikov, A.; Zaritsky, S.; Manturov, G.; Voloschenko, A.

    2003-06-01

    The ability of transport codes ANISN, DORT, ROZ-6, MCNP and TRAMO, as well as nuclear data libraries BUGLE-96, ABBN-93, VITAMIN-B6 and ENDF/B-6 to deliver consistent gamma and neutron flux results was tested in the calculation of a one-dimensional cylindrical model consisting of a homogeneous core and an outer zone with a single material. Model variants with H2O, Fe, Cr and Ni in the outer zones were investigated. The results are compared with MCNP-ENDF/B-6 results. Discrepancies are discussed. The specified test model is proposed as a computational benchmark for testing calculation codes and data libraries.

  19. Development of a Run Time Math Library for the 1750A Airborne Microcomputer.

    DTIC Science & Technology

    1985-12-01

    premiue CWUTLDK Is R: Integer :a 0; 0: Integer :ul; LNMM: UEM; -Compute the Lado (alpii) for J In 0..Ol.K-1) loop Itf 0(14 1)/ 0. 0...ORGANIZATION (If appiicable) * School of Engineering AFIT/ ENC 6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code) Air Force

  20. A Standard for Command, Control, Communications and Computers (C4) Test Data Representation to Integrate with High-Performance Data Reduction

    DTIC Science & Technology

    2015-06-01

    events was ad - hoc and problematic due to time constraints and changing requirements. Determining errors in context and heuristics required expertise...area code ) 410-278-4678 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 iii Contents List of Figures iv 1. Introduction 1...reduction code ...........8 1 1. Introduction Data reduction for analysis of Command, Control, Communications, and Computer (C4) network tests

  1. Speech coding at low to medium bit rates

    NASA Astrophysics Data System (ADS)

    Leblanc, Wilfred Paul

    1992-09-01

    Improved search techniques coupled with improved codebook design methodologies are proposed to improve the performance of conventional code-excited linear predictive coders for speech. Improved methods for quantizing the short term filter are developed by employing a tree search algorithm and joint codebook design to multistage vector quantization. Joint codebook design procedures are developed to design locally optimal multistage codebooks. Weighting during centroid computation is introduced to improve the outlier performance of the multistage vector quantizer. Multistage vector quantization is shown to be both robust against input characteristics and in the presence of channel errors. Spectral distortions of about 1 dB are obtained at rates of 22-28 bits/frame. Structured codebook design procedures for excitation in code-excited linear predictive coders are compared to general codebook design procedures. Little is lost using significant structure in the excitation codebooks while greatly reducing the search complexity. Sparse multistage configurations are proposed for reducing computational complexity and memory size. Improved search procedures are applied to code-excited linear prediction which attempt joint optimization of the short term filter, the adaptive codebook, and the excitation. Improvements in signal to noise ratio of 1-2 dB are realized in practice.

  2. Avoiding Defect Nucleation during Equilibration in Molecular Dynamics Simulations with ReaxFF

    DTIC Science & Technology

    2015-04-01

    respectively. All simulations are performed using the LAMMPS computer code.12 2 Fig. 1 a) Initial and b) final configurations of the molecular centers...Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Comput J Phys. 1995;117:1–19. (Software available at http:// lammps .sandia.gov

  3. NRL Fact Book 1992-1993

    DTIC Science & Technology

    1993-06-01

    administering contractual support for lab-wide or multiple buys of ADP systems, software, and services. Computer systems located in the Central Computing Facility...Code Dr. D.L. Bradley Vacant Mrs. N.J. Beauchamp Dr. W.A. Kuperman Dr. E.R. Franchi Dr. M.H. Orr Dr. J.A. Bucaro Mr. L.B. Palmer Dr. D.J. Ramsdale Mr

  4. Efficient full wave code for the coupling of large multirow multijunction LH grills

    NASA Astrophysics Data System (ADS)

    Preinhaelter, Josef; Hillairet, Julien; Milanesio, Daniele; Maggiora, Riccardo; Urban, Jakub; Vahala, Linda; Vahala, George

    2017-11-01

    The full wave code OLGA, for determining the coupling of a single row lower hybrid launcher (waveguide grills) to the plasma, is extended to handle multirow multijunction active passive structures (like the C3 and C4 launchers on TORE SUPRA) by implementing the scattering matrix formalism. The extended code is still computationally fast because of the use of (i) 2D splines of the plasma surface admittance in the accessibility region of the k-space, (ii) high order Gaussian quadrature rules for the integration of the coupling elements and (iii) utilizing the symmetries of the coupling elements in the multiperiodic structures. The extended OLGA code is benchmarked against the ALOHA-1D, ALOHA-2D and TOPLHA codes for the coupling of the C3 and C4 TORE SUPRA launchers for several plasma configurations derived from reflectometry and interferometery. Unlike nearly all codes (except the ALOHA-1D code), OLGA does not require large computational resources and can be used for everyday usage in planning experimental runs. In particular, it is shown that the OLGA code correctly handles the coupling of the C3 and C4 launchers over a very wide range of plasma densities in front of the grill.

  5. AMPX-77: A modular code system for generating coupled multigroup neutron-gamma cross-section libraries from ENDF/B-IV and/or ENDF/B-V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, N.M.; Ford, W.E. III; Petrie, L.M.

    AMPX-77 is a modular system of computer programs that pertain to nuclear analyses, with a primary emphasis on tasks associated with the production and use of multigroup cross sections. AH basic cross-section data are to be input in the formats used by the Evaluated Nuclear Data Files (ENDF/B), and output can be obtained in a variety of formats, including its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-my data. The present release contains codes all writtenmore » in the FORTRAN-77 dialect of FORTRAN and wig process ENDF/B-V and earlier evaluations, though major modules are being upgraded in order to process ENDF/B-VI and will be released when a complete collection of usable routines is available.« less

  6. Conversion and improvement of the Rutherford Laboratory's magnetostatic computer code GFUN3D to the NMFECC CDC 7600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, T.C.

    1980-06-01

    The implementation of a version of the Rutherford Laboratory's magnetostatic computer code GFUN3D on the CDC 7600 at the National Magnetic Fusion Energy Computer Center is reported. A new iteration technique that greatly increases the probability of convergence and reduces computation time by about 30% for calculations with nonlinear, ferromagnetic materials is included. The use of GFUN3D on the NMFE network is discussed, and suggestions for future work are presented. Appendix A consists of revisions to the GFUN3D User Guide (published by Rutherford Laboratory( that are necessary to use this version. Appendix B contains input and output for some samplemore » calculations. Appendix C is a detailed discussion of the old and new iteration techniques.« less

  7. Combustor Computations for CO2-Neutral Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Brankovic, Andreja; Ryder, Robert C.; Huber, Marcia

    2011-01-01

    Knowing the pure component C(sub p)(sup 0) or mixture C(sub p) (sup 0) as computed by a flexible code such as NIST-STRAPP or McBride-Gordon, one can, within reasonable accuracy, determine the thermophysical properties necessary to predict the combustion characteristics when there are no tabulated or computed data for those fluid mixtures 3or limited results for lower temperatures. (Note: C(sub p) (sup 0) is molar heat capacity at constant pressure.) The method can be used in the determination of synthetic and biological fuels and blends using the NIST code to compute the C(sub p) (sup 0) of the mixture. In this work, the values of the heat capacity were set at zero pressure, which provided the basis for integration to determine the required combustor properties from the injector to the combustor exit plane. The McBride-Gordon code was used to determine the heat capacity at zero pressure over a wide range of temperatures (room to 6,000 K). The selected fluids were Jet-A, 224TMP (octane), and C12. It was found that each heat capacity loci were form-similar. It was then determined that the results [near 400 to 3,000 K] could be represented to within acceptable engineering accuracy with the simplified equation C(sub p) (sup 0) = A/T + B, where A and B are fluid-dependent constants and T is temperature (K).

  8. A Comparison of Fatigue Design Methods

    DTIC Science & Technology

    2001-04-05

    Boiler and Pressure Vessel Code does not...Engineers, "ASME Boiler and Pressure Vessel Code ," ASME, 3 Park Ave., New York, NY 10016-5990. [4] Langer, B. F., "Design of Pressure Vessels Involving... and Pressure Vessel Code [3] presents these methods and has expanded the procedures to other pressure vessels besides nuclear pressure vessels. B.

  9. Limitation of Hot-Carrier Generated Heat Dissipation on the Frequency of Operation and Reliability of Novel Nitride-Based High-Speed HFETs

    DTIC Science & Technology

    2012-01-18

    Ni, H. Morkoç, “Signature of hot phonons in reliability of nitride HFETs and signal delay” Acta Physica Polonica A. 119(2) 225-227 (2011) 27. L...lines in AlInN/GaN heterostructures”, Acta Physica Polonica A. 119(2) 173-175 (2011) 29. J. H. Leach, M. Wu, H. Morkoç, M. Ramonas, and A. Matulionis...Ardaraviius¤, O. Kiprijanovi, and J. Liberis, “Hot-Phonon Decided Carrier Velocity in AlInN/GaN Based Two-Dimensional Channels” Acta Physica

  10. Py4CAtS - Python tools for line-by-line modelling of infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; García, Sebastián Gimeno

    2013-05-01

    Py4CAtS — Python scripts for Computational ATmospheric Spectroscopy is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules for highly optimized array-processing. The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross sections for given pressure(s) and temperature(s), to combine cross sections to absorption coefficients and optical depths, and to integrate along the line-of-sight to transmission and radiance/intensity. The basic design of the package, numerical and computational aspects relevant for optimization, and a sketch of the typical workflow are presented.

  11. Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guth, Larry, E-mail: lguth@math.mit.edu; Lubotzky, Alexander, E-mail: alex.lubotzky@mail.huji.ac.il

    2014-08-15

    Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are low density parity check codes with linear rate and distance n{sup ε}. Their rate is evaluated via Euler characteristic arguments and their distance using Z{sub 2}-systolic geometry. This construction answers a question of Zémor [“On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction,” in Proceedings of Second International Workshop on Coding and Cryptology (IWCC), Lecture Notes in Computer Science Vol. 5557 (2009), pp. 259–273], who asked whether homological codes with such parameters could exist at all.

  12. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Plutonium Metals, Oxides, and Solutions on the High Performance Computing Platform Moonlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Bryan Scott; Gough, Sean T.

    This report documents a validation of the MCNP6 Version 1.0 computer code on the high performance computing platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature. The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials.

  13. Dynamic Elasto-Plastic Response of Shells in an Acoustic Medium - Theoretical Development for the EPSA Code

    DTIC Science & Technology

    1978-07-01

    TECHNOLOGY OFFICE OF NAVAL RESEARCH ARLINGTON* VA 22217 ATTN CODE 200 NAVAL. UNDERWATER SYSTEMS COMMAND NEWPORT. RI 02840 ATTN DRo AZRIEL HARARI/ 3 .b 311...ANAOST.FIT THEORETICAL DEVELOPMENT FOR THE EPSA CODE ~/ R/Atkatsh, M.P./Bieniek. -AM M.L.,/aron OFF NAVAL RESEARCH CONTRACT N/ 3 14-72-C-19~. TRACT 7_...the report, both procedures result In a marked increase in computational efficiency, parti- cularly for cases in which large systems are to be

  14. Computer Aided Design of Polyhedron Solids to Model Air in Com-Geom Descriptions

    DTIC Science & Technology

    1983-08-01

    34The GIFT Code User Manual, Volume I, Introduction and Input Requirements," BRL Report No. 1802, July 1975 (Unclassified). (AD B0060Z7LK 2G...Kuehl, L. Bain and M. Reisinger, "The GIFT Code User Manual, Volume II, The Output Options," BRL Report ARBRL-TR-02189, September 1979...is generated from the GIFT code under op- tion XSECT. This option produces plot files which define cross- sectional views of the COM-GEOM

  15. Burst mode PCS of EPON

    NASA Astrophysics Data System (ADS)

    Du, Xiao

    2005-02-01

    Normal GIGA ETHERNET continuously transmits or receives 8B/10B codes including data codes, idle codes or configuration information. In ETHERNET network, one computer links one port of switch through CAT5 and that is OK. But for EPON, it is different. All ONUs share one fiber in upstream, if we inherit the GIGA ETHERNET PHY, then collision will occur. All ONUs always transmit 8B/10B codes, and the optical signal will overlay. The OLT will receive the fault information. So we need a novel EPON PHY instead of ETHERNET PHY. But its major function is compatible with ETHERNET"s. In this article, first, the function of PCS sub layer is discussed and a novel PCS module is given that can be used in not only EPON system but also in GIGA ETHERNET system. The design of PCS is based on 1000BASE-X PCS technology. And the function of 1000BASE-X PCS should be accomplished first. Next we modify the design in order to meet the requirements of EPON system. In the new design, the auto negotiation and synchronization is the same to the 1000 BASE-X technology.

  16. Theoretical Thermal Evaluation of Energy Recovery Incinerators

    DTIC Science & Technology

    1985-12-01

    Army Logistics Mgt Center, Fort Lee , VA DTIC Alexandria, VA DTNSRDC Code 4111 (R. Gierich), Bethesda MD; Code 4120, Annapolis, MD; Code 522 (Library...Washington. DC: Code (I6H4. Washington. DC NAVSECGRUACT PWO (Code .’^O.’^). Winter Harbor. IVIE ; PWO (Code 4(1). Edzell. Scotland; PWO. Adak AK...NEW YORK Fort Schuyler. NY (Longobardi) TEXAS A&M UNIVERSITY W.B. Ledbetter College Station. TX UNIVERSITY OF CALIFORNIA Energy Engineer. Davis CA

  17. Laser Signature Prediction Using The VALUE Computer Program

    NASA Astrophysics Data System (ADS)

    Akerman, Alexander; Hoffman, George A.; Patton, Ronald

    1989-09-01

    A variety of enhancements are being made to the 1976-vintage LASERX computer code. These include: - Surface characterization with BDRF tabular data - Specular reflection from transparent surfaces - Generation of glint direction maps - Generation of relative range imagery - Interface to the LOWTRAN atmospheric transmission code - Interface to the LEOPS laser sensor code - User friendly menu prompting for easy setup Versions of VALUE have been written for both VAX/VMS and PC/DOS computer environments. Outputs have also been revised to be user friendly and include tables, plots, and images for (1) intensity, (2) cross section,(3) reflectance, (4) relative range, (5) region type, and (6) silhouette.

  18. Restoring canonical partition functions from imaginary chemical potential

    NASA Astrophysics Data System (ADS)

    Bornyakov, V. G.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V. I.

    2018-03-01

    Using GPGPU techniques and multi-precision calculation we developed the code to study QCD phase transition line in the canonical approach. The canonical approach is a powerful tool to investigate sign problem in Lattice QCD. The central part of the canonical approach is the fugacity expansion of the grand canonical partition functions. Canonical partition functions Zn(T) are coefficients of this expansion. Using various methods we study properties of Zn(T). At the last step we perform cubic spline for temperature dependence of Zn(T) at fixed n and compute baryon number susceptibility χB/T2 as function of temperature. After that we compute numerically ∂χ/∂T and restore crossover line in QCD phase diagram. We use improved Wilson fermions and Iwasaki gauge action on the 163 × 4 lattice with mπ/mρ = 0.8 as a sandbox to check the canonical approach. In this framework we obtain coefficient in parametrization of crossover line Tc(µ2B) = Tc(C-ĸµ2B/T2c) with ĸ = -0.0453 ± 0.0099.

  19. Analysis of Delays in Transmitting Time Code Using an Automated Computer Time Distribution System

    DTIC Science & Technology

    1999-12-01

    jlevine@clock. bldrdoc.gov Abstract An automated computer time distribution system broadcasts standard tune to users using computers and modems via...contributed to &lays - sofhareplatform (50% of the delay), transmission speed of time- codes (25OA), telephone network (lS%), modem and others (10’4). The... modems , and telephone lines. Users dial the ACTS server to receive time traceable to the national time scale of Singapore, UTC(PSB). The users can in

  20. SIMD Optimization of Linear Expressions for Programmable Graphics Hardware

    PubMed Central

    Bajaj, Chandrajit; Ihm, Insung; Min, Jungki; Oh, Jinsang

    2009-01-01

    The increased programmability of graphics hardware allows efficient graphical processing unit (GPU) implementations of a wide range of general computations on commodity PCs. An important factor in such implementations is how to fully exploit the SIMD computing capacities offered by modern graphics processors. Linear expressions in the form of ȳ = Ax̄ + b̄, where A is a matrix, and x̄, ȳ and b̄ are vectors, constitute one of the most basic operations in many scientific computations. In this paper, we propose a SIMD code optimization technique that enables efficient shader codes to be generated for evaluating linear expressions. It is shown that performance can be improved considerably by efficiently packing arithmetic operations into four-wide SIMD instructions through reordering of the operations in linear expressions. We demonstrate that the presented technique can be used effectively for programming both vertex and pixel shaders for a variety of mathematical applications, including integrating differential equations and solving a sparse linear system of equations using iterative methods. PMID:19946569

  1. Investigation of Different Constituent Encoders in a Turbo-code Scheme for Reduced Decoder Complexity

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.

    1998-01-01

    A large number of papers have been published attempting to give some analytical basis for the performance of Turbo-codes. It has been shown that performance improves with increased interleaver length. Also procedures have been given to pick the best constituent recursive systematic convolutional codes (RSCC's). However testing by computer simulation is still required to verify these results. This thesis begins by describing the encoding and decoding schemes used. Next simulation results on several memory 4 RSCC's are shown. It is found that the best BER performance at low E(sub b)/N(sub o) is not given by the RSCC's that were found using the analytic techniques given so far. Next the results are given from simulations using a smaller memory RSCC for one of the constituent encoders. Significant reduction in decoding complexity is obtained with minimal loss in performance. Simulation results are then given for a rate 1/3 Turbo-code with the result that this code performed as well as a rate 1/2 Turbo-code as measured by the distance from their respective Shannon limits. Finally the results of simulations where an inaccurate noise variance measurement was used are given. From this it was observed that Turbo-decoding is fairly stable with regard to noise variance measurement.

  2. Fast ITTBC using pattern code on subband segmentation

    NASA Astrophysics Data System (ADS)

    Koh, Sung S.; Kim, Hanchil; Lee, Kooyoung; Kim, Hongbin; Jeong, Hun; Cho, Gangseok; Kim, Chunghwa

    2000-06-01

    Iterated Transformation Theory-Based Coding suffers from very high computational complexity in encoding phase. This is due to its exhaustive search. In this paper, our proposed image coding algorithm preprocess an original image to subband segmentation image by wavelet transform before image coding to reduce encoding complexity. A similar block is searched by using the 24 block pattern codes which are coded by the edge information in the image block on the domain pool of the subband segmentation. As a result, numerical data shows that the encoding time of the proposed coding method can be reduced to 98.82% of that of Joaquin's method, while the loss in quality relative to the Jacquin's is about 0.28 dB in PSNR, which is visually negligible.

  3. For the Love of Statistics: Appreciating and Learning to Apply Experimental Analysis and Statistics through Computer Programming Activities

    ERIC Educational Resources Information Center

    Mascaró, Maite; Sacristán, Ana Isabel; Rufino, Marta M.

    2016-01-01

    For the past 4 years, we have been involved in a project that aims to enhance the teaching and learning of experimental analysis and statistics, of environmental and biological sciences students, through computational programming activities (using R code). In this project, through an iterative design, we have developed sequences of R-code-based…

  4. Validation of Extended MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; Craig, D.; McCollam, K. J.; Sovinec, C. R.

    2016-10-01

    Significant effort has been devoted to improvement of computational models used in fusion energy sciences. Rigorous validation of these models is necessary in order to increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation over a wide range of parameters. In particular, the Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), can be varied over a wide range and provide substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 5 ×104 for single-fluid runs, with the magnetic Prandtl number Pm = 1 . Experiments with plasma current IP ranging from 60 kA to 500 kA result in S from 4 ×104 to 8 ×106 . Validation metric comparisons are presented, focusing on how magnetic fluctuations b scale with S. Single-fluid NIMROD results give S b - 0.21 , and experiments give S b - 0.28 for the dominant m = 1 , n = 6 mode. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  5. 12 CFR Appendix A to Subpart B of... - Commentary

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...,” as defined in section 4A-501(b) of Article 4A, Funds Transfers, of the Uniform Commercial Code (UCC... refers to other provisions of the Uniform Commercial Code, e.g., definitions in article 1 of the UCC, these other provisions of the UCC, as approved by the National Conference of Commissioners on Uniform...

  6. 12 CFR Appendix A to Subpart B of... - Commentary

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...,” as defined in section 4A-501(b) of Article 4A, Funds Transfers, of the Uniform Commercial Code (UCC... refers to other provisions of the Uniform Commercial Code, e.g., definitions in Article 1 of the UCC, these other provisions of the UCC, as approved by the National Conference of Commissioners on Uniform...

  7. 12 CFR Appendix A to Subpart B of... - Commentary

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...,” as defined in section 4A-501(b) of Article 4A, Funds Transfers, of the Uniform Commercial Code (UCC... refers to other provisions of the Uniform Commercial Code, e.g., definitions in Article 1 of the UCC, these other provisions of the UCC, as approved by the National Conference of Commissioners on Uniform...

  8. 12 CFR Appendix A to Subpart B of... - Commentary

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...,” as defined in section 4A-501(b) of Article 4A, Funds Transfers, of the Uniform Commercial Code (UCC... refers to other provisions of the Uniform Commercial Code, e.g., definitions in article 1 of the UCC, these other provisions of the UCC, as approved by the National Conference of Commissioners on Uniform...

  9. 12 CFR Appendix A to Subpart B of... - Commentary

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...,” as defined in section 4A-501(b) of Article 4A, Funds Transfers, of the Uniform Commercial Code (UCC... refers to other provisions of the Uniform Commercial Code, e.g., definitions in Article 1 of the UCC, these other provisions of the UCC, as approved by the National Conference of Commissioners on Uniform...

  10. Automated Instrumentation, Monitoring and Visualization of PVM Programs Using AIMS

    NASA Technical Reports Server (NTRS)

    Mehra, Pankaj; VanVoorst, Brian; Yan, Jerry; Tucker, Deanne (Technical Monitor)

    1994-01-01

    We present views and analysis of the execution of several PVM codes for Computational Fluid Dynamics on a network of Sparcstations, including (a) NAS Parallel benchmarks CG and MG (White, Alund and Sunderam 1993); (b) a multi-partitioning algorithm for NAS Parallel Benchmark SP (Wijngaart 1993); and (c) an overset grid flowsolver (Smith 1993). These views and analysis were obtained using our Automated Instrumentation and Monitoring System (AIMS) version 3.0, a toolkit for debugging the performance of PVM programs. We will describe the architecture, operation and application of AIMS. The AIMS toolkit contains (a) Xinstrument, which can automatically instrument various computational and communication constructs in message-passing parallel programs; (b) Monitor, a library of run-time trace-collection routines; (c) VK (Visual Kernel), an execution-animation tool with source-code clickback; and (d) Tally, a tool for statistical analysis of execution profiles. Currently, Xinstrument can handle C and Fortran77 programs using PVM 3.2.x; Monitor has been implemented and tested on Sun 4 systems running SunOS 4.1.2; and VK uses X11R5 and Motif 1.2. Data and views obtained using AIMS clearly illustrate several characteristic features of executing parallel programs on networked workstations: (a) the impact of long message latencies; (b) the impact of multiprogramming overheads and associated load imbalance; (c) cache and virtual-memory effects; and (4significant skews between workstation clocks. Interestingly, AIMS can compensate for constant skew (zero drift) by calibrating the skew between a parent and its spawned children. In addition, AIMS' skew-compensation algorithm can adjust timestamps in a way that eliminates physically impossible communications (e.g., messages going backwards in time). Our current efforts are directed toward creating new views to explain the observed performance of PVM programs. Some of the features planned for the near future include: (a) ConfigView, showing the physical topology of the virtual machine, inferred using specially formatted IP (Internet Protocol) packets; and (b) LoadView, synchronous animation of PVM-program execution and resource-utilization patterns.

  11. Validation of MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; den Hartog, D. J.; McCollam, K. J.; Sarff, J. S.; Sovinec, C. R.

    2017-10-01

    Rigorous validation of computational models used in fusion energy sciences over a large parameter space and across multiple magnetic configurations can increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation with plasma current ranging from 60 kA to 500 kA. The resulting Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), ranges from 4 ×104 to 8 ×106 for standard RFP plasmas and provides substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 105 for single-fluid runs, and the magnetic Prandtl number Pm = 1 . Validation metric comparisons are presented, focusing on how normalized magnetic fluctuations at the edge b scale with S. Preliminary results for the dominant n = 6 mode are b S - 0 . 20 +/- 0 . 02 for single-fluid NIMROD, b S - 0 . 25 +/- 0 . 05 for DEBS, and b S - 0 . 20 +/- 0 . 02 for experimental measurements, however there is a significant discrepancy in mode amplitudes. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  12. MATH77 - A LIBRARY OF MATHEMATICAL SUBPROGRAMS FOR FORTRAN 77, RELEASE 4.0

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1994-01-01

    MATH77 is a high quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for the basic computational processes of science and engineering. The portability of MATH77 meets the needs of present-day scientists and engineers who typically use a variety of computing environments. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. Usage of the user-callable subprograms is described in 69 sections of the 416 page users' manual. The topics covered by MATH77 are indicated by the following list of chapter titles in the users' manual: Mathematical Functions, Pseudo-random Number Generation, Linear Systems of Equations and Linear Least Squares, Matrix Eigenvalues and Eigenvectors, Matrix Vector Utilities, Nonlinear Equation Solving, Curve Fitting, Table Look-Up and Interpolation, Definite Integrals (Quadrature), Ordinary Differential Equations, Minimization, Polynomial Rootfinding, Finite Fourier Transforms, Special Arithmetic , Sorting, Library Utilities, Character-based Graphics, and Statistics. Besides subprograms that are adaptations of public domain software, MATH77 contains a number of unique packages developed by the authors of MATH77. Instances of the latter type include (1) adaptive quadrature, allowing for exceptional generality in multidimensional cases, (2) the ordinary differential equations solver used in spacecraft trajectory computation for JPL missions, (3) univariate and multivariate table look-up and interpolation, allowing for "ragged" tables, and providing error estimates, and (4) univariate and multivariate derivative-propagation arithmetic. MATH77 release 4.0 is a subroutine library which has been carefully designed to be usable on any computer system that supports the full ANSI standard FORTRAN 77 language. It has been successfully implemented on a CRAY Y/MP computer running UNICOS, a UNISYS 1100 computer running EXEC 8, a DEC VAX series computer running VMS, a Sun4 series computer running SunOS, a Hewlett-Packard 720 computer running HP-UX, a Macintosh computer running MacOS, and an IBM PC compatible computer running MS-DOS. Accompanying the library is a set of 196 "demo" drivers that exercise all of the user-callable subprograms. The FORTRAN source code for MATH77 comprises 109K lines of code in 375 files with a total size of 4.5Mb. The demo drivers comprise 11K lines of code and 418K. Forty-four percent of the lines of the library code and 29% of those in the demo code are comment lines. The standard distribution medium for MATH77 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 9track 1600 BPI magnetic tape in VAX BACKUP format and a TK50 tape cartridge in VAX BACKUP format. An electronic copy of the documentation is included on the distribution media. Previous releases of MATH77 have been used over a number of years in a variety of JPL applications. MATH77 Release 4.0 was completed in 1992. MATH77 is a copyrighted work with all copyright vested in NASA.

  13. A Computer Code to Calculate the Effect of Internal Waves on Acoustic Propagation

    DTIC Science & Technology

    1975-03-01

    Trt 36 ■ ■ im Y(J4)=BI4>TI X(J3»=BR^-TK Y( J!>)=8U-TI TR=-0.707lOb7612»(BK7*BI7l TI=Ü.707lÜ6 7dl2*(BR7-HI7) X(J6>=BR6*TR Y( Jt>)= Bl6 *TI...X(J7>=BR6-TR Y(J7)= B16 -TI 1 CUNTINUE 3 IF(N2POW-3*N8POW-l) !>l6t7 6 UOölJ=l,NTHPU f2 Ri=X(J)>X(Jfl» xi j*n = x( J>-X( j + u XCJ)=Kl FIl = Y

  14. Making Ordered DNA and Protein Structures from Computer-Printed Transparency Film Cut-Outs

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    Instructions are given for building physical scale models of ordered structures of B-form DNA, protein [alpha]-helix, and parallel and antiparallel protein [beta]-pleated sheets made from colored computer printouts designed for transparency film sheets. Cut-outs from these sheets are easily assembled. Conventional color coding for atoms are used…

  15. 26 CFR 1.197-2 - Amortization of goodwill and certain other intangibles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., process, design, pattern, know-how, format, package design, computer software (as defined in paragraph (c... has the meaning given in section 1253(b)(1) and includes any agreement that provides one of the...-readable code) that is designed to cause a computer to perform a desired function or set of functions, and...

  16. 26 CFR 1.197-2 - Amortization of goodwill and certain other intangibles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., process, design, pattern, know-how, format, package design, computer software (as defined in paragraph (c... has the meaning given in section 1253(b)(1) and includes any agreement that provides one of the...-readable code) that is designed to cause a computer to perform a desired function or set of functions, and...

  17. Quantum computing with Majorana fermion codes

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; von Oppen, Felix

    2018-05-01

    We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.

  18. AMPX: a modular code system for generating coupled multigroup neutron-gamma libraries from ENDF/B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, N.M.; Lucius, J.L.; Petrie, L.M.

    1976-03-01

    AMPX is a modular system for producing coupled multigroup neutron-gamma cross section sets. Basic neutron and gamma cross-section data for AMPX are obtained from ENDF/B libraries. Most commonly used operations required to generate and collapse multigroup cross-section sets are provided in the system. AMPX is flexibly dimensioned; neutron group structures, and gamma group structures, and expansion orders to represent anisotropic processes are all arbitrary and limited only by available computer core and budget. The basic processes provided will (1) generate multigroup neutron cross sections; (2) generate multigroup gamma cross sections; (3) generate gamma yields for gamma-producing neutron interactions; (4) combinemore » neutron cross sections, gamma cross sections, and gamma yields into final ''coupled sets''; (5) perform one-dimensional discrete ordinates transport or diffusion theory calculations for neutrons and gammas and, on option, collapse the cross sections to a broad-group structure, using the one-dimensional results as weighting functions; (6) plot cross sections, on option, to facilitate the ''evaluation'' of a particular multigroup set of data; (7) update and maintain multigroup cross section libraries in such a manner as to make it not only easy to combine new data with previously processed data but also to do it in a single pass on the computer; and (8) output multigroup cross sections in convenient formats for other codes. (auth)« less

  19. LDPC coded OFDM over the atmospheric turbulence channel.

    PubMed

    Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A

    2007-05-14

    Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).

  20. Performance of convolutional codes on fading channels typical of planetary entry missions

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.; Mui, S. Y.; Reale, T. J.

    1974-01-01

    The performance of convolutional codes in fading channels typical of the planetary entry channel is examined in detail. The signal fading is due primarily to turbulent atmospheric scattering of the RF signal transmitted from an entry probe through a planetary atmosphere. Short constraint length convolutional codes are considered in conjunction with binary phase-shift keyed modulation and Viterbi maximum likelihood decoding, and for longer constraint length codes sequential decoding utilizing both the Fano and Zigangirov-Jelinek (ZJ) algorithms are considered. Careful consideration is given to the modeling of the channel in terms of a few meaningful parameters which can be correlated closely with theoretical propagation studies. For short constraint length codes the bit error probability performance was investigated as a function of E sub b/N sub o parameterized by the fading channel parameters. For longer constraint length codes the effect was examined of the fading channel parameters on the computational requirements of both the Fano and ZJ algorithms. The effects of simple block interleaving in combatting the memory of the channel is explored, using the analytic approach or digital computer simulation.

  1. Preliminary weight and costs of sandwich panels to distribute concentrated loads

    NASA Technical Reports Server (NTRS)

    Belleman, G.; Mccarty, J. E.

    1976-01-01

    Minimum mass honeycomb sandwich panels were sized for transmitting a concentrated load to a uniform reaction through various distances. The form skin gages were fully stressed with a finite element computer code. The panel general stability was evaluated with a buckling computer code labeled STAGS-B. Two skin materials were considered; aluminum and graphite-epoxy. The core was constant thickness aluminum honeycomb. Various panel sizes and load levels were considered. The computer generated data were generalized to allow preliminary least mass panel designs for a wide range of panel sizes and load intensities. An assessment of panel fabrication cost was also conducted. Various comparisons between panel mass, panel size, panel loading, and panel cost are presented in both tabular and graphical form.

  2. Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samaddar, Debasmita; Coster, D. P.; Bonnin, X.

    We show that numerical modelling of edge plasma physics may be successfully parallelized in time. The parareal algorithm has been employed for this purpose and the SOLPS code package coupling the B2.5 finite-volume fluid plasma solver with the kinetic Monte-Carlo neutral code Eirene has been used as a test bed. The complex dynamics of the plasma and neutrals in the scrape-off layer (SOL) region makes this a unique application. It is demonstrated that a significant computational gain (more than an order of magnitude) may be obtained with this technique. The use of the IPS framework for event-based parareal implementation optimizesmore » resource utilization and has been shown to significantly contribute to the computational gain.« less

  3. Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code

    DOE PAGES

    Samaddar, Debasmita; Coster, D. P.; Bonnin, X.; ...

    2017-07-31

    We show that numerical modelling of edge plasma physics may be successfully parallelized in time. The parareal algorithm has been employed for this purpose and the SOLPS code package coupling the B2.5 finite-volume fluid plasma solver with the kinetic Monte-Carlo neutral code Eirene has been used as a test bed. The complex dynamics of the plasma and neutrals in the scrape-off layer (SOL) region makes this a unique application. It is demonstrated that a significant computational gain (more than an order of magnitude) may be obtained with this technique. The use of the IPS framework for event-based parareal implementation optimizesmore » resource utilization and has been shown to significantly contribute to the computational gain.« less

  4. Robust Self-Authenticating Network Coding

    DTIC Science & Technology

    2008-11-30

    efficient as traditional point-to-point coding schemes 3m*b*c*ts»tt a«2b»c*dt4g »4.0»C* 3d *Sh Number of symbols that an intermediate node has to...Institute of Technology This work was partly supported by the Fundacao para a Ciencia e Tecnologia (Portuguese foundation lor Science and Technology

  5. 78 FR 25774 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Approving a Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... Advisers Act relating to codes of ethics. This Rule requires investment advisers to adopt a code of ethics...(b)(4) on a continuous basis measured at the time of purchase. The Exchange states that trading in... 5705(b)(4) on a continuous basis measured at the time of purchase are designed to mitigate the...

  6. European Science Notes. Volume 40, Number 4.

    DTIC Science & Technology

    1986-04-01

    OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (if applicable) 8c. ADDRESS (City, State, and ZIP Code ) 10. SOURCE OF...Office, London ONRL 6c. ADDRESS (City, State, and ZIP Code ) 7b. ADDRESS (City, State, and ZIPCode) Box 39 FPO, NY 09510 Ba. NAME OF FUNDING/SPONSORING 8b...13..TYPj9 REPORT13bTIECVRD1.DTOFRPT(YaMnhDy)1.AGCUNMonthly FROM TO _ April 1986 32 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS

  7. General Electromagnetic Model for the Analysis of Complex Systems (GEMACS) Computer Code Documentation (Version 3). Volume 3, Part 4.

    DTIC Science & Technology

    1983-09-01

    6ENFRAL. ELECTROMAGNETIC MODEL FOR THE ANALYSIS OF COMPLEX SYSTEMS **%(GEMA CS) Computer Code Documentation ii( Version 3 ). A the BDM Corporation Dr...ANALYSIS FnlTcnclRpr F COMPLEX SYSTEM (GmCS) February 81 - July 83- I TR CODE DOCUMENTATION (Version 3 ) 6.PROMN N.REPORT NUMBER 5. CONTRACT ORGAT97...the ti and t2 directions on the source patch. 3 . METHOD: The electric field at a segment observation point due to the source patch j is given by 1-- lnA

  8. CAVE: A computer code for two-dimensional transient heating analysis of conceptual thermal protection systems for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Rathjen, K. A.

    1977-01-01

    A digital computer code CAVE (Conduction Analysis Via Eigenvalues), which finds application in the analysis of two dimensional transient heating of hypersonic vehicles is described. The CAVE is written in FORTRAN 4 and is operational on both IBM 360-67 and CDC 6600 computers. The method of solution is a hybrid analytical numerical technique that is inherently stable permitting large time steps even with the best of conductors having the finest of mesh size. The aerodynamic heating boundary conditions are calculated by the code based on the input flight trajectory or can optionally be calculated external to the code and then entered as input data. The code computes the network conduction and convection links, as well as capacitance values, given basic geometrical and mesh sizes, for four generations (leading edges, cooled panels, X-24C structure and slabs). Input and output formats are presented and explained. Sample problems are included. A brief summary of the hybrid analytical-numerical technique, which utilizes eigenvalues (thermal frequencies) and eigenvectors (thermal mode vectors) is given along with aerodynamic heating equations that have been incorporated in the code and flow charts.

  9. Method for rapid high-frequency seismogram calculation

    NASA Astrophysics Data System (ADS)

    Stabile, Tony Alfredo; De Matteis, Raffaella; Zollo, Aldo

    2009-02-01

    We present a method for rapid, high-frequency seismogram calculation that makes use of an algorithm to automatically generate an exhaustive set of seismic phases with an appreciable amplitude on the seismogram. The method uses a hierarchical order of ray and seismic-phase generation, taking into account some existing constraints for ray paths and some physical constraints. To compute synthetic seismograms, the COMRAD code (from the Italian: "COdice Multifase per il RAy-tracing Dinamico") uses as core a dynamic ray-tracing code. To validate the code, we have computed in a layered medium synthetic seismograms using both COMRAD and a code that computes the complete wave field by the discrete wave number method. The seismograms are compared according to a time-frequency misfit criteria based on the continuous wavelet transform of the signals. Although the number of phases is considerably reduced by the selection criteria, the results show that the loss in amplitude on the whole seismogram is negligible. Moreover, the time for the computing of the synthetics using the COMRAD code (truncating the ray series at the 10th generation) is 3-4-fold less than that needed for the AXITRA code (up to a frequency of 25 Hz).

  10. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Functional modules F1--F8 -- Volume 2, Part 1, Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, N.M.; Petrie, L.M.; Westfall, R.M.

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. The manual is divided into three volumes: Volume 1--for the control module documentation; Volume 2--for functional module documentation; and Volume 3--for documentation of the data libraries and subroutine libraries.« less

  11. The DOPEX code: An application of the method of steepest descent to laminated-shield-weight optimization with several constraints

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    A two- or three-constraint, two-dimensional radiation shield weight optimization procedure and a computer program, DOPEX, is described. The DOPEX code uses the steepest descent method to alter a set of initial (input) thicknesses for a shield configuration to achieve a minimum weight while simultaneously satisfying dose constaints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. The code also assumes that dose rates in each principal direction are dependent only on thicknesses in that direction. Code input instructions, FORTRAN 4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is about 0.1 minute on an IBM 7094-2.

  12. CFD Based Computations of Flexible Helicopter Blades for Stability Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2011-01-01

    As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.

  13. Nonlinear 3D visco-resistive MHD modeling of fusion plasmas: a comparison between numerical codes

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Chacon, L.; Cappello, S.

    2008-11-01

    Fluid plasma models (and, in particular, the MHD model) are extensively used in the theoretical description of laboratory and astrophysical plasmas. We present here a successful benchmark between two nonlinear, three-dimensional, compressible visco-resistive MHD codes. One is the fully implicit, finite volume code PIXIE3D [1,2], which is characterized by many attractive features, notably the generalized curvilinear formulation (which makes the code applicable to different geometries) and the possibility to include in the computation the energy transport equation and the extended MHD version of Ohm's law. In addition, the parallel version of the code features excellent scalability properties. Results from this code, obtained in cylindrical geometry, are compared with those produced by the semi-implicit cylindrical code SpeCyl, which uses finite differences radially, and spectral formulation in the other coordinates [3]. Both single and multi-mode simulations are benchmarked, regarding both reversed field pinch (RFP) and ohmic tokamak magnetic configurations. [1] L. Chacon, Computer Physics Communications 163, 143 (2004). [2] L. Chacon, Phys. Plasmas 15, 056103 (2008). [3] S. Cappello, Plasma Phys. Control. Fusion 46, B313 (2004) & references therein.

  14. Users' Manual for Computer Code SPIRALI Incompressible, Turbulent Spiral Grooved Cylindrical and Face Seals

    NASA Technical Reports Server (NTRS)

    Walowit, Jed A.; Shapiro, Wilbur

    2005-01-01

    The SPIRALI code predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures. A derivation of the equations governing the performance of turbulent, incompressible, spiral groove cylindrical and face seals along with a description of their solution is given. The computer codes are described, including an input description, sample cases, and comparisons with results of other codes.

  15. Development of MCNPX-ESUT computer code for simulation of neutron/gamma pulse height distribution

    NASA Astrophysics Data System (ADS)

    Abolfazl Hosseini, Seyed; Vosoughi, Naser; Zangian, Mehdi

    2015-05-01

    In this paper, the development of the MCNPX-ESUT (MCNPX-Energy Engineering of Sharif University of Technology) computer code for simulation of neutron/gamma pulse height distribution is reported. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry in mixed neutron/gamma fields, this type of detectors is selected for simulation in the present study. The proposed algorithm for simulation includes four main steps. The first step is the modeling of the neutron/gamma particle transport and their interactions with the materials in the environment and detector volume. In the second step, the number of scintillation photons due to charged particles such as electrons, alphas, protons and carbon nuclei in the scintillator material is calculated. In the third step, the transport of scintillation photons in the scintillator and lightguide is simulated. Finally, the resolution corresponding to the experiment is considered in the last step of the simulation. Unlike the similar computer codes like SCINFUL, NRESP7 and PHRESP, the developed computer code is applicable to both neutron and gamma sources. Hence, the discrimination of neutron and gamma in the mixed fields may be performed using the MCNPX-ESUT computer code. The main feature of MCNPX-ESUT computer code is that the neutron/gamma pulse height simulation may be performed without needing any sort of post processing. In the present study, the pulse height distributions due to a monoenergetic neutron/gamma source in NE-213 detector using MCNPX-ESUT computer code is simulated. The simulated neutron pulse height distributions are validated through comparing with experimental data (Gohil et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664 (2012) 304-309.) and the results obtained from similar computer codes like SCINFUL, NRESP7 and Geant4. The simulated gamma pulse height distribution for a 137Cs source is also compared with the experimental data.

  16. Validation of the WIMSD4M cross-section generation code with benchmark results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leal, L.C.; Deen, J.R.; Woodruff, W.L.

    1995-02-01

    The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment for Research and Test (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the procedure to generatemore » cross-section libraries for reactor analyses and calculations utilizing the WIMSD4M code. To do so, the results of calculations performed with group cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory(ORNL) unreflected critical spheres, the TRX critical experiments, and calculations of a modified Los Alamos highly-enriched heavy-water moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less

  17. Computational prediction of secretion systems and secretomes of Brucella: identification of novel type IV effectors and their interaction with the host.

    PubMed

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Dinakaran, Vasudevan; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-01-01

    Brucella spp. are facultative intracellular pathogens that cause brucellosis in various mammals including humans. Brucella survive inside the host cells by forming vacuoles and subverting host defence systems. This study was aimed to predict the secretion systems and the secretomes of Brucella spp. from 39 complete genome sequences available in the databases. Furthermore, an attempt was made to identify the type IV secretion effectors and their interactions with host proteins. We predicted the secretion systems of Brucella by the KEGG pathway and SecReT4. Brucella secretomes and type IV effectors (T4SEs) were predicted through genome-wide screening using JVirGel and S4TE, respectively. Protein-protein interactions of Brucella T4SEs with their hosts were analyzed by HPIDB 2.0. Genes coding for Sec and Tat pathways of secretion and type I (T1SS), type IV (T4SS) and type V (T5SS) secretion systems were identified and they are conserved in all the species of Brucella. In addition to the well-known VirB operon coding for the type IV secretion system (T4SS), we have identified the presence of additional genes showing homology with T4SS of other organisms. On the whole, 10.26 to 14.94% of total proteomes were found to be either secreted (secretome) or membrane associated (membrane proteome). Approximately, 1.7 to 3.0% of total proteomes were identified as type IV secretion effectors (T4SEs). Prediction of protein-protein interactions showed 29 and 36 host-pathogen specific interactions between Bos taurus (cattle)-B. abortus and Ovis aries (sheep)-B. melitensis, respectively. Functional characterization of the predicted T4SEs and their interactions with their respective hosts may reveal the secrets of host specificity of Brucella.

  18. Improvements to Busquet's Non LTE algorithm in NRL's Hydro code

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Colombant, D.

    1996-11-01

    Implementation of the Non LTE model RADIOM (M. Busquet, Phys. Fluids B, 5, 4191 (1993)) in NRL's RAD2D Hydro code in conservative form was reported previously(M. Klapisch et al., Bull. Am. Phys. Soc., 40, 1806 (1995)).While the results were satisfactory, the algorithm was slow and not always converging. We describe here modifications that address the latter two shortcomings. This method is quicker and more stable than the original. It also gives information about the validity of the fitting. It turns out that the number and distribution of groups in the multigroup diffusion opacity tables - a basis for the computation of radiation effects in the ionization balance in RADIOM- has a large influence on the robustness of the algorithm. These modifications give insight about the algorithm, and allow to check that the obtained average charge state is the true average. In addition, code optimization resulted in greatly reduced computing time: The ratio of Non LTE to LTE computing times being now between 1.5 and 2.

  19. ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft

    NASA Technical Reports Server (NTRS)

    Jayaram, S.; Myklebust, A.; Gelhausen, P.

    1992-01-01

    A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.

  20. Computer Aided Self-Forging Fragment Design,

    DTIC Science & Technology

    1978-06-01

    This value is reached so quickly that HEMP solutions using work hardening and those using only elastic—perfectly plastic formulations are quite...Elastic— Plastic Flow, UCRL—7322 , Lawrence Radiation Laboratory , Livermore , California (1969) . 4. Giroux , E. D . , HEMP Users Manual, UCRL—5l079...Laboratory, the HEMP computer code has been developed to serve as an effective design tool to simplify this task considerably. Using this code, warheads 78 06

  1. Computational tools and lattice design for the PEP-II B-Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Irwin, J.; Nosochkov, Y.

    1997-02-01

    Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT. {copyright} {ital 1997 American Institute of Physics.}

  2. Computational tools and lattice design for the PEP-II B-Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Yunhai; Irwin, John; Nosochkov, Yuri

    1997-02-01

    Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT.

  3. A Simulation Testbed for Adaptive Modulation and Coding in Airborne Telemetry (Brief)

    DTIC Science & Technology

    2014-10-01

    SOQPSK 0.0085924 us 0.015231 kH2 10 1/2 20 Time Modulation/ Coding State ... .. . . D - 2/3 3/4 4/5 GTRI_B-‹#› MATLAB GUI Interface 8...802.11a) • Modulations: BPSK, QPSK, 16 QAM, 64 QAM • Cyclic Prefix Lengths • Number of Subcarriers • Coding • LDPC • Rates: 1/2, 2/3, 3/4, 4/5...and Coding in Airborne Telemetry (Brief) October 2014 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Test

  4. Intra Frame Coding In Advanced Video Coding Standard (H.264) to Obtain Consistent PSNR and Reduce Bit Rate for Diagonal Down Left Mode Using Gaussian Pulse

    NASA Astrophysics Data System (ADS)

    Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma

    2017-08-01

    Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids picture getting bad hit for higher values of quantization parameters. The proposed work was implemented using MATLAB and JM 18.6 reference software. The proposed work measure the performance parameters PSNR, bit rate and compression of intra frame of yuv video sequences in QCIF resolution under different values of quantization parameter with Gaussian value for diagonal down left intra prediction mode. The simulation results of proposed algorithm are tabulated and compared with previous algorithm i.e. Tian et al method. The proposed algorithm achieved reduced in bit rate averagely 30.98% and maintain consistent picture quality for QCIF sequences compared to previous algorithm i.e. Tian et al method.

  5. Developments in REDES: The rocket engine design expert system

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) is being developed at the NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP, a nozzle design program named RAO, a regenerative cooling channel performance evaluation code named RTE, and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES is built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  6. Developments in REDES: The Rocket Engine Design Expert System

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  7. PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation

    NASA Astrophysics Data System (ADS)

    Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long

    2018-06-01

    We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.

  8. Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Gould, R. K.

    1979-01-01

    The program aims at developing mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon. The major interest is in collecting silicon as a liquid on the reactor walls and other collection surfaces. Two reactor systems are of major interest, a SiCl4/Na reactor in which Si(l) is collected on the flow tube reactor walls and a reactor in which Si(l) droplets formed by the SiCl4/Na reaction are collected by a jet impingement method. During this quarter the following tasks were accomplished: (1) particle deposition routines were added to the boundary layer code; and (2) Si droplet sizes in SiCl4/Na reactors at temperatures below the dew point of Si are being calculated.

  9. Validation of the WIMSD4M cross-section generation code with benchmark results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deen, J.R.; Woodruff, W.L.; Leal, L.E.

    1995-01-01

    The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section librariesmore » for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less

  10. User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earth Sciences Division; Zhang, Keni; Zhang, Keni

    TOUGH2-MP is a massively parallel (MP) version of the TOUGH2 code, designed for computationally efficient parallel simulation of isothermal and nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. In recent years, computational requirements have become increasingly intensive in large or highly nonlinear problems for applications in areas such as radioactive waste disposal, CO2 geological sequestration, environmental assessment and remediation, reservoir engineering, and groundwater hydrology. The primary objective of developing the parallel-simulation capability is to significantly improve the computational performance of the TOUGH2 family of codes. The particular goal for the parallel simulator ismore » to achieve orders-of-magnitude improvement in computational time for models with ever-increasing complexity. TOUGH2-MP is designed to perform parallel simulation on multi-CPU computational platforms. An earlier version of TOUGH2-MP (V1.0) was based on the TOUGH2 Version 1.4 with EOS3, EOS9, and T2R3D modules, a software previously qualified for applications in the Yucca Mountain project, and was designed for execution on CRAY T3E and IBM SP supercomputers. The current version of TOUGH2-MP (V2.0) includes all fluid property modules of the standard version TOUGH2 V2.0. It provides computationally efficient capabilities using supercomputers, Linux clusters, or multi-core PCs, and also offers many user-friendly features. The parallel simulator inherits all process capabilities from V2.0 together with additional capabilities for handling fractured media from V1.4. This report provides a quick starting guide on how to set up and run the TOUGH2-MP program for users with a basic knowledge of running the (standard) version TOUGH2 code, The report also gives a brief technical description of the code, including a discussion of parallel methodology, code structure, as well as mathematical and numerical methods used. To familiarize users with the parallel code, illustrative sample problems are presented.« less

  11. MIL-STD-1553B Marconi LSI chip set in a remote terminal application

    NASA Astrophysics Data System (ADS)

    Dimarino, A.

    1982-11-01

    Marconi Avionics is utilizing the MIL-STD-1553B LSI Chip Set in the SCADC Air Data Computer application to perform all of the required remote terminal MIL-STD-1553B protocol functions. Basic components of the RTU are the dual redundant chip set, CT3231 Transceivers, 256 x 16 RAM and a Z8002 microprocessor. Basic transfers are to/from the RAM command of the bus controller or Z8002 processor. During transfers from the processor to the RAM, the chip set busy bit is set for a period not exceeding 250 microseconds. When the transfer is complete, the busy bit is released and transfers to the data bus occur on command. The LSI Chip Set word count lines are used to locate each data word in the local memory and 4 mode codes are used in the application: reset remote terminal, transmit status word, transmitter shut-down, and override transmitter shutdown.

  12. Review and verification of CARE 3 mathematical model and code

    NASA Technical Reports Server (NTRS)

    Rose, D. M.; Altschul, R. E.; Manke, J. W.; Nelson, D. L.

    1983-01-01

    The CARE-III mathematical model and code verification performed by Boeing Computer Services were documented. The mathematical model was verified for permanent and intermittent faults. The transient fault model was not addressed. The code verification was performed on CARE-III, Version 3. A CARE III Version 4, which corrects deficiencies identified in Version 3, is being developed.

  13. SCALE: A modular code system for performing Standardized Computer Analyses for Licensing Evaluation. Volume 1, Part 2: Control modules S1--H1; Revision 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.« less

  14. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less

  15. SecureQEMU: Emulation-Based Software Protection Providing Encrypted Code Execution and Page Granularity Code Signing

    DTIC Science & Technology

    2008-12-01

    SHA256 DIGEST LENGTH) ) ; peAddSection(&sF i l e , " . S i g S t u b " , dwStubSecSize , dwStubSecSize ) ; 169 peSecure(&sF i l e , deqAddrSize...deqAuthPageAddrSize . s i z e ( ) /2) ∗ (8 + SHA256 DIGEST LENGTH) ) + 16 ; bCode [ 3 4 ] = ( ( char∗)&dwSize ) [ 0 ] ; bCode [ 3 5 ] = ( ( char∗)&dwSize ) [ 1...2) ∗ (8 + SHA256 DIGEST LENGTH... ) ) ; AES KEY aesKey ; unsigned char i v s a l t [ 1 6 ] , temp iv [ 1 6 ] ; 739 unsigned char ∗key

  16. Comparison of Hydrodynamic Load Predictions Between Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi-Submersible: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.

    Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptionsmore » in HydroDyn are evaluated based on this code-to-code comparison.« less

  17. Computation of transonic potential flow about 3 dimensional inlets, ducts, and bodies

    NASA Technical Reports Server (NTRS)

    Reyhner, T. A.

    1982-01-01

    An analysis was developed and a computer code, P465 Version A, written for the prediction of transonic potential flow about three dimensional objects including inlet, duct, and body geometries. Finite differences and line relaxation are used to solve the complete potential flow equation. The coordinate system used for the calculations is independent of body geometry. Cylindrical coordinates are used for the computer code. The analysis is programmed in extended FORTRAN 4 for the CYBER 203 vector computer. The programming of the analysis is oriented toward taking advantage of the vector processing capabilities of this computer. Comparisons of computed results with experimental measurements are presented to verify the analysis. Descriptions of program input and output formats are also presented.

  18. User's manual for COAST 4: a code for costing and sizing tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sink, D. A.; Iwinski, E. M.

    1979-09-01

    The purpose of this report is to document the computer program COAST 4 for the user/analyst. COAST, COst And Size Tokamak reactors, provides complete and self-consistent size models for the engineering features of D-T burning tokamak reactors and associated facilities involving a continuum of performance including highly beam driven through ignited plasma devices. TNS (The Next Step) devices with no tritium breeding or electrical power production are handled as well as power producing and fissile producing fusion-fission hybrid reactors. The code has been normalized with a TFTR calculation which is consistent with cost, size, and performance data published in themore » conceptual design report for that device. Information on code development, computer implementation and detailed user instructions are included in the text.« less

  19. Reconstruction for time-domain in vivo EPR 3D multigradient oximetric imaging--a parallel processing perspective.

    PubMed

    Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C

    2009-01-01

    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.

  20. Computations of the Magnus effect for slender bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Sturek, W. B.; Schiff, L. B.

    1980-01-01

    A recently reported Parabolized Navier-Stokes code has been employed to compute the supersonic flow field about spinning cone, ogive-cylinder, and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary layer velocity profiles and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to six degrees. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape and Mach number for the selected models for Mach numbers in the range of 2-4.

  1. DECEL1 Users Manual. A Fortran IV Program for Computing the Static Deflections of Structural Cable Arrays.

    DTIC Science & Technology

    1980-08-01

    knots Figure 14. Current profile. 84 6; * .4. 0 E U U U -~ U U (.4 U @0 85 I UECfLI ?E)r eAtE NjKC 7 frCAd I o .,01 U.I 75o* ANL I U,) I000. 0.) AKC 3 U...NAVSCOLCECOFF C35 Port Hueneme, CA NAVSEASYSCOM Code SEA OOC Washington. DC NAVSEC Code 6034 (Library), Washington DC NAVSHIPREPFAC Library. Guam NAVSHIPYD Code

  2. Development of the PARVMEC Code for Rapid Analysis of 3D MHD Equilibrium

    NASA Astrophysics Data System (ADS)

    Seal, Sudip; Hirshman, Steven; Cianciosa, Mark; Wingen, Andreas; Unterberg, Ezekiel; Wilcox, Robert; ORNL Collaboration

    2015-11-01

    The VMEC three-dimensional (3D) MHD equilibrium has been used extensively for designing stellarator experiments and analyzing experimental data in such strongly 3D systems. Recent applications of VMEC include 2D systems such as tokamaks (in particular, the D3D experiment), where application of very small (delB/B ~ 10-3) 3D resonant magnetic field perturbations render the underlying assumption of axisymmetry invalid. In order to facilitate the rapid analysis of such equilibria (for example, for reconstruction purposes), we have undertaken the task of parallelizing the VMEC code (PARVMEC) to produce a scalable and temporally rapidly convergent equilibrium code for use on parallel distributed memory platforms. The parallelization task naturally splits into three distinct parts 1) radial surfaces in the fixed-boundary part of the calculation; 2) two 2D angular meshes needed to compute the Green's function integrals over the plasma boundary for the free-boundary part of the code; and 3) block tridiagonal matrix needed to compute the full (3D) pre-conditioner near the final equilibrium state. Preliminary results show that scalability is achieved for tasks 1 and 3, with task 2 still nearing completion. The impact of this work on the rapid reconstruction of D3D plasmas using PARVMEC in the V3FIT code will be discussed. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  3. The EDIT-COMGEOM Code

    DTIC Science & Technology

    1975-09-01

    This report assumes a familiarity with the GIFT and MAGIC computer codes. The EDIT-COMGEOM code is a FORTRAN computer code. The EDIT-COMGEOM code...converts the target description data which was used in the MAGIC computer code to the target description data which can be used in the GIFT computer code

  4. Computational-Experimental Processing of Boride/Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C

    DTIC Science & Technology

    2015-09-16

    AFRL-AFOSR-VA-TR-2015-0314 Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C...Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C 5a.  CONTRACT NUMBER 5b.  GRANT...with a packed bed of B4C to form boride - carbide precipitates. Although the ultimate goal of the research endeavor is to enhance significantly the

  5. 42 CFR 52b.12 - What are the minimum requirements of construction and equipment?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-8400). (3) ICBO “Uniform Building Code,” Volumes 1-3 (1997). International Conference of Building...-4406). (4) BOCA National Building Code (1996) 1998 Supplement, Building Officials and Code... Southern Building Code Congress (SBCC), 900 Montclair Road, Birmingham, AL 35213-1206 (telephone 205-591...

  6. 42 CFR 52b.12 - What are the minimum requirements of construction and equipment?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-8400). (3) ICBO “Uniform Building Code,” Volumes 1-3 (1997). International Conference of Building...-4406). (4) BOCA National Building Code (1996) 1998 Supplement, Building Officials and Code... Southern Building Code Congress (SBCC), 900 Montclair Road, Birmingham, AL 35213-1206 (telephone 205-591...

  7. 42 CFR 52b.12 - What are the minimum requirements of construction and equipment?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-8400). (3) ICBO “Uniform Building Code,” Volumes 1-3 (1997). International Conference of Building...-4406). (4) BOCA National Building Code (1996) 1998 Supplement, Building Officials and Code... Southern Building Code Congress (SBCC), 900 Montclair Road, Birmingham, AL 35213-1206 (telephone 205-591...

  8. Aeroacoustic Prediction Codes

    NASA Technical Reports Server (NTRS)

    Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)

    2000-01-01

    This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor-noise correlation model was developed from engine acoustic test results. This work provided several insights on potential approaches to reducing aircraft engine noise. Code development is described in this report, and those insights are discussed.

  9. Establishing Information Security Systems via Optical Imaging

    DTIC Science & Technology

    2015-08-11

    SLM, spatial light modulator; BSC, non - polarizing beam splitter cube; CCD, charge-coupled device. In computational ghost imaging, a series of...Laser Object Computer Fig. 5. A schematic setup for the proposed method using holography: BSC, Beam splitter cube; CCD, Charge-coupled device. The...interference between reference and object beams . (a) (e) (d) (c) (b) Distribution Code A: Approved for public release, distribution is unlimited

  10. Computing partial traces and reduced density matrices

    NASA Astrophysics Data System (ADS)

    Maziero, Jonas

    Taking partial traces (PTrs) for computing reduced density matrices, or related functions, is a ubiquitous procedure in the quantum mechanics of composite systems. In this paper, we present a thorough description of this function and analyze the number of elementary operations (ops) needed, under some possible alternative implementations, to compute it on a classical computer. As we note, it is worthwhile doing some analytical developments in order to avoid making null multiplications and sums, what can considerably reduce the ops. For instance, for a bipartite system ℋa⊗ℋb with dimensions da=dimℋa and db=dimℋb and for da,db≫1, while a direct use of PTr definition applied to ℋb requires 𝒪(da6db6) ops, its optimized implementation entails 𝒪(da2db) ops. In the sequence, we regard the computation of PTrs for general multipartite systems and describe Fortran code provided to implement it numerically. We also consider the calculation of reduced density matrices via Bloch’s parametrization with generalized Gell Mann’s matrices.

  11. The Spatiotemporal Characteristics of Visual Motion Priming

    DTIC Science & Technology

    1994-07-01

    859. Barden, W. (1982, June). A general-purpose I/O board for the Color Computer. BYTE Magazine, pp. 260-281. B . ->,.. H . & Levick , W. (1965). The... B y ...... . ........ Distribution I Availability Codes Avail and i or Dist Special DTIC qU(A~ry niNPETEM 3 iii ABSTRACT THE...bistable diamond, apparent motion figure 52 (after Ramachandran & Anstis, 1983). ( b ) "Streaming" and "bouncing" percepts of apparent 52 motion dot

  12. A real-time chirp-coded imaging system with tissue attenuation compensation.

    PubMed

    Ramalli, A; Guidi, F; Boni, E; Tortoli, P

    2015-07-01

    In ultrasound imaging, pulse compression methods based on the transmission (TX) of long coded pulses and matched receive filtering can be used to improve the penetration depth while preserving the axial resolution (coded-imaging). The performance of most of these methods is affected by the frequency dependent attenuation of tissue, which causes mismatch of the receiver filter. This, together with the involved additional computational load, has probably so far limited the implementation of pulse compression methods in real-time imaging systems. In this paper, a real-time low-computational-cost coded-imaging system operating on the beamformed and demodulated data received by a linear array probe is presented. The system has been implemented by extending the firmware and the software of the ULA-OP research platform. In particular, pulse compression is performed by exploiting the computational resources of a single digital signal processor. Each image line is produced in less than 20 μs, so that, e.g., 192-line frames can be generated at up to 200 fps. Although the system may work with a large class of codes, this paper has been focused on the test of linear frequency modulated chirps. The new system has been used to experimentally investigate the effects of tissue attenuation so that the design of the receive compression filter can be accordingly guided. Tests made with different chirp signals confirm that, although the attainable compression gain in attenuating media is lower than the theoretical value expected for a given TX Time-Bandwidth product (BT), good SNR gains can be obtained. For example, by using a chirp signal having BT=19, a 13 dB compression gain has been measured. By adapting the frequency band of the receiver to the band of the received echo, the signal-to-noise ratio and the penetration depth have been further increased, as shown by real-time tests conducted on phantoms and in vivo. In particular, a 2.7 dB SNR increase has been measured through a novel attenuation compensation scheme, which only requires to shift the demodulation frequency by 1 MHz. The proposed method characterizes for its simplicity and easy implementation. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A comparison between EGS4 and MCNP computer modeling of an in vivo X-ray fluorescence system.

    PubMed

    Al-Ghorabie, F H; Natto, S S; Al-Lyhiani, S H

    2001-03-01

    The Monte Carlo computer codes EGS4 and MCNP were used to develop a theoretical model of a 180 degrees geometry in vivo X-ray fluorescence system for the measurement of platinum concentration in head and neck tumors. The model included specification of the photon source, collimators, phantoms and detector. Theoretical results were compared and evaluated against X-ray fluorescence data obtained experimentally from an existing system developed by the Swansea In Vivo Analysis and Cancer Research Group. The EGS4 results agreed well with the MCNP results. However, agreement between the measured spectral shape obtained using the experimental X-ray fluorescence system and the simulated spectral shape obtained using the two Monte Carlo codes was relatively poor. The main reason for the disagreement between the results arises from the basic assumptions which the two codes used in their calculations. Both codes assume a "free" electron model for Compton interactions. This assumption will underestimate the results and invalidates any predicted and experimental spectra when compared with each other.

  14. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  15. Variable disparity-motion estimation based fast three-view video coding

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo

    2009-02-01

    In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.

  16. An Interactive Computer Aided Design and Analysis Package.

    DTIC Science & Technology

    1986-03-01

    Al-A167 114 AN INTERACTIVE COMPUTER AIDED DESIGN MUD ANAILYSIS 1/𔃼 PACKAGE(U) NAVAL POSTGRADUATE SCHOOL NONTEREY CA T L EUALD "AR 86 UNCLSSIFIED F... SCHOOL Monterey, California DTIC .LECTE MAYOS THESIS AN INTERACTIVE COMPUTER AIDED DESIGN AND ANALYSIS PACKAGE by Terrence L. Ewald March 1986 jThesis...ORGANIZATION Naval Postgraduate School (if dAp90h81111) Naval Postgraduate School . 62A 6C. ADDRESS (0ty. State, and ZIP Code) 7b. ADDRESS (City State. and

  17. Compressional Alfvén eigenmodes in rotating spherical tokamak plasmas

    DOE PAGES

    Smith, H. M.; Fredrickson, E. D.

    2017-02-07

    Spherical tokamaks often have a considerable toroidal plasma rotation of several tens of kHz. Compressional Alfvén eigenmodes in such devices therefore experience a frequency shift, which if the plasma were rotating as a rigid body, would be a simple Doppler shift. However, since the rotation frequency depends on minor radius, the eigenmodes are affected in a more complicated way. The eigenmode solver CAE3B (Smith et al 2009 Plasma Phys. Control. Fusion 51 075001) has been extended to account for toroidal plasma rotation. The results show that the eigenfrequency shift due to rotation can be approximated by a rigid body rotationmore » with a frequency computed from a spatial average of the real rotation profile weighted with the eigenmode amplitude. To investigate the effect of extending the computational domain to the vessel wall, a simplified eigenmode equation, yet retaining plasma rotation, is solved by a modified version of the CAE code used in Fredrickson et al (2013 Phys. Plasmas 20 042112). Lastly, both solving the full eigenmode equation, as in the CAE3B code, and placing the boundary at the vessel wall, as in the CAE code, significantly influences the calculated eigenfrequencies.« less

  18. A novel concatenated code based on the improved SCG-LDPC code for optical transmission systems

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Xie, Ya; Wang, Lin; Huang, Sheng; Wang, Yong

    2013-01-01

    Based on the optimization and improvement for the construction method of systematically constructed Gallager (SCG) (4, k) code, a novel SCG low density parity check (SCG-LDPC)(3969, 3720) code to be suitable for optical transmission systems is constructed. The novel SCG-LDPC (6561,6240) code with code rate of 95.1% is constructed by increasing the length of SCG-LDPC (3969,3720) code, and in a way, the code rate of LDPC codes can better meet the high requirements of optical transmission systems. And then the novel concatenated code is constructed by concatenating SCG-LDPC(6561,6240) code and BCH(127,120) code with code rate of 94.5%. The simulation results and analyses show that the net coding gain (NCG) of BCH(127,120)+SCG-LDPC(6561,6240) concatenated code is respectively 2.28 dB and 0.48 dB more than those of the classic RS(255,239) code and SCG-LDPC(6561,6240) code at the bit error rate (BER) of 10-7.

  19. electromagnetics, eddy current, computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartling, David

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  20. XPATCH: a high-frequency electromagnetic scattering prediction code using shooting and bouncing rays

    NASA Astrophysics Data System (ADS)

    Hazlett, Michael; Andersh, Dennis J.; Lee, Shung W.; Ling, Hao; Yu, C. L.

    1995-06-01

    This paper describes an electromagnetic computer prediction code for generating radar cross section (RCS), time domain signatures, and synthetic aperture radar (SAR) images of realistic 3-D vehicles. The vehicle, typically an airplane or a ground vehicle, is represented by a computer-aided design (CAD) file with triangular facets, curved surfaces, or solid geometries. The computer code, XPATCH, based on the shooting and bouncing ray technique, is used to calculate the polarimetric radar return from the vehicles represented by these different CAD files. XPATCH computes the first-bounce physical optics plus the physical theory of diffraction contributions and the multi-bounce ray contributions for complex vehicles with materials. It has been found that the multi-bounce contributions are crucial for many aspect angles of all classes of vehicles. Without the multi-bounce calculations, the radar return is typically 10 to 15 dB too low. Examples of predicted range profiles, SAR imagery, and radar cross sections (RCS) for several different geometries are compared with measured data to demonstrate the quality of the predictions. The comparisons are from the UHF through the Ka frequency ranges. Recent enhancements to XPATCH for MMW applications and target Doppler predictions are also presented.

  1. Modeling Spectra of Icy Satellites and Cometary Icy Particles Using Multi-Sphere T-Matrix Code

    NASA Astrophysics Data System (ADS)

    Kolokolova, Ludmilla; Mackowski, Daniel; Pitman, Karly M.; Joseph, Emily C. S.; Buratti, Bonnie J.; Protopapa, Silvia; Kelley, Michael S.

    2016-10-01

    The Multi-Sphere T-matrix code (MSTM) allows rigorous computations of characteristics of the light scattered by a cluster of spherical particles. It was introduced to the scientific community in 1996 (Mackowski & Mishchenko, 1996, JOSA A, 13, 2266). Later it was put online and became one of the most popular codes to study photopolarimetric properties of aggregated particles. Later versions of this code, especially its parallelized version MSTM3 (Mackowski & Mishchenko, 2011, JQSRT, 112, 2182), were used to compute angular and wavelength dependence of the intensity and polarization of light scattered by aggregates of up to 4000 constituent particles (Kolokolova & Mackowski, 2012, JQSRT, 113, 2567). The version MSTM4 considers large thick slabs of spheres (Mackowski, 2014, Proc. of the Workshop ``Scattering by aggregates``, Bremen, Germany, March 2014, Th. Wriedt & Yu. Eremin, Eds., 6) and is significantly different from the earlier versions. It adopts a Discrete Fourier Convolution, implemented using a Fast Fourier Transform, for evaluation of the exciting field. MSTM4 is able to treat dozens of thousands of spheres and is about 100 times faster than the MSTM3 code. This allows us not only to compute the light scattering properties of a large number of electromagnetically interacting constituent particles, but also to perform multi-wavelength and multi-angular computations using computer resources with rather reasonable CPU and computer memory. We used MSTM4 to model near-infrared spectra of icy satellites of Saturn (Rhea, Dione, and Tethys data from Cassini VIMS), and of icy particles observed in the coma of comet 103P/Hartley 2 (data from EPOXI/DI HRII). Results of our modeling show that in the case of icy satellites the best fit to the observed spectra is provided by regolith made of spheres of radius ~1 micron with a porosity in the range 85% - 95%, which slightly varies for the different satellites. Fitting the spectra of the cometary icy particles requires icy aggregates of size larger than 40 micron with constituent spheres in the micron size range.

  2. "SMART": A Compact and Handy FORTRAN Code for the Physics of Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Sapar, A.; Poolamäe, R.

    2003-01-01

    A new computer code SMART (Spectra from Model Atmospheres by Radiative Transfer) for computing the stellar spectra, forming in plane-parallel atmospheres, has been compiled by us and A. Aret. To guarantee wide compatibility of the code with shell environment, we chose FORTRAN-77 as programming language and tried to confine ourselves to common part of its numerous versions both in WINDOWS and LINUX. SMART can be used for studies of several processes in stellar atmospheres. The current version of the programme is undergoing rapid changes due to our goal to elaborate a simple, handy and compact code. Instead of linearisation (being a mathematical method of recurrent approximations) we propose to use the physical evolutionary changes or in other words relaxation of quantum state populations rates from LTE to NLTE has been studied using small number of NLTE states. This computational scheme is essentially simpler and more compact than the linearisation. This relaxation scheme enables using instead of the Λ-iteration procedure a physically changing emissivity (or the source function) which incorporates in itself changing Menzel coefficients for NLTE quantum state populations. However, the light scattering on free electrons is in the terms of Feynman graphs a real second-order quantum process and cannot be reduced to consequent processes of absorption and emission as in the case of radiative transfer in spectral lines. With duly chosen input parameters the code SMART enables computing radiative acceleration to the matter of stellar atmosphere in turbulence clumps. This also enables to connect the model atmosphere in more detail with the problem of the stellar wind triggering. Another problem, which has been incorporated into the computer code SMART, is diffusion of chemical elements and their isotopes in the atmospheres of chemically peculiar (CP) stars due to usual radiative acceleration and the essential additional acceleration generated by the light-induced drift. As a special case, using duly chosen pixels on the stellar disk, the spectrum of rotating star can be computed. No instrumental broadening has been incorporated in the code of SMART. To facilitate study of stellar spectra, a GUI (Graphical User Interface) with selection of labels by ions has been compiled to study the spectral lines of different elements and ions in the computed emergent flux. An amazing feature of SMART is that its code is very short: it occupies only 4 two-sided two-column A4 sheets in landscape format. In addition, if well commented, it is quite easily readable and understandable. We have used the tactics of writing the comments on the right-side margin (columns starting from 73). Such short code has been composed widely using the unified input physics (for example the ionisation cross-sections for bound-free transitions and the electron and ion collision rates). As current restriction to the application area of the present version of the SMART is that molecules are since ignored. Thus, it can be used only for luke and hot stellar atmospheres. In the computer code we have tried to avoid bulky often over-optimised methods, primarily meant to spare the time of computations. For instance, we compute the continuous absorption coefficient at every wavelength. Nevertheless, during an hour by the personal computer in our disposal AMD Athlon XP 1700+, 512MB DDRAM) a stellar spectrum with spectral step resolution λ / dλ = 3D100,000 for spectral interval 700 -- 30,000 Å is computed. The model input data and the line data used by us are both the ones computed and compiled by R. Kurucz. In order to follow presence and representability of quantum states and to enumerate them for NLTE studies a C++ code, transforming the needed data to the LATEX version, has been compiled. Thus we have composed a quantum state list for all neutrals and ions in the Kurucz file 'gfhyperall.dat'. The list enables more adequately to compose the concept of super-states, including partly correlating super-states. We are grateful to R. Kurucz for making available by CD-ROMs and Internet his computer codes ATLAS and SYNTHE used by us as a starting point in composing of the new computer code. We are also grateful to Estonian Science Foundation for grant ESF-4701.

  3. Migration of Hazardous Substances through Soil. Part 4. Development of a Serial Batch Extraction Method and Application to the Accelerated Testing of Seven Industrial Wastes

    DTIC Science & Technology

    1987-09-01

    Evaluation Commnand &_. ADMASS Coly, 1W~., and ZIP Code ) 7b. ADDRESS (C01y, State, wid ZIP Code ) Dugwiay, Utahi 84022-5000 Aberdeen Proving Ground...Aency_________________________ 9L AoOMS(CRY, 0to, and ZIP Code ) 10. SOURCE OF FUNDING NUMBERS Hazardous Waste Environmental RLsearch Lab PROGRAM PROJECT TASK...CLASSIFICATION 0 UNO.ASSIFIEDAIJNLIMITED 0l SAME AS RPT. 03 OTIC USERS UNCLA.SSIFIED 22a. RAWE OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code ) I

  4. Influence of temperature fluctuations on infrared limb radiance: a new simulation code

    NASA Astrophysics Data System (ADS)

    Rialland, Valérie; Chervet, Patrick

    2006-08-01

    Airborne infrared limb-viewing detectors may be used as surveillance sensors in order to detect dim military targets. These systems' performances are limited by the inhomogeneous background in the sensor field of view which impacts strongly on target detection probability. This background clutter, which results from small-scale fluctuations of temperature, density or pressure must therefore be analyzed and modeled. Few existing codes are able to model atmospheric structures and their impact on limb-observed radiance. SAMM-2 (SHARC-4 and MODTRAN4 Merged), the Air Force Research Laboratory (AFRL) background radiance code can be used to in order to predict the radiance fluctuation as a result of a normalized temperature fluctuation, as a function of the line-of-sight. Various realizations of cluttered backgrounds can then be computed, based on these transfer functions and on a stochastic temperature field. The existing SIG (SHARC Image Generator) code was designed to compute the cluttered background which would be observed from a space-based sensor. Unfortunately, this code was not able to compute accurate scenes as seen by an airborne sensor especially for lines-of-sight close to the horizon. Recently, we developed a new code called BRUTE3D and adapted to our configuration. This approach is based on a method originally developed in the SIG model. This BRUTE3D code makes use of a three-dimensional grid of temperature fluctuations and of the SAMM-2 transfer functions to synthesize an image of radiance fluctuations according to sensor characteristics. This paper details the working principles of the code and presents some output results. The effects of the small-scale temperature fluctuations on infrared limb radiance as seen by an airborne sensor are highlighted.

  5. Gyrofluid Modeling of Turbulent, Kinetic Physics

    NASA Astrophysics Data System (ADS)

    Despain, Kate Marie

    2011-12-01

    Gyrofluid models to describe plasma turbulence combine the advantages of fluid models, such as lower dimensionality and well-developed intuition, with those of gyrokinetics models, such as finite Larmor radius (FLR) effects. This allows gyrofluid models to be more tractable computationally while still capturing much of the physics related to the FLR of the particles. We present a gyrofluid model derived to capture the behavior of slow solar wind turbulence and describe the computer code developed to implement the model. In addition, we describe the modifications we made to a gyrofluid model and code that simulate plasma turbulence in tokamak geometries. Specifically, we describe a nonlinear phase mixing phenomenon, part of the E x B term, that was previously missing from the model. An inherently FLR effect, it plays an important role in predicting turbulent heat flux and diffusivity levels for the plasma. We demonstrate this importance by comparing results from the updated code to studies done previously by gyrofluid and gyrokinetic codes. We further explain what would be necessary to couple the updated gyrofluid code, gryffin, to a turbulent transport code, thus allowing gryffin to play a role in predicting profiles for fusion devices such as ITER and to explore novel fusion configurations. Such a coupling would require the use of Graphical Processing Units (GPUs) to make the modeling process fast enough to be viable. Consequently, we also describe our experience with GPU computing and demonstrate that we are poised to complete a gryffin port to this innovative architecture.

  6. A Golay complementary TS-based symbol synchronization scheme in variable rate LDPC-coded MB-OFDM UWBoF system

    NASA Astrophysics Data System (ADS)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin

    2015-09-01

    In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.

  7. Computer Code for the Determination of Ejection Seat/Man Aerodynamic Parameters.

    DTIC Science & Technology

    1980-08-28

    ARMS, and LES (computer code -- .,. ,... ,, ..,.., .: . .. ... ,-." . ;.’ -- I- ta names) and Seat consisted of 4 panels SEAT, BACK, PADD , and SIDE. An... general application of Eq. (I) is for blunt bodies at hypersonic speed, because accuracy of this equation becomes better at higher Mach number. Therefore...pressure coefficient is set equal to zero on those portions of the body that are invisible to a distant observer who views the body from the direction

  8. A comparative study and validation of upwind and central-difference Navier-Stokes codes for high-speed flows

    NASA Technical Reports Server (NTRS)

    Rudy, David H.; Kumar, Ajay; Thomas, James L.; Gnoffo, Peter A.; Chakravarthy, Sukumar R.

    1988-01-01

    A comparative study was made using 4 different computer codes for solving the compressible Navier-Stokes equations. Three different test problems were used, each of which has features typical of high speed internal flow problems of practical importance in the design and analysis of propulsion systems for advanced hypersonic vehicles. These problems are the supersonic flow between two walls, one of which contains a 10 deg compression ramp, the flow through a hypersonic inlet, and the flow in a 3-D corner formed by the intersection of two symmetric wedges. Three of the computer codes use similar recently developed implicit upwind differencing technology, while the fourth uses a well established explicit method. The computed results were compared with experimental data where available.

  9. Erratum: Three-cluster dynamics within an ab initio framework [Phys. Rev. C 88 , 034320 (2013)

    DOE PAGES

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navrátil, Petr

    2016-07-14

    In this study, we have discovered a typographical error in the portion of code used in our original article to compute the probability distribution of Figs. 7–9 of Sec. III B 2. The correct results are shown in the figures below. The correct probability distribution now shows the characteristic prominence of the “dineutron” over the “cigar” configuration. In addition, the most-probable distance between the two neutrons in the latter configuration is close to 4 fm (rather than the erroneously reported 5 fm). The other results and conclusion of the original paper remain unaffected.

  10. Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2010-03-01

    because only certain collections (partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic ...rigidity of short oligos and the shape of the polar charge. Oligo movement was modeled by a Brownian motion 3 dimensional random walk. The one...temperature, kB is Boltz he viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three dimensional lattice and may

  11. Source Listings for Computer Code SPIRALI Incompressible, Turbulent Spiral Grooved Cylindrical and Face Seals

    NASA Technical Reports Server (NTRS)

    Walowit, Jed A.; Shapiro, Wibur

    2005-01-01

    This is the source listing of the computer code SPIRALI which predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures.

  12. Zero-block mode decision algorithm for H.264/AVC.

    PubMed

    Lee, Yu-Ming; Lin, Yinyi

    2009-03-01

    In the previous paper , we proposed a zero-block intermode decision algorithm for H.264 video coding based upon the number of zero-blocks of 4 x 4 DCT coefficients between the current macroblock and the co-located macroblock. The proposed algorithm can achieve significant improvement in computation, but the computation performance is limited for high bit-rate coding. To improve computation efficiency, in this paper, we suggest an enhanced zero-block decision algorithm, which uses an early zero-block detection method to compute the number of zero-blocks instead of direct DCT and quantization (DCT/Q) calculation and incorporates two adequate decision methods into semi-stationary and nonstationary regions of a video sequence. In addition, the zero-block decision algorithm is also applied to the intramode prediction in the P frame. The enhanced zero-block decision algorithm brings out a reduction of average 27% of total encoding time compared to the zero-block decision algorithm.

  13. Development of probabilistic multimedia multipathway computer codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, C.; LePoire, D.; Gnanapragasam, E.

    2002-01-01

    The deterministic multimedia dose/risk assessment codes RESRAD and RESRAD-BUILD have been widely used for many years for evaluation of sites contaminated with residual radioactive materials. The RESRAD code applies to the cleanup of sites (soils) and the RESRAD-BUILD code applies to the cleanup of buildings and structures. This work describes the procedure used to enhance the deterministic RESRAD and RESRAD-BUILD codes for probabilistic dose analysis. A six-step procedure was used in developing default parameter distributions and the probabilistic analysis modules. These six steps include (1) listing and categorizing parameters; (2) ranking parameters; (3) developing parameter distributions; (4) testing parameter distributionsmore » for probabilistic analysis; (5) developing probabilistic software modules; and (6) testing probabilistic modules and integrated codes. The procedures used can be applied to the development of other multimedia probabilistic codes. The probabilistic versions of RESRAD and RESRAD-BUILD codes provide tools for studying the uncertainty in dose assessment caused by uncertain input parameters. The parameter distribution data collected in this work can also be applied to other multimedia assessment tasks and multimedia computer codes.« less

  14. SIGACE Code for Generating High-Temperature ACE Files; Validation and Benchmarking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Amit R.; Ganesan, S.; Trkov, A.

    2005-05-24

    A code named SIGACE has been developed as a tool for MCNP users within the scope of a research contract awarded by the Nuclear Data Section of the International Atomic Energy Agency (IAEA) (Ref: 302-F4-IND-11566 B5-IND-29641). A new recipe has been evolved for generating high-temperature ACE files for use with the MCNP code. Under this scheme the low-temperature ACE file is first converted to an ENDF formatted file using the ACELST code and then Doppler broadened, essentially limited to the data in the resolved resonance region, to any desired higher temperature using SIGMA1. The SIGACE code then generates a high-temperaturemore » ACE file for use with the MCNP code. A thinning routine has also been introduced in the SIGACE code for reducing the size of the ACE files. The SIGACE code and the recipe for generating ACE files at higher temperatures has been applied to the SEFOR fast reactor benchmark problem (sodium-cooled fast reactor benchmark described in ENDF-202/BNL-19302, 1974 document). The calculated Doppler coefficient is in good agreement with the experimental value. A similar calculation using ACE files generated directly with the NJOY system also agrees with our SIGACE computed results. The SIGACE code and the recipe is further applied to study the numerical benchmark configuration of selected idealized PWR pin cell configurations with five different fuel enrichments as reported by Mosteller and Eisenhart. The SIGACE code that has been tested with several FENDL/MC files will be available, free of cost, upon request, from the Nuclear Data Section of the IAEA.« less

  15. 15 CFR 740.7 - Computers (APP).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4A003. (2) Technology and software. License Exception APP authorizes exports of technology and software... programmability. (ii) Technology and source code. Technology and source code eligible for License Exception APP..., reexports and transfers (in-country) for nuclear, chemical, biological, or missile end-users and end-uses...

  16. Computer Power: Part 1: Distribution of Power (and Communications).

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1988-01-01

    Discussion of the distribution of power to personal computers and computer terminals addresses options such as extension cords, perimeter raceways, and interior raceways. Sidebars explain: (1) the National Electrical Code; (2) volts, amps, and watts; (3) transformers, circuit breakers, and circuits; and (4) power vs. data wiring. (MES)

  17. Parallel-vector computation for linear structural analysis and non-linear unconstrained optimization problems

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.

    1991-01-01

    Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.

  18. Quantum computation with realistic magic-state factories

    NASA Astrophysics Data System (ADS)

    O'Gorman, Joe; Campbell, Earl T.

    2017-03-01

    Leading approaches to fault-tolerant quantum computation dedicate a significant portion of the hardware to computational factories that churn out high-fidelity ancillas called magic states. Consequently, efficient and realistic factory design is of paramount importance. Here we present the most detailed resource assessment to date of magic-state factories within a surface code quantum computer, along the way introducing a number of techniques. We show that the block codes of Bravyi and Haah [Phys. Rev. A 86, 052329 (2012), 10.1103/PhysRevA.86.052329] have been systematically undervalued; we track correlated errors both numerically and analytically, providing fidelity estimates without appeal to the union bound. We also introduce a subsystem code realization of these protocols with constant time and low ancilla cost. Additionally, we confirm that magic-state factories have space-time costs that scale as a constant factor of surface code costs. We find that the magic-state factory required for postclassical factoring can be as small as 6.3 million data qubits, ignoring ancilla qubits, assuming 10-4 error gates and the availability of long-range interactions.

  19. A Lossless Multichannel Bio-Signal Compression Based on Low-Complexity Joint Coding Scheme for Portable Medical Devices

    PubMed Central

    Kim, Dong-Sun; Kwon, Jin-San

    2014-01-01

    Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor. PMID:25237900

  20. Automated generation of lattice QCD Feynman rules

    NASA Astrophysics Data System (ADS)

    Hart, A.; von Hippel, G. M.; Horgan, R. R.; Müller, E. H.

    2009-12-01

    The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. Program summaryProgram title: HiPPY, HPsrc Catalogue identifier: AEDX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv2 (see Additional comments below) No. of lines in distributed program, including test data, etc.: 513 426 No. of bytes in distributed program, including test data, etc.: 4 893 707 Distribution format: tar.gz Programming language: Python, Fortran95 Computer: HiPPy: Single-processor workstations. HPsrc: Single-processor workstations and MPI-enabled multi-processor systems Operating system: HiPPy: Any for which Python v2.5.x is available. HPsrc: Any for which a standards-compliant Fortran95 compiler is available Has the code been vectorised or parallelised?: Yes RAM: Problem specific, typically less than 1 GB for either code Classification: 4.4, 11.5 Nature of problem: Derivation and use of perturbative Feynman rules for complicated lattice QCD actions. Solution method: An automated expansion method implemented in Python (HiPPy) and code to use expansions to generate Feynman rules in Fortran95 (HPsrc). Restrictions: No general restrictions. Specific restrictions are discussed in the text. Additional comments: The HiPPy and HPsrc codes are released under the second version of the GNU General Public Licence (GPL v2). Therefore anyone is free to use or modify the code for their own calculations. As part of the licensing, we ask that any publications including results from the use of this code or of modifications of it cite Refs. [1,2] as well as this paper. Finally, we also ask that details of these publications, as well as of any bugs or required or useful improvements of this core code, would be communicated to us. Running time: Very problem specific, depending on the complexity of the Feynman rules and the number of integration points. Typically between a few minutes and several weeks. The installation tests provided with the program code take only a few seconds to run. References:A. Hart, G.M. von Hippel, R.R. Horgan, L.C. Storoni, Automatically generating Feynman rules for improved lattice eld theories, J. Comput. Phys. 209 (2005) 340-353, doi:10.1016/j.jcp.2005.03.010, arXiv:hep-lat/0411026. M. Lüscher, P. Weisz, Efficient Numerical Techniques for Perturbative Lattice Gauge Theory Computations, Nucl. Phys. B 266 (1986) 309, doi:10.1016/0550-3213(86)90094-5.

  1. QCA Gray Code Converter Circuits Using LTEx Methodology

    NASA Astrophysics Data System (ADS)

    Mukherjee, Chiradeep; Panda, Saradindu; Mukhopadhyay, Asish Kumar; Maji, Bansibadan

    2018-07-01

    The Quantum-dot Cellular Automata (QCA) is the prominent paradigm of nanotechnology considered to continue the computation at deep sub-micron regime. The QCA realizations of several multilevel circuit of arithmetic logic unit have been introduced in the recent years. However, as high fan-in Binary to Gray (B2G) and Gray to Binary (G2B) Converters exist in the processor based architecture, no attention has been paid towards the QCA instantiation of the Gray Code Converters which are anticipated to be used in 8-bit, 16-bit, 32-bit or even more bit addressable machines of Gray Code Addressing schemes. In this work the two-input Layered T module is presented to exploit the operation of an Exclusive-OR Gate (namely LTEx module) as an elemental block. The "defect-tolerant analysis" of the two-input LTEx module has been analyzed to establish the scalability and reproducibility of the LTEx module in the complex circuits. The novel formulations exploiting the operability of the LTEx module have been proposed to instantiate area-delay efficient B2G and G2B Converters which can be exclusively used in Gray Code Addressing schemes. Moreover this work formulates the QCA design metrics such as O-Cost, Effective area, Delay and Cost α for the n-bit converter layouts.

  2. QCA Gray Code Converter Circuits Using LTEx Methodology

    NASA Astrophysics Data System (ADS)

    Mukherjee, Chiradeep; Panda, Saradindu; Mukhopadhyay, Asish Kumar; Maji, Bansibadan

    2018-04-01

    The Quantum-dot Cellular Automata (QCA) is the prominent paradigm of nanotechnology considered to continue the computation at deep sub-micron regime. The QCA realizations of several multilevel circuit of arithmetic logic unit have been introduced in the recent years. However, as high fan-in Binary to Gray (B2G) and Gray to Binary (G2B) Converters exist in the processor based architecture, no attention has been paid towards the QCA instantiation of the Gray Code Converters which are anticipated to be used in 8-bit, 16-bit, 32-bit or even more bit addressable machines of Gray Code Addressing schemes. In this work the two-input Layered T module is presented to exploit the operation of an Exclusive-OR Gate (namely LTEx module) as an elemental block. The "defect-tolerant analysis" of the two-input LTEx module has been analyzed to establish the scalability and reproducibility of the LTEx module in the complex circuits. The novel formulations exploiting the operability of the LTEx module have been proposed to instantiate area-delay efficient B2G and G2B Converters which can be exclusively used in Gray Code Addressing schemes. Moreover this work formulates the QCA design metrics such as O-Cost, Effective area, Delay and Cost α for the n-bit converter layouts.

  3. STGSTK: A computer code for predicting multistage axial flow compressor performance by a meanline stage stacking method

    NASA Technical Reports Server (NTRS)

    Steinke, R. J.

    1982-01-01

    A FORTRAN computer code is presented for off-design performance prediction of axial-flow compressors. Stage and compressor performance is obtained by a stage-stacking method that uses representative velocity diagrams at rotor inlet and outlet meanline radii. The code has options for: (1) direct user input or calculation of nondimensional stage characteristics; (2) adjustment of stage characteristics for off-design speed and blade setting angle; (3) adjustment of rotor deviation angle for off-design conditions; and (4) SI or U.S. customary units. Correlations from experimental data are used to model real flow conditions. Calculations are compared with experimental data.

  4. AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Zhang, R. F.

    2017-11-01

    The elastic properties are fundamental and important for crystalline materials as they relate to other mechanical properties, various thermodynamic qualities as well as some critical physical properties. However, a complete set of experimentally determined elastic properties is only available for a small subset of known materials, and an automatic scheme for the derivations of elastic properties that is adapted to high-throughput computation is much demanding. In this paper, we present the AELAS code, an automated program for calculating second-order elastic constants of both two-dimensional and three-dimensional single crystal materials with any symmetry, which is designed mainly for high-throughput first-principles computation. Other derivations of general elastic properties such as Young's, bulk and shear moduli as well as Poisson's ratio of polycrystal materials, Pugh ratio, Cauchy pressure, elastic anisotropy and elastic stability criterion, are also implemented in this code. The implementation of the code has been critically validated by a lot of evaluations and tests on a broad class of materials including two-dimensional and three-dimensional materials, providing its efficiency and capability for high-throughput screening of specific materials with targeted mechanical properties. Program Files doi:http://dx.doi.org/10.17632/f8fwg4j9tw.1 Licensing provisions: BSD 3-Clause Programming language: Fortran Nature of problem: To automate the calculations of second-order elastic constants and the derivations of other elastic properties for two-dimensional and three-dimensional materials with any symmetry via high-throughput first-principles computation. Solution method: The space-group number is firstly determined by the SPGLIB code [1] and the structure is then redefined to unit cell with IEEE-format [2]. Secondly, based on the determined space group number, a set of distortion modes is automatically specified and the distorted structure files are generated. Afterwards, the total energy for each distorted structure is calculated by the first-principles codes, e.g. VASP [3]. Finally, the second-order elastic constants are determined from the quadratic coefficients of the polynomial fitting of the energies vs strain relationships and other elastic properties are accordingly derived. References [1] http://atztogo.github.io/spglib/. [2] A. Meitzler, H.F. Tiersten, A.W. Warner, D. Berlincourt, G.A. Couqin, F.S. Welsh III, IEEE standard on piezoelectricity, Society, 1988. [3] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.

  5. Recoil distance lifetime measurements in 122,124Xe

    NASA Astrophysics Data System (ADS)

    Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.

    1998-02-01

    Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.

  6. 27 CFR 53.97 - Constructive sale price; affiliated corporations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...; affiliated corporations. 53.97 Section 53.97 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX...; affiliated corporations. (a) In general. Sections 4216(b) (3) and (4) of the Code establish procedures for determining a constructive sale price under section 4216(b)(1)(C) of the Code for sales between corporations...

  7. 27 CFR 53.97 - Constructive sale price; affiliated corporations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...; affiliated corporations. 53.97 Section 53.97 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX...; affiliated corporations. (a) In general. Sections 4216(b) (3) and (4) of the Code establish procedures for determining a constructive sale price under section 4216(b)(1)(C) of the Code for sales between corporations...

  8. 27 CFR 53.97 - Constructive sale price; affiliated corporations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...; affiliated corporations. 53.97 Section 53.97 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX...; affiliated corporations. (a) In general. Sections 4216(b) (3) and (4) of the Code establish procedures for determining a constructive sale price under section 4216(b)(1)(C) of the Code for sales between corporations...

  9. 27 CFR 53.97 - Constructive sale price; affiliated corporations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...; affiliated corporations. 53.97 Section 53.97 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX...; affiliated corporations. (a) In general. Sections 4216(b) (3) and (4) of the Code establish procedures for determining a constructive sale price under section 4216(b)(1)(C) of the Code for sales between corporations...

  10. 40 CFR 264.340 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Integration of the MACT standards. (1) Except as provided by paragraphs (b)(2) through (b)(4) of this section... hazardous waste in part 261, subpart D, of this chapter solely because it is ignitable (Hazard Code I... chapter solely because it is reactive (Hazard Code R) for characteristics other than those listed in § 261...

  11. Some Problems and Solutions in Transferring Ecosystem Simulation Codes to Supercomputers

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.; Schulbach, C. H.

    1994-01-01

    Many computer codes for the simulation of ecological systems have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Recent recognition of ecosystem science as a High Performance Computing and Communications Program Grand Challenge area emphasizes supercomputers (both parallel and distributed systems) as the next set of tools for ecological simulation. Transferring ecosystem simulation codes to such systems is not a matter of simply compiling and executing existing code on the supercomputer since there are significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers. To more appropriately match the application to the architecture (necessary to achieve reasonable performance), the parallelism (if it exists) of the original application must be exploited. We discuss our work in transferring a general grassland simulation model (developed on a VAX in the FORTRAN computer programming language) to a Cray Y-MP. We show the Cray shared-memory vector-architecture, and discuss our rationale for selecting the Cray. We describe porting the model to the Cray and executing and verifying a baseline version, and we discuss the changes we made to exploit the parallelism in the application and to improve code execution. As a result, the Cray executed the model 30 times faster than the VAX 11/785 and 10 times faster than a Sun 4 workstation. We achieved an additional speed-up of approximately 30 percent over the original Cray run by using the compiler's vectorizing capabilities and the machine's ability to put subroutines and functions "in-line" in the code. With the modifications, the code still runs at only about 5% of the Cray's peak speed because it makes ineffective use of the vector processing capabilities of the Cray. We conclude with a discussion and future plans.

  12. Simulation of 2D Kinetic Effects in Plasmas using the Grid Based Continuum Code LOKI

    NASA Astrophysics Data System (ADS)

    Banks, Jeffrey; Berger, Richard; Chapman, Tom; Brunner, Stephan

    2016-10-01

    Kinetic simulation of multi-dimensional plasma waves through direct discretization of the Vlasov equation is a useful tool to study many physical interactions and is particularly attractive for situations where minimal fluctuation levels are desired, for instance, when measuring growth rates of plasma wave instabilities. However, direct discretization of phase space can be computationally expensive, and as a result there are few examples of published results using Vlasov codes in more than a single configuration space dimension. In an effort to fill this gap we have developed the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. The code is designed to reduce the cost of phase-space computation by using fully 4th order accurate conservative finite differencing, while retaining excellent parallel scalability that efficiently uses large scale computing resources. In this poster I will discuss the algorithms used in the code as well as some aspects of their parallel implementation using MPI. I will also overview simulation results of basic plasma wave instabilities relevant to laser plasma interaction, which have been obtained using the code.

  13. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-13

    Bobby Braun, far left, NASA Chief Technologist, speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Wednesday, July 14, 2010. Mr. Braun is joined on the panel by James Reuther, Director of Strategic Integration at NASA Headquarters, second from left; Keith Belvin, NASA Systems Engineer at NASA Langley Research Center and Ramona Travis, NASA Stennis Space Center Chief Technologist, far right. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Carla Cioffi)

  14. Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment.

    PubMed

    Meng, Bowen; Pratx, Guillem; Xing, Lei

    2011-12-01

    Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT∕CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. In this work, we accelerated the Feldcamp-Davis-Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT∕CT reconstruction algorithm. Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10(-7). Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process. An ultrafast, reliable and scalable 4D CBCT∕CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment.

  15. Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment

    PubMed Central

    Meng, Bowen; Pratx, Guillem; Xing, Lei

    2011-01-01

    Purpose: Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT/CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. Methods: In this work, we accelerated the Feldcamp–Davis–Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT/CT reconstruction algorithm. Results: Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10−7. Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process. Conclusions: An ultrafast, reliable and scalable 4D CBCT/CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment. PMID:22149842

  16. 15 CFR 740.7 - Computers (APP).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 4A003. (2) Technology and software. License Exception APP authorizes exports of technology and software... License Exception. (2) Access and release restrictions. (i)[Reserved] (ii) Technology and source code. Technology and source code eligible for License Exception APP may not be released to nationals of Cuba, Iran...

  17. 49 CFR 387.323 - Electronic filing of surety bonds, trust fund agreements, certificates of insurance and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Start field End field Record type 1 Numeric 1=Filing2=Cancellation B 1 1 Insurer number 8 Text FMCSA... Filing type 1 Numeric 1 = BI&PD2 = Cargo 3 = Bond 4 = Trust Fund B 10 10 FMCSA docket number 8 Text FMCSA... 264 265 Insured zip code 9 Numeric (Do not include dash if using 9 digit code) B 266 274 Insured...

  18. 49 CFR 387.323 - Electronic filing of surety bonds, trust fund agreements, certificates of insurance and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Start field End field Record type 1 Numeric 1=Filing2=Cancellation B 1 1 Insurer number 8 Text FMCSA... Filing type 1 Numeric 1 = BI&PD2 = Cargo 3 = Bond 4 = Trust Fund B 10 10 FMCSA docket number 8 Text FMCSA... 264 265 Insured zip code 9 Numeric (Do not include dash if using 9 digit code) B 266 274 Insured...

  19. Particle Impact Erosion. Volume 4. User’s Manual Erosion Prediction Procedure for Rocket Nozzle Expansion Region

    DTIC Science & Technology

    1983-05-01

    empirical erosion model, with use of the debris-layer model optional. 1.1 INTERFACE WITH ISPP ISPP is a collection of computer codes designed to calculate...expansion with the ODK code, 4. A two-dimensional, two-phase nozzle expansion with the TD2P code, 5. A turbulent boundary layer solution along the...INPUT THERMODYNAMIC DATA FOR TEMPERATURESBELOW 300°K OIF NEEDED) NO A• 11 READ SSP NAMELIST (ODE. BAL. ODK . TD2P. TEL. NOZZLE GEOMETRY) PROfLM 2

  20. Consolidated List of Debarred, Suspended, and Ineligible Contractors as of April 10, 1985.

    DTIC Science & Technology

    1985-04-01

    Administration code 202, but Fdral officials calling lon distance Juan L . Smith should use the FTS (Federal "blecommunications 523-4873 Sterr) or AUTVN (Automatic...Washington, DC 20405 Belle N. Davis (Codes A and B) Attention: Mrs. Juan L . Smith 475-8025 FTS/(202) 523-4873 3 r, % .1 𔄀 ’ % Cause and Treatment Codes...for violation of1961, the I is effctve win 0O; It Imposed the Buy American Act (41 U.S.C. 10b(b)) 4 -k % =",W""-- l m. .°6 ."._. ’ t. ,+... W LML

  1. An Analysis of Freshwater Mussels (Unionidae) in the Lower Ohio River at Two Beds Near Olmsted, Illinois: 1992 Studies.

    DTIC Science & Technology

    1994-02-01

    Experiment Station NT1IS CRAM 3909 Halls Ferry Road I Vicksburg, MS 39180-6199 U announced J .jstification ....... By DiAt ibution / Availability Codes Avail...D Results of Water Velocity Studies Table D1 (Concluded) Sensor 940 Sensor 946 File Code Dist Depth Code Dist Depth B3 700 18 B4 200 9 LOR2271 B3 700...Sped"e No. of Individuafs Fusconaia ebena 124 Quadrula p. pus frosa 16 Quadnia metanewa 18 Obovarta o/ivara 8 El/ isaia Mineo/ata 12 Ambiema p. picaft

  2. Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model

    DTIC Science & Technology

    2014-09-19

    the numerical code OpenFOAM R©. 1 Introduction Turbulent bubbly flows are encountered in many industrially relevant applications, such as chemical in...performed using the OpenFOAM -2.2.2 computational code utilizing a cell- center-based finite volume method on an unstructured numerical grid. The...the mean Courant number is always below 0.4. The utilized turbulence models were implemented into the so-called twoPhaseEulerFoam solver in OpenFOAM , to

  3. FY16 ASME High Temperature Code Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindeman, M. J.; Jetter, R. I.; Sham, T. -L.

    2016-09-01

    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is amore » basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.« less

  4. A decoding procedure for the Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1978-01-01

    A decoding procedure is described for the (n,k) t-error-correcting Reed-Solomon (RS) code, and an implementation of the (31,15) RS code for the I4-TENEX central system. This code can be used for error correction in large archival memory systems. The principal features of the decoder are a Galois field arithmetic unit implemented by microprogramming a microprocessor, and syndrome calculation by using the g(x) encoding shift register. Complete decoding of the (31,15) code is expected to take less than 500 microsecs. The syndrome calculation is performed by hardware using the encoding shift register and a modified Chien search. The error location polynomial is computed by using Lin's table, which is an interpretation of Berlekamp's iterative algorithm. The error location numbers are calculated by using the Chien search. Finally, the error values are computed by using Forney's method.

  5. Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Gould, R. K.

    1979-01-01

    Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors.

  6. Superimposed Code Theoretic Analysis of Deoxyribonucleic Acid (DNA) Codes and DNA Computing

    DTIC Science & Technology

    2010-01-01

    partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic = position 1, etc. ) and within each collection...movement was modeled by a Brownian motion 3 dimensional random walk. The one dimensional diffusion coefficient D for the ellipsoid shape with 3...temperature, kB is Boltzmann’s constant, and η is the viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three

  7. ONR Far East Scientific Bulletin, Volume 7, Number 2, April-June 1982,

    DTIC Science & Technology

    1982-01-01

    contained source code . - PAL (Program Automation Language) PAL is a system design language that automatically generates an executable program from a...NTIS c3&1 DTIC TliB Unn ’l.- A ElJustitt for _ By - Distrib~tion Availability Codes Avail and/or Di st Speojal iii 0- CONTENTS~ P age r’A Gflmpse at...tools exist at ECL in prototype forms. Like most major computer manufacturers, they have also extended high level languages such as FORTRAN , COBOL

  8. Transient Heat Transfer in Coated Superconductors.

    DTIC Science & Technology

    1982-10-29

    of the use of the SCEPTRE code are contained in the instruction manual and the book on the code. 30 An example of an actual SCEPTRE program is given in...22. 0. Tsukomoto and S. Kobayashi, J. of Appl. Physics, 46, 1359, (1975) 23. Y Iwasa and B.A. Apgar , Cryogenics 18, 267, (1978) 24. D.E. Baynham, V.W...Computer program for circuit and Systems Analysis. Prentice Hall 1971 and J.C. Bowers et. al. Users Manual for Super-Sceptre Government Document AD/A-OIl

  9. Adaptive Wavelet Coding Applied in a Wireless Control System.

    PubMed

    Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O

    2017-12-13

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  10. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and Harold Baranger; 26. Critique of fault-tolerant quantum information processing Robert Alicki; References; Index.

  11. Visual Computing Environment

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Putt, Charles W.

    1997-01-01

    The Visual Computing Environment (VCE) is a NASA Lewis Research Center project to develop a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis. The objectives of VCE are to (1) develop a visual computing environment for controlling the execution of individual simulation codes that are running in parallel and are distributed on heterogeneous host machines in a networked environment, (2) develop numerical coupling algorithms for interchanging boundary conditions between codes with arbitrary grid matching and different levels of dimensionality, (3) provide a graphical interface for simulation setup and control, and (4) provide tools for online visualization and plotting. VCE was designed to provide a distributed, object-oriented environment. Mechanisms are provided for creating and manipulating objects, such as grids, boundary conditions, and solution data. This environment includes parallel virtual machine (PVM) for distributed processing. Users can interactively select and couple any set of codes that have been modified to run in a parallel distributed fashion on a cluster of heterogeneous workstations. A scripting facility allows users to dictate the sequence of events that make up the particular simulation.

  12. Maxwell: A semi-analytic 4D code for earthquake cycle modeling of transform fault systems

    NASA Astrophysics Data System (ADS)

    Sandwell, David; Smith-Konter, Bridget

    2018-05-01

    We have developed a semi-analytic approach (and computational code) for rapidly calculating 3D time-dependent deformation and stress caused by screw dislocations imbedded within an elastic layer overlying a Maxwell viscoelastic half-space. The maxwell model is developed in the Fourier domain to exploit the computational advantages of the convolution theorem, hence substantially reducing the computational burden associated with an arbitrarily complex distribution of force couples necessary for fault modeling. The new aspect of this development is the ability to model lateral variations in shear modulus. Ten benchmark examples are provided for testing and verification of the algorithms and code. One final example simulates interseismic deformation along the San Andreas Fault System where lateral variations in shear modulus are included to simulate lateral variations in lithospheric structure.

  13. 32 CFR 295.3 - Definition of OIG records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., decisions, or procedures of the OIG. Normally, computer software, including source code, object code, and... the underlying data which is processed and produced by such software and which may in some instances be stored with the software.) Exceptions to this position are outlined in § 295.4(c). (3) Anything...

  14. 32 CFR 295.3 - Definition of OIG records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., decisions, or procedures of the OIG. Normally, computer software, including source code, object code, and... the underlying data which is processed and produced by such software and which may in some instances be stored with the software.) Exceptions to this position are outlined in § 295.4(c). (3) Anything...

  15. 32 CFR 295.3 - Definition of OIG records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., decisions, or procedures of the OIG. Normally, computer software, including source code, object code, and... the underlying data which is processed and produced by such software and which may in some instances be stored with the software.) Exceptions to this position are outlined in § 295.4(c). (3) Anything...

  16. 32 CFR 295.3 - Definition of OIG records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., decisions, or procedures of the OIG. Normally, computer software, including source code, object code, and... the underlying data which is processed and produced by such software and which may in some instances be stored with the software.) Exceptions to this position are outlined in § 295.4(c). (3) Anything...

  17. 32 CFR 295.3 - Definition of OIG records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., decisions, or procedures of the OIG. Normally, computer software, including source code, object code, and... the underlying data which is processed and produced by such software and which may in some instances be stored with the software.) Exceptions to this position are outlined in § 295.4(c). (3) Anything...

  18. A programming environment for distributed complex computing. An overview of the Framework for Interdisciplinary Design Optimization (FIDO) project. NASA Langley TOPS exhibit H120b

    NASA Technical Reports Server (NTRS)

    Townsend, James C.; Weston, Robert P.; Eidson, Thomas M.

    1993-01-01

    The Framework for Interdisciplinary Design Optimization (FIDO) is a general programming environment for automating the distribution of complex computing tasks over a networked system of heterogeneous computers. For example, instead of manually passing a complex design problem between its diverse specialty disciplines, the FIDO system provides for automatic interactions between the discipline tasks and facilitates their communications. The FIDO system networks all the computers involved into a distributed heterogeneous computing system, so they have access to centralized data and can work on their parts of the total computation simultaneously in parallel whenever possible. Thus, each computational task can be done by the most appropriate computer. Results can be viewed as they are produced and variables changed manually for steering the process. The software is modular in order to ease migration to new problems: different codes can be substituted for each of the current code modules with little or no effect on the others. The potential for commercial use of FIDO rests in the capability it provides for automatically coordinating diverse computations on a networked system of workstations and computers. For example, FIDO could provide the coordination required for the design of vehicles or electronics or for modeling complex systems.

  19. Description of a MIL-STD-1553B Data Bus Ada Driver for the LeRC EPS Testbed

    NASA Technical Reports Server (NTRS)

    Mackin, Michael A.

    1995-01-01

    This document describes the software designed to provide communication between control computers in the NASA Lewis Research Center Electrical Power System Testbed using MIL-STD-1553B. The software drivers are coded in the Ada programming language and were developed on a MSDOS-based computer workstation. The Electrical Power System (EPS) Testbed is a reduced-scale prototype space station electrical power system. The power system manages and distributes electrical power from the sources (batteries or photovoltaic arrays) to the end-user loads. The electrical system primary operates at 120 volts DC, and the secondary system operates at 28 volts DC. The devices which direct the flow of electrical power are controlled by a network of six control computers. Data and control messages are passed between the computers using the MIL-STD-1553B network. One of the computers, the Power Management Controller (PMC), controls the primary power distribution and another, the Load Management Controller (LMC), controls the secondary power distribution. Each of these computers communicates with two other computers which act as subsidiary controllers. These subsidiary controllers are, in turn, connected to the devices which directly control the flow of electrical power.

  20. Technology Evaluation for Treatment/Disposal of TNT Red Water

    DTIC Science & Technology

    1990-04-01

    U.S. Army Toxic and Hazardous Materials Agency Aberdeen Proving Ground , MD 21010-5423 __ E=4N DISTRIBUTION UNLIMITED I I TECHNOLOGY EVALUATION FOR...ABERDEEN PROVING GROUND , MARYLAND 21010-5423 April 1990 I I SECURITY CLASSIFICATION OF T-HI5 PA iiREPORT DOCUMENTATION PAGE W 7"f 4 I. REPORT SECURITY...and ZIP Code) 7b, ADDRESS (City, State, and ZIP Code) ATTN: CETHA-TE-D Aberdeen Proving Ground , MD 21010-5401 BaG. NAME OF FUNDING /SPONSORING 8b

  1. Annual Report of the ECSU Home-Institution Support Program (1993)

    DTIC Science & Technology

    1993-09-30

    summer of 1992. Stephanie plans to attend graduate school at the University of Alabama at Birmingham. r 3 . Deborah Jones has attended the ISSP program for...computer equipment Component #2 A visiting lecturer series Component # 3 : Students pay & faculty release time Component #4 Student/sponsor travel program...DTXC QUA, ty rNpBT 3 S. 0. CODE: 1133 DISBURSING CODE: N001 79 AGO CODE: N66005 CAGE CODE: OJLKO 3 PART I: A succinct narrative which should

  2. Generalized three-dimensional experimental lightning code (G3DXL) user's manual

    NASA Technical Reports Server (NTRS)

    Kunz, Karl S.

    1986-01-01

    Information concerning the programming, maintenance and operation of the G3DXL computer program is presented and the theoretical basis for the code is described. The program computes time domain scattering fields and surface currents and charges induced by a driving function on and within a complex scattering object which may be perfectly conducting or a lossy dielectric. This is accomplished by modeling the object with cells within a three-dimensional, rectangular problem space, enforcing the appropriate boundary conditions and differencing Maxwell's equations in time. In the present version of the program, the driving function can be either the field radiated by a lightning strike or a direct lightning strike. The F-106 B aircraft is used as an example scattering object.

  3. Towards Reproducibility in Computational Hydrology

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei; Duffy, Chris; Arheimer, Berit

    2017-04-01

    Reproducibility is a foundational principle in scientific research. The ability to independently re-run an experiment helps to verify the legitimacy of individual findings, and evolve (or reject) hypotheses and models of how environmental systems function, and move them from specific circumstances to more general theory. Yet in computational hydrology (and in environmental science more widely) the code and data that produces published results are not regularly made available, and even if they are made available, there remains a multitude of generally unreported choices that an individual scientist may have made that impact the study result. This situation strongly inhibits the ability of our community to reproduce and verify previous findings, as all the information and boundary conditions required to set up a computational experiment simply cannot be reported in an article's text alone. In Hutton et al 2016 [1], we argue that a cultural change is required in the computational hydrological community, in order to advance and make more robust the process of knowledge creation and hypothesis testing. We need to adopt common standards and infrastructures to: (1) make code readable and re-useable; (2) create well-documented workflows that combine re-useable code together with data to enable published scientific findings to be reproduced; (3) make code and workflows available, easy to find, and easy to interpret, using code and code metadata repositories. To create change we argue for improved graduate training in these areas. In this talk we reflect on our progress in achieving reproducible, open science in computational hydrology, which are relevant to the broader computational geoscience community. In particular, we draw on our experience in the Switch-On (EU funded) virtual water science laboratory (http://www.switch-on-vwsl.eu/participate/), which is an open platform for collaboration in hydrological experiments (e.g. [2]). While we use computational hydrology as the example application area, we believe that our conclusions are of value to the wider environmental and geoscience community as far as the use of code and models for scientific advancement is concerned. References: [1] Hutton, C., T. Wagener, J. Freer, D. Han, C. Duffy, and B. Arheimer (2016), Most computational hydrology is not reproducible, so is it really science?, Water Resour. Res., 52, 7548-7555, doi:10.1002/2016WR019285. [2] Ceola, S., et al. (2015), Virtual laboratories: New opportunities for collaborative water science, Hydrol. Earth Syst. Sci. Discuss., 11(12), 13443-13478, doi:10.5194/hessd-11-13443-2014.

  4. Investigation of a Sybr-Green-Based Method to Validate DNA Sequences for DNA Computing

    DTIC Science & Technology

    2005-05-01

    OF A SYBR-GREEN-BASED METHOD TO VALIDATE DNA SEQUENCES FOR DNA COMPUTING 6. AUTHOR(S) Wendy Pogozelski, Salvatore Priore, Matthew Bernard ...simulated annealing. Biochemistry, 35, 14077-14089. 15 Pogozelski, W.K., Bernard , M.P. and Macula, A. (2004) DNA code validation using...and Clark, B.F.C. (eds) In RNA Biochemistry and Biotechnology, NATO ASI Series, Kluwer Academic Publishers. Zucker, M. and Stiegler , P. (1981

  5. Investigating Background Pictures for Picture Gesture Authentication

    DTIC Science & Technology

    2017-06-01

    computing , stating “Microsoft is committed to making sure that the technology within the agreement has a mobile-first focus, and we 2 expect to begin to...Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 06-16-2017 3. REPORT TYPE AND...unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The military relies heavily on computer systems. Without a strong method of authentication

  6. The WISGSK: A computer code for the prediction of a multistage axial compressor performance with water ingestion

    NASA Technical Reports Server (NTRS)

    Tsuchiya, T.; Murthy, S. N. B.

    1982-01-01

    A computer code is presented for the prediction of off-design axial flow compressor performance with water ingestion. Four processes were considered to account for the aero-thermo-mechanical interactions during operation with air-water droplet mixture flow: (1) blade performance change, (2) centrifuging of water droplets, (3) heat and mass transfer process between the gaseous and the liquid phases and (4) droplet size redistribution due to break-up. Stage and compressor performance are obtained by a stage stacking procedure using representative veocity diagrams at a rotor inlet and outlet mean radii. The Code has options for performance estimation with (1) mixtures of gas and (2) gas-water droplet mixtures, and therefore can take into account the humidity present in ambient conditions. A test case illustrates the method of using the Code. The Code follows closely the methodology and architecture of the NASA-STGSTK Code for the estimation of axial-flow compressor performance with air flow.

  7. Program user's manual for optimizing the design of a liquid or gaseous propellant rocket engine with the automated combustor design code AUTOCOM

    NASA Technical Reports Server (NTRS)

    Reichel, R. H.; Hague, D. S.; Jones, R. T.; Glatt, C. R.

    1973-01-01

    This computer program manual describes in two parts the automated combustor design optimization code AUTOCOM. The program code is written in the FORTRAN 4 language. The input data setup and the program outputs are described, and a sample engine case is discussed. The program structure and programming techniques are also described, along with AUTOCOM program analysis.

  8. ODECS -- A computer code for the optimal design of S.I. engine control strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsie, I.; Pianese, C.; Rizzo, G.

    1996-09-01

    The computer code ODECS (Optimal Design of Engine Control Strategies) for the design of Spark Ignition engine control strategies is presented. This code has been developed starting from the author`s activity in this field, availing of some original contributions about engine stochastic optimization and dynamical models. This code has a modular structure and is composed of a user interface for the definition, the execution and the analysis of different computations performed with 4 independent modules. These modules allow the following calculations: (1) definition of the engine mathematical model from steady-state experimental data; (2) engine cycle test trajectory corresponding to amore » vehicle transient simulation test such as ECE15 or FTP drive test schedule; (3) evaluation of the optimal engine control maps with a steady-state approach; (4) engine dynamic cycle simulation and optimization of static control maps and/or dynamic compensation strategies, taking into account dynamical effects due to the unsteady fluxes of air and fuel and the influences of combustion chamber wall thermal inertia on fuel consumption and emissions. Moreover, in the last two modules it is possible to account for errors generated by a non-deterministic behavior of sensors and actuators and the related influences on global engine performances, and compute robust strategies, less sensitive to stochastic effects. In the paper the four models are described together with significant results corresponding to the simulation and the calculation of optimal control strategies for dynamic transient tests.« less

  9. Response of the first wetted wall of an IFE reactor chamber to the energy release from a direct-drive DT capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medin, Stanislav A.; Basko, Mikhail M.; Orlov, Yurii N.

    2012-07-11

    Radiation hydrodynamics 1D simulations were performed with two concurrent codes, DEIRA and RAMPHY. The DEIRA code was used for DT capsule implosion and burn, and the RAMPHY code was used for computation of X-ray and fast ions deposition in the first wall liquid film of the reactor chamber. The simulations were run for 740 MJ direct drive DT capsule and Pb thin liquid wall reactor chamber of 10 m diameter. Temporal profiles for DT capsule leaking power of X-rays, neutrons and fast {sup 4}He ions were obtained and spatial profiles of the liquid film flow parameter were computed and analyzed.

  10. Extensions and improvements on XTRAN3S

    NASA Technical Reports Server (NTRS)

    Borland, C. J.

    1989-01-01

    Improvements to the XTRAN3S computer program are summarized. Work on this code, for steady and unsteady aerodynamic and aeroelastic analysis in the transonic flow regime has concentrated on the following areas: (1) Maintenance of the XTRAN3S code, including correction of errors, enhancement of operational capability, and installation on the Cray X-MP system; (2) Extension of the vectorization concepts in XTRAN3S to include additional areas of the code for improved execution speed; (3) Modification of the XTRAN3S algorithm for improved numerical stability for swept, tapered wing cases and improved computational efficiency; and (4) Extension of the wing-only version of XTRAN3S to include pylon and nacelle or external store capability.

  11. POLYSHIFT Communications Software for the Connection Machine System CM-200

    DOE PAGES

    George, William; Brickner, Ralph G.; Johnsson, S. Lennart

    1994-01-01

    We describe the use and implementation of a polyshift function PSHIFT for circular shifts and end-offs shifts. Polyshift is useful in many scientific codes using regular grids, such as finite difference codes in several dimensions, and multigrid codes, molecular dynamics computations, and in lattice gauge physics computations, such as quantum chromodynamics (QCD) calculations. Our implementation of the PSHIFT function on the Connection Machine systems CM-2 and CM-200 offers a speedup of up to a factor of 3–4 compared with CSHIFT when the local data motion within a node is small. The PSHIFT routine is included in the Connection Machine Scientificmore » Software Library (CMSSL).« less

  12. Thermodynamic properties of gaseous fluorocarbons and isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1977-01-01

    Equations and computer code are given for the thermodynamic properties of gaseous fluorocarbons in chemical equilibrium. In addition, isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon are included. The computer code calculates the equilibrium thermodynamic properties and, in some cases, the transport properties for the following fluorocarbons: CCl2F, CCl2F2, CBrF3, CF4, CHCl2F, CHF3, CCL2F-CCl2F, CCLF2-CClF2, CF3-CF3, and C4F8. Equilibrium thermodynamic properties are tabulated for six of the fluorocarbons(CCl3F, CCL2F2, CBrF3, CF4, CF3-CF3, and C4F8) and pressure-enthalpy diagrams are presented for CBrF3.

  13. Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development.

    PubMed

    Smith, Daniel G A; Burns, Lori A; Sirianni, Dominic A; Nascimento, Daniel R; Kumar, Ashutosh; James, Andrew M; Schriber, Jeffrey B; Zhang, Tianyuan; Zhang, Boyi; Abbott, Adam S; Berquist, Eric J; Lechner, Marvin H; Cunha, Leonardo A; Heide, Alexander G; Waldrop, Jonathan M; Takeshita, Tyler Y; Alenaizan, Asem; Neuhauser, Daniel; King, Rollin A; Simmonett, Andrew C; Turney, Justin M; Schaefer, Henry F; Evangelista, Francesco A; DePrince, A Eugene; Crawford, T Daniel; Patkowski, Konrad; Sherrill, C David

    2018-06-11

    Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation. Psi4NumPy tools and associated reference implementations can lower the barrier for future development of quantum chemistry methods. These implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the Psi4 program.

  14. Navier-Stokes analysis of cold scramjet-afterbody flows

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.; Eleshaky, Mohamed E.

    1989-01-01

    The progress of two efforts in coding solutions of Navier-Stokes equations is summarized. The first effort concerns a 3-D space marching parabolized Navier-Stokes (PNS) code being modified to compute the supersonic mixing flow through an internal/external expansion nozzle with multicomponent gases. The 3-D PNS equations, coupled with a set of species continuity equations, are solved using an implicit finite difference scheme. The completed work is summarized and includes code modifications for four chemical species, computing the flow upstream of the upper cowl for a theoretical air mixture, developing an initial plane solution for the inner nozzle region, and computing the flow inside the nozzle for both a N2/O2 mixture and a Freon-12/Ar mixture, and plotting density-pressure contours for the inner nozzle region. The second effort concerns a full Navier-Stokes code. The species continuity equations account for the diffusion of multiple gases. This 3-D explicit afterbody code has the ability to use high order numerical integration schemes such as the 4th order MacCormack, and the Gottlieb-MacCormack schemes. Changes to the work are listed and include, but are not limited to: (1) internal/external flow capability; (2) new treatments of the cowl wall boundary conditions and relaxed computations around the cowl region and cowl tip; (3) the entering of the thermodynamic and transport properties of Freon-12, Ar, O, and N; (4) modification to the Baldwin-Lomax turbulence model to account for turbulent eddies generated by cowl walls inside and external to the nozzle; and (5) adopting a relaxation formula to account for the turbulence in the mixing shear layer.

  15. Pattern-based integer sample motion search strategies in the context of HEVC

    NASA Astrophysics Data System (ADS)

    Maier, Georg; Bross, Benjamin; Grois, Dan; Marpe, Detlev; Schwarz, Heiko; Veltkamp, Remco C.; Wiegand, Thomas

    2015-09-01

    The H.265/MPEG-H High Efficiency Video Coding (HEVC) standard provides a significant increase in coding efficiency compared to its predecessor, the H.264/MPEG-4 Advanced Video Coding (AVC) standard, which however comes at the cost of a high computational burden for a compliant encoder. Motion estimation (ME), which is a part of the inter-picture prediction process, typically consumes a high amount of computational resources, while significantly increasing the coding efficiency. In spite of the fact that both H.265/MPEG-H HEVC and H.264/MPEG-4 AVC standards allow processing motion information on a fractional sample level, the motion search algorithms based on the integer sample level remain to be an integral part of ME. In this paper, a flexible integer sample ME framework is proposed, thereby allowing to trade off significant reduction of ME computation time versus coding efficiency penalty in terms of bit rate overhead. As a result, through extensive experimentation, an integer sample ME algorithm that provides a good trade-off is derived, incorporating a combination and optimization of known predictive, pattern-based and early termination techniques. The proposed ME framework is implemented on a basis of the HEVC Test Model (HM) reference software, further being compared to the state-of-the-art fast search algorithm, which is a native part of HM. It is observed that for high resolution sequences, the integer sample ME process can be speed-up by factors varying from 3.2 to 7.6, resulting in the bit-rate overhead of 1.5% and 0.6% for Random Access (RA) and Low Delay P (LDP) configurations, respectively. In addition, the similar speed-up is observed for sequences with mainly Computer-Generated Imagery (CGI) content while trading off the bit rate overhead of up to 5.2%.

  16. Results of comparative RBMK neutron computation using VNIIEF codes (cell computation, 3D statics, 3D kinetics). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A.

    1995-12-31

    In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEUmore » codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.« less

  17. Computation of Estonian CORS data using Bernese 5.2 and Gipsy 6.4 softwares

    NASA Astrophysics Data System (ADS)

    Kollo, Karin; Kall, Tarmo; Liibusk, Aive

    2017-04-01

    GNSS permanent station network in Estonia (ESTREF) was established already in 2007. In 2014-15 extensive reconstruction of ESTREF was carried out, including the establishment of 18 new stations, change of the hardware in CORS stations as well as establishing GNSS-RTK service for the whole Estonia. For GNSS-RTK service one needs precise coordinates in well-defined reference frame, i.e., ETRS89. For long time stability of stations and time-series analysis the re-processing of Estonian CORS data is ongoing. We re-process data from 2007 until 2015 with program Bernese GNSS 5.2 (Dach, 2015). For the set of ESTREF stations established in 2007, we perform as well computations with GIPSY 6.4 software (Ries et al., 2015). In the computations daily GPS-only solution was used. For precise orbits, final products from CODE (CODE analysis centre at the Astronomical Institute of the University of Bern) and JPL (Jet Propulsion Laboratory) for Bernese and GIPSY solutions were used, respectively. The cut-off angle was set to 10 degrees in order to avoid near-field multipath influence. In GIPSY, precise point positioning method with fixing ambiguities was used. Bernese calculations were performed based on double difference processing. Antenna phase centers were modelled based on igs08.atx and epnc_08.atx files. Vienna mapping function was used for mapping tropospheric delays. For the GIPSY solution, the higher order ionospheric term was modelled based on IRI-2012b model. For the Bernese solution higher order ionospheric term was neglected. FES2004 ocean tide loading model was used for the both computation strategies. As a result, two solutions using different scientific GNSS computation programs were obtained. The results from Bernese and GIPSY solutions were compared, using station repeatability values, RMS and coordinate differences. KEYWORDS: GNSS reference station network, Bernese GNSS 5.2, Gipsy 6.4, Estonia. References: Dach, R., S. Lutz, P. Walser, P. Fridez (Eds); 2015: Bernese GNSS Software Version 5.2. User manual, Astronomical Institute, Universtiy of Bern, Bern Open Publishing. DOI: 10.7892/boris.72297; ISBN: 978-3-906813-05-9. Paul Ries, Willy Bertiger, Shailen, Shailen Desai, & Kevin Miller. (2015). GIPSY 6.4 Release Notes. Jet Propulsion Laboratory, California Institute of Technology. Retrieved from https://gipsy-oasis.jpl.nasa.gov/docs/index.php

  18. Computation of transonic separated wing flows using an Euler/Navier-Stokes zonal approach

    NASA Technical Reports Server (NTRS)

    Kaynak, Uenver; Holst, Terry L.; Cantwell, Brian J.

    1986-01-01

    A computer program called Transonic Navier Stokes (TNS) has been developed which solves the Euler/Navier-Stokes equations around wings using a zonal grid approach. In the present zonal scheme, the physical domain of interest is divided into several subdomains called zones and the governing equations are solved interactively. The advantages of the Zonal Grid approach are as follows: (1) the grid for any subdomain can be generated easily; (2) grids can be, in a sense, adapted to the solution; (3) different equation sets can be used in different zones; and, (4) this approach allows for a convenient data base organization scheme. Using this code, separated flows on a NACA 0012 section wing and on the NASA Ames WING C have been computed. First, the effects of turbulence and artificial dissipation models incorporated into the code are assessed by comparing the TNS results with other CFD codes and experiments. Then a series of flow cases is described where data are available. The computed results, including cases with shock-induced separation, are in good agreement with experimental data. Finally, some futuristic cases are presented to demonstrate the abilities of the code for massively separated cases which do not have experimental data.

  19. Development of the 3DHZETRN code for space radiation protection

    NASA Astrophysics Data System (ADS)

    Wilson, John; Badavi, Francis; Slaba, Tony; Reddell, Brandon; Bahadori, Amir; Singleterry, Robert

    Space radiation protection requires computationally efficient shield assessment methods that have been verified and validated. The HZETRN code is the engineering design code used for low Earth orbit dosimetric analysis and astronaut record keeping with end-to-end validation to twenty percent in Space Shuttle and International Space Station operations. HZETRN treated diffusive leakage only at the distal surface limiting its application to systems with a large radius of curvature. A revision of HZETRN that included forward and backward diffusion allowed neutron leakage to be evaluated at both the near and distal surfaces. That revision provided a deterministic code of high computational efficiency that was in substantial agreement with Monte Carlo (MC) codes in flat plates (at least to the degree that MC codes agree among themselves). In the present paper, the 3DHZETRN formalism capable of evaluation in general geometry is described. Benchmarking will help quantify uncertainty with MC codes (Geant4, FLUKA, MCNP6, and PHITS) in simple shapes such as spheres within spherical shells and boxes. Connection of the 3DHZETRN to general geometry will be discussed.

  20. GPU accelerated population annealing algorithm

    NASA Astrophysics Data System (ADS)

    Barash, Lev Yu.; Weigel, Martin; Borovský, Michal; Janke, Wolfhard; Shchur, Lev N.

    2017-11-01

    Population annealing is a promising recent approach for Monte Carlo simulations in statistical physics, in particular for the simulation of systems with complex free-energy landscapes. It is a hybrid method, combining importance sampling through Markov chains with elements of sequential Monte Carlo in the form of population control. While it appears to provide algorithmic capabilities for the simulation of such systems that are roughly comparable to those of more established approaches such as parallel tempering, it is intrinsically much more suitable for massively parallel computing. Here, we tap into this structural advantage and present a highly optimized implementation of the population annealing algorithm on GPUs that promises speed-ups of several orders of magnitude as compared to a serial implementation on CPUs. While the sample code is for simulations of the 2D ferromagnetic Ising model, it should be easily adapted for simulations of other spin models, including disordered systems. Our code includes implementations of some advanced algorithmic features that have only recently been suggested, namely the automatic adaptation of temperature steps and a multi-histogram analysis of the data at different temperatures. Program Files doi:http://dx.doi.org/10.17632/sgzt4b7b3m.1 Licensing provisions: Creative Commons Attribution license (CC BY 4.0) Programming language: C, CUDA External routines/libraries: NVIDIA CUDA Toolkit 6.5 or newer Nature of problem: The program calculates the internal energy, specific heat, several magnetization moments, entropy and free energy of the 2D Ising model on square lattices of edge length L with periodic boundary conditions as a function of inverse temperature β. Solution method: The code uses population annealing, a hybrid method combining Markov chain updates with population control. The code is implemented for NVIDIA GPUs using the CUDA language and employs advanced techniques such as multi-spin coding, adaptive temperature steps and multi-histogram reweighting. Additional comments: Code repository at https://github.com/LevBarash/PAising. The system size and size of the population of replicas are limited depending on the memory of the GPU device used. For the default parameter values used in the sample programs, L = 64, θ = 100, β0 = 0, βf = 1, Δβ = 0 . 005, R = 20 000, a typical run time on an NVIDIA Tesla K80 GPU is 151 seconds for the single spin coded (SSC) and 17 seconds for the multi-spin coded (MSC) program (see Section 2 for a description of these parameters).

  1. Elemental abundance analyses with DAO spectrograms. VII - The late normal B stars Pi Ceti, 134 Tauri, 21 Aquilae, and Nu Capricorni and the use of RETICON spectra

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.

    1991-09-01

    This paper presents elemental abundance analyses of sharp-lined normal late B stars. These stars exhibit mostly near-solar abundances, but each star also shows a few abundances which are a factor of 2 less than solar. The coadded photographic spectrograms are supplemented with Reticon data. A comparison of 261 equivalent widths on 2.4 A/mm spectra of sharp-lined B and A stars shows that the Reticon equivalent widths are about 95 percent of the coadded equivalent mean. The H-gamma profiles of the coadded and Reticon spectra for eight sharp-lined stars show generally good agreement. The generally high quality of the coadded data produced from 10 or more spectrograms is confirmed using the REDUCE graphics-oriented computed reduction code. For five stars, metal lines which fall in the gap between the U and V plates are analyzed using Reticon data.

  2. Elemental abundance analyses with DAO spectrograms. VII - The late normal B stars Pi Ceti, 134 Tauri, 21 Aquilae, and Nu Capricorni and the use of Reticon spectra

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.

    1991-01-01

    This paper presents elemental abundance analyses of sharp-lined normal late B stars. These stars exhibit mostly near-solar abundances, but each star also shows a few abundances which are a factor of 2 less than solar. The coadded photographic spectrograms are supplemented with Reticon data. A comparison of 261 equivalent widths on 2.4 A/mm spectra of sharp-lined B and A stars shows that the Reticon equivalent widths are about 95 percent of the coadded equivalent mean. The H-gamma profiles of the coadded and Reticon spectra for eight sharp-lined stars show generally good agreement. The generally high quality of the coadded data produced from 10 or more spectrograms is confirmed using the REDUCE graphics-oriented computed reduction code. For five stars, metal lines which fall in the gap between the U and V plates are analyzed using Reticon data.

  3. Biphenyl 4-Hydroxylases Involved in Aucuparin Biosynthesis in Rowan and Apple Are Cytochrome P450 736A Proteins1[OPEN

    PubMed Central

    Kaufholdt, David; Broggini, Giovanni A.L.; Flachowsky, Henryk; Hänsch, Robert

    2015-01-01

    Upon pathogen attack, fruit trees such as apple (Malus spp.) and pear (Pyrus spp.) accumulate biphenyl and dibenzofuran phytoalexins, with aucuparin as a major biphenyl compound. 4-Hydroxylation of the biphenyl scaffold, formed by biphenyl synthase (BIS), is catalyzed by a cytochrome P450 (CYP). The biphenyl 4-hydroxylase (B4H) coding sequence of rowan (Sorbus aucuparia) was isolated and functionally expressed in yeast (Saccharomyces cerevisiae). SaB4H was named CYP736A107. No catalytic function of CYP736 was known previously. SaB4H exhibited absolute specificity for 3-hydroxy-5-methoxybiphenyl. In rowan cell cultures treated with elicitor from the scab fungus, transient increases in the SaB4H, SaBIS, and phenylalanine ammonia lyase transcript levels preceded phytoalexin accumulation. Transient expression of a carboxyl-terminal reporter gene construct directed SaB4H to the endoplasmic reticulum. A construct lacking the amino-terminal leader and transmembrane domain caused cytoplasmic localization. Functional B4H coding sequences were also isolated from two apple (Malus × domestica) cultivars. The MdB4Hs were named CYP736A163. When stems of cv Golden Delicious were infected with the fire blight bacterium, highest MdB4H transcript levels were observed in the transition zone. In a phylogenetic tree, the three B4Hs were closest to coniferaldehyde 5-hydroxylases involved in lignin biosynthesis, suggesting a common ancestor. Coniferaldehyde and related compounds were not converted by SaB4H. PMID:25862456

  4. Biphenyl 4-Hydroxylases Involved in Aucuparin Biosynthesis in Rowan and Apple Are Cytochrome P450 736A Proteins.

    PubMed

    Sircar, Debabrata; Gaid, Mariam M; Chizzali, Cornelia; Reckwell, Dennis; Kaufholdt, David; Beuerle, Till; Broggini, Giovanni A L; Flachowsky, Henryk; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2015-06-01

    Upon pathogen attack, fruit trees such as apple (Malus spp.) and pear (Pyrus spp.) accumulate biphenyl and dibenzofuran phytoalexins, with aucuparin as a major biphenyl compound. 4-Hydroxylation of the biphenyl scaffold, formed by biphenyl synthase (BIS), is catalyzed by a cytochrome P450 (CYP). The biphenyl 4-hydroxylase (B4H) coding sequence of rowan (Sorbus aucuparia) was isolated and functionally expressed in yeast (Saccharomyces cerevisiae). SaB4H was named CYP736A107. No catalytic function of CYP736 was known previously. SaB4H exhibited absolute specificity for 3-hydroxy-5-methoxybiphenyl. In rowan cell cultures treated with elicitor from the scab fungus, transient increases in the SaB4H, SaBIS, and phenylalanine ammonia lyase transcript levels preceded phytoalexin accumulation. Transient expression of a carboxyl-terminal reporter gene construct directed SaB4H to the endoplasmic reticulum. A construct lacking the amino-terminal leader and transmembrane domain caused cytoplasmic localization. Functional B4H coding sequences were also isolated from two apple (Malus × domestica) cultivars. The MdB4Hs were named CYP736A163. When stems of cv Golden Delicious were infected with the fire blight bacterium, highest MdB4H transcript levels were observed in the transition zone. In a phylogenetic tree, the three B4Hs were closest to coniferaldehyde 5-hydroxylases involved in lignin biosynthesis, suggesting a common ancestor. Coniferaldehyde and related compounds were not converted by SaB4H. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. 15 CFR Appendix B to Part 30 - AES Filing Codes

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... exemptions: Currency Airline tickets Bank notes Internal revenue stamps State liquor stamps Advertising...—Trans-Alaska Pipeline Authorization Act C50ENC—Encryption Commodities and Software C51AGR—License Exception Agricultural Commodities C53APP—Adjusted Peak Performance (Computers) C54SS-WRC—Western Red Cedar...

  6. 15 CFR Appendix B to Part 30 - AES Filing Codes

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... exemptions: Currency Airline tickets Bank notes Internal revenue stamps State liquor stamps Advertising...—Trans-Alaska Pipeline Authorization Act C50ENC—Encryption Commodities and Software C51AGR—License Exception Agricultural Commodities C53APP—Adjusted Peak Performance (Computers) C54SS-WRC—Western Red Cedar...

  7. 26 CFR 1.1012-1 - Basis of property.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (relating to gain or loss on the disposition of property), subchapter C (relating to corporate distributions and adjustments), subchapter K (relating to partners and partnerships), and subchapter P (relating to capital gains and losses), chapter 1 of the code. (b) Real estate taxes as part of cost. In computing the...

  8. 26 CFR 1.1012-1 - Basis of property.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (relating to gain or loss on the disposition of property), subchapter C (relating to corporate distributions and adjustments), subchapter K (relating to partners and partnerships), and subchapter P (relating to capital gains and losses), chapter 1 of the code. (b) Real estate taxes as part of cost. In computing the...

  9. A strong shock tube problem calculated by different numerical schemes

    NASA Astrophysics Data System (ADS)

    Lee, Wen Ho; Clancy, Sean P.

    1996-05-01

    Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressure ratio of 109 and density ratio of 103 in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.H.; Clancy, S.P.

    Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressuremore » ratio of 10{sup 9} and density ratio of 10{sup 3} in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods. {copyright} {ital 1996 American Institute of Physics.}« less

  11. Optimizing legacy molecular dynamics software with directive-based offload

    DOE PAGES

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; ...

    2015-05-14

    The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less

  12. A visual parallel-BCI speller based on the time-frequency coding strategy.

    PubMed

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min(-1), with an average of 54.0 bit min(-1) and 43.0 bit min(-1) in the three rounds and five rounds, respectively. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  13. Subscale Development of Advanced ABM Graphite/Epoxy Composite Structure

    DTIC Science & Technology

    1978-01-01

    laminate analysis computer code (Reference 5). eie output of this code yields lamina stresses and strains, equivalent elastic and shear modulii for the...was not accounted for. Therefore the net effect was that the analysis tended to yield conservative results. For design purposes, this conservative...extracted using a Soxhlet Extraction apparatus, recycling the solvent af least 4 to 10 times every hour for a minimum of 6 hours. (4) All samples are

  14. 48 CFR 4.1803 - Verifying CAGE codes prior to award.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... registration in the System for Award Management (SAM). Active registrations in SAM have had the associated CAGE codes verified. (b) For entities not required to be registered in SAM, the contracting officer shall...

  15. Development and application of the GIM code for the Cyber 203 computer

    NASA Technical Reports Server (NTRS)

    Stainaker, J. F.; Robinson, M. A.; Rawlinson, E. G.; Anderson, P. G.; Mayne, A. W.; Spradley, L. W.

    1982-01-01

    The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented.

  16. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C C

    The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less

  17. A computer program for estimation from incomplete multinomial data

    NASA Technical Reports Server (NTRS)

    Credeur, K. R.

    1978-01-01

    Coding is given for maximum likelihood and Bayesian estimation of the vector p of multinomial cell probabilities from incomplete data. Also included is coding to calculate and approximate elements of the posterior mean and covariance matrices. The program is written in FORTRAN 4 language for the Control Data CYBER 170 series digital computer system with network operating system (NOS) 1.1. The program requires approximately 44000 octal locations of core storage. A typical case requires from 72 seconds to 92 seconds on CYBER 175 depending on the value of the prior parameter.

  18. A User’s Manual for a Detailed Level Fatigue Crack Growth Analysis Computer Code. Volume I. The CRKGRO Program.

    DTIC Science & Technology

    1981-11-01

    259 1.6. 43*2 7.4 ^7.0 -io.0 56.1 8.2 45. 12.4 54.7 266 . 26.4 5.7 33.3 e.5 50.6 2!6 2 .2 -. 8 16.0 262 1!91 2.*4 C. 2൨ .1 4E&6 P.7 20.. 4.7 4Q.7...ot !; oo ;9 5 27C 2.4 63.9 16.0 54.2 4.5 59.5 32.6 43.3 -1C.3 S3.5 271 15.9 52.3 14.0 58.6 10.1 24.3 5.9 27.2 1.2 21.4 272 (.8 43o.9 .3 30.9 .5...5.4 4640 2!97 42.& 13.2 37.9 9.2 22.6 1*4 46.9P 15. 3495 642 13.3 59.b 4.0 25.0 6.8 29.1 6.0 17. 2.7 37.1 643 16.5 40. -180 28.3 3.9 30.2 13 56.1 Z

  19. Geant4 Computing Performance Benchmarking and Monitoring

    DOE PAGES

    Dotti, Andrea; Elvira, V. Daniel; Folger, Gunter; ...

    2015-12-23

    Performance evaluation and analysis of large scale computing applications is essential for optimal use of resources. As detector simulation is one of the most compute intensive tasks and Geant4 is the simulation toolkit most widely used in contemporary high energy physics (HEP) experiments, it is important to monitor Geant4 through its development cycle for changes in computing performance and to identify problems and opportunities for code improvements. All Geant4 development and public releases are being profiled with a set of applications that utilize different input event samples, physics parameters, and detector configurations. Results from multiple benchmarking runs are compared tomore » previous public and development reference releases to monitor CPU and memory usage. Observed changes are evaluated and correlated with code modifications. Besides the full summary of call stack and memory footprint, a detailed call graph analysis is available to Geant4 developers for further analysis. The set of software tools used in the performance evaluation procedure, both in sequential and multi-threaded modes, include FAST, IgProf and Open|Speedshop. In conclusion, the scalability of the CPU time and memory performance in multi-threaded application is evaluated by measuring event throughput and memory gain as a function of the number of threads for selected event samples.« less

  20. Semantic Web Research Trends and Directions

    DTIC Science & Technology

    2006-01-01

    workflow templates. Workflow templates are used for various different tasks such as en- coding business rules in a B2B application, specifying domain...recently suggest that rules are desirable in this space, both in terms of their expressivity, and in some cases, due to their attractive computational...of OWL documents. However, in most cases, a more attractive solution is to simply write a rule that captures the inference needed, as it is reusable

  1. STARS: An Integrated, Multidisciplinary, Finite-Element, Structural, Fluids, Aeroelastic, and Aeroservoelastic Analysis Computer Program

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1997-01-01

    A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.

  2. 76 FR 2934 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    .... \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. \\3\\ 15 U.S.C. 78s(b)(3)(A). \\4\\ 17 CFR 240.19b-4(f)(2... IV below. CBOE has prepared summaries, set forth in sections (A), (B), and (C) below, of the most....\\14\\ \\13\\ For example, public customer orders (``C'' origin code) pay no transaction fee in equity...

  3. Arctic Ice Dynamics Joint Experiment 1975-1976. Physical Oceanography Data Report, Salinity, Temperature and Depth Data, Camp Blue Fox. Volume II.

    DTIC Science & Technology

    1980-02-01

    to LM b. a w ewe%- ww re mOOc 4" o 0.NWmotvviiOf wt 00 f4Crfl ft -wm o.e. &*1 NO P..w N N o%9 a in - - -da inN 4p m a - U . .......0...V N m...200 1 Attn: Code 428AR 3 Attn: Code 420 a Director Naval Research Laboratory Washington, D.C. 20375 Attn: Library . Code 2620 1 U.S. Naval Research

  4. 26 CFR 1.466-2 - Special protective election for certain taxpayers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... which would not be treated as qualified discount coupons under Code section 466. Third, certain expenses... years), even though such expenses would not be deductible under Code section 466. (b) Requirements. In... method provided in § 1.451-4 or its predecessors under the Internal Revenue Code of 1954; (2) The...

  5. 26 CFR 1.466-2 - Special protective election for certain taxpayers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... which would not be treated as qualified discount coupons under Code section 466. Third, certain expenses... years), even though such expenses would not be deductible under Code section 466. (b) Requirements. In... method provided in § 1.451-4 or its predecessors under the Internal Revenue Code of 1954; (2) The...

  6. 26 CFR 1.466-2 - Special protective election for certain taxpayers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... which would not be treated as qualified discount coupons under Code section 466. Third, certain expenses... years), even though such expenses would not be deductible under Code section 466. (b) Requirements. In... method provided in § 1.451-4 or its predecessors under the Internal Revenue Code of 1954; (2) The...

  7. 26 CFR 1.466-2 - Special protective election for certain taxpayers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... which would not be treated as qualified discount coupons under Code section 466. Third, certain expenses... years), even though such expenses would not be deductible under Code section 466. (b) Requirements. In... method provided in § 1.451-4 or its predecessors under the Internal Revenue Code of 1954; (2) The...

  8. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  9. Finite-difference solution for laminar or turbulent boundary layer flow over axisymmetric bodies with ideal gas, CF4, or equilibrium air chemistry

    NASA Astrophysics Data System (ADS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-12-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  10. Convection and thermal radiation analytical models applicable to a nuclear waste repository room

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1979-01-17

    Time-dependent temperature distributions in a deep geologic nuclear waste repository have a direct impact on the physical integrity of the emplaced canisters and on the design of retrievability options. This report (1) identifies the thermodynamic properties and physical parameters of three convection regimes - forced, natural, and mixed; (2) defines the convection correlations applicable to calculating heat flow in a ventilated (forced-air) and in a nonventilated nuclear waste repository room; and (3) delineates a computer code that (a) computes and compares the floor-to-ceiling heat flow by convection and radiation, and (b) determines the nonlinear equivalent conductivity table for a repositorymore » room. (The tables permit the use of the ADINAT code to model surface-to-surface radiation and the TRUMP code to employ two different emissivity properties when modeling radiation exchange between the surface of two different materials.) The analysis shows that thermal radiation dominates heat flow modes in a nuclear waste repository room.« less

  11. Making extreme computations possible with virtual machines

    NASA Astrophysics Data System (ADS)

    Reuter, J.; Chokoufe Nejad, B.; Ohl, T.

    2016-10-01

    State-of-the-art algorithms generate scattering amplitudes for high-energy physics at leading order for high-multiplicity processes as compiled code (in Fortran, C or C++). For complicated processes the size of these libraries can become tremendous (many GiB). We show that amplitudes can be translated to byte-code instructions, which even reduce the size by one order of magnitude. The byte-code is interpreted by a Virtual Machine with runtimes comparable to compiled code and a better scaling with additional legs. We study the properties of this algorithm, as an extension of the Optimizing Matrix Element Generator (O'Mega). The bytecode matrix elements are available as alternative input for the event generator WHIZARD. The bytecode interpreter can be implemented very compactly, which will help with a future implementation on massively parallel GPUs.

  12. Fully relativistic pseudopotential formalism under an atomic orbital basis: spin-orbit splittings and magnetic anisotropies.

    PubMed

    Cuadrado, R; Cerdá, J I

    2012-02-29

    We present an efficient implementation of the spin-orbit coupling within the density functional theory based SIESTA code (2002 J. Phys.: Condens. Matter 14 2745) using the fully relativistic and totally separable pseudopotential formalism of Hemstreet et al (1993 Phys. Rev. B 47 4238). First, we obtain the spin-orbit splittings for several systems ranging from isolated atoms to bulk metals and semiconductors as well as the Au(111) surface state. Next, and after extensive tests on the accuracy of the formalism, we also demonstrate its capability to yield reliable values for the magnetic anisotropy energy in magnetic systems. In particular, we focus on the L1(0) binary alloys and on two large molecules: Mn(6)O(2)(H -sao)(6)(O(2)CH)(2)(CH(3)OH)(4) and Co(4)(hmp)(4)(CH(3)OH)(4)Cl(4). In all cases our calculated anisotropies are in good agreement with those obtained with full-potential methods, despite the latter being, in general, computationally more demanding.

  13. A pedagogical walkthrough of computational modeling and simulation of Wnt signaling pathway using static causal models in MATLAB.

    PubMed

    Sinha, Shriprakash

    2016-12-01

    Simulation study in systems biology involving computational experiments dealing with Wnt signaling pathways abound in literature but often lack a pedagogical perspective that might ease the understanding of beginner students and researchers in transition, who intend to work on the modeling of the pathway. This paucity might happen due to restrictive business policies which enforce an unwanted embargo on the sharing of important scientific knowledge. A tutorial introduction to computational modeling of Wnt signaling pathway in a human colorectal cancer dataset using static Bayesian network models is provided. The walkthrough might aid biologists/informaticians in understanding the design of computational experiments that is interleaved with exposition of the Matlab code and causal models from Bayesian network toolbox. The manuscript elucidates the coding contents of the advance article by Sinha (Integr. Biol. 6:1034-1048, 2014) and takes the reader in a step-by-step process of how (a) the collection and the transformation of the available biological information from literature is done, (b) the integration of the heterogeneous data and prior biological knowledge in the network is achieved, (c) the simulation study is designed, (d) the hypothesis regarding a biological phenomena is transformed into computational framework, and (e) results and inferences drawn using d -connectivity/separability are reported. The manuscript finally ends with a programming assignment to help the readers get hands-on experience of a perturbation project. Description of Matlab files is made available under GNU GPL v3 license at the Google code project on https://code.google.com/p/static-bn-for-wnt-signaling-pathway and https: //sites.google.com/site/shriprakashsinha/shriprakashsinha/projects/static-bn-for-wnt-signaling-pathway. Latest updates can be found in the latter website.

  14. Integrated Performance of Next Generation High Data Rate Receiver and AR4JA LDPC Codec for Space Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Lyubarev, Mark; Nakashima, Michael A.; Andrews, Kenneth S.; Lee, Dennis

    2008-01-01

    Low-density parity-check (LDPC) codes are the state-of-the-art in forward error correction (FEC) technology that exhibits capacity approaching performance. The Jet Propulsion Laboratory (JPL) has designed a family of LDPC codes that are similar in structure and therefore, leads to a single decoder implementation. The Accumulate-Repeat-by-4-Jagged- Accumulate (AR4JA) code design offers a family of codes with rates 1/2, 2/3, 4/5 and lengths 1024, 4096, 16384 information bits. Performance is less than one dB from capacity for all combinations.Integrating a stand-alone LDPC decoder with a commercial-off-the-shelf (COTS) receiver faces additional challenges than building a single receiver-decoder unit from scratch. In this work, we outline the issues and show that these additional challenges can be over-come by simple solutions. To demonstrate that an LDPC decoder can be made to work seamlessly with a COTS receiver, we interface an AR4JA LDPC decoder developed on a field-programmable gate array (FPGA) with a modern high data rate receiver and mea- sure the combined receiver-decoder performance. Through optimizations that include an improved frame synchronizer and different soft-symbol scaling algorithms, we show that a combined implementation loss of less than one dB is possible and therefore, most of the coding gain evidence in theory can also be obtained in practice. Our techniques can benefit any modem that utilizes an advanced FEC code.

  15. Fault-tolerance in Two-dimensional Topological Systems

    NASA Astrophysics Data System (ADS)

    Anderson, Jonas T.

    This thesis is a collection of ideas with the general goal of building, at least in the abstract, a local fault-tolerant quantum computer. The connection between quantum information and topology has proven to be an active area of research in several fields. The introduction of the toric code by Alexei Kitaev demonstrated the usefulness of topology for quantum memory and quantum computation. Many quantum codes used for quantum memory are modeled by spin systems on a lattice, with operators that extract syndrome information placed on vertices or faces of the lattice. It is natural to wonder whether the useful codes in such systems can be classified. This thesis presents work that leverages ideas from topology and graph theory to explore the space of such codes. Homological stabilizer codes are introduced and it is shown that, under a set of reasonable assumptions, any qubit homological stabilizer code is equivalent to either a toric code or a color code. Additionally, the toric code and the color code correspond to distinct classes of graphs. Many systems have been proposed as candidate quantum computers. It is very desirable to design quantum computing architectures with two-dimensional layouts and low complexity in parity-checking circuitry. Kitaev's surface codes provided the first example of codes satisfying this property. They provided a new route to fault tolerance with more modest overheads and thresholds approaching 1%. The recently discovered color codes share many properties with the surface codes, such as the ability to perform syndrome extraction locally in two dimensions. Some families of color codes admit a transversal implementation of the entire Clifford group. This work investigates color codes on the 4.8.8 lattice known as triangular codes. I develop a fault-tolerant error-correction strategy for these codes in which repeated syndrome measurements on this lattice generate a three-dimensional space-time combinatorial structure. I then develop an integer program that analyzes this structure and determines the most likely set of errors consistent with the observed syndrome values. I implement this integer program to find the threshold for depolarizing noise on small versions of these triangular codes. Because the threshold for magic-state distillation is likely to be higher than this value and because logical CNOT gates can be performed by code deformation in a single block instead of between pairs of blocks, the threshold for fault-tolerant quantum memory for these codes is also the threshold for fault-tolerant quantum computation with them. Since the advent of a threshold theorem for quantum computers much has been improved upon. Thresholds have increased, architectures have become more local, and gate sets have been simplified. The overhead for magic-state distillation has been studied, but not nearly to the extent of the aforementioned topics. A method for greatly reducing this overhead, known as reusable magic states, is studied here. While examples of reusable magic states exist for Clifford gates, I give strong reasons to believe they do not exist for non-Clifford gates.

  16. Proceedings of Workshop 15 of the COSPAR Meetings Held in Toulouse, France on 30 June-12 July 1986. Chapter 2. Reference Atmospheres and Thermospheric Mapping,

    DTIC Science & Technology

    1988-01-21

    DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; 2b. DECLASSIFICATION /’DOWNGRADING SCHEDULE Distribution unlimited 4. PERFORMING ORGANIZATION ...REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) AFGL-TR-88-0016 6a, NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF...MONITORING ORGANIZATION Air Force Geophysics (If applicable) Laboratory I oc. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, Stare, and ZIP Code

  17. Miller Cave (23PU2), Fort Leonard Wood, Pulaski County, Missouri: Report of Archaeological Testing and Assessment of Damage

    DTIC Science & Technology

    1993-01-01

    SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION JAVAILABIUITY OF REPORT 2b. DECLASSIFICATION I OWNGRAD)ING SCHEDULE I4. PERFORMING ORGANIZATION ...REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) RESEARCH REPORT NO. 9 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF...MONITORING ORGANIZATION Markman & Associates, Inc.(I plcbe 6c. ADDRESS (City. State. and ZIP Code) 7b. ADDRESS (City. State. and ZIP Code) 824 N. Bl

  18. GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya

    2015-01-01

    The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran.

  19. PURDU-WINCOF: A computer code for establishing the performance of a fan-compressor unit with water ingestion

    NASA Technical Reports Server (NTRS)

    Leonardo, M.; Tsuchiya, T.; Murthy, S. N. B.

    1982-01-01

    A model for predicting the performance of a multi-spool axial-flow compressor with a fan during operation with water ingestion was developed incorporating several two-phase fluid flow effects as follows: (1) ingestion of water, (2) droplet interaction with blades and resulting changes in blade characteristics, (3) redistribution of water and water vapor due to centrifugal action, (4) heat and mass transfer processes, and (5) droplet size adjustment due to mass transfer and mechanical stability considerations. A computer program, called the PURDU-WINCOF code, was generated based on the model utilizing a one-dimensional formulation. An illustrative case serves to show the manner in which the code can be utilized and the nature of the results obtained.

  20. FIIDOS--A Computer Code for the Computation of Fallout Inhalation and Ingestion Dose to Organs Computer User’s Guide (Revision 4)

    DTIC Science & Technology

    2007-05-01

    35 5 Actinide product radionuclides... actinides , and fission products in fallout. Doses from low-linear energy transfer (LET) radiation (beta particles and gamma rays) are reported separately...assumptions about the critical parameters used in calculating internal doses – resuspension factor, breathing rate, fractionation, and scenario elements – to

  1. Coding gains and error rates from the Big Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Onyszchuk, I. M.

    1991-01-01

    A prototype hardware Big Viterbi Decoder (BVD) was completed for an experiment with the Galileo Spacecraft. Searches for new convolutional codes, studies of Viterbi decoder hardware designs and architectures, mathematical formulations, and decompositions of the deBruijn graph into identical and hierarchical subgraphs, and very large scale integration (VLSI) chip design are just a few examples of tasks completed for this project. The BVD bit error rates (BER), measured from hardware and software simulations, are plotted as a function of bit signal to noise ratio E sub b/N sub 0 on the additive white Gaussian noise channel. Using the constraint length 15, rate 1/4, experimental convolutional code for the Galileo mission, the BVD gains 1.5 dB over the NASA standard (7,1/2) Maximum Likelihood Convolution Decoder (MCD) at a BER of 0.005. At this BER, the same gain results when the (255,233) NASA standard Reed-Solomon decoder is used, which yields a word error rate of 2.1 x 10(exp -8) and a BER of 1.4 x 10(exp -9). The (15, 1/6) code to be used by the Cometary Rendezvous Asteroid Flyby (CRAF)/Cassini Missions yields 1.7 dB of coding gain. These gains are measured with respect to symbols input to the BVD and increase with decreasing BER. Also, 8-bit input symbol quantization makes the BVD resistant to demodulated signal-level variations which may cause higher bandwidth than the NASA (7,1/2) code, these gains are offset by about 0.1 dB of expected additional receiver losses. Coding gains of several decibels are possible by compressing all spacecraft data.

  2. Progress on China nuclear data processing code system

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Wu, Xiaofei; Ge, Zhigang; Li, Songyang; Wu, Haicheng; Wen, Lili; Wang, Wenming; Zhang, Huanyu

    2017-09-01

    China is developing the nuclear data processing code Ruler, which can be used for producing multi-group cross sections and related quantities from evaluated nuclear data in the ENDF format [1]. The Ruler includes modules for reconstructing cross sections in all energy range, generating Doppler-broadened cross sections for given temperature, producing effective self-shielded cross sections in unresolved energy range, calculating scattering cross sections in thermal energy range, generating group cross sections and matrices, preparing WIMS-D format data files for the reactor physics code WIMS-D [2]. Programming language of the Ruler is Fortran-90. The Ruler is tested for 32-bit computers with Windows-XP and Linux operating systems. The verification of Ruler has been performed by comparison with calculation results obtained by the NJOY99 [3] processing code. The validation of Ruler has been performed by using WIMSD5B code.

  3. FBCOT: a fast block coding option for JPEG 2000

    NASA Astrophysics Data System (ADS)

    Taubman, David; Naman, Aous; Mathew, Reji

    2017-09-01

    Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically < 0.5dB). The algorithm provides only limited quality/SNR scalability, but offers truly reversible transcoding to/from any standard JPEG 2000 block bit-stream. The proposed FAST block coder can be used with EBCOT's post-compression RD-optimization methodology, allowing a target compressed bit-rate to be achieved even at low latencies, leading to the name FBCOT (Fast Block Coding with Optimized Truncation).

  4. Exploring Accelerating Science Applications with FPGAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storaasli, Olaf O; Strenski, Dave

    2007-01-01

    FPGA hardware and tools (VHDL, Viva, MitrionC and CHiMPS) are described. FPGA performance is evaluated on two Cray XD1 systems (Virtex-II Pro 50 and Virtex-4 LX160) for human genome (DNA and protein) sequence comparisons for a computational biology code (FASTA). Scalable FPGA speedups of 50X (Virtex-II) and 100X (Virtex-4) over a 2.2 GHz Opteron were achieved. Coding and IO issues faced for human genome data are described.

  5. Application of Microgravity to the Assessment of Existing Structures and Structural Foundations.

    DTIC Science & Technology

    1988-04-29

    UADGU Geophysique Francafse IUSRSU 6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 20, Rue des Pavilions Box 65 92800...r (2.8 - 2.4) 286 AM~TCT f eldo f6 YOUOUVT 4. EXISTING STRUCTURES AND (U) CONPAGNIE DE PROSPECTION GEOPHYSIQUE FRANCAISE RUEIL-MALNAISO J LAKSHNRNRN

  6. Numerical Prediction of SERN Performance using WIND code

    NASA Technical Reports Server (NTRS)

    Engblom, W. A.

    2003-01-01

    Computational results are presented for the performance and flow behavior of single-expansion ramp nozzles (SERNs) during overexpanded operation and transonic flight. Three-dimensional Reynolds-Averaged Navier Stokes (RANS) results are obtained for two vehicle configurations, including the NASP Model 5B and ISTAR RBCC (a variant of X-43B) using the WIND code. Numerical predictions for nozzle integrated forces and pitch moments are directly compared to experimental data for the NASP Model 5B, and adequate-to-excellent agreement is found. The sensitivity of SERN performance and separation phenomena to freestream static pressure and Mach number is demonstrated via a matrix of cases for both vehicles. 3-D separation regions are shown to be induced by either lateral (e.g., sidewall) shocks or vertical (e.g., cowl trailing edge) shocks. Finally, the implications of this work to future preliminary design efforts involving SERNs are discussed.

  7. Fluctuating Hydrodynamics Confronts the Rapidity Dependence of Transverse Momentum Fluctuations

    NASA Astrophysics Data System (ADS)

    Pokharel, Rajendra; Gavin, Sean; Moschelli, George

    2012-10-01

    Interest in the development of the theory of fluctuating hydrodynamics is growing [1]. Early efforts suggested that viscous diffusion broadens the rapidity dependence of transverse momentum correlations [2]. That work stimulated an experimental analysis by STAR [3]. We attack this new data along two fronts. First, we compute STAR's fluctuation observable using the NeXSPheRIO code, which combines fluctuating initial conditions from a string fragmentation model with deterministic viscosity-free hydrodynamic evolution. We find that NeXSPheRIO produces a longitudinal narrowing, in contrast to the data. Second, we study the hydrodynamic evolution using second order causal viscous hydrodynamics including Langevin noise. We obtain a deterministic evolution equation for the transverse momentum density correlation function. We use the latest theoretical equations of state and transport coefficients to compute STAR's observable. The results are in excellent accord with the measured broadening. In addition, we predict features of the distribution that can distinguish 2nd and 1st order diffusion. [4pt] [1] J. Kapusta, B. Mueller, M. Stephanov, arXiv:1112.6405 [nucl-th].[0pt] [2] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97, 162302 (2006)[0pt] [3] H. Agakishiev et al., STAR, STAR, Phys. Lett. B704

  8. Predictions of Supersonic Jet Mixing and Shock-Associated Noise Compared With Measured Far-Field Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2010-01-01

    Codes for predicting supersonic jet mixing and broadband shock-associated noise were assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. Two types of codes were used to make predictions. Fast running codes containing empirical models were used to compute both the mixing noise component and the shock-associated noise component of the jet noise spectrum. One Reynolds-averaged, Navier-Stokes-based code was used to compute only the shock-associated noise. To enable the comparisons of the predicted component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise components. Comparisons were made for 1/3-octave spectra and some power spectral densities using data from jets operating at 24 conditions covering essentially 6 fully expanded Mach numbers with 4 total temperature ratios.

  9. Status of Standardization Projects

    DTIC Science & Technology

    1992-03-31

    50 SS N D 8915 TOTAL- 1. DELINQUENT- 0, STATUS CODES: A- 1, G- 0, Y- 0, Z- 0 8920 0539 MIL R 35084A RICE INSTANT ENRICHED GL G2 903 913 913 A GL SA 50...G XXX GL GINGERBREAD PWDER FOLF GL B4 922 932 932 A GL N 8940 A731 IMIL P XXX GL PORK ORIENTAL WITH NOODLES GL B4 922 932 932 A GL N 8940 A732 MIL R... INSTANT GL 84 A 893 903 922 A GL SA 50 SS U B 8955 TOTAL- 1. DELINQUENT- 1, STATUS CODES: A- 1, G- 0, Y- 0. Z- 0 8960 0077 MIL C 3031J 1 COCOA BEVERAGE

  10. FORCE2: A state-of-the-art two-phase code for hydrodynamic calculations

    NASA Astrophysics Data System (ADS)

    Ding, Jianmin; Lyczkowski, R. W.; Burge, S. W.

    1993-02-01

    A three-dimensional computer code for two-phase flow named FORCE2 has been developed by Babcock and Wilcox (B & W) in close collaboration with Argonne National Laboratory (ANL). FORCE2 is capable of both transient as well as steady-state simulations. This Cartesian coordinates computer program is a finite control volume, industrial grade and quality embodiment of the pilot-scale FLUFIX/MOD2 code and contains features such as three-dimensional blockages, volume and surface porosities to account for various obstructions in the flow field, and distributed resistance modeling to account for pressure drops caused by baffles, distributor plates and large tube banks. Recently computed results demonstrated the significance of and necessity for three-dimensional models of hydrodynamics and erosion. This paper describes the process whereby ANL's pilot-scale FLUFIX/MOD2 models and numerics were implemented into FORCE2. A description of the quality control to assess the accuracy of the new code and the validation using some of the measured data from Illinois Institute of Technology (UT) and the University of Illinois at Urbana-Champaign (UIUC) are given. It is envisioned that one day, FORCE2 with additional modules such as radiation heat transfer, combustion kinetics and multi-solids together with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

  11. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1991-01-01

    In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  12. Implementation of a 3D mixing layer code on parallel computers

    NASA Technical Reports Server (NTRS)

    Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.

    1995-01-01

    This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.

  13. MHD code using multi graphical processing units: SMAUG+

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Griffiths, M. K.; Erdélyi, R.

    2018-01-01

    This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 × 1000, 2044 × 2044, 4000 × 4000 and 8000 × 8000 . We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems.

  14. Effects of inter-stimulus interval and intensity on the perceived urgency of tactile patterns.

    PubMed

    White, Timothy L; Krausman, Andrea S

    2015-05-01

    This research examines the feasibility of coding urgency into tactile patterns. Four tactile patterns were presented at either, 12 or 23.5 dB above mean threshold, with an ISI of either 0 (no interval) or 500 msec. Measures included pattern identification and urgency rating on a scale of 1 (least urgent) to 10 (most urgent). Two studies were conducted, a laboratory study and a field study. In the laboratory study, participants received the tactile patterns while seated in front of a computer. For the field study, participants performed dismounted Soldier maneuvers while receiving the tactile patterns. Higher identification rates were found for the 23.5 dB intensity. Patterns presented at the 23.5 dB intensity and no ISI were rated most urgent. No differences in urgency ratings were found for 12 dB based on ISI. Findings support the notion of coding urgency into tactile patterns as a way of augmenting tactile communication. Published by Elsevier Ltd.

  15. Computational modeling of temperature elevation and thermoregulatory response in the brains of anesthetized rats locally exposed at 1.5 GHz

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Masuda, Hiroshi; Kanai, Yuya; Asai, Ryuichi; Fujiwara, Osamu; Arima, Takuji; Kawai, Hiroki; Watanabe, Soichi; Lagroye, Isabelle; Veyret, Bernard

    2011-12-01

    The dominant effect of human exposures to microwaves is caused by temperature elevation ('thermal effect'). In the safety guidelines/standards, the specific absorption rate averaged over a specific volume is used as a metric for human protection from localized exposure. Further investigation on the use of this metric is required, especially in terms of thermophysiology. The World Health Organization (2006 RF research agenda) has given high priority to research into the extent and consequences of microwave-induced temperature elevation in children. In this study, an electromagnetic-thermal computational code was developed to model electromagnetic power absorption and resulting temperature elevation leading to changes in active blood flow in response to localized 1.457 GHz exposure in rat heads. Both juvenile (4 week old) and young adult (8 week old) rats were considered. The computational code was validated against measurements for 4 and 8 week old rats. Our computational results suggest that the blood flow rate depends on both brain and core temperature elevations. No significant difference was observed between thermophysiological responses in 4 and 8 week old rats under these exposure conditions. The computational model developed herein is thus applicable to set exposure conditions for rats in laboratory investigations, as well as in planning treatment protocols in the thermal therapy.

  16. Outcome of patients identified as dead (beyond resuscitation) at the point of the emergency call.

    PubMed

    Harvey, L; Woollard, M

    2004-05-01

    Currently, an emergency ambulance is dispatched to all cardiac arrest victims. This study aimed to determine the outcome of patients with a dispatch code of 09B01 ("obvious death") and considers the appropriateness of dispatching a non-emergency response. Dispatch records, patient report forms, and hospital records were reviewed to determine patient outcome. Within the one year study period 141 emergency calls were coded as 09B01. Records were obtained for 59 of these cases (42%). Ambulance crews diagnosed 54 as beyond resuscitation (91.5%, 95% CI 79.5% to 96.2%). Three received resuscitation attempts (5.1%, 95% CI 1.1% to 14.2%): two were subsequently pronounced dead at scene and one on arrival at hospital. Two patients were not in cardiac arrest (3.4%, 95% CI 0.4% to 11.7%): one was a transiently unconscious assault victim, and one had a hand injury after a road accident. Three patients coded as 09B01 were transported to hospital for treatment other than confirmation of death (5.1%, 95% CI 1.1% to 14.2%). Not all patients coded 09B01 by dispatchers are assessed as "dead beyond resuscitation" by attending ambulance crews. Although poor data recovery and a small sample size limited the study, its findings suggest that it is inappropriate to allocate a non-emergency response to 09B01 (obvious death) calls.

  17. Heating in short-pulse laser-driven cone-capped wire targets

    NASA Astrophysics Data System (ADS)

    Mason, R. J.; Wei, M.; King, J.; Beg, F.; Stephens, R. B.

    2007-11-01

    The 2-D implicit hybrid simulation code e-PLAS has been used to study heating in cone-capped copper wire targets. The code e-PLAS tracks collisional particle-in-cell (PIC) electrons traversing background plasma of collisional Eulerian cold electron and ion fluids. It computes E- and B-fields by the Implicit Moment Method [1,2]. In recent experiments [3] at the Vulcan laser facility, sub- picosecond laser pulses at 1.06 μm, and 4.0 x 10^20 W/cm^2 intensity were focused into thin-walled (˜10 μm) cones attached to copper wires. The wire diameter was varied from 10-40 μm with a typical length of 1 mm. We characterize heating of the wires as a function of their diameters and length, and relate modifications of this heating to changes in the assumed laser-generated hot electron spectrum and directivity. As in recent nail experiments [4], the cones can serve as reservoirs for hot electrons, diverting them from passage down the wires. [1] R. J. Mason, and C. Cranfill, IEEE Trans. Plasma Sci. PS-14, 45 (1986). [2] R. J. Mason, J. Comp. Phys. 71, 429 (1987). [3] J. King et al., to be submitted to Phys. Rev. Lett.. [4] R. J. Mason, M. Wei, F. Beg, R. Stephens, and C. Snell, in Proc. of ICOPS07, Albuquerque, NM, June 17-22, 2007, Talk 7D4.

  18. Modeling and simulation of dense cloud dispersion in urban areas by means of computational fluid dynamics.

    PubMed

    Scargiali, F; Grisafi, F; Busciglio, A; Brucato, A

    2011-12-15

    The formation of toxic heavy clouds as a result of sudden accidental releases from mobile containers, such as road tankers or railway tank cars, may occur inside urban areas so the problem arises of their consequences evaluation. Due to the semi-confined nature of the dispersion site simplified models may often be inappropriate. As an alternative, computational fluid dynamics (CFD) has the potential to provide realistic simulations even for geometrically complex scenarios since the heavy gas dispersion process is described by basic conservation equations with a reduced number of approximations. In the present work a commercial general purpose CFD code (CFX 4.4 by Ansys(®)) is employed for the simulation of dense cloud dispersion in urban areas. The simulation strategy proposed involves a stationary pre-release flow field simulation followed by a dynamic after-release flow and concentration field simulations. In order to try a generalization of results, the computational domain is modeled as a simple network of straight roads with regularly distributed blocks mimicking the buildings. Results show that the presence of buildings lower concentration maxima and enlarge the side spread of the cloud. Dispersion dynamics is also found to be strongly affected by the quantity of heavy-gas released. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Cooperative optimization and their application in LDPC codes

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Rong, Jian; Zhong, Xiaochun

    2008-10-01

    Cooperative optimization is a new way for finding global optima of complicated functions of many variables. The proposed algorithm is a class of message passing algorithms and has solid theory foundations. It can achieve good coding gains over the sum-product algorithm for LDPC codes. For (6561, 4096) LDPC codes, the proposed algorithm can achieve 2.0 dB gains over the sum-product algorithm at BER of 4×10-7. The decoding complexity of the proposed algorithm is lower than the sum-product algorithm can do; furthermore, the former can achieve much lower error floor than the latter can do after the Eb / No is higher than 1.8 dB.

  20. Computation of a Canadian SCWR unit cell with deterministic and Monte Carlo codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrisson, G.; Marleau, G.

    2012-07-01

    The Canadian SCWR has the potential to achieve the goals that the generation IV nuclear reactors must meet. As part of the optimization process for this design concept, lattice cell calculations are routinely performed using deterministic codes. In this study, the first step (self-shielding treatment) of the computation scheme developed with the deterministic code DRAGON for the Canadian SCWR has been validated. Some options available in the module responsible for the resonance self-shielding calculation in DRAGON 3.06 and different microscopic cross section libraries based on the ENDF/B-VII.0 evaluated nuclear data file have been tested and compared to a reference calculationmore » performed with the Monte Carlo code SERPENT under the same conditions. Compared to SERPENT, DRAGON underestimates the infinite multiplication factor in all cases. In general, the original Stammler model with the Livolant-Jeanpierre approximations are the most appropriate self-shielding options to use in this case of study. In addition, the 89 groups WIMS-AECL library for slight enriched uranium and the 172 groups WLUP library for a mixture of plutonium and thorium give the most consistent results with those of SERPENT. (authors)« less

  1. Experimental study of non-binary LDPC coding for long-haul coherent optical QPSK transmissions.

    PubMed

    Zhang, Shaoliang; Arabaci, Murat; Yaman, Fatih; Djordjevic, Ivan B; Xu, Lei; Wang, Ting; Inada, Yoshihisa; Ogata, Takaaki; Aoki, Yasuhiro

    2011-09-26

    The performance of rate-0.8 4-ary LDPC code has been studied in a 50 GHz-spaced 40 Gb/s DWDM system with PDM-QPSK modulation. The net effective coding gain of 10 dB is obtained at BER of 10(-6). With the aid of time-interleaving polarization multiplexing and MAP detection, 10,560 km transmission over legacy dispersion managed fiber is achieved without any countable errors. The proposed nonbinary quasi-cyclic LDPC code achieves an uncoded BER threshold at 4×10(-2). Potential issues like phase ambiguity and coding length are also discussed when implementing LDPC in current coherent optical systems. © 2011 Optical Society of America

  2. Computational Infrastructure for Geodynamics (CIG)

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to leverage and develop long-term strategic partnerships with open source development efforts within the larger thrusts of scientific computing and geoinformatics. These strategic partnerships are essential as the frontier has moved into multi-scale and multi-physics problems in which many investigators now want to use simulation software for data interpretation, data assimilation, and hypothesis testing.

  3. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  4. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  5. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  6. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  7. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  8. Aerodynamic Interference Due to MSL Reaction Control System

    NASA Technical Reports Server (NTRS)

    Dyakonov, Artem A.; Schoenenberger, Mark; Scallion, William I.; VanNorman, John W.; Novak, Luke A.; Tang, Chun Y.

    2009-01-01

    An investigation of effectiveness of the reaction control system (RCS) of Mars Science Laboratory (MSL) entry capsule during atmospheric flight has been conducted. The reason for the investigation is that MSL is designed to fly a lifting actively guided entry with hypersonic bank maneuvers, therefore an understanding of RCS effectiveness is required. In the course of the study several jet configurations were evaluated using Langley Aerothermal Upwind Relaxation Algorithm (LAURA) code, Data Parallel Line Relaxation (DPLR) code, Fully Unstructured 3D (FUN3D) code and an Overset Grid Flowsolver (OVERFLOW) code. Computations indicated that some of the proposed configurations might induce aero-RCS interactions, sufficient to impede and even overwhelm the intended control torques. It was found that the maximum potential for aero-RCS interference exists around peak dynamic pressure along the trajectory. Present analysis largely relies on computational methods. Ground testing, flight data and computational analyses are required to fully understand the problem. At the time of this writing some experimental work spanning range of Mach number 2.5 through 4.5 has been completed and used to establish preliminary levels of confidence for computations. As a result of the present work a final RCS configuration has been designed such as to minimize aero-interference effects and it is a design baseline for MSL entry capsule.

  9. Constrained coding for the deep-spaced optical channel

    NASA Technical Reports Server (NTRS)

    Moision, B.; Hamkins, J.

    2002-01-01

    In this paper, we demonstrate a class of low-complexity modulation codes satisfying the (d,k) constraint that offer throughput gains over M-PPM on the order of 10-15%, which translate into SNR gains of .4 - .6 dB.

  10. [Introduction of a bar coding pharmacy stock replenishment system in a prehospital emergency medical unit: economical impact].

    PubMed

    Dupuis, S; Fecci, J-L; Noyer, P; Lecarpentier, E; Chollet-Xémard, C; Margenet, A; Marty, J; Combes, X

    2009-01-01

    To assess economical impact after introduction of a bar coding pharmacy stock replenishment system in a prehospital emergency medical unit. Observational before and after study. A computer system using specific software and bare-code technology was introduced in the pre hospital emergency medical unit (Smur). Overall activity and costs related to pharmacy were recorded annually during two periods: the first 2 years period before computer system introduction and the second one during the 4 years following this system installation. The overall clinical activity increased by 10% between the two periods whereas pharmacy related costs continuously decreased after the start of pharmacy management computer system use. Pharmacy stock management was easier after introduction of the new stock replenishment system. The mean pharmacy related cost of one patient management was 13 Euros before and 9 Euros after the introduction of the system. The overall cost savings during the studied period was calculated to reach 134,000 Euros. The introduction of a specific pharmacy management computer system allowed to do important costs savings in a prehospital emergency medical unit.

  11. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2013-01-01

    A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.

  12. Four year-olds use norm-based coding for face identity.

    PubMed

    Jeffery, Linda; Read, Ainsley; Rhodes, Gillian

    2013-05-01

    Norm-based coding, in which faces are coded as deviations from an average face, is an efficient way of coding visual patterns that share a common structure and must be distinguished by subtle variations that define individuals. Adults and school-aged children use norm-based coding for face identity but it is not yet known if pre-school aged children also use norm-based coding. We reasoned that the transition to school could be critical in developing a norm-based system because school places new demands on children's face identification skills and substantially increases experience with faces. Consistent with this view, face identification performance improves steeply between ages 4 and 7. We used face identity aftereffects to test whether norm-based coding emerges between these ages. We found that 4 year-old children, like adults, showed larger face identity aftereffects for adaptors far from the average than for adaptors closer to the average, consistent with use of norm-based coding. We conclude that experience prior to age 4 is sufficient to develop a norm-based face-space and that failure to use norm-based coding cannot explain 4 year-old children's poor face identification skills. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. YAP Version 4.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Eric M.

    2004-05-20

    The YAP software library computes (1) electromagnetic modes, (2) electrostatic fields, (3) magnetostatic fields and (4) particle trajectories in 2d and 3d models. The code employs finite element methods on unstructured grids of tetrahedral, hexahedral, prism and pyramid elements, with linear through cubic element shapes and basis functions to provide high accuracy. The novel particle tracker is robust, accurate and efficient, even on unstructured grids with discontinuous fields. This software library is a component of the MICHELLE 3d finite element gun code.

  14. Applied Computational Electromagnetics Society Journal, Volume 9, Number 2

    DTIC Science & Technology

    1994-07-01

    input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output...THE APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL EDITORS 3DITOR-IN-CH•IF/ACES EDITOR-IN-CHIEP/JOURNAL MANAGING EDITOR W. Perry Wheless...Adalbert Konrad and Paul P. Biringer Department of Electrical and Computer Engineering, University of Toronto Toronto, Ontario, CANADA M5S 1A4 Ailiwir

  15. Additional and revised thermochemical data and computer code for WATEQ2: a computerized chemical model for trace and major element speciation and mineral equilibria of natural waters

    USGS Publications Warehouse

    Ball, James W.; Nordstrom, D. Kirk; Jenne, Everett A.

    1980-01-01

    A computerized chemical model, WATEQ2, has resulted from extensive additions to and revision of the WATEQ model of Truesdell and Jones (Truesdell, A. H., and Jones, B. F., 1974, WATEQ, a computer program for calculating chemical equilibria of natural waters: J. Res. U. S. Geol, Survey, v. 2, p. 233-274). The model building effort has necessitated searching the literature and selecting thermochemical data pertinent to the reactions added to the model. This supplementary report manes available the details of the reactions added to the model together with the selected thermochemical data and their sources. Also listed are details of program operation and a brief description of the output of the model. Appendices-contain a glossary of identifiers used in the PL/1 computer code, the complete PL/1 listing, and sample output from three water analyses used as test cases.

  16. The effects of nuclear data library processing on Geant4 and MCNP simulations of the thermal neutron scattering law

    NASA Astrophysics Data System (ADS)

    Hartling, K.; Ciungu, B.; Li, G.; Bentoumi, G.; Sur, B.

    2018-05-01

    Monte Carlo codes such as MCNP and Geant4 rely on a combination of physics models and evaluated nuclear data files (ENDF) to simulate the transport of neutrons through various materials and geometries. The grid representation used to represent the final-state scattering energies and angles associated with neutron scattering interactions can significantly affect the predictions of these codes. In particular, the default thermal scattering libraries used by MCNP6.1 and Geant4.10.3 do not accurately reproduce the ENDF/B-VII.1 model in simulations of the double-differential cross section for thermal neutrons interacting with hydrogen nuclei in a thin layer of water. However, agreement between model and simulation can be achieved within the statistical error by re-processing ENDF/B-VII.I thermal scattering libraries with the NJOY code. The structure of the thermal scattering libraries and sampling algorithms in MCNP and Geant4 are also reviewed.

  17. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    NASA Astrophysics Data System (ADS)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  18. Computer codes for the evaluation of thermodynamic and transport properties for equilibrium air to 30000 K

    NASA Technical Reports Server (NTRS)

    Thompson, Richard A.; Lee, Kam-Pui; Gupta, Roop N.

    1991-01-01

    The computer codes developed here provide self-consistent thermodynamic and transport properties for equilibrium air for temperatures from 500 to 30000 K over a temperature range of 10 (exp -4) to 10 (exp -2) atm. These properties are computed through the use of temperature dependent curve fits for discrete values of pressure. Interpolation is employed for intermediate values of pressure. The curve fits are based on mixture values calculated from an 11-species air model. Individual species properties used in the mixture relations are obtained from a recent study by the present authors. A review and discussion of the sources and accuracy of the curve fitted data used herein are given in NASA RP 1260.

  19. Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPC-coded modulation.

    PubMed

    Batshon, Hussam G; Djordjevic, Ivan; Schmidt, Ted

    2010-09-13

    We propose a subcarrier-multiplexed four-dimensional LDPC bit-interleaved coded modulation scheme that is capable of achieving beyond 480 Gb/s single-channel transmission rate over optical channels. Subcarrier-multiplexed four-dimensional LDPC coded modulation scheme outperforms the corresponding dual polarization schemes by up to 4.6 dB in OSNR at BER 10(-8).

  20. The MCNP6 Analytic Criticality Benchmark Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    2016-06-16

    Analytical benchmarks provide an invaluable tool for verifying computer codes used to simulate neutron transport. Several collections of analytical benchmark problems [1-4] are used routinely in the verification of production Monte Carlo codes such as MCNP® [5,6]. Verification of a computer code is a necessary prerequisite to the more complex validation process. The verification process confirms that a code performs its intended functions correctly. The validation process involves determining the absolute accuracy of code results vs. nature. In typical validations, results are computed for a set of benchmark experiments using a particular methodology (code, cross-section data with uncertainties, and modeling)more » and compared to the measured results from the set of benchmark experiments. The validation process determines bias, bias uncertainty, and possibly additional margins. Verification is generally performed by the code developers, while validation is generally performed by code users for a particular application space. The VERIFICATION_KEFF suite of criticality problems [1,2] was originally a set of 75 criticality problems found in the literature for which exact analytical solutions are available. Even though the spatial and energy detail is necessarily limited in analytical benchmarks, typically to a few regions or energy groups, the exact solutions obtained can be used to verify that the basic algorithms, mathematics, and methods used in complex production codes perform correctly. The present work has focused on revisiting this benchmark suite. A thorough review of the problems resulted in discarding some of them as not suitable for MCNP benchmarking. For the remaining problems, many of them were reformulated to permit execution in either multigroup mode or in the normal continuous-energy mode for MCNP. Execution of the benchmarks in continuous-energy mode provides a significant advance to MCNP verification methods.« less

  1. Atomic-scale Modeling of the Structure and Dynamics of Dislocations in Complex Alloys at High Temperatures

    NASA Technical Reports Server (NTRS)

    Daw, Murray S.; Mills, Michael J.

    2003-01-01

    We report on the progress made during the first year of the project. Most of the progress at this point has been on the theoretical and computational side. Here are the highlights: (1) A new code, tailored for high-end desktop computing, now combines modern Accelerated Dynamics (AD) with the well-tested Embedded Atom Method (EAM); (2) The new Accelerated Dynamics allows the study of relatively slow, thermally-activated processes, such as diffusion, which are much too slow for traditional Molecular Dynamics; (3) We have benchmarked the new AD code on a rather simple and well-known process: vacancy diffusion in copper; and (4) We have begun application of the AD code to the diffusion of vacancies in ordered intermetallics.

  2. Computer Description of Black Hawk Helicopter

    DTIC Science & Technology

    1979-06-01

    Model Combinatorial Geometry Models Black Hawk Helicopter Helicopter GIFT Computer Code Geometric Description of Targets 20. ABSTRACT...description was made using the technique of combinatorial geometry (COM-GEOM) and will be used as input to the GIFT computer code which generates Tliic...rnHp The data used bv the COVART comtmter code was eenerated bv the Geometric Information for Targets ( GIFT )Z computer code. This report documents

  3. Enhanced decoding for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Belongie, M.

    1993-01-01

    A coding system under consideration for the Galileo S-band low-gain antenna mission is a concatenated system using a variable redundancy Reed-Solomon outer code and a (14,1/4) convolutional inner code. The 8-bit Reed-Solomon symbols are interleaved to depth 8, and the eight 255-symbol codewords in each interleaved block have redundancies 64, 20, 20, 20, 64, 20, 20, and 20, respectively (or equivalently, the codewords have 191, 235, 235, 235, 191, 235, 235, and 235 8-bit information symbols, respectively). This concatenated code is to be decoded by an enhanced decoder that utilizes a maximum likelihood (Viterbi) convolutional decoder; a Reed Solomon decoder capable of processing erasures; an algorithm for declaring erasures in undecoded codewords based on known erroneous symbols in neighboring decodable words; a second Viterbi decoding operation (redecoding) constrained to follow only paths consistent with the known symbols from previously decodable Reed-Solomon codewords; and a second Reed-Solomon decoding operation using the output from the Viterbi redecoder and additional erasure declarations to the extent possible. It is estimated that this code and decoder can achieve a decoded bit error rate of 1 x 10(exp 7) at a concatenated code signal-to-noise ratio of 0.76 dB. By comparison, a threshold of 1.17 dB is required for a baseline coding system consisting of the same (14,1/4) convolutional code, a (255,223) Reed-Solomon code with constant redundancy 32 also interleaved to depth 8, a one-pass Viterbi decoder, and a Reed Solomon decoder incapable of declaring or utilizing erasures. The relative gain of the enhanced system is thus 0.41 dB. It is predicted from analysis based on an assumption of infinite interleaving that the coding gain could be further improved by approximately 0.2 dB if four stages of Viterbi decoding and four levels of Reed-Solomon redundancy are permitted. Confirmation of this effect and specification of the optimum four-level redundancy profile for depth-8 interleaving is currently being done.

  4. MILSTRIP. MILitary, STandard, Requisitioning and Issue Procedures.

    DTIC Science & Technology

    1987-05-01

    Reduction in the Use of Exception Data Requisitions (Staffed by PMCL 483A), fully implements the use of Status Code D6 under chapter 2 and appendix B16 ...and appendices BI, B16 , C4, and C17. (1 Nov 92) C. AMCL 16, Revised Dollar Threshold for Shipment Status (DI AS3) to DRMS (Staffed by PMCL 13A...and appendices Bi, B16 , and C46, and adds new appendix A34. (1 Nov 92) F. AMCL 165A, Status Codes for Nonconsumable Items (Staffed by PMCL 478

  5. SAC (Strategic Air Command) Needs a Few Good Men and Women’ - A Guide to ICBM (Intercontinental Ballistic Missile) Operations Duty

    DTIC Science & Technology

    1988-04-01

    Ditribufion is unlimited. 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 88-0825 6a NAME OF PERFORMING ORGANIZATION 6b...OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION ACS C/EDC (If applicable) 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and...ZIP Code) MAXWELL AFB AL 36112-5542 8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hang Bae

    A reliability testing was performed for the software of Shutdown(SDS) Computers for Wolsong Nuclear Power Plants Units 2, 3 and 4. profiles to the SDS Computers and compared the outputs with the predicted results generated by the oracle. Test softwares were written to execute the test automatically. Random test profiles were generated using analysis code. 11 refs., 1 fig.

  7. A Computer-Assisted Nutrition Education Unit for Grades 4-6.

    ERIC Educational Resources Information Center

    Hills, Alvina M.

    1983-01-01

    A computer-assisted instructional unit (written for 32K Commodore PET microcomputer) was developed to identify four food groups outlined in Canada's Food Guide, place specific foods in correct groups, and identify food not belonging to the four groups. Animated color-coded keys are used to represent the food groups. (JN)

  8. Manned systems utilization analysis (study 2.1). Volume 4: Program manual and users guide for the LOVES computer code

    NASA Technical Reports Server (NTRS)

    Wray, S. T., Jr.

    1975-01-01

    Information necessary to use the LOVES computer program in its existing state or to modify the program to include studies not properly handled by the basic model is provided. A users guide, a programmers manual, and several supporting appendices are included.

  9. Validation of numerical solvers for liquid metal flow in a complex geometry in the presence of a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Patel, Anita; Pulugundla, Gautam; Smolentsev, Sergey; Abdou, Mohamed; Bhattacharyay, Rajendraprasad

    2018-04-01

    Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65-72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, it{Ha} (it{Ha}^2 is the ratio between electromagnetic and viscous forces) and high interaction parameters, it{N} (it{N} is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for it{Ha} up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) it{Ha}=515, it{N}=3.2 and (Case B) it{Ha}=2059, it{N}=63.8 are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.

  10. The EGS5 Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba

    2005-12-20

    In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users ofmore » EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version, a deliberate attempt was made to present example problems in order to help the user ''get started'', and we follow that spirit in this report. A series of elementary tutorial user codes are presented in Chapter 3, with more sophisticated sample user codes described in Chapter 4. Novice EGS users will find it helpful to read through the initial sections of the EGS5 User Manual (provided in Appendix B of this report), proceeding then to work through the tutorials in Chapter 3. The User Manuals and other materials found in the appendices contain detailed flow charts, variable lists, and subprogram descriptions of EGS5 and PEGS. Included are step-by-step instructions for developing basic EGS5 user codes and for accessing all of the physics options available in EGS5 and PEGS. Once acquainted with the basic structure of EGS5, users should find the appendices the most frequently consulted sections of this report.« less

  11. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, S. N.; Nagpal, V. K.; Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    This paper presents predictive methods/codes for computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of (1) acoustic noise generated from a vibrating component, (2) degradation in material properties of the composite laminate at use temperature, (3) dynamic response of acoustically excited hot multilayered composite structure, (4) degradation in the first-ply strength of the excited structure due to acoustic loading, and (5) acoustic fatigue resistance of the excited structure, including propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisure) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  12. A computer program for processing impedance cardiographic data: Improving accuracy through user-interactive software

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Naifeh, Karen; Thrasher, Chet

    1988-01-01

    This report contains the source code and documentation for a computer program used to process impedance cardiography data. The cardiodynamic measures derived from impedance cardiography are ventricular stroke column, cardiac output, cardiac index and Heather index. The program digitizes data collected from the Minnesota Impedance Cardiograph, Electrocardiography (ECG), and respiratory cycles and then stores these data on hard disk. It computes the cardiodynamic functions using interactive graphics and stores the means and standard deviations of each 15-sec data epoch on floppy disk. This software was designed on a Digital PRO380 microcomputer and used version 2.0 of P/OS, with (minimally) a 4-channel 16-bit analog/digital (A/D) converter. Applications software is written in FORTRAN 77, and uses Digital's Pro-Tool Kit Real Time Interface Library, CORE Graphic Library, and laboratory routines. Source code can be readily modified to accommodate alternative detection, A/D conversion and interactive graphics. The object code utilizing overlays and multitasking has a maximum of 50 Kbytes.

  13. Improved Boundary Layer Module (BLM) for the Solid Performance Program (SPP)

    NASA Astrophysics Data System (ADS)

    Coats, D. E.; Cebeci, T.

    1982-03-01

    The requirements for a replacement to the Bartz boundary layer code, the standard method of computing the performance loss due to viscous effects by the solid performance program, were discussed by the propulsion community along with four nationally recognized boundary layer experts. A consensus was reached regarding the preferred features for the analysis of the replacement code. The major points that were agreed upon are: (1) finite difference methods are preferred over integral methods; (2) a single equation eddy viscosity model was considered to be adequate for the purpose of computing performance loss; (3) a variable grid capability in both coordinate directions would be required; (4) a proven finite difference algorithm which is not stability restricted should be used, that is, an implicit numerical scheme would be required; and (5) the replacement code should be able to compute both turbulent and laminar flows. The program should treat mass addition at the wall as well as being able to calculate a stagnation point starting line.

  14. User manual for semi-circular compact range reflector code: Version 2

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Burnside, Walter D.

    1987-01-01

    A computer code has been developed at the Ohio State University ElectroScience Laboratory to analyze a semi-circular paraboloidal reflector with or without a rolled edge at the top and a skirt at the bottom. The code can be used to compute the total near field of the reflector or its individual components at a given distance from the center of the paraboloid. The code computes the fields along a radial, horizontal, vertical or axial cut at that distance. Thus, it is very effective in computing the size of the sweet spot for a semi-circular compact range reflector. This report describes the operation of the code. Various input and output statements are explained. Some results obtained using the computer code are presented to illustrate the code's capability as well as being samples of input/output sets.

  15. A computer simulation of the transient response of a 4 cylinder Stirling engine with burner and air preheater in a vehicle

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1981-01-01

    A series of computer programs are presented with full documentation which simulate the transient behavior of a modern 4 cylinder Siemens arrangement Stirling engine with burner and air preheater. Cold start, cranking, idling, acceleration through 3 gear changes and steady speed operation are simulated. Sample results and complete operating instructions are given. A full source code listing of all programs are included.

  16. A new code for Galileo

    NASA Technical Reports Server (NTRS)

    Dolinar, S.

    1988-01-01

    Over the past six to eight years, an extensive research effort was conducted to investigate advanced coding techniques which promised to yield more coding gain than is available with current NASA standard codes. The delay in Galileo's launch due to the temporary suspension of the shuttle program provided the Galileo project with an opportunity to evaluate the possibility of including some version of the advanced codes as a mission enhancement option. A study was initiated last summer to determine if substantial coding gain was feasible for Galileo and, is so, to recommend a suitable experimental code for use as a switchable alternative to the current NASA-standard code. The Galileo experimental code study resulted in the selection of a code with constant length 15 and rate 1/4. The code parameters were chosen to optimize performance within cost and risk constraints consistent with retrofitting the new code into the existing Galileo system design and launch schedule. The particular code was recommended after a very limited search among good codes with the chosen parameters. It will theoretically yield about 1.5 dB enhancement under idealizing assumptions relative to the current NASA-standard code at Galileo's desired bit error rates. This ideal predicted gain includes enough cushion to meet the project's target of at least 1 dB enhancement under real, non-ideal conditions.

  17. Evaluation of knowledge resources for public health reporting logic: Implications for knowledge authoring and management

    PubMed Central

    Staes, Catherine J; Altamore, Rita; Han, EunGyoung; Mottice, Susan; Rajeev, Deepthi; Bradshaw, Richard

    2011-01-01

    To control disease, laboratories and providers are required to report conditions to public health authorities. Reporting logic is defined in a variety of resources, but there is no single resource available for reporters to access the list of reportable events and computable reporting logic for any jurisdiction. In order to develop evidence-based requirements for authoring such knowledge, we evaluated reporting logic in the Council of State and Territorial Epidemiologist (CSTE) position statements to assess its readiness for automated systems and identify features that should be considered when designing an authoring interface; we evaluated codes in the Reportable Condition Mapping Tables (RCMT) relative to the nationally-defined reporting logic, and described the high level business processes and knowledge required to support laboratory-based public health reporting. We focused on logic for viral hepatitis. We found that CSTE tabular logic was unnecessarily complex (sufficient conditions superseded necessary and optional conditions) and was sometimes true for more than one reportable event: we uncovered major overlap in the logic between acute and chronic hepatitis B (52%), acute and Past and Present hepatitis C (90%). We found that the RCMT includes codes for all hepatitis criteria, but includes addition codes for tests not included in the criteria. The proportion of hepatitis variant-related codes included in RCMT that correspond to a criterion in the hepatitis-related position statements varied between hepatitis A (36%), acute hepatitis B (16%), chronic hepatitis B (64%), acute hepatitis C (96%), and past and present hepatitis C (96%). Public health epidemiologists have the need to communicate parameters other than just the name of a disease or organism that should be reported, such as the status and specimen sources. Existing knowledge resources should be integrated, harmonized and made computable. Our findings identified functionality that should be provided by future knowledge management systems to support epidemiologists as they communicate reporting rules for their jurisdiction. PMID:23569619

  18. 26 CFR 1.197-2 - Amortization of goodwill and certain other intangibles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., process, design, pattern, know-how, format, package design, computer software (as defined in paragraph (c... section 1253(b)(1) and includes any agreement that provides one of the parties to the agreement with the... any program or routine (that is, any sequence of machine-readable code) that is designed to cause a...

  19. Hanford meteorological station computer codes: Volume 9, The quality assurance computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burk, K.W.; Andrews, G.L.

    1989-02-01

    The Hanford Meteorological Station (HMS) was established in 1944 on the Hanford Site to collect and archive meteorological data and provide weather forecasts and related services for Hanford Site approximately 1/2 mile east of the 200 West Area and is operated by PNL for the US Department of Energy. Meteorological data are collected from various sensors and equipment located on and off the Hanford Site. These data are stored in data bases on the Digital Equipment Corporation (DEC) VAX 11/750 at the HMS (hereafter referred to as the HMS computer). Files from those data bases are routinely transferred to themore » Emergency Management System (EMS) computer at the Unified Dose Assessment Center (UDAC). To ensure the quality and integrity of the HMS data, a set of Quality Assurance (QA) computer codes has been written. The codes will be routinely used by the HMS system manager or the data base custodian. The QA codes provide detailed output files that will be used in correcting erroneous data. The following sections in this volume describe the implementation and operation of QA computer codes. The appendices contain detailed descriptions, flow charts, and source code listings of each computer code. 2 refs.« less

  20. Inclusion of pressure and flow in a new 3D MHD equilibrium code

    NASA Astrophysics Data System (ADS)

    Raburn, Daniel; Fukuyama, Atsushi

    2012-10-01

    Flow and nonsymmetric effects can play a large role in plasma equilibria and energy confinement. A concept for such a 3D equilibrium code was developed and presented in 2011. The code is called the Kyoto ITerative Equilibrium Solver (KITES) [1], and the concept is based largely on the PIES code [2]. More recently, the work-in-progress KITES code was used to calculate force-free equilibria. Here, progress and results on the inclusion of pressure and flow in the code are presented. [4pt] [1] Daniel Raburn and Atsushi Fukuyama, Plasma and Fusion Research: Regular Articles, 7:240381 (2012).[0pt] [2] H. S. Greenside, A. H. Reiman, and A. Salas, J. Comput. Phys, 81(1):102-136 (1989).

  1. Interleukin-1 homologues IL-1F7b and IL-18 contain functional mRNA instability elements within the coding region responsive to lipopolysaccharide

    PubMed Central

    2004-01-01

    IL-1F7b, a novel homologue of the IL-1 (interleukin 1) family, was discovered by computational cloning. We demonstrated that IL-1F7b shares critical amino acid residues with IL-18 and binds to the IL-18-binding protein enhancing its ability to inhibit IL-18-induced interferon-γ. We also showed that low levels of IL-1F7b are constitutively present intracellularly in human blood monocytes. In this study, we demonstrate that similar to IL-18, both mRNA and intracellular protein expression of IL-1F7b are up-regulated by LPS (lipopolysaccharide) in human monocytes. In stable transfectants of murine RAW264.7 macrophage cells, there was no IL-1F7b protein expression despite a highly active CMV promoter. We found that IL-1F7b-specific mRNA was rapidly degraded in transfected cells, via a 3′-UTR (untranslated region)-independent control of IL-1F7b transcript stability. After LPS stimulation, there was a rapid transient increase in IL-1F7b-specific mRNA and concomitant protein levels. Using sequence alignment, we found a conserved ten-nucleotide homology box within the open reading frame of IL-F7b, which is flanking the coding region instability elements of some selective genes. In-frame deletion of downstream exon 5 from the full-length IL-1F7b cDNA markedly increased the levels of IL-1F7b mRNA. A similar coding region element is located in IL-18. When transfected into RAW264.7 macrophages, IL-18 mRNA was also unstable unless treated with LPS. These results indicate that both IL-1F7b and IL-18 mRNA contain functional instability determinants within their coding region, which influence mRNA decay as a novel mechanism to regulate the expression of IL-1 family members. PMID:15046617

  2. MATLAB-based algorithm to estimate depths of isolated thin dike-like sources using higher-order horizontal derivatives of magnetic anomalies.

    PubMed

    Ekinci, Yunus Levent

    2016-01-01

    This paper presents an easy-to-use open source computer algorithm (code) for estimating the depths of isolated single thin dike-like source bodies by using numerical second-, third-, and fourth-order horizontal derivatives computed from observed magnetic anomalies. The approach does not require a priori information and uses some filters of successive graticule spacings. The computed higher-order horizontal derivative datasets are used to solve nonlinear equations for depth determination. The solutions are independent from the magnetization and ambient field directions. The practical usability of the developed code, designed in MATLAB R2012b (MathWorks Inc.), was successfully examined using some synthetic simulations with and without noise. The algorithm was then used to estimate the depths of some ore bodies buried in different regions (USA, Sweden, and Canada). Real data tests clearly indicated that the obtained depths are in good agreement with those of previous studies and drilling information. Additionally, a state-of-the-art inversion scheme based on particle swarm optimization produced comparable results to those of the higher-order horizontal derivative analyses in both synthetic and real anomaly cases. Accordingly, the proposed code is verified to be useful in interpreting isolated single thin dike-like magnetized bodies and may be an alternative processing technique. The open source code can be easily modified and adapted to suit the benefits of other researchers.

  3. Operations analysis (study 2.6). Volume 4: Computer specification; logistics of orbiting vehicle servicing (LOVES)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The logistics of orbital vehicle servicing computer specifications was developed and a number of alternatives to improve utilization of the space shuttle and the tug were investigated. Preliminary results indicate that space servicing offers a potential for reducing future operational and program costs over ground refurbishment of satellites. A computer code which could be developed to simulate space servicing is presented.

  4. User's manual for semi-circular compact range reflector code

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Burnside, Walter D.

    1986-01-01

    A computer code was developed to analyze a semi-circular paraboloidal reflector antenna with a rolled edge at the top and a skirt at the bottom. The code can be used to compute the total near field of the antenna or its individual components at a given distance from the center of the paraboloid. Thus, it is very effective in computing the size of the sweet spot for RCS or antenna measurement. The operation of the code is described. Various input and output statements are explained. Some results obtained using the computer code are presented to illustrate the code's capability as well as being samples of input/output sets.

  5. SciDAC-3: Searching for Physics Beyond the Standard Model, University of Arizona component, Year 2 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toussaint, Doug

    2014-03-21

    The Arizona component of the SciDAC-3 Lattice Gauge Theory program consisted of partial support for a postdoctoral position. In the original budget this covered three fourths of a postdoc, but the University of Arizona changed its ERE rate for postdoctoral positions from 4.3% to 21%, so the support level was closer to two-thirds of a postdoc. The grant covered the work of postdoc Thomas Primer. Dr. Primer's first task was an urgent one, although it was not forseen in our proposed work. It turned out that on the large lattices used in some of our current computations the gauge fixingmore » code was not working as expected, and this revealed itself in inconsistent results in the correlators needed to compute the semileptonic form factors for K and D decays. Dr. Primer participated in the effort to understand this problem and to modify our codes to deal with the large lattices we are now generating (as large as 144 3 x 288). Corrected code was incorporated in our standard codes, and workarounds that allow us to use the correlators already computed with the unexpected gauge fixing were been implemented.« less

  6. An emulator for minimizing computer resources for finite element analysis

    NASA Technical Reports Server (NTRS)

    Melosh, R.; Utku, S.; Islam, M.; Salama, M.

    1984-01-01

    A computer code, SCOPE, has been developed for predicting the computer resources required for a given analysis code, computer hardware, and structural problem. The cost of running the code is a small fraction (about 3 percent) of the cost of performing the actual analysis. However, its accuracy in predicting the CPU and I/O resources depends intrinsically on the accuracy of calibration data that must be developed once for the computer hardware and the finite element analysis code of interest. Testing of the SCOPE code on the AMDAHL 470 V/8 computer and the ELAS finite element analysis program indicated small I/O errors (3.2 percent), larger CPU errors (17.8 percent), and negligible total errors (1.5 percent).

  7. A visual parallel-BCI speller based on the time-frequency coding strategy

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Objective. Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. Approach. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Main results. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min-1, with an average of 54.0 bit min-1 and 43.0 bit min-1 in the three rounds and five rounds, respectively. Significance. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  8. East Asian mtDNA haplogroup determination in Koreans: haplogroup-level coding region SNP analysis and subhaplogroup-level control region sequence analysis.

    PubMed

    Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Chung, Ukhee; Kim, Chong-Youl; Shin, Kyoung-Jin

    2006-11-01

    The present study analyzed 21 coding region SNP markers and one deletion motif for the determination of East Asian mitochondrial DNA (mtDNA) haplogroups by designing three multiplex systems which apply single base extension methods. Using two multiplex systems, all 593 Korean mtDNAs were allocated into 15 haplogroups: M, D, D4, D5, G, M7, M8, M9, M10, M11, R, R9, B, A, and N9. As the D4 haplotypes occurred most frequently in Koreans, the third multiplex system was used to further define D4 subhaplogroups: D4a, D4b, D4e, D4g, D4h, and D4j. This method allowed the complementation of coding region information with control region mutation motifs and the resultant findings also suggest reliable control region mutation motifs for the assignment of East Asian mtDNA haplogroups. These three multiplex systems produce good results in degraded samples as they contain small PCR products (101-154 bp) for single base extension reactions. SNP scoring was performed in 101 old skeletal remains using these three systems to prove their utility in degraded samples. The sequence analysis of mtDNA control region with high incidence of haplogroup-specific mutations and the selective scoring of highly informative coding region SNPs using the three multiplex systems are useful tools for most applications involving East Asian mtDNA haplogroup determination and haplogroup-directed stringent quality control.

  9. Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; White, Todd; Mangini, Nancy

    2009-01-01

    Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external thermal protection system (TPS) material response and shock layer radiation codes.

  10. Polar Codes

    DTIC Science & Technology

    2014-12-01

    independently has a 10% chance of being flipped. Then the decoder should use the majority vote rule: if y is (0, 0, 0), (0, 0, 1), (0, 1, 0), or (1, 0, 0... tensor power, and BN is a square matrix called the bit-reversal operator. Therefore G−1N = (F ⊗n) −1 B−1N . Section VII.B of [1] shows that B −1 N...BN . 18 Also we see by direct computation that FF = I2. Using the tensor product identity (AC) ⊗ (BD) = (A⊗B)(C⊗D), we get that (F ⊗F )(F ⊗F ) = I2

  11. CBP PHASE I CODE INTEGRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F.; Brown, K.; Flach, G.

    The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and credible set of software tools to predict the structural, hydraulic, and chemical performance of cement barriers used in nuclear applications over extended time frames (greater than 100 years for operating facilities and greater than 1000 years for waste management). The simulation tools will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems including waste forms, containment structures, entombments, and environmental remediation. These cementitious materials are exposed to dynamic environmental conditions that cause changes in material propertiesmore » via (i) aging, (ii) chloride attack, (iii) sulfate attack, (iv) carbonation, (v) oxidation, and (vi) primary constituent leaching. A set of state-of-the-art software tools has been selected as a starting point to capture these important aging and degradation phenomena. Integration of existing software developed by the CBP partner organizations was determined to be the quickest method of meeting the CBP goal of providing a computational tool that improves the prediction of the long-term behavior of cementitious materials. These partner codes were selected based on their maturity and ability to address the problems outlined above. The GoldSim Monte Carlo simulation program (GTG 2010a, GTG 2010b) was chosen as the code integration platform (Brown & Flach 2009b). GoldSim (current Version 10.5) is a Windows based graphical object-oriented computer program that provides a flexible environment for model development (Brown & Flach 2009b). The linking of GoldSim to external codes has previously been successfully demonstrated (Eary 2007, Mattie et al. 2007). GoldSim is capable of performing deterministic and probabilistic simulations and of modeling radioactive decay and constituent transport. As part of the CBP project, a general Dynamic Link Library (DLL) interface was developed to link GoldSim with external codes (Smith III et al. 2010). The DLL uses a list of code inputs provided by GoldSim to create an input file for the external application, runs the external code, and returns a list of outputs (read from files created by the external application) back to GoldSim. In this way GoldSim provides: (1) a unified user interface to the applications, (2) the capability of coupling selected codes in a synergistic manner, and (3) the capability of performing probabilistic uncertainty analysis with the codes. GoldSim is made available by the GoldSim Technology Group as a free 'Player' version that allows running but not editing GoldSim models. The player version makes the software readily available to a wider community of users that would wish to use the CBP application but do not have a license for GoldSim.« less

  12. A generalized one-dimensional computer code for turbomachinery cooling passage flow calculations

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.

    1989-01-01

    A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.

  13. Improving the sensitivity of high-frequency subharmonic imaging with coded excitation: A feasibility study

    PubMed Central

    Shekhar, Himanshu; Doyley, Marvin M.

    2012-01-01

    Purpose: Subharmonic intravascular ultrasound imaging (S-IVUS) could visualize the adventitial vasa vasorum, but the high pressure threshold required to incite subharmonic behavior in an ultrasound contrast agent will compromise sensitivity—a trait that has hampered the clinical use of S-IVUS. The purpose of this study was to assess the feasibility of using coded-chirp excitations to improve the sensitivity and axial resolution of S-IVUS. Methods: The subharmonic response of Targestar-pTM, a commercial microbubble ultrasound contrast agent (UCA), to coded-chirp (5%–20% fractional bandwidth) pulses and narrowband sine-burst (4% fractional bandwidth) pulses was assessed, first using computer simulations and then experimentally. Rectangular windowed excitation pulses with pulse durations ranging from 0.25 to 3 μs were used in all studies. All experimental studies were performed with a pair of transducers (20 MHz/10 MHz), both with diameter of 6.35 mm and focal length of 50 mm. The size distribution of the UCA was measured with a CasyTM Cell counter. Results: The simulation predicted a pressure threshold that was an order of magnitude higher than that determined experimentally. However, all other predictions were consistent with the experimental observations. It was predicted that: (1) exciting the agent with chirps would produce stronger subharmonic response relative to those produced by sine-bursts; (2) increasing the fractional bandwidth of coded-chirp excitation would increase the sensitivity of subharmonic imaging; and (3) coded-chirp would increase axial resolution. The experimental results revealed that subharmonic-to-fundamental ratios obtained with chirps were 5.7 dB higher than those produced with sine-bursts of similar duration. The axial resolution achieved with 20% fractional bandwidth chirps was approximately twice that achieved with 4% fractional bandwidth sine-bursts. Conclusions: The coded-chirp method is a suitable excitation strategy for subharmonic IVUS imaging. At the 20 MHz transmission frequency and 20% fractional bandwidth, coded-chirp excitation appears to represent the ideal tradeoff between subharmonic strength and axial resolution. PMID:22482626

  14. Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †

    PubMed Central

    Murdani, Muhammad Harist; Hong, Bonghee

    2018-01-01

    In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes (Ad-Hoc) and neighborhood proximity (Top-K). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space. PMID:29587366

  15. Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †.

    PubMed

    Murdani, Muhammad Harist; Kwon, Joonho; Choi, Yoon-Ho; Hong, Bonghee

    2018-03-24

    In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes ( Ad-Hoc ) and neighborhood proximity ( Top-K ). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space.

  16. The bioelectric code: An ancient computational medium for dynamic control of growth and form.

    PubMed

    Levin, Michael; Martyniuk, Christopher J

    2018-02-01

    What determines large-scale anatomy? DNA does not directly specify geometrical arrangements of tissues and organs, and a process of encoding and decoding for morphogenesis is required. Moreover, many species can regenerate and remodel their structure despite drastic injury. The ability to obtain the correct target morphology from a diversity of initial conditions reveals that the morphogenetic code implements a rich system of pattern-homeostatic processes. Here, we describe an important mechanism by which cellular networks implement pattern regulation and plasticity: bioelectricity. All cells, not only nerves and muscles, produce and sense electrical signals; in vivo, these processes form bioelectric circuits that harness individual cell behaviors toward specific anatomical endpoints. We review emerging progress in reading and re-writing anatomical information encoded in bioelectrical states, and discuss the approaches to this problem from the perspectives of information theory, dynamical systems, and computational neuroscience. Cracking the bioelectric code will enable much-improved control over biological patterning, advancing basic evolutionary developmental biology as well as enabling numerous applications in regenerative medicine and synthetic bioengineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Maxdose-SR and popdose-SR routine release atmospheric dose models used at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, G. T.; Trimor, P. P.

    MAXDOSE-SR and POPDOSE-SR are used to calculate dose to the offsite Reference Person and to the surrounding Savannah River Site (SRS) population respectively following routine releases of atmospheric radioactivity. These models are currently accessed through the Dose Model Version 2014 graphical user interface (GUI). MAXDOSE-SR and POPDOSE-SR are personal computer (PC) versions of MAXIGASP and POPGASP, which both resided on the SRS IBM Mainframe. These two codes follow U.S. Nuclear Regulatory Commission (USNRC) Regulatory Guides 1.109 and 1.111 (1977a, 1977b). The basis for MAXDOSE-SR and POPDOSE-SR are USNRC developed codes XOQDOQ (Sagendorf et. al 1982) and GASPAR (Eckerman et. almore » 1980). Both of these codes have previously been verified for use at SRS (Simpkins 1999 and 2000). The revisions incorporated into MAXDOSE-SR and POPDOSE-SR Version 2014 (hereafter referred to as MAXDOSE-SR and POPDOSE-SR unless otherwise noted) were made per Computer Program Modification Tracker (CPMT) number Q-CMT-A-00016 (Appendix D). Version 2014 was verified for use at SRS in Dixon (2014).« less

  18. Stochastic analog neutron transport with TRIPOLI-4 and FREYA: Bayesian uncertainty quantification for neutron multiplicity counting

    DOE PAGES

    Verbeke, J. M.; Petit, O.

    2016-06-01

    From nuclear safeguards to homeland security applications, the need for the better modeling of nuclear interactions has grown over the past decades. Current Monte Carlo radiation transport codes compute average quantities with great accuracy and performance; however, performance and averaging come at the price of limited interaction-by-interaction modeling. These codes often lack the capability of modeling interactions exactly: for a given collision, energy is not conserved, energies of emitted particles are uncorrelated, and multiplicities of prompt fission neutrons and photons are uncorrelated. Many modern applications require more exclusive quantities than averages, such as the fluctuations in certain observables (e.g., themore » neutron multiplicity) and correlations between neutrons and photons. In an effort to meet this need, the radiation transport Monte Carlo code TRIPOLI-4® was modified to provide a specific mode that models nuclear interactions in a full analog way, replicating as much as possible the underlying physical process. Furthermore, the computational model FREYA (Fission Reaction Event Yield Algorithm) was coupled with TRIPOLI-4 to model complete fission events. As a result, FREYA automatically includes fluctuations as well as correlations resulting from conservation of energy and momentum.« less

  19. Comprehensive Micromechanics-Analysis Code - Version 4.0

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Bednarcyk, B. A.

    2005-01-01

    Version 4.0 of the Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) has been developed as an improved means of computational simulation of advanced composite materials. The previous version of MAC/GMC was described in "Comprehensive Micromechanics-Analysis Code" (LEW-16870), NASA Tech Briefs, Vol. 24, No. 6 (June 2000), page 38. To recapitulate: MAC/GMC is a computer program that predicts the elastic and inelastic thermomechanical responses of continuous and discontinuous composite materials with arbitrary internal microstructures and reinforcement shapes. The predictive capability of MAC/GMC rests on a model known as the generalized method of cells (GMC) - a continuum-based model of micromechanics that provides closed-form expressions for the macroscopic response of a composite material in terms of the properties, sizes, shapes, and responses of the individual constituents or phases that make up the material. Enhancements in version 4.0 include a capability for modeling thermomechanically and electromagnetically coupled ("smart") materials; a more-accurate (high-fidelity) version of the GMC; a capability to simulate discontinuous plies within a laminate; additional constitutive models of materials; expanded yield-surface-analysis capabilities; and expanded failure-analysis and life-prediction capabilities on both the microscopic and macroscopic scales.

  20. Nonlinear 3D MHD verification study: SpeCyl and PIXIE3D codes for RFP and Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Cappello, S.; Chacon, L.

    2010-11-01

    A strong emphasis is presently placed in the fusion community on reaching predictive capability of computational models. An essential requirement of such endeavor is the process of assessing the mathematical correctness of computational tools, termed verification [1]. We present here a successful nonlinear cross-benchmark verification study between the 3D nonlinear MHD codes SpeCyl [2] and PIXIE3D [3]. Excellent quantitative agreement is obtained in both 2D and 3D nonlinear visco-resistive dynamics for reversed-field pinch (RFP) and tokamak configurations [4]. RFP dynamics, in particular, lends itself as an ideal non trivial test-bed for 3D nonlinear verification. Perspectives for future application of the fully-implicit parallel code PIXIE3D to RFP physics, in particular to address open issues on RFP helical self-organization, will be provided. [4pt] [1] M. Greenwald, Phys. Plasmas 17, 058101 (2010) [0pt] [2] S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996) [0pt] [3] L. Chac'on, Phys. Plasmas 15, 056103 (2008) [0pt] [4] D. Bonfiglio, L. Chac'on and S. Cappello, Phys. Plasmas 17 (2010)

  1. The NJOY Nuclear Data Processing System, Version 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macfarlane, Robert; Muir, Douglas W.; Boicourt, R. M.

    The NJOY Nuclear Data Processing System, version 2016, is a comprehensive computer code package for producing pointwise and multigroup cross sections and related quantities from evaluated nuclear data in the ENDF-4 through ENDF-6 legacy card-image formats. NJOY works with evaluated files for incident neutrons, photons, and charged particles, producing libraries for a wide variety of particle transport and reactor analysis codes.

  2. A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs.

    PubMed

    Lee, Bumshik; Kim, Munchurl

    2016-08-01

    In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of 4×4 and 8×8 , which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively.

  3. Computational strategies for three-dimensional flow simulations on distributed computer systems

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-01-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  4. Computational strategies for three-dimensional flow simulations on distributed computer systems

    NASA Astrophysics Data System (ADS)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-08-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  5. Scalar Casimir energies in M4>=N for even N

    NASA Astrophysics Data System (ADS)

    Kantowski, R.; Milton, Kimball A.

    1987-01-01

    We construct a Green's-function formalism for computing vacuum-fluctuation energies of scalar fields in 4+N dimensions, where the extra N dimensions are compactified into a hypersphere SN of radius a. In all cases a leading cosmological energy term ucosmo~aN/b4+N results. Here b is an ultraviolet cutoff at the Planck scale. In all cases an unambiguous Casimir energy is computed. For odd N these energies agree with those calculated by Candelas and Weinberg. For even N, the Casimir energy is logarithmically divergent: uCasimir~(αN/a4)ln(a/b). The coefficients αN are computed in terms of Bernoulli numbers.

  6. 76 FR 12369 - Certification of the Attorney General; Maricopa County, Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Section 4(b) of the Voting Rights Act, 42 U.S.C. 1973b(b), and published in the Federal Register on... States. [FR Doc. 2011-5188 Filed 3-4-11; 8:45 am] BILLING CODE 4410-13-P ... accordance with Section 8 of the Voting Rights Act, 42 U.S.C. 1973f, I hereby certify that in my judgment the...

  7. Volume accumulator design analysis computer codes

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazaki, T. T.

    1973-01-01

    The computer codes, VANEP and VANES, were written and used to aid in the design and performance calculation of the volume accumulator units (VAU) for the 5-kwe reactor thermoelectric system. VANEP computes the VAU design which meets the primary coolant loop VAU volume and pressure performance requirements. VANES computes the performance of the VAU design, determined from the VANEP code, at the conditions of the secondary coolant loop. The codes can also compute the performance characteristics of the VAU's under conditions of possible modes of failure which still permit continued system operation.

  8. "Hour of Code": Can It Change Students' Attitudes toward Programming?

    ERIC Educational Resources Information Center

    Du, Jie; Wimmer, Hayden; Rada, Roy

    2016-01-01

    The Hour of Code is a one-hour introduction to computer science organized by Code.org, a non-profit dedicated to expanding participation in computer science. This study investigated the impact of the Hour of Code on students' attitudes towards computer programming and their knowledge of programming. A sample of undergraduate students from two…

  9. JEFF-3.1, ENDF/B-VII and JENDL-3.3 Critical Assemblies Benchmarking With the Monte Carlo Code TRIPOLI

    NASA Astrophysics Data System (ADS)

    Sublet, Jean-Christophe

    2008-02-01

    ENDF/B-VII.0, the first release of the ENDF/B-VII nuclear data library, was formally released in December 2006. Prior to this event the European JEFF-3.1 nuclear data library was distributed in April 2005, while the Japanese JENDL-3.3 library has been available since 2002. The recent releases of these neutron transport libraries and special purpose files, the updates of the processing tools and the significant progress in computer power and potency, allow today far better leaner Monte Carlo code and pointwise library integration leading to enhanced benchmarking studies. A TRIPOLI-4.4 critical assembly suite has been set up as a collection of 86 benchmarks taken principally from the International Handbook of Evaluated Criticality Benchmarks Experiments (2006 Edition). It contains cases for a variety of U and Pu fuels and systems, ranging from fast to deep thermal solutions and assemblies. It covers cases with a variety of moderators, reflectors, absorbers, spectra and geometries. The results presented show that while the most recent library ENDF/B-VII.0, which benefited from the timely development of JENDL-3.3 and JEFF-3.1, produces better overall results, it suggest clearly also that improvements are still needed. This is true in particular in Light Water Reactor applications for thermal and epithermal plutonium data for all libraries and fast uranium data for JEFF-3.1 and JENDL-3.3. It is also true to state that other domains, in which Monte Carlo code are been used, such as astrophysics, fusion, high-energy or medical, radiation transport in general benefit notably from such enhanced libraries. It is particularly noticeable in term of the number of isotopes, materials available, the overall quality of the data and the much broader energy range for which evaluated (as opposed to modeled) data are available, spanning from meV to hundreds of MeV. In pointing out the impact of the different nuclear data at the library but also the isotopic levels one could not help noticing the importance and difference of the compensating effects that result from their single usage. Library differences are still important but tend to diminish due to the ever increasing and beneficial worldwide collaboration in the field of nuclear data measurement and evaluations.

  10. HELIOS-R: An Ultrafast, Open-Source Retrieval Code For Exoplanetary Atmosphere Characterization

    NASA Astrophysics Data System (ADS)

    LAVIE, Baptiste

    2015-12-01

    Atmospheric retrieval is a growing, new approach in the theory of exoplanet atmosphere characterization. Unlike self-consistent modeling it allows us to fully explore the parameter space, as well as the degeneracies between the parameters using a Bayesian framework. We present HELIOS-R, a very fast retrieving code written in Python and optimized for GPU computation. Once it is ready, HELIOS-R will be the first open-source atmospheric retrieval code accessible to the exoplanet community. As the new generation of direct imaging instruments (SPHERE, GPI) have started to gather data, the first version of HELIOS-R focuses on emission spectra. We use a 1D two-stream forward model for computing fluxes and couple it to an analytical temperature-pressure profile that is constructed to be in radiative equilibrium. We use our ultra-fast opacity calculator HELIOS-K (also open-source) to compute the opacities of CO2, H2O, CO and CH4 from the HITEMP database. We test both opacity sampling (which is typically used by other workers) and the method of k-distributions. Using this setup, we compute a grid of synthetic spectra and temperature-pressure profiles, which is then explored using a nested sampling algorithm. By focusing on model selection (Occam’s razor) through the explicit computation of the Bayesian evidence, nested sampling allows us to deal with current sparse data as well as upcoming high-resolution observations. Once the best model is selected, HELIOS-R provides posterior distributions of the parameters. As a test for our code we studied HR8799 system and compared our results with the previous analysis of Lee, Heng & Irwin (2013), which used the proprietary NEMESIS retrieval code. HELIOS-R and HELIOS-K are part of the set of open-source community codes we named the Exoclimes Simulation Platform (www.exoclime.org).

  11. Memory-efficient decoding of LDPC codes

    NASA Technical Reports Server (NTRS)

    Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon

    2005-01-01

    We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.

  12. USAF Presence in Latin America in the 21st Century.

    DTIC Science & Technology

    1988-04-01

    faculty in partial fulfillment of requirements for graduation. AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY MAXWELL AFB, AL 36112 UNCLASSIFIED SECURITY...ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) Maxwell AFB AL 36112-5542 Ba. NAME OF FUNDING /SPONSORING 8 b. OFFICE SYMBOL... Servicio Multimodal Transistmico across the Isthmus of Tehuantepec (11:28). It does, however. *%4 row:n militaiy importance. The U.S. Atlantic Command’s

  13. Mechanism of Cytotoxicity of the AIDS Virus, HTLV-III/LAV

    DTIC Science & Technology

    1989-05-21

    distribution unlimited 4. PERFORMING OR3ANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER($) 143-065-3611-Al 6s. NAME OF PERFORMING... ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME Of MONITORING ORGANIZATIONj (I aI cb) Washinton University k€. ADORESS (City, State, and ZIP Code) 7b. ADDRESS...IDENTIFICATION NUMBER ORGANIZATiON U.S. Army Medical (if awible) Resch. & Development Command DArJM-17-87-C-7101 Sc. ADDRESS (Oil, State, and ZIP Code

  14. Talking about Code: Integrating Pedagogical Code Reviews into Early Computing Courses

    ERIC Educational Resources Information Center

    Hundhausen, Christopher D.; Agrawal, Anukrati; Agarwal, Pawan

    2013-01-01

    Given the increasing importance of soft skills in the computing profession, there is good reason to provide students withmore opportunities to learn and practice those skills in undergraduate computing courses. Toward that end, we have developed an active learning approach for computing education called the "Pedagogical Code Review"…

  15. Adaptive bit plane quadtree-based block truncation coding for image compression

    NASA Astrophysics Data System (ADS)

    Li, Shenda; Wang, Jin; Zhu, Qing

    2018-04-01

    Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.

  16. Quinoa - Adaptive Computational Fluid Dynamics, 0.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakosi, Jozsef; Gonzalez, Francisco; Rogers, Brandon

    Quinoa is a set of computational tools that enables research and numerical analysis in fluid dynamics. At this time it remains a test-bed to experiment with various algorithms using fully asynchronous runtime systems. Currently, Quinoa consists of the following tools: (1) Walker, a numerical integrator for systems of stochastic differential equations in time. It is a mathematical tool to analyze and design the behavior of stochastic differential equations. It allows the estimation of arbitrary coupled statistics and probability density functions and is currently used for the design of statistical moment approximations for multiple mixing materials in variable-density turbulence. (2) Inciter,more » an overdecomposition-aware finite element field solver for partial differential equations using 3D unstructured grids. Inciter is used to research asynchronous mesh-based algorithms and to experiment with coupling asynchronous to bulk-synchronous parallel code. Two planned new features of Inciter, compared to the previous release (LA-CC-16-015), to be implemented in 2017, are (a) a simple Navier-Stokes solver for ideal single-material compressible gases, and (b) solution-adaptive mesh refinement (AMR), which enables dynamically concentrating compute resources to regions with interesting physics. Using the NS-AMR problem we plan to explore how to scale such high-load-imbalance simulations, representative of large production multiphysics codes, to very large problems on very large computers using an asynchronous runtime system. (3) RNGTest, a test harness to subject random number generators to stringent statistical tests enabling quantitative ranking with respect to their quality and computational cost. (4) UnitTest, a unit test harness, running hundreds of tests per second, capable of testing serial, synchronous, and asynchronous functions. (5) MeshConv, a mesh file converter that can be used to convert 3D tetrahedron meshes from and to either of the following formats: Gmsh, (http://www.geuz.org/gmsh), Netgen, (http://sourceforge.net/apps/mediawiki/netgen-mesher), ExodusII, (http://sourceforge.net/projects/exodusii), HyperMesh, (http://www.altairhyperworks.com/product/HyperMesh).« less

  17. Pressure induced phase transition in CdTe nanowire: A DFT study

    NASA Astrophysics Data System (ADS)

    Bhatia, Manjeet; Khan, Md. Shahzad; Srivastava, Anurag

    2018-05-01

    We have studied structural phase transition and electronic properties of CdTe nanowires in their wurtzite (B4) to rocksalt (B1) phase by first principles density functional calculations using SIESTA code. Nanowires are derived from wurtzite and rocksalt phase of bulk CdTe with growth direction along 100 planes. We observed structural phase transition from B4→B1 at 4.79 GPa. Wurtzite structure is found to have band gap 2.30 eV while rocksalt is metallic in nature. Our calculated lattice constant (4.55 Å for B4 and 5.84 Å for B1), transition pressure (4.79 GPa) and electronic structure results are in close agreement with the previous calculations on bulk and nanostructures.

  18. Constitutive Model Constants for Al7075-T651 and Al7075-T6

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter; Joshi, Vasant; Harris, Bryan

    2009-06-01

    Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these material. J-C strength model constants (A, B, n, C, and m) for the two alloys are determined from tension stress-strain data at room and high temperature to 250^oC. J-C strength model constants for Al7075-T651 are: A=527 MPa, B=676 MPa, n=0.71, C=0.017, and m=1.61 and for Al7075-T6: A = 546 MPa, B = 674 MPa, n = 0.72, C = 0.059, and m =1.56. J-C fracture model constants are determined form quasi-static and high strain rate/high temperature tests on notched and smooth tension specimens. J-C fracture model constants for the two alloys are: Al7075-T651; D1 = 0.110, D2 = 0.573, D3= -3.4446, D4 = 0.016, and D 5= 1.099 and Al7075-T6; D1= 0.451 D2= -0.952 D3= -.068, D4 =0.036, and D5 = 0.697.

  19. Practices and Standards in the Construction of BRL-CAD Target Descriptions

    DTIC Science & Technology

    1993-09-01

    Spencer) 3 AIFRS (Dr. Steven Carter) AIFRT (John Kosiewicz) AIFRE (S. Eitelman) 220 Seventh Street, NE Charlottesville, VA 22901-5396 3 Director 6...Hawkins, Code 1740.2 2231 Faraday Ave Steven L. Cohen, Code 1230 Suite 103 Dennis Clark, Code 0111 Carlsbad, CA 92008 Dr. Paul C. St. Hilaire, Code...4E995 Washington, DC 20330 1 Dr. Robert B. LaBerge 910 Via Palo 1 Cincinnati Mailacron Inc. Aptos, CA 95003 ATTN: Mr. Richard C. Messinger

  20. 46 CFR 161.002-1 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Amendments to SOLAS 74, and 1994 Amendments to SOLAS 74), 1992—161.002-4(b). National Fire Protection Association (NFPA) National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02269. NFPA 72, National Fire Alarm Code, 1993—161.002-4(b). Lloyd's Register of Shipping (LR) Lloyd's Register of Shipping...

Top