Non-stationary self-focusing of intense laser beam in plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2011-10-15
The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less
Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2012-10-15
By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron densitymore » profiles in enhancing laser self-focusing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2012-11-15
The authors have investigated the non-stationary self-focusing of Gaussian laser pulse in cold quantum plasma. In case of high dense plasma, the nonlinearity in the dielectric constant is mainly due to relativistic high intense interactions and quantum effects. In this paper, we have introduced a ramp density profile for plasma and presented graphically the behavior of spot size oscillations of pulse at rear and front portions of the pulse. It is observed that the ramp density profile and quantum effects play a vital role in stronger and better focusing at the rear of the pulse than at the front inmore » cold quantum plasmas.« less
NASA Astrophysics Data System (ADS)
Valkunde, Amol T.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Patil, Sandip D.; Takale, Mansing V.
2018-05-01
In this work, nonlinear aspects of a high intensity q-Gaussian laser beam propagating in collisionless plasma having upward density ramp of exponential profiles is studied. We have employed the nonlinearity in dielectric function of plasma by considering ponderomotive nonlinearity. The differential equation governing the dimensionless beam width parameter is achieved by using Wentzel-Kramers-Brillouin (WKB) and paraxial approximations and solved it numerically by using Runge-Kutta fourth order method. Effect of exponential density ramp profile on self-focusing of q-Gaussian laser beam for various values of q is systematically carried out and compared with results Gaussian laser beam propagating in collisionless plasma having uniform density. It is found that exponential plasma density ramp causes the laser beam to become more focused and gives reasonably interesting results.
Evolution of plasma wakes in density up- and down-ramps
NASA Astrophysics Data System (ADS)
Zhang, C. J.; Joshi, C.; Xu, X. L.; Mori, W. B.; Li, F.; Wan, Y.; Hua, J. F.; Pai, C. H.; Wang, J.; Lu, W.
2018-02-01
The time evolution of plasma wakes in density up- and down-ramps is examined through theory and particle-in-cell simulations. Motivated by observation of the reversal of a linear plasma wake in a plasma density upramp in a recent experiment (Zhang et al 2017 Phys. Rev. Lett. 119 064801) we have examined the behaviour of wakes in plasma ramps that always accompany any plasma source used for plasma-based acceleration. In the up-ramp case it is found that, after the passage of the drive pulse, the wavnumber/wavelength of the wake starts to decrease/increase with time until it eventually tends to zero/infinity, then the wake reverses its propagation direction and the wavenunber/wavelength of the wake begins to increase/shrink. The evolutions of the wavenumber and the phase velocity of the wake as functions of time are shown to be significantly different in the up-ramp and the down-ramp cases. In the latter case the wavenumber of the wake at a particular position in the ramp increases until the wake is eventually damped. It is also shown that the waveform of the wake at a particular time after being excited can be precisely controlled by tuning the initial plasma density profile, which may enable a new type of plasma-based ultrafast optics.
NASA Astrophysics Data System (ADS)
Wehner, William; Schuster, Eugenio; Poli, Francesca
2016-10-01
Initial progress towards the design of non-inductive current ramp-up scenarios in the National Spherical Torus Experiment Upgrade (NSTX-U) has been made through the use of TRANSP predictive simulations. The strategy involves, first, ramping the plasma current with high harmonic fast waves (HHFW) to about 400 kA, and then further ramping to 900 kA with neutral beam injection (NBI). However, the early ramping of neutral beams and application of HHFW leads to an undesirably peaked current profile making the plasma unstable to ballooning modes. We present an optimization-based control approach to improve on the non-inductive ramp-up strategy. We combine the TRANSP code with an optimization algorithm based on sequential quadratic programming to search for time evolutions of the NBI powers, the HHFW powers, and the line averaged density that define an open-loop actuator strategy that maximizes the non-inductive current while satisfying constraints associated with the current profile evolution for MHD stable plasmas. This technique has the potential of playing a critical role in achieving robustly stable non-inductive ramp-up, which will ultimately be necessary to demonstrate applicability of the spherical torus concept to larger devices without sufficient room for a central coil. Supported by the US DOE under the SCGSR Program.
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim
2018-04-01
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.
NASA Astrophysics Data System (ADS)
Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team
2018-04-01
Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.
Electron particle transport and turbulence studies in the T-10 tokamak
NASA Astrophysics Data System (ADS)
Vershkov, V. A.; Borisov, M. A.; Subbotin, G. F.; Shelukhin, D. A.; Dnestrovskii, Yu. N.; Danilov, A. V.; Cherkasov, S. V.; Gorbunov, E. P.; Sergeev, D. S.; Grashin, S. A.; Krylov, S. V.; Kuleshin, E. O.; Myalton, T. B.; Skosyrev, Yu. V.; Chistiakov, V. V.
2013-08-01
The goals of this paper are to compare the results of electron particle transport measurements in ohmic (OH) plasmas by means of a small perturbation technique, high-level gas puff and gas switch off, investigate the phenomenon of ‘density pump out’ during electron cyclotron resonance heating (ECRH) and to correlate density behaviour with turbulence. Two approaches for plasma particle transport studies were compared: the low perturbation technique of periodic puff (δn/ne = 0.3%) and strong density variations (δn/ne < 50%), including density ramp-up by gas puff and ramp-down with gas switch off. The model with constant in time diffusion coefficients and pinch velocities could describe the core density perturbations but failed at the edge. In the case of strong puff three stages were distinguished. Degraded energy confinement and, respectively, low turbulence frequencies were observed during density ramp-up and ramp-down, while enhanced confinement and higher turbulence frequencies were typical for the intermediate stage. Density profile variation during this intermediate phase could be described in the framework of the transport model with constant in time coefficients. The application of ECRH at the density ramp-up phase provided the possibility of postponing the ‘density pump out’. The increase in the low-frequency modes in turbulence spectra was observed at the ‘density pump out’ phase during central ECRH. Although the high- and low-frequency bands of turbulence spectra behaved as trapped electron mode and ion temperature gradient, respectively, they both rotated at the same angular velocity as a rigid body together with magnetohydrodynamic mode m/n = 2/1 and [E × B] plasma rotation.
Coupling of laser energy into plasma channels
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.
2007-04-01
Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length, allowing for efficient use of channels with long ramps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.
2014-05-15
The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration ofmore » the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.« less
NASA Astrophysics Data System (ADS)
Clairet, F.; Bottereau, C.; Medvedeva, A.; Molina, D.; Conway, G. D.; Silva, A.; Stroth, U.; ASDEX Upgrade Team; Tore Supra Team; Eurofusion Mst1 Team
2017-11-01
Frequency swept reflectometry has reached the symbolic value of 1 μs sweeping time; this performance has been made possible, thanks to an improved control of the ramp voltage driving the frequency source. In parallel, the memory depth of the acquisition system has been upgraded and can provide up to 200 000 signals during a plasma discharge. Additional improvements regarding the trigger delay determination of the acquisition and the voltage ramp linearity required by this ultra-fast technique have been set. While this diagnostic is traditionally dedicated to the plasma electron density profile measurement, such a fast sweeping rate can provide the study of fast plasma events and turbulence with unprecedented time and radial resolution from the edge to the core. Experimental results obtained on ASDEX Upgrade plasmas are presented to demonstrate the performances of the diagnostic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; ...
2018-04-13
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less
Generation of ramp waves using variable areal density flyers
NASA Astrophysics Data System (ADS)
Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.
2016-07-01
Ramp loading using graded density impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacturing technique, was used to manufacture a graded density flyer, termed the "bed-of-nails" (BON). A 2.5-mm-thick × 99.4-mm-diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 5.5 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 and 1100 m/s using the 100-mm gas gun at the Institute of Shock Physics at Imperial College London. In each experiment, a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry (Het-V) was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ˜ 2.5 μs, with no indication of a shock jump. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.
Edge Ohmic Heating Experiment on HT-6M Tokamak
NASA Astrophysics Data System (ADS)
Gao, Xiang; Fan, Shuping; Li, Jian'gang; Meng, Yuedong; Luo, Jiarong; Yin, Fuxian; Zeng, Lei; Ding, Liancheng; Lin, Bili; Zhang, Wei; Han, Yuqing; Tong, Xingde; Luo, Lanchang; Gong, Xianzu; Jiang, Jiaguang; Wu, Mingjun; Yin, Fei
1994-03-01
An improved ohmic confinement has been achieved on HT-6M tokamak after application of edge ohmic heating pulse which makes plasma current rapidly ramp up (0.4 ms) in a ramp rate of 12 Ma/s. The improved ohmic confinement phase is characterized by (a) energy and particle confinement time increase, (b) non-symmetric increased density ne, (c) reduced Hα radiation, (d) increased Te and steeper Te, ne profile at the edge. The results from soft x-ray sawteeth inversion radius and βp + li/2 implied the anomalous current penetration.
A novel graded density impactor
NASA Astrophysics Data System (ADS)
Winter, Ron; Cotton, Matthew; Harris, Ernest; Eakins, Daniel; Chapman, David
2013-06-01
Ramp loading using graded-density-impactors as flyers in plate impact experiments can yield useful information about the dynamic properties of the loaded material. Selective Laser Melting, an additive manufacture technique, was used to fabricate a graded-density flyer, termed the ``bed of nails'' (BON). A 2 mm thick x 100 mm diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 6 mm and spaced 1 mm apart. Two experiments to test the concept were performed at impact velocities of 900 m/s and 1100 m/s using the 100 mm gas gun at The Institute of Shock Physics, Imperial College, London. In each experiment a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, mounted in contact with the back face of the copper. Heterodyne velocimetry was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in free surface velocity over a period of about 2.5 microseconds. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum.
NASA Astrophysics Data System (ADS)
Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.
2016-09-01
In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.
Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle
2017-09-25
One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.
NASA Astrophysics Data System (ADS)
Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team
2008-07-01
Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.
Electron temperature response to ECRH on FTU tokamak in transient conditions.
NASA Astrophysics Data System (ADS)
Jacchia, A.; Bruschi, A.; Cirant, S.; Granucci, G.; Sozzi, C.; de Luca, F.; Amadeo, P.; Bracco, G.; Tudisco, O.
2001-10-01
Steady-state electron heat transport analysis of FTU high density plasmas under Electron Cyclotron Heating (ECRH) shows "stiff" electron temperature profiles [1,2,3]. Plasma response to off-axis EC heating, in fact, exibits a lower limit to electron temperature gradient length, Lc , below which electron thermal conductivity switches to higher values. Stiffness, however, is attenuated in the plasma core of saw-tooth free discharges with flat-hollow temperature profile and during current ramp-up [3,4,5], in which cases the temperature gradient length can be brought to very low values by means of on-axis ECH. Steady and current ramp-up discharges probed by steady and modulated ECH are analyzed in terms of stiffnes. Critical gradient length dependence on local features of computed current density profile is discussed. [1] Sozzi, C. et al., Paper EXP5/13, Plasma Phys. Contr. Fus. Res., Proc.18th IAEA Conf., Sorrento, 2000. [2] Jacchia, A. et al. Topical Conference on Radio Frequency Power in Plasmas, Oxnard, USA, (2001). [3] Cirant, S. et al. Topical Conference on Radio Frequency Power in Plasmas, Oxnard, USA, (2001). [4] Sozzi, C. et al., EPS, Madeira 2001. [5] Bracco, G. et al.,Plasma Phys. Contr. Fus. Res., Proc.18th IAEA Conf., Sorrento, 2000.
Concrete/mortar water phase transition studied by single-point MRI methods.
Prado, P J; Balcom, B J; Beyea, S D; Armstrong, R L; Bremner, T W; Grattan-Bellew, P E
1998-01-01
A series of magnetic resonance imaging (MRI) water density and T2* profiles in hardened concrete and mortar samples has been obtained during freezing conditions (-50 degrees C < T < 11 degrees C). The single-point ramped imaging with T1 enhancement (SPRITE) sequence is optimal for this study given the characteristic short relaxation times of water in this porous media (T2* < 200 microseconds and T1 < 3.6 ms). The frozen and evaporable water distribution was quantified through a position based study of the profile magnitude. Submillimetric resolution of proton-density and T2*-relaxation parameters as a function of temperature has been achieved.
Coupled low-energy - ring current plasma diffusion in the Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Summers, D.; Siscoe, G. L.
1985-01-01
The outwardly diffusing Iogenic plasma and the simultaneously inwardly diffusing ring current plasma in the Jovian magnetosphere are described using a coupled diffusion model which incorporates the effects of the pressure gradient of the ring current into the cross-L diffusion coefficient. The coupled diffusion coefficient is derived by calculating the total energy available to drive the diffusion process. The condition is imposed that the diffusion coefficient takes on a local minimum value at some point in the region L = 7-8, at which point the gradient of the Io plasma density is specified as ramp value given by Siscoe et al. (1981). The hypothesis that the pressure gradient of the ring current causes the diminution of radial plasma transport is tested, and solution profiles for the Iogenic and ring current plasma densities are obtained which imply that the Io plasma ramp is caused by a high-density, low-energy component of the ring current hitherto unobserved directly.
A novel graded density impactor
NASA Astrophysics Data System (ADS)
Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.
2014-05-01
Ramp loading using graded-density-impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacture technique, was used to manufacture a graded density flyer, termed the "bed of nails" (BON). A 2 mm thick × 100 mm diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 6 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 m/s and 1100 m/s using the 100 mm gas gun at the Institute of Shock Physics at Imperial College, London. In each experiment a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ~2.5 us, with no indication of a shock jump. The measured profiles have been analysed to generate a stress strain curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.
NASA Astrophysics Data System (ADS)
Hashemzadeh, M.
2018-01-01
Self-focusing and defocusing of Gaussian laser beams in collisional inhomogeneous plasmas are investigated in the presence of various laser intensities and linear density and temperature ramps. Considering the ponderomotive force and using the momentum transfer and energy equations, the nonlinear electron density is derived. Taking into account the paraxial approximation and nonlinear electron density, a nonlinear differential equation, governing the focusing and defocusing of the laser beam, is obtained. Results show that in the absence of ramps the laser beam is focused between a minimum and a maximum value of laser intensity. For a certain value of laser intensity and initial electron density, the self-focusing process occurs in a temperature range which reaches its maximum at turning point temperature. However, the laser beam is converged in a narrow range for various amounts of initial electron density. It is indicated that the σ2 parameter and its sign can affect the self-focusing process for different values of laser intensity, initial temperature, and initial density. Finally, it is found that although the electron density ramp-down diverges the laser beam, electron density ramp-up improves the self-focusing process.
Shock-Ramp Loading of Tin and Aluminum
NASA Astrophysics Data System (ADS)
Seagle, Christopher; Davis, Jean; Martin, Matthew; Hanshaw, Heath
2013-06-01
Equation of state properties for materials off the principle Hugoniot and isentrope are currently poorly constrained. The ability to directly probe regions of phase space between the Hugoniot and isentrope under dynamic loading will greatly improve our ability to constrain equation of state properties under a variety of conditions and study otherwise inaccessible phase transitions. We have developed a technique at Sandia's Z accelerator to send a steady shock wave through a material under test, and subsequently ramp compress from the Hugoniot state. The shock-ramp experimental platform results in a unique loading path and enables probing of equation of state properties in regions of phase space otherwise difficult to access in dynamic experiments. A two-point minimization technique has been developed for the analysis of shock-ramp velocity data. The technique correctly accounts for the ``initial'' Hugoniot density of the material under test before the ramp wave arrives. Elevated quasi-isentropes have been measured for solid aluminum up to 1.4 Mbar and liquid tin up to 1.1 Mbar using the shock ramp technique. These experiments and the analysis of the resulting velocity profiles will be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.
Edge ohmic heating and improved confinement on HT-6M Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, X.
1995-04-01
An improved confinement has been observed on HT-6M tokamak after application of Edge Ohmic Heating (EOH) which makes plasma current rapidly ramp up from an initial steady state (I{sub p}=55 kA) within a small time scale (0.4 ms) to a second steady state (I{sub p}=60 kA) with a ramp rate of 12 MA/sec. The improved confinement is characterized by (a) increased average density n{sub e}; (b) reduced H{sub alpha} radiation; (c) reduced density fluctuations both in the center and at the edge; (d) a steeper n{sub e} and T{sub e} profile at the edge; (e) the changed profiles of plasmamore » parameters n{sub e}(r), q(r) and j(r); (f) transferred the oscillation modes of the soft-X ray signals from Mirnov fluctuation (12 kHz) to sawtooth oscillation (1.7 kHz). The changes of edge fluctuation, radial electric field and bremsstrahlung during EOH were measured and discussed in details. The measured values of {beta}{sub p}+l{sub i}/2 and soft-X ray sawtooth inversion radius implied the anomalous current penetration. 10 refs., 2 figs.« less
NASA Astrophysics Data System (ADS)
VeeraKrishna, M.; Chamkha, Ali J.
2018-05-01
The heat generation/absorption and thermo-diffusion on an unsteady free convective MHD flow of radiating and chemically reactive second grade fluid near an infinite vertical plate through a porous medium and taking the Hall current into account have been studied. Assume that the bounding plate has a ramped temperature with a ramped surface concentration and isothermal temperature with a ramped surface concentration. The analytical solutions for the governing equations are obtained by making use of the Laplace transforms technique. The velocity, temperature, and concentration profiles are discussed through graphs. We also found that velocity, temperature, and concentration profiles in the case of ramped temperature with ramped surface concentrations are less than those of isothermal temperature with ramped surface concentrations. Also, the expressions of the skin friction, Nusselt number, and Sherwood number are obtained and represented computationally through a tabular form.
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Swanson, Kelly K.; Lehe, Remi; Barber, Sam K.; Isono, Fumika; Otero, Jorge G.; Liu, Xinyao; Mao, Hann-Shin; Steinke, Sven; Tilborg, Jeroen Van; Geddes, Cameron G. R.; Leemans, Wim
2017-10-01
High-level control of a laser-plasma accelerator (LPA) using a shock injector was demonstrated by systematically varying the shock injector profile, including the shock angle, up-ramp width and shock position. Particle-in-cell (PIC) simulation explored how variations in the shock profile impacted the injection process and confirmed results obtained through acceleration experiments. These results establish that, by adjusting shock position, up-ramp, and angle, beam energy, energy spread, and pointing can be controlled. As a result, e-beam were highly tunable from 25 to 300 MeV with <8% energy spread, 1.5 mrad divergence and <1 mrad pointing fluctuation. This highly controllable LPA represents an ideal and compact beam source for the ongoing MeV Thomson photon experiments. Set-up and initial experimental design on a newly constructed one hundred TW laser system will be presented. This work is supported by the US DOE under Contract No. DE-AC02-05CH11231, and by the US DOE National Nuclear Security Administration, Defense Nuclear Nonproliferation R&D (NA22).
Optimizing the current ramp-up phase for the hybrid ITER scenario
NASA Astrophysics Data System (ADS)
Hogeweij, G. M. D.; Artaud, J.-F.; Casper, T. A.; Citrin, J.; Imbeaux, F.; Köchl, F.; Litaudon, X.; Voitsekhovitch, I.; the ITM-TF ITER Scenario Modelling Group
2013-01-01
The current ramp-up phase for the ITER hybrid scenario is analysed with the CRONOS integrated modelling suite. The simulations presented in this paper show that the heating systems available at ITER allow, within the operational limits, the attainment of a hybrid q profile at the end of the current ramp-up. A reference ramp-up scenario is reached by a combination of NBI, ECCD (UPL) and LHCD. A heating scheme with only NBI and ECCD can also reach the target q profile; however, LHCD can play a crucial role in reducing the flux consumption during the ramp-up phase. The optimum heating scheme depends on the chosen transport model, and on assumptions of parameters like ne peaking, edge Te,i and Zeff. The sensitivity of the current diffusion on parameters that are not easily controlled, shows that development of real-time control is important to reach the target q profile. A first step in that direction has been indicated in this paper. Minimizing resistive flux consumption and optimizing the q profile turn out to be conflicting requirements. A trade-off between these two requirements has to be made. In this paper it is shown that fast current ramp with L-mode current overshoot is at the one extreme, i.e. the optimum q profile at the cost of increased resistive flux consumption, whereas early H-mode transition is at the other extreme.
Tailored ramp wave generation in gas gun experiments
NASA Astrophysics Data System (ADS)
Cotton, Matthew; Chapman, David; Winter, Ron; Harris, Ernie; Eakins, Daniel
2015-09-01
Gas guns are traditionally used as platforms to introduce a planar shock wave to a material using plate impact methods, generating states on the Hugoniot. The ability to deliver a ramp wave to a target during a gas gun experiment enables access to different regions of the equation-of-state surface, making it a valuable technique for characterising material behaviour. Previous techniques have relied on the use of multi-material impactors to generate a density gradient, which can be complex to manufacture. In this paper we describe the use of an additively manufactured steel component consisting of an array of tapered spikes which can deliver a ramp wave over ˜ 2 μs. The ability to tailor the input wave by varying the component design is discussed, an approach which makes use of the design freedom offered by additive manufacturing techniques to rapidly iterate the spike profile. Results from gas gun experiments are presented to evaluate the technique, and compared with 3D hydrodynamic simulations.
NASA Astrophysics Data System (ADS)
Tooley, M. P.; Ersfeld, B.; Yoffe, S. R.; Noble, A.; Brunetti, E.; Sheng, Z. M.; Islam, M. R.; Jaroszynski, D. A.
2017-07-01
Self-injection in a laser-plasma wakefield accelerator is usually achieved by increasing the laser intensity until the threshold for injection is exceeded. Alternatively, the velocity of the bubble accelerating structure can be controlled using plasma density ramps, reducing the electron velocity required for injection. We present a model describing self-injection in the short-bunch regime for arbitrary changes in the plasma density. We derive the threshold condition for injection due to a plasma density gradient, which is confirmed using particle-in-cell simulations that demonstrate injection of subfemtosecond bunches. It is shown that the bunch charge, bunch length, and separation of bunches in a bunch train can be controlled by tailoring the plasma density profile.
LPWA using supersonic gas jet with tailored density profile
NASA Astrophysics Data System (ADS)
Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras
2016-10-01
Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.
Numerical optimization of actuator trajectories for ITER hybrid scenario profile evolution
NASA Astrophysics Data System (ADS)
van Dongen, J.; Felici, F.; Hogeweij, G. M. D.; Geelen, P.; Maljaars, E.
2014-12-01
Optimal actuator trajectories for an ITER hybrid scenario ramp-up are computed using a numerical optimization method. For both L-mode and H-mode scenarios, the time trajectory of plasma current, EC heating and current drive distribution is determined that minimizes a chosen cost function, while satisfying constraints. The cost function is formulated to reflect two desired properties of the plasma q profile at the end of the ramp-up. The first objective is to maximize the ITG turbulence threshold by maximizing the volume-averaged s/q ratio. The second objective is to achieve a stationary q profile by having a flat loop voltage profile. Actuator and physics-derived constraints are included, imposing limits on plasma current, ramp rates, internal inductance and q profile. This numerical method uses the fast control-oriented plasma profile evolution code RAPTOR, which is successfully benchmarked against more complete CRONOS simulations for L-mode and H-mode mode ITER hybrid scenarios. It is shown that the optimized trajectories computed using RAPTOR also result in an improved ramp-up scenario for CRONOS simulations using the same input trajectories. Furthermore, the optimal trajectories are shown to vary depending on the precise timing of the L-H transition.
Turbulence evolution and transport behavior during current ramp-up in ITER-like plasmas on DIII-D
McKee, George R.; Austin, Max E.; Boedo, Jose A.; ...
2017-07-12
Low-wavenumber density fluctuations exhibit unique characteristics during the current ramp-up phase of ITER-like discharges that can partially explain the challenges of correctly modeling transport behavior and predicting global plasma parameters during this period. A strong interaction takes place between the evolving transport, safety factor (q) and kinetic profiles as well as the appearance and evolution of low-order rational surfaces. Density fluctuations from 0.75 < ρ < 0.9 are transiently reduced to exceptionally low levels during early times and from 0.8 < ρ < 0.9 at late times in the ramp-up in a manner that is different from behavior observed duringmore » steady-state plasma conditions with similar values of q 95. Turbulence is suppressed as low-order-rational q-surfaces enter the plasma; the local electron temperature likewise exhibits transient increases during these periods of reduced fluctuations indicating changes in transport that impact temperature and consequently the evolution of current density and plasma inductance. These observations can explain discrepancies between CORSICA modelling and the higher electron temperature found previously over the outer half radius. Comparison of turbulence properties with time-varying linear growth rates with GYRO and GENE demonstrate qualitative consistency with measured fluctuation levels, but calculations don’t exhibit reduced growth rates near low-order rational surfaces, which is inconsistent with experimental observations. Here, this indicates a mechanism that can contribute to reconciling observed turbulence behavior with transport models, allowing for the development of more accurate predictive tools.« less
Turbulence evolution and transport behavior during current ramp-up in ITER-like plasmas on DIII-D
NASA Astrophysics Data System (ADS)
McKee, G. R.; Austin, M.; Boedo, J.; Bravenec, R.; Holland, C.; Jackson, G.; Luce, T. C.; Rhodes, T. L.; Rudakov, D.; Wang, G.; Yan, Z.; Zeng, L.; Zhao, Y.
2017-08-01
Low-wavenumber density fluctuations exhibit unique characteristics during the current ramp-up phase of ITER-like discharges that can partially explain the challenges of correctly modeling transport behavior and predicting global plasma parameters during this period. A strong interaction takes place between the evolving transport, safety factor (q) and kinetic profiles as well as the appearance and evolution of low-order rational surfaces. Density fluctuations from 0.75 < ρ < 0.9 are transiently reduced to exceptionally low levels during early times and from 0.8 < ρ < 0.9 at late times in the ramp-up in a manner that is different from behavior observed during steady-state plasma conditions with similar values of q 95. Turbulence is suppressed as low-order-rational q-surfaces enter the plasma; the local electron temperature likewise exhibits transient increases during these periods of reduced fluctuations indicating changes in transport that impact temperature and consequently the evolution of current density and plasma inductance. These observations can explain discrepancies between CORSICA modelling and the higher electron temperature found previously over the outer half radius. Comparison of turbulence properties with time-varying linear growth rates with GYRO and GENE demonstrate qualitative consistency with measured fluctuation levels, but calculations don’t exhibit reduced growth rates near low-order rational surfaces, which is inconsistent with experimental observations. This indicates a mechanism that can contribute to reconciling observed turbulence behavior with transport models, allowing for the development of more accurate predictive tools.
Plasma Gradient Piston: a new approach to precision pulse shaping
NASA Astrophysics Data System (ADS)
Prisbrey, Shon T.
2011-10-01
We have successfully developed a method to create shaped pressure drives from large shocks that can be applied to a wide variety of experimental platforms. The method consists of transforming a large shock or blast wave into a ramped pressured drive by utilizing a graded density reservoir that unloads across a gap and stagnates against the sample being studied. The utilization of a graded density reservoir, different materials, and a gap transforms the energy in the initial large shock into a quasi-isentropic ramped compression. Control of the ramp history is via the size of the initial shock, the chosen reservoir materials, their densities, the thickness of each density layer, and the gap size. There are two keys to utilizing this approach to create ramped drives: the ability to produce a large shock, and making the layered density reservoir. A number of facilities can produce the strong initial shock (Z, Omega, NIF, Phoenix, high explosives, NIKE, LMJ, pulsed power,...). We have demonstrated ramped drives from 0.5 to 1.5 Mbar utilizing a large shock created at the Omega laser facility. We recently concluded a pair of NIF drive shots where we successfully converted a hohlraum-generated shock into a stepped, ramped pressure drive with a peak pressure of ~4 - 5 Mbar in a Ta sample. We will explain the basic concepts needed for producing a ramped pressure drive, compare experimental data with simulations from Omega (Pmax ~ 1 Mbar) and NIF (Pmax ~ 5-10 Mbar), and present designs for ramped, staged-shock designs up to Pmax ~ 30 Mbar. The approach that we have developed enables precision pulse shaping of the drive (applied pressure vs. time) via target characteristics, as opposed to tailoring laser power vs time or Z-pinch facility current vs time. This enables ramped, quasi-isentropic materials studies to be performed on a wide variety of HED facilities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-490532.
Sopori, B.L.
1994-10-25
A textured backside of a semiconductor device for increasing light scattering and absorption in a semiconductor substrate is accomplished by applying infrared radiation to the front side of a semiconductor substrate that has a metal layer deposited on its backside in a time-energy profile that first produces pits in the backside surface and then produces a thin, highly reflective, low resistivity, epitaxial alloy layer over the entire area of the interface between the semiconductor substrate and a metal contact layer. The time-energy profile includes ramping up to a first energy level and holding for a period of time to create the desired pit size and density and then rapidly increasing the energy to a second level in which the entire interface area is melted and alloyed quickly. After holding the second energy level for a sufficient time to develop the thin alloy layer over the entire interface area, the energy is ramped down to allow epitaxial crystal growth in the alloy layer. The result is a textured backside on an optically reflective, low resistivity alloy interface between the semiconductor substrate and the metal electrical contact layer. 9 figs.
Sopori, Bhushan L.
1994-01-01
A textured backside of a semiconductor device for increasing light scattering and absorption in a semiconductor substrate is accomplished by applying infrared radiation to the front side of a semiconductor substrate that has a metal layer deposited on its backside in a time-energy profile that first produces pits in the backside surface and then produces a thin, highly reflective, low resistivity, epitaxial alloy layer over the entire area of the interface between the semiconductor substrate and a metal contact layer. The time-energy profile includes ramping up to a first energy level and holding for a period of time to create the desired pit size and density and then rapidly increasing the energy to a second level in which the entire interface area is melted and alloyed quickly. After holding the second energy level for a sufficient time to develop the thin alloy layer over the entire interface area, the energy is ramped down to allow epitaxial crystal growth in the alloy layer. The result is a textured backside an optically reflective, low resistivity alloy interface between the semiconductor substrate and the metal electrical contact layer.
NASA Astrophysics Data System (ADS)
Nikolaeva, V.; Guimarais, L.; Manz, P.; Carralero, D.; Manso, M. E.; Stroth, U.; Silva, C.; Conway, G. D.; Seliunin, E.; Vicente, J.; Brida, D.; Aguiam, D.; Santos, J.; Silva, A.; ASDEX Upgrade team; MST1 team
2018-05-01
Transport in the scrape-off layer (SOL) depends on the state of divertor detachment. L-mode discharges were analyzed where the state of divertor detachment is varied through a density ramp-up. By means of reflectometry measurements at the low (LFS) and the high field side (HFS), midplane density fluctuations are studied for the first time in ASDEX Upgrade simultaneously at both sides of the tokamak. Radial density fluctuation profiles (δ {n}e/{n}e) increase with radius in both the HFS and the LFS. It is found that in the SOL density fluctuations at the LFS have about a factor of two larger amplitude than at the HFS in agreement with ballooned transport. Density fluctuations at the LFS show a modest variation with increasing background density resulting mainly from a rise of low frequency components. Experimental results are in good agreement with an enhanced convection of filaments at the LFS at the beginning of outer divertor detachment leading to a flatter SOL density profile. In this phase of the discharge, density fluctuations measured at the HFS far-SOL display a strong increase, which may be associated with the presence of faster filaments originated at the LFS.
Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR
NASA Astrophysics Data System (ADS)
Metz, G.; Wu, X. L.; Smith, S. O.
The Hartmann-Hahn matching profile in CP-MAS NMR shows a strong mismatch dependence if the MAS frequency is on the order of the dipolar couplings in the sample. Under these conditions, the profile breaks down into a series of narrow matching bands separated by the spinning speed, and it becomes difficult to establish and maintain an efficient matching condition. Variable-amplitude CP (VACP), as introduced previously (Peersen et al., J. Magn. Reson. A104, 334, 1993), has been proven to be effective for restoring flat profiles at high spinning speeds. Here, a refined implementation of VACP using a ramped-amplitude cross-polarization sequence (RAMP-CP) is described. The order of the amplitude modulation is shown to be of importance for the cross-polarization process. The new pulse sequence with a linear amplitude ramp is not only easier to set up but also improves the performance of the variable-amplitude experiment in that it produces flat profiles over a wider range of matching conditions even with short total contact times. An increase in signal intensity is obtained compared to both con ventional CP and the originally proposed VACP sequence.
NASA Astrophysics Data System (ADS)
Teplukhina, A. A.; Sauter, O.; Felici, F.; Merle, A.; Kim, D.; the TCV Team; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2017-12-01
The present work demonstrates the capabilities of the transport code RAPTOR as a fast and reliable simulator of plasma profiles for the entire plasma discharge, i.e. from ramp-up to ramp-down. This code focuses, at this stage, on the simulation of electron temperature and poloidal flux profiles using prescribed equilibrium and some kinetic profiles. In this work we extend the RAPTOR transport model to include a time-varying plasma equilibrium geometry and verify the changes via comparison with ATSRA code simulations. In addition a new ad hoc transport model based on constant gradients and suitable for simulations of L-H and H-L mode transitions has been incorporated into the RAPTOR code and validated with rapid simulations of the time evolution of the safety factor and the electron temperature over the entire AUG and TCV discharges. An optimization procedure for the plasma termination phase has also been developed during this work. We define the goal of the optimization as ramping down the plasma current as fast as possible while avoiding any disruptions caused by reaching physical or technical limits. Our numerical study of this problem shows that a fast decrease of plasma elongation during current ramp-down can help in reducing plasma internal inductance. An early transition from H- to L-mode allows us to reduce the drop in poloidal beta, which is also important for plasma MHD stability and control. This work shows how these complex nonlinear interactions can be optimized automatically using relevant cost functions and constraints. Preliminary experimental results for TCV are demonstrated.
Oblique view of Facility No. S362 showing the profile of ...
Oblique view of Facility No. S362 showing the profile of the ramp. Note the mooring cleat fixed to the top edge of the curb at left - U.S. Naval Base, Pearl Harbor, Seaplane Ramps - World War II Type, Southwest and west shore of Ford Island, near Wasp Boulevard, Pearl City, Honolulu County, HI
Electron Temperature and Density in Local Helicity Injection and High betat Plasmas
NASA Astrophysics Data System (ADS)
Schlossberg, David J.
Tokamak startup in a spherical torus (ST) and an ST-based fusion nuclear science facility can greatly benefit from using non-inductive methods. The Pegasus Toroidal Experiment has developed a non-inductive startup technique using local helicity injection (LHI). Electron temperature, T e(r), and density, ne( r), profiles during LHI are unknown. These profiles are critical for understanding both the physics of the injection and relaxation mechanisms, as well as for extrapolating this technique to larger devices. A new Thomson scattering system has been designed, installed, and used to characterize Te(r, t) and ne(r, t) during LHI. The diagnostic leverages new technology in image intensified CCD cameras, high-efficiency diffraction gratings, and reliable Nd:YAG lasers. Custom systems for stray light mitigation, fast shuttering, and precision timing have been developed and implemented. The overall system provides a low-maintenance, economic, and effective means to explore novel physics regimes in Pegasus. Electron temperature and density profiles during LHI have been measured for the first time. Results indicate Te(r) peaked in the core of plasmas, and sustained while plasmas are coupled to injection drive. Electron densities also peak near the core of the tokamak, up to local values of n e ˜ 1.5 x 1019 m -3. A comparison of Te( r, t) has been made between discharges with dominant drive voltage from induction versus helicity injection. In both cases Te ( r, t) profiles remain peaked, with values for Te ,max > 150 eV in dominantly helicity-driven plasmas using high-field side LHI. Sustained values of betat ˜ 100% have been demonstrated in a tokamak for the first time. Plasmas are created and driven entirely non-solenoidally, and exhibit MHD stability. Measured temperature and density profiles are used to constrain magnetic equilibrium reconstructions, which calculate 80% < betat < 100% throughout a toroidal field ramp-down. For a continued decrease in the toroidal field these plasmas disrupt near the ideal MHD no-wall stability limit predicted by the DCON code. Mode analyses of predicted and measured MHD agree, and suggest discharges terminate by an intermediate-m, n=1 external mode. A localized region of minimum |B| has been identified in these discharges, and modeling shows access to it depends on both plasma pressure and magnetic geometry. This magnetic well is shown to persist over several milliseconds, in both constant toroidal field and ramp-down cases.
NASA Astrophysics Data System (ADS)
Ohta, M.; Mattei, S.; Yasumoto, M.; Hatayama, A.; Lettry, J.
2014-02-01
In the Linac4 H- ion source, the plasma is generated by an RF antenna operated at 2 MHz. In order to investigate the conditions necessary for ramping up the plasma density of the Linac4 H- ion source in the low plasma density, a numerical study has been performed for a wide range of parameter space of RF coil current and initial pressure from H2 gas injection. We have employed an Electromagnetic Particle in Cell model, in which the collision processes have been calculated by a Monte Carlo method. The results have shown that the range of initial gas pressure from 2 to 3 Pa is suitable for ramping up plasma density via inductive coupling.
Test of electical resistivity and current diffusion modelling on MAST and JET
NASA Astrophysics Data System (ADS)
Keeling, D. L.; Challis, C. D.; Jenkins, I.; Hawkes, N. C.; Lupelli, I.; Michael, C.; de Bock, M. F. M.; the MAST Team; contributors, JET
2018-01-01
Experiments have been carried out on the MAST and JET tokamaks intended to compare the electrical resistivity of the plasma with theoretical formulations. The tests consist of obtaining motional stark effect (MSE) measurements in MHD-free plasmas during plasma current ramp-up (JET and MAST), ramp-down (MAST) and in stationary state (JET and MAST). Simulations of these plasmas are then performed in which the current profile evolution is calculated according to the poloidal field diffusion equation (PFDE) with classical or neoclassical resistivity. Synthetic MSE data are produced in the simulations for direct comparison with the experimental data. It is found that the toroidal current profile evolution modelled using neoclassical resistivity did not match the experimental observations on either device during current ramp-up or ramp-down as concluded from comparison of experimental and synthetic MSE profiles. In these phases, use of neoclassical resistivity in the modelling systematically overestimates the rate of current profile evolution. During the stationary state however, the modelled toroidal current profile matched experimental observations to a high degree of accuracy on both devices using neoclassical resistivity. Whilst no solution to the mismatch in the dynamic phases of the plasma is proposed, it is suggested that some physical process other than MHD which is not captured by the simple diffusive model of current profile evolution is responsible.
Validating the energy transport modeling of the DIII-D and EAST ramp up experiments using TSC
NASA Astrophysics Data System (ADS)
Liu, Li; Guo, Yong; Chan, Vincent; Mao, Shifeng; Wang, Yifeng; Pan, Chengkang; Luo, Zhengping; Zhao, Hailin; Ye, Minyou
2017-06-01
The confidence in ramp up scenario design of the China fusion engineering test reactor (CFETR) can be significantly enhanced using validated transport models to predict the current profile and temperature profile. In the tokamak simulation code (TSC), two semi-empirical energy transport models (the Coppi-Tang (CT) and BGB model) and three theory-based models (the GLF23, MMM95 and CDBM model) are investigated on the CFETR relevant ramp up discharges, including three DIII-D ITER-like ramp up discharges and one EAST ohmic discharge. For the DIII-D discharges, all the transport models yield dynamic {{\\ell}\\text{i}} within +/- 0.15 deviations except for some time points where the experimental fluctuation is very strong. All the models agree with the experimental {β\\text{p}} except that the CT model strongly overestimates {β\\text{p}} in the first half of ramp up phase. When applying the CT, CDBM and GLF23 model to estimate the internal flux, they show maximum deviations of more than 10% because of inaccuracies in the temperature profile predictions, while the BGB model performs best on the internal flux. Although all the models fall short in reproducing the dynamic {{\\ell}\\text{i}} evolution for the EAST tokamak, the result of the BGB model is the closest to the experimental {{\\ell}\\text{i}} . Based on these comparisons, we conclude that the BGB model is the most consistent among these models for simulating CFETR ohmic ramp-up. The CT model with improvement for better simulation of the temperature profiles in the first half of ramp up phase will also be attractive. For the MMM95, GLF23 and CDBM model, better prediction of the edge temperature will improve the confidence for CFETR L-mode simulation. Conclusive validation of any transport model will require extensive future investigation covering a larger variety discharges.
Pohn, Howard A.
2000-01-01
Lateral ramps are zones where decollements change stratigraphic level along strike; they differ from frontal ramps, which are zones where decollements change stratigraphic level perpendicular to strike. In the Appalachian Mountains, the surface criteria for recognizing the subsurface presence of lateral ramps include (1) an abrupt change in wavelength or a termination of folds along strike, (2) a conspicuous change in the frequency of mapped faults or disturbed zones (extremely disrupted duplexes) at the surface, (3) long, straight river trends emerging onto the coastal plain or into the Appalachian Plateaus province, (4) major geomorphic discontinuities in the trend of the Blue Ridge province, (5) interruption of Mesozoic basins by cross-strike border faults, and (6) zones of modern and probable ancient seismic activity. Additional features related to lateral ramps include tectonic windows, cross-strike igneous intrusions, areas of giant landslides, and abrupt changes in Paleozoic sedimentation along strike. Proprietary strike-line seismic-reflection profiles cross three of the lateral ramps that were identified by using the surface criteria. The profiles confirm their presence and show their detailed nature in the subsurface. Like frontal ramps, lateral ramps are one of two possible consequences of fold-and-thrust-belt tectonics and are common elements in the Appalachian fold-and-thrust belt. A survey of other thrust belts in the United States and elsewhere strongly suggests that lateral ramps at depth can be identified by their surface effects. Lateral ramps probably are the result of thrust sheet motion caused by continued activation of ancient cratonic fracture systems. Such fractures localized the transform faults along which the continental segments adjusted during episodes of sea-floor spreading.
Phase transition of a new lattice hydrodynamic model with consideration of on-ramp and off-ramp
NASA Astrophysics Data System (ADS)
Zhang, Geng; Sun, Di-hua; Zhao, Min
2018-01-01
A new traffic lattice hydrodynamic model with consideration of on-ramp and off-ramp is proposed in this paper. The influence of on-ramp and off-ramp on the stability of the main road is uncovered by theoretical analysis and computer simulation. Through linear stability theory, the neutral stability condition of the new model is obtained and the results show that the unstable region in the phase diagram is enlarged by considering the on-ramp effect but shrunk with consideration of the off-ramp effect. The mKdV equation near the critical point is derived via nonlinear reductive perturbation method and the occurrence of traffic jamming transition can be described by the kink-antikink soliton solution of the mKdV equation. From the simulation results of space-time evolution of traffic density waves, it is shown that the on-ramp can worsen the traffic stability of the main road but off-ramp is positive in stabilizing the traffic flow of the main road.
NASA Astrophysics Data System (ADS)
Asimow, P. D.; Nguyen, J.; Akin, M. C.; Fatýanov, O. V.
2015-12-01
Detailed elasticity data on liquid Fe and candidate molten core alloys should offer new constraints on the under-constrained problem of Earth's core composition. Density, sound speed, and the gradient in sound speed with pressure are each potentially distinct experimental constraints and are each well-known for Earth. The gradient in sound speed, though, has not been used because sound speed depends on both T and P, such that data must be collected or reconstructed along the correct, nearly adiabatic, thermal profile. Reconstruction requires the Grüneisen γ, which is composition-dependent, and data over a large P-T space to allow extrapolation. Both static and dynamic compression methods could be used, but the conditions (140 - 330 GPa and 4000 - 6000 K) are very challenging for static methods and standard shock compression only samples the outer core P-T profile at a single P. Instead we are applying quasi-isentropic dynamic ramp compression, using pre-heating of the target and impedance of the leading edge of a graded-density impactor (GDI) to select a probable outer core isentrope. The target material is melted and raised to a point on the outer core isentrope by the initial shock, then quasi-isentropically ramped to a maximum P by increasing shock impedance of trailing GDI layers. Particle velocity is monitored by photonic doppler velocimetry (PDV) at two step thicknesses at the interface of Fe or Fe-alloy target and MgO windows. The difference in arrival time of each particle velocity at the two steps directly gives the Lagrangian sound speed vs. particle velocity, which is integrated to obtain Pand density. At the writing of this abstract, we have completed one shot of this type. We successfully heated a two-step Fe target in a Mo capsule with MgO windows to 1350 °C, maintaining sufficient alignment and reflectivity to collect PDV signal returns. We characterized the velocity correction factor for PDV observation through MgO windows, and have confirmed that MgO remains sufficiently transparent on this loading path to act as a window. Our shot used a Mg-Ta graded density impactor launched at 5.6 km/s by the Caltech two-stage light gas gun, providing continuous sampling of the sound speed of liquid Fe from 70 GPa and ~2800 K up the isentrope to 243 GPa. Analysis continues. Prepared by LLNL under Contract DE-AC52-07NA27344
Multi-frequency ICRF diagnostic of Tokamak plasmas
NASA Astrophysics Data System (ADS)
Lafonteese, David James
This thesis explores the diagnostic possibilities of a fast wave-based method for measuring the ion density and temperature profiles of tokamak plasmas. In these studies fast waves are coupled to the plasma at frequencies at the second harmonic of the ion gyrofrequency, at which wave energy is absorbed by the finite-temperature ions. As the ion gyrofrequency is dependent upon the local magnetic field, which varies as l/R in a tokamak, this power absorption is radially localized. The simultaneous launching of multiple frequencies, all resonating at different plasma positions, allows local measurements of the ion density and temperature. To investigate the profile applications of wave damping measurements in a simulated tokamak, an inhouse slab-model ICRF code is developed. A variety of analysis methods are presented, and ion density and temperature profiles are reconstructed for hydrogen plasmas for the Electric Tokamak (ET) and ITER parameter spaces. These methods achieve promising results in simulated plasmas featuring bulk ion heating, off-axis RF heating, and density ramps. The experimental results of similar studies on the Electric Tokamak, a high aspect ratio (R/a = 5), low toroidal field (2.2 kG) device are then presented. In these studies, six fast wave frequencies were coupled using a single-strap, low-field-side antenna to ET plasmas. The frequencies were variable, and could be tuned to resonate at different radii for different experiments. Four magnetic pickup loops were used to measure of the toroidal component of the wave magnetic field. The expected greater eigenmode damping of center-resonant frequencies versus edge-resonant frequencies is consistently observed. Comparison of measured aspects of fast wave behavior in ET is made with the slab code predictions, which validate the code simulations under weakly-damped conditions. A density profile is measured for an ET discharge through analysis of the fast wave measurements, and is compared to an electron density profile derived from Thomson scattering data. The methodology behind a similar measurement of the ion temperature profile is also presented.
Investigation of Mixing a Supersonic Stream with the Flow Downstream of a Wedge
NASA Technical Reports Server (NTRS)
Sheeley, Joseph
1997-01-01
The flow characteristics in the base region of a two-dimensional supersonic compression ramp are investigated. A stream-wise oriented air jet, M = 1.75, is injected through a thin horizontal slot into a supersonic air main flow, M = 2.3, at the end of a two-dimensional compression ramp. The velocity profile and basic characteristics of the flow in the base region immediately following the ramp are determined. Visualization of the flowfield for qualitative observations is accomplished via Dark Central Ground Interferometry (DCGI). Two-dimensional velocity profiles are obtained using Laser Doppler Velocimetry (LDV). The study is the initial phase of a four-year investigation of base flow mixing. The current study is to provide more details of the flowfield.
Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine
NASA Astrophysics Data System (ADS)
D'Almeida, Thierry; Lassalle, Francis; Morell, Alain; Grunenwald, Julien; Zucchini, Frédéric; Loyen, Arnaud; Maysonnave, Thomas; Chuvatin, Alexandre
2013-06-01
SPHINX is a 6MA, 1- μs Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being considered for improving the generator performances, there is a compact Dynamic Load Current Amplifier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments, based on electrical and hydrodynamic simulations. Initial results obtained over a set of experiments on an aluminum cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented. Details of the electrical and Photonic Doppler Velocimetry (PDV) setups used to monitor and diagnose the ramp compression experiments are provided. Current profiles measured at various locations across the system, particularly the load current, agree with simulated current profile and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. Higher ramp pressure levels are foreseen in future experiments with an improved DLCM system.
NASA Astrophysics Data System (ADS)
Jiang, Yu; Fletcher, John; Burr, Patrick; Hall, Charles; Zheng, Bowen; Wang, Da-Wei; Ouyang, Zi; Lennon, Alison
2018-04-01
Photovoltaic (PV) systems can exhibit rapid variances in their power output due to irradiance changes which can destabilise an electricity grid. This paper presents a quantitative comparison of the suitability of different electrochemical energy storage system (ESS) technologies to provide ramp-rate control of power in PV systems. Our investigations show that, for PV systems ranging from residential rooftop systems to megawatt power systems, lithium-ion batteries with high energy densities (up to 600 Wh L-1) require the smallest power-normalised volumes to achieve the ramp rate limit of 10% min-1 with 100% compliance. As the system size increases, the ESS power-normalised volume requirements are significantly reduced due to aggregated power smoothing, with high power lithium-ion batteries becoming increasingly more favourable with increased PV system size. The possibility of module-level ramp-rate control is also introduced, and results show that achievement of a ramp rate of 10% min-1 with 100% compliance with typical junction box sizes will require ESS energy and power densities of 400 Wh L-1 and 2300 W L-1, respectively. While module-level ramp-rate control can reduce the impact of solar intermittence, the requirement is challenging, especially given the need for low cost and long cycle life.
Transformer ratio saturation in a beam-driven wakefield accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J. P.; Martorelli, R.; Pukhov, A.
We show that for beam-driven wakefield acceleration, the linearly ramped, equally spaced train of bunches typically considered to optimise the transformer ratio only works for flat-top bunches. Through theory and simulation, we explain that this behaviour is due to the unique properties of the plasma response to a flat-top density profile. Calculations of the optimal scaling for a train of Gaussian bunches show diminishing returns with increasing bunch number, tending towards saturation. For a periodic bunch train, a transformer ratio of 23 was achieved for 50 bunches, rising to 40 for a fully optimised beam.
NASA Astrophysics Data System (ADS)
Tsujii, Naoto; Takase, Yuichi; Ejiri, Akira; Shinya, Takahiro; Yajima, Satoru; Yamazaki, Hibiki; Togashi, Hiro; Moeller, Charles P.; Roidl, Benedikt; Takahashi, Wataru; Toida, Kazuya; Yoshida, Yusuke
2017-10-01
Removal of the central solenoid is essential to realize an economical spherical tokamak fusion reactor, but non-inductive plasma start-up is a challenge. On the TST-2 spherical tokamak, non-inductive plasma start-up using lower-hybrid (LH) waves has been investigated. Using the capacitively-coupled combline (CCC) antenna installed at the outboard midplane, fully non-inductive plasma current ramp-up up to a quarter of that of the typical Ohmic discharges has been achieved. Although it was desirable to keep the density low during the plasma current ramp-up to avoid the LH density limit, it was recognized that there was a maximum current density that could be carried by a given electron density. Since the density needed to increase as the plasma current was ramped-up, the achievable plasma current was limited by the maximum operational toroidal field of TST-2. The top-launch CCC antenna was installed to access higher density with up-shift of the parallel index of refraction. Numerical analysis of LH current drive with the outboard-launch and top-launch antennas was performed and the results were qualitatively consistent with the experimental observations.
Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummon, M.; Weekley, A.; Searight, K.
2013-10-01
High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart.more » The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.« less
Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummon, M.; Weekley, A.; Searight, K.
2013-10-01
High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart.more » The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.« less
NASA Astrophysics Data System (ADS)
Yasumoto, M.; Ohta, M.; Kawamura, Y.; Hatayama, A.
2014-02-01
Numerical simulations become useful for the developing RF-ICP (Radio Frequency Inductively Coupled Plasma) negative ion sources. We are developing and parallelizing a two-dimensional three velocity electromagnetic Particle-In-Cell code. The result shows rapid increase in the electron density during the density ramp-up phase. A radial electric field due to the space charge is produced with increase in the electron density and the electron transport in the radial direction is suppressed. As a result, electrons stay for a long period in the region where the inductive electric field is strong, and this leads efficient electron acceleration and a rapid increasing of the electron density.
Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility
NASA Astrophysics Data System (ADS)
Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.
2011-12-01
Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials.
We acknowledge the Omega staff at LLE for their assistance, Micro/Nano fabrication laboratory staff at Princeton University and the Target Engineering Team at LLNL for fabrication and metrology of the targets used in these experiments. The research was supported by DOE under DE-FG52-09NA29037.
Ramp compression of magnesium oxide to 234 GPa
Wang, Jue; Smith, R. F.; Coppari, F.; ...
2014-05-07
Single-crystal magnesium oxide (MgO) samples were ramp compressed to above 200 GPa pressure at the Omega laser facility. Multi-stepped MgO targets were prepared using lithography and wet etching techniques. Free surface velocities of ramp-compressed MgO were measured with a VISAR. The sound velocity and stress-density response were determined using an iterative Lagrangian analysis. The measured equation of state is consistent with expectations from previous shock and static data as well as with a recent X-ray diffraction measurement under ramp loading. The peak elastic stresses observed in our samples had amplitudes of 3-5.5 GPa, decreasing with propagation distance.
Puente Hills blind-thrust system, Los Angeles, California
Shaw, J.H.; Plesch, A.; Dolan, J.F.; Pratt, T.L.; Fiore, P.
2002-01-01
We describe the three-dimensional geometry and Quaternary slip history of the Puente Hills blind-thrust system (PHT) using seismic reflection profiles, petroleum well data, and precisely located seismicity. The PHT generated the 1987 Whittier Narrows (moment magnitude [Mw] 6.0) earthquake and extends for more than 40 km along strike beneath the northern Los Angeles basin. The PHT comprises three, north-dipping ramp segments that are overlain by contractional fault-related folds. Based on an analysis of these folds, we produce Quaternary slip profiles along each ramp segment. The fault geometry and slip patterns indicate that segments of the PHT are related by soft-linkage boundaries, where the fault ramps are en echelon and displacements are gradually transferred from one segment to the next. Average Quaternary slip rates on the ramp segments range from 0.44 to 1.7 mm/yr, with preferred rates between 0.62 and 1.28 mm/yr. Using empirical relations among rupture area, magnitude, and coseismic displacement, we estimate the magnitude and frequency of single (Mw 6.5-6.6) and multisegment (Mw 7.1) rupture scenarios for the PHT.
Andonian, G.; Barber, S.; O’Shea, F. H.; ...
2017-02-03
We show that temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefieldmore » diagnostics and pulse profile reconstruction techniques.« less
Detectable Warning Surfaces at Curb Ramps.
ERIC Educational Resources Information Center
Hauger, J. S.; And Others
1996-01-01
Four tests evaluated the need for and effectiveness of detectable warning surfaces at curb ramps for pedestrians with blindness. Results found that the effectiveness of the detectable warning surfaces depended on other aspects of the design of the intersections and on factors such as the density of traffic and the traveler's skills. (CR)
Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine
NASA Astrophysics Data System (ADS)
d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A.
2014-05-01
SPHINX is a 6MA, 1-us Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. A method for performing magnetic ramp compression experiments was developed using a compact Dynamic Load Current Multiplier inserted between the convolute and the load, to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments and initial results obtained over a set of experiments on an aluminum cylindrical liner. Current profiles measured at various critical locations across the system, are in good agreement with simulated current profiles. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency.
NASA Astrophysics Data System (ADS)
Fiore, C. L.; Rowan, W. L.; Dominguez, A.; Hubbard, A. E.; Ince-Cushman, A.; Greenwald, M. J.; Lin, L.; Marmar, E. S.; Reinke, M.; Rice, J. E.; Zhurovich, K.
2007-11-01
Internal transport barrier plasmas can arise spontaneously in ohmic Alcator C-Mod plasmas where an EDA H-mode has been developed by magnetic field ramping. These ohmic ITBs share the hallmarks of ITBs created with off-axis ICRF injection in that they have highly peaked density and pressure profiles and the peaking can be suppressed by on-axis ICRF. There is a reduction of particle and thermal flux in the barrier region which then allows the neoclassical pinch to peak the central density. Recent work on ITB onset conditions [1] which was motivated by turbulence studies [2] points to the broadening of the Ti profile with off-axis ICRF acting to reduce the ion temperature gradient. This suppresses ITG instability driven particle fluxes, which is thought to be the primary mechanism for ITB formation. The object of this study is to examine the characteristics of ohmic ITBs to find whether the stability of plasmas and the plasma parameters support the onset model. [1]K. Zhurovich, et al., To be published in Nuclear Fusion [2] D. R. Ernst, et al., Phys. Plasmas 11, 2637 (2004)
Temporal Electron-bunch Shaping from a Photoinjector for Advanced Accelerator Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemery, Francois; Piot, Philippe
2014-07-01
Advanced-accelerator applications often require the production of bunches with shaped temporal distributions. An example of sought-after shape is a linearly-ramped current profile that can be improve the transformer ratio in beam-driven acceleration, or produce energy-modulated pulse for, e.g., the subsequent generation of THz radiation. Typically, such a shaping is achieved by manipulating ultra-relativistic electron bunches. In this contribution we discuss the possibility of shaping the bunch via photoemission and demonstrate using particle-in-cell simulations the production of MeV electron bunches with quasi-ramped current profile.
USDA-ARS?s Scientific Manuscript database
Whey Acidic Protein (WAP) gene expression is specific to the mammary gland and regulated by lactogenic hormones to peak during lactation. It differs markedly from the more constitutive expression of the two flanking genes, Ramp3 and Tbrg4. Our results show that the tight regulation of WAP gene expre...
Slow quench dynamics of a one-dimensional Bose gas confined to an optical lattice.
Bernier, Jean-Sébastien; Roux, Guillaume; Kollath, Corinna
2011-05-20
We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.
Piot, P.; Behrens, C.; Gerth, C.; ...
2011-09-07
We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak acceleratingmore » electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.« less
Piot, P; Behrens, C; Gerth, C; Dohlus, M; Lemery, F; Mihalcea, D; Stoltz, P; Vogt, M
2012-01-20
We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radio frequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced ~700-MeV bunches have peak currents of the order of a kilo-Ampère. Data taken for various accelerator settings demonstrate the versatility of the method and, in particular, its ability to produce current profiles that have a quasilinear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides. © 2012 American Physical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, W P; Burrell, K H; Casper, T A
2004-12-03
The quiescent H (QH) mode, an edge localized mode (ELM)-free, high-confinement mode, combines well with an internal transport barrier to form quiescent double barrier (QDB) stationary state, high performance plasmas. The QH-mode edge pedestal pressure is similar to that seen in ELMing phases of the same discharge, with similar global energy confinement. The pedestal density in early ELMing phases of strongly pumped counter injection discharges drops and a transition to QH-mode occurs, leading to lower calculated edge bootstrap current. Plasmas current ramp experiment and ELITE code modeling of edge stability suggest that QH-modes lie near an edge current stability boundary.more » At high triangularity, QH-mode discharges operate at higher pedestal density and pressure, and have achieved ITER level values of {beta}{sub PED} and {nu}*. The QDB achieves performance of {alpha}{sub N}H{sub 89} {approx} 7 in quasi-stationary conditions for a duration of 10 tE, limited by hardware. Recently we demonstrated stationary state QDB discharges with little change in kinetic and q profiles (q{sub 0} > 1) for 2 s, comparable to ELMing ''hybrid scenarios'', yet without the debilitating effects of ELMs. Plasma profile control tools, including electron cyclotron heating and current drive and neutral beam heating, have been demonstrated to control simultaneously the q profile development, the density peaking, impurity accumulation and plasma beta.« less
Effects of Hybrid Flow Control on a Normal Shock Boundary-Layer Interaction
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Vyas, Manan A.
2013-01-01
Hybrid flow control, a combination of micro-ramps and steady micro-jets, was experimentally investigated in the 15x15 cm Supersonic Wind Tunnel at the NASA Glenn Research Center. A central composite design of experiments method, was used to develop response surfaces for boundary-layer thickness and reversed-flow thickness, with factor variables of inter-ramp spacing, ramp height and chord length, and flow injection ratio. Boundary-layer measurements and wall static pressure data were used to understand flow separation characteristics. A limited number of profiles were measured in the corners of the tunnel to aid in understanding the three-dimensional characteristics of the flowfield.
MHD and resonant instabilities in JT-60SA during current ramp-up with off-axis N-NB injection
NASA Astrophysics Data System (ADS)
Bierwage, A.; Toma, M.; Shinohara, K.
2017-12-01
The excitation of magnetohydrodynamic (MHD) and resonant instabilities and their effect on the plasma profiles during the current ramp-up phase of a beam-driven JT-60SA tokamak plasma is studied using the MHD-PIC hybrid code MEGA. In the simple scenario considered, the plasma is only driven by one negative-ion-based neutral beam, depositing 500 keV deuterons at 5 MW power off-axis at about mid-radius. The beam injection starts half-way in the ramp-up phase. Within 1 s, the beam-driven plasma current and fast ion pressure produce a configuration that is strongly unstable to rapidly growing MHD and resonant modes. Using MEGA, modes with low toroidal mode numbers in the range n = 1-4 are examined in detail and shown to cause substantial changes in the plasma profiles. The necessity to develop reduced models and incorporate the effects of such instabilities in integrated codes used to simulate the evolution of entire plasma discharges is discussed.
Ponsot, Emmanuel; Susini, Patrick; Meunier, Sabine
2017-07-01
The mechanisms underlying global loudness judgments of rising- or falling-intensity tones were further investigated in two magnitude estimation experiments. By manipulating the temporal characteristics of such stimuli, it was examined whether judgments could be accounted for by an integration of their loudest portion over a certain temporal window associated to a "decay mechanism" downsizing this integration over time for falling ramps. In experiment 1, 1-kHz intensity-ramps were stretched in time between 1 and 16 s keeping their dynamics (difference between maximum and minimum levels) unchanged. While global loudness of rising tones increased up to 6 s, evaluations of falling tones increased at a weaker rate and slightly decayed between 6 and 16 s, resulting in significant differences between the two patterns. In experiment 2, ramps were stretched in time between 2 and 12 s keeping their slopes (rate of change in dB/s) unchanged. In this context, the main effect of duration became non-significant and the interaction between the two profiles remained, although the decay of falling tones was not significant. These results qualitatively support the view that the global loudness computation of intensity-ramps involves an integration of their loudest portions; the presence of a decay mechanism could, however, not be attested.
The Effect of Micro-ramps on Supersonic Flow over a Forward-Facing Step
NASA Astrophysics Data System (ADS)
Zhang, Qing-Hu; Yi, Shi-He; Zhu, Yang-Zhu; Chen, Zhi; Wu, Yu
2013-04-01
The effect of micro-ramp control on fully developed turbulent flow over a forward-facing step (FFS) is investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and supersonic particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and the average velocity profiles of supersonic flow over the FFS with and without the control of the micro-ramps are captured. The fine structures of both cases, including the coherent structures of fully developed boundary layer and the large-scale hairpin-like vortices originated from the micro-ramps as well as the interaction of shock waves with the large-scale structures, are revealed and compared. Based on the time-correlation images, the temporal and spatial evolutionary characteristics of the coherent structures are investigated. It is beneficial to understand the dynamic mechanisms of the separated flow and the control mechanisms of the micro-ramps. The size of the separation region is determined by the NPLS and PIV. The results indicate that the control of the micro-ramps is capable of delaying the separation and diminishing the extent of recirculation zone.
NASA Astrophysics Data System (ADS)
Krebs, Isabel; Jardin, Stephen C.; Guenter, Sibylle; Lackner, Karl; Hoelzl, Matthias; Strumberger, Erika; Ferraro, Nate
2017-10-01
3D nonlinear MHD simulations of tokamak plasmas have been performed in toroidal geometry by means of the high-order finite element code M3D-C1. The simulations are set up such that the safety factor on axis (q0) is driven towards values below unity. As reported in and the resulting asymptotic states either exhibit sawtooth-like reconnection cycling or they are sawtooth-free. In the latter cases, a self-regulating magnetic flux pumping mechanism, mainly provided by a saturated quasi-interchange instability via a dynamo effect, redistributes the central current density so that the central safety factor profile is flat and q0 1 . Sawtoothing is prevented if β is sufficiently high to allow for the necessary amount of flux pumping to counterbalance the tendency of the current density profile to centrally peak. We present the results of 3D nonlinear simulations based on specific types of experimental discharges and analyze their asymptotic behavior. A set of cases is presented where aspects of the current ramp-up phase of Hybrid ASDEX Upgrade discharges are mimicked. Another set of simulations is based on low-qedge discharges in DIII-D.
NASA Astrophysics Data System (ADS)
Meacham, James R.; Jabbari, Faryar; Brouwer, Jacob; Mauzey, Josh L.; Samuelsen, G. Scott
Current high temperature fuel cell (HTFC) systems used for stationary power applications (in the 200-300 kW size range) have very limited dynamic load following capability or are simply base load devices. Considering the economics of existing electric utility rate structures, there is little incentive to increase HTFC ramping capability beyond 1 kWs -1 (0.4% s -1). However, in order to ease concerns about grid instabilities from utility companies and increase market adoption, HTFC systems will have to increase their ramping abilities, and will likely have to incorporate electrical energy storage (EES). Because batteries have low power densities and limited lifetimes in highly cyclic applications, ultra capacitors may be the EES medium of choice. The current analyses show that, because ultra capacitors have a very low energy storage density, their integration with HTFC systems may not be feasible unless the fuel cell has a ramp rate approaching 10 kWs -1 (4% s -1) when using a worst-case design analysis. This requirement for fast dynamic load response characteristics can be reduced to 1 kWs -1 by utilizing high resolution demand data to properly size ultra capacitor systems and through demand management techniques that reduce load volatility.
Computational Analysis of End-of-Injection Transients and Combustion Recession
NASA Astrophysics Data System (ADS)
Jarrahbashi, Dorrin; Kim, Sayop; Knox, Benjamin W.; Genzale, Caroline L.; Georgia Institute of Technology Team
2016-11-01
Mixing and combustion of ECN Spray A after end of injection are modeled with different chemical kinetics models to evaluate the impact of mechanism formulation and low-temperature chemistry on predictions of combustion recession. Simulations qualitatively agreed with the past experimental observations of combustion recession. Simulations with the Cai mechanism show second-stage ignition in distinct regions near the nozzle, initially spatially separated from the lifted diffusion flame, but then rapidly merge with flame. By contrast, the Yao mechanism fails to predict sufficient low-temperature chemistry in mixtures upstream of the diffusion flame and combustion recession. The effects of the shape and duration of the EOI transient on the entrainment wave near the nozzle, the likelihood of combustion recession, and the spatiotemporal development of mixing and chemistry in near-nozzle mixtures are also investigated. With a more rapid ramp-down injection profile, a weaker combustion recession occurs. For extremely fast ramp-down, the entrainment flux varies rapidly near the nozzle and over-leaning of the mixture completely suppresses combustion recession. For a slower ramp-down profile complete combustion recession back toward the nozzle is observed.
Risk assessment in ramps for heavy vehicles--A French study.
Cerezo, Veronique; Conche, Florence
2016-06-01
This paper presents the results of a study dealing with the risk for heavy vehicles in ramps. Two approaches are used. On one hand, statistics are applied on several accidents databases to detect if ramps are more risky for heavy vehicles and to define a critical value for longitudinal slope. χ(2) test confirmed the risk in ramps and statistical analysis proved that a longitudinal slope superior to 3.2% represents a higher risk for heavy vehicles. On another hand, numerical simulations allow defining the speed profile in ramps for two types of heavy vehicles (tractor semi-trailer and 2-axles rigid body) and different loads. The simulations showed that heavy vehicles must drive more than 1000 m on ramps to reach their minimum speed. Moreover, when the slope is superior to 3.2%, tractor semi-trailer presents a strong decrease of their speed until 50 km/h. This situation represents a high risk of collision with other road users which drive at 80-90 km/h. Thus, both methods led to the determination of a risky configuration for heavy vehicles: ramps with a length superior to 1000 m and a slope superior to 3.2%. An application of this research work concerns design methods and guidelines. Indeed, this study provides threshold values than can be used by engineers to make mandatory specific planning like a lane for slow vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A. S.
2013-09-01
SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper, we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or magnetic diffusion across the liner. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency through the use of a closing switch (currently under development), reducing the load dimensions and optimizing the diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oakdale, James S.; Smith, Raymond F.; Forien, Jean -Baptiste
Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3) along a length of <100 µm. Taking full advantage of this technology, however, ismore » a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.« less
Oakdale, James S.; Smith, Raymond F.; Forien, Jean -Baptiste; ...
2017-09-27
Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3) along a length of <100 µm. Taking full advantage of this technology, however, ismore » a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.« less
Ramp and periodic dynamics across non-Ising critical points
NASA Astrophysics Data System (ADS)
Ghosh, Roopayan; Sen, Arnab; Sengupta, K.
2018-01-01
We study ramp and periodic dynamics of ultracold bosons in an one-dimensional (1D) optical lattice which supports quantum critical points separating a uniform and a Z3 or Z4 symmetry broken density-wave ground state. Our protocol involves both linear and periodic drives which takes the system from the uniform state to the quantum critical point (for linear drive protocol) or to the ordered state and back (for periodic drive protocols) via controlled variation of a parameter of the system Hamiltonian. We provide exact numerical computation, for finite-size boson chains with L ≤24 using exact diagonalization (ED), of the excitation density D , the wave function overlap F , and the excess energy Q at the end of the drive protocol. For the linear ramp protocol, we identify the range of ramp speeds for which D and Q show Kibble-Zurek scaling. We find, based on numerical analysis with L ≤24 , that such scaling is consistent with that expected from critical exponents of the q -state Potts universality class with q =3 ,4 . For the periodic protocol, we show that the model displays near-perfect dynamical freezing at specific frequencies; at these frequencies D ,Q →0 and |F |→1 . We provide a semi-analytic explanation of such freezing behavior and relate this phenomenon to a many-body version of Stuckelberg interference. We suggest experiments which can test our theory.
NASA Astrophysics Data System (ADS)
Arias, E. Y.; Beaudoin, B. C.; Barstow, N.; Slad, G.
2010-12-01
IRIS PASSCAL supported a NSF-funded project to collect an open community dataset from a portable seismograph deployment following the magnitude 8.8 earthquake that occurred off the coast of Chile on February 27, 2010 (an experiment of the Rapid Array Mobilization Program - RAMP). In part, due to logistical constraints, the broadband sensors (Guralp CMG3T) for this deployment were buried directly in soil. Direct burial refers to installation of a broadband sensor in a small hand-dug hole, encased in plastic bags, and ideally backfilled with well tamped and dampened sand. Field conditions did not provide ideal installations in all cases. Because of the variability in actual installation practices, the Chile RAMP data provide an opportunity to examine the impact of several factors on the direct burial data quality. Using McNamara and Boaz (2005) PQLX statistical analysis software, which calculates the power spectral density (PSD) and plots the probability density function (PDF)(McNamara and Buland, 2004), we characterize the background seismic noise levels and signal quality for 58 directly buried installations at the Chile RAMP. Data return and data quality during the deployment (April -September 2010) will be evaluated considering a variety of parameters including installation technique, site characteristics, and equipment performance. Preliminary results using data from two service runs (April - June), suggest variation in the data quality and recovery due to slightly different installation practices and/or possibly environmental factors. We seek to evaluate and characterize parameters that affect the resulting data recovery and their quality; this study is an important test case for future PASSCAL and RAMP installations. If possible we would like to compare data from other local networks to identify distinctive characteristics from different installation set-ups.
Strain-rate dependence of ramp-wave evolution and strength in tantalum
Lane, J. Matthew D.; Foiles, Stephen M.; Lim, Hojun; ...
2016-08-25
We have conducted molecular dynamics (MD) simulations of quasi-isentropic ramp-wave compression to very high pressures over a range of strain rates from 10 11 down to 10 8 1/s. Using scaling methods, we collapse wave profiles from various strain rates to a master profile curve, which shows deviations when material response is strain-rate dependent. Thus, we can show with precision where, and how, strain-rate dependence affects the ramp wave. We find that strain rate affects the stress-strain material response most dramatically at strains below 20%, and that above 30% strain the material response is largely independent of strain rate. Wemore » show good overall agreement with experimental stress-strain curves up to approximately 30% strain, above which simulated response is somewhat too stiff. We postulate that this could be due to our interatomic potential or to differences in grain structure and/or size between simulation and experiment. Strength is directly measured from per-atom stress tensor and shows significantly enhanced elastic response at the highest strain rates. As a result, this enhanced elastic response is less pronounced at higher pressures and at lower strain rates.« less
Yu, Esther Yee Tak; Wan, Eric Yuk Fai; Chan, Karina Hiu Yen; Wong, Carlos King Ho; Kwok, Ruby Lai Ping; Fong, Daniel Yee Tak; Lam, Cindy Lo Kuen
2015-06-19
There is some evidence to support a risk-stratified, multi-disciplinary approach to manage patients with hypertension in primary care. The aim of this study is to evaluate the quality of care (QOC) of a multi-disciplinary Risk Assessment and Management Programme for Hypertension (RAMP-HT) for hypertensive patients in busy government-funded primary care clinics in Hong Kong. The objectives are to develop an evidence-based, structured and comprehensive evaluation framework on quality of care, to enhance the QOC of the RAMP-HT through an audit spiral of two evaluation cycles and to determine the effectiveness of the programme in reducing cardiovascular disease (CVD) risk. A longitudinal study is conducted using the Action Learning and Audit Spiral methodologies to measure whether pre-set target standards of care intended by the RAMP-HT are achieved. A structured evaluation framework on the quality of structure, process and outcomes of care has been developed based on the programme objectives and literature review in collaboration with the programme workgroup and health service providers. Each participating clinic is invited to complete a structure of care evaluation questionnaire in each evaluation cycle. The data of all patients who have enrolled into the RAMP-HT in the pre-defined evaluation periods are used for the evaluation of the process and outcomes of care in each evaluation cycle. For evaluation of the effectiveness of RAMP-HT, the primary outcomes including blood pressure (both systolic and diastolic), low-density lipoprotein cholesterol and estimated 10-year CVD risk of RAMP-HT participants are compared to those of hypertensive patients in usual care without RAMP-HT. The QOC and effectiveness of the RAMP-HT in improving clinical and patient-reported outcomes for patients with hypertension in normal primary care will be determined. Possible areas for quality enhancement and standards of good practice will be established to inform service planning and policy decision making.
NASA Astrophysics Data System (ADS)
Wu, Yu; Yi, Shi-He; He, Lin; Chen, Zhi; Zhu, Yang-Zhu
2014-11-01
Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time-averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25°, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28°, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique “v”. Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.
Molecular and Kinetic Models for High-rate Thermal Degradation of Polyethylene
Lane, J. Matthew; Moore, Nathan W.
2018-02-01
Thermal degradation of polyethylene is studied under the extremely high rate temperature ramps expected in laser-driven and X-ray ablation experiments—from 10 10 to 10 14 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. The enthalpy, dissociation onset temperature, bond evolution, and observed cross-linking are shown to be rate dependent. These results are used to parametrize a kinetic rate model for the decomposition and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. In conclusion, the resultsmore » are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions.« less
Molecular and Kinetic Models for High-rate Thermal Degradation of Polyethylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, J. Matthew; Moore, Nathan W.
Thermal degradation of polyethylene is studied under the extremely high rate temperature ramps expected in laser-driven and X-ray ablation experiments—from 10 10 to 10 14 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. The enthalpy, dissociation onset temperature, bond evolution, and observed cross-linking are shown to be rate dependent. These results are used to parametrize a kinetic rate model for the decomposition and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. In conclusion, the resultsmore » are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Almeida, T.; Lassalle, F.; Morell, A.
SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper,more » we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or magnetic diffusion across the liner. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency through the use of a closing switch (currently under development), reducing the load dimensions and optimizing the diagnostics.« less
Floquet Engineering in Quantum Chains
NASA Astrophysics Data System (ADS)
Kennes, D. M.; de la Torre, A.; Ron, A.; Hsieh, D.; Millis, A. J.
2018-03-01
We consider a one-dimensional interacting spinless fermion model, which displays the well-known Luttinger liquid (LL) to charge density wave (CDW) transition as a function of the ratio between the strength of the interaction U and the hopping J . We subject this system to a spatially uniform drive which is ramped up over a finite time interval and becomes time periodic in the long-time limit. We show that by using a density matrix renormalization group approach formulated for infinite system sizes, we can access the large-time limit even when the drive induces finite heating. When both the initial and long-time states are in the gapless (LL) phase, the final state has power-law correlations for all ramp speeds. However, when the initial and final state are gapped (CDW phase), we find a pseudothermal state with an effective temperature that depends on the ramp rate, both for the Magnus regime in which the drive frequency is very large compared to other scales in the system and in the opposite limit where the drive frequency is less than the gap. Remarkably, quantum defects (instantons) appear when the drive tunes the system through the quantum critical point, in a realization of the Kibble-Zurek mechanism.
Non-iterative determination of the stress-density relation from ramp wave data through a window
NASA Astrophysics Data System (ADS)
Dowling, Evan; Fratanduono, Dayne; Swift, Damian
2017-06-01
In the canonical ramp compression experiment, a smoothly-increasing load is applied the surface of the sample, and the particle velocity history is measured at interfaces two or more different distances into the sample. The velocity histories are used to deduce a stress-density relation by correcting for perturbations caused by reflected release waves, usually via the iterative Lagrangian analysis technique of Rothman and Maw. We previously described a non-iterative (recursive) method of analysis, which was more stable and orders of magnitude faster than iteration, but was subject to the limitation that the free surface velocity had to be sampled at uniform intervals. We have now developed more general recursive algorithms suitable for analyzing ramp data through a finite-impedance window. Free surfaces can be treated seamlessly, and the need for uniform velocity sampling has been removed. These calculations require interpolation of partially-released states using the partially-constructed isentrope, making them slower than the previous free-surface scheme, but they are still much faster than iterative analysis. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Numerical optimization of the ramp-down phase with the RAPTOR code
NASA Astrophysics Data System (ADS)
Teplukhina, Anna; Sauter, Olivier; Felici, Federico; The Tcv Team; The ASDEX-Upgrade Team; The Eurofusion Mst1 Team
2017-10-01
The ramp-down optimization goal in this work is defined as the fastest possible decrease of a plasma current while avoiding any disruptions caused by reaching physical or technical limits. Numerical simulations and preliminary experiments on TCV and AUG have shown that a fast decrease of plasma elongation and an adequate timing of the H-L transition during current ramp-down can help to avoid reaching high values of the plasma internal inductance. The RAPTOR code (F. Felici et al., 2012 PPCF 54; F. Felici, 2011 EPFL PhD thesis), developed for real-time plasma control, has been used for an optimization problem solving. Recently the transport model has been extended to include the ion temperature and electron density transport equations in addition to the electron temperature and current density transport equations, increasing the physical applications of the code. The gradient-based models for the transport coefficients (O. Sauter et al., 2014 PPCF 21; D. Kim et al., 2016 PPCF 58) have been implemented to RAPTOR and tested during this work. Simulations of the AUG and TCV entire plasma discharges will be presented. See the author list of S. Coda et al., Nucl. Fusion 57 2017 102011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKemmish, Laura K., E-mail: laura.mckemmish@gmail.com; Research School of Chemistry, Australian National University, Canberra
Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RAMPITUP. These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or verymore » large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre.« less
Ring current impoundment of the Io plasma torus
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Thorne, R. M.; Richardson, J. D.; Bagenal, F.; Sullivan, J. D.; Eviatar, A.
1981-01-01
A newly discovered feature in the Io plasma formation that may be described as a ramp separating a high-density plasma ledge on its Jupiterward side from the lower-density radially distended Io plasma disc on its anti-Jupiterward side is observed to coincide with a marked inward decrease in the ring current population. The spatial congruency of the counter-directed maximal gradients in both plasma bodies reveals a profound coupling between them. The existence of the ramp requires a local order-of-magnitude reduction in the diffusion coefficient that governs radial mass transport. It is demonstrated that the diminished diffusive efficiency there is caused by strong pressure gradient inhibition of the interchange instability that underlies mass transport. The Io plasma torus, which is defined as the region of strong ultraviolet emissions, is identified as the plasma ledge. The plasma density in the ledge is high and, incidentally therefore, able to emit strongly because it is impounded against rapid, centrifugal expulsion by the inwardly directed pressure of the ring current at its inner edge.
NASA Astrophysics Data System (ADS)
Chong, Haining; Wang, Zhewei; Chen, Chaonan; Xu, Zemin; Wu, Ke; Wu, Lan; Xu, Bo; Ye, Hui
2018-04-01
In order to suppress dislocation generation, we develop a "three-step growth" method to heteroepitaxy low dislocation density germanium (Ge) layers on silicon with the MBE process. The method is composed of 3 growth steps: low temperature (LT) seed layer, LT-HT intermediate layer as well as high temperature (HT) epilayer, successively. Threading dislocation density (TDD) of epitaxial Ge layers is measured as low as 1.4 × 106 cm-2 by optimizing the growth parameters. The results of Raman spectrum showed that the internal strain of heteroepitaxial Ge layers is tensile and homogeneous. During the growth of LT-HT intermediate layer, TDD reduction can be obtained by lowering the temperature ramping rate, and high rate deposition maintains smooth surface morphology in Ge epilayer. A mechanism based on thermodynamics is used to explain the TDD and surface morphological dependence on temperature ramping rate and deposition rate. Furthermore, we demonstrate that the Ge layer obtained can provide an excellent platform for III-V materials integrated on Si.
Predictions of H-mode performance in ITER
NASA Astrophysics Data System (ADS)
Budny, Robert
2008-11-01
Time-dependent integrated predictions of performance metrics such as the fusion power PDT, QDT≡ PDT/Pext, and alpha profiles are presented. The PTRANSP [1] code is used, along with GLF23 to predict plasma profiles, NUBEAM for NNBI and alpha heating, TORIC for ICRH, and TORAY for ECRH. Effects of sawteeth mixing, beam steering, beam shine-through, radiation loss, ash accumulation, and toroidal rotation are included. A total heating of Pext=73MW is assumed to achieve H-mode during the density and current ramp-up phase. Various mixes of NNBI, ICRH, and ECRH heating schemes are compared. After steady state conditions are achieved, Pext is stepped down to lower values to explore high QDT. Physics and computation uncertainties lead to ranges in predictions for PDT and QDT. Physics uncertainties include the L->H and H->L threshold powers, pedestal height, impurity and ash transport, and recycling. There are considerably more uncertainties predicting the peak value for QDT than for PDT. [0pt] [1] R.V. Budny, R. Andre, G. Bateman, F. Halpern, C.E. Kessel, A. Kritz, and D. McCune, Nuclear Fusion 48 (2008) 075005.
Growth of analog Al(x)Ga(1-x)As/GaAs parabolic quantum wells by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Wang, S. M.; Treideris, G.; Chen, W. Q.; Andersson, T. G.
1993-01-01
Parabolic Al(x)Ga(1-x)As/GaAs quantum wells have been grown by molecular beam epitaxy with linear ramping of the Al effusion cell temperature, where the ramping rate was carefully analyzed to avoid a flux lag. The calculated potential profile from the temperature variation was very close to the parabolic one. Low-temperature photoluminescence showed clear interband transitions up to the n = 3 sublevels. The equal energy spacing between adjacent transitions involving heavy-hole states confirmed the parabolic shape of the quantum well.
Liquid Crystal Based Optical Phased Array for Steering Lasers
2009-10-01
profile into the liquid crystal cell, the first step is to characterize the LC cell’s OPD curve with respect to the ramped voltage by a simple one...corresponding voltage value on the OPD vs. 22 Voltage curve , the first entry voltage profile of a positive or negative micro-lens can be thereby...Fig. 2.6 Optical path delay (OPD) profile of ideal objective positive (blue curve ) and negative (green curve ) lens with 552 μm radius, no
NASA Astrophysics Data System (ADS)
Boyer, Mark; Andre, Robert; Gates, David; Gerhardt, Stefan; Menard, Jonathan; Poli, Francesca
2015-11-01
One of the major goals of NSTX-U is to demonstrate non-inductive operation. To facilitate this and other program goals, the center stack has been upgraded and a second neutral beam line has been added with three sources aimed more tangentially to provide higher current drive efficiency and the ability to shape the current drive profile. While non-inductive start-up and ramp-up scenarios are being developed, initial non-inductive studies will likely rely on clamping the Ohmic coil current after the plasma current has been established inductively. In this work the ability to maintain control of stored energy and plasma current once the Ohmic coil has been clamped is explored. The six neutral beam sources and the mid-plane outer gap of the plasma are considered as actuators. System identification is done using TRANSP simulations in which the actuators are modulated around a reference shot. The resulting reduced model is used to design an optimal control law with anti-windup and a recently developed framework for closed loop simulations in TRANSP is used to test the control. Limitations due to actuator saturation are assessed and robustness to beam modulation, changes in the plasma density and confinement, and changes in density and temperature profile shapes are studied. Supported by US DOE contract DE-AC02-09CH11466.
Locked-mode avoidance and recovery without momentum input
NASA Astrophysics Data System (ADS)
Delgado-Aparicio, L.; Rice, J. E.; Wolfe, S.; Cziegler, I.; Gao, C.; Granetz, R.; Wukitch, S.; Terry, J.; Greenwald, M.; Sugiyama, L.; Hubbard, A.; Hugges, J.; Marmar, E.; Phillips, P.; Rowan, W.
2015-11-01
Error-field-induced locked-modes (LMs) have been studied in Alcator C-Mod at ITER-Bϕ, without NBI fueling and momentum input. Delay of the mode-onset and locked-mode recovery has been successfully obtained without external momentum input using Ion Cyclotron Resonance Heating (ICRH). The use of external heating in-sync with the error-field ramp-up resulted in a successful delay of the mode-onset when PICRH > 1 MW, which demonstrates the existence of a power threshold to ``unlock'' the mode; in the presence of an error field the L-mode discharge can transition into H-mode only when PICRH > 2 MW and at high densities, avoiding also the density pump-out. The effects of ion heating observed on unlocking the core plasma may be due to ICRH induced flows in the plasma boundary, or modifications of plasma profiles that changed the underlying turbulence. This work was performed under US DoE contracts including DE-FC02-99ER54512 and others at MIT, DE-FG03-96ER-54373 at University of Texas at Austin, and DE-AC02-09CH11466 at PPPL.
NASA Astrophysics Data System (ADS)
Cesario, R. C.; Castaldo, C.; Fonseca, A.; De Angelis, R.; Parail, V.; Smeulders, P.; Beurskens, M.; Brix, M.; Calabrò, G.; De Vries, P.; Mailloux, J.; Pericoli, V.; Ravera, G.; Zagorski, R.
2007-09-01
LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas (δ≈0.4) at high βN (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B0 = 2.3 T, IP = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.
NASA Astrophysics Data System (ADS)
Suwardi; Setiawan, J.; Susilo, J.
2017-01-01
The first short fuel pin containing natural UO2 pellet in Zry4 cladding has been prepared and planned to be tested in power ramp irradiation. An irradiation test should be designed to allow an experiment can be performed safely and giving maximum results of many performance aspects of design and manufacturing. Performance analysis to the fuel specimen shows that the specimen is not match to be used for power ramp testing. Enlargement by 0.20 mm of pellet diameter has been proposed. The present work is evaluation of modified design for important aspect of isotopic Pu distribution during irradiation test, because generated Pu isotopes in natural UO2 fuel, contribute more power relative to the contribution by enriched UO2 fuel. The axial profile of neutrons flux have been chosen from both experimental measurement and model calculation. The parameters of ramp power has been obtained from statistical experiment data. A simplified and typical base-load commercial PHWR profile of LHR history has been chosen, to determine the minimum irradiation time before ramp test can be performed. The data design and Mat pro XI materials properties models have been chosen. The axial profile of neutrons flux has been accommodated by 5 slices of discrete pin. The Pu distribution of slice-4 with highest power rate has been chosen to be evaluated. The radial discretion of pellet and cladding and numerical parameter have been used the default best practice of TU. The results shows that Pu 239 increased rapidly. The maximum burn up of slice 4 at upper the median slice, it reached nearly 90% of maximum value at about 6000 h with peak of 0.8%a Pu/HM at 22000 h, which is higher than initial U 235. Each 240, 241 and 240 Pu grows slower and ends up to 0.4, 0.2 and 0.18 % respectively. This results can be used for verification of other aspect of fuel behavior in the modeling results and also can be used as guide and comparison to the future post irradiation examination for Pu isotopes distribution.
NASA Astrophysics Data System (ADS)
Ko, J.; Chung, J.
2017-06-01
The safety factor profile evolutions have been measured from the plasma discharges with the external current drive mechanism such as the multi-ion-source neutral beam injection for the Korea Superconducting Tokamak Advanced Research (KSTAR) for the first time. This measurement has been possible by the newly installed motional Stark effect (MSE) diagnostic system that utilizes the polarized Balmer-alpha emission from the energetic neutral deuterium atoms induced by the Stark effect under the Lorentz electric field. The 25-channel KSTAR MSE diagnostic is based on the conventional photoelastic modulator approach with the spatial and temporal resolutions less than 2 cm (for the most of the channels except 2 to 3 channels inside the magnetic axis) and about 10 ms, respectively. The strong Faraday rotation imposed on the optical elements in the diagnostic system is calibrated out from a separate and well-designed polarization measurement procedure using an in-vessel reference polarizer during the toroidal-field ramp-up phase before the plasma experiment starts. The combination of the non-inductive current drive during the ramp-up and shape control enables the formation of the internal transport barrier where the pitch angle profiles indicate flat or slightly hollow profiles in the safety factor.
An induction reactor for studying crude-oil oxidation relevant to in situ combustion.
Bazargan, Mohammad; Lapene, Alexandre; Chen, Bo; Castanier, Louis M; Kovscek, Anthony R
2013-07-01
In a conventional ramped temperature oxidation kinetics cell experiment, an electrical furnace is used to ramp temperature at a prescribed rate. Thus, the heating rate of a kinetics cell experiment is limited by furnace performance to heating rates of about 0.5-3 °C/min. A new reactor has been designed to overcome this limit. It uses an induction heating method to ramp temperature. Induction heating is fast and easily controlled. The new reactor covers heating rates from 1 to 30 °C/min. This is the first time that the oxidation profiles of a crude oil are available over such a wide range of heating rate. The results from an induction reactor and a conventional kinetics cell at roughly 2 °C/min are compared to illustrate consistency between the two reactors. The results at low heating rate are the same as the conventional kinetics cell. As presented in the paper, the new reactor couples well with the isoconversional method for interpretation of reaction kinetics.
Simulation of supersonic turbulent flow in the vicinity of an inclined backward-facing step
NASA Astrophysics Data System (ADS)
El-Askary, W. A.
2011-08-01
Large eddy simulation (LES) is a viable and powerful tool to analyse unsteady three-dimensional turbulent flows. In this article, the method of LES is used to compute a plane turbulent supersonic boundary layer subjected to different pressure gradients. The pressure gradients are generated by allowing the flow to pass in the vicinity of an expansion-compression ramp (inclined backward-facing step with leeward-face angle of 25°) for an upstream Mach number of 2.9. The inflow boundary condition is the main problem for all turbulent wall-bounded flows. An approach to solve this problem is to extract instantaneous velocities, temperature and density data from an auxiliary simulation (inflow generator). To generate an appropriate realistic inflow condition to the inflow generator itself the rescaling technique for compressible flows is used. In this method, Morkovin's hypothesis, in which the total temperature fluctuations are neglected compared with the static temperature fluctuations, is applied to rescale and generate the temperature profile at inlet. This technique was successfully developed and applied by the present author for an LES of subsonic three-dimensional boundary layer of a smooth curved ramp. The present LES results are compared with the available experimental data as well as numerical data. The positive impact of the rescaling formulation of the temperature is proven by the convincing agreement of the obtained results with the experimental data compared with published numerical work and sheds light on the quality of the developed compressible inflow generator.
Predictions of high QDT in ITER H-mode plasmas
NASA Astrophysics Data System (ADS)
Budny, Robert
2009-05-01
Time-dependent integrated predictions of performance metrics such as the fusion power PDT, QDT≡ PDT/Pext, and alpha profiles are presented. The PTRANSP code (see R.V. Budny, R. Andre, G. Bateman, F. Halpern, C.E. Kessel, A. Kritz, and D. McCune, Nuclear Fusion 48 075005, and F. Halpern, A. Kritz, G. Bateman, R.V. Budny, and D. McCune, Phys. Plasmas 15 062505) is used, along with GLF23 to predict plasma profiles, NUBEAM for NNBI and alpha heating, TORIC for ICRH, and TORAY for ECRH. Effects of sawteeth mixing, beam steering, beam shine-through, radiation loss, ash accumulation, and toroidal rotation are included. A total heating of Pext=73MW is assumed to achieve H-mode during the density and current ramp-up phase. Various mixes of NNBI, ICRH, and ECRH heating schemes are compared. After steady state conditions are achieved, Pext is stepped down to lower values to explore high QDT. Physics and computation uncertainties lead to ranges in predictions for PDT and QDT. Physics uncertainties include the L->H and H->L threshold powers, pedestal height, impurity and ash transport, and recycling. There are considerably more uncertainties predicting the peak value for QDT than for PDT.
Test of bootstrap current models using high- β p EAST-demonstration plasmas on DIII-D
Ren, Qilong; Lao, Lang L.; Garofalo, Andrea M.; ...
2015-01-12
Magnetic measurements together with kinetic profile and motional Stark effect measurements are used in full kinetic equilibrium reconstructions to test the Sauter and NEO bootstrap current models in a DIII-D high-more » $${{\\beta}_{\\text{p}}}$$ EAST-demonstration experiment. This aims at developing on DIII-D a high bootstrap current scenario to be extended on EAST for a demonstration of true steady-state at high performance and uses EAST-similar operational conditions: plasma shape, plasma current, toroidal magnetic field, total heating power and current ramp-up rate. It is found that the large edge bootstrap current in these high-$${{\\beta}_{\\text{p}}}$$ plasmas allows the use of magnetic measurements to clearly distinguish the two bootstrap current models. In these high collisionality and high-$${{\\beta}_{\\text{p}}}$$ plasmas, the Sauter model overpredicts the peak of the edge current density by about 30%, while the first-principle kinetic NEO model is in close agreement with the edge current density of the reconstructed equilibrium. Furthermore, these results are consistent with recent work showing that the Sauter model largely overestimates the edge bootstrap current at high collisionality.« less
Zou, Z Y; Liu, H Q; Ding, W X; Chen, J; Brower, D L; Lian, H; Wang, S X; Li, W M; Yao, Y; Zeng, L; Jie, Y X
2018-01-01
A double-pass radially view 11 chords polarimeter-interferometer system has been operated on the experimental advanced superconducting tokamak and provides important current profile information for plasma control. Stray light originating from spurious reflections along the optical path (unwanted reflections from various optical components/mounts and transmissive optical elements such as windows, waveplates, and lens as well as the detectors) and also direct feedback from the retro-reflector used to realize the double-pass configuration can both contribute to contamination of the Faraday rotation measurement accuracy. Modulation of the Faraday rotation signal due to the interference from multiple reflections is observable when the interferometer phase (plasma density) varies with time. Direct reflection from the detector itself can be suppressed by employing an optical isolator consisting of a λ/4-waveplate and polarizer positioned in front of the mixer. A Faraday angle oscillation during the density ramping up (or down) can be reduced from 5°-10° to 1°-2° by eliminating reflections from the detector. Residual modulation arising from misalignment and stray light from other sources must be minimized to achieve accurate measurements of Faraday rotation.
RF current profile control studies in the alcator C-mod tokamak
NASA Astrophysics Data System (ADS)
Bonoli, P. T.; Porkolab, M.; Wukitch, S. J.; Bernabei, S.; Kaita, R.; Mikkelsen, D.; Phillips, C. K.; Schilling, G.
1999-09-01
Time dependent calculations of lower hybrid (LH) current profile control in Alcator C-Mod have been done using the TRANSP [1], FPPRF [2], and LSC [3] codes. Up to 3 MW of LH current drive power was applied in plasmas with high power ICRF minority heating (PICH=1.8-3 MW) and fast current ramp up. Using the experimentally measured temperature profiles, off-axis current generation resulted in nonmonotonic q-profiles with qmin~=1.6. Self-consistent effects of off-axis electron heating by the LH power were also included in the analysis and significant broadening of the electron temperature profile was found with qmin>~2 and a larger shear reversal radius.
Dynamic optimization of open-loop input signals for ramp-up current profiles in tokamak plasmas
NASA Astrophysics Data System (ADS)
Ren, Zhigang; Xu, Chao; Lin, Qun; Loxton, Ryan; Teo, Kok Lay
2016-03-01
Establishing a good current spatial profile in tokamak fusion reactors is crucial to effective steady-state operation. The evolution of the current spatial profile is related to the evolution of the poloidal magnetic flux, which can be modeled in the normalized cylindrical coordinates using a parabolic partial differential equation (PDE) called the magnetic diffusion equation. In this paper, we consider the dynamic optimization problem of attaining the best possible current spatial profile during the ramp-up phase of the tokamak. We first use the Galerkin method to obtain a finite-dimensional ordinary differential equation (ODE) model based on the original magnetic diffusion PDE. Then, we combine the control parameterization method with a novel time-scaling transformation to obtain an approximate optimal parameter selection problem, which can be solved using gradient-based optimization techniques such as sequential quadratic programming (SQP). This control parameterization approach involves approximating the tokamak input signals by piecewise-linear functions whose slopes and break-points are decision variables to be optimized. We show that the gradient of the objective function with respect to the decision variables can be computed by solving an auxiliary dynamic system governing the state sensitivity matrix. Finally, we conclude the paper with simulation results for an example problem based on experimental data from the DIII-D tokamak in San Diego, California.
ERIC Educational Resources Information Center
Ujifusa, Andrew
2013-01-01
Opponents of the Common Core State Standards are ramping up legislative pressure and public relations efforts aimed at getting states to scale back--or even abandon--the high-profile initiative, even as implementation proceeds and tests aligned with the standards loom. Critics of the common core have focused recent lobbying and media efforts on…
Radio-frequency-assisted current startup in the fusion engineering device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S. K.; Peng, Yueng Kay Martin; Kammash, T.
1984-01-01
Auxiliary radio-frequency (RF) heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device (FED) (R{sub 0} = 4.8 m, a = 1.3 m, sigma = 1.6, B(R{sub 0}) = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at about90 GHz is used to create a small volume of high conductivity plasma (T {sub e} approx. = 100 eV, n {sub e} approx. = 10{supmore » 19} m{sup -3}) near the upper hybrid resonance (UHR) region. This plasma conditioning, referred to as preheating, permits a small radius (a{sub 0} approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to about 100 V without rf assist). During the subsequent plasma expansion and current rise phase, a combination of rf heating (up to 5 MW) and linear current ramping leads to a substantial savings in voltseconds by (a) minimizing the resistive flux consumption and (b) producing broad current density profiles. (With such broad profiles, the internal flux requirements are maintained at or near the flat profile limit.)« less
Radio-frequency-assisted current startup in the Fusion Engineering Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S.K.; Kammash, T.; Martin Peng, Y.K.
1984-07-01
Auxiliary radio-frequency (RF) heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device (FED) (R/sub 0/ = 4.8 m, a = 1.3 m, sigma = 1.6, B(R/sub 0/) = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at about90 GHz is used to create a small volume of high conductivity plasma (T /sub e/ approx. = 100 eV, n /sub e/ approx. = 10/supmore » 19/ m/sup -3/) near the upper hybrid resonance (UHR) region. This plasma conditioning, referred to as preheating, permits a small radius (a/sub 0/ approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to about 100 V without rf assist). During the subsequent plasma expansion and current rise phase, a combination of rf heating (up to 5 MW) and linear current ramping leads to a substantial savings in voltseconds by (a) minimizing the resistive flux consumption and (b) producing broad current density profiles. (With such broad profiles, the internal flux requirements are maintained at or near the flat profile limit.)« less
Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K.
2018-01-01
The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be checked multiple times a year and RaMP will be updated accordingly. PMID:29470400
Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K; Mathé, Ewy A
2018-02-22
The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be checked multiple times a year and RaMP will be updated accordingly.
Dependence of SOL widths on plasma parameters in NSTX
NASA Astrophysics Data System (ADS)
Ahn, Joon-Wook; Maingi, Rajesh; Boedo, Jose; Soukhanovskii, Vlad; Leblanc, Ben; Kaita, Robert
2008-11-01
The dependence of various upstream Scrape-Off Layer (SOL) widths on the line-averaged density (n e), plasma current (Ip), and power into the SOL (PSOL) for H-mode plasmas was investigated, using the mid-plane fast reciprocating probe and Thomson scattering diagnostics, in the National Spherical Torus Experiment (NSTX). The heat flux width (λq) at the divertor plate, measured by the IR camera, was also measured and compared with the upstream SOL widths. The edge density profile remains fixed during the H-mode, such that the separatrix density is constant even though n e is ramping. Thus λq, λTe, and λne are insensitive to n e. λTe and λjsat have strong negative dependence on Ip, whereas there was only a very weak change in λne when Ip was varied. These empirical results have been compared with scaling laws in the literature. The λTe dependence on Ip is consistent with an H-mode λTe scaling law, while the insensitivity of λne to n e is not consistent with the λne scaling law. Dependence of decay lengths on plasma parameters in a wide range of plasma conditions will be presented. This work was supported by the US Department of Energy, contract numbers DE-FG02-03ER54731, DE-AC02-76CH03073, DE-AC05-00OR22725, and DE-AC52-07NA27344.
Goodrich, K C; Blatter, D D; Parker, D L; Du, Y P; Meyer, K J; Bernstein, M A
1996-06-01
The authors compare the effectiveness of various magnetic resonance (MR) angiography acquisition strategies in enhancing the visibility of small intracranial vessels. Blood vessel contrast-to-noise ratio (CNR) in time-of-flight MR angiography was studied as a function of vessel size and several selectable imaging parameters. Contrast-to-noise measurements were made on 257 vessel segments ranging in size from 0.3 mm to 4.2 mm in patients who recently had undergone intraarterial cerebral angiography. Imaging parameters studied included magnetization transfer, spatially variable radio frequency (RF) pulse profile (ramped RF), and imaging slab thickness. The combination of thin slabs (16 slices/slab), ramped RF, and magnetization transfer resulted in the highest CNR for all but the smallest vessel sizes. The smallest vessels (< 0.5 mm) had the highest CNR, using the thick slab (64 slices/slab) with ramped RF and magnetization transfer. Magnetization transfer always improved vessel CNR, but the improvement diminished as the slab thickness was reduced. The CNR increased with a decrease in slab thickness for all but the smallest vessel sizes. Overall, the results provide a quantitative demonstration that inflow enhancement of blood is reduced for small vessels. Thus, whereas magnetization transfer is important at all vessel sizes, it becomes the primary factor in improving the visibility of the smallest vessels.
Design of microcontroller based system for automation of streak camera.
Joshi, M J; Upadhyay, J; Deshpande, P P; Sharma, M L; Navathe, C P
2010-08-01
A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.
Design of microcontroller based system for automation of streak camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.
2010-08-15
A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor.more » A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.« less
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
NASA Astrophysics Data System (ADS)
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; Lane, J. Matthew D.
2018-05-01
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; ...
2018-05-04
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less
Dunham, James P; Hulse, Richard P; Donaldson, Lucy F
2015-07-15
Thermal sensory testing in rodents informs human pain research. There are important differences in the methodology for delivering thermal stimuli to humans and rodents. This is particularly true in cold pain research. These differences confound extrapolation and de-value nociceptive tests in rodents. We investigated cooling-induced behaviours in rats and psychophysical thresholds in humans using ramped cooling stimulation protocols. A Peltier device mounted upon force transducers simultaneously applied a ramped cooling stimulus whilst measuring contact with rat hind paw or human finger pad. Rat withdrawals and human detection, discomfort and pain thresholds were measured. Ramped cooling of a rat hind paw revealed two distinct responses: Brief paw removal followed by paw replacement, usually with more weight borne than prior to the removal (temperature inter-quartile range: 19.1 °C to 2.8 °C). Full withdrawal was evoked at colder temperatures (inter quartile range: -11.3 °C to -11.8 °C). The profile of human cool detection threshold and cold pain threshold were remarkably similar to that of the rat withdrawals behaviours. Previous rat cold evoked behaviours utilise static temperature stimuli. By utilising ramped cold stimuli this novel methodology better reflects thermal testing in patients. Brief paw removal in the rat is driven by non-nociceptive afferents, as is the perception of cooling in humans. This is in contrast to the nociceptor-driven withdrawal from colder temperatures. These findings have important implications for the interpretation of data generated in older cold pain models and consequently our understanding of cold perception and pain. Copyright © 2015. Published by Elsevier B.V.
Dynamic Behaviors of Materials under Ramp Wave Loading on Compact Pulsed Power Generators
NASA Astrophysics Data System (ADS)
Zhao, Jianheng; Luo, Binqiang; Wang, Guiji; Chong, Tao; Tan, Fuli; Liu, Cangli; Sun, Chengwei
The technique using intense current to produce magnetic pressure provides a unique way to compress matter near isentrope to high density without obvious temperature increment, which is characterized as ramp wave loading, and firstly developed by Sandia in 1998. Firstly recent advances on compact pulsed power generators developed in our laboratory, such as CQ-4, CQ-3-MMAF and CQ-7 devices, are simply introduced here, which devoted to ramp wave loading from 50GPa to 200 GPa, and to ultrahigh-velocity flyer launching up to 30 km/s. And then, we show our progress in data processing methods and experiments of isentropic compression conducted on these devices mentioned above. The suitability of Gruneisen EOS and Vinet EOS are validated by isentropic experiments of tantalum, and the parameters of SCG constitutive equation of aluminum and copper are modified to give better prediction under isentropic compression. Phase transition of bismuth and tin are investigated under different initial temperatures, parameters of Helmholtz free energy and characteristic relaxation time in kinetic phase transition equation are calibrated. Supported by NNSF of China under Contract No.11327803 and 11176002
Overview of recent physics results from MAST
NASA Astrophysics Data System (ADS)
Kirk, A.; Adamek, J.; Akers, R. J.; Allan, S.; Appel, L.; Arese Lucini, F.; Barnes, M.; Barrett, T.; Ben Ayed, N.; Boeglin, W.; Bradley, J.; Browning, P. K.; Brunner, J.; Cahyna, P.; Cardnell, S.; Carr, M.; Casson, F.; Cecconello, M.; Challis, C.; Chapman, I. T.; Chapman, S.; Chorley, J.; Conroy, S.; Conway, N.; Cooper, W. A.; Cox, M.; Crocker, N.; Crowley, B.; Cunningham, G.; Danilov, A.; Darrow, D.; Dendy, R.; Dickinson, D.; Dorland, W.; Dudson, B.; Dunai, D.; Easy, L.; Elmore, S.; Evans, M.; Farley, T.; Fedorczak, N.; Field, A.; Fishpool, G.; Fitzgerald, I.; Fox, M.; Freethy, S.; Garzotti, L.; Ghim, Y. C.; Gi, K.; Gibson, K.; Gorelenkova, M.; Gracias, W.; Gurl, C.; Guttenfelder, W.; Ham, C.; Harrison, J.; Harting, D.; Havlickova, E.; Hawkes, N.; Hender, T.; Henderson, S.; Highcock, E.; Hillesheim, J.; Hnat, B.; Horacek, J.; Howard, J.; Howell, D.; Huang, B.; Imada, K.; Inomoto, M.; Imazawa, R.; Jones, O.; Kadowaki, K.; Kaye, S.; Keeling, D.; Klimek, I.; Kocan, M.; Kogan, L.; Komm, M.; Lai, W.; Leddy, J.; Leggate, H.; Hollocombe, J.; Lipschultz, B.; Lisgo, S.; Liu, Y. Q.; Lloyd, B.; Lomanowski, B.; Lukin, V.; Lupelli, I.; Maddison, G.; Madsen, J.; Mailloux, J.; Martin, R.; McArdle, G.; McClements, K.; McMillan, B.; Meakins, A.; Meyer, H.; Michael, C.; Militello, F.; Milnes, J.; Morris, A. W.; Motojima, G.; Muir, D.; Naylor, G.; Nielsen, A.; O'Brien, M.; O'Gorman, T.; O'Mullane, M.; Olsen, J.; Omotani, J.; Ono, Y.; Pamela, S.; Pangione, L.; Parra, F.; Patel, A.; Peebles, W.; Perez, R.; Pinches, S.; Piron, L.; Price, M.; Reinke, M.; Ricci, P.; Riva, F.; Roach, C.; Romanelli, M.; Ryan, D.; Saarelma, S.; Saveliev, A.; Scannell, R.; Schekochihin, A.; Sharapov, S.; Sharples, R.; Shevchenko, V.; Shinohara, K.; Silburn, S.; Simpson, J.; Stanier, A.; Storrs, J.; Summers, H.; Takase, Y.; Tamain, P.; Tanabe, H.; Tanaka, H.; Tani, K.; Taylor, D.; Thomas, D.; Thomas-Davies, N.; Thornton, A.; Turnyanskiy, M.; Valovic, M.; Vann, R.; Van Wyk, F.; Walkden, N.; Watanabe, T.; Wilson, H.; Wischmeier, M.; Yamada, T.; Young, J.; Zoletnik, S.; the MAST Team; the EUROfusion MST1 Team
2017-10-01
New results from MAST are presented that focus on validating models in order to extrapolate to future devices. Measurements during start-up experiments have shown how the bulk ion temperature rise scales with the square of the reconnecting field. During the current ramp-up, models are not able to correctly predict the current diffusion. Experiments have been performed looking at edge and core turbulence. At the edge, detailed studies have revealed how filament characteristics are responsible for determining the near and far scrape off layer density profiles. In the core the intrinsic rotation and electron scale turbulence have been measured. The role that the fast ion gradient has on redistributing fast ions through fishbone modes has led to a redesign of the neutral beam injector on MAST Upgrade. In H-mode the turbulence at the pedestal top has been shown to be consistent with being due to electron temperature gradient modes. A reconnection process appears to occur during edge localized modes (ELMs) and the number of filaments released determines the power profile at the divertor. Resonant magnetic perturbations can mitigate ELMs provided the edge peeling response is maximised and the core kink response minimised. The mitigation of intrinsic error fields with toroidal mode number n > 1 has been shown to be important for plasma performance.
Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod
DOE Office of Scientific and Technical Information (OSTI.GOV)
.R. Wilson, C.E. Kessel, S. Wolfe, I.H. Hutchinson, P. Bonoli, C. Fiore, A.E. Hubbard, J. Hughes, Y. Lin, Y. Ma, D. Mikkelsen, M. Reinke, S. Scott, A.C.C. Sips, S. Wukitch and the C-Mod Team
Alcator C-Mod is performing ITER-like experiments to benchmark and verify projections to 15 MA ELMy H-mode Inductive ITER discharges. The main focus has been on the transient ramp phases. The plasma current in C-Mod is 1.3 MA and toroidal field is 5.4 T. Both Ohmic and ion cyclotron (ICRF) heated discharges are examined. Plasma current rampup experiments have demonstrated that (ICRF and LH) heating in the rise phase can save voltseconds (V-s), as was predicted for ITER by simulations, but showed that the ICRF had no effect on the current profile versus Ohmic discharges. Rampdown experiments show an overcurrent inmore » the Ohmic coil (OH) at the H to L transition, which can be mitigated by remaining in H-mode into the rampdown. Experiments have shown that when the EDA H-mode is preserved well into the rampdown phase, the density and temperature pedestal heights decrease during the plasma current rampdown. Simulations of the full C-Mod discharges have been done with the Tokamak Simulation Code (TSC) and the Coppi-Tang energy transport model is used with modified settings to provide the best fit to the experimental electron temperature profile. Other transport models have been examined also. __________________________________________________« less
NASA Technical Reports Server (NTRS)
Blackaby, James R.; Lyman, E. Gene; Altermann, John A., III
1959-01-01
Inlet-performance and external-drag-coefficient characteristics are presented without analysis. Effects are shown of variations of fuselage boundary-layer diverter profile, bleed-surface porosity, bleed-exit area, and inlet ramp, and lip angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opachich, Y.P.; Koch, J.A.; Haugh, M. J.
A multi wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility (NIF) and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ~10.3% accuracy with ~30 μm spatial resolution. The system description, performance and measurement results collected using a 17.8 mg/cc carbon based JX–6 (C 20H 30) aerogel are discussed in this manuscript.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Philip Michael; Ahn, Joonwook; Bell, R. E.
High-harmonic fast wave (HHFW) heating and current drive is being developed in NSTX to provide bulk electron heating and q(0) control during non-inductively sustained Hmode plasmas fuelled by deuterium neutral-beam injection (NBI). In addition, it is used to assist the plasma current ramp-up. A major modification to increase the RF power limit was made in 2009; the original end-grounded, single end-powered current straps of the 12- element array were replaced with center-grounded, double end-powered straps. Greater than 3 MW have been coupled into NBI-driven, ELMy H-mode plasmas with this upgraded antenna. Improved core HHFW heating, particularly at longer wavelengths andmore » during low-density start-up and plasma current ramp-up, has been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for fast-wave propagation away from the vessel wall [1]. Significant core electron heating of NBI-fuelled H-modes has been observed for the first time over a range of launched wavelengths and H-modes can be accessed by HHFW alone. Visible and IR camera images of the antenna and divertor indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFWgenerated parametric decay instabilities; edge ion heating is observed that is wavelength dependent. During plasmas where HHFW is combined with NBI, there is a significant enhancement in neutron rate, and fast-ion D-alpha (FIDA) emission measurements clearly show broadening of the fast-ion profile in the plasma core. Large edge localized modes (ELMs) have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. Causality has not been established but new experiments are planned and will be reported. Fast digitization of the reflected power signal indicates a much faster rise time for arcs than for ELMs. Based on this observation, an ELM/arc discrimination system is being implemented to maintain RF power during ELMs even when the reflection coefficient becomes large. This work is supported by US DOE contracts DE-AC-05-00OR22725 and DE-AC02- 09CH11466. References [1] C. K. Phillips, et al, Nuclear Fusion 10, 075015 (2009)« less
Meng, Qingtao; Shi, Di; Feng, Jiayue; Su, Yanling; Long, Yang; He, Sen; Wang, Si; Wang, Yong; Zhang, Xiangxun; Chen, Xiaoping
2016-01-01
Hypercholesterolemia can cause damage to the artery. Intermedin (IMD) is a novel member of the calcitonin gene-related peptide family. This study aims to investigate the aortic expression of IMD and its receptors in hypercholesterolemia without atherosclerosis. Male Wistar rats were fed with high cholesterol diet, with or without simvastatin and vitamin C. Both the malondialdehyde (MDA) and superoxide dismutase (SOD) in plasma and aorta were determined as the oxidative stress biomarkers. The plasma IMD was assessed by radioimmunoassay. Within the aorta, the mRNA expression of IMD along with its receptor components was determined, and the corresponding protein level of the CRLR/RAMPs was also assessed. The hypercholesterolemia rats without atherosclerotic lesion manifested a higher level of MDA and SOD and the plasma IMD elevated. Increased expression of IMD and all its receptor components (CRLR, RAMP1, RAMP2, and RAMP3) were displayed within the aorta. The simvastatin indirectly attenuated oxidative stress by improving lipid profiles, while the vitamin C directly reduced oxidative stress without interfering with the serum lipids. Both simvastatin and vitamin C ameliorated the aortic injury, decreased the plasma IMD level, and recovered the expression of IMD and its receptors within the aorta. The up-regulated expression of IMD is observed within the aorta of the hypercholesterolemia rats. In addition, the oxidative stress participates in the up-regulation. © 2016 by the Association of Clinical Scientists, Inc.
Measured emittance dependence on injection method in laser plasma accelerators
NASA Astrophysics Data System (ADS)
Barber, Samuel; van Tilborg, Jeroen; Schroeder, Carl; Lehe, Remi; Tsai, Hai-En; Swanson, Kelly; Steinke, Sven; Nakamura, Kei; Geddes, Cameron; Benedetti, Carlo; Esarey, Eric; Leemans, Wim
2017-10-01
The success of many laser plasma accelerator (LPA) based applications relies on the ability to produce electron beams with excellent 6D brightness, where brightness is defined as the ratio of charge to the product of the three normalized emittances. As such, parametric studies of the emittance of LPA generated electron beams are essential. Profiting from a stable and tunable LPA setup, combined with a carefully designed single-shot transverse emittance diagnostic, we present a direct comparison of charge dependent emittance measurements of electron beams generated by two different injection mechanisms: ionization injection and shock induced density down-ramp injection. Notably, the measurements reveal that ionization injection results in significantly higher emittance. With the down-ramp injection configuration, emittances less than 1 micron at spectral charge densities up to 2 pC/MeV were measured. This work was supported by the U.S. DOE under Contract No. DE-AC02-05CH11231, by the NSF under Grant No. PHY-1415596, by the U.S. DOE NNSA, DNN R&D (NA22), and by the Gordon and Betty Moore Foundation under Grant ID GBMF4898.
Electron Temperature Evolution During Local Helicity Injection on the Pegasus Toroidal Experiment
NASA Astrophysics Data System (ADS)
Schlossberg, D. J.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Rodriguez Sanchez, C.
2016-10-01
Understanding the electron temperature (Te) evolution during local helicity injection (LHI) is critical for scaling up this non-solenoidal startup technique to MA-class devices. The first comprehensive Te measurements during LHI reveal centrally-peaked profiles with Te > 100 eV for plasma current Ip > 120 kA, toroidal field 0.15 T, and electron density ne 1019 m-3. Te rises and is sustained from just after magnetic relaxation through the plasma decoupling from edge-localized injectors. Results are presented for two injector edge locations: outboard midplane and inboard divertor. Outboard midplane injection couples LHI with inductive drive from poloidal field ramps and radial compression during inward plasma growth. Comparisons of Te at different LHI-to-inductive drive ratios show some profile flattening for higher LHI drive fraction. The latter, constant-shape discharges were necessarily lower performance, with Ip 50 kA and reduced Te , max. Inboard divertor injection achieves higher Ip using minimal inductive drive and thus isolates effects of LHI drive on Te. Initial results in this configuration show Te rising rapidly at the injector location as the discharge grows, settling to a roughly flat profile 100 eV. Thus far, both scenarios provide relatively stable discharges with moderate ne and high-Te, suitable for coupling to auxiliary current drive. Detailed studies of confinement dynamics and discharge optimization are planned for the near future. Work supported by US DOE Grant DE-FG02-96ER54375.
A Moho ramp imaged beneath the High Himalaya in Garhwal, India
NASA Astrophysics Data System (ADS)
Caldwell, W. B.; Klemperer, S. L.; Lawrence, J.; Rai, S. S.; Ashish, A.
2011-12-01
In this study we image the Moho beneath the Himalaya of Garhwal, India (at approximately 79°E) using common conversion point (CCP) stacking of receiver functions (RFs). We calculate RFs using iterative time-domain deconvolution on a catalog of 450 events recorded on a linear array of 21 broadband seismometers operated for 21 months in 2005-2006 by India's National Geophysical Research Institute (NGRI). Our images show a horizontal Moho beneath the Lesser Himalaya and an abrupt increase of ≥ 5 km in Moho depth beneath the High Himalaya, implying a local dip of 20±5°. A steeply-dipping Moho beneath the High Himalaya has been proposed by some workers on the basis of gravity modeling, and is observed in some seismic images elsewhere in the range, but is not a widely-recognized feature of the Himalaya. Geophysical profiles across the Himalaya are not numerous enough to say whether the steep Moho is a local feature only, or is widespread but has not yet been consistently observed. A steeply-dipping Moho implies a flexure in the downgoing India plate, which we propose may play a role in the formation of the topographic front of the Himalaya. Recent studies have proposed that a ramp in the Main Himalayan Thrust-the basal décollement into which the Himalayan thrust faults root-may focus rock uplift, leading to an abrupt steepening of topography and the observed physiographic transition between the Lesser and Higher Himalaya. The mechanism of rock uplift may be out-of-sequence thrusting on the MCT-I, or stacking of imbricate thrust sheets which form as a result of underplating at the ramp. A flexure of the India plate, implied by the steep Moho dip that we observe, is a likely mechanism for controlling the formation and location of this décollement ramp, and thereby the initiation of high topography. Geophysical profiles across the Himalaya are not yet numerous enough to constrain along-strike variations in this steeply-dipping Moho, so its relationship to the formation of the topographic front of the Himalaya throughout the rest of the range remains a topic for further study.
Probing SEP Acceleration Processes With Near-relativistic Electrons
NASA Astrophysics Data System (ADS)
Haggerty, Dennis K.; Roelof, Edmond C.
2009-11-01
Processes in the solar corona are prodigious accelerators of near-relativistic electrons. Only a small fraction of these electrons escape the low corona, yet they are by far the most abundant species observed in Solar Energetic Particle events. These beam-like energetic electron events are sometimes time-associated with coronal mass ejections from the western solar hemisphere. However, a significant number of events are observed without any apparent association with a transient event. The relationship between solar energetic particle events, coronal mass ejections, and near-relativistic electron events are better ordered when we classify the intensity time profiles during the duration of the beam-like anisotropies into three broad categories: 1) Spikes (rapid and equal rise and decay) 2) Pulses (rapid rise, slower decay) and 3) Ramps (rapid rise followed by a plateau). We report on the results of a study that is based on our catalog (covering nearly the complete Solar Cycle 23) of 216 near-relativistic electron events and their association with: solar electromagnetic emissions, shocks driven by coronal mass ejections, models of the coronal magnetic fields and energetic protons. We conclude that electron events with time-intensity profiles of Spikes and Pulses are associated with explosive events in the low corona while events with time-intensity profiles of Ramps are associated with the injection/acceleration process of the CME driven shock.
NASA Technical Reports Server (NTRS)
Mckinzie, Daniel J., Jr.
1991-01-01
A vane oscillating about a fixed point at the inlet to a two-dimensional 20 degree rearward facing ramp has proven effective in delaying the separation of a turbulent boundary layer. Measurements of the ramp surface static pressure coefficient obtained under the condition of vane oscillation and constant inlet velocity revealed that two different effects occurred with surface distance along the ramp. In the vicinity of the oscillating vane, the pressure coefficients varied as a negative function of the vane's trailing edge rms velocity; the independent variable on which the rms velocity depends are the vane's oscillation frequency and its displacement amplitude. From a point downstream of the vane to the exit of the ramp; however, the pressure coefficient varied as a more complex function of the two independent variables. That is, it was found to vary as a function of the vane's oscillation frequency throughout the entire range of frequencies covered during the test, but over only a limited range of the trailing edge displacement amplitudes covered. More specifically, the value of the pressure coefficient was independent of increases in the vane's displacement amplitude above approximately 35 inner wall units of the boundary layer. Below this specific amplitude it varied as a function of the vane's trailing edge rms velocity. This height is close to the upper limit of the buffer layer. A parametric study was made to determine the variation of the maximum static pressure recovery as a function of the vane's oscillation frequency, for several ramp inlet velocities and a constant displacement amplitude of the vane's trailing edge. The results indicate that the phenomenon producing the optimum delay of separation may be Strouhal number dependent. Corona anemometer measurements obtained in the inner wall regions of the boundary layer for the excited case reveal a large range of unsteadiness in the local velocities. These measurements imply the existence of inflections in the profiles, which provide a mechanism for resulting inviscid flow instabilities to produce turbulence in the near wall region, thereby delaying separation of the boundary layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opachich, Y. P., E-mail: opachiyp@nv.doe.gov; Koch, J. A.; Haugh, M. J.
2016-07-15
A multi-wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ∼10.3% accuracy with ∼30 μm spatial resolution. The system description, performance, and measurement results collected using a 17.8 mg/cc carbon based JX–6 (C{sub 20}H{sub 30}) aerogel are discussed in this manuscript.
Opachich, Y.P.; Koch, J.A.; Haugh, M. J.; ...
2017-07-01
A multi wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility (NIF) and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ~10.3% accuracy with ~30 μm spatial resolution. The system description, performance and measurement results collected using a 17.8 mg/cc carbon based JX–6 (C 20H 30) aerogel are discussed in this manuscript.
Electron density measurements in STPX plasmas
NASA Astrophysics Data System (ADS)
Clark, Jerry; Williams, R.; Titus, J. B.; Mezonlin, E. D.; Akpovo, C.; Thomas, E.
2017-10-01
Diagnostics have been installed to measure the electron density of Spheromak Turbulent Physics Experiment (STPX) plasmas at Florida A. & M. University. An insertable probe, provided by Auburn University, consisting of a combination of a triple-tipped Langmuir probe and a radial array consisting of three ion saturation current / floating potential rings has been installed to measure instantaneous plasma density, temperature and plasma potential. As the ramp-up of the experimental program commences, initial electron density measurements from the triple-probe show that the electron density is on the order of 1019 particles/m3. For a passive measurement, a CO2 interferometer system has been designed and installed for measuring line-averaged densities and to corroborate the Langmuir measurements. We describe the design, calibration, and performance of these diagnostic systems on large volume STPX plasmas.
Double-Vacuum-Bag Process for Making Resin-Matrix Composites
NASA Technical Reports Server (NTRS)
Bradford, Larry J.
2007-01-01
A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins including polyimides and phenolics that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite-material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products. The curing cycle for manufacturing a composite laminate containing a reactive resin matrix usually consists of a two-step ramp-and-hold temperature profile and an associated single-step pressure profile as shown in Figure 1. The lower-temperature ramp-and-hold step is known in the art as the B stage. During the B stage, prepregs are heated and volatiles are generated. Because pressure is not applied at this stage, volatiles are free to escape. Pressure is applied during the higher-temperature ramp-and-hold step to consolidate the laminate and impart desired physical properties to the resin matrix. The residual volatile content and fluidity of the resin at the beginning of application of consolidation pressure are determined by the temperature and time parameters of the B stage. Once the consolidation pressure is applied, residual volatiles are locked in. In order to produce a void-free, high-quality laminate, it is necessary to design the curing cycle to obtain the required residual fluidity and the required temperature at the time of application of the consolidation pressure.
Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator
NASA Astrophysics Data System (ADS)
Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.
2018-04-01
We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.
Burnout current density of bismuth nanowires
NASA Astrophysics Data System (ADS)
Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.
2008-05-01
Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.
CORSICA modelling of ITER hybrid operation scenarios
NASA Astrophysics Data System (ADS)
Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.
2016-12-01
The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.
Fischer, J A; Muff, R; Born, W
2002-08-01
The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.
NASA Astrophysics Data System (ADS)
Tong, Fulin; Li, Xinliang; Duan, Yanhui; Yu, Changping
2017-12-01
Numerical investigations on a supersonic turbulent boundary layer over a longitudinal curved compression ramp are conducted using direct numerical simulation for a free stream Mach number M∞ = 2.9 and Reynolds number Reθ = 2300. The total turning angle is 24°, and the concave curvature radius is 15 times the thickness of the incoming turbulent boundary layer. Under the selected conditions, the shock foot is transferred to a fan of the compression wave because of the weaker adverse pressure gradient. The time-averaged flow-field in the curved ramp is statistically attached where the instantaneous flow-field is close to the intermittent transitory detachment state. Studies on coherent vortex structures have shown that large-scale vortex packets are enhanced significantly when the concave curvature is aligned in the spanwise direction. Consistent with findings of previous experiments, the effect of the concave curvature on the logarithmic region of the mean velocity profiles is found to be small. The intensity of the turbulent fluctuations is amplified across the curved ramp. Based on the analysis of the Reynolds stress anisotropy tensor, the evolutions of the turbulence state in the inner and outer layers of the boundary layer are considerably different. The curvature effect on the transport mechanism of the turbulent kinetic energy is studied using the balance analysis of the contributing terms in the transport equation. Furthermore, the Görtler instability in the curved ramp is quantitatively analyzed using a stability criterion. The instantaneous streamwise vorticity confirms the existence of the Görtler-like structures. These structures are characterized by an unsteady motion. In addition, the dynamic mode decomposition analysis of the instantaneous flow field at the spanwise/wall-normal plane reveals that four dynamical relevant modes with performance loss of 16% provide an optimal low-order representation of the essential characteristics of the numerical data. The spatial structures of the dominated low-frequency dynamic modes are found to be similar to that of the Görtler-like vortices.
NASA Astrophysics Data System (ADS)
Livingston, J. M.; Schmid, B.; Redemann, J.; Russell, P.; Ramirez, S.; Eilers, J.; Gore, W.; Howard, S.; Pommier, J.; Bates, T.; Quinn, P.; Chu, D. A.; Gao, B.; Fetzer, E.; McMillan, W.; Seemann, S. W.; Borbas, E.
2005-12-01
The NASA Ames 14-channel Airborne Tracking Sunphotometer (AATS-14) took measurements from aboard a Jetstream 31 (J31) twin turboprop aircraft during 19 science flights (~53 flight hours) over the Gulf of Maine during the period 12 July to 8 August 2004. The flights were conducted in support of the INTEX-NA (INtercontinental chemical Transport EXperiment-North America) and ITCT (Intercontinental Transport and Chemical Transformation of anthropogenic pollution) field studies. AATS-14 measures the solar direct-beam transmission at 14 discrete wavelengths between 354 and 2138 nm, and provides instantaneous measurements of aerosol optical depth (AOD) at 13 wavelengths and water vapor column content, which is derived from measurements at 940 nm and surrounding wavelengths. AATS-14 measurements obtained during aircraft ascents and descents are differentiated to yield vertical profiles of aerosol extinction and water vapor density. Specific J31 flight patterns were designed to address a variety of science goals and, therefore, included a mixture of vertical profiles (spiral and ramped ascents and descents) and constant altitude horizontal transects at a variety of altitudes. In general, flights were designed to include a near sea surface horizontal transect in a region of minimal cloud cover during or near the time of an Aqua and/or Terra satellite overpass, in addition to a low altitude flyby and vertical profile above the NOAA ship Ronald H. Brown. In this paper, we will compare AATS-14 water vapor profiles with simultaneous measurements obtained with a Vaisala humidity sensor on board the J-31 and with spatially and temporally near-coincident data from radiosondes launched from the Ron Brown. AATS-14 data will also be compared with water vapor retrievals from measurements acquired by remote sensors on Aqua and Terra during near-coincident satellite overflights.
Vortex Generators to Control Boundary Layer Interactions
NASA Technical Reports Server (NTRS)
Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)
2014-01-01
Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.
Watkins, H A; Walker, C S; Ly, K N; Bailey, R J; Barwell, J; Poyner, D R; Hay, D L
2014-01-01
Background and Purpose Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear. Experimental Approach Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants. Key Results An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide. Conclusions and Implications RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2. PMID:24199627
The properties and causes of rippling in quasi-perpendicular collisionless shock fronts
NASA Astrophysics Data System (ADS)
Lowe, R. E.; Burgess, D.
2003-03-01
The overall structure of quasi-perpendicular, high Mach number collisionless shocks is controlled to a large extent by ion reflection at the shock ramp. Departure from a strictly one-dimensional structure is indicated by simulation results showing that the surface of such shocks is rippled, with variations in the density and all field components. We present a detailed analysis of these shock ripples, using results from a two-dimensional hybrid (particle ions, electron fluid) simulation. The process that generates the ripples is poorly understood, because the large gradients at the shock ramp make it difficult to identify instabilities. Our analysis reveals new features of the shock ripples, which suggest the presence of a surface wave mode dominating the shock normal magnetic field component of the ripples, as well as whistler waves excited by reflected ions.
DOT National Transportation Integrated Search
2000-02-01
A Fuzzy Logic Ramp Metering Algorithm was implemented on 126 ramps in the greater Seattle area. Two multiple-ramp study sites were evaluted by comparing the fuzzy logic controller (FLC) to the other two ramp metering algorithms in operation at those ...
Intrinsic rotation, hysteresis and back transition in reversed shear internal transport barriers
NASA Astrophysics Data System (ADS)
Kim, S. S.; Jhang, Hogun; Diamond, P. H.; Terzolo, L.; Yi, S.; Hahm, T. S.
2011-07-01
A study of intrinsic rotation and hysteresis in ion thermal internal transport barrier (ITB) is presented. Global flux-driven gyrofluid simulations are performed. It is found that significant co-current intrinsic rotation (0.1 <~ Mth <~ 0.2, where Mth is the thermal Mach number) can be produced in ITB plasmas. Exploration of the relationship between the intrinsic rotation and the ITB temperature gradient leads to a novel scaling of intrinsic rotation in ITB plasmas. Long time power ramp simulations with self-consistently evolving profiles clearly demonstrate the existence of hysteresis in reversed shear ITBs. It is shown that intrinsic rotation plays an important role in ITB dynamics and is responsible for determining unique properties of ITB hysteresis. A negative feedback mechanism based on destruction of E × B shear prevails in barrier back transition, triggered by an outward momentum transport event during the power ramp down.
High efficiency, low cost, thin film silicon solar cell design and method for making
Sopori, Bhushan L.
2001-01-01
A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.
High efficiency low cost thin film silicon solar cell design and method for making
Sopori, Bhushan L.
1999-01-01
A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendes, J.; Bessa, R.J.; Keko, H.
Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highlymore » dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.« less
NASA Astrophysics Data System (ADS)
Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu
2017-12-01
A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.
Understanding Micro-Ramp Control for Shock Boundary Layer Interactions
2008-02-07
micro-ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier... Supersonic boundary layer flow with micro-ramp and no shock wave 3.2 SBLI with no micro-ramp 3.3 SBLI with micro-ramp 3.4 Micro-ramp size and location IV . C...ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier
Qi, Tao; Ly, Kien; Poyner, David R; Christopoulos, George; Sexton, Patrick M; Hay, Debbie L
2011-05-01
The receptors for calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are complexes of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying proteins (RAMP). The CGRP receptor is a CLR/RAMP1 pairing whereas CLR/RAMP2 and CLR/RAMP3 constitute two subtypes of AM receptor: AM(1) and AM(2), respectively. Previous studies identified Glu74 in RAMP3 to be important for AM binding and potency. To further understand the importance of this residue and its equivalent in RAMP1 (Trp74) we substituted the native amino acids with several others. In RAMP3, these were Trp, Phe, Tyr, Ala, Ser, Thr, Arg and Asn; in RAMP1, Glu, Phe, Tyr, Ala and Asn substitutions were made. The mutant RAMPs were co-expressed with CLR in Cos7 cells; receptor function in response to AM, AM(2)/intermedin and CGRP was measured in a cAMP assay and cell surface expression was determined by ELISA. Phe reduced AM potency in RAMP3 but had no effect in RAMP1. In contrast, Tyr had no effect in RAMP3 but enhanced AM potency in RAMP1. Most other substitutions had a small effect on AM potency in both receptors whereas there was little impact on CGRP or AM(2) potency. Overall, these data suggest that the geometry and charge of the residue at position 74 contribute to how AM interacts with the AM(2) and CGRP receptors and confirms the role of this position in dictating differential AM pharmacology at the AM(2) and CGRP receptors. Copyright © 2011. Published by Elsevier Inc.
Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun
2016-01-01
For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835
Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun
2016-01-20
For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.
Precision linear ramp function generator
Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.
1984-08-01
A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.
Precision linear ramp function generator
Jatko, W. Bruce; McNeilly, David R.; Thacker, Louis H.
1986-01-01
A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.
Characterizing and analyzing ramping events in wind power, solar power, load, and netload
Cui, Mingjian; Zhang, Jie; Feng, Cong; ...
2017-04-07
Here, one of the biggest concerns associated with integrating a large amount of renewable energy into the power grid is the ability to handle large ramps in the renewable power output. For the sake of system reliability and economics, it is essential for power system operators to better understand the ramping features of renewable, load, and netload. An optimized swinging door algorithm (OpSDA) is used and extended to accurately and efficiently detect ramping events. For wind power ramps detection, a process of merging 'bumps' (that have a different changing direction) into adjacent ramping segments is included to improve the performancemore » of the OpSDA method. For solar ramps detection, ramping events that occur in both clear-sky and measured (or forecasted) solar power are removed to account for the diurnal pattern of solar generation. Ramping features are extracted and extensively compared between load and netload under different renewable penetration levels (9.77%, 15.85%, and 51.38%). Comparison results show that (i) netload ramp events with shorter durations and smaller magnitudes occur more frequently when renewable penetration level increases, and the total number of ramping events also increases; and (ii) different ramping characteristics are observed in load and netload even with a low renewable penetration level.« less
Forward masking of dynamic acoustic intensity: effects of intensity region and end-level.
Olsen, Kirk N; Stevens, Catherine J
2012-01-01
Overestimation of loudness change typically occurs in response to up-ramp auditory stimuli (increasing intensity) relative to down-ramps (decreasing intensity) matched on frequency, duration, and end-level. In the experiment reported, forward masking is used to investigate a sensory component of up-ramp overestimation: persistence of excitation after stimulus presentation. White-noise and synthetic vowel 3.6 s up-ramp and down-ramp maskers were presented over two regions of intensity change (40-60 dB SPL, 60-80 dB SPL). Three participants detected 10 ms 1.5 kHz pure tone signals presented at masker-offset to signal-offset delays of 10, 20, 30, 50, 90, 170 ms. Masking magnitude was significantly greater in response to up-ramps compared with down-ramps for masker-signal delays up to and including 50 ms. When controlling for an end-level recency bias (40-60 dB SPL up-ramp vs 80-60 dB SPL down-ramp), the difference in masking magnitude between up-ramps and down-ramps was not significant at each masker-signal delay. Greater sensory persistence in response to up-ramps is argued to have minimal effect on perceptual overestimation of loudness change when response biases are controlled. An explanation based on sensory adaptation is discussed.
DOT National Transportation Integrated Search
2011-01-01
Ramp signaling is the installation of traffic signals on freeway on-ramps. Studies have shown that in many locations, ramp signaling helped alleviate traffic congestion and improve safety. However, not all freeway locations are suitable for ramp sign...
Mooney, David M.; Holmquist-Johnson, Christopher L.; Broderick, Susan
2007-01-01
Rock ramps or roughened channels consist of steep reaches stabilized by large immobile material (riprap). Primary objectives for rock ramps include: Create adequate head for diversionMaintain fish passage during low-flow conditionsMaintain hydraulic conveyance during high-flow conditionsSecondary objectives for rock ramp design include:Emulate natural systemsMinimize costsThe rock ramp consists of a low-flow channel designed to maintain biologically adequate depth and velocity conditions during periods of small discharges. The remainder of the ramp is designed to withstand and pass large flows with minimal structural damage. The following chapters outline a process for designing rock ramps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Mingjian; Zhang, Jie; Feng, Cong
Here, one of the biggest concerns associated with integrating a large amount of renewable energy into the power grid is the ability to handle large ramps in the renewable power output. For the sake of system reliability and economics, it is essential for power system operators to better understand the ramping features of renewable, load, and netload. An optimized swinging door algorithm (OpSDA) is used and extended to accurately and efficiently detect ramping events. For wind power ramps detection, a process of merging 'bumps' (that have a different changing direction) into adjacent ramping segments is included to improve the performancemore » of the OpSDA method. For solar ramps detection, ramping events that occur in both clear-sky and measured (or forecasted) solar power are removed to account for the diurnal pattern of solar generation. Ramping features are extracted and extensively compared between load and netload under different renewable penetration levels (9.77%, 15.85%, and 51.38%). Comparison results show that (i) netload ramp events with shorter durations and smaller magnitudes occur more frequently when renewable penetration level increases, and the total number of ramping events also increases; and (ii) different ramping characteristics are observed in load and netload even with a low renewable penetration level.« less
NASA Astrophysics Data System (ADS)
Bradley, K. E.; Qin, Y.; Villanueva-Robles, F.; Hananto, N.; Leclerc, F.; Singh, S. C.; Tapponnier, P.; Sieh, K.; Wei, S.; Carton, H. D.; Permana, H.; Avianto, P.; Nugroho, A. B.
2017-12-01
The joint EOS/IPG/LIPI 2015 MegaTera expedition collected high-resolution seismic reflection profiles and bathymetric data across the Sunda trench, updip of the Mw7.7, 2010 Mentawai tsunami-earthquake rupture patch. These data reveal rapid lateral variations in both the stratigraphic level of the frontal Sunda megathrust and the vergence of frontal ramp faults. The stratigraphic depth of the megathrust at the deformation front correlates with ramp-thrust vergence and with changes in the basal friction angle inferred by critical-taper wedge theory. Where ramp thrusts verge uniformly seaward and have an average dip of 30°, the megathrust decollement resides atop a high-amplitude reflector that marks the inferred top of pelagic sediments. Where ramp thrusts are bi-vergent (similar throw on both landward- and seaward-vergent faults) and have an average dip of 42°, the decollement is higher, within the incoming clastic sequence, above a seismically transparent unit inferred to represent distal fan muds. Where ramp thrusts are uniformly landward vergent, the decollement sits directly on top of the oceanic crust that forms the bathymetrically prominent, subducting Investigator Ridge. The two, separate regions of large tsunamigenic ground-surface uplift during the 2010 tsunami earthquake that have been inferred from joint inversions of seismic, GPS, and tsunami data (e.g. Yue et al., 2014; Satake et al., 2013) correspond to the areas of frontal bi-vergence in the MegaTera data. We propose that enhanced surface uplift and tsunamigenesis during this event occurred when rupture propagated onto areas where the decollement sits directly above the basal muds of the incoming clastic sequence. Thus we hypothesize that frontal bi-vergence may mark areas of enhanced tsunami hazard posed by small magnitude, shallow megathrust ruptures that propagate to the trench. [Yue, H. et al., 2014, Rupture process of the…, JGR 119 doi:10.1002/2014JB011082; Satake, K. et al., 2013, Tsunami Source of the…, P&AG 170, 9-10
NASA Astrophysics Data System (ADS)
Pucella, G.; Alessi, E.; Amicucci, L.; Angelini, B.; Apicella, M. L.; Apruzzese, G.; Artaserse, G.; Belli, F.; Bin, W.; Boncagni, L.; Botrugno, A.; Briguglio, S.; Bruschi, A.; Buratti, P.; Calabrò, G.; Cappelli, M.; Cardinali, A.; Castaldo, C.; Causa, F.; Ceccuzzi, S.; Centioli, C.; Cesario, R.; Cianfarani, C.; Claps, G.; Cocilovo, V.; Cordella, F.; Crisanti, F.; D'Arcangelo, O.; De Angeli, M.; Di Troia, C.; Esposito, B.; Farina, D.; Figini, L.; Fogaccia, G.; Frigione, D.; Fusco, V.; Gabellieri, L.; Garavaglia, S.; Giovannozzi, E.; Granucci, G.; Iafrati, M.; Iannone, F.; Lontano, M.; Maddaluno, G.; Magagnino, S.; Marinucci, M.; Marocco, D.; Mazzitelli, G.; Mazzotta, C.; Milovanov, A.; Minelli, D.; Mirizzi, F. C.; Moro, A.; Nowak, S.; Pacella, D.; Panaccione, L.; Panella, M.; Pericoli-Ridolfini, V.; Pizzuto, A.; Podda, S.; Ramogida, G.; Ravera, G.; Ricci, D.; Romano, A.; Sozzi, C.; Tuccillo, A. A.; Tudisco, O.; Viola, B.; Vitale, V.; Vlad, G.; Zerbini, M.; Zonca, F.; Aquilini, M.; Cefali, P.; Di Ferdinando, E.; Di Giovenale, S.; Giacomi, G.; Grosso, A.; Mellera, V.; Mezzacappa, M.; Pensa, A.; Petrolini, P.; Piergotti, V.; Raspante, B.; Rocchi, G.; Sibio, A.; Tilia, B.; Tulli, R.; Vellucci, M.; Zannetti, D.; Bogdanovic-Radovic, I.; Carnevale, D.; Casolari, A.; Ciotti, M.; Conti, C.; Dinca, P. P.; Dolci, V.; Galperti, C.; Gospodarczyk, M.; Grosso, G.; Lubiako, L.; Lungu, M.; Martin-Solis, J. R.; Meineri, C.; Murtas, F.; Nardone, A.; Orsitto, F. P.; Perelli Cippo, E.; Popovic, Z.; Ripamonti, D.; Simonetto, A.; Tartari, U.
2017-10-01
Experiments on runaway electrons have been performed for the determination of the critical electric field for runaway generation. A large database of post-disruption runaway beams has been analyzed in order to identify linear dynamical models for new position and current runaway beam controllers, and experiments of electron cyclotron assisted plasma start-up have shown the presence of runaway electrons also below the expected electric field threshold, indicating that the radio-frequency power acts as seeding for fast electrons. A linear micro-stability analysis of neon-doped pulses has been carried out to investigate the mechanisms leading to the observed density peaking. A study of the ion drift effects on the MARFE instability has been performed and the peaking of density profile in the high density regime has been well reproduced using a thermo-diffusive pinch in the particle transport equation. The study of the density limit performed in the past has been extended towards lower values of toroidal magnetic field and plasma current. The analysis of the linear stability of the 2/1 tearing mode observed in high density plasmas has highlighted a destabilization with increasing peaking of the current profile during the density ramp-up, while the final phase of the mode temporal evolution is characterized by limit cycles on the amplitude/frequency plane. A liquid lithium limiter with thermal load capability up to 10 MW m-2 has been tested. The pulse duration has been extended up to 4.5 s and elongated configurations have been obtained for 3.5 s, with the X-point just outside the plasma chamber. A W/Fe sample has been exposed in the scrape-off layer in order to study the sputtering of Fe and the W enrichment of the surface layer. Dusts have been collected and analyzed, showing that the metallic population exhibits a high fraction of magnetic grains. A new diagnostic for in-flight runaway electron studies has allowed the image and the visible/infrared spectrum of the forward and backward synchrotron radiation to be provided simultaneously. A fast infrared camera for thermo-graphic analysis has provided the pattern of the toroidal limiter heating by disruption heat loads, and a triple-GEM detector has been tested for soft x-ray diagnostics. The collective Thomson scattering diagnostic has been upgraded and used for investigations on parametric decay instability excitation by electron cyclotron beams correlated with magnetic islands, and new capabilities of the Cherenkov probe have been explored in the presence of beta-induced Alfvén eigenmodes associated to high amplitude magnetic islands.
Kvadsheim, Petter H.; Lam, Frans-Peter A.; von Benda-Beckmann, Alexander M.; Sivle, Lise D.; Visser, Fleur; Curé, Charlotte; Tyack, Peter L.; Miller, Patrick J. O.
2017-01-01
ABSTRACT Exposure to underwater sound can cause permanent hearing loss and other physiological effects in marine animals. To reduce this risk, naval sonars are sometimes gradually increased in intensity at the start of transmission (‘ramp-up’). Here, we conducted experiments in which tagged humpback whales were approached with a ship to test whether a sonar operation preceded by ramp-up reduced three risk indicators – maximum sound pressure level (SPLmax), cumulative sound exposure level (SELcum) and minimum source–whale range (Rmin) – compared with a sonar operation not preceded by ramp-up. Whales were subject to one no-sonar control session and either two successive ramp-up sessions (RampUp1, RampUp2) or a ramp-up session (RampUp1) and a full-power session (FullPower). Full-power sessions were conducted only twice; for other whales we used acoustic modelling that assumed transmission of the full-power sequence during their no-sonar control. Averaged over all whales, risk indicators in RampUp1 (n=11) differed significantly from those in FullPower (n=12) by −3.0 dB (SPLmax), −2.0 dB (SELcum) and +168 m (Rmin), but not significantly from those in RampUp2 (n=9). Only five whales in RampUp1, four whales in RampUp2 and none in FullPower or control sessions avoided the sound source. For RampUp1, we found statistically significant differences in risk indicators between whales that avoided the sonar and whales that did not: −4.7 dB (SPLmax), −3.4 dB (SELcum) and +291 m (Rmin). In contrast, for RampUp2, these differences were smaller and not significant. This study suggests that sonar ramp-up has a positive but limited mitigative effect for humpback whales overall, but that ramp-up can reduce the risk of harm more effectively in situations when animals are more responsive and likely to avoid the sonar, e.g. owing to novelty of the stimulus, when they are in the path of an approaching sonar ship. PMID:29141878
Desai, Aditya J.; Roberts, David J.
2014-01-01
The Calcium Sensing Receptor (CaSR) plays a role in calcium homeostasis by sensing minute changes in serum Ca2+ and modulating secretion of calciotropic hormones. It has been shown in transfected cells that accessory proteins known as Receptor Activity Modifying Proteins (RAMPs), specifically RAMPs 1 and 3, are required for cell-surface trafficking of the CaSR. These effects have only been demonstrated in transfected cells, so their physiological relevance is unclear. Here we explored CaSR/RAMP interactions in detail, and showed that in thyroid human carcinoma cells, RAMP1 is required for trafficking of the CaSR. Furthermore, we show that normal RAMP1 function is required for intracellular responses to ligands. Specifically, to confirm earlier studies with tagged constructs, and to provide the additional benefit of quantitative stoichiometric analysis, we used fluorescence resonance energy transfer to show equal abilities of RAMP1 and 3 to chaperone CaSR to the cell surface, though RAMP3 interacted more efficiently with the receptor. Furthermore, a higher fraction of RAMP3 than RAMP1 was observed in CaSR-complexes on the cell-surface, suggesting different ratios of RAMPs to CaSR. In order to determine relevance of these findings in an endogenous expression system we assessed the effect of RAMP1 siRNA knock-down in medullary thyroid carcinoma TT cells, (which express RAMP1, but not RAMP3 constitutively) and measured a significant 50% attenuation of signalling in response to CaSR ligands Cinacalcet and neomycin. Blockade of RAMP1 using specific antibodies induced a concentration-dependent reduction in CaSR-mediated signalling in response to Cinacalcet in TT cells, suggesting a novel functional role for RAMP1 in regulation of CaSR signalling in addition to its known role in receptor trafficking. These data provide evidence that RAMPs traffic the CaSR as higher-level oligomers and play a role in CaSR signalling even after cell surface localisation has occurred. PMID:24454825
Desai, Aditya J; Roberts, David J; Richards, Gareth O; Skerry, Timothy M
2014-01-01
The Calcium Sensing Receptor (CaSR) plays a role in calcium homeostasis by sensing minute changes in serum Ca(2+) and modulating secretion of calciotropic hormones. It has been shown in transfected cells that accessory proteins known as Receptor Activity Modifying Proteins (RAMPs), specifically RAMPs 1 and 3, are required for cell-surface trafficking of the CaSR. These effects have only been demonstrated in transfected cells, so their physiological relevance is unclear. Here we explored CaSR/RAMP interactions in detail, and showed that in thyroid human carcinoma cells, RAMP1 is required for trafficking of the CaSR. Furthermore, we show that normal RAMP1 function is required for intracellular responses to ligands. Specifically, to confirm earlier studies with tagged constructs, and to provide the additional benefit of quantitative stoichiometric analysis, we used fluorescence resonance energy transfer to show equal abilities of RAMP1 and 3 to chaperone CaSR to the cell surface, though RAMP3 interacted more efficiently with the receptor. Furthermore, a higher fraction of RAMP3 than RAMP1 was observed in CaSR-complexes on the cell-surface, suggesting different ratios of RAMPs to CaSR. In order to determine relevance of these findings in an endogenous expression system we assessed the effect of RAMP1 siRNA knock-down in medullary thyroid carcinoma TT cells, (which express RAMP1, but not RAMP3 constitutively) and measured a significant 50% attenuation of signalling in response to CaSR ligands Cinacalcet and neomycin. Blockade of RAMP1 using specific antibodies induced a concentration-dependent reduction in CaSR-mediated signalling in response to Cinacalcet in TT cells, suggesting a novel functional role for RAMP1 in regulation of CaSR signalling in addition to its known role in receptor trafficking. These data provide evidence that RAMPs traffic the CaSR as higher-level oligomers and play a role in CaSR signalling even after cell surface localisation has occurred.
Frost, Karen L; Bertocci, Gina; Smalley, Craig
2015-05-01
To estimate the prevalence of wheeled mobility device (WhMD) ramp-related incidents while boarding/alighting a public transit bus and to determine whether the frequency of incidents is less when the ramp slope meets the proposed Americans with Disabilities Act (ADA) maximum allowable limit of ≤9.5°. Observational study. Community public transportation. WhMD users (N=414) accessing a public transit bus equipped with an instrumented ramp. Not applicable. Prevalence of boarding/alighting incidents involving WhMD users and associated ramp slopes; factors affecting incidents. A total of 4.6% (n=35) of WhMD users experienced an incident while boarding/alighting a transit bus. Significantly more incidents occurred during boarding (6.3%, n=26) than during alighting (2.2%, n=9) (P<.01), and when the ramp was deployed to street level (mean slope=11.4°) compared with sidewalk level (mean slope=4.2°) (P=.01). The odds ratio for experiencing an incident when the ramp slope exceeded the proposed ADA maximum allowable ramp slope was 5.4 (95% confidence interval, 2.4-12.2; P<.01). The odds ratio for assistance being rendered to board/alight when the ramp slope exceeded the proposed ADA maximum allowable ramp slope was 5.1 (95% confidence interval, 2.9-9.0; P<.01). The findings of this study support the proposed ADA maximum allowable ramp slope of 9.5°. Ramp slopes >9.5° and ramps deployed to street level are associated with a higher frequency of incidents and provision of assistance. Transit agencies should increase awareness among bus operators of the effect kneeling and deployment location (street/sidewalk) have on the ramp slope. In addition, ramp components and the built environment may contribute to incidents. When prescribing WhMDs, skills training must include ascending/descending ramps at slopes encountered during boarding/alighting to ensure safe and independent access to public transit buses. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Reevaluation of Ramp Design Speed Criteria
DOT National Transportation Integrated Search
1999-12-01
Current freeway entry ramp design speed criteria were evaluated through observations of twenty ramps in four Texas cities. Field observations of ramp and freeway traffic speed-distance relationships were made using videotaping methods. Traffic operat...
Adrenomedullin Regulates IL-1β Gene Expression in F4/80+ Macrophages during Synovial Inflammation
Takano, Shotaro; Miyagi, Masayuki; Inoue, Gen; Aikawa, Jun; Iwabuchi, Kazuya; Takaso, Masashi
2017-01-01
Adrenomedullin (AM) plays an important role in the regulation of inflammatory processes; however, the role and expression of AM in synovial inflammation have not been determined. To investigate the expression and role of AM in inflamed synovial tissue (ST), the gene expression profiles of AM in the ST, including synovial macrophages and fibroblasts, of a murine patellar surgical dislocation model were characterized. In addition, the effects of interleukin- (IL-) 1β and AM in cultured synovial cells were also examined. CD11c+ macrophages were found to be elevated in ST of the surgically dislocated patella. Higher gene expression of CD11c, IL-1β, AM, receptor activity-modifying proteins 2 (RAMP2), and 3 (RAMP3) was also observed in ST obtained from the dislocated side. AM expression was also significantly increased in synovial fibroblasts and macrophages in response to IL-1β treatment. Synovial macrophages also highly expressed RAMP3 compared to fibroblasts and this expression was further stimulated by exogenously added IL-1β. Further, the treatment of the F4/80-positive cell fraction obtained from ST with AM inhibited IL-1β expression. Taken together, these findings demonstrated that AM was produced by synovial fibroblasts and macrophages in inflamed ST and that increased levels of AM may exert anti-inflammatory effects on synovial macrophages. PMID:28299347
Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice
NASA Astrophysics Data System (ADS)
Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig
2016-05-01
We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.
Ramp sedimentation in the Dinantian limestones of the Shannon Trough, Co. Limerick, Ireland
NASA Astrophysics Data System (ADS)
Somerville, Ian D.; Strogen, Peter
1992-08-01
During the late Chadian and Arundian (Lower Carboniferous), an extensive carbonate ramp (Limerick Ramp) developed over County Limerick, southwest Ireland, dipping northwestwards. Three distinct facies can be recognised corresponding to position on this ramp: inner, mid- and outer ramp. The inner ramp facies of oolitic and crinoidal grainstones (Herbertstown Limestone Formation) in east Limerick formed a major shoal behind which peritidal limestones were deposited. The mid-ramp facies of muddy bioclastic limestones and shales (Cooperhill facies) in north Limerick formed between fairweather and storm wave bases. The outer ramp (basinal) facies of mudstones and thin graded resedimented limestones (Rathkeale Beds) in west Limerick developed below storm wave base when fine terrigenous input was high. Later in the Arundian there was progradation of the nearshore oolitic and crinoidal grainstones over the mid-ramp facies. By the Holkerian, the deep-water basinal facies in west Limerick was buried beneath mid-ramp facies (Durnish Limestone). The initiation of the Limerick Ramp is closely related to the formation of the Shannon Trough. In the late Courceyan, accelerated subsidence in the Shannon area during deposition of Waulsortian facies marked the onset of a sag phase. Following a quiescent period in early Chadian, subsidence was renewed in the late Chadian and Arundian, when major facies changes occurred on the ramp. Comparison of the Shannon Trough with the Dublin Basin shows that in the latter, tectonic events in the Chadian and Arundian, particularly syn-sedimentary faulting, created a sharp division between platform and basinal sedimentation. Such tectonic influence is not recognised in the Shannon Trough. Here differential subsidence and eustatic sea-level changes led to more permanent ramp existence, modified only by westwards progradation.
Febres, Anthony; Vanegas, Oriana; Giammarresi, Michelle; Gomes, Carlos; Díaz, Emilia; Ponte-Sucre, Alicia
2018-07-01
The Calcitonin-Like Receptor (CLR) belongs to the classical seven-transmembrane segment molecules coupled to heterotrimeric G proteins. Its pharmacology depends on the simultaneous expression of the so-called Receptor Activity Modifier Proteins (RAMP-) -1, -2 and -3. RAMP-associated proteins modulate glycosylation and cellular traffic of CLR, therefore determining its pharmacodynamics. In higher eukaryotes, the complex formed by CLR and RAMP-1 is more akin to bind Calcitonin Gene-Related Peptide (CGRP), whereas those formed by CLR and RAMP-2 or RAMP-3, bind preferentially Adrenomedullin (AM). In lower eukaryotes, RAMPs, or any homologous protein, have not been identified until now. Herein we demonstrated a negative chemotactic response elicited by CGRP (10 -9 and 10 -8 M) and AM (10 -9 to 10 -5 M). Whether or not this response is receptor mediated should be verified, as well as the expression of a 24 kDa band in Leishmania, recognized by western blot analysis by the use of (human-)-RAMP-2 antibodies as detection probes. Queries with human RAMP-2 and RAMP-3 protein sequences in blastp against Leishmania (Viannia) braziliensis predicted proteome, allowed us to detect two sequence alignments in the parasite: A RAMP-2-aligned sequence corresponding to Leishmania folylpolyglutamate synthase (FPGS), and a RAMP-3 aligned protein, a hypothetical Leishmania protein with yet unknown function. The presence of homologous of these proteins was described in-silico in other members of the Trypanosomatidae. These preliminary and not yet complete data suggest the feasibility that both CGRP and Adrenomedullin activities may be regulated by homologs of RAMP- (-2) and (-3) in these parasites. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, E.W.
1996-09-01
The San Antonio relay ramp, a gentle southwest-dipping monocline, formed between the tips of two en echelon master faults having maximum throws of >240 in. Structural analysis of this relay ramp is important to studies of Edwards aquifer recharge and ground-water flow because the ramp is an area of relatively good stratal continuity linking the outcrop belt recharge zone and unconfined aquifer with the downdip confined aquifer. Part of the relay ramp lies within the aquifer recharge zone and is crossed by several southeast-draining creeks, including Salado, Cibolo, and Comal Creeks, that supply water to the ramp recharge area. Thismore » feature is an analog for similar structures within the aquifer and for potential targets for hydrocarbons in other Gulf Coast areas. Defining the ramp is an {approximately}13-km-wide right step of the Edwards Group outcrop belt and the en echelon master faults that bound the ramp. The master faults strike N55-75{degrees}E, and maximum displacement exceeds the {approximately}165-m thickness of the Edwards Group strata. The faults therefore probably serve as barriers to Edwards ground-water flow. Within the ramp, tilted strata gently dip southwestward at {approximately}5 m/km, and the total structural relief along the ramp`s southwest-trending axis is <240 in. The ramp`s internal framework is defined by three fault blocks that are {approximately}4 to {approximately}6 km wide and are bound by northeast-striking faults having maximum throws between 30 and 150 m. Within the fault blocks, local areas of high fracture permeability may exist where smaller faults and joints are well connected.« less
Calcitonin and Amylin Receptor Peptide Interaction Mechanisms
Lee, Sang-Min; Hay, Debbie L.; Pioszak, Augen A.
2016-01-01
Receptor activity-modifying proteins (RAMP1–3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8–37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. PMID:26895962
Disruption avoidance and fast ramp-down techniques for the DIII-D experimental scenarios
NASA Astrophysics Data System (ADS)
Barr, Jayson; Eidietis, N. W.; Humphreys, D. A.; Sammuli, B.; Luce, T.
2017-10-01
Plasma current ramp-down in ITER will continue in H-mode from 15 MA to 10 MA, and will keep a diverted shape until termination. This is in contrast to the limited ramp-down scenarios typically used in DIII-D operations. Additionally, fast emergency ramp-down scenarios for ITER and future reactors are a priority for disruption avoidance. New experiments in DIII-D use the ramp-down phase of a variety of experiments including in the ITER baseline scenario to survey and identify optimized ramp-down scenarios for both scheduled terminations and terminations triggered by off-normal event detection. Systematic scans in current ramp-rate (1-5 MA/s), neutral beam power (including βN feedback) and ramp-down shaping (limited versus continued diverted) have identified fast ramp-down scenarios for Lower Single Null (LSN) and Double Null (DN) plasmas. Scenario-specific methods and their rates of successful termination will be presented and compared relative to a historical data-set of ramp-down programming in the limiter configuration. Locked modes are found to be the most significant challenge to disruption avoidance in diverted ramp-downs. Results for LSN diverted discharges that begin the rampdown with large locked-modes will also be presented. If available, results of similar experiments on EAST will be presented. Work supported by US DOE under DE-FC02-04ER54698 and DE-SC0010685.
Peterson, Curt D.; Erlandson, Jon M.; Stock, Errol; Hostetler, Steven W.; Price, David M.
2017-01-01
Coastal eolian sand ramps (5–130 m elevation) on the northern slope (windward) side of the small San Miguel Island (13 km in W-E length) range in age from late Pleistocene to modern time, though a major hiatus in sand-ramp growth occurred during the early Holocene marine transgression (16–9 ka). The Holocene sand ramps (1–5 m measured thicknesses) currently lack large dune forms, thereby representing deflated erosional remnants, locally covering thicker late Pleistocene sand-ramp deposits. The ramp sand was initially supplied from the adjacent island-shelf platform, extending about 20 km north of the present coastline. The sand-ramp deposits and interbedded loess soils were 14C dated using 112 samples from 32 archaeological sites and other geologic sections. Latest Pleistocene sand ramps (66–18 ka) were derived from across-shelf eolian sand transport during marine low stands. Shoreward wave transport supplied remobilized late Pleistocene sand from the inner shelf to Holocene beaches, where dominant NW winds supplied sand to the sand ramps. The onset dates of the sand-ramp deposition in San Miguel are 7.2 ± 1.5 ka (sample n = 14). The internal strata dates in the vertically accreting sand ramps are 3.4 ± 1.7 ka (n = 34). The sand ramps in San Miguel show wide-scale termination of sand supply in the latest Holocene time. The sand-ramp top dates or burial dates are 1.7 ± 0.9 ka (n = 28). The latest Holocene sand ramps are truncated along most of the island's northern coastline, indicating recent losses of nearshore sand reserves to onshore, alongshore, and, possibly, offshore sand sinks. The truncated sand ramps in San Miguel Island and in other sand-depleted marine coastlines provide warnings about future beach erosion and/or shoreline retreat from accelerated sea-level rise accompanying predicted global warming.
NASA Astrophysics Data System (ADS)
Amalu, E. H.; Lui, Y. T.; Ekere, N. N.; Bhatti, R. S.; Takyi, G.
2011-01-01
The electronics manufacturing industry was quick to adopt and use the Surface Mount Technology (SMT) assembly technique on realization of its huge potentials in achieving smaller, lighter and low cost product implementations. Increasing global customer demand for miniaturized electronic products is a key driver in the design, development and wide application of high-density area array package format. Electronic components and their associated solder joints have reduced in size as the miniaturization trend in packaging continues to be challenged by printing through very small stencil apertures required for fine pitch flip-chip applications. At very narrow aperture sizes, solder paste rheology becomes crucial for consistent paste withdrawal. The deposition of consistent volume of solder from pad-to-pad is fundamental to minimizing surface mount assembly defects. This study investigates the relationship between volume of solder paste deposit (VSPD) and the volume of solder bump formed (VSBF) after reflow, and the effect of reflow profile parameters on lead-free solder bump formation and the associated solder joint integrity. The study uses a fractional factorial design (FFD) of 24-1 Ramp-Soak-Spike reflow profile, with all main effects and two-way interactions estimable to determine the optimal factorial combination. The results from the study show that the percentage change in the VSPD depends on the combination of the process parameters and reliability issues could become critical as the size of solder joints soldered on the same board assembly vary greatly. Mathematical models describe the relationships among VSPD, VSBF and theoretical volume of solder paste. Some factors have main effects across the volumes and a number of interactions exist among them. These results would be useful for R&D personnel in designing and implementing newer applications with finer-pitch interconnect.
STEREO Observations of Waves in the Ramp Regions of Interplanetary Shocks
NASA Astrophysics Data System (ADS)
Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III
2017-12-01
Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (≥ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.
Evaluation of temporary ramp metering for work zones.
DOT National Transportation Integrated Search
2012-11-01
Ramp metering has been successfully implemented in many states to improve traffic operations on freeways. Studies have documented the positive mobility and safety benefits of ramp metering. However, there have been no studies on the use of ramp meter...
Supersonic Elliptical Ramp Inlet
NASA Technical Reports Server (NTRS)
Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)
2016-01-01
A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.
Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; von Benda-Beckmann, Alexander M; Sivle, Lise D; Visser, Fleur; Curé, Charlotte; Tyack, Peter L; Miller, Patrick J O
2017-11-15
Exposure to underwater sound can cause permanent hearing loss and other physiological effects in marine animals. To reduce this risk, naval sonars are sometimes gradually increased in intensity at the start of transmission ('ramp-up'). Here, we conducted experiments in which tagged humpback whales were approached with a ship to test whether a sonar operation preceded by ramp-up reduced three risk indicators - maximum sound pressure level (SPL max ), cumulative sound exposure level (SEL cum ) and minimum source-whale range ( R min ) - compared with a sonar operation not preceded by ramp-up. Whales were subject to one no-sonar control session and either two successive ramp-up sessions (RampUp1, RampUp2) or a ramp-up session (RampUp1) and a full-power session (FullPower). Full-power sessions were conducted only twice; for other whales we used acoustic modelling that assumed transmission of the full-power sequence during their no-sonar control. Averaged over all whales, risk indicators in RampUp1 ( n =11) differed significantly from those in FullPower ( n =12) by -3.0 dB (SPL max ), -2.0 dB (SEL cum ) and +168 m ( R min ), but not significantly from those in RampUp2 ( n =9). Only five whales in RampUp1, four whales in RampUp2 and none in FullPower or control sessions avoided the sound source. For RampUp1, we found statistically significant differences in risk indicators between whales that avoided the sonar and whales that did not: -4.7 dB (SPL max ), -3.4 dB (SEL cum ) and +291 m ( R min ). In contrast, for RampUp2, these differences were smaller and not significant. This study suggests that sonar ramp-up has a positive but limited mitigative effect for humpback whales overall, but that ramp-up can reduce the risk of harm more effectively in situations when animals are more responsive and likely to avoid the sonar, e.g. owing to novelty of the stimulus, when they are in the path of an approaching sonar ship. © 2017. Published by The Company of Biologists Ltd.
High efficiency low cost thin film silicon solar cell design and method for making
Sopori, B.L.
1999-04-27
A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.
Formation of the internal transport barrier in KSTAR
NASA Astrophysics Data System (ADS)
Chung, J.; Kim, H. S.; Jeon, Y. M.; Kim, J.; Choi, M. J.; Ko, J.; Lee, K. D.; Lee, H. H.; Yi, S.; Kwon, J. M.; Hahn, S.-H.; Ko, W. H.; Lee, J. H.; Yoon, S. W.
2018-01-01
One of key objectives of tokamak experiments is the exploration of enhanced confinement regimes, and the access of the internal transport barrier (ITB) formation is dealt with an important physics issue in the most of major tokamaks. Also, the advanced tokamak scenario with ITB is expected to lead to a continuous reactor with high fusion power density. From that point of view, the formation of the ITB in KSTAR which is designed for long pulse operation capability is very important although its heating and current drive systems are not fully equipped yet. We have therefore assumed that an early injection of the full NBI power (∼5.5 MW) during the current ramp-up would give a chance to form an internal barrier if the plasma could stay in the L-mode. To avoid the H-mode transition, we have produced inboard limited plasmas with detaching from the both upper and lower divertors. Using this approach, an ITB formation during L-mode has been observed which shows improved core confinement. Ion and electron temperature profiles show the barrier clearly in the temperature, and it was sustained for about 7 s in the dedicated experiment. This is the first stationary ITB observed in a full superconducting tokamak. This operation scenario with the ITB could be an alternative way to achieve a high performance regime in KSTAR, and the length of the ITB discharge could be extended even longer. In this paper, we present the formation of the ITB using measured and simulated characteristic profiles.
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Capone, Francis J.
1989-01-01
An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.
NASA Astrophysics Data System (ADS)
Hemingway, Jordon D.; Rothman, Daniel H.; Rosengard, Sarah Z.; Galy, Valier V.
2017-11-01
Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC) chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E), a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO) analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.
Goumon, S; Faucitano, L; Bergeron, R; Crowe, T; Connor, M L; Gonyou, H W
2013-08-01
Three experiments, each using 280 pigs, were conducted in a simulated compartment to test the effect of angle of entrance (AOE) to the ramp (90°, 60°, 30°, or 0°), ramp slope (0°, 16°, 21°, or 26°), and an initial 20-cm step associated with 16° or 21° ramp slopes on the ease of handling, heart rate (HR), and behavior of near market-weight pigs during unloading. Heart rate (pigs and handler), unloading time, interventions of the handler, and reactions of the pigs were monitored. The results of the first experiment show that using a 90° AOE had detrimental effects on ease of handling (P < 0.05), HR of the pig (P < 0.05), and behavior (P < 0.05). The 0° and 30° AOE appeared to improve the ease of unloading, whereas the 60° AOE had an intermediate effect. The 30° AOE appeared to be preferable, because pigs moved at this angle balked less frequently (P < 0.01) and required less manipulation (P < 0.05) than pigs moved with a 0° AOE. The results of the second experiment show that the use of a flat ramp led to the easiest unloading, as demonstrated by the lower number of balks (P < 0.001) when pigs were moved to the ramp and less frequent use of paddle (P = 0.001) or voice (P < 0.001) on the ramp, compared with the other treatments. However, the flat ramp did not differ from the 21° ramp in many of the variables reflecting ease of handling, which may be explained by the difference in configuration between the ramps. The results also show that the use of the steepest ramp slope had the most detrimental effect on balking and backing up behavior of pigs (P < 0.001), and handling (touches, slaps, and pushes; P < 0.05 for all) when moved to the ramp and on unloading time (P < 0.01). No differences in pig HR (P < 0.05) and ease of handling on the ramp (P < 0.05) were found between a 26° and 16° ramp slope, suggesting that the length of the ramp may be one of the factors that make unloading more difficult. The results of the last experiment show that an initial step made unloading physically more demanding for the handler (P < 0.001) and pigs on the ramp (P < 0.05) as demonstrated by their greater HR. The greater difficulty of handling (P < 0.01) and reluctance to move (P < 0.05) of pigs moved toward the 16° ramp with a step suggest that pigs perceived this ramp as more psychologically challenging. Making a few changes in terms of the design of the ramp could improve the efficiency of handling and reduce stress in pigs.
A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process
NASA Astrophysics Data System (ADS)
Ho, Tzuen-Wei; Hong, Franklin Chau-Nan
2012-08-01
We have grown silicon nanowires (SiNWs) on Si (1 1 1) substrates by gold-catalyzed vapor-liquid-solid (VLS) process using tetrachlorosilane (SiCl4) in a hot-wall chemical vapor deposition reactor. Even under the optimized conditions including H2 annealing to reduce the surface native oxide, epitaxial SiNWs of 150-200 nm in diameter often grew along all four <1 1 1> family directions with one direction vertical and three others inclined to the surface. Therefore, the growth of high degree ordered SiNW arrays along [1 1 1] only was attempted on Au-coated Si (1 1 1) by a ramp-cooling process utilizing the liquid phase epitaxy (LPE) mechanism. The Au-coated Si substrate was first annealed in H2 at 650 °C to form Au-Si alloy nanoparticles, and then ramp-cooled at a controlled rate to precipitate epitaxial Si seeds on the substrate based on LPE mechanism. The substrate was further heated in SiCl4/H2 to 850 °C for the VLS growths of SiNWs on the Si seeds. Thus, almost 100% vertically-aligned SiNWs along [1 1 1] only could be reproducibly grown on Si (1 1 1), without using a template or patterning the metal catalyst. The high-density vertically-aligned SiNWs have good potentials for solar cells and nano-devices.
Armour, S L; Foord, S; Kenakin, T; Chen, W J
1999-12-01
Receptor-activity-modifying proteins (RAMPs) are a family of single transmembrane domain proteins shown to be important for the transport and ligand specificity of the calcitonin gene-related peptide (CGRP) receptor. In this report, we describe the analysis of pharmacological properties of the human calcitonin receptor (hCTR) coexpressed with different RAMPs with the use of the Xenopus laevis melanophore expression system. We show that coexpression of RAMP3 with human calcitonin receptor changed the relative potency of hCTR to human calcitonin (hCAL) and rat amylin. RAMP1 and RAMP2, in contrast, had little effect on the change of hCTR potency to hCAL or rat amylin. When coexpressed with RAMP3, hCTR reversed the relative potency by a 3.5-fold loss in sensitivity to hCAL and a 19-fold increase in sensitivity to rat amylin. AC66, an inverse agonist, produced apparent simple competitive antagonism of hCAL and rat amylin, as indicated by linear Schild regressions. The potency of AC66 was changed in the blockade of rat amylin but not hCAL responses with RAMP3 coexpression. The mean pK(B) for AC66 to hCAL was 9.4 +/- 0.3 without RAMP3 and 9.45 +/- 0.07 with RAMP3. For the antagonism of AC66 to rat amylin, the pK(B) was 9.25 +/- 0.15 without RAMP3 and 8.2 +/- 0.35 with RAMP3. The finding suggests that RAMP3 might modify the active states of calcitonin receptor in such a way as to create a new receptor phenotype that is "amylin-like." Irrespective of the physiological association of the new receptor species, the finding that a coexpressed membrane protein can completely change agonist and antagonist affinities for a receptor raises implications for screening in recombinant receptor systems.
NASA Astrophysics Data System (ADS)
Tang, S.; Thome, K.; Pace, D.; Heidbrink, W. W.; Carter, T. A.; Crocker, N. A.; NSTX-U Collaboration; DIII-D Collaboration
2017-10-01
An experimental investigation of the stability of Doppler-shifted cyclotron resonant compressional Alfvén eigenmodes (CAE) using the flexible DIII-D neutral beams has begun to validate a theoretical understanding and realize the CAE's diagnostic potential. CAEs are excited by energetic ions from neutral beams [Heidbrink, NF 2006], with frequencies and toroidal mode numbers sensitive to the fast-ion phase space distribution, making them a potentially powerful passive diagnostic. The experiment also contributes to a predictive capability for spherical tokamak temperature profiles, where CAEs may play a role in energy transport [Crocker, NF 2013]. CAE activity was observed using the recently developed Ion Cyclotron Emission diagnostic-high bandwidth edge magnetic sensors sampled at 200 MS/s. Preliminary results show CAEs become unstable in BT ramp discharges below a critical threshold in the range 1.7 - 1.9 T, with the exact value increasing as density increases. The experiment will be used to validate simulations from relevant codes such as the Hybrid MHD code [Belova, PRL 2015]. This work was supported by US DOE Grants DE-SC0011810 and DE-FC02-04ER54698.
Runaway electron generation and control
NASA Astrophysics Data System (ADS)
Esposito, B.; Boncagni, L.; Buratti, P.; Carnevale, D.; Causa, F.; Gospodarczyk Martin-Solis, M., Jr.; Popovic, Z.; Agostini, M.; Apruzzese, G.; Bin, W.; Cianfarani, C.; De Angelis, R.; Granucci, G.; Grosso, A.; Maddaluno, G.; Marocco, D.; Piergotti, V.; Pensa, A.; Podda, S.; Pucella, G.; Ramogida, G.; Rocchi, G.; Riva, M.; Sibio, A.; Sozzi, C.; Tilia, B.; Tudisco, O.; Valisa, M.; FTU Team
2017-01-01
We present an overview of FTU experiments on runaway electron (RE) generation and control carried out through a comprehensive set of real-time (RT) diagnostics/control systems and newly installed RE diagnostics. An RE imaging spectrometer system detects visible and infrared synchrotron radiation. A Cherenkov probe measures RE escaping the plasma. A gamma camera provides hard x-ray radial profiles from RE bremsstrahlung interactions in the plasma. Experiments on the onset and suppression of RE show that the threshold electric field for RE generation is larger than that expected according to a purely collisional theory, but consistent with an increase due to synchrotron radiation losses. This might imply a lower density to be targeted with massive gas injection for RE suppression in ITER. Experiments on active control of disruption-generated RE have been performed through feedback on poloidal coils by implementing an RT boundary-reconstruction algorithm evaluated on magnetic moments. The results indicate that the slow plasma current ramp-down and the simultaneous reduction of the reference plasma external radius are beneficial in dissipating the RE beam energy and population, leading to reduced RE interactions with plasma facing components. RE active control is therefore suggested as a possible alternative or complementary technique to massive gas injection.
Wan, Eric Yuk Fai; Fung, Colman Siu Cheung; Wong, Carlos King Ho; Choi, Edmond Pui Hang; Jiao, Fang Fang; Chan, Anca Ka Chun; Chan, Karina Hiu Yen; Lam, Cindy Lo Kuen
2017-02-01
Little is known about how the patient-reported outcomes is influenced by multidisciplinary-risk-assessment-and-management-programme for patients with diabetes mellitus (RAMP-DM). This paper aims to evaluate the effectiveness of RAMP-DM on patient-reported outcomes. This was a prospective longitudinal study on 1039 diabetes mellitus patients (714/325 RAMP-DM/non-RAMP-DM) managed in primary care setting. 536 and 402 RAMP-DM participants, and 237 and 187 non-RAMP-DM participants were followed up at 12 and 24 months with completed survey, respectively. Patient-reported outcomes included health-related quality of life, change in global health condition and patient enablement measured by Short Form-12 Health Survey version-2 (SF-12v2), Global Rating Scale, Patient Enablement Instrument respectively. The effects of RAMP-DM on patient-reported outcomes were evaluated by mixed effect models. Subgroup analysis was performed by stratifying haemoglobin A1c (HbA1c) (optimal HbA1c < 7 % and suboptimal HbA1c ≥ 7 %). RAMP-DM with suboptimal HbA1c was associated with greater improvement in SF-12v2 physical component summary score at 12-month (coefficient:3.80; P-value < 0.05) and 24-month (coefficient:3.82;P-value < 0.05), more likely to feel more enabled at 12-month (odds ratio: 2.57; P-value < 0.05), and have improved in GRS at 24-month (odds ratio:4.05; P-value < 0.05) compared to non-RAMP-DM participants. However, there was no significant difference in patient-reported outcomes between RAMP-DM and non-RAMP-DM participants with optimal HbA1c. Participation in RAMP-DM is effective in improving physical component of HRQOL, Global Rating Scale and patient enablement among diabetes mellitus patients with suboptimal HbA1c, but not in those with optimal HbA1c. Patients with sub-optimal diabetes mellitus control should be the priority target population for RAMP-DM. This observational study design may have potential bias in the characteristics between groups, and randomized clinical trial is needed to confirm the results.
Lee, Sang-Min; Hay, Debbie L; Pioszak, Augen A
2016-04-15
Receptor activity-modifying proteins (RAMP1-3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8-37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Technical Reports Server (NTRS)
Re, R. J.; Leavitt, L. D.
1984-01-01
The effects of five geometric design parameters on the internal performance of single-expansion-ramp nozzles were investigated at nozzle pressure ratios up to 10 in the static-test facility of the Langley 16-Foot Transonic Tunnel. The geometric variables on the expansion-ramp surface of the upper flap consisted of ramp chordal angle, ramp length, and initial ramp angle. On the lower flap, the geometric variables consisted of flap angle and flap length. Both internal performance and static-pressure distributions on the centerlines of the upper and lower flaps were obtained for all 43 nozzle configurations tested.
DOT National Transportation Integrated Search
2000-02-01
A Fuzzy Logic Ramp Metering Algorithm was implemented on 126 ramps in the greater Seattle area. This report documents the implementation of the Fuzzy Logic Ramp Metering Algorithm at the Northwest District of the Washington State Department of Transp...
DOT National Transportation Integrated Search
2010-12-01
This project mainly focuses on exit ramp performance analysis of safety and operations. In addition, issues of advance guide sign for exit ramp are also mentioned. : Safety analysis evaluates safety performances of different exit ramps used in Florid...
NASA Astrophysics Data System (ADS)
Martis, R. R.; Misra, A.
2017-09-01
A numerical study is conducted to determine the effectiveness of six different microvortex generator geometries in controlling swept shock wave/boundary-layer interactions. The geometries considered are base ramp, base ramp with declining angle of 45°, blunt ramp, split ramp, thick vanes, and ramped vanes. Microvortex generators with a gap were found to be better suited for delaying the separation. Thick vanes showed the largest delay in separation among the devices studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhongwei; SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136; Lu, Quanming
2013-09-15
Supercritical perpendicular collisionless shocks are known to exhibit foot, ramp, and overshoot structures. The shock ramp structure is in a smaller scale in contrast to other microstructures (foot and overshoot) within the shock front. One-dimensional full particle simulations of strictly perpendicular shocks over wide ranges of ion beta β{sub i}, Alfvén Mach number M{sub A}, and ion-to-electron mass ratio m{sub i}/m{sub e} are presented to investigate the impact of plasma parameters on the shock ramp scale. Main results are (1) the ramp scale can be as small as several electron inertial length. (2) The simulations suggest that in a regimemore » below the critical ion beta value, the shock front undergoes a periodic self-reformation and the shock ramp scale is time-varying. At higher ion beta values, the shock front self-reformation is smeared. At still higher ion beta value, the motion of reflected ions is quite diffuse so that they can lead to a quasi-steady shock ramp. Throughout the above three conditions, the shock ramp thickness increases with β{sub i}. (3) The increase (decrease) in Mach number and the decrease (increase) in the beta value have almost equivalent impact on the state (i.e., stationary or nonstationary) of the shock ramp. Both of front and ramp thicknesses are increased with M{sub A}.« less
40 CFR 1033.520 - Alternative ramped modal cycles.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Following the completion of the third test phase of the applicable ramped modal cycle, conduct the post... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped modal... locomotive notch settings. Ramped modal cycles combine multiple test modes of a discrete-mode steady-state...
3. Ramp No. 6 connection between Medical Detachment Barracks: Building ...
3. Ramp No. 6 connection between Medical Detachment Barracks: Building Nos. 9970-B (left) and 9969-B (right). The many windows makes this section almost unique among the ramps and corridors. - Madigan Hospital, Corridors & Ramps, Bounded by Wilson & McKinley Avenues & Garfield & Lincoln Streets, Tacoma, Pierce County, WA
Non-inductive current drive and transport in high βN plasmas in JET
NASA Astrophysics Data System (ADS)
Voitsekhovitch, I.; Alper, B.; Brix, M.; Budny, R. V.; Buratti, P.; Challis, C. D.; Ferron, J.; Giroud, C.; Joffrin, E.; Laborde, L.; Luce, T. C.; McCune, D.; Menard, J.; Murakami, M.; Park, J. M.; JET-EFDA contributors
2009-05-01
A route to stationary MHD stable operation at high βN has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total βN ≈ 3.3 and stationary (during high power phase) βN ≈ 3 have been achieved by applying the feedback control of βN with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a ±22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E × B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources.
STATUS OF VARIOUS SNS DIAGNOSTIC SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blokland, Willem; Purcell, J David; Patton, Jeff
2007-01-01
The Spallation Neutron Source (SNS) accelerator systems are ramping up to deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. Enhancements or additions have been made to several instrument systems to support the ramp up in intensity, improve reliability, and/or add functionality. The Beam Current Monitors now support increased rep rates, the Harp system now includes charge density calculations for the target, and a new system has been created to collect data for the beam accounting and present the data over the web and to the operator consoles. The majority of themore » SNS beam instruments are PC-based and their configuration files are now managed through the Oracle relational database. A new version for the wire scanner software was developed to add features to correlate the scan with beam loss, parking in the beam, and measuring the longitudinal beam current. This software is currently being tested. This paper also includes data from the selected instruments.« less
NASA Astrophysics Data System (ADS)
Yao, Qiming; Liu, Shuo; Liu, Yang
2018-05-01
An experimental design was used to study the vehicle operation characteristics of different ramp entrance conditions in underground road. With driving simulator, the experimental scenarios include left or right ramp with first, second and third service level, respectively, to collect vehicle speed, acceleration, lateral displacement and location information at the ramp entrance section. By using paired t-test and ANOVA, the influence factors of vehicle operating characteristics are studied. The result shows that effects of ramp layout and mainline traffic environment on vehicle operation characteristics are significant. The regression model of vehicle traveling distance on acceleration lane is established. Suggestions are made for ramp entrance design of underground road.
Lind, Carl Mikael; Forsman, Mikael; Rose, Linda Maria
2017-10-16
RAMP I is a screening tool developed to support practitioners in screening for work-related musculoskeletal disorder risk factors related to manual handling. RAMP I, which is part of the RAMP tool, is based on research-based studies combined with expert group judgments. More than 80 practitioners participated in the development of RAMP I. The tool consists of dichotomous assessment items grouped into seven categories. Acceptable reliability was found for a majority of the assessment items for 15 practitioners who were given 1 h of training. The usability evaluation points to RAMP I being usable for screening for musculoskeletal disorder risk factors, i.e., usable for assessing risks, being usable as a decision base, having clear results and that the time needed for an assessment is acceptable. It is concluded that RAMP I is a usable tool for practitioners.
Effects of ramp reset pulses on the address discharge in a shadow mask plasma display panel
NASA Astrophysics Data System (ADS)
Yang, Lanlan; Tu, Yan; Zhang, Xiong; Jiang, Youyan; Zhang, Jian; Wang, Baoping
2007-05-01
A two-dimensional self-consistent numerical simulation model is used to analyse the effects of the ramp reset pulses on the address discharge in a shadow mask plasma display panel (SM-PDP). Some basic parameters such as the slope of the ramp pulse and the terminal voltage of the ramp reset period are varied to investigate their effects. The simulation results illustrate that the wall voltage is mainly decided by the terminal voltage and the firing voltage at the end of the ramp reset period. Moreover, the variation of the ramp slope will also bring a few modifications to the wall voltage. The priming particles in the beginning of the addressing period are related to the slope of the ramping down voltage pulse. The simulation results can help us optimize the driving scheme of the SM-PDP.
Quasi-Steady Evolution of Hillslopes in Layered Landscapes: An Analytic Approach
NASA Astrophysics Data System (ADS)
Glade, R. C.; Anderson, R. S.
2018-01-01
Landscapes developed in layered sedimentary or igneous rocks are common on Earth, as well as on other planets. Features such as hogbacks, exposed dikes, escarpments, and mesas exhibit resistant rock layers adjoining more erodible rock in tilted, vertical, or horizontal orientations. Hillslopes developed in the erodible rock are typically characterized by steep, linear-to-concave slopes or "ramps" mantled with material derived from the resistant layers, often in the form of large blocks. Previous work on hogbacks has shown that feedbacks between weathering and transport of the blocks and underlying soft rock can create relief over time and lead to the development of concave-up slope profiles in the absence of rilling processes. Here we employ an analytic approach, informed by numerical modeling and field data, to describe the quasi-steady state behavior of such rocky hillslopes for the full spectrum of resistant layer dip angles. We begin with a simple geometric analysis that relates structural dip to erosion rates. We then explore the mechanisms by which our numerical model of hogback evolution self-organizes to meet these geometric expectations, including adjustment of soil depth, erosion rates, and block velocities along the ramp. Analytical solutions relate easily measurable field quantities such as ramp length, slope, block size, and resistant layer dip angle to local incision rate, block velocity, and block weathering rate. These equations provide a framework for exploring the evolution of layered landscapes and pinpoint the processes for which we require a more thorough understanding to predict their evolution over time.
A microfluidic separation platform using an array of slanted ramps
NASA Astrophysics Data System (ADS)
Risbud, Sumedh; Bernate, Jorge; Drazer, German
2013-03-01
The separation of the different components of a sample is a crucial step in many micro- and nano-fluidic applications, including the detection of infections, the capture of circulating tumor cells, the isolation of proteins, RNA and DNA, to mention but a few. Vector chromatography, in which different species migrate in different directions in a planar microfluidic device thus achieving spatial as well as temporal resolution, offers the promise of high selectivity along with high throughput. In this work, we present a microfluidic vector chromatography platform consisting of slanted ramps in a microfluidic channel for the separation of suspended particles. We construct these ramps using inclined UV lithography, such that the inclined portion of the ramps is upstream. We show that particles of different size displace laterally to a different extent when driven by a flow field over a slanted ramp. The flow close to the ramp reorients along the ramp, causing the size-dependent deflection of the particles. The cumulative effect of an array of these ramps would cause particles of different size to migrate in different directions, thus allowing their passive and continuous separation.
Von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A
2014-02-01
Ramp-up or soft-start procedures (i.e., gradual increase in the source level) are used to mitigate the effect of sonar sound on marine mammals, although no one to date has tested whether ramp-up procedures are effective at reducing the effect of sound on marine mammals. We investigated the effectiveness of ramp-up procedures in reducing the area within which changes in hearing thresholds can occur. We modeled the level of sound killer whales (Orcinus orca) were exposed to from a generic sonar operation preceded by different ramp-up schemes. In our model, ramp-up procedures reduced the risk of killer whales receiving sounds of sufficient intensity to affect their hearing. The effectiveness of the ramp-up procedure depended strongly on the assumed response threshold and differed with ramp-up duration, although extending the duration of the ramp up beyond 5 min did not add much to its predicted mitigating effect. The main factors that limited effectiveness of ramp up in a typical antisubmarine warfare scenario were high source level, rapid moving sonar source, and long silences between consecutive sonar transmissions. Our exposure modeling approach can be used to evaluate and optimize mitigation procedures. © 2013 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Kong, Dewen; Guo, Xiucheng; Wu, Dingxin
Although the on-ramp system has been widely studied, the influence of heavy vehicles is unknown because researchers only investigate the traffic dynamics around on-ramp system under homogeneous traffic conditions, which is different in real-world settings. This paper uses an improved cellular automaton model to study the heterogeneous traffic around on-ramp system. The forward motion rules are improved by considering the differences of driving behavior in different vehicle combinations. The lane change rules are improved by reflecting the aggressive behavior in mandatory lane changes. The phase diagram, traffic flow, capacity and spatial-temporal diagram are analyzed under the influences of heavy vehicles. The results show that by increasing the percentage of heavy vehicles, there will be more severe traffic congestion around on-ramp system, lower saturated flow and capacity. Also, the interactions between main road and on-ramp have been investigated. Increasing the percentage of heavy vehicles at the upstream of the conflict area on the main road or restricting heavy vehicles on the outside lane of the main road will deteriorate the performance of on-ramp. While the main road will have better performance as the percentage of heavy vehicles on the on-ramp increases when the on-ramp inflow rate is not low.
Ohori, Ryo; Akita, Tomomi; Yamashita, Chikamasa
2018-06-15
In the lyophilization process for injections, the shelf temperature (T s ) and chamber pressure (P c ) have mainly been investigated to optimize the primary drying process. The objective of this study was to show that lyophilization of protein formulations can be achieved by adopting a fast ramp rate of T s in the beginning of the primary drying process. Bovine serum albumin was used as the model protein, and seven different lyophilized formulations obtained were stored at elevated temperature. We found that although acceptable cake appearance was confirmed by the fast ramp cycle, all formulations of lyophilized cakes obtained by the slow ramp cycle severely collapsed (macrocollapse). It is thought that the collapse in the slow ramp cycle occurred during the shelf ramp in the beginning of primary drying and that insufficient removal of water from the dried matrix caused viscous flow (product collapse). Regarding storage stability, moisture-induced degradation was confirmed in some of the formulations prepared by the slow ramp cycle, whereas all lyophilized BSA formulations prepared by the fast ramp cycle were stable. Thus, the results indicate that the ramp rate appears to be one of the critical operational parameters required to establish a successful lyophilization cycle. Copyright © 2018. Published by Elsevier B.V.
Topological defects after a quench in a Bénard-Marangoni convection system.
Casado, S; González-Viñas, W; Mancini, H; Boccaletti, S
2001-05-01
We report experimental evidence of the fact that, in a Bénard-Marangoni conduction-convection transition, the density of defects in the emerging structure scales as a power law in the quench time needed for the control parameter to ramp through the threshold. The obtained scaling exponents differ from the ones predicted and observed in the case in which the defects correspond to zeros in the amplitude of the global two-dimensional field.
Sterol Profile for Natural Juices Authentification by GC-MS
NASA Astrophysics Data System (ADS)
Culea, M.
2007-04-01
A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15m×0.25mm, 0.25μm film thickness, in a temperature program from 50°C for 1 min, then ramped at 15°C/min to 300°C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit in compounded beverages and for detecting of adulteration of fruit juices.
Casper, T. A.; Meyer, W. H.; Jackson, G. L.; ...
2010-12-08
We are exploring characteristics of ITER startup scenarios in similarity experiments conducted on the DIII-D Tokamak. In these experiments, we have validated scenarios for the ITER current ramp up to full current and developed methods to control the plasma parameters to achieve stability. Predictive simulations of ITER startup using 2D free-boundary equilibrium and 1D transport codes rely on accurate estimates of the electron and ion temperature profiles that determine the electrical conductivity and pressure profiles during the current rise. Here we present results of validation studies that apply the transport model used by the ITER team to DIII-D discharge evolutionmore » and comparisons with data from our similarity experiments.« less
Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California
Pratt, T.L.; Shaw, J.H.; Dolan, J.F.; Christofferson, S.A.; Williams, R.A.; Odum, J.K.; Plesch, A.
2002-01-01
High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (<600 m) above two segments of the Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing; Berg, Larry K.; Pekour, Mikhail
The WRF model version 3.3 is used to simulate near hub-height winds and power ramps utilizing three commonly used planetary boundary-layer (PBL) schemes: Mellor-Yamada-Janjic (MYJ), University of Washington (UW), and Yonsei University (YSU). The predicted winds have small mean biases compared with observations. Power ramps and step changes (changes within an hour) consistently show that the UW scheme performed better in predicting up ramps under stable conditions with higher prediction accuracy and capture rates. Both YSU and UW scheme show good performance predicting up- and down- ramps under unstable conditions with YSU being slightly better for ramp durations longer thanmore » an hour. MYJ is the most successful simulating down-ramps under stable conditions. The high wind speed and large shear associated with low-level jets are frequently associated with power ramps, and the biases in predicted low-level jet explain some of the shown differences in ramp predictions among different PBL schemes. Low-level jets were observed as low as ~200 m in altitude over the Columbia Basin Wind Energy Study (CBWES) site, located in an area of complex terrain. The shear, low-level peak wind speeds, as well as the height of maximum wind speed are not well predicted. Model simulations with 3 PBL schemes show the largest variability among them under stable conditions.« less
ERIC Educational Resources Information Center
Wilkerson, Kevin; Perusse, Rachelle; Hughes, Ashley
2013-01-01
This study compares school-wide Annual Yearly Progress (AYP) results in Indiana schools earning the Recognized ASCA Model Program (RAMP) designation (n = 75) with a sample of control schools stratified by level and locale (n = 226). K-12 schools earning the RAMP designation in 2007, 2008, and 2009 comprise the experimental group. Findings indicate…
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of... simultaneous use of the ramp by vehicles and pedestrians. (d) Ramp maintenance. Ramps shall be properly...: (1) Sufficient power to ascend ramp inclines safely; and (2) Sufficient braking capacity to descend...
Code of Federal Regulations, 2011 CFR
2011-07-01
... simultaneous use of the ramp by vehicles and pedestrians. (d) Ramp maintenance. Ramps shall be properly... ramp inclines safely. (j) Safe speeds. Power driven vehicles used in Ro-Ro operations shall be operated at speeds that are safe for prevailing conditions. (k) Ventilation. Internal combustion engine-driven...
1996-12-01
Ramp AR 2........................................................ A.2 A. 9 . Test Section, No Injection or PME Ramp...B.2 B.8. Wide Ramp AR 1 ......................................................... B.2 B. 9 . Narrow Ramp AR 2...identified as a major near-field mixing factor.5 While work has continued in transverse injection, 7 ’ 9 later studies sought to produce greater
Rover deployment system for lunar landing mission
NASA Astrophysics Data System (ADS)
Sutoh, Masataku; Hoshino, Takeshi; Wakabayashi, Sachiko
2017-09-01
For lunar surface exploration, a deployment system is necessary to allow a rover to leave the lander. The system should be as lightweight as possible and stored retracted when launched. In this paper, two types of retractable deployment systems for lunar landing missions, telescopic- and fold-type ramps, are discussed. In the telescopic-type system, a ramp is stored with the sections overlapping and slides out during deployment. In the fold-type system, it is stored folded and unfolds for the deployment. For the development of these ramps, a design concept study and structural analysis were conducted first. Subsequently, ramp deployment and rover release tests were performed using the developed ramp prototypes. Through these tests, the validity of their design concepts and functions have been confirmed. In the rover release test, it was observed that the developed lightweight ramp was sufficiently strong for a 50-kg rover to descend. This result suggests that this ramp system is suitable for the deployment of a 300-kg-class rover on the Moon, where the gravity is about one-sixth that on Earth. The lightweight and sturdy ramp developed in this study will contribute to both safe rover deployment and increase of lander/rover payload.
NASA Astrophysics Data System (ADS)
Sun, Jie; Li, Zhipeng; Sun, Jian
2015-12-01
Recurring bottlenecks at freeway/expressway are considered as the main cause of traffic congestion in urban traffic system while on-ramp bottlenecks are the most significant sites that may result in congestion. In this paper, the traffic bottleneck characteristics for a simple and typical expressway on-ramp are investigated by the means of simulation modeling under the open boundary condition. In simulations, the running behaviors of each vehicle are described by a car-following model with a calibrated optimal velocity function, and lane changing actions at the merging section are modeled by a novel set of rules. We numerically derive the traffic volume of on-ramp bottleneck under different upstream arrival rates of mainline and ramp flows. It is found that the vehicles from the ramp strongly affect the pass of mainline vehicles and the merging ratio changes with the increasing of ramp vehicle, when the arrival rate of mainline flow is greater than a critical value. In addition, we clarify the dependence of the merging ratio of on-ramp bottleneck on the probability of lane changing and the length of the merging section, and some corresponding intelligent control strategies are proposed in actual traffic application.
Song, Kwang Hoon; Lee, Jaehyun; Jung, Hong-Ryul; Park, HyoungJun; Doh, Junsang
2017-09-14
T cells navigate diverse microenvironments to perform immune responses. Micro-scale topographical structures within the tissues, which may inherently exist in normal tissues or may be formed by inflammation or injury, can influence T cell migration, but how T cell migration is affected by such topographical structures have not been investigated. In this study, we fabricated ramp-like structures with a 5 μm height and various slopes, and observed T cells climbing up the ramp-like structures. T cells encountering the ramp-like structures exhibited MLC accumulation near head-tail junctions contacting the ramp-like structures, and made turns to the direction perpendicular to the ramp-like structures. Pharmacological study revealed that lamellipodia formation mediated by arp2/3 and contractility regulated by myosin light chain kinase (MLCK) were responsible for the intriguing turning behavior of T cells climbing the ramp-like structures. Arp2/3 or MLCK inhibition substantially reduced probability of T cells climbing sharp-edged ramp-like structures, indicating intriguing turning behavior of T cells mediated by lamellipodia formation and MLCK activity may be important for T cells to access inflamed or injured tissues with abrupt topographical changes.
Terasaki Spiral Ramps in the Rough Endoplasmic Reticulum
NASA Astrophysics Data System (ADS)
Guven, Jemal; Huber, Greg; Valencia, Dulce María
2014-10-01
We present a model describing the morphology as well as the assembly of "Terasaki ramps," the recently discovered helicoidal connections linking adjacent sheets of the rough endoplasmic reticulum (ER). The fundamental unit is a localized symmetric double-ramped "parking garage" formed by two separated gently pitched, approximately helicoidal, ramps of opposite chiralities. This geometry is stabilized by a short-range repulsive interaction between ramps associated with bending energy which opposes the long-range attraction associated with tension. The ramp inner boundaries are themselves stabilized by the condensation of membrane-shaping proteins along their length. A mechanism for parking garage self-assembly is proposed involving the nucleation of dipoles at the center of tubular three-way junctions within the smooth ER. Our predictions are compared with the experimental data.
Imamura, Teruhiko; Nitta, Daisuke; Kinugawa, Koichiro
2017-01-05
Adaptive servo-ventilation (ASV) therapy is a recent non-invasive positive pressure ventilation therapy that was developed for patients with heart failure (HF) refractory to optimal medical therapy. However, it is likely that ASV therapy at relatively higher pressure setting worsens some of the patients' prognosis compared with optimal medical therapy. Therefore, identification of optimal pressure settings of ASV therapy is warranted. We present the case of a 42-year-old male with HF, which was caused by dilated cardiomyopathy, who was admitted to our institution for evaluating his eligibility for heart transplantation. To identify the optimal pressure setting [peak end-expiratory pressure (PEEP) ramp test], we performed an ASV support test, during which the PEEP settings were set at levels ranging from 4 to 8 mmHg, and a heart rate variability (HRV) analysis using the MemCalc power spectral density method. Clinical parameters varied dramatically during the PEEP ramp test. Over incremental PEEP levels, pulmonary capillary wedge pressure, cardiac index and high-frequency level (reflecting parasympathetic activity) decreased; however, the low-frequency level increased along with increase in plasma noradrenaline concentrations. An inappropriately high PEEP setting may stimulate sympathetic nerve activity accompanied by decreased cardiac output. This was the first report on the PEEP ramp test during ASV therapy. Further research is warranted to determine whether use of optimal pressure settings using HRV analyses may improve the long-term prognosis of such patients.
Use of a complete starter feed in grain adaptation programs for feedlot cattle.
Schneider, C J; Nuttelman, B L; Shreck, A L; Burken, D B; Griffin, W A; Gramkow, J L; Stock, R A; Klopfenstein, T J; Erickson, G E
2017-08-01
Four experiments evaluated the use of a complete starter feed (RAMP; Cargill Corn Milling, Blair, NE) for grain adaptation. In Exp. 1, 229 yearling steers (397 ± 28.4 kg BW) were used to compare a traditional adaptation program (CON) with adapting cattle with RAMP in either a 1- (RAMP-1RS) or 2- (RAMP-2RS) ration system. From d 23 to slaughter, cattle were fed a common finishing diet. In Exp. 2, 390 yearling steers (341 ± 14 kg BW) were used to compare accelerated grain adaptation programs with RAMP with 2 control treatments where RAMP was blended with a finishing diet containing either 25 (CON25) or 47.5% (CON47) Sweet Bran (Cargill Corn Milling) in 4 steps fed over 24 d to adapt cattle. Rapid adaptation treatments involved feeding RAMP for 10 d followed by a blend of RAMP and a 47% Sweet Bran finishing diet to transition cattle with 3 blends fed for 1 d each (3-1d), 2 blends fed for 2 d each (2-2d), or 1 blend fed for 4 d (1-4d). From d 29 to slaughter, all cattle were fed a common finishing diet. In Exp. 3, 300 steer calves (292 ± 21 kg BW) were used to compare the CON47 and 1-4d adaptation programs with directly transitioning cattle from RAMP, which involved feeding RAMP for 10 d and then switching directly to F1 on d 11 (1-STEP). From d 29 until slaughter, F2 was fed to all cattle. In Exp. 4, 7 ruminally fistulated steers (482 ± 49 kg BW) were used in a 35-d trial to compare the CON47 and 1-STEP adaptation programs. Ruminal pH and intake data from the first 6 d of F1and first 6 d of F2 were used to compare adaptation systems. Adaptation with RAMP-1RS and RAMP-2RS increased ( < 0.01) G:F compared with cattle adapted using CON in Exp. 1. Feeding RAMP-1RS increased ADG ( = 0.03) compared with CON. Intakes were similar ( = 0.39) among treatments. Daily gain, DMI, G:F, and carcass traits were similar ( > 0.11) among treatments in Exp. 2. Daily gain, DMI, and G:F were not different ( > 0.20) among treatments on d 39 or over the entire feeding period in Exp. 3. When F1 or F2 was being fed, DMI was similar ( ≥ 0.40) for CON47 and 1-STEP in Exp. 4. When F1 or F2 was being fed, 1-STEP cattle had lower average ruminal pH ( ≤ 0.03) and greater time below a pH of 5.3 ( ≤ 0.03). Using RAMP for grain adaptation improved performance compared with traditional adaptation. Rapid adaptation with RAMP decreased pH, but no performance differences were observed between long and rapid RAMP adaptation programs. Therefore, cattle started on RAMP do not require extensive adaptation before feeding a finishing diet with Sweet Bran.
NASA Technical Reports Server (NTRS)
Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Cunningham, Thomas J. (Inventor); Newton, Kenneth W. (Inventor)
2014-01-01
An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.
2012-01-01
Background Type 2 Diabetes Mellitus (DM) is a common chronic disease associated with multiple clinical complications. Management guidelines have been established which recommend a risk-stratified approach to managing these patients in primary care. This study aims to evaluate the quality of care (QOC) and effectiveness of a multi-disciplinary risk assessment and management programme (RAMP) for type 2 diabetic patients attending government-funded primary care clinics in Hong Kong. The evaluation will be conducted using a structured and comprehensive evidence-based evaluation framework. Method/design For evaluation of the quality of care, a longitudinal study will be conducted using the Action Learning and Audit Spiral methodologies to measure whether the pre-set target standards for criteria related to the structure and process of care are achieved. Each participating clinic will be invited to complete a Structure of Care Questionnaire evaluating pre-defined indicators which reflect the setting in which care is delivered, while process of care will be evaluated against the pre-defined indicators in the evaluation framework. Effectiveness of the programme will be evaluated in terms of clinical outcomes, service utilization outcomes, and patient-reported outcomes. A cohort study will be conducted on all eligible diabetic patients who have enrolled into RAMP for more than one year to compare their clinical and public service utilization outcomes of RAMP participants and non-participants. Clinical outcome measures will include HbA1c, blood pressure (both systolic and diastolic), lipids (low-density lipoprotein cholesterol) and future cardiovascular diseases risk prediction; and public health service utilization rate will include general and specialist outpatient, emergency department attendances, and hospital admissions annually within 5 years. For patient-reported outcomes, a total of 550 participants and another 550 non-participants will be followed by telephone to monitor quality of life, patient enablement, global rating of change in health and private health service utilization at baseline, 6, 12, 36 and 60 months. Discussion The quality of care and effectiveness of the RAMP in enhancing the health for patients with type 2 diabetes will be determined. Possible areas for quality enhancement will be identified and standards of good practice can be established. The information will be useful in guiding service planning and policy decision making. PMID:23216708
Fung, Colman S C; Chin, Weng Yee; Dai, Daisy S K; Kwok, Ruby L P; Tsui, Eva L H; Wan, Yuk Fai; Wong, Wendy; Wong, Carlos K H; Fong, Daniel Y T; Lam, Cindy L K
2012-12-05
Type 2 Diabetes Mellitus (DM) is a common chronic disease associated with multiple clinical complications. Management guidelines have been established which recommend a risk-stratified approach to managing these patients in primary care. This study aims to evaluate the quality of care (QOC) and effectiveness of a multi-disciplinary risk assessment and management programme (RAMP) for type 2 diabetic patients attending government-funded primary care clinics in Hong Kong. The evaluation will be conducted using a structured and comprehensive evidence-based evaluation framework. For evaluation of the quality of care, a longitudinal study will be conducted using the Action Learning and Audit Spiral methodologies to measure whether the pre-set target standards for criteria related to the structure and process of care are achieved. Each participating clinic will be invited to complete a Structure of Care Questionnaire evaluating pre-defined indicators which reflect the setting in which care is delivered, while process of care will be evaluated against the pre-defined indicators in the evaluation framework.Effectiveness of the programme will be evaluated in terms of clinical outcomes, service utilization outcomes, and patient-reported outcomes. A cohort study will be conducted on all eligible diabetic patients who have enrolled into RAMP for more than one year to compare their clinical and public service utilization outcomes of RAMP participants and non-participants. Clinical outcome measures will include HbA1c, blood pressure (both systolic and diastolic), lipids (low-density lipoprotein cholesterol) and future cardiovascular diseases risk prediction; and public health service utilization rate will include general and specialist outpatient, emergency department attendances, and hospital admissions annually within 5 years. For patient-reported outcomes, a total of 550 participants and another 550 non-participants will be followed by telephone to monitor quality of life, patient enablement, global rating of change in health and private health service utilization at baseline, 6, 12, 36 and 60 months. The quality of care and effectiveness of the RAMP in enhancing the health for patients with type 2 diabetes will be determined. Possible areas for quality enhancement will be identified and standards of good practice can be established. The information will be useful in guiding service planning and policy decision making.
Launch of a Vehicle from a Ramp
ERIC Educational Resources Information Center
Cross, Rod
2011-01-01
A vehicle proceeding up an inclined ramp will become airborne if the ramp comes to a sudden end and if the vehicle fails to stop before it reaches the end of the ramp. A vehicle may also become airborne if it passes over the top of a hill at sufficient speed. In both cases, the vehicle becomes airborne if the point of support underneath the…
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of vehicular and pedestrian traffic control shall be established and maintained at each entrance/exit ramp and on ramps within the vessel as traffic flow warrants. (b) Ramp load limit. Each ramp shall be plainly...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of vehicular and pedestrian traffic control shall be established and maintained at each entrance/exit ramp and on ramps within the vessel as traffic flow warrants. (b) Ramp load limit. Each ramp shall be plainly...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of vehicular and pedestrian traffic control shall be established and maintained at each entrance/exit ramp and on ramps within the vessel as traffic flow warrants. (b) Ramp load limit. Each ramp shall be plainly...
Sekiguchi, Toshio; Kuwasako, Kenji; Ogasawara, Michio; Takahashi, Hiroki; Matsubara, Shin; Osugi, Tomohiro; Muramatsu, Ikunobu; Sasayama, Yuichi; Suzuki, Nobuo; Satake, Honoo
2016-01-29
The calcitonin (CT)/CT gene-related peptide (CGRP) family is conserved in vertebrates. The activities of this peptide family are regulated by a combination of two receptors, namely the calcitonin receptor (CTR) and the CTR-like receptor (CLR), and three receptor activity-modifying proteins (RAMPs). Furthermore, RAMPs act as escort proteins by translocating CLR to the cell membrane. Recently, CT/CGRP family peptides have been identified or inferred in several invertebrates. However, the molecular characteristics and relevant functions of the CTR/CLR and RAMPs in invertebrates remain unclear. In this study, we identified three CT/CGRP family peptides (Bf-CTFPs), one CTR/CLR-like receptor (Bf-CTFP-R), and three RAMP-like proteins (Bf-RAMP-LPs) in the basal chordate amphioxus (Branchiostoma floridae). The Bf-CTFPs were shown to possess an N-terminal circular region typical of the CT/CGRP family and a C-terminal Pro-NH2. The Bf-CTFP genes were expressed in the central nervous system and in endocrine cells of the midgut, indicating that Bf-CTFPs serve as brain and/or gut peptides. Cell surface expression of the Bf-CTFP-R was enhanced by co-expression with each Bf-RAMP-LP. Furthermore, Bf-CTFPs activated Bf-CTFP-R·Bf-RAMP-LP complexes, resulting in cAMP accumulation. These results confirmed that Bf-RAMP-LPs, like vertebrate RAMPs, are prerequisites for the function and translocation of the Bf-CTFP-R. The relative potencies of the three peptides at each receptor were similar. Bf-CTFP2 was a potent ligand at all receptors in cAMP assays. Bf-RAMP-LP effects on ligand potency order were distinct to vertebrate CGRP/adrenomedullin/amylin receptors. To the best of our knowledge, this is the first molecular and functional characterization of an authentic invertebrate CT/CGRP family receptor and RAMPs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Possibilities of fish passage through the block ramp: Model-based estimation of permeability.
Plesiński, Karol; Bylak, Aneta; Radecki-Pawlik, Artur; Mikołajczyk, Tomasz; Kukuła, Krzysztof
2018-08-01
Block ramps offer an opportunity to combine hydrotechnical structures with fish passages. The primary study objective was to evaluate the effectiveness of a block ramp for upstream fish movement in a mountain stream. Geodetic measurements of the bottom surface and water level were taken for three cross-sections. The description of the geometric and hydrodynamic parameters of the block ramp was supplemented with information on the width and length of crevices between boulders. Measurements of the geometric and hydrodynamic parameters of the block ramp were performed at 76 measurement sites, at three different types of discharge. Ichthyological data were collected in the analyzed stream. Measurements covered among others total length, width, and height of caught fish. Salmonid, cottid, balitorid, and cyprinid fish were studied. The determination of the main effects of the geometric and hydrodynamic parameters of the block ramp on the possibilities of use by target fish species employed generalized linear models (GLMs). The study shows that the block ramp cannot provide longitudinal connectivity and migration of fish occurring in the mountain stream. According to estimates, the block ramp did not meet the permeability expectations. The reason for low usefulness of the ramp for fish is particularly excessively strong water current. The stream concentration constituted an unsurmountable velocity barrier for fish moving upstream for each of the analyzed discharges. The developed model suggests that some crevices in the side zones of the ramp could be parts of the migration corridor, but only for small and medium-sized fish. At medium and high water stages, movement of fish in crevices was difficult due to fast water current, and at low and very low discharges, some crevices lost their permeability, and could become ecological traps for fish. The necessity of estimation of ramp permeability during pre-construction phase was emphasized. Copyright © 2018 Elsevier B.V. All rights reserved.
Freeway ramp management in Pennsylvania.
DOT National Transportation Integrated Search
2011-03-31
This research identified the opportunities to implement ramp management strategies on freeways in Pennsylvania. The research : explored the need to integrate local arterial traffic signal systems with ramp management strategies to reduce the impacts ...
2006-08-16
invasive weeds present in lower densities. In addition, cogon grass , melaleuca, mistletoe (Phoradendron serotinum), and small populations of thistles...area. Adverse impacts to indigos are not expected since the area consists of mowed grass only. To ensure potential impacts are reduced, the 45 SW...inside the Trident Basin, is primarily grass with rock revetment. The security activities would require boat operations in other areas of the Port as
Study on Trailing Edge Ramp of Supercritical Airfoil
2016-03-30
7 th Asia-Pacific International Symposium on Aerospace Technology, 25 – 27 November 2015, Cairns Study on Trailing Edge Ramp of Supercritical...China Abstract Trailing edge flow control method could improve the performance of supercritical airfoil with a small modification on the original...airfoil. In this paper, a ramp of 2%~7% chord length is sliced near the trailing edge to improve airfoil performance. The trailing edge ramp is
Wind-Friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Mingjian; Zhang, Jie; Wu, Hongyu
With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less
DOT National Transportation Integrated Search
2000-01-01
Caltrans is committed to using ramp metering as an effective traffic management strategy to maintain an efficient freeway system and protect the investment made in constructing freeways by keeping them operating at or near capacity. Ramp Metering is ...
Flow control of micro-ramps on supersonic forward-facing step flow
NASA Astrophysics Data System (ADS)
Qing-Hu, Zhang; Tao, Zhu; Shihe, Yi; Anping, Wu
2016-05-01
The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326 and 11502280).
2014-04-01
Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The RAMP project is designed to examine the key social context of intimate romantic...report is the “Relationships Among Military Personnel (RAMP) Project”. The RAMP project is designed to examine the key social context of intimate...making the RAMP Facebook page accessible (https://www.facebook.com/TheRAMPProject. As of March 1, 2014, 1531 individuals completed the eligibility
The Wind Integration National Dataset (WIND) toolkit (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caroline Draxl: NREL
2014-01-01
Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.
1975-03-01
Layer Suction 18 Temperature and Pressure Profile at Charging Station |9 Roiind-Corivergent Reference Nozzle 20 Elliptical Ramps 21 37-Tube...between plumes of the jets in the outer row of a suppressor Homulary layer Discharge coelticient, accounting for temperature induced no/./Ie area...tunnel floor. The suppressor air tlow rate was measured with an A.S.M.H. long-radius flow nozzle. The boundary layer ihickness at the ejector inlet
Effect of Valsartan on Cerebellar Adrenomedullin System Dysregulation During Hypertension.
Figueira, Leticia; Israel, Anita
2017-02-01
Adrenomedullin (AM) and its receptors components, calcitonin-receptor-like receptor (CRLR), and receptor activity-modifying protein (RAMP1, RAMP2, and RAMP3) are expressed in cerebellum. Cerebellar AM, AM binding sites and receptor components are altered during hypertension, suggesting a role for cerebellar AM in blood pressure regulation. Thus, we assessed the effect of valsartan, on AM and its receptor components expression in the cerebellar vermis of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Additionally, we evaluated AM action on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity, and thiobarbituric acid reactive substances (TBARS) production in cerebellar vermis. Animals were treated with valsartan or vehicle for 11 days. Rats were sacrificed by decapitation; cerebellar vermis was dissected; and AM, CRLR, RAMP1, RAMP2, and RAMP3 expression was quantified by Western blot analysis. CAT, SOD, and GPx activity was determined spectrophotometrically and blood pressure by non-invasive plethysmography. We demonstrate that AM and RAMP2 expression was lower in cerebellum of SHR rats, while CRLR, RAMP1, and RAMP3 expression was higher than those of WKY rats. AM reduced cerebellar CAT, SOD, GPx activities, and TBARS production in WKY rats, but not in SHR rats. Valsartan reduced blood pressure and reversed the altered expression of AM and its receptors components, as well the loss of AM capacity to reduce antioxidant enzyme activity and TBARS production in SHR rats. These findings demonstrate that valsartan is able to reverse the dysregulation of cerebellar adrenomedullinergic system; and they suggest that altered AM system in the cerebellum could represent the primary abnormality leading to hypertension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, R.; Dawson, C.; Jao, S.
2016-08-05
Three problems with the eIPMs were corrected during the 2015 summer shutdown. These involved ac coupling and 'negative profiles', detector 'dead zone' created by biasing, and gain control on ramp. With respect to Run 16, problems dealt with included gain depletion on horizontal MCP and rf pickup on profile signals; it was found that the MCP was severely damaged over part of the aperture. Various corrective measures were applied. Some results of these measured obtained during Run 16 are shown. At the end of Run 16 there was a three-day beam run to study polarized proton beams in the AGS.more » Attempts to minimize beam injection errors which increase emittance by using the eIPMs to measure the contribution of injection mismatch to the AGS output beam emittance are recounted. .« less
NASA Technical Reports Server (NTRS)
Treybig, J. H.
1975-01-01
Thermal and equilibrium glide boundaries were used to analyze and/or design shuttle orbiter entry trajectories. Plots are presented of orbiter thermal and equilibrium glide boundaries in the drag/mass-relative velocity dynamic pressure-relative velocity, and altitude-relative velocity planes for an orbiter having a 32,000 pound payload and a 67.5% center of gravity location. These boundaries were defined for control points 1 through 4 of the shuttle orbiter for 40 deg-30 deg and 38 deg-28 deg ramped angle of attack entry profiles and 40 deg, 38 deg, 35 deg, 30 deg, 28 deg, and 25 deg constant angle of attack entry profiles each at 20 deg, 15 deg, and 10 deg constant body flap settings.
Sterol Profile for Natural Juices Authentification by GC-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culea, M.
A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15mx0.25mm, 0.25{mu}m film thickness, in a temperature program from 50 deg. C for 1 min, then ramped at 15 deg. C/min to 300 deg. C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit inmore » compounded beverages and for detecting of adulteration of fruit juices.« less
Twin Cities ramp meter evaluation : executive summary
DOT National Transportation Integrated Search
2001-02-01
This report details the results of a study on the traffic flow and safety impacts of ramp metering. The study served two important public purposes. 1. It thoroughly documented the benefits resulting from ramp metering to traffic operations and relate...
Developing an area-wide system for coordinated ramp meter control.
DOT National Transportation Integrated Search
2008-12-01
Ramp metering has been broadly accepted and deployed as an effective countermeasure : against both recurrent and non-recurrent congestion on freeways. However, many current ramp : metering algorithms tend to improve only freeway travels using local d...
Facility No. S362, view across the ramp U.S. Naval ...
Facility No. S362, view across the ramp - U.S. Naval Base, Pearl Harbor, Seaplane Ramps - World War II Type, Southwest and west shore of Ford Island, near Wasp Boulevard, Pearl City, Honolulu County, HI
Congestion-Responsive On-Ramp Metering : Before and After Studies - Phase 1
DOT National Transportation Integrated Search
2016-07-06
The objective of this project was to develop recommendations toward a statewide policy of congestion responsive freeway ramp metering operation. The research is performed in two phases. In phase 1, alternative ramp metering activation strategies were...
Critical quench dynamics in confined systems.
Collura, Mario; Karevski, Dragi
2010-05-21
We analyze the coherent quantum evolution of a many-particle system after slowly sweeping a power-law confining potential. The amplitude of the confining potential is varied in time along a power-law ramp such that the many-particle system finally reaches or crosses a critical point. Under this protocol we derive general scaling laws for the density of excitations created during the nonadiabatic sweep of the confining potential. It is found that the mean excitation density follows an algebraic law as a function of the sweeping rate with an exponent that depends on the space-time properties of the potential. We confirm our scaling laws by first order adiabatic calculation and exact results on the Ising quantum chain with a varying transverse field.
Barbero, Marco; Falla, Deborah; Mafodda, Luca; Cescon, Corrado; Gatti, Roberto
2016-12-01
To apply topographical mapping of the electromyography (EMG) amplitude recorded from the upper trapezius muscle to evaluate the distribution of activity and the location of peak activity during a shoulder elevation task in participants with and without myofascial pain and myofascial trigger points (MTrP) and compare this location with the site of the MTrP. Thirteen participants with myofascial pain and MTrP in the upper trapezius muscle and 12 asymptomatic individuals participated. High-density surface EMG was recorded from the upper trapezius muscle using a matrix of 64 surface electrodes aligned with an anatomic landmark system (ALS). Each participant performed a shoulder elevation task consisting of a series of 30 s ramped contractions to 15% or 60% of their maximal voluntary contraction (MVC) force. Topographical maps of the EMG average rectified value were computed and the peak EMG amplitude during the ramped contractions was identified and its location determined with respect to the ALS. The location of the MTrP was also determined relative to the ALS and Spearman correlation coefficients were used to examine the relationship between MTrP and peak EMG amplitude location. The location of the peak EMG amplitude was significantly (P<0.05) different between groups (participants with pain/MTrP: -0.32±1.2 cm at 15% MVC and -0.35±0.9 cm at 60% MVC relative to the ALS; asymptomatic participants: 1.0±1.3 cm at 15% MVC and 1.3±1.1 cm relative to the ALS). However, no correlation was observed between the position of the MTrP and peak EMG amplitude during the ramped contractions at either force level (15%: rs=0.039, P=0.9; 60%: rs=-0.087, P=0.778). People with myofascial pain and MTrP displayed a caudal shift of the distribution of upper trapezius muscle activity compared with asymptomatic individuals during a submaximal shoulder elevation task. For the first time, we show that the location of peak muscle activity is not associated with the location of the MTrP.
Assessing the Effectiveness of Ramp-Up During Sonar Operations Using Exposure Models.
von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A
2016-01-01
Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures.
NASA Astrophysics Data System (ADS)
Gallego, C.; Costa, A.; Cuerva, A.
2010-09-01
Since nowadays wind energy can't be neither scheduled nor large-scale storaged, wind power forecasting has been useful to minimize the impact of wind fluctuations. In particular, short-term forecasting (characterised by prediction horizons from minutes to a few days) is currently required by energy producers (in a daily electricity market context) and the TSO's (in order to keep the stability/balance of an electrical system). Within the short-term background, time-series based models (i.e., statistical models) have shown a better performance than NWP models for horizons up to few hours. These models try to learn and replicate the dynamic shown by the time series of a certain variable. When considering the power output of wind farms, ramp events are usually observed, being characterized by a large positive gradient in the time series (ramp-up) or negative (ramp-down) during relatively short time periods (few hours). Ramp events may be motivated by many different causes, involving generally several spatial scales, since the large scale (fronts, low pressure systems) up to the local scale (wind turbine shut-down due to high wind speed, yaw misalignment due to fast changes of wind direction). Hence, the output power may show unexpected dynamics during ramp events depending on the underlying processes; consequently, traditional statistical models considering only one dynamic for the hole power time series may be inappropriate. This work proposes a Regime Switching (RS) model based on Artificial Neural Nets (ANN). The RS-ANN model gathers as many ANN's as different dynamics considered (called regimes); a certain ANN is selected so as to predict the output power, depending on the current regime. The current regime is on-line updated based on a gradient criteria, regarding the past two values of the output power. 3 Regimes are established, concerning ramp events: ramp-up, ramp-down and no-ramp regime. In order to assess the skillness of the proposed RS-ANN model, a single-ANN model (without regime classification) is adopted as a reference model. Both models are evaluated in terms of Improvement over Persistence on the Mean Square Error basis (IoP%) when predicting horizons form 1 time-step to 5. The case of a wind farm located in the complex terrain of Alaiz (north of Spain) has been considered. Three years of available power output data with a hourly resolution have been employed: two years for training and validation of the model and the last year for assessing the accuracy. Results showed that the RS-ANN overcame the single-ANN model for one step-ahead forecasts: the overall IoP% was up to 8.66% for the RS-ANN model (depending on the gradient criterion selected to consider the ramp regime triggered) and 6.16% for the single-ANN. However, both models showed similar accuracy for larger horizons. A locally-weighted evaluation during ramp events for one-step ahead was also performed. It was found that the IoP% during ramps-up increased from 17.60% (case of single-ANN) to 22.25% (case of RS-ANN); however, during the ramps-down events this improvement increased from 18.55% to 19.55%. Three main conclusions are derived from this case study: It highlights the importance of considering statistical models capable of differentiate several regimes showed by the output power time series in order to improve the forecasting during extreme events like ramps. On-line regime classification based on available power output data didn't seem to contribute to improve forecasts for horizons beyond one-step ahead. Tacking into account other explanatory variables (local wind measurements, NWP outputs) could lead to a better understanding of ramp events, improving the regime assessment also for further horizons. The RS-ANN model slightly overcame the single-ANN during ramp-down events. If further research reinforce this effect, special attention should be addressed to understand the underlying processes during ramp-down events.
RAMP2 Influences Glucagon Receptor Pharmacology via Trafficking and Signaling.
Cegla, Jaimini; Jones, Ben J; Gardiner, James V; Hodson, David J; Marjot, Thomas; McGlone, Emma R; Tan, Tricia M; Bloom, Stephen R
2017-08-01
Endogenous satiety hormones provide an attractive target for obesity drugs. Glucagon causes weight loss by reducing food intake and increasing energy expenditure. To further understand the cellular mechanisms by which glucagon and related ligands activate the glucagon receptor (GCGR), we investigated the interaction of the GCGR with receptor activity modifying protein (RAMP)2, a member of the family of receptor activity modifying proteins. We used a combination of competition binding experiments, cell surface enzyme-linked immunosorbent assay, functional assays assessing the Gαs and Gαq pathways and β-arrestin recruitment, and small interfering RNA knockdown to examine the effect of RAMP2 on the GCGR. Ligands tested were glucagon; glucagonlike peptide-1 (GLP-1); oxyntomodulin; and analog G(X), a GLP-1/glucagon coagonist developed in-house. Confocal microscopy was used to assess whether RAMP2 affects the subcellular distribution of GCGR. Here we demonstrate that coexpression of RAMP2 and the GCGR results in reduced cell surface expression of the GCGR. This was confirmed by confocal microscopy, which demonstrated that RAMP2 colocalizes with the GCGR and causes significant GCGR cellular redistribution. Furthermore, the presence of RAMP2 influences signaling through the Gαs and Gαq pathways, as well as recruitment of β-arrestin. This work suggests that RAMP2 may modify the agonist activity and trafficking of the GCGR, with potential relevance to production of new peptide analogs with selective agonist activities.
Laser Wakefield Acceleration Experiments Using HERCULES Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuoka, T.; McGuffey, C.; Dollar, F.
2009-07-25
Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing laser power and plasma electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 6.1x10{sup 19} W/cm{sup 2} at laser power of 80 TW to be delivered to the gas-jet using F/10 focusing optics. We found that electron beam charge was increased significantly with an increase of laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. We also studied the influence of laser focusing conditions by changingmore » the f-number of the optics to F/15 and found an increase in density threshold for electron production compared to the F/10 configuration. The analysis of different phenomena such as betatron motion of electrons, side scattering of the laser pulse for different focusing conditions, the influence of plasma density down ramp on LWFA are shown.« less
Influence of defects on the thermal conductivity of compressed LiF
Jones, R. E.; Ward, D. K.
2018-02-08
We report defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a largemore » sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. Also, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.« less
Influence of defects on the thermal conductivity of compressed LiF
NASA Astrophysics Data System (ADS)
Jones, R. E.; Ward, D. K.
2018-02-01
Defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a large sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. In addition, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.
Influence of defects on the thermal conductivity of compressed LiF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R. E.; Ward, D. K.
We report defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a largemore » sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. Also, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consiglio, S.; Dey, S.; Yu, K.
2016-01-01
Ultrathin TaN and Ta 1-xAl xN y films with x = 0.21 to 0.88 were deposited by atomic layer deposition (ALD) and evaluated for Cu diffusion barrier effectiveness compared to physical vapor deposition (PVD) grown TaN. Cu diffusion barrier effectiveness was investigated using in-situ ramp anneal synchrotron X-ray diffraction (XRD) on Cu/1.8 nm barrier/Si stacks. A Kissinger-like analysis was used to assess the kinetics of Cu 3Si formation and determine the effective activation energy (E a) for Cu silicidation. Compared to the stack with a PVD TaN barrier, the stacks with the ALD films exhibited a higher crystallization temperature (Tmore » c) for Cu silicidation. The Ea values of Cu 3Si formation for stacks with the ALD films were close to the reported value for grain boundary diffusion of Cu whereas the Ea of Cu 3Si formation for the stack with PVD TaN is closer to the reported value for lattice diffusion. For 3 nm films, grazing incidence in-plane XRD showed evidence of nanocrystallites in an amorphous matrix with broad peaks corresponding to high density cubic phase for the ALD grown films and lower density hexagonal phase for the PVD grown film further elucidating the difference in initial failure mechanisms due to differences in barrier crystallinity and associated phase.« less
Twin Cities ramp meter evaluation : evaluation plan
DOT National Transportation Integrated Search
2000-09-25
The Minnesota Department of Transportation (Mn/DOT) uses ramp meters to manage freeway access on approximately 210 miles of freeways in the Twin Cities metropolitan area. Mn/DOT first tested ramp meters in 1969 as a method to optimize freeway safety ...
16. Built c. 1936, this ramp from the first to ...
16. Built c. 1936, this ramp from the first to the second floor along the northwestern side of Pier G (shown at the first floor) was called 'ramp C.' - Lehigh Valley Railroad, Pier G, Jersey City, Hudson County, NJ
NASA Astrophysics Data System (ADS)
Young, C. S.; Dawers, N. H.
2017-12-01
Fault growth is often accomplished by linking a series of en echelon faults through relay ramps. A relay ramp is the area between two overlapping fault segments that tilts and deforms as the faults accrue displacement. The structural evolution of breached normal fault relay ramps remains poorly understood because of the difficulty in defining how slip is partitioned between the most basinward fault (known as the outboard fault), the overlapping fault (inboard fault), and any ramp-breaching linking faults. Along the Warner Valley fault in south-central Oregon, two relay ramps displaying different fault linkage geometries are lined with a series of paleo-lacustrine shorelines that record a Pleistocene paleolake regression. The inner edges of these shorelines act as paleo-horizontal datums that have been deformed by fault activity, and are used to measure relative slip variations across the relay ramp bounding faults. By measuring the elevation changes using a 10m digital elevation model (DEM) of shoreline inner edges, we estimate the amount of slip partitioned between the inboard, outboard and ramp-breaching linking faults. In order to attribute shoreline deformation to fault activity we identify shoreline elevation anomalies, where deformation exceeds a ± 3.34 m window, which encompass our conservative estimates of natural variability in the shoreline geomorphology and the error associated with the data collection. Fault activity along the main length of the fault for each ramp-breaching style is concentrated near the intersection of the linking fault and the outboard portion of the main fault segment. However, fault activity along the outboard fault tip varies according to breaching style. At a footwall breach the entire outboard fault tip appears relatively inactive. At a mid-ramp breach the outboard fault tip remains relatively active because of the proximity of the linking fault to this fault tip.
Weeks, Claire A.; Norman, Kate I.; Nicol, Christine J.
2017-01-01
Background Laying hens are often kept in barn or free-range systems where they must negotiate level changes in the house to access resources. However, collisions and resultant keel fractures are commonplace. Producers sometimes add ramps to make raised areas more accessible but designs vary and very little research has investigated bird preference or behaviour when using different ramp designs, or the effect of ramp design on falls and collisions. Methods Two ramp designs were studied in an experimental setting—a ramp made of plastic poultry slats (grid ramp, GR) and a ramp made of wooden rungs (ladder ramp, LR). Sixty-four young female hens were trained to move to a food reward and this was used to test their behavioural responses when first negotiating the two different ramps during individual tests. Both upward and downward transitions were studied. Ramp preference was also tested using a room that replicated a commercial single-tier system with both types of ramp available. Birds were placed in this room in groups of 16 for three days and their use of the ramps studied. Results A greater percentage of birds successfully completed (reached the reward bowl) on the GR than the LR during both upward (58% vs 37%) and downward (83% vs 73%) transitions, and a smaller percentage of birds made zero attempts to use the GR than the LR (upwards: 13% vs 56%, downwards: 8% vs 26%). When making a downward transition, more hesitation behaviours were seen (head orientations, stepping on the spot, moving away) for the LR. However, more head orientations were seen for the GR during the upward transition. Birds were more likely to abort attempts (an attempt began when a bird placed both feet on the ramp) to move up the GR than the LR. Birds took longer to negotiate the LR than the GR in both directions, and more pauses were seen during a successful upward transition on the LR. Birds were more likely to move down the GR by walking/running whereas birds tended to jump over the entire LR. More collisions with the food reward bowl were seen for the LR. In the group tests, birds preferred to use the GR, with more transitions seen at all timepoints. However, in these tests, birds preferred to rest on the LR with greater numbers of birds counted on this type of ramp during scan sampling at all timepoints. Discussion Behavioural results suggest that the GR was easier for the birds to use than the LR, particularly on the downward transition. The GR was also less likely to result in collisions. However, the upward transition may be more difficult on the GR for some birds, potentially because of the inability to pause on a level surface during the transition. The results suggest that the GR was preferred by pullets for moving between a raised area and the ground but the LR was preferred for resting. PMID:29177116
Real-time feedback control of the plasma density profile on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Mlynek, A.; Reich, M.; Giannone, L.; Treutterer, W.; Behler, K.; Blank, H.; Buhler, A.; Cole, R.; Eixenberger, H.; Fischer, R.; Lohs, A.; Lüddecke, K.; Merkel, R.; Neu, G.; Ryter, F.; Zasche, D.; ASDEX Upgrade Team
2011-04-01
The spatial distribution of density in a fusion experiment is of significant importance as it enters in numerous analyses and contributes to the fusion performance. The reconstruction of the density profile is therefore commonly done in offline data analysis. In this paper, we present an algorithm which allows for density profile reconstruction from the data of the submillimetre interferometer and the magnetic equilibrium in real-time. We compare the obtained results to the profiles yielded by a numerically more complex offline algorithm. Furthermore, we present recent ASDEX Upgrade experiments in which we used the real-time density profile for active feedback control of the shape of the density profile.
Guidelines for Evaluation of Ramp Signaling Deployments in a Real-Time Operations Environment
DOT National Transportation Integrated Search
2017-12-01
State agencies have developed warrants and guidelines for the identification of on-ramps for metering. However, these warrants only consider recurrent traffic conditions in the vicinity of each on-ramp without considering the need to meter multiple r...
Ramp metering : a review of the literature.
DOT National Transportation Integrated Search
1998-01-01
Ramp metering is an effective, viable, and practical strategy used to manage freeway traffic. It is a proven freeway management technique as various forms of ramp control have been in place since the 1960s in the Chicago, Detroit, and Los Angeles are...
Aerial view looking northwest showing location of seaplane ramps 2,3, ...
Aerial view looking northwest showing location of seaplane ramps 2,3, and 4. Ramps lead from buildings 1 and 2, bayside left center, into San Diego Bay. - Naval Air Station North Island, North Island, San Diego, San Diego County, CA
Measuring the effectiveness of ramp metering strategies on I-12 : [tech summary].
DOT National Transportation Integrated Search
2013-10-01
In recent years, more emphasis has been placed on Active Traffi c Management (ATM) strategies such as speed harmonization, managed lanes, and : ramp metering. Ramp metering is one of the successful active traffi c control strategies, controlling the ...
Aeroelastic Response and Protection of Space Shuttle External Tank Cable Trays
NASA Technical Reports Server (NTRS)
Edwards, John W.; Keller, Donald F.; Schuster, David M.; Piatak, David J.; Rausch, Russ D.; Bartels, Robert E.; Ivanco, Thomas G.; Cole, Stanley R.; Spain, Charles V.
2005-01-01
Sections of the Space Shuttle External Tank Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) cable trays are shielded from potentially damaging airloads with foam Protuberance Aerodynamic Load (PAL) Ramps. Flight standard design LO2 and LH2 cable tray sections were tested with and without PAL Ramp models in the United States Air Force Arnold Engineering Development Center s (AEDC) 16T transonic wind tunnel to obtain experimental data on the aeroelastic stability and response characteristics of the trays and as part of the larger effort to determine whether the PAL ramps can be safely modified or removed. Computational Fluid Dynamic simulations of the full-stack shuttle launch configuration were used to investigate the flow characeristics around and under the cable trays without the protective PAL ramps and to define maximum crossflow Mach numbers and dynamic pressures experienced during launch. These crossflow conditions were used to establish wind tunnel test conditions which also included conservative margins. For all of the conditions and configurations tested, no aeroelastic instabilities or unacceptable dynamic response levels were encountered and no visible structural damage was experienced by any of the tested cable tray sections. Based upon this aeroelastic characterization test, three potentially acceptable alternatives are available for the LO2 cable tray PAL Ramps: Mini-Ramps, Tray Fences, or No Ramps. All configurations were tested to maximum conditions, except the LH2 trays at -15 deg. crossflow angle. This exception is the only caveat preventing the proposal of acceptable alternative configurations for the LH2 trays as well. Structural assessment of all tray loads and tray response measurements from launches following the Shuttle Return To Flight with the existing PAL Ramps will determine the acceptability of these PAL Ramp alternatives.
Optimization design of energy deposition on single expansion ramp nozzle
NASA Astrophysics Data System (ADS)
Ju, Shengjun; Yan, Chao; Wang, Xiaoyong; Qin, Yupei; Ye, Zhifei
2017-11-01
Optimization design has been widely used in the aerodynamic design process of scramjets. The single expansion ramp nozzle is an important component for scramjets to produces most of thrust force. A new concept of increasing the aerodynamics of the scramjet nozzle with energy deposition is presented. The essence of the method is to create a heated region in the inner flow field of the scramjet nozzle. In the current study, the two-dimensional coupled implicit compressible Reynolds Averaged Navier-Stokes and Menter's shear stress transport turbulence model have been applied to numerically simulate the flow fields of the single expansion ramp nozzle with and without energy deposition. The numerical results show that the proposal of energy deposition can be an effective method to increase force characteristics of the scramjet nozzle, the thrust coefficient CT increase by 6.94% and lift coefficient CN decrease by 26.89%. Further, the non-dominated sorting genetic algorithm coupled with the Radial Basis Function neural network surrogate model has been employed to determine optimum location and density of the energy deposition. The thrust coefficient CT and lift coefficient CN are selected as objective functions, and the sampling points are obtained numerically by using a Latin hypercube design method. The optimized thrust coefficient CT further increase by 1.94%, meanwhile, the optimized lift coefficient CN further decrease by 15.02% respectively. At the same time, the optimized performances are in good and reasonable agreement with the numerical predictions. The findings suggest that scramjet nozzle design and performance can benefit from the application of energy deposition.
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.; Howard, Alan D.
2004-01-01
Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently formed around the time of the Noachian-Hesperian boundary. We infer that these fans formed during an episode of enhanced precipitation (probably snow) and runoff, which exhibited both sudden onset and termination.
Measuring the effectiveness of ramp metering strategies on I-12.
DOT National Transportation Integrated Search
2013-10-01
Ramp metering is one of the successful traffic control strategies in the area of active traffic and demand management. This study evaluates the : effectiveness of a fixed time ramp metering control on the day to day operation of traffic over two segm...
Application of multi-objective nonlinear optimization technique for coordinated ramp-metering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haj Salem, Habib; Farhi, Nadir; Lebacque, Jean Patrick, E-mail: abib.haj-salem@ifsttar.fr, E-mail: nadir.frahi@ifsttar.fr, E-mail: jean-patrick.lebacque@ifsttar.fr
2015-03-10
This paper aims at developing a multi-objective nonlinear optimization algorithm applied to coordinated motorway ramp metering. The multi-objective function includes two components: traffic and safety. Off-line simulation studies were performed on A4 France Motorway including 4 on-ramps.
Modelling decremental ramps using 2- and 3-parameter "critical power" models.
Morton, R Hugh; Billat, Veronique
2013-01-01
The "Critical Power" (CP) model of human bioenergetics provides a valuable way to identify both limits of tolerance to exercise and mechanisms that underpin that tolerance. It applies principally to cycling-based exercise, but with suitable adjustments for analogous units it can be applied to other exercise modalities; in particular to incremental ramp exercise. It has not yet been applied to decremental ramps which put heavy early demand on the anaerobic energy supply system. This paper details cycling-based bioenergetics of decremental ramps using 2- and 3-parameter CP models. It derives equations that, for an individual of known CP model parameters, define those combinations of starting intensity and decremental gradient which will or will not lead to exhaustion before ramping to zero; and equations that predict time to exhaustion on those decremental ramps that will. These are further detailed with suitably chosen numerical and graphical illustrations. These equations can be used for parameter estimation from collected data, or to make predictions when parameters are known.
Overview of ASDEX Upgrade results
NASA Astrophysics Data System (ADS)
Stroth, U.; Adamek, J.; Aho-Mantila, L.; Äkäslompolo, S.; Amdor, C.; Angioni, C.; Balden, M.; Bardin, S.; Barrera Orte, L.; Behler, K.; Belonohy, E.; Bergmann, A.; Bernert, M.; Bilato, R.; Birkenmeier, G.; Bobkov, V.; Boom, J.; Bottereau, C.; Bottino, A.; Braun, F.; Brezinsek, S.; Brochard, T.; Brüdgam, M.; Buhler, A.; Burckhart, A.; Casson, F. J.; Chankin, A.; Chapman, I.; Clairet, F.; Classen, I. G. J.; Coenen, J. W.; Conway, G. D.; Coster, D. P.; Curran, D.; da Silva, F.; de Marné, P.; D'Inca, R.; Douai, D.; Drube, R.; Dunne, M.; Dux, R.; Eich, T.; Eixenberger, H.; Endstrasser, N.; Engelhardt, K.; Esposito, B.; Fable, E.; Fischer, R.; Fünfgelder, H.; Fuchs, J. C.; Gál, K.; García Muñoz, M.; Geiger, B.; Giannone, L.; Görler, T.; da Graca, S.; Greuner, H.; Gruber, O.; Gude, A.; Guimarais, L.; Günter, S.; Haas, G.; Hakola, A. H.; Hangan, D.; Happel, T.; Härtl, T.; Hauff, T.; Heinemann, B.; Herrmann, A.; Hobirk, J.; Höhnle, H.; Hölzl, M.; Hopf, C.; Houben, A.; Igochine, V.; Ionita, C.; Janzer, A.; Jenko, F.; Kantor, M.; Käsemann, C.-P.; Kallenbach, A.; Kálvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Kasparek, W.; Kaufmann, M.; Kirk, A.; Klingshirn, H.-J.; Kocan, M.; Kocsis, G.; Konz, C.; Koslowski, R.; Krieger, K.; Kubic, M.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lauber, P.; Laux, M.; Lazaros, A.; Leipold, F.; Leuterer, F.; Lindig, S.; Lisgo, S.; Lohs, A.; Lunt, T.; Maier, H.; Makkonen, T.; Mank, K.; Manso, M.-E.; Maraschek, M.; Mayer, M.; McCarthy, P. J.; McDermott, R.; Mehlmann, F.; Meister, H.; Menchero, L.; Meo, F.; Merkel, P.; Merkel, R.; Mertens, V.; Merz, F.; Mlynek, A.; Monaco, F.; Müller, S.; Müller, H. W.; Münich, M.; Neu, G.; Neu, R.; Neuwirth, D.; Nocente, M.; Nold, B.; Noterdaeme, J.-M.; Pautasso, G.; Pereverzev, G.; Plöckl, B.; Podoba, Y.; Pompon, F.; Poli, E.; Polozhiy, K.; Potzel, S.; Püschel, M. J.; Pütterich, T.; Rathgeber, S. K.; Raupp, G.; Reich, M.; Reimold, F.; Ribeiro, T.; Riedl, R.; Rohde, V.; Rooij, G. v.; Roth, J.; Rott, M.; Ryter, F.; Salewski, M.; Santos, J.; Sauter, P.; Scarabosio, A.; Schall, G.; Schmid, K.; Schneider, P. A.; Schneider, W.; Schrittwieser, R.; Schubert, M.; Schweinzer, J.; Scott, B.; Sempf, M.; Sertoli, M.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Sommer, F.; Stäbler, A.; Stober, J.; Streibl, B.; Strumberger, E.; Sugiyama, K.; Suttrop, W.; Tala, T.; Tardini, G.; Teschke, M.; Tichmann, C.; Told, D.; Treutterer, W.; Tsalas, M.; Van Zeeland, M. A.; Varela, P.; Veres, G.; Vicente, J.; Vianello, N.; Vierle, T.; Viezzer, E.; Viola, B.; Vorpahl, C.; Wachowski, M.; Wagner, D.; Wauters, T.; Weller, A.; Wenninger, R.; Wieland, B.; Willensdorfer, M.; Wischmeier, M.; Wolfrum, E.; Würsching, E.; Yu, Q.; Zammuto, I.; Zasche, D.; Zehetbauer, T.; Zhang, Y.; Zilker, M.; Zohm, H.
2013-10-01
The medium size divertor tokamak ASDEX Upgrade (major and minor radii 1.65 m and 0.5 m, respectively, magnetic-field strength 2.5 T) possesses flexible shaping and versatile heating and current drive systems. Recently the technical capabilities were extended by increasing the electron cyclotron resonance heating (ECRH) power, by installing 2 × 8 internal magnetic perturbation coils, and by improving the ion cyclotron range of frequency compatibility with the tungsten wall. With the perturbation coils, reliable suppression of large type-I edge localized modes (ELMs) could be demonstrated in a wide operational window, which opens up above a critical plasma pedestal density. The pellet fuelling efficiency was observed to increase which gives access to H-mode discharges with peaked density profiles at line densities clearly exceeding the empirical Greenwald limit. Owing to the increased ECRH power of 4 MW, H-mode discharges could be studied in regimes with dominant electron heating and low plasma rotation velocities, i.e. under conditions particularly relevant for ITER. The ion-pressure gradient and the neoclassical radial electric field emerge as key parameters for the transition. Using the total simultaneously available heating power of 23 MW, high performance discharges have been carried out where feed-back controlled radiative cooling in the core and the divertor allowed the divertor peak power loads to be maintained below 5 MW m-2. Under attached divertor conditions, a multi-device scaling expression for the power-decay length was obtained which is independent of major radius and decreases with magnetic field resulting in a decay length of 1 mm for ITER. At higher densities and under partially detached conditions, however, a broadening of the decay length is observed. In discharges with density ramps up to the density limit, the divertor plasma shows a complex behaviour with a localized high-density region in the inner divertor before the outer divertor detaches. Turbulent transport is studied in the core and the scrape-off layer (SOL). Discharges over a wide parameter range exhibit a close link between core momentum and density transport. Consistent with gyro-kinetic calculations, the density gradient at half plasma radius determines the momentum transport through residual stress and thus the central toroidal rotation. In the SOL a close comparison of probe data with a gyro-fluid code showed excellent agreement and points to the dominance of drift waves. Intermittent structures from ELMs and from turbulence are shown to have high ion temperatures even at large distances outside the separatrix.
Advanced Tokamak Investigations in Full-Tungsten ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Bock, Alexander
2017-10-01
The tailoring of the q-profile is the foundation of Advanced Tokamak (AT) scenarios. It depends on low collisionality ν* which permits efficient external current drive and high amounts of intrinsic bootstrap current. At constant pressure, lowering ne leads to a strong decrease of ν* Te - 3 . After the conversion of ASDEX Upgrade to fully W-coated plasma facing components, radiative collapses of H-modes with little gas puffing due to central W accumulation could only be avoided partially with central ECRH. Also, operation at high β with low ne presented a challenge for the divertor. Together, these issues prevented meaningful AT investigations. To overcome this, several major feats have been accomplished: Access to lower ne was achieved through a better understanding of the changes to recycling and pumping, and optionally the density pump-out phenomenon due to RMPs. ECRH capacities were substantially expanded for both heating and current drive, and a solid W divertor capable of withstanding the power loads was installed. A major overhaul improved the reliability of the current profile diagnostics. This contribution will detail the efforts needed to re-access AT scenarios and report on the development of candidate steady state scenarios for ITER/DEMO. Starting from the `hybrid scenario,' a non-inductive scenario (q95 = 5.3 , βN = 2.7 , fbs > 40 %) was developed. It can be sustained for many τE, limited only by technical boundaries, and is also independent of the ramp-up scenario. The β-limit is set by ideal modes that convert into NTMs. The Ti-profiles are steeper than predicted by TGLF, but nonlinear electromagnetic gyro-kinetic analyses with GENE including fast particle effects matched the experimental heat fluxes. We will also report on scenarios at higher q95, similar to the EAST/DIII-D steady state scenario. The extrapolation of these scenarios to ITER/DEMO will be discussed.
Understanding the stability of the low torque ITER Baseline Scenario in DIII-D
NASA Astrophysics Data System (ADS)
Turco, Francesca
2017-10-01
Analysis of the evolving current density (J), pedestal and rotation profiles in a database of 200 ITER Baseline Scenario discharges in the DIII-D tokamak sheds light on the cause of the disruptive instability limiting both high and low torque operation of these plasmas. The m =2/n =1 tearing modes, occurring after several pressure-relaxation times, are related to the shape of the current profile in the outer region of the plasma. The q =2 surface is located just inside the current pedestal, near a minimum in J. This well in J deepens at constant betaN and at lower rotation, causing the equilibrium to evolve towards a classically unstable state. Lack of core-edge differential rotation likely biases the marginal point towards instability during the secular trend in J. New results from the 2017 experimental campaign establish the first reproducible, stable operation at T =0 Nm for this scenario. A new ramp-up recipe with delayed heating keeps the discharges stable without the need for ECCD stabilization. The J profile shape in the new shots is consistent with an expansion of the previous ``shallow well'' stable operational space. Realtime Active MHD Spectroscopy (AMS) has been applied to IBS plasmas for the first time, and the plasma response measurements show that the AMS can help sense the approach to instability during the discharges. The AMS data shows the trend towards instability at low rotation, and MARS-K modelling partially reproduces the experimental trend if collisionality and resistivity are included. The modelling results are sensitive to the edge resistivity, and this can indicate that the AMS is measuring the changes in ideal (kink) stability, to which the tearing stability index delta' is correlated. Together these results constitute a crucial step to acquire physical understanding and sensing capability for the MHD stability in the Q =10 ITER scenario. Work supported by US DOE under DE-FC02-04ER54698 and DE-FG02-04ER54761.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenkranz, Joshua-Benedict; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias
Solar power generation, unlike conventional forms of electricity generation, has higher variability and uncertainty in its output because solar plant output is strongly impacted by weather. As the penetration rate of solar capacity increases, grid operators are increasingly concerned about accommodating the increased variability and uncertainty that solar power provides. This paper illustrates the impacts of increasing solar power penetration on the ramping of conventional electricity generators by simulating the operation of the Independent System Operator -- New England power system. A production cost model was used to simulate the power system under five different scenarios, one without solar powermore » and four with increasing solar power penetrations up to 18%, in terms of annual energy. The impact of solar power is analyzed on six different temporal intervals, including hourly and multi-hourly (2- to 6-hour) ramping. The results show how the integration of solar power increases the 1- to 6-hour ramping events of the net load (electric load minus solar power). The study also analyzes the impact of solar power on the distribution of multi-hourly ramping events of fossil-fueled generators and shows increasing 1- to 6-hour ramping events for all different generators. Generators with higher ramp rates such as gas and oil turbine and internal combustion engine generators increased their ramping events by 200% to 280%. For other generator types--including gas combined-cycle generators, coal steam turbine generators, and gas and oil steam turbine generators--more and higher ramping events occurred as well for higher solar power penetration levels.« less
Siskiyou summit negative grade arrester bed for runaway trucks : final report.
DOT National Transportation Integrated Search
1986-01-01
Most escape ramps are designed to use gravity as the primary deceleration mechanism. These ramps provide an exit from the roadway to an adjacent hillside, ascending at grades of up to 40%. Loose gravel is often used on these ramps which, while aiding...
DOT National Transportation Integrated Search
2011-11-15
Ramp signaling is a relatively low-cost traffic management strategy that aims to improve the flow of : traffic by controlling the rate at which vehicles enter the freeway. While studies have shown that ramp : signaling helps to alleviate traffic cong...
Structure function analysis of two-scale Scalar Ramps. Part I: Theory and Modeling
USDA-ARS?s Scientific Manuscript database
Structure functions are used to study the dissipation and inertial range scales of turbulent energy, to parameterize remote turbulence measurements, and to characterize ramp features in the turbulent field. The ramp features are associated with turbulent coherent structures, which dominate energy an...
Chapter 8: Plasma operation and control
NASA Astrophysics Data System (ADS)
ITER Physics Expert Group on Disruptions, Control, Plasma, and MHD; ITER Physics Expert Group on Energetic Particles, Heating, Current and Drive; ITER Physics Expert Group on Diagnostics; ITER Physics Basis Editors
1999-12-01
Wall conditioning of fusion devices involves removal of desorbable hydrogen isotopes and impurities from interior device surfaces to permit reliable plasma operation. Techniques used in present devices include baking, metal film gettering, deposition of thin films of low-Z material, pulse discharge cleaning, glow discharge cleaning, radio frequency discharge cleaning, and in situ limiter and divertor pumping. Although wall conditioning techniques have become increasingly sophisticated, a reactor scale facility will involve significant new challenges, including the development of techniques applicable in the presence of a magnetic field and of methods for efficient removal of tritium incorporated into co-deposited layers on plasma facing components and their support structures. The current status of various approaches is reviewed, and the implications for reactor scale devices are summarized. Creation and magnetic control of shaped and vertically unstable elongated plasmas have been mastered in many present tokamaks. The physics of equilibrium control for reactor scale plasmas will rely on the same principles, but will face additional challenges, exemplified by the ITER/FDR design. The absolute positioning of outermost flux surface and divertor strike points will have to be precise and reliable in view of the high heat fluxes at the separatrix. Long pulses will require minimal control actions, to reduce accumulation of AC losses in superconducting PF and TF coils. To this end, more complex feedback controllers are envisaged, and the experimental validation of the plasma equilibrium response models on which such controllers are designed is encouraging. Present simulation codes provide an adequate platform on which equilibrium response techniques can be validated. Burning plasmas require kinetic control in addition to traditional magnetic shape and position control. Kinetic control refers to measures controlling density, rotation and temperature in the plasma core as well as in plasma periphery and divertor. The planned diagnostics (Chapter 7) serve as sensors for kinetic control, while gas and pellet fuelling, auxiliary power and angular momentum input, impurity injection, and non-inductive current drive constitute the control actuators. For example, in an ignited plasma, core density controls fusion power output. Kinetic control algorithms vary according to the plasma state, e.g. H- or L-mode. Generally, present facilities have demonstrated the kinetic control methods required for a reactor scale device. Plasma initiation - breakdown, burnthrough and initial current ramp - in reactor scale tokamaks will not involve physics differing from that found in present day devices. For ITER, the induced electric field in the chamber will be ~0.3V· m-1 - comparable to that required by breakdown theory but somewhat smaller than in present devices. Thus, a start-up 3MW electron cyclotron heating system will be employed to assure burnthrough. Simulations show that plasma current ramp up and termination in a reactor scale device can follow procedures developed to avoid disruption in present devices. In particular, simulations remain in the stable area of the li-q plane. For design purposes, the resistive V·s consumed during initiation is found, by experiments, to follow the Ejima expression, 0.45μ0 RIp. Advanced tokamak control has two distinct goals. First, control of density, auxiliary power, and inductive current ramping to attain reverse shear q profiles and internal transport barriers, which persist until dissipated by magnetic flux diffusion. Such internal transport barriers can lead to transient ignition. Second, combined use poloidal field shape control with non-inductive current drive and NBI angular momentum injection to create and control steady state, high bootstrap fraction, reverse shear discharges. Active n = 1 magnetic feedback and/or driven rotation will be required to suppress resistive wall modes for steady state plasmas that must operate in the wall stabilized regime for reactor levels of β >= 0.03.
Shock loading and release behavior of silicon nitride
NASA Astrophysics Data System (ADS)
Kawai, N.; Tsuru, T.; Hidaka, N.; Liu, X.; Mashimo, T.
2017-01-01
Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 and 34.5 GPa, respectively. Below the phase transition stress, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by rapid one. Above phase transition stress, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same shocked condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.
The sudden coalescene model of the boiling crisis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrica, P.M.; Clausse, A.
1995-09-01
A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement.
DOT National Transportation Integrated Search
2017-03-01
This research explored the second Strategic Highway Research Program (SHRP2) Naturalistic Driving Study (NDS) database for the potential to identify freeway entrance and exit ramps and teen drivers behavior while traveling those ramps. This is in ...
DOT National Transportation Integrated Search
2008-12-01
A System-Wide Adaptive Ramp Metering (SWARM) system has been implemented in the Portland, Oregon metropolitan area, replacing the previous pre-timed ramp-metering system that had been in operation since 1981. SWARM has been deployed on six major corr...
DOT National Transportation Integrated Search
2009-05-01
The Texas Department of Transportation (TxDOT) uses ramp control signals (also called ramp meters or : flow signals) to control the rate at which vehicles enter the freeway. This helps TxDOT (1) promote a more : consistent and uniform flow of traffic...
Portable and Lightweight Ramp Structure
2001-04-09
long side of which is in abutting relationship with the 12 short side of the end of the ramp. Fastener receivers are equi- 13 spaced in duplicate...The modular sections are conveniently prefabricated 18 1 and provided in kit form to the number of sections corresponding 2 to the desired ramp
USDA-ARS?s Scientific Manuscript database
Structure functions are used to study the dissipation and inertial range scales of turbulent energy, to parameterize remote turbulence measurements, and to characterize ramp features in the turbulent field. The ramp features are associated with turbulent coherent structures, which dominate energy a...
1997-07-06
NASA's Mars Pathfinder's rear rover ramp can be seen successfully unfurled in this image, taken at the end of Sol 2 by the Imager for Mars Pathfinder (IMP). This ramp was later used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. Areas of a lander petal and deflated airbag are visible at left. The image helped Pathfinder scientists determine that the rear ramp was the one to use for rover deployment. At upper right is the rock dubbed "Barnacle Bill," which Sojourner will later study. http://photojournal.jpl.nasa.gov/catalog/PIA00627
Wind Power Ramping Product for Increasing Power System Flexibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Mingjian; Zhang, Jie; Wu, Hongyu
With increasing penetrations of wind power, system operators are concerned about a potential lack of system flexibility and ramping capacity in real-time dispatch stages. In this paper, a modified dispatch formulation is proposed considering the wind power ramping product (WPRP). A swinging door algorithm (SDA) and dynamic programming are combined and used to detect WPRPs in the next scheduling periods. The detected WPRPs are included in the unit commitment (UC) formulation considering ramping capacity limits, active power limits, and flexible ramping requirements. The modified formulation is solved by mixed integer linear programming. Numerical simulations on a modified PJM 5-bus Systemmore » show the effectiveness of the model considering WPRP, which not only reduces the production cost but also does not affect the generation schedules of thermal units.« less
A polyhedral study of production ramping
Damci-Kurt, Pelin; Kucukyavuz, Simge; Rajan, Deepak; ...
2015-06-12
Here, we give strong formulations of ramping constraints—used to model the maximum change in production level for a generator or machine from one time period to the next—and production limits. For the two-period case, we give a complete description of the convex hull of the feasible solutions. The two-period inequalities can be readily used to strengthen ramping formulations without the need for separation. For the general case, we define exponential classes of multi-period variable upper bound and multi-period ramping inequalities, and give conditions under which these inequalities define facets of ramping polyhedra. Finally, we present exact polynomial separation algorithms formore » the inequalities and report computational experiments on using them in a branch-and-cut algorithm to solve unit commitment problems in power generation.« less
Anatomy of a cyclically packaged Mesoproterozoic carbonate ramp in northern Canada
NASA Astrophysics Data System (ADS)
Sherman, A. G.; Narbonne, G. M.; James, N. P.
2001-03-01
Carbonates in the upper member of the Mesoproterozoic Victor Bay Formation are dominated by lime mud and packaged in cycles of 20-50 m. These thicknesses exceed those of classic shallowing-upward cycles by almost a factor of 10. Stratigraphic and sedimentological evidence suggests high-amplitude, high-frequency glacio-eustatic cyclicity, and thus a cool global climate ca. 1.2 Ga. The Victor Bay ramp is one of several late Proterozoic carbonate platforms where the proportions of lime mud, carbonate grains, and microbialites are more typical of younger Phanerozoic successions which followed the global waning of stromatolites. Facies distribution in the study area is compatible with deposition on a low-energy, microtidal, distally steepened ramp. Outer-ramp facies are hemipelagic lime mudstone, shale, carbonaceous rhythmite, and debrites. Mid-ramp facies are molar-tooth limestone tempestite with microspar-intraclast lags. In a marine environment where stromatolitic and oolitic facies were otherwise rare, large stromatolitic reefs developed at the mid-ramp, coeval with inner-ramp facies of microspar grainstone, intertidal dolomitic microbial laminite, and supratidal evaporitic red shale. Deep-subtidal, outer-ramp cycles occur in the southwestern part of the study area. Black dolomitic shale at the base is overlain by ribbon, nodular, and carbonaceous carbonate facies, all of which exhibit signs of synsedimentary disruption. Cycles in the northeast are shallow-subtidal and peritidal in character. Shallow-subtidal cycles consist of basal deep-water facies, and an upper layer of subtidal molar-tooth limestone tempestite interbedded with microspar calcarenite facies. Peritidal cycles are identical to shallow-subtidal cycles except that they contain a cap of dolomitic tidal-flat microbial laminite, and rarely of red shale sabkha facies or of sandy polymictic conglomerate. A transect along the wall of a valley extending 8.5 km perpendicular to depositional strike reveals progradation of inner-ramp tidal flats over outer- and mid-ramp facies during shoaling. The maximum basinward progradation of peritidal facies coincides with a zone of slope failure that may have promoted the development of the stromatolitic reefs. The sea-level history of the Victor Bay Formation is represented by three hectometre-scale sequences. An initial flooding event resulted in deposition of the lower Victor Bay shale member. Upper-member carbonate cycles were then deposited during highstand. Mid-ramp slumping was followed by late-highstand reef development. The second sequence began with development of an inner-ramp lowstand unconformity and a thick mid-ramp lowstand wedge. A second transgression promoted a more modest phase of reef development at the mid-ramp and shallow-water deposition continued inboard. A third and final transgressive episode eventually led to flooding of the backstepping ramp. Overall consistent cycle thickness and absence of truncated cycles, as well as the high rate and amount of creation of accommodation space, suggest that the periodicity and amplitude of sea-level fluctuation were relatively uniform, and point to a eustatic rather than tectonic mechanism of relative sea-level change. High-amplitude, high-frequency eustatic sea-level change is characteristic of icehouse worlds in which short-term, large-scale sea-level fluctuations accompany rapidly changing ice volumes affected by Milankovitch orbital forcing. Packaging of cyclic Upper Victor Bay carbonates therefore supports the hypothesis of a late Mesoproterozoic glacial period, as proposed by previous workers.
NASA Technical Reports Server (NTRS)
Vedantam, Nanda Kishore
2003-01-01
The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.
Long pulse high performance plasma scenario development for the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Kessel, C. E.; Bell, R. E.; Bell, M. G.; Gates, D. A.; Kaye, S. M.; LeBlanc, B. P.; Menard, J. E.; Phillips, C. K.; Synakowski, E. J.; Taylor, G.; Wilson, R.; Harvey, R. W.; Mau, T. K.; Ryan, P. M.; Sabbagh, S. A.
2006-05-01
The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall β limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, κ≈2.5, βN⩽5, β⩽15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high β plasmas can be reached at IP=1.0 MA, BT=0.35 T, κ≈2.5, βN⩽9, β⩽43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.
Cortical Activation Patterns Evoked by Temporally Asymmetric Sounds and Their Modulation by Learning
Horikawa, Junsei
2017-01-01
When complex sounds are reversed in time, the original and reversed versions are perceived differently in spectral and temporal dimensions despite their identical duration and long-term spectrum-power profiles. Spatiotemporal activation patterns evoked by temporally asymmetric sound pairs demonstrate how the temporal envelope determines the readout of the spectrum. We examined the patterns of activation evoked by a temporally asymmetric sound pair in the primary auditory field (AI) of anesthetized guinea pigs and determined how discrimination training modified these patterns. Optical imaging using a voltage-sensitive dye revealed that a forward ramped-down natural sound (F) consistently evoked much stronger responses than its time-reversed, ramped-up counterpart (revF). The spatiotemporal maximum peak (maxP) of F-evoked activation was always greater than that of revF-evoked activation, and these maxPs were significantly separated within the AI. Although discrimination training did not affect the absolute magnitude of these maxPs, the revF-to-F ratio of the activation peaks calculated at the location where hemispheres were maximally activated (i.e., F-evoked maxP) was significantly smaller in the trained group. The F-evoked activation propagated across the AI along the temporal axis to the ventroanterior belt field (VA), with the local activation peak within the VA being significantly larger in the trained than in the naïve group. These results suggest that the innate network is more responsive to natural sounds of ramped-down envelopes than their time-reversed, unnatural sounds. The VA belt field activation might play an important role in emotional learning of sounds through its connections with amygdala. PMID:28451640
NASA Astrophysics Data System (ADS)
Delabie, E.; Hillesheim, J. C.; Mailloux, J.; Maggi, C. F.; Rimini, F.; Solano, E. R.; JET contributors Team
2016-10-01
The threshold power to access H-mode on JET-ILW has a minimum as function of density. Power ramps in the low and high density branch show qualitatively very different behavior above threshold. In the high density branch, edge density and temperature abruptly increase after the L-H transition, and the plasma evolves into a type I ELMy H-mode. Transitions in the low density branch are gradual and lead to the formation of a temperature pedestal, without increase in edge density. These characteristics are reminiscent of the I-mode regime, but with high frequency ELM activity. The small ELMs allow stable H-mode operation with tolerable tungsten contamination, as long as both density and power stay below the type I ELM boundary. The density range in which the low density branch can be accessed scales favourably with toroidal field but unfavourably with isotope mass. At BT=3.4T, a stable H-mode has been obtained at
NASA Astrophysics Data System (ADS)
Rowan, William L.; Bespamyatnov, Igor O.; Fiore, C. L.; Dominguez, A.; Hubbard, A. E.; Ince-Cushman, A.; Greenwald, M. J.; Lin, L.; Marmar, E. S.; Reinke, M.; Rice, J. E.; Zhurovich, K.
2007-11-01
Internal transport barrier (ITB) plasmas can arise spontaneously in Ohmic Alcator C-Mod plasmas. The operational prescription for the ITB include formation of an EDA H-mode in a toroidal magnetic field that is ramping down and a subsequent increase in the toroidal magnetic field. Like ITBs generated with off-axis ICRF heating, these have peaked pressure profiles which can be suppressed by on-axis ICRF heating. Recent work on onset conditions for the ICRF generated ITB (K. Zhurovich, et al., To be published in Nuclear Fusion) demonstrates that the broadening of the ion temperature profile due to off-axis ICRF reduces the ion temperature gradient and suppreses the ITG instability driven particle flux as the primary mechanism for ITB formation. The object of this study is to examine the characteristics of Ohmic ITBs to find whether this model for onset is supported.
Optimization of the cooling profile to achieve crack-free Yb:S-FAP crystals
NASA Astrophysics Data System (ADS)
Fang, H. S.; Qiu, S. R.; Zheng, L. L.; Schaffers, K. I.; Tassano, J. B.; Caird, J. A.; Zhang, H.
2008-08-01
Yb:S-FAP [Yb 3+:Sr 5(PO 4) 3F] crystals are an important gain medium for diode-pumped laser applications. Growth of 7.0 cm diameter Yb:S-FAP crystals utilizing the Czochralski (CZ) method from SrF 2-rich melts often encounters cracks during the post-growth cool-down stage. To suppress cracking during cool-down, a numerical simulation of the growth system was used to understand the correlation between the furnace power during cool-down and the radial temperature differences within the crystal. The critical radial temperature difference, above which the crystal cracks, has been determined by benchmarking the simulation results against experimental observations. Based on this comparison, an optimal three-stage ramp-down profile was implemented, which produced high-quality, crack-free Yb:S-FAP crystals.
Correlation of ion and beam current densities in Kaufman thrusters.
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1973-01-01
In the absence of direct impingement erosion, electrostatic thruster accelerator grid lifetime is defined by the charge exchange erosion that occurs at peak values of the ion beam current density. In order to maximize the thrust from an engine with a specified grid lifetime, the ion beam current density profile should therefore be as flat as possible. Knauer (1970) has suggested this can be achieved by establishing a radial plasma uniformity within the thruster discharge chamber; his tests with the radial field thruster provide an example of uniform plasma properties within the chamber and a flat ion beam profile occurring together. It is shown that, in particular, the ion density profile within the chamber determines the beam current density profile, and that a uniform ion density profile at the screen grid end of the discharge chamber should lead to a flat beam current density profile.
NASA Technical Reports Server (NTRS)
Scott, Carl D.
2004-01-01
Chemical kinetic models for the nucleation and growth of clusters and single-walled carbon nanotube (SWNT) growth are developed for numerical simulations of the production of SWNTs. Two models that involve evaporation and condensation of carbon and metal catalysts, a full model involving all carbon clusters up to C80, and a reduced model are discussed. The full model is based on a fullerene model, but nickel and carbon/nickel cluster reactions are added to form SWNTs from soot and fullerenes. The full model has a large number of species--so large that to incorporate them into a flow field computation for simulating laser ablation and arc processes requires that they be simplified. The model is reduced by defining large clusters that represent many various sized clusters. Comparisons are given between these models for cases that may be applicable to arc and laser ablation production. Solutions to the system of chemical rate equations of these models for a ramped temperature profile show that production of various species, including SWNTs, agree to within about 50% for a fast ramp, and within 10% for a slower temperature decay time.
Expected Performance of the LHC Synchrotron-Light Telescope (BSRT) and Abort-Gap Monitor (BSRA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Alan; /SLAC
2010-06-07
This Report presents calculations of the synchrotron light from proton and lead-ion beams in the LHC at all energies from 0.45 to 7 TeV. It computes the emission from three sources: the uniform-field region of the D3 dipole, the dipole's edge field, and the short undulator just upstream. Light emitted at or near visible wavelengths is assessed for making optical measurements of transverse beam profiles and for monitoring the emptiness of the abort gap in the fill pattern. There is sufficient light for both applications, although both species pass through energy ranges in the ramp with small photon counts. Effectsmore » limiting image resolution are examined, including geometric optics, depth of field, and diffraction. The Report also considers recent suggestions that the undulator, intended to supplement the dipole for low energies, should not be ramped off at high energies and perhaps should not be used at all. We conclude that the undulator is essential at low energy for both species, but that it is possible to leave the undulator on at the cost of some blurring at intermediate energies.« less
Collins, K.L.; Thornton, C.I.; Mefford, B.; Holmquist-Johnson, C. L.
2009-01-01
Rock weir and ramp structures uniquely serve a necessary role in river management: to meet water deliveries in an ecologically sound manner. Uses include functioning as low head diversion dams, permitting fish passage, creating habitat diversity, and stabilizing stream banks and profiles. Existing information on design and performance of in-stream rock structures does not provide the guidance necessary to implement repeatable and sustainable construction and retrofit techniques. As widespread use of rock structures increases, the need for reliable design methods with a broad range of applicability at individual sites grows as well. Rigorous laboratory testing programs were implemented at the U.S. Bureau of Reclamation (Reclamation) and at Colorado State University (CSU) as part of a multifaceted research project focused on expanding the current knowledge base and developing design methods to improve the success rate of river spanning rock structures in meeting project goals. Physical modeling at Reclamation is being used to measure, predict, and reduce interstitial flow through rock ramps. CSU is using physical testing to quantify and predict scour development downstream of rock weirs and its impact on the stability of rock structures. ?? 2009 ASCE.
NASA Astrophysics Data System (ADS)
Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III
2017-12-01
Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.
Hill, Heather E; Pioszak, Augen A
2013-03-01
Adrenomedullin (AM) is a peptide hormone that is a potent vasodilator and is essential for vascular development. The AM receptor is a heterodimeric cell surface receptor composed of the calcitonin receptor-like receptor (CLR), a class B G protein-coupled receptor, in association with either of two receptor activity modifying protein (RAMP) coreceptors, RAMP2 or -3. The extracellular domains (ECDs) of CLR and the RAMPs form the primary AM binding site. Here, we present novel methodology for expression and purification of a heterodimeric AM receptor ECD complex as an MBP-CLR ECD fusion protein in association with the RAMP2 ECD. Co-expression of the RAMP2 ECD with the disulfide bond isomerase DsbC in the oxidizing cytoplasm of E. coli trxB gor enabled proper disulfide formation in vivo. The isolated RAMP2 ECD was purified to homogeneity. Co-expression of a soluble MBP-CLR ECD fusion protein with DsbC in E. coli trxB gor yielded a heterogeneous mixture of species with misfolded ECD. Incubation of affinity-purified MBP-CLR ECD in vitro with purified RAMP2 ECD, DsbC, and glutathione redox buffer promoted proper folding of the CLR ECD and formation of a stable MBP-CLR ECD:RAMP2 ECD complex that was purified by size-exclusion chromatography and which exhibited specific AM binding. Approximately 40mg of highly purified complex was obtained starting with 6L bacterial cultures for each protein. The methodology reported here will facilitate structure/function studies of the AM receptor. Copyright © 2012 Elsevier Inc. All rights reserved.
Increased cardiac output elicits higher V̇O2max in response to self-paced exercise.
Astorino, Todd Anthony; McMillan, David William; Edmunds, Ross Montgomery; Sanchez, Eduardo
2015-03-01
Recently, a self-paced protocol demonstrated higher maximal oxygen uptake versus the traditional ramp protocol. The primary aim of the current study was to further explore potential differences in maximal oxygen uptake between the ramp and self-paced protocols using simultaneous measurement of cardiac output. Active men and women of various fitness levels (N = 30, mean age = 26.0 ± 5.0 years) completed 3 graded exercise tests separated by a minimum of 48 h. Participants initially completed progressive ramp exercise to exhaustion to determine maximal oxygen uptake followed by a verification test to confirm maximal oxygen uptake attainment. Over the next 2 sessions, they performed a self-paced and an additional ramp protocol. During exercise, gas exchange data were obtained using indirect calorimetry, and thoracic impedance was utilized to estimate hemodynamic function (stroke volume and cardiac output). One-way ANOVA with repeated measures was used to determine differences in maximal oxygen uptake and cardiac output between ramp and self-paced testing. Results demonstrated lower (p < 0.001) maximal oxygen uptake via the ramp (47.2 ± 10.2 mL·kg(-1)·min(-1)) versus the self-paced (50.2 ± 9.6 mL·kg(-1)·min(-1)) protocol, with no interaction (p = 0.06) seen for fitness level. Maximal heart rate and cardiac output (p = 0.02) were higher in the self-paced protocol versus ramp exercise. In conclusion, data show that the traditional ramp protocol may underestimate maximal oxygen uptake compared with a newly developed self-paced protocol, with a greater cardiac output potentially responsible for this outcome.
Xu, Wei; Guan, Ran; Lu, Yisong; Su, Xiaoyan; Xu, Ye; Du, Aifang; Hu, Songhua
2015-07-25
Mastitis is considered the most significant and persistent disease in dairy cows, bringing about large economic losses. Subclinical mastitis brings about major cost implications, for it is difficult to detect due to absence of any visible indications and can persist in the mammary tissue throughout lactation. Immunomodulators have been widely used to reduce intramammary infections by modulating bovine mammary gland. Atractylodis macrocephalae Koidz. polysaccharides (RAMP), extracted from herbal medicine, has been used widely especially for its immunomodulatory function for many years. The objective of this study was to estimate an oil emulsified Atractylodis macrocephalae Koidz. polysaccharides (RAMP-O) as a potential therapeutic agent to treat subclinical mastitis by subcutaneous injection of RAMP-O in the area of supramammary lymph node in lactating cows via analysis of SCC, IMIs and NAGase. Injection of RAMP-O in the area of supramammary lymph node significantly reduced milk SCC and NAGase activity compared with control. The quarters with bacterial infection were also progressively reduced in RAMP-O treated cows and only 9 quarters were found to have bacterial infection, while no obvious change was found in the control group. Subcutaneous injection of RAMP-O in the area of supramammary lymph node had therapeutic value in the treatment of bovine subclinical mastitis by reducing SCC, NAGase and IMIs in milk. Considering both the therapeutic effect and the cost of RAMP-O, 32 mg per dose was found most suitable to reduce milk SCC and NAGase. Therefore, RAMP-O deserves further study for its use in treatment of bovine mastitis.
Zhao, Xiaona; Sun, Wenjing; Zhang, Shijie; Meng, Guangju; Qi, Chunhua; Fan, Wentao; Wang, Yuge; Liu, Jianzhu
2016-05-05
Build on our previous research, polysaccharides from the rhizome of Atractylodis macrocephalae Koidz (RAMPS), RAMPStp and RAMPS60c were prepared and the structural characterization and immune response of ND vaccine in chicken were investigated. Immune organ index, Lymphocyte proliferation, antibody titers, cell cycle distribution, and percentages of CD4(+) and CD8(+) cells were determined. GPC analysis showed that the Mn of RAMPS with two peaks were 1.29×10(5) and 1.74×10(3), respectively. GC-MS analysis revealed that RAMPS was composed of glucose, mannose, arabinose, galactose, xylose, d-Ribose and rhamnose, with mass percentages of 66.39%, 21.24%, 5.64%, 2.65%, 2.30%, 1.15% and 0.64%, respectively. NMR spectroscopic analysis demonstrated that a preliminary structure of RAMPS was proposed as 1,3-linked β-d-Galp and 1,6-linked β-d-Galpresidues. In vivo test showed that RAMPStp and RAMPS60c could promote peripheral lymphocytes proliferation and entering into S and G2/M phases, enhance serum HI antibody titer and effectively improve the percentages of CD4(+) and CD8(+) T cells in chickens vaccinated with ND vaccine at most time points. The actions of RAMPStp and RAMPS60c were stronger than that of Lev, and RAMPStp presented the best efficacy. These results indicated that RAMPStp and RAMPS60c characterize of the immune-enhancing activity and RAMPStp possessed the strongest activity. It would be anticipated as a component of new-type immunopotentiator. Copyright © 2016 Elsevier Ltd. All rights reserved.
14. VIEW OF THE MODERN CONCRETE RAMP THAT CONNECTED THE ...
14. VIEW OF THE MODERN CONCRETE RAMP THAT CONNECTED THE UPPER AND LOWER MINE ROADS. TRUCKS USED THIS RAMP AND THE ROADS TO HAUL SLAG TO THE MINE DUMP. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA
Code of Federal Regulations, 2011 CFR
2011-07-01
... Vehicles and Systems § 1192.81 Lighting. (a) Any stepwell or doorway with a lift, ramp or bridge plate... measured on the step tread or lift platform. (b) Other stepwells, and doorways with lifts, ramps or bridge... lift or ramp, when deployed at the vehicle floor level. (c) The doorways of vehicles not operating at...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Vehicles and Systems § 1192.81 Lighting. (a) Any stepwell or doorway with a lift, ramp or bridge plate... measured on the step tread or lift platform. (b) Other stepwells, and doorways with lifts, ramps or bridge... lift or ramp, when deployed at the vehicle floor level. (c) The doorways of vehicles not operating at...
ERIC Educational Resources Information Center
United Nations Educational, Scientific and Cultural Organization, Paris (France). General Information Programme.
Organized for the United Nations Educational, Scientific, and Cultural Organization (Unesco) by contract with the International Council on Archives (ICA), this meeting concerning the Records and Archives Management Programme (RAMP) was attended by 14 experts invited from Unesco member countries. Following a brief introduction, summaries are…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booe, Jason M.; Walker, Christopher S.; Barwell, James
Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind relatedmore » GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. Lastly, the structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.« less
Booe, Jason M.; Walker, Christopher S.; Barwell, James; ...
2015-05-14
Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind relatedmore » GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. Lastly, the structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancaster, S.; Fette, B.; Busler, L.
This report describes the public outreach plan on the implementation of ramp meters along the Katy Freeway in Houston, Generally, ramp metering is neither beloved nor understood by the public. To gain public awareness, acceptance, compliance and continued support, ramp metering operations should be reinforced by a strong, ongoing public information and outreach campaign that communicates the need for and benefits of the program. Because the term `ramp metering` exhibits restrictions on the public, the phrase `Flow Signals` was developed to better describe the benefits of ramp metering; enhanced flow of traffic, fewer bottlenecks, and fewer trip delays. The logo,more » `Go with the Flow Houston,` and a graphic identity were developed to help communicate the theme throughout the various media where both the primary and secondary messages are intended to reach 15 different audiences. These media will include: a PSA, both static and changeable message signs, a brochure, Internet web site information, letters to specific audience and media relations efforts.« less
A Copula-Based Conditional Probabilistic Forecast Model for Wind Power Ramps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Krishnan, Venkat K; Zhang, Jie
Efficient management of wind ramping characteristics can significantly reduce wind integration costs for balancing authorities. By considering the stochastic dependence of wind power ramp (WPR) features, this paper develops a conditional probabilistic wind power ramp forecast (cp-WPRF) model based on Copula theory. The WPRs dataset is constructed by extracting ramps from a large dataset of historical wind power. Each WPR feature (e.g., rate, magnitude, duration, and start-time) is separately forecasted by considering the coupling effects among different ramp features. To accurately model the marginal distributions with a copula, a Gaussian mixture model (GMM) is adopted to characterize the WPR uncertaintymore » and features. The Canonical Maximum Likelihood (CML) method is used to estimate parameters of the multivariable copula. The optimal copula model is chosen based on the Bayesian information criterion (BIC) from each copula family. Finally, the best conditions based cp-WPRF model is determined by predictive interval (PI) based evaluation metrics. Numerical simulations on publicly available wind power data show that the developed copula-based cp-WPRF model can predict WPRs with a high level of reliability and sharpness.« less
Ali, S. J.; Kraus, R. G.; Fratanduono, D. E.; ...
2017-05-18
Here, we developed an iterative forward analysis (IFA) technique with the ability to use hydrocode simulations as a fitting function for analysis of dynamic compression experiments. The IFA method optimizes over parameterized quantities in the hydrocode simulations, breaking the degeneracy of contributions to the measured material response. Velocity profiles from synthetic data generated using a hydrocode simulation are analyzed as a first-order validation of the technique. We also analyze multiple magnetically driven ramp compression experiments on copper and compare with more conventional techniques. Excellent agreement is obtained in both cases.
Color Mosaic of Rover & Terrain
1997-07-05
NASA's Sojourner rover and undeployed ramps onboard the Mars Pathfinder spacecraft can be seen in this image, by the Imager for Mars Pathfinder (IMP) on July 4 (Sol 1). This image has been corrected for the curvature created by parallax. The microrover Sojourner is latched to the petal, and has not yet been deployed. The ramps are a pair of deployable metal reels which will provide a track for the rover as it slowly rolls off the lander, over the spacecraft's deflated airbags, and onto the surface of Mars. Pathfinder scientists will use this image to determine whether it is safe to deploy the ramps. One or both of the ramps will be unfurled, and then scientists will decide whether the rover will use either the forward or backward ramp for its descent. http://photojournal.jpl.nasa.gov/catalog/PIA00621
High temperature seal for large structural movements
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Dunlap, Jr., Patrick H. (Inventor)
2004-01-01
A high temperature sealing system is operative to seal an interface between adjacent hot structures and to minimize parasitic flow between such structures that move relative to one another in-plane or out-of-plane. The sealing system may be used to seal thrust-directing ramp structures of a reusable launch vehicle and includes a channel and a plurality of movable segmented sealing elements. Adjacent ramp structures include edge walls which extend within the channel. The sealing elements are positioned along the sides of the channel and are biased to engage with the inner surfaces of the ramp structures. The segmented sealing elements are movable to correspond to the contour of the thrust-directing ramp structures. The sealing system is operative to prevent high temperature thrust gases that flow along the ramp structures from infiltrating into the interior of the vehicle.
Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak
NASA Astrophysics Data System (ADS)
Idei, H.; Kariya, T.; Imai, T.; Mishra, K.; Onchi, T.; Watanabe, O.; Zushi, H.; Hanada, K.; Qian, J.; Ejiri, A.; Alam, M. M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Fukuyama, A.; Kubo, S.; Shimozuma, T.; Yoshikawa, M.; Sakamoto, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ide, S.; Maekawa, T.; Takase, Y.; Toi, K.
2017-12-01
Fully non-inductive second (2nd) harmonic electron cyclotron (EC) plasma current ramp-up was demonstrated with a newlly developed 28 GHz system in the QUEST spherical tokamak. A high plasma current of 54 kA was non-inductively ramped up and sustained stably for 0.9 s with a 270 kW 28 GHz wave. A higher plasma current of 66 kA was also non-inductively achieved with a slow ramp-up of the vertical field. We have achieved a significantly higher plasma current than those achieved previously with the 2nd harmonic EC waves. This fully non-inductive 2nd harmonic EC plasma ramp-up method might be useful for future burning plasma devices and fusion reactors, in particular for operations at half magnetic field with the same EC heating equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Eric; Boreman, Glenn, E-mail: gboreman@uncc.edu; D'Archangel, Jeffrey
Near- and far-field measurements of phase-ramped loop and patch structures are presented and compared to simulations. The far-field deflection measurements show that the phase-ramped structures can deflect a beam away from specular reflection, consistent with simulations. Scattering scanning near-field optical microscopy of the elements comprising the phase ramped structures reveals part of the underlying near-field phase contribution that dictates the far-field deflection, which correlates with the far-field phase behavior that was expected. These measurements provide insight into the resonances, coupling, and spatial phase variation among phase-ramped frequency selective surface (FSS) elements, which are important for the performance of FSS reflectarrays.
RAMP: A fault tolerant distributed microcomputer structure for aircraft navigation and control
NASA Technical Reports Server (NTRS)
Dunn, W. R.
1980-01-01
RAMP consists of distributed sets of parallel computers partioned on the basis of software and packaging constraints. To minimize hardware and software complexity, the processors operate asynchronously. It was shown that through the design of asymptotically stable control laws, data errors due to the asynchronism were minimized. It was further shown that by designing control laws with this property and making minor hardware modifications to the RAMP modules, the system became inherently tolerant to intermittent faults. A laboratory version of RAMP was constructed and is described in the paper along with the experimental results.
Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knauer, J. P.; Betti, R.; Bradley, D. K.
2000-01-01
The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 {mu}m diam region defined bymore » the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 {mu}m wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics.« less
Early Observations with the ACS Ramp Filters
NASA Astrophysics Data System (ADS)
Tsvetanov, Z.; Hartig, G.; Bohlin, R.; Tran, H. D.; Martel, A.; Sirianni, M.; Clampin, M.
2002-05-01
The Advanced Camera for Surveys (ACS) on-board the Hubble Space Telescope (HST) is equipped with a set of ramp filters which provide imaging capability at 2% and 9% bandwidth in the range 3700-10700 Å. Each ramp filter consist of three segments where the middle segment can be used with both the Wide Field Channel (WFC) and High Resolution Channel (HRC), while the inner and outer segments can be used only with WFC. The monochromatic field of view is approximately 40'' by 80''. We will present observations of the planetary nebula (PN) NGC6543 (the Cat's Eye) taken with the ACS ramp filetrs in several key emission lines - [O II] 3727, [O III] 5007, H-alpha+[N II], and [S II] 6725. These four emission lines fall onto three separate middle ramp segments - FR388N, FR505N, and FR656N - and will allow inter-comparison between the ACS ramp filters and fixed bandpass narrow-band filters F502N and F658N for both the WFC and HRC detectors. These observations were taken as part of the HST Servicing Mission Orbital Verification program and were designed to test ramp filters performance. We will demostrate our ability to obtain monochromatic (i.e., emission line) images at arbitrary wavelength and recover the surface brightness distribution. This work was supported by a NASA contract and a NASA grant.
The virialization density of peaks with general density profiles under spherical collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, Douglas; Loeb, Abraham, E-mail: dsrubin@physics.harvard.edu, E-mail: aloeb@cfa.harvard.edu
2013-12-01
We calculate the non-linear virialization density, Δ{sub c}, of halos under spherical collapse from peaks with an arbitrary initial and final density profile. This is in contrast to the standard calculation of Δ{sub c} which assumes top-hat profiles. Given our formalism, the non-linear halo density can be calculated once the shape of the initial peak's density profile and the shape of the virialized halo's profile are provided. We solve for Δ{sub c} for halos in an Einstein de-Sitter and a ΛCDM universe. As examples, we consider power-law initial profiles as well as spherically averaged peak profiles calculated from the statisticsmore » of a Gaussian random field. We find that, depending on the profiles used, Δ{sub c} is smaller by a factor of a few to as much as a factor of 10 as compared to the density given by the standard calculation ( ≈ 200). Using our results, we show that, for halo finding algorithms that identify halos through an over-density threshold, the halo mass function measured from cosmological simulations can be enhanced at all halo masses by a factor of a few. This difference could be important when using numerical simulations to assess the validity of analytic models of the halo mass function.« less
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Testing engines using discrete-mode or...-IGNITION ENGINES AND VESSELS Test Procedures § 1042.505 Testing engines using discrete-mode or ramped-modal... the Clean Air Act. (a) You may perform steady-state testing with either discrete-mode or ramped-modal...
Code of Federal Regulations, 2010 CFR
2010-07-01
...-state duty cycles, including ramped-modal testing? 1039.505 Section 1039.505 Protection of Environment... duty cycles, including ramped-modal testing? This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for an...
NASA Astrophysics Data System (ADS)
van Tilborg, Jeroen
2017-10-01
The success of laser plasma accelerator (LPA) based applications, such as a compact x-ray free electron laser (FEL), relies on the ability to produce electron beams with excellent 6D brightness, where brightness is defined as the ratio of charge to the product of the three normalized emittances. As such, parametric studies of the emittance of LPA generated electron beams are essential. Profiting from a stable and tunable LPA setup, combined with a carefully designed single-shot energy-dispersed emittance diagnostic, we present a direct comparison of charge dependent emittance measurements of electron beams generated by two different injection mechanisms: ionization injection and shock-induced density down-ramp injection. Both injection mechanisms have gained in popularity in recent years due to their demonstrated stable LPA performance. For the down-ramp injection configuration, normalized emittances a factor of two lower were recorded: less than 1 micron at spectral charge densities up to 2 pC/MeV. For both injection mechanisms, a contributing correlation of space charge to the emittance was identified. This measurement technique in general, and these results specifically, are critical to the evaluation of LPA injection methods and development of high-quality LPA beam lines worldwide. This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231, by the U.S. DOE NNSA, DNN R&D (NA22), by the National Science Foundation under Grant No. PHY-1415596, and by the Gordon and Betty Moore Foundation under Grant ID GBMF4898.
NASA Technical Reports Server (NTRS)
Vedantam, NandaKishore; Parthasarathy, Ramkumar N.
2004-01-01
The effects of the mean velocity profiles on the instability characteristics in the near-injector region of axisymmetric low density gas jets injected vertically upwards into a high-density gas medium were investigated using linear inviscid stability analysis. The flow was assumed to be isothermal and locally parallel. Three velocity profiles, signifying different changes in the mean velocity in the shear layer, were used in the analysis. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the instability for each set of mean profiles were delineated. At a large Froude number (negligible gravity), a critical density ratio was found for the three profiles at which the jet became absolutely unstable. The critical density ratio for each velocity profile was increased as the Froude number was reduced. A critical Froude number was found for the three sets of profiles, below which the jet was absolutely unstable for all the density ratios less than unity, which demarcated the jet flow into the momentum-driven regime and the buoyancy-driven regime.
NASA Technical Reports Server (NTRS)
Wrigley, Chris J.; Hancock, Bruce R.; Newton, Kenneth W.; Cunningham, Thomas J.
2013-01-01
Single-slope analog-to-digital converters (ADCs) are particularly useful for onchip digitization in focal plane arrays (FPAs) because of their inherent monotonicity, relative simplicity, and efficiency for column-parallel applications, but they are comparatively slow. Squareroot encoding can allow the number of code values to be reduced without loss of signal-to-noise ratio (SNR) by keeping the quantization noise just below the signal shot noise. This encoding can be implemented directly by using a quadratic ramp. The reduction in the number of code values can substantially increase the quantization speed. However, in an FPA, the fixed pattern noise (FPN) limits the use of small quantization steps at low signal levels. If the zero-point is adjusted so that the lowest column is onscale, the other columns, including those at the center of the distribution, will be pushed up the ramp where the quantization noise is higher. Additionally, the finite frequency response of the ramp buffer amplifier and the comparator distort the shape of the ramp, so that the effective ramp value at the time the comparator trips differs from the intended value, resulting in errors. Allowing increased settling time decreases the quantization speed, while increasing the bandwidth increases the noise. The FPN problem is solved by breaking the ramp into two portions, with some fraction of the available code values allocated to a linear ramp and the remainder to a quadratic ramp. To avoid large transients, both the value and the slope of the linear and quadratic portions should be equal where they join. The span of the linear portion must cover the minimum offset, but not necessarily the maximum, since the fraction of the pixels above the upper limit will still be correctly quantized, albeit with increased quantization noise. The required linear span, maximum signal and ratio of quantization noise to shot noise at high signal, along with the continuity requirement, determines the number of code values that must be allocated to each portion. The distortion problem is solved by using a lookup table to convert captured code values back to signal levels. The values in this table will be similar to the intended ramp value, but with a correction for the finite bandwidth effects. Continuous-time comparators are used, and their bandwidth is set below the step rate, which smoothes the ramp and reduces the noise. No settling time is needed, as would be the case for clocked comparators, but the low bandwidth enhances the distortion of the non-linear portion. This is corrected by use of a return lookup table, which differs from the one used to generate the ramp. The return lookup table is obtained by calibrating against a stepped precision DC reference. This results in a residual non-linearity well below the quantization noise. This method can also compensate for differential non-linearity (DNL) in the DAC used to generate the ramp. The use of a ramp with a combination of linear and quadratic portions for a single-slope ADC is novel. The number of steps is minimized by keeping the step size just below the photon shot noise. This in turn maximizes the speed of the conversion. High resolution is maintained by keeping small quantization steps at low signals, and noise is minimized by allowing the lowest analog bandwidth, all without increasing the quantization noise. A calibrated return lookup table allows the system to maintain excellent linearity.
Cottrell, Graeme S.; Alemi, Farzad; Kirkland, Jacob G.; Grady, Eileen F.; Corvera, Carlos U.; Bhargava, Aditi
2012-01-01
Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR•RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility. PMID:22484227
de Vries, Peter C.; Luce, Timothy C.; Bae, Young-soon; ...
2017-11-22
To improve our understanding of the dynamics and control of ITER terminations, a study has been carried out on data from existing tokamaks. The aim of this joint analysis is to compare the assumptions for ITER terminations with the present experience basis. The study examined the parameter ranges in which present day devices operated during their terminations, as well as the dynamics of these parameters. The analysis of a database, built using a selected set of experimental termination cases, showed that, the H-mode density decays slower than the plasma current ramp-down. The consequential increase in fGW limits the duration ofmore » the H-mode phase or result in disruptions. The lower temperatures after the drop out of H-mode will allow the plasma internal inductance to increase. But vertical stability control remains manageable in ITER at high internal inductance when accompanied by a strong elongation reduction. This will result in ITER terminations remaining longer at low q (q95~3) than most present-day devices during the current ramp-down. A fast power ramp-down leads to a larger change in βp at the H-L transition, but the experimental data showed that these are manageable for the ITER radial position control. The analysis of JET data shows that radiation and impurity levels significantly alter the H-L transition dynamics. Self-consistent calculations of the impurity content and resulting radiation should be taken into account when modelling ITER termination scenarios. Here, the results from this analysis can be used to better prescribe the inputs for the detailed modelling and preparation of ITER termination scenarios.« less
Motor unit recruitment and EMG power spectra during ramp contractions of a bifunctional muscle.
Dupont, L; Gamet, D; Pérot, C
2000-08-01
Surface electromyograms (EMGs) were analysed on the short and long head of the biceps brachii (BBSH and BBLH) during single (F and S) or dual (F+S) flexion and supination tasks. It was confirmed, by the analysis of EMG root-mean-square (RMS) values, that the highest activations of BBSH and BBLH were obtained during a maximal dual task. This study was essentially concerned with the analysis of power spectra data obtained during progressive or ramp contractions (RCs). The shape of the power spectra established during the first second of the RCs differs between F, S and F+S tasks. Differences in mean power frequency (MPF) calculated during RCs would be representative of a recruitment of motor units (MUs) that is, at least partly, task-dependent. In order to compare MPF values calculated from RCs performed under different mechanical conditions (F, S and F+S), MPF-RMS(PSD) relationships have been established (RMS(PSD) being defined as the power spectrum density RMS). Both BBSH and BBLH exhibited initial MPF values higher in supination RC than in flexion RC. Because of plateau values reached at the same level of muscle activation whatever the task performed, the slope of the MPF-RMS(PSD) relationship was lower in S than in F. These results are in favour of MU recruitment that is, at least partly, different in F and in S conditions. Dual submaximal tasks seem to mix the activation of the F and S subpopulations of MUs as revealed by the spectral parameters obtained during F+S ramp contractions. This study could find some implication in the field of muscle rehabilitation or reinforcement.
NASA Astrophysics Data System (ADS)
de Vries, P. C.; Luce, T. C.; Bae, Y. S.; Gerhardt, S.; Gong, X.; Gribov, Y.; Humphreys, D.; Kavin, A.; Khayrutdinov, R. R.; Kessel, C.; Kim, S. H.; Loarte, A.; Lukash, V. E.; de la Luna, E.; Nunes, I.; Poli, F.; Qian, J.; Reinke, M.; Sauter, O.; Sips, A. C. C.; Snipes, J. A.; Stober, J.; Treutterer, W.; Teplukhina, A. A.; Voitsekhovitch, I.; Woo, M. H.; Wolfe, S.; Zabeo, L.; the Alcator C-MOD Team; the ASDEX Upgrade Team; the DIII-D Team; the EAST Team; contributors, JET; the KSTAR Team; the NSTX-U Team; the TCV Team; IOS members, ITPA; experts
2018-02-01
To improve our understanding of the dynamics and control of ITER terminations, a study has been carried out on data from existing tokamaks. The aim of this joint analysis is to compare the assumptions for ITER terminations with the present experience basis. The study examined the parameter ranges in which present day devices operated during their terminations, as well as the dynamics of these parameters. The analysis of a database, built using a selected set of experimental termination cases, showed that, the H-mode density decays slower than the plasma current ramp-down. The consequential increase in f GW limits the duration of the H-mode phase or result in disruptions. The lower temperatures after the drop out of H-mode will allow the plasma internal inductance to increase. But vertical stability control remains manageable in ITER at high internal inductance when accompanied by a strong elongation reduction. This will result in ITER terminations remaining longer at low q (q 95 ~ 3) than most present-day devices during the current ramp-down. A fast power ramp-down leads to a larger change in β p at the H-L transition, but the experimental data showed that these are manageable for the ITER radial position control. The analysis of JET data shows that radiation and impurity levels significantly alter the H-L transition dynamics. Self-consistent calculations of the impurity content and resulting radiation should be taken into account when modelling ITER termination scenarios. The results from this analysis can be used to better prescribe the inputs for the detailed modelling and preparation of ITER termination scenarios.
Traffic dynamics of an on-ramp system with a cellular automaton model
NASA Astrophysics Data System (ADS)
Li, Xin-Gang; Gao, Zi-You; Jia, Bin; Jiang, Rui
2010-06-01
This paper uses the cellular automaton model to study the dynamics of traffic flow around an on-ramp with an acceleration lane. It adopts a parameter, which can reflect different lane-changing behaviour, to represent the diversity of driving behaviour. The refined cellular automaton model is used to describe the lower acceleration rate of a vehicle. The phase diagram and the capacity of the on-ramp system are investigated. The simulation results show that in the single cell model, the capacity of the on-ramp system will stay at the highest flow of a one lane system when the driver is moderate and careful; it will be reduced when the driver is aggressive. In the refined cellular automaton model, the capacity is always reduced even when the driver is careful. It proposes that the capacity drop of the on-ramp system is caused by aggressive lane-changing behaviour and lower acceleration rate.
Prehn, Alexander; Glöckner, Rosa; Rempe, Gerhard; Zeppenfeld, Martin
2017-03-01
Optical frequency combs (OFCs) provide a convenient reference for the frequency stabilization of continuous-wave lasers. We demonstrate a frequency control method relying on tracking over a wide range and stabilizing the beat note between the laser and the OFC. The approach combines fast frequency ramps on a millisecond timescale in the entire mode-hop free tuning range of the laser and precise stabilization to single frequencies. We apply it to a commercially available optical parametric oscillator (OPO) and demonstrate tuning over more than 60 GHz with a ramping speed up to 3 GHz/ms. Frequency ramps spanning 15 GHz are performed in less than 10 ms, with the OPO instantly relocked to the OFC after the ramp at any desired frequency. The developed control hardware and software are able to stabilize the OPO to sub-MHz precision and to perform sequences of fast frequency ramps automatically.
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Schirmer, Alberto W.
1993-01-01
An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel at nozzle pressure ratios up to 8.0.
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Reich, David B.; O'Connor, Michael B.
2010-01-01
Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15 x 15 cm supersonic wind tunnel at NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the micro-ramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.
Anomalous current diffusion and improved confinement in the HT-6M tohamak
NASA Astrophysics Data System (ADS)
Gao, X.; Li, J. G.; Wan, Y. X.; Huo, Y. P.; Guo, W. K.; Fan, S. P.; Yu, C. X.; Luo, J. R.; Yin, F. X.; Meng, Y. D.; Zheng, L.; Yin, F.; Lin, B. L.; Zhang, S. Y.; Wang, S. Y.; Lu, H. J.; Liu, S. X.; Tong, X. D.; Ding, L. C.; Wu, Z. Y.; Yin, X. J.; Guo, Q. L.; Gong, X. Z.; Wu, X. C.; Zhao, J. Y.; Xi, J. S.
1994-10-01
Current diffusion was studied during edge ohmic heating (EOH) experiments in the HT-6M tokamak. The EOH power system makes the plasma current linearly ramp up from an initial steady state ( Ip=55kA) to a second steady state ( Ip=60kA) at a fast ramp rate of 12 MA/s. A stable discharge of an improved confinement was observed experimentally in the HT-6M tokamak after the plasma current was ramped to rise rapidly to a second steady state. The plasma current is ramped up much faster than both the classical skin time and neoclassical skin time. Fast current ramp up increases the anomalous current diffusion. The measured values of {β P+l i}/{2} and the soft X-ray sawtooth inversion radius imply the anomalous current penetration. The mechanism of anomalous penetration and improved confinement is discussed.
NASA Astrophysics Data System (ADS)
Cruz, L.; Nevitt, J. M.; Seixas, G.; Hilley, G. E.
2017-10-01
Kinematic theories of flat-ramp-flat folds relate fault angles to stratal dips in a way that allows prediction of structural geometries in areas of economic or scientific interest. However, these geometric descriptions imply constitutive properties of rocks that might be discordant with field and laboratory measurements. In this study, we compare deformation resulting from kinematic and mechanical models of flat-ramp-flat folds with identical geometries to determine the conditions over which kinematic models may be reasonably applied to folded rocks. Results show that most mechanical models do not conform to the geometries predicted by the kinematic models, and only low basal friction (μ ≤ 0.1) and shallow ramps (ramp angle ≤10°) produce geometries consistent with kinematic predictions. This implies that the kinematic models might be appropriate for a narrow set of geometric and basal fault friction parameters.
Chen, Gen-Hung; Chen, Wei-Ming; Huang, Guo-Ting; Chen, Yu-Wen; Jiang, Shann-Tzong
2009-10-28
Four recombinant antimicrobial peptide (rAMP) cDNAs, constructed from two goat lactoferricin-related peptide cDNAs (GLFcin and GLFcin II) with/without (His)(6)-Tag, were cloned into pPICZalphaC and transformed into Pichia pastoris SMD1168H. After methanol induction, these rAMPs were expressed and secreted into broth. They were purified after CM-Sepharose (without His-tg), HisTrap (with His-tg) and Sephadex G-25 chromatographies. The yield of purified rAMP was 0.15 mg/mL of broth. These 4 rAMPs were thermal-stable and with high antibacterial activity against Escherichia coli BCRC 11549, Pseudomonas aeruginosa BCRC 12450, Bacillus cereus BCRC 10603, Staphylococcus aureus BCRC 25923, Propioni bacterium acnes BCRC 10723, and Listera monocytogenes BCRC 14845. The minimum inhibitory concentration (MIC) of rAMPs against these indicators ranged from 4.07 to 16.00 mg/mL.
Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch
NASA Astrophysics Data System (ADS)
Welander, A.
1999-01-01
In the EXTRAP T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a = 0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a > 0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures.
Fuel Pin Behavior Under the Slow Power Ramp Transients in the CABRI-2 Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charpenel, Jean; Lemoine, Francette; Sato, Ikken
Slow ramp-type transient-overpower tests were performed within the framework of the international CABRI-2 experimental program. The implemented power transients of {approx}1% nominal power/s correspond to a control rod withdrawal-type accident in a liquid-metal-cooled fast breeder reactor (FBR). The analysis of the tests includes the information elements derived from the hodoscope signals, which were assessed quantitatively and supported by destructive and nondestructive posttest examinations. These tests, performed with fuels of various geometries, demonstrated the high margin to failure of such FBR fuel pins within the expected power level before the emergency reactor shutdown. At the same time, these tests performed withmore » high- and low-smear-density industrial pins led to clarification of the influence of pellet design on fuel pin behavior under high overpower condition. With the high-smear-density solid fuel pellet pin of high burnup level, the retained gaseous fission products played an important role in the solid fuel swelling, leading to clad deformation and failure at a maximum heating rate of 81 kW.m{sup -1}, which is much greater than the end-of-life (EOL) linear rating of the pin. With the low smear-density annular pellet pin, an important fuel swelling takes place, leading to degradation of the fuel thermal conductivity. This effect was detected at the power level around 73 kW.m{sup -1}, which is also much higher than the EOL value of the pin. Furthermore, the absence of clad deformation, and consequently of failure even at the power level going up to 134.7 kW.m{sup -1}, confirmed the very high margin to failure. In consequence, it was clarified that gaseous fission products have significant effects on failure threshold as well as on thermal performance during overpower condition, and such effects are significantly dependent on fuel design and power operation conditions.« less
NASA Astrophysics Data System (ADS)
Davis, L. Craig
2006-03-01
Congestion in freeway traffic is an example of self-organization in the language of complexity theory. Nonequilibrium, first-order phase transitions from free flow cause complex spatiotemporal patterns. Two distinct phases of congestion are observed in empirical traffic data--wide moving jams and synchronous flow. Wide moving jams are characterized by stopped or slowly moving vehicles within the jammed region, which widens and moves upstream at 15-20 km/h. Above a critical density of vehicles, a sudden decrease in the velocity of a lead vehicle can initiate a transition from metastable states to this phase. Human behaviors, especially delayed reactions, are implicated in the formation of jams. The synchronous flow phase results from a bottleneck such as an on-ramp. Thus, in contrast to a jam, the downstream front is pinned at a fixed location. The name of the phase comes from the equilibration (or synchronization) of speed and flow rate across all lanes caused by frequent vehicle lane changes. Synchronous flow occurs when the mainline flow and the rate of merging from an on-ramp are sufficiently large. Large-scale simulations using car-following models reproduce the physical phenomena occurring in traffic and suggest methods to improve flow and mediate congestion.
China, Swarup; Salvadori, Neila; Mazzoleni, Claudio
2014-03-18
Vehicles represent a major source of soot in urban environments. Knowledge of the morphology and mixing of soot particles is fundamental to understand their potential health and climatic impacts. We investigate 5738 single particles collected at six different cloverleaf freeway on-ramps in Southern Michigan, using 2D images from scanning electron microscopy. Of those, 3364 particles are soot. We present an analysis of the morphological and mixing properties of those soot particles. The relative abundance of soot particles shows a positive association with traffic density (number of vehicles per minute). A classification of the mixing state of freshly emitted soot particles shows that most of them are bare (or thinly coated) (72%) and some are partly coated (22%). We find that the fractal dimension of soot particles (one of the most relevant morphological descriptors) varies from site to site, and increases with increasing vehicle specific power that represents the driving/engine load conditions, and with increasing percentage of vehicles older than 15 years. Our results suggest that driving conditions, and vehicle age and type have significant influence on the morphology of soot particles.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... characters, without prior registration, using the eComment system at http://www.ferc.gov/docs-filing/ecomment... applicant proposes to construct a 20-ft wide and approximately 187-ft long concrete boat ramp with courtesy dock on each side of the ramp. Ninety-four feet of the proposed boat ramp will be within the project...
NASA Technical Reports Server (NTRS)
Smith, S. D.
1984-01-01
A users manual for the RAMP2 computer code is provided. The RAMP2 code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. The general structure and operation of RAMP2 are discussed. A user input/output guide for the modified TRAN72 computer code and the RAMP2F code is given. The application and use of the BLIMPJ module are considered. Sample problems involving the space shuttle main engine and motor are included.
2. Overview showing Medical Detachment Barracks on both Ramp No. ...
2. Overview showing Medical Detachment Barracks on both Ramp No. 5 (left buildings) and Ramp No. 6 (right buildings). View is to west from roof of Corridor A. Note that a pedestrian sidewalk separates buildings instead of a street for automobiles. In left foreground is the north end of Building No. 9962-B; followed by the north B-sides of Buildings Nos. 9963, 9964, 9965, 9966, 9967 and 9968 on Ramp No. 5. Large white building in far distance is a barracks on the other side of Wilson Avenue. - Madigan Hospital, Medical Detachment Barracks, Bounded by Wilson & McKinley Avenues & Garfield & Lincoln Streets, Tacoma, Pierce County, WA
NASA Astrophysics Data System (ADS)
Xing, Yao; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Zhu, Jianjun; Chen, Ping; Yang, Jing; Liu, Wei; Liang, Feng; Liu, Shuangtao; Zhang, Liqun; Wang, Wenjie; Li, Mo; Zhang, Yuantao; Du, Guotong
2018-05-01
In InGaN/GaN multi-quantum wells (MQWs), a low temperature cap (LT-cap) layer is grown between the InGaN well layer and low temperature GaN barrier layer. During the growth, a temperature ramp-up and ramp-down process is added between LT-cap and barrier layer growth. The effect of temperature ramp-up time duration on structural and optical properties of quantum wells is studied. It is found that as the ramp-up time increases, the Indium floating layer on the top of the well layer can be diminished effectively, leading to a better interface quality between well and barrier layers, and the carrier localization effect is enhanced, thereby the internal quantum efficiency (IQE) of QWs increases surprisingly. However, if the ramp-up time is too long, the carrier localization effect is weaker, which may increase the probabilities of carriers to meet with nonradiative recombination centers. Meanwhile, more nonradiative recombination centers will be introduced into well layers due to the indium evaporation. Both of them will lead to a reduction of internal quantum efficiency (IQE) of MQWs.
Terra, Silvia R; Cardoso, João Carlos R; Félix, Rute C; Martins, Leo Anderson M; Souza, Diogo Onofre G; Guma, Fatima C R; Canário, Adelino Vicente M; Schein, Vanessa
2015-03-05
Stanniocalcin 1 (STC1) and calcitonin gene-related peptide (CGRP) are involved in bone formation/remodeling. Here we investigate the effects of STC1 on functional heterodimer complex CALCRL/RAMP1, expression and activity during osteoblastogenesis. STC1 did not modify CALCRL and ramp1 gene expression during osteoblastogenesis when compared to controls. However, plasma membrane spatial distribution of CALCRL/RAMP1 was modified in 7-day pre-osteoblasts exposed to either CGRP or STC1, and both peptides induced CALCRL and RAMP1 assembly. CGRP, but not STC1 stimulated cAMP accumulation in 7-day osteoblasts and in CALCRL/RAMP1 transfected HEK293 cells. Furthermore, STC1 inhibited forskolin stimulated cAMP accumulation of HEK293 cells, but not in CALCRL/RAMP1 transfected HEK293 cells. However, STC1 inhibited cAMP accumulation in calcitonin receptor (CTR) HEK293 transfected cells stimulated by calcitonin. In conclusion, STC1 signals through inhibitory G-protein modulates CGRP receptor spatial localization during osteoblastogenesis and may function as a regulatory factor interacting with calcitonin peptide members during bone formation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Almeida, Pedro; Tomas, Ricardo; Rosas, Filipe; Duarte, Joao; Terrinha, Pedro
2015-04-01
Different modes of strain accommodation affecting a deformable hanging-wall in a flat-ramp-flat thrust system were previously addressed through several (sandbox) analog modeling studies, focusing on the influence of different variables, such as: a) thrust ramp dip angle and friction (Bonini et al, 2000); b) prescribed thickness of the hanging-wall (Koy and Maillot, 2007); and c) sin-thrust erosion (compensating for topographic thrust edification, e.g. Persson and Sokoutis, 2002). In the present work we reproduce the same experimental procedure to investigate the influence of two different parameters on hanging-wall deformation: 1) the geometry of the thrusting surface; and 2) the absence of a velocity discontinuity (VD) that is always present in previous similar analogue modeling studies. Considering the first variable we use two end member ramp geometries, flat-ramp-flat and convex-concave, to understand the control exerted by the abrupt ramp edges in the hanging-wall stress-strain distribution, comparing the obtain results with the situation in which such edge singularities are absent (convex-concave thrust ramp). Considering the second investigated parameter, our motivation was the recognition that the VD found in the different analogue modeling settings simply does not exist in nature, despite the fact that it has a major influence on strain accommodation in the deformable hanging-wall. We thus eliminate such apparatus artifact from our models and compare the obtained results with the previous ones. Our preliminary results suggest that both investigated variables play a non-negligible role on the structural style characterizing the hanging-wall deformation of convergent tectonic settings were such thrust-ramp systems were recognized. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013. Pedro Almeida wants to thank to FCT for the Ph.D. grant (SFRH/BD/52556/2014) under the Doctoral Program EarthSystems in IDL/UL. References Bonini, M., Sokoutis, D., Mulugeta, G., Katrivanos, E. (2000) - Modelling hanging wall accommodation above rigid thrust ramps. Journal of Structural Geology, 22, pp. 1165-1179. Persson, K. & Sokoutis, D (2002) - Analogue models of orogenic wedges controlled by erosion. Tectonophysics, 356, pp. 323- 336. Koy, H. & Bertrand, M. (2007) - Tectonic thickening of hanging-wall units over a ramp.Journal of Structural Geology, 29, pp. 924-932.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yifan; Apai, Dániel; Schneider, Glenn
The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium . We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this processmore » that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam ) may also benefit from the extension of this model if similar systematic profiles are observed.« less
NASA Astrophysics Data System (ADS)
Zhou, Yifan; Apai, Dániel; Lew, Ben W. P.; Schneider, Glenn
2017-06-01
The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.
Loodts, V; Trevelyan, P M J; Rongy, L; De Wit, A
2016-10-01
Various spatial density profiles can develop in partially miscible stratifications when a phase A dissolves with a finite solubility into a host phase containing a dissolved reactant B. We investigate theoretically the impact of an A+B→C reaction on such density profiles in the host phase and classify them in a parameter space spanned by the ratios of relative contributions to density and diffusion coefficients of the chemical species. While the density profile is either monotonically increasing or decreasing in the nonreactive case, reactions combined with differential diffusivity can create eight different types of density profiles featuring up to two extrema in density, at the reaction front or below it. We use this framework to predict various possible hydrodynamic instability scenarios inducing buoyancy-driven convection around such reaction fronts when they propagate parallel to the gravity field.
NASA Technical Reports Server (NTRS)
Olson, D. W.; Silk, J.
1979-01-01
This paper studies the density profile that forms around a spherically symmetric bound central core immersed in a homogeneous-background k = 0 or k = -1 Friedmann-Robertson-Walker cosmological model, with zero pressure. Although the density profile in the linearized regime is almost arbitrary, in the nonlinear regime certain universal features of the density profile are obtained that are independent of the details of the initial conditions. The formation of 'halos' ('holes') with densities greater than (less than) the average cosmological density is discussed. It is shown that in most regions 'halos' form, and universal values are obtained for the slope of the ln (density)-ln (radius) profile in those 'halos' at late times, independently of the shape of the initial density profile. Restrictions are derived on where it is possible for 'holes' to exist at late times and on how such 'holes' must have evolved.
NASA Astrophysics Data System (ADS)
McAuliffe, L. J.; Dolan, J. F.; Hubbard, J.; Shaw, J. H.
2011-12-01
The recent occurrence of several destructive thrust fault earthquakes highlights the risks posed by such events to major urban centers around the world. In order to determine the earthquake potential of such faults in the western Transverse Ranges of southern California, we are studying the activity and paleoearthquake history of the blind Ventura and western San Cayetano faults through a multidisciplinary analysis of strata that have been folded above the fault tiplines. These two thrust faults form the middle section of a >200-km-long, east-west belt of large, interconnected reverse faults that extends across southern California. Although each of these faults represents a major seismic source in its own right, we are exploring the possibility of even larger-magnitude, multi-segment ruptures that may link these faults to other major faults to the east and west in the Transverse Ranges system. The proximity of this large reverse-fault system to several major population centers, including the metropolitan Los Angeles region, and the potential for tsunami generation during offshore ruptures of the western parts of the system, emphasizes the importance of understanding the behavior of these faults for seismic hazard assessment. During the summer of 2010 we used a mini-vibrator source to acquire four, one- to three-km-long, high-resolution seismic reflection profiles. The profiles were collected along the locus of active folding above the blind, western San Cayetano and Ventura faults - specifically, across prominent fold scarps that have developed in response to recent slip on the underlying thrust ramps. These high-resolution data overlap with the uppermost parts of petroleum-industry seismic reflection data, and provide a near-continuous image of recent folding from several km depth to within 50-100 m of the surface. Our initial efforts to document the earthquake history and slip-rate of this large, multi-fault reverse fault system focus on a site above the blind, western San Cayetano thrust ramp. At Briggs Road ~14 km east of Ventura, a high-resolution profile across the locus of recent folding reveals a well-defined north-dipping active synclinal axial surface in growth strata that extends to the surface at a prominent south-facing fold scarp lying at the topographic range front. During August 2011, we drilled 11 hollow-stem boreholes and cone-penetrometer tests along the same alignment as the reflection profile, providing overlap between the data sets. Preliminary analysis of the borehole data reveals a fine-grained section dominated by thinly bedded silts and sands. The absence of any well-developed soils within the upper 20 m, coupled with at least 15 m of structural growth within this section, suggests a rapid slip rate that we will quantify with radiocarbon dating of detrital charcoal and several buried organic-rich A horizons. Collectively, we anticipate that these borehole and high-resolution seismic reflection data will yield a detailed record of the fold growth during recent large earthquakes at this site, which will in turn allow us to reconstruct the paleoseismic history of the underlying blind thrust ramp.
PDR with a Foot-Mounted IMU and Ramp Detection
Jiménez, Antonio R.; Seco, Fernando; Zampella, Francisco; Prieto, José C.; Guevara, Jorge
2011-01-01
The localization of persons in indoor environments is nowadays an open problem. There are partial solutions based on the deployment of a network of sensors (Local Positioning Systems or LPS). Other solutions only require the installation of an inertial sensor on the person’s body (Pedestrian Dead-Reckoning or PDR). PDR solutions integrate the signals coming from an Inertial Measurement Unit (IMU), which usually contains 3 accelerometers and 3 gyroscopes. The main problem of PDR is the accumulation of positioning errors due to the drift caused by the noise in the sensors. This paper presents a PDR solution that incorporates a drift correction method based on detecting the access ramps usually found in buildings. The ramp correction method is implemented over a PDR framework that uses an Inertial Navigation algorithm (INS) and an IMU attached to the person’s foot. Unlike other approaches that use external sensors to correct the drift error, we only use one IMU on the foot. To detect a ramp, the slope of the terrain on which the user is walking, and the change in height sensed when moving forward, are estimated from the IMU. After detection, the ramp is checked for association with one of the existing in a database. For each associated ramp, a position correction is fed into the Kalman Filter in order to refine the INS-PDR solution. Drift-free localization is achieved with positioning errors below 2 meters for 1,000-meter-long routes in a building with a few ramps. PMID:22163701
Density control in ITER: an iterative learning control and robust control approach
NASA Astrophysics Data System (ADS)
Ravensbergen, T.; de Vries, P. C.; Felici, F.; Blanken, T. C.; Nouailletas, R.; Zabeo, L.
2018-01-01
Plasma density control for next generation tokamaks, such as ITER, is challenging because of multiple reasons. The response of the usual gas valve actuators in future, larger fusion devices, might be too slow for feedback control. Both pellet fuelling and the use of feedforward-based control may help to solve this problem. Also, tight density limits arise during ramp-up, due to operational limits related to divertor detachment and radiative collapses. As the number of shots available for controller tuning will be limited in ITER, in this paper, iterative learning control (ILC) is proposed to determine optimal feedforward actuator inputs based on tracking errors, obtained in previous shots. This control method can take the actuator and density limits into account and can deal with large actuator delays. However, a purely feedforward-based density control may not be sufficient due to the presence of disturbances and shot-to-shot differences. Therefore, robust control synthesis is used to construct a robustly stabilizing feedback controller. In simulations, it is shown that this combined controller strategy is able to achieve good tracking performance in the presence of shot-to-shot differences, tight constraints, and model mismatches.
NASA Astrophysics Data System (ADS)
Tsujii, N.; Takase, Y.; Ejiri, A.; Shinya, T.; Togashi, H.; Yajima, S.; Yamazaki, H.; Moeller, C. P.; Roidl, B.; Sonehara, M.; Takahashi, W.; Toida, K.; Yoshida, Y.
2017-12-01
Non-inductive plasma start-up is a critical issue for spherical tokamaks since there is not enough room to provide neutron shielding for the center solenoid. Start-up using lower hybrid (LH) waves has been studied on the TST-2 spherical tokamak. Because of the low magnetic field of a spherical tokamak, the plasma density needs to be kept at a very low value during the plasma current ramp-up so that the plasma core remains accessible to the LH waves. However, we have found that higher density was required to sustain larger plasma current. The achievable plasma current was limited by the maximum operational toroidal field of TST-2. The existence of an optimum density for LH current drive and its toroidal field dependence is explained through a numerical simulation based on a ray tracing code and a Fokker-Planck solver. In order to access higher density at the same magnetic field, a top-launch antenna was recently installed in addition to the existing outboard-launch antenna. Increase in the density limit was observed when the power was launched from the top antenna, consistently with the numerical predictions.
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
Fratanduono, Dayne E.; Coppari, Federica; Newman, Matthew G.; Duffy, Thomas S.
2018-01-01
The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-Si alloy with 7 weight % (wt %) Si adopts the hexagonal close-packed structure over the measured pressure range, whereas Fe-15wt%Si is observed in a body-centered cubic structure. This study represents the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3–Earth mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for these planets. PMID:29707632
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.; ...
2018-04-25
In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.
In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less
Trains of electron micro-bunches in plasma wake-field acceleration
NASA Astrophysics Data System (ADS)
Lécz, Zsolt; Andreev, Alexander; Konoplev, Ivan; Seryi, Andrei; Smith, Jonathan
2018-07-01
Plasma-based charged particle accelerators have been intensively investigated in the past three decades due to their capability to open up new horizons in accelerator science and particle physics yielding electric field accelerating gradient more than three orders of magnitudes higher than in conventional devices. At the current stage the most advanced and reliable mechanism for accelerating electrons is based on the propagation of an intense laser pulse or a relativistic electron beam in a low density gaseous target. In this paper we concentrate on the electron beam-driven plasma wake-field acceleration and demonstrate using 3D PiC simulations that a train of electron micro-bunches with ∼10 fs period can be generated behind the driving beam propagating in a density down-ramp. We will discuss the conditions and properties of the micro-bunches generated aiming at understanding and study of multi-bunch mechanism of injection. It is show that the periodicity and duration of micro-bunches can be controlled by adjusting the plasma density gradient and driving beam charge.
Density profile and fiber alignment in fiberboard from three southern hardwoods
George E. Woodson
1977-01-01
Density profile and fiber orientation were evaluated for their effects on selected mechanical properties of medium density fiberboard. Bending MOE and modulus of rigidity were predicted from density profiles established by x-ray radiography. Orthotropic ratios ranged from 1.19 to 2.32 for electrically aligned fiberboards from three southern hardwoods. Off-axis tensile...
NASA Astrophysics Data System (ADS)
Li, Y.; Zhao, L.; Chen, Z.; Chen, J.; Chen, Y.
2013-12-01
Rare-earth elements (REEs) can provide information regarding the influence of weathering fluxes and hydrothermal inputs on seawater chemistry as well as processes that fractionate REEs between solid and aqueous phases. Of these, cerium (Ce) distributions may provide information about variations in dissolved oxygen in seawater, and thus assess the redox conditions. The short residence times of REEs in seawater (~300-1,000 yr) can result in unique REE signatures in local watermasses. REE patterns preserved in biogenic apatite such as conodonts are ideal proxies for revealing original seawater chemistry. Here, we measured the REE content of in-situ, single albid crowns using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in combination with an ArF (λ=193 nm) excimer laser (Lambda Physiks GeoLas 2005) and quadrupole ICP-MS (Agilent 7500a). LA-ICP-MS is ideally suited for analyzing conodonts due to its ability to measure compositional variation within single conodont elements. It has the capability to determine, with high spatial resolution, continuous compositional depth profiles through the concentric layered structure of component histologies. To evaluate paleoceanographic conditions immediately after the Permian-Triassic (P-Tr) mass extinction in various depositional settings, we sampled a nearly contemporaneous strata unit, the P-Tr boundary bed, just above the extinction horizon from six sections in South China. They represent various depositional settings from shelf basin (Chaohu and Daxiakou sections), lower part of ramp (Meishan section), normal shallow platform (Yangou section), and platform microbialite (Chongyang and Xiushui sections). The sampled unit is constrained by conodonts Hindeodus changxingensis, H. parvus, and H. staeschei Zones in Meishan. REE results obtained from conodont albid crowns show that the seawater in lower ramp and shelf basin settings contains much higher REE concentrations than that in shallow platform. Ce/Ce* ratios in shelf basin and lower ramp are similar to one another, ranging from 0.7-1.0. The same ratios, however, are much lower in shallow platform and microbialite settings, ranging from 0.17-0.22 and 0.2-0.45, respectively. Eu/Eu+ ratios also show similar patterns: 0.7-1.0 in shelf basin and lower ramp and 0.3-0.7 in shallow platform. If the Ce/Ce* was truly influenced by environmental redox conditions, then Ce/Ce* values of 0.7-1.0 in shelf basin and lower ramp settings are indicative of a suboxic to anoxic depositional system, while the same proxy of 0.17-0.45 in shallow platform and microbialite points to a well-oxygenated setting immediately after the P-Tr mass extinction.
Optimization of the cooling profile to achieve crack-free Yb:S-FAP crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, H; Qiu, S; Kheng, L
Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F] crystals are an important gain medium for diode-pumped laser applications. Growth of 7.0 cm diameter Yb:S-FAP crystals utilizing the Czochralski (CZ) method from SrF{sub 2}-rich melts often encounter cracks during the post growth cool down stage. To suppress cracking during cool down, a numerical simulation of the growth system was used to understand the correlation between the furnace power during cool down and the radial temperature differences within the crystal. The critical radial temperature difference, above which the crystal cracks, has been determined by benchmarking the simulation results against experimental observations. Based on thismore » comparison, an optimal three-stage ramp-down profile was implemented and produced high quality, crack-free Yb:S-FAP crystals.« less
NASA Astrophysics Data System (ADS)
Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Xu, L. Q.; Chen, R.; Li, Q.; Zhao, H. L.; Zhang, J. Z.; Shi, T. H.; Wang, Y. M.; Lyu, B.; Hu, L. Q.; Li, J.; The EAST Team
2018-01-01
In this paper, we present clear experimental evidence of core region nonlinear coupling between (intermediate, small)-scale microturbulence and an magnetohydrodynamics (MHD) mode during the current ramp-down phase in a set of L-mode plasma discharges in the experimental advanced superconducting tokamak (EAST, Wan et al (2006 Plasma Sci. Technol. 8 253)). Density fluctuations of broadband microturbulence (k\\perpρi˜2{-}5.2 ) and the MHD mode (toroidal mode number m = -1 , poloidal mode number n = 1 ) are measured simultaneously, using a four-channel tangential CO2 laser collective scattering diagnostic in core plasmas. The nonlinear coupling between the broadband microturbulence and the MHD mode is directly demonstrated by showing a statistically significant bicoherence and modulation of turbulent density fluctuation amplitude by the MHD mode.
29 CFR 1918.25 - Bridge plates and ramps (See also § 1918.86).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Bridge plates and ramps (See also § 1918.86). 1918.25... Means of Access § 1918.25 Bridge plates and ramps (See also § 1918.86). (a) Bridge and car plates (dockboards). Bridge and car plates used afloat shall be well maintained and shall: (1) Be strong enough to...
DOT National Transportation Integrated Search
2008-12-01
Programmable logic controllers (PLCs) were installed at several key ramps with the assistance of the City of Portland and used to capture additional data about ramp operations that are not otherwise logged. The data include include the activation and...
40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test engines using discrete... MARINE ENGINES AND VESSELS Test Procedures § 1045.505 How do I test engines using discrete-mode or ramped... allow you to perform tests with either discrete-mode or ramped-modal sampling. You must use the modal...
29 CFR 1918.25 - Bridge plates and ramps (See also § 1918.86).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Bridge plates and ramps (See also § 1918.86). 1918.25... Means of Access § 1918.25 Bridge plates and ramps (See also § 1918.86). (a) Bridge and car plates (dockboards). Bridge and car plates used afloat shall be well maintained and shall: (1) Be strong enough to...
Hutchinson, Michael J; Paulson, Thomas A W; Eston, Roger; Goosey-Tolfrey, Victoria L
2017-01-01
To examine the reliability of a perceptually-regulated maximal exercise test (PRETmax) to measure peak oxygen uptake ([Formula: see text]) during handcycle exercise and to compare peak responses to those derived from a ramp-incremented protocol (RAMP). Twenty recreationally active individuals (14 male, 6 female) completed four trials across a 2-week period, using a randomised, counterbalanced design. Participants completed two RAMP protocols (20 W·min-1) in week 1, followed by two PRETmax in week 2, or vice versa. The PRETmax comprised five, 2-min stages clamped at Ratings of Perceived Exertion (RPE) 11, 13, 15, 17 and 20. Participants changed power output (PO) as often as required to maintain target RPE. Gas exchange variables (oxygen uptake, carbon dioxide production, minute ventilation), heart rate (HR) and PO were collected throughout. Differentiated RPE were collected at the end of each stage throughout trials. For relative [Formula: see text], coefficient of variation (CV) was equal to 4.1% and 4.8%, with ICC(3,1) of 0.92 and 0.85 for repeated measures from PRETmax and RAMP, respectively. Measurement error was 0.15 L·min-1 and 2.11 ml·kg-1·min-1 in PRETmax and 0.16 L·min-1 and 2.29 ml·kg-1·min-1 during RAMP for determining absolute and relative [Formula: see text], respectively. The difference in [Formula: see text] between PRETmax and RAMP was tending towards statistical significance (26.2 ± 5.1 versus 24.3 ± 4.0 ml·kg-1·min-1, P = 0.055). The 95% LoA were -1.9 ± 4.1 (-9.9 to 6.2) ml·kg-1·min-1. The PRETmax can be used as a reliable test to measure [Formula: see text] during handcycle exercise in recreationally active participants. Whilst PRETmax tended towards significantly greater [Formula: see text] values than RAMP, the difference is smaller than measurement error of determining [Formula: see text] from PRETmax and RAMP.
[Prediction and influence factors of the ramp's noise of the entrance or exit of garages].
Di, Guo-Qing; Zhang, Bang-Jun
2005-09-01
Some typical entrances/exits of the underground garages are chosen in urban residential areas. On the basis of the optimization of the positions of the noise sampling points and the groupings of the synchronous sampling points, by means of the acoustical analysis of the noise samples, the relation of the correlative factors, among the ramps' noise of the entrances or exits of the garages, the structure, grade, shape of the ramps, upgrade and downgrade, is studied. The prediction model of the ramp's noise influence of the entrance or exit of the garage is established through amending the noise influence of the entrance or exit of the even concrete road.
Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA
2008-02-26
A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.
Shock formation and the ideal shape of ramp compression waves
NASA Astrophysics Data System (ADS)
Swift, Damian C.; Kraus, Richard G.; Loomis, Eric N.; Hicks, Damien G.; McNaney, James M.; Johnson, Randall P.
2008-12-01
We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long-duration ramps are desired.
Plasma-Assisted Control of Mach-2 Flowfield over Ramp Geometry
NASA Astrophysics Data System (ADS)
Watanabe, Yasumasa; Leonov, Sergey B.; Houpt, Alec; Hedlund, Brock E.; Elliott, Skye
2017-10-01
This study examined the effect of Reynolds number on plasma-assisted flow control ahead of a compression ramp geometry in Mach-2 supersonic flow. The experiments were conducted in the supersonic wind tunnel SBR-50 at the University of Notre Dame. Stagnation temperature and pressure were varied as T0=294-500K and P0=1-3bar to attain Reynolds number ranging from 3.4×105-2.2×106. Ramp pressure measurements, schlieren visualization, and high-speed camera imaging were used for the evaluation of plasma-assisted flow control effects. A linear dependency was found between the ramp pressure change per averaged plasma power and Reynolds number.
Trunk density profile estimates from dual X-ray absorptiometry.
Wicke, Jason; Dumas, Geneviève A; Costigan, Patrick A
2008-01-01
Accurate body segment parameters are necessary to estimate joint loads when using biomechanical models. Geometric methods can provide individualized data for these models but the accuracy of the geometric methods depends on accurate segment density estimates. The trunk, which is important in many biomechanical models, has the largest variability in density along its length. Therefore, the objectives of this study were to: (1) develop a new method for modeling trunk density profiles based on dual X-ray absorptiometry (DXA) and (2) develop a trunk density function for college-aged females and males that can be used in geometric methods. To this end, the density profiles of 25 females and 24 males were determined by combining the measurements from a photogrammetric method and DXA readings. A discrete Fourier transformation was then used to develop the density functions for each sex. The individual density and average density profiles compare well with the literature. There were distinct differences between the profiles of two of participants (one female and one male), and the average for their sex. It is believed that the variations in these two participants' density profiles were a result of the amount and distribution of fat they possessed. Further studies are needed to support this possibility. The new density functions eliminate the uniform density assumption associated with some geometric models thus providing more accurate trunk segment parameter estimates. In turn, more accurate moments and forces can be estimated for the kinetic analyses of certain human movements.
NASA Technical Reports Server (NTRS)
Hawkins, J. E.
1980-01-01
A 0.15 scale model of a proposed conformal variable-ramp inlet for the Multirole Fighter was tested from Mach 0.8 to 2.2 at a wide range of angles of attack and sideslip. Inlet ramp angle was varied to optimize ramp angle as a function of engine airflow, Mach number, angle of attack, and angle of sideslip. Several inlet configuration options were investigated to study their effects on inlet operation and to establish the final flight configuration. These variations were cowl sidewall cutback, cowl lip bluntness, boundary layer bleed, and first-ramp leading edge shape. Diagnostic and engine face instrumentation were used to evaluate inlet operation at various inlet stations and at the inlet/engine interface. Pressure recovery and stability of the inlet were satisfactory for the proposed application. On the basis of an engine stability audit of the worst-case instantaneous distortion patterns, no inlet/engine compatibility problems are expected for normal operations.
Lloyd, Kevin; Dayan, Peter
2015-01-01
Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning’s temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a) the resolution of uncertainty about the timing of action; (b) the direct influence of dopamine over mechanisms associated with making choices; and (c) a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps. PMID:26699940
DOT National Transportation Integrated Search
2008-12-01
Programmable logic controllers (PLCs) were installed at several key ramps with the assistance of the City of Portland and used to capture additional data about ramp operations that are not otherwise logged. The data include the activation and deactiv...
Numerical investigation of over expanded flow behavior in a single expansion ramp nozzle
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Mahmood; Pourabidi, Reza; Goshtasbi-Rad, Ebrahim
2018-05-01
The single expansion ramp nozzle is severely over-expanded when the vehicle is at low speed, which hinders its ability to provide optimal configurations for combined cycle engines. The over-expansion leads to flow separation as a result of shock wave/boundary-layer interaction. Flow separation, and the presence of shocks themselves, result in a performance loss in the single expansion ramp nozzle, leading to reduced thrust and increased pressure losses. In the present work, the unsteady two dimensional compressible flow in an over expanded single expansion ramp nozzle has been investigated using finite volume code. To achieve this purpose, the Reynolds stress turbulence model and full multigrid initialization, in addition to the Smirnov's method for examining the errors accumulation, have been employed and the results are compared with available experimental data. The results show that the numerical code is capable of predicting the experimental data with high accuracy. Afterward, the effect of discontinuity jump in wall temperature as well as the length of straight ramp on flow behavior have been studied. It is concluded that variations in wall temperature and length of straight ramp change the shock wave boundary layer interaction, shock structure, shock strength as well as the distance between Lambda shocks.
Two-Dimensional Supersonic Nozzle Thrust Vectoring Using Staggered Ramps
NASA Astrophysics Data System (ADS)
Montes, Carlos Fernando
A novel mechanism for vectoring the thrust of a supersonic, air-breathing engine was analyzed numerically using ANSYS Fluent. The mechanism uses two asymmetrically staggered ramps; one placed at the throat, the other positioned at the exit lip of the nozzle. The nozzle was designed using published flow data, isentropic relationships, and piecewise quartic splines. The design was verified numerically and was in fair agreement with the analytical data. Using the steady-state pressure-based solver, along with the realizable kappa - epsilon turbulence model, a total of eighteen simulations were conducted: three ramp lengths at three angles, using two sets of inlet boundary conditions (non-afterburning and afterburning). The vectoring simulations showed that the afterburning flow yields a lower flow deflection distribution, shown by the calculated average deflection angle and area-weighted integrals of the distributions. The data implies that an aircraft can achieve an average thrust vectoring angle of approximately 30° in a given direction with the longest ramp length and largest ramp angle configuration. With increasing ramp angle, the static pressure across the nozzle inlet increased, causing concern for potential negative effects on the engine's turbine. The mechanism, for which a provisional patent application has been filed, will require further work to investigate the maximum possible thrust vectoring angle, including experiments.
Shock loading and release behavior of silicon nitride
NASA Astrophysics Data System (ADS)
Kawai, Nobuaki; Tsuru, Taiki; Hidaka, Naoto; Liu, Xun; Mashimo, Tsutomu
2015-06-01
Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 GPa and 34.5 GPa, respectively. Below the phase transition point, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by more rapid one. Above the phase transition point, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zhang; Chen, Wei
Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.
Jiang, Zhang; Chen, Wei
2017-11-03
Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.
Modeling the evolution of a ramp-flat-ramp thrust system: A geological application of DynEarthSol2D
NASA Astrophysics Data System (ADS)
Feng, L.; Choi, E.; Bartholomew, M. J.
2013-12-01
DynEarthSol2D (available at http://bitbucket.org/tan2/dynearthsol2) is a robust, adaptive, two-dimensional finite element code that solves the momentum balance and the heat equation in Lagrangian form using unstructured meshes. Verified in a number of benchmark problems, this solver uses contingent mesh adaptivity in places where shear strain is focused (localization) and a conservative mapping assisted by marker particles to preserve phase and facies boundaries during remeshing. We apply this cutting-edge geodynamic modeling tool to the evolution of a thrust fault with a ramp-flat-ramp geometry. The overall geometry of the fault is constrained by observations in the northern part of the southern Appalachian fold and thrust belt. Brittle crust is treated as a Mohr-Coulomb plastic material. The thrust fault is a zone of a finite thickness but has a lower cohesion and friction angle than its surrounding rocks. When an intervening flat separates two distinct sequential ramps crossing different stratigraphic intervals, the thrust system will experience more complex deformations than those from a single thrust fault ramp. The resultant deformations associated with sequential ramps would exhibit a spectrum of styles, of which two end members correspond to ';overprinting' and ';interference'. Reproducing these end-member styles as well as intermediate ones, our models show that the relative importance of overprinting versus interference is a sensitive function of initial fault geometry and hanging wall displacement. We further present stress and strain histories extracted from the models. If clearly distinguishable, they will guide the interpretation of field observations on thrust faults.
NASA Astrophysics Data System (ADS)
Michael, P. C.; Bromberg, L.; van der Laan, D. C.; Noyes, P.; Weijers, H. W.
2016-04-01
High temperature superconducting (HTS) conductor-on-round-core (CORC®) cables have been developed for use in power transmission systems and large high-field magnets. The use of high-current conductors for large-scale magnets reduces system inductance and limits the peak voltage needed for ramped field operation. A CORC® cable contains a large number of RE-Ba2Cu3O7-δ (RE = rare earth) (REBCO) coated conductors, helically wound in multiple layers on a thin, round former. Large-scale applications, such as fusion and accelerator magnets, require current ramp rates of several kilo-Amperes per second during pulsed operation. This paper presents results that demonstrate the electromagnetic stability of a CORC® cable during transient conditions. Measurements were performed at 4.2 K using a 1.55 m long CORC® cable in background fields of up to 19 T. Repeated current pulses in a background field of 19 T at current ramp rates of up to 67.8 kA s-1 to approximately 90% of the cable’s quench current at that field, did not show any sign of degradation in cable performance due to excessive ac loss or electromagnetic instability. The very high current ramp rates applied during these tests were used to compensate, to the extent possible, the limited cable length accommodated by the test facility, assuming that the measured results could be extrapolated to longer length cables operated at proportionally lower current ramp rates. No shift of the superconducting transition to lower current was measured when the current ramp rate was increased from 25 A s-1 to 67.8 kA s-1. These results demonstrate the viability of CORC® cables for use in low-inductance magnets that operate at moderate to high current ramp rates.
Connors, Bret A; Evan, Andrew P; Blomgren, Philip M; Handa, Rajash K; Willis, Lynn R; Gao, Sujuan
2009-01-01
To determine if the starting voltage in a step-wise ramping protocol for extracorporeal shock wave lithotripsy (SWL) alters the size of the renal lesion caused by the SWs. To address this question, one kidney from 19 juvenile pigs (aged 7-8 weeks) was treated in an unmodified Dornier HM-3 lithotripter (Dornier Medical Systems, Kennesaw, GA, USA) with either 2000 SWs at 24 kV (standard clinical treatment, 120 SWs/min), 100 SWs at 18 kV followed by 2000 SWs at 24 kV or 100 SWs at 24 kV followed by 2000 SWs at 24 kV. The latter protocols included a 3-4 min interval, between the 100 SWs and the 2000 SWs, used to check the targeting of the focal zone. The kidneys were removed at the end of the experiment so that lesion size could be determined by sectioning the entire kidney and quantifying the amount of haemorrhage in each slice. The average parenchymal lesion for each pig was then determined and a group mean was calculated. Kidneys that received the standard clinical treatment had a mean (sem) lesion size of 3.93 (1.29)% functional renal volume (FRV). The mean lesion size for the 18 kV ramping group was 0.09 (0.01)% FRV, while lesion size for the 24 kV ramping group was 0.51 (0.14)% FRV. The lesion size for both of these groups was significantly smaller than the lesion size in the standard clinical treatment group. The data suggest that initial voltage in a voltage-ramping protocol does not correlate with renal damage. While voltage ramping does reduce injury when compared with SWL with no voltage ramping, starting at low or high voltage produces lesions of the same approximate size. Our findings also suggest that the interval between the initial shocks and the clinical dose of SWs, in our one-step ramping protocol, is important for protecting the kidney against injury.
Application of Micro-ramp Flow Control Devices to an Oblique Shock Interaction
NASA Technical Reports Server (NTRS)
Hirt, Stefanie; Anderson, Bernhard
2007-01-01
Tests are planned in the 15cm x 15cm supersonic wind tunnel at NASA Glenn to demonstrate the applicability of micro-ramp flow control to the management of shock wave boundary layer interactions. These tests will be used as a database for computational fluid dynamics (CFD) validation and Design of Experiments (DoE) design information. Micro-ramps show potential for mechanically simple and fail-safe boundary layer control.
DOT National Transportation Integrated Search
2008-12-01
The appendix includes various ramp flow and ML speed-flow plots, including: I-205 NB, Gladstone MP 11.05; I-205 NB, Gladstone Hway MP 12.94; I-205 NB, Lawnfield MP 13.58; I-205 NB, Sunnybrook MP 14.32; I-205 NB, Sunnyside MP 14.7; I-205 NB, Johnson C...
Variation in sensitivity, absorption and density of the central rod distribution with eccentricity.
Tornow, R P; Stilling, R
1998-01-01
To assess the human rod photopigment distribution and sensitivity with high spatial resolution within the central +/-15 degrees and to compare the results of pigment absorption, sensitivity and rod density distribution (number of rods per square degree). Rod photopigment density distribution was measured with imaging densitometry using a modified Rodenstock scanning laser ophthalmoscope. Dark-adapted sensitivity profiles were measured with green stimuli (17' arc diameter, 1 degrees spacing) using a T ubingen manual perimeter. Sensitivity profiles were plotted on a linear scale and rod photopigment optical density distribution profiles were converted to absorption profiles of the rod photopigment layer. Both the absorption profile of the rod photopigment and the linear sensitivity profile for green stimuli show a minimum at the foveal center and increase steeply with eccentricity. The variation with eccentricity corresponds to the rod density distribution. Rod photopigment absorption profiles, retinal sensitivity profiles, and the rod density distribution are linearly related within the central +/-15 degrees. This is in agreement with theoretical considerations. Both methods, imaging retinal densitometry using a scanning laser ophthalmoscope and dark-adapted perimetry with small green stimuli, are useful for assessing the central rod distribution and sensitivity. However, at present, both methods have limitations. Suggestions for improving the reliability of both methods are given.
Characterizing Intra-Urban Air Quality Gradients with a Spatially-Distributed Network
NASA Astrophysics Data System (ADS)
Zimmerman, N.; Ellis, A.; Schurman, M. I.; Gu, P.; Li, H.; Snell, L.; Gu, J.; Subramanian, R.; Robinson, A. L.; Apte, J.; Presto, A. A.
2016-12-01
City-wide air pollution measurements have typically relied on regulatory or research monitoring sites with low spatial density to assess population-scale exposure. However, air pollutant concentrations exhibit significant spatial variability depending on local sources and features of the built environment, which may not be well captured by the existing monitoring regime. To better understand urban spatial and temporal pollution gradients at 1 km resolution, a network of 12 real-time air quality monitoring stations was deployed beginning July 2016 in Pittsburgh, PA. The stations were deployed at sites along an urban-rural transect and in urban locations with a range of traffic, restaurant, and tall building densities to examine the impact of various modifiable factors. Measurements from the stationary monitoring stations were further supported by mobile monitoring, which provided higher spatial resolution pollutant measurements on nearby roadways and enabled routine calibration checks. The stationary monitoring measurements comprise ultrafine particle number (Aerosol Dynamics "MAGIC" CPC), PM2.5 (Met One Neighborhood PM Monitor), black carbon (Met One BC 1050), and a new low-cost air quality monitor, the Real-time Affordable Multi-Pollutant (RAMP) sensor package for measuring CO, NO2, SO2, O3, CO2, temperature and relative humidity. High time-resolution (sub-minute) measurements across the distributed monitoring network enable insight into dynamic pollutant behaviour. Our preliminary findings show that our instruments are sensitive to PM2.5 gradients exceeding 2 micro-grams per cubic meter and ultrafine particle gradients exceeding 1000 particles per cubic centimeter. Additionally, we have developed rigorous calibration protocols to characterize the RAMP sensor response and drift, as well as multiple linear regression models to convert sensor response into pollutant concentrations that are comparable to reference instrumentation.
Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar data
NASA Astrophysics Data System (ADS)
Cherniak, Iurii; Zakharenkova, Irina
The COSMIC/FORMOSAT-3 is a joint US/Taiwan radio occultation mission consisting of six identical micro-satellites. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric RO measurements. FS3/COSMIC data can make a positive impact on global ionosphere study providing essential information about height electron density distribu-tion. For correct using of the RO electron density profiles for geophysical analysis, modeling and other applications it is necessary to make validation of these data with electron density distributions obtained by another measurement techniques such as proven ground based facili-ties -ionosondes and IS radars. In fact as the ionosondes provide no direct information on the profile above the maximum electron density and the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC RO measurements can make an important contribution to the investigation of the topside part of the ionosphere. IS radars provide information about the whole electron density profile, so we can estimate the agreement of topside parts between two independent measurements. To validate the reliability of COS-MIC data we have used the ionospheric electron density profiles derived from IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6N, 36.3E, geomagnetic coordinates: 45.7N, 117.8E). The Kharkiv radar is a sole incoherent scatter facility on the middle latitudes of Eu-ropean region. The radar operates with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power 2.0 MW. The Kharkiv IS radar is able to determine the heights-temporal distribution of ionosphere parameters in height range of 70-1500 km. At the ionosphere in-vestigation by incoherent scatter method there are directly measured the power spectrum (or autocorrelation function) of scattered signal. With using of rather complex procedure of the received signal processing it is possible to estimate the majority of the ionospheric parameters -density and kinetic temperature of electron and main ions, the plasma drift velocity and others. The comparison of RO reveals that usually COSMIC RO profiles are in a rather good agreement with ISR profiles both in the F2 layer peak electron density (NmF2) and the form of profiles. The coincidence of profiles is better in the cases when projection of the ray path of tangent points is closer to the ISR location. It is necessary to note that retrieved electron density profiles should not be interpreted as actual vertical profiles. The geographical location of the ray path tangent points at the top and at the bottom of a profile may differ by several hundred kilometers. So the spatial smearing of data takes place and RO technique represents an image of vertical and horizontal ionospheric structure. That is why the comparison with ground-based data has rather relative character. We derived quantitative parameters to char-acterize the differences of the compared profiles: the peak height difference, the relative peak density difference. Most of the compared profiles agree within error limits, depending on the accuracy of the occultation-and the radar-derived profiles. In general COSMIC RO profiles are in a good agreement with incoherent radar profiles both in the F2 layer peak electron density (NmF2) and the form of the profiles. The coincidence of COSMIC and incoherent radar pro-files is better in the cases when projection of the ray path tangent points is closer to the radar location. COSMIC measurements can be efficiently used to study the topside part of the iono-spheric electron density. To validate the reliability of the COSMIC ionospheric observations it must be done the big work on the analysis and statistical generalization of the huge data array (today the total number of ionospheric occultation is more than 2.300.000), but this technique is a very promising one to retrieve accurate profiles of the ionospheric electron density with ground-based measurements on a global scale. We acknowledge the Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC Data.
The cosmological dependence of cluster density profiles
NASA Technical Reports Server (NTRS)
Crone, Mary M.; Evrard, August E.; Richstone, Douglas O.
1994-01-01
We use N-body simulations to study the shape of mean cluster density and velocity profiles in the nonlinear regime formed via gravitational instability. The dependence of the final structure on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k) varies as k(exp n). Einstein-de Sitter, open (Omega(sub 0) = 0.2 and 0.1) and flat, low density (Omega(sub 0) = 0.2 lambda(sub 0) = 0.8) models are examined, with initial spectral indices n = -2, -1 and 0. For each model, we stack clusters in an appropriately scaled manner to define an average density profile in the nonlinear regime. The profiles are well fit by a power law rho(r) varies as r(exp -alpha) for radii whereat the local density contrast is between 100 and 3000. This covers 99% of the cluster volume. We find a clear trend toward steeper slopes (larger alphas) with both increasing n and decreasing Omega(sub 0). The Omega(sub 0) dependence is partially masked by the n dependence; there is degeneracy in the values of alpha between the Einstein-de Sitter and flat, low-density cosmologies. However, the profile slopes in the open models are consistently higher than the Omega = 1 values for the range of n examined. Cluster density profiles are thus potentially useful cosmological diagnostics. We find no evidence for a constant density core in any of the models, although the density profiles do tend to flatten at small radii. Much of the flattening is due to the force softening required by the simulations. An attempt is made to recover the unsoftened profiles assuming angular momentum invariance. The recovered profiles in Einstein-de Sitter cosmologies are consistent with a pure power law up to the highest density contrasts (10(exp 6)) accessible with our resolution. The low-density models show significant deviation from a power law above density contrasts approximately 10(exp 5). We interpret this curvature as reflecting the non-scale-invariant nature of the background cosmology in these models. These results are at the limit of our resolution and so should be tested in the future using simulations with larger numbers of particles. Such simulations will also provide insight on the broader problem of understanding, in a statistical sense, the full phase space structure of collapsed, cosmological halos.
Yamamoto, Michihiro; Zaima, Masazumi; Yamamoto, Hidekazu; Harada, Hideki; Kawamura, Junichiro; Yamada, Masahiro; Yazawa, Tekefumi; Kawasoe, Junya
2017-12-02
For left-sided pancreatic ductal adenocarcinoma (PDAC), radical antegrade modular pancreatosplenectomy (RAMPS) is a reasonable surgical approach for tumor-free margin resection and systemic lymph node clearance. In pancreaticoduodenectomy for PDAC, the superior mesenteric artery (SMA)-first approach (or the "artery-first approach") has become the standard procedure. With improvements in laparoscopic instruments and techniques, some surgeons attempted to apply laparoscopic RAMPS (L-RAMPS) for carefully selected patients with left-sided PDAC. However, owing to several technical difficulties in this procedure, its application remains uncommon. Moreover, the artery-first approach in L-RAMPS has not been reported. Here, we developed the artery-first approach L-RAMPS for left-sided PDAC and have presented the same in this report. Between June 2014 and July 2015, 16 patients with left-sided PDAC were referred to our division for pancreatic resection. The following technique was used for performing L-RAMPS on 3 of the 16 patients (19%). Six trocars were placed. After opening the omental bursa, only the middle segment of the pancreas was initially separated from both the left renal vein and the SMA. We termed this procedure as the "artery-first approach using a dome-shaped dorsomedial dissection (3D) technique." This 3D technique enabled the interruption of the entire arterial supply to the specimen while preserving the venous drainage through the splenic vein for preventing venous congestion. The technique also contributed to the early detection of no tumor infiltration into the SMA and the early determination of posterior dissection plane. After pancreatic neck transection, the splenic artery and vein were divided. Finally, the pancreatic tail and spleen were dissected in a right-to-left direction. All operations were completed without any intraoperative complications. The median blood loss and retrieved lymph node count were 75 mL and 37, respectively, which were superior to those reported by other previous studies on L-RAMPS. All resection margins were free of carcinoma. No severe postoperative complications were observed. The artery-first approach L-RAMPS using 3D technique is safe and feasible to perform. The significance of our proposed procedure is minimal blood loss and precise lymphadenectomy. Therefore, this novel technique may become the preferred treatment for left-sided PDAC in selected cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraga, H.; Mahigashi, N.; Yamada, T.
2008-10-15
Low-density plastic foam filled with liquid deuterium is one of the candidates for inertial fusion target. Density profile and trajectory of 527 nm laser-irradiated planer foam-deuterium target in the acceleration phase were observed with streaked side-on x-ray backlighting. An x-ray imager employing twin slits coupled to an x-ray streak camera was used to simultaneously observe three images of the target: self-emission from the target, x-ray backlighter profile, and the backlit target. The experimentally obtained density profile and trajectory were in good agreement with predictions by one-dimensional hydrodynamic simulation code ILESTA-1D.
Density effects on the electronic contribution to hydrogen Lyman alpha Stark profiles
NASA Astrophysics Data System (ADS)
Motapon, O.
1998-01-01
The quantum unified theory of Stark broadening (Tran Minh et al. 1975, Feautrier et al. 1976) is used to study the density effects on the electronic contribution to the hydrogen Lyman alpha lineshape. The contribution of the first angular momenta to the total profile is obtained by an extrapolation method, and the results agree with other approaches. The comparison made with Vidal et al. (1973) shows a good agreement; and the electronic profile is found to be linear in density for | Delta lambda right | greater than 8 Angstroms for densities below 10(17) cm(-3) , while the density dependence becomes more complex for | Delta lambda right | less than 8 Angstroms. The wing profiles are calculated at various temperatures scaling from 2500 to 40000K and a polynomial fit of these profiles is given.
Exploring how sand ramps respond to Quaternary environmental change in Southern Africa
NASA Astrophysics Data System (ADS)
Rowell, Alex; Thomas, David; Bailey, Richard
2014-05-01
The current climate of southern Africa is particularly complex and interesting due to the interaction of several climatic systems. However, reconstructions of how these systems behaved in the past, and how the environment responded, have been hampered by a general paucity of records and poor chronological control. Sand ramps may provide the potential to improve palaeoenvironmental reconstructions of southern Africa (and beyond). Formed against a topographic barrier, sand ramps include a combination of aeolian, fluvial and colluvial deposits in varying proportions. Therefore, they have the potential to record changes in moisture availability, circulation patterns and sediment supply which can be independently dated using luminescence dating. Nevertheless relatively little attention has been paid to these features and thus the environmental controls on their formation are not yet fully understood. In particular, there is debate as to whether they reflect deposition during a 'window of opportunity' in which high-magnitude, low-frequency events are recorded (Bateman et al. 2012) or whether they record more gradual, cyclic climate change (Bertram, 2003) or even if there is a uniform control on their formation. This research aims to investigate how sand ramps respond to environmental change and what they can tell us about the paleoenvironment of southern Africa. This poster displays preliminary results based on initial field investigation. This confirmed sand ramps to be ubiquitous in southern Africa and that they record a complex interaction of aeolian, fluvial and colluvial deposits which appears to differ between sand ramps. Preliminary luminescence dating results and sedimentology are displayed for two sand ramps, one from south west Namibia the other from the Karoo region of South Africa.
Allen, Jessica L; Chown, Steven L; Janion-Scheepers, Charlene; Clusella-Trullas, Susana
2016-01-01
Abstract Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3–0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species’ vulnerability to climate change using a warming tolerance approach. PMID:27933165
Effects of onion extract on endogenous vascular H2S and adrenomedulin in rat atherosclerosis.
Li, Wei; Tang, Chaoshu; Jin, Hongfang; Du, Junbao
2011-09-01
This study aimed to explore the effect of onion extract on endogenous hydrogen sulfide (H2S) and adrenomedulin (ADM) and on atherosclerotic progression in rats with atherosclerosis (AS). Male Sprague-Dawley rats were randomly divided into control, AS and AS+onion groups. Ultrastructure of aorta and atherosclerotic lesions both in aorta and in coronary artery were detected. Plasma and aortic H2S were detected by using a sulfide- sensitive electrode. Plasma and aortic ADM was determined with radioimmunoassay. Cystathionine-γ-lyase (CSE), calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein (RAMP1, RAMP2 and RAMP3) mRNA expressions were analysed. Glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO) and NO synthase (NOS) contents in plasma, SOD1, SOD2 and ICAM-1 expressions in aorta were detected. Rats in the AS group showed marked atherosclerotic lesions both in aorta and in coronary artery but decreased aortic H2S production. Decreased plasma and aortic ADM content, but increased levels of aortic CRLR, RAMP2 and RAMP3 mRNAs were observed. Plasma GSH-PX and SOD were reduced but MDA elevated. Plasma ICAM-1 and NO contents and iNOS activity were increased. Onion extract, however, lessened atherosclerotic lesions and increased endogenous aortic H2S production, but decreased plasma ADM content, aortic ADM content and aortic CRLR, RAMP2 and RAMP3 mRNAs. In addition, it increased plasma GSH-PX level and SOD activities but reduced MDA; it decreased inflammatory response but increased plasma eNOS activity and NO content. Onion extract exerted a marked antiatherogenic effect in association with the up-regulation of the endogenous CSE/H2S pathway but down-regulation of the ADM/CRLR family in atherosclerotic rats.
Regulation of Catch Bonds by Rate of Force Application*
Sarangapani, Krishna K.; Qian, Jin; Chen, Wei; Zarnitsyna, Veronika I.; Mehta, Padmaja; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng
2011-01-01
The current paradigm for receptor-ligand dissociation kinetics assumes off-rates as functions of instantaneous force without impact from its prior history. This a priori assumption is the foundation for predicting dissociation from a given initial state using kinetic equations. Here we have invalidated this assumption by demonstrating the impact of force history with single-bond kinetic experiments involving selectins and their ligands that mediate leukocyte tethering and rolling on vascular surfaces during inflammation. Dissociation of bonds between L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) loaded at a constant ramp rate to a constant hold force behaved as catch-slip bonds at low ramp rates that transformed to slip-only bonds at high ramp rates. Strikingly, bonds between L-selectin and 6-sulfo-sialyl Lewis X were impervious to ramp rate changes. This ligand-specific force history effect resembled the effect of a point mutation at the L-selectin surface (L-selectinA108H) predicted to contact the former but not the latter ligand, suggesting that the high ramp rate induced similar structural changes as the mutation. Although the A108H substitution in L-selectin eliminated the ramp rate responsiveness of its dissociation from PSGL-1, the inverse mutation H108A in P-selectin acquired the ramp rate responsiveness. Our data are well explained by the sliding-rebinding model for catch-slip bonds extended to incorporate the additional force history dependence, with Ala-108 playing a pivotal role in this structural mechanism. These results call for a paradigm shift in modeling the mechanical regulation of receptor-ligand bond dissociation, which includes conformational coupling between binding pocket and remote regions of the interacting molecules. PMID:21775439
Allen, Jessica L; Chown, Steven L; Janion-Scheepers, Charlene; Clusella-Trullas, Susana
2016-01-01
Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3-0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species' vulnerability to climate change using a warming tolerance approach.
Vibratory high pressure coal feeder having a helical ramp
Farber, Gerald
1978-01-01
Apparatus and method for feeding powdered coal from a helical ramp into a high pressure, heated, reactor tube containing hydrogen for hydrogenating the coal and/or for producing useful products from coal. To this end, the helical ramp is vibrated to feed the coal cleanly at an accurately controlled rate in a simple reliable and trouble-free manner that eliminates complicated and expensive screw feeders, and/or complicated and expensive seals, bearings and fully rotating parts.
2007-12-01
system can only be precisely determined by examining all the materials used in the mat, their structure , orientation, dimensions, etc. and determining...ER D C/ G SL T R- 07 -3 3 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad...ERDC/GSL TR-07-33 December 2007 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad A
T-Craft Seabase Ramp Loads Model Test Data Report
2010-12-01
INTRODUCTION 1 TEST CONDITION MATRIX 2 MODEL DESCRIPTIONS 9 LMSR Model 15 Ramp Models 17 MODEL TEST SETUP 18 Side-by-Side Hull Configuration 19... INTRODUCTION The Office of Naval Research (ONR) sponsored a multiple bodied seakeeping model test designed to investigate vessel motions and loads on the hinge...C. 3. Side-by-Side configuration 137 Ramp Load cell 1.88 27.49 -CG ft I ^ -Hinged Connection 3.00 from CL to jauge • oad ce LMSR
High precision triangular waveform generator
Mueller, Theodore R.
1983-01-01
An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.
High-precision triangular-waveform generator
Mueller, T.R.
1981-11-14
An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.
NASA Astrophysics Data System (ADS)
Nikiforow, K.; Pennanen, J.; Ihonen, J.; Uski, S.; Koski, P.
2018-03-01
The power ramp rate capabilities of a 5 kW proton exchange membrane fuel cell (PEMFC) system are studied theoretically and experimentally for grid support service applications. The fuel supply is implemented with a fixed-geometry ejector and a discrete control solution without any anode-side pressure fluctuation suppression methods. We show that the stack power can be ramped up from 2.0 kW to 4.0 kW with adequate fuel supply and low anode pressure fluctuations within only 0.1 s. The air supply is implemented with a centrifugal blower. Air supply ramp rates are studied with a power increase executed within 1 and 0.2 s after the request, the time dictated by grid support service requirements in Finland and the UK. We show that a power ramp-up from 2.0 kW to 3.7 kW is achieved within 1 s with an initial air stoichiometry of 2.5 and within 0.2 s with an initial air stoichiometry of 7.0. We also show that the timing of the power ramp-up affects the achieved ancillary power capacity. This work demonstrates that hydrogen fueled and ejector-based PEMFC systems can provide a significant amount of power in less than 1 s and provide valuable ancillary power capacity for grid support services.
Gap Detection in School-Age Children and Adults: Center Frequency and Ramp Duration
Porter, Heather L.; Hall, Joseph W.; Grose, John H.
2017-01-01
Purpose The age at which gap detection becomes adultlike differs, depending on the stimulus characteristics. The present study evaluated whether the developmental trajectory differs as a function of stimulus frequency region or duration of the onset and offset ramps bounding the gap. Method Thresholds were obtained for wideband noise (500–4500 Hz) with 4- or 40-ms raised-cosine ramps and for a 25-Hz-wide low-fluctuation narrowband noise centered on either 500 or 5000 Hz with 40-ms ramps. Stimuli were played continuously at 70 dB SPL, and the task was to indicate which of 3 intervals contained a gap. Listeners were 5.2- to 15.1-year-old children (n = 40) and adults (n = 10) with normal hearing. Results Regardless of listener age, gap detection thresholds for the wideband noise tended to be lower when gaps were shaped using 4-ms rather than 40-ms ramps. Thresholds also tended to be lower for the low-fluctuation narrowband noise centered on 5000 Hz than 500 Hz. Performance reached adult levels after 11 years of age for all 4 stimuli. Maturation was not uniform across individuals, however; a subset of young children performed like adults, including some 5-year-olds. Conclusion For these stimuli, the developmental trajectory was similar regardless of narrowband noise center frequency or wideband noise onset and offset ramp duration. PMID:28056469
NASA Astrophysics Data System (ADS)
Ducati, C.; Barborini, E.; Piseri, P.; Milani, P.; Robertson, J.
2002-11-01
Supersonic cluster beam deposition has been used to produce films with different nanostructures by controlling the deposition parameters such as the film thickness, substrate temperature and cluster mass distribution. The field emission properties of cluster-assembled carbon films have been characterized and correlated to the evolution of the film nanostructure. Threshold fields ranging between 4 and 10 V/mum and saturation current densities as high as 0.7 mA have been measured for samples heated during deposition. A series of voltage ramps, i.e., a conditioning process, was found to initiate more stable and reproducible emission. It was found that the presence of graphitic particles (onions, nanotube embryos) in the films substantially enhances the field emission performance. Films patterned on a micrometer scale have been conditioned spot by spot by a ball-tip anode, showing that a relatively high emission site density can be achieved from the cluster-assembled material.
JET DT Scenario Extrapolation and Optimization with METIS
NASA Astrophysics Data System (ADS)
Urban, Jakub; Jaulmes, Fabien; Artaud, Jean-Francois
2017-10-01
Prospective JET (Joint European Torus) DT operation scenarios are modelled by the fast integrated code METIS. METIS combines scaling laws, e.g. for global and pedestal energy or density peaking, with simplified transport and source models, while retaining fundamental nonlinear couplings, in particular in the fusion power. We have tuned METIS parameters to match JET-ILW high performance experiments, including baseline and hybrid. Based on recent observations, we assume a weaker input power scaling than IPB98 and a 10% confinement improvement due to the higher ion mass. The rapidity of METIS is utilized to scan the performance of JET DT scenarios with respect to fundamental parameters, such as plasma current, magnetic field, density or heating power. Simplified, easily parameterized waveforms are used to study the effect the ramp-up speed or heating timing. Finally, an efficient Bayesian optimizer is employed to seek the most performant scenarios in terms of the fusion power or gain.
Parametric emittance measurements of electron beams produced by a laser plasma accelerator
NASA Astrophysics Data System (ADS)
Barber, S. K.; van Tilborg, J.; Schroeder, C. B.; Lehe, R.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Nakamura, K.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P.
2018-05-01
Laser plasma accelerators (LPA) offer an exciting possibility to deliver high energy, high brightness electrons beams in drastically smaller distance scales than is typical for conventional accelerators. As such, LPAs draw considerable attention as potential drivers for next generation light sources and for a compact linear collider. In order to asses the viability of an LPA source for a particular application, the brightness of the source should be properly characterized. In this paper, we present charge dependent transverse emittance measurements of LPA sources using both ionization injection and shock induced density down ramp injection, with the latter delivering smaller transverse emittances by a factor of two when controlling for charge density. The single shot emittance method is described in detail with a discussion on limitations related to second order transport effects. The direct role of space charge is explored through a series of simulations and found to be consistent with experimental observations.
NASA Astrophysics Data System (ADS)
Bo, Wang; Weidong, Liu; Yuxin, Zhao; Xiaoqiang, Fan; Chao, Wang
2012-05-01
Using a nanoparticle-based planar laser-scattering technique and supersonic particle image velocimetry, we investigated the effects of micro-ramp control on incident shockwave and boundary-layer interaction (SWBLI) in a low-noise supersonic wind-tunnel with Mach number 2.7 and Reynolds number Rθ = 5845. High spatiotemporal resolution wake structures downstream of the micro-ramps were detected, while a complex evolution process containing a streamwise counter-rotating vortex pair and large-scale hairpin-like vortices with Strouhal number Stδ of about 0.5-0.65 was revealed. The large-scale structures could survive while passing through the SWBLI region. Reflected shockwaves are clearly seen to be distorted accompanied by high-frequency fluctuations. Micro-ramp applications have a distinct influence on flow patterns of the SWBLI field that vary depending on spanwise locations. Both the shock foot and separation line exhibit undulations corresponding with modifications of the velocity distribution of the incoming boundary layer. Moreover, by energizing parts of the boundary flow, the micro-ramp is able to dampen the separation.
Ye, Yuxin; Saburi, Wataru; Odaka, Rei; Kato, Koji; Sakurai, Naofumi; Komoda, Keisuke; Nishimoto, Mamoru; Kitaoka, Motomitsu; Mori, Haruhide; Yao, Min
2016-03-01
In Ruminococcus albus, 4-O-β-D-mannosyl-D-glucose phosphorylase (RaMP1) and β-(1,4)-mannooligosaccharide phosphorylase (RaMP2) belong to two subfamilies of glycoside hydrolase family 130. The two enzymes phosphorolyze β-mannosidic linkages at the nonreducing ends of their substrates, and have substantially diverse substrate specificity. The differences in their mechanism of substrate binding have not yet been fully clarified. In the present study, we report the crystal structures of RaMP1 with/without 4-O-β-D-mannosyl-d-glucose and RaMP2 with/without β-(1→4)-mannobiose. The structures of the two enzymes differ at the +1 subsite of the substrate-binding pocket. Three loops are proposed to determine the different substrate specificities. One of these loops is contributed from the adjacent molecule of the oligomer structure. In RaMP1, His245 of loop 3 forms a hydrogen-bond network with the substrate through a water molecule, and is indispensible for substrate binding. © 2016 Federation of European Biochemical Societies.
Einasto profiles and the dark matter power spectrum
NASA Astrophysics Data System (ADS)
Ludlow, Aaron D.; Angulo, Raúl E.
2017-02-01
We study the mass accretion histories (MAHs) and density profiles of dark matter haloes using N-body simulations of self-similar gravitational clustering from scale-free power spectra, P(k) ∝ kn. We pay particular attention to the density profile curvature, which we characterize using the shape parameter, α, of an Einasto profile. In agreement with previous findings, our results suggest that, despite vast differences in their MAHs, the density profiles of virialized haloes are remarkably alike. Nonetheless, clear departures from self-similarity are evident: For a given spectral index, α increases slightly but systematically with `peak height', ν ≡ δsc/σ(M, z), regardless of mass or redshift. More importantly, however, the `α-ν' relation depends on n: The steeper the initial power spectrum, the more gradual the curvature of both the mean MAHs and mean density profiles. These results are consistent with previous findings connecting the shapes of halo mass profiles and MAHs, and imply that dark matter haloes are not structurally self-similar but, through the merger history, retain a memory of the linear density field from which they form.
Neural network evaluation of reflectometry density profiles for control purposes
NASA Astrophysics Data System (ADS)
Santos, J.; Nunes, F.; Manso, M.; Nunes, I.
1999-01-01
Broadband reflectometry is a diagnostic that is able to measure the density profile with high spatial and temporal resolutions, therefore it can be used to improve the performance of advanced tokamak operation modes and to supplement or correct the magnetics for plasma position control. To perform these tasks real-time processing is needed. Here we present a method that uses a neural network to make a fast evaluation of radial positions for selected density layers. Typical ASDEX Upgrade density profiles were used to generate the simulated network training and test sets. It is shown that the method has the potential to meet the tight timing requirements of control applications with the required accuracy. The network is also able to provide an accurate estimation of the position of density layers below the first density layer which is probed by an O-mode reflectometer, provided that it is trained with a realistic density profile model.
Foster, Tobias
2011-09-01
A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society
Power ramp induced iodine and cesium redistribution in LWR fuel rods
NASA Astrophysics Data System (ADS)
Sontheimer, F.; Vogl, W.; Ruyter, I.; Markgraf, J.
1980-01-01
Volatile fission product migration in LWR fuel rods which are power ramped above a certain threshold beyond the envelope of their previous power history, plays an important role in stress corrosion cracking of Zircaloy. This may cause fuel rods to fail already at stresses below the yield strength. In the HFR, Petten, many power ramp experiments have been performed with subsequent examination of the ramped rods for fission product distribution. This study describes the measurement of iodine and cesium distribution using γ-spectroscopy of I-131 and Cs-137. An evaluation method is presented which makes the determination of absolute amounts of I/Cs feasible. It is shown that a threshold for I/Cs redistribution exists beyond which it depends strongly on local fuel rod power and fuel type.
The microprocessor-based synthesizer controller
NASA Technical Reports Server (NTRS)
Wick, M. R.
1980-01-01
Implementation and performance of the microprocessor-based controllers and Dana Digiphase Synthesizer (DCO) installed in the Deep Space Network exciter in the 64-meter and 34-meter subnets to support uplink tuning required for the Voyager-Saturn Encounter is discussed. Test data in tests conducted during the production of the controllers verified the design objective for phase control accuracy of 10 to the - 12 power cycles in eight hours during ramping. Tests conducted require a phase error between a theoretical calculated value and the actual phase of no greater than + or - 1 cycle. Tests included (1) a ramp over a period of eight hours using a ramp rate which covers the synthesizer tuning range (40-51 MHz) and (2) a ramp sequence using the maximum rate (+ or kHz/s) over the tuning range.
NASA Technical Reports Server (NTRS)
Hartfield, Roy J.; Hollo, Steven D.; Mcdaniel, James C.
1990-01-01
Planar measurements of injectant mole fraction and temperature have been conducted in a nonreacting supersonic combustor configured with underexpanded injection in the base of a swept ramp. The temperature measurements were conducted with a Mach 2 test section inlet in streamwise planes perpendicular to the test section wall on which the ramp was mounted. Injection concentration measurements, conducted in cross flow planes with both Mach 2 and Mach 2.9 free stream conditions, dramatically illustrate the domination of the mixing process by streamwise vorticity generated by the ramp. These measurements, conducted using a nonintrusive optical technique (laser-induced iodine fluorescence), provide an accurate and extensive experimental data base for the validation of computation fluid dynamic codes for the calculation of highly three-dimensional supersonic combustor flow fields.
NASA Astrophysics Data System (ADS)
Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.
2017-12-01
We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.
Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions.
Berts, Ida; Fragneto, Giovanna; Hilborn, Jöns; Rennie, Adrian R
2013-07-01
The present paper investigates the structure and composition of grafted sodium hyaluronan at a solid-liquid interface using neutron reflection. The solvated polymer at the surface could be described with a density profile that decays exponentially towards the bulk solution. The density profile of the polymer varied depending on the deposition protocol. A single-stage deposition resulted in denser polymer layers, while layers created with a two-stage deposition process were more diffuse and had an overall lower density. Despite the diffuse density profile, two-stage deposition leads to a higher surface excess. Addition of calcium ions causes a strong collapse of the sodium hyaluronan chains, increasing the polymer density near the surface. This effect is more pronounced on the sample prepared by two-stage deposition due to the initial less dense profile. This study provides an understanding at a molecular level of how surface functionalization alters the structure and how surface layers respond to changes in calcium ions in the solvent.
NASA Astrophysics Data System (ADS)
Sun, Jianbao; Shen, Zheng-Kang; Li, Tao; Chen, Jie
2016-06-01
Boosted by the launch of Sentinel-1A radar satellite from the European Space Agency (ESA), we now have the opportunity of fast, full and multiple coverage of the land based deformation field of earthquakes. Here we use the data to investigate a strong earthquake struck Pishan, western China on July 3, 2015. The earthquake fault is blind and no ground break features are found on-site, thus Synthetic Aperture Radar (SAR) data give full play to its technical advantage for the recovery of coseismic deformation field. By using the Sentinel-1A radar data in the Interferometric Wide Swath mode, we obtain 3 tracks of InSAR data over the struck region, and resolve the 3D ground deformation generated by the earthquake. Then the Line-of-Sight (LOS) InSAR data are inverted for the slip-distribution of the seismogenic fault. The final model shows that the earthquake is completely blind with pure-thrust motion. The maximum slip is 0.48 m at a depth of 7 km, consistent with the depth estimate from seismic reflection data. In particular, the inverted model is also compatible with a south-dipping fault ramp among a group of fault interfaces detected by the seismic reflection profile over the region. The seismic moment obtained equals to a Mw 6.4 earthquake. The Pishan earthquake ruptured the frontal part of the thrust ramps under the Slik anticline, and unloaded the coulomb stress of them. However, it may have loaded stress to the back-thrust above the thrust ramps by 1-4 bar, and promoted it for future failure. Moreover, the stress loading on the west side of the earthquake fault is much larger than that on the east side, indicating a higher risk for failure to the west of the Zepu fault.
Testing of Two-Speed Transmission Configurations for Use in Rotorcraft
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Stevens, Mark A.
2015-01-01
Large civil tiltrotors have been identified to replace regional airliners over medium ranges to alleviate next-generation air traffic. Variable rotor speed for these vehicles is required for efficient high-speed operation. Two-speed drive system research has been performed to support these advanced rotorcraft applications. Experimental tests were performed on two promising two-speed transmission configurations. The offset compound gear (OCG) transmission and the dual star/idler (DSI) planetary transmission were tested in the NASA Glenn Research Center variable-speed transmission test facility. Both configurations were inline devices with concentric input and output shafts and designed to provide 1:1 and 2:1 output speed reduction ratios. Both were designed for 200 hp and 15,000 rpm input speed and had a dry shift clutch configuration. Shift tests were performed on the transmissions at input speeds of 5,000, 8,000, 10,000, 12,500, and 15,000 rpm. Both the OCG and DSI configurations successfully perform speed shifts at full rated 15,000 rpm input speed. The transient shifting behavior of the OCG and DSI configurations were very similar. The shift clutch had more of an effect on shifting dynamics than the reduction gearing configuration itself since the same shift clutch was used in both configurations. For both OCG and DSI configurations, low-to-high speed shifts were limited in applied torque levels in order to prevent overloads on the transmission due to transient torque spikes. It is believed that the relative lack of appreciable slippage of the dry shifting clutch at operating conditions and pressure profiles tested was a major cause of the transient torque spikes. For the low-to-high speed shifts, the output speed ramp-up time slightly decreased and the peak out torque slightly increased as the clutch pressure ramp-down rate increased. This was caused by slightly less clutch slippage as the clutch pressure ramp-down rate increased.
Extracting Strength from Ramp-Release Experiments on Z
NASA Astrophysics Data System (ADS)
Brown, Justin
2013-06-01
Releasing from a compressed state has long been recognized as a sensitive measure of a material's constitutive response. The initial elastic unloading provides insights which can be related to changes in shear stress or, in the context of classic plasticity, to the material's yield surface. Ramp compression and subsequent release experiments on Sandia's Z machine typically consist of a driving aluminum electrode pushing a sample material which is backed by a window. A particle velocity measurement of the sample/window interface provides a ramp-release profile. Under most circumstances, however, the impedance mismatch at this interface results in the measurement of a highly perturbed velocity, particularly at the late times of interest. Wave attenuation, the finite pressure range over which the material elastically unloads, and rate effects additionally complicate the interpretation of the experiment. In an effort to accurately analyze experiments of this type, each of these complications is addressed. The wave interactions are accounted for through the so-called transfer function methodology and involves a coupling of the experimental measurements with numerical simulations. Simulated window velocity measurements are combined with the corresponding in situ simulations to define a mapping describing the wave interactions due to the presence of the window. Applying this mapping to the experimentally measured velocity results in an in situ sample response which may then be used in a classic Lagrangian analysis from which the strength can be extracted via the self-consistent method. Corrections for attenuation, pressure averaging, and limitations of the analysis due to rate-effects are verified through the use of synthetic data. To date, results on the strength of aluminum to 1.2 MBar, beryllium to 1 MBar, and tantalum to over 2 MBar have been obtained through this methodology and will be presented. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Effect of magnetic and density fluctuations on the propagation of lower hybrid waves in tokamaks
NASA Astrophysics Data System (ADS)
Vahala, George; Vahala, Linda; Bonoli, Paul T.
1992-12-01
Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization. The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For Alcator-C-Mod [I. H. Hutchinson and the Alcator Group, Proceedings of the IEEE 13th Symposium on Fusion Engineering (IEEE, New York, 1990), Cat. No. 89CH 2820-9, p. 13] parameters, it seems possible to be able to infer information on internal magnetic fluctuations from hard x-ray data—especially since the effects of fluctuations on electron power density can explain the hard x-ray data from the JT-60 tokamak [H. Kishimoto and JT-60 Team, in Plasma Physics and Controlled Fusion (International Atomic Energy Agency, Vienna, 1989), Vol. I, p. 67].
Residential Solar PV Systems in the Carolinas: Opportunities and Outcomes.
Alqahtani, Bandar Jubran; Holt, Kyra Moore; Patiño-Echeverri, Dalia; Pratson, Lincoln
2016-02-16
This paper presents a first-order analysis of the feasibility and technical, environmental, and economic effects of large levels of solar photovoltaic (PV) penetration within the services areas of the Duke Energy Carolinas (DEC) and Duke Energy Progress (DEP). A PV production model based on household density and a gridded hourly global horizontal irradiance data set simulates hourly PV power output from roof-top installations, while a unit commitment and real-time economic dispatch (UC-ED) model simulates hourly system operations. We find that the large generating capacity of base-load nuclear power plants (NPPs) without ramping capability in the region limits PV integration levels to 5.3% (6510 MW) of 2015 generation. Enabling ramping capability for NPPs would raise the limit of PV penetration to near 9% of electricity generated. If the planned retirement of coal-fired power plants together with new installations and upgrades of natural gas and nuclear plants materialize in 2025, and if NPPs operate flexibly, then the share of coal-fired electricity will be reduced from 37% to 22%. A 9% penetration of electricity from PV would further reduce the share of coal-fired electricity by 4-6% resulting in a system-wide CO2 emissions rate of 0.33 to 0.40 tons/MWh and associated abatement costs of 225-415 (2015$ per ton).
Multi-Mbar Ramp Compression of Copper
NASA Astrophysics Data System (ADS)
Kraus, Rick; Davis, Jean-Paul; Seagle, Christopher; Fratanduono, Dayne; Swift, Damian; Eggert, Jon; Collins, Gilbert
2015-06-01
The cold curve is a critical component of equation of state models. Diamond anvil cell measurements can be used to determine isotherms, but these have generally been limited to pressures below 1 Mbar. The cold curve can also be extracted from Hugoniot data, but only with assumptions about the thermal pressure. As the National Ignition Facility will be using copper as an ablator material at pressures in excess of 10 Mbar, we need a better understanding of the high-density equation of state. Here we present ramp-wave compression experiments at the Sandia Z-Machine that we have used to constrain the isentrope of copper to a stress state of nearly 5 Mbar. We use the iterative Lagrangian analysis technique, developed by Rothman and Maw, to determine the stress-strain path. We also present a new iterative forward analysis (IFA) technique coupled to the ARES hydrocode that performs a non-linear optimization over the pressure drive and equation of state in order to match the free surface velocities. The IFA technique is an advantage over iterative Lagrangian analysis for experiments with growing shocks or systems with time dependent strength, which violate the assumptions of iterative Lagrangian analysis. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Density Functional Methods for Shock Physics and High Energy Density Science
NASA Astrophysics Data System (ADS)
Desjarlais, Michael
2017-06-01
Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Ramp-edge structured tunneling devices using ferromagnet electrodes
Kwon, Chuhee [Long Beach, CA; Jia, Quanxi [Los Alamos, NM
2002-09-03
The fabrication of ferromagnet-insulator-ferromagnet magnetic tunneling junction devices using a ramp-edge geometry based on, e.g., (La.sub.0.7 Sr.sub.0.3) MnO.sub.3, ferromagnetic electrodes and a SrTiO.sub.3 insulator is disclosed. The maximum junction magnetoresistance (JMR) as large as 23% was observed below 300 Oe at low temperatures (T<100 K). These ramp-edge junctions exhibited JMR of 6% at 200 K with a field less than 100 Oe.
DOT National Transportation Integrated Search
2008-12-01
The appendix includes various ramp flow and ML speed-flow plots: OR-217 NB, 72nd MP 6.61; OR-217 NB, 99W-EB MP 5.9; OR-217 NB, 99W-WB MP 5.85; OR-217 NB, Greenburg MP 4.65; OR-217 NB, Scholls MP 3.85; OR-217 NB, Denney MP 2.68; OR-217 NB, Allen MP 2....
Mars pathfinder Rover egress deployable ramp assembly
NASA Technical Reports Server (NTRS)
Spence, Brian R.; Sword, Lee F.
1996-01-01
The Mars Pathfinder Program is a NASA Discovery Mission, led by the Jet Propulsion Laboratory, to launch and place a small planetary Rover for exploration on the Martian surface. To enable safe and successful egress of the Rover vehicle from the spacecraft, a pair of flight-qualified, deployable ramp assemblies have been developed. This paper focuses on the unique, lightweight deployable ramp assemblies. A brief mission overview and key design requirements are discussed. Design and development activities leading to qualification and flight systems are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milkov, Mihail M.
A comparator circuit suitable for use in a column-parallel single-slope analog-to-digital converter comprises a comparator, an input voltage sampling switch, a sampling capacitor arranged to store a voltage which varies with an input voltage when the sampling switch is closed, and a local ramp buffer arranged to buffer a global voltage ramp applied at an input. The comparator circuit is arranged such that its output toggles when the buffered global voltage ramp exceeds the stored voltage. Both DC- and AC-coupled comparator embodiments are disclosed.
Head-on collision of multistate ultralight BEC dark matter configurations
NASA Astrophysics Data System (ADS)
Guzmán, F. S.; Avilez, Ana A.
2018-06-01
Density profiles of ultralight Bose-condensate dark matter inferred from numerical simulations of structure formation, ruled by the Gross-Pitaevskii-Poisson (GPP) system of equations, have a core-tail structure. Multistate equilibrium configurations of the GPP system, on the other hand, have a similar core-tail density profile. We now submit these multistate configurations to highly dynamical scenarios and show their potential as providers of appropriate density profiles of structures. We present the simulation of head-on collisions between two equilibrium configurations of the GPP system of equations, including the collision of ground state with multistate configurations. We study the regimes of solitonic and merger behavior and show generic properties of the dynamics of the system, including the relaxation process and attractor density profiles. We show that the merger of multistate configurations has the potential to produce core-tail density profiles, with the core dominated by the ground state and the halo dominated by an additional state.
First results of the SOL reflectometer on Alcator C-Mod.
Lau, C; Hanson, G; Lin, Y; Wilgen, J; Wukitch, S; Labombard, B; Wallace, G
2012-10-01
A swept-frequency X-mode reflectometer has been built on Alcator C-Mod to measure the scrape-off layer (SOL) density profiles adjacent to the lower hybrid launcher. The reflectometer system operates between 100 and 146 GHz at sweep rates from 10 μs to 1 ms and covers a density range of ∼10(16)-10(20) m(-3) at B(0) = 5-5.4 T. This paper discusses the analysis of reflectometer density profiles and presents first experimental results of SOL density profile modifications due to the application of lower hybrid range-of-frequencies power to L-mode discharges. Comparison between density profiles measured by the X-mode reflectometer and scanning Langmuir probes is also shown.
MIZUTANI, Hisashi; SAKO, Toshinori; OKUDA, Hiroko; ARAI, Nobuaki; KURIYAMA, Koji; MORI, Akihiro; YOSHIMURA, Itaru; KOYAMA, Hidekazu
2016-01-01
Density gradient ultracentrifugation (DGUC) and gel electrophoresis are conventionally used to obtain lipoprotein profiles of animals. We recently applied high-performance liquid chromatography with a gel permeation column (GP-HPLC) and an on-line dual enzymatic system to dogs for lipoprotein profile analysis. We compared the GP-HPLC with DGUC as a method to obtain a feline lipoprotein profile. The lipoprotein profiles showed large and small peaks, which corresponded to high-density lipoprotein (HDL) and low-density lipoprotein (LDL), respectively, whereas very low-density lipoprotein (VLDL) and chylomicron (CM) were only marginally detected. This profile was very similar to that of dogs reported previously. Healthy cats also had a small amount of cholesterol-rich particles distinct from the normal LDL or HDL profile. There was no difference in lipoprotein profiles between the sexes, but males had a significantly larger LDL particle size (P=0.015). This study shows the feasibility of GP-HPLC for obtaining accurate lipoprotein profiles with small sample volumes and provides valuable reference data for healthy cats that should facilitate diagnoses. PMID:27170431
Electrostatic potential profiles of molecular conductors
NASA Astrophysics Data System (ADS)
Liang, G. C.; Ghosh, A. W.; Paulsson, M.; Datta, S.
2004-03-01
The electrostatic potential across a short ballistic molecular conductor depends sensitively on the geometry of its environment, and can affect its conduction significantly by influencing its energy levels and wave functions. We illustrate some of the issues involved by evaluating the potential profiles for a conducting gold wire and an aromatic phenyl dithiol molecule in various geometries. The potential profile is obtained by solving Poisson’s equation with boundary conditions set by the contact electrochemical potentials and coupling the result self-consistently with a nonequilibrium Green’s function formulation of transport. The overall shape of the potential profile (ramp versus flat) depends on the feasibility of transverse screening of electric fields. Accordingly, the screening is better for a thick wire, a multiwalled nanotube, or a close-packed self-assembled monolayer, in comparison to a thin wire, a single-walled nanotube, or an isolated molecular conductor. The electrostatic potential further governs the alignment or misalignment of intramolecular levels, which can strongly influence the molecular current voltage (I V) characteristic. An external gate voltage can modify the overall potential profile, changing the I V characteristic from a resonant conducting to a saturating one. The degree of saturation and gate modulation depends on the availability of metal-induced-gap states and on the electrostatic gate control parameter set by the ratio of the gate oxide thickness to the channel length.
4. RAMP FOR BENJAMIN FRANKLIN BRIDGE (FOURTH ST.) BETWEEN VINE ...
4. RAMP FOR BENJAMIN FRANKLIN BRIDGE (FOURTH ST.) BETWEEN VINE AND RACE STS., LOOKING NORTHWEST - Independence National Historical Park, Walnut, Sixth, Chestnut & Second Streets, Philadelphia, Philadelphia County, PA
Tsai, Tzu-Hsuan; Shih, Yu-Pei; Wu, Yung-Fu
2013-05-01
The growing demand for silicon solar cells in the global market has greatly increased the amount of silicon sawing waste produced each year. Recycling kerf Si and SiC from sawing waste is an economical method to reduce this waste. This study reports the separation of Si and SiC using a ramp settling tank. As they settle in an electrical field, small Si particles with higher negative charges have a longer horizontal displacement than SiC particles in a solution of pH 7, resulting in the separation of Si and SiC. The agreement between experimental results and predicted results shows that the particles traveled a short distance to reach the collection port in the ramp tank. Consequently, the time required for tiny particles to hit the tank bottom decreased, and the interference caused by the dispersion between particles and the fluid motion during settling decreased. In the ramp tank, the highest purities of the collected SiC and Si powders were 95.2 and 7.01 wt%, respectively. Using a ramp tank, the recycling fraction of Si-rich powders (SiC < 15 wt%) reached 22.67% (based on the whole waste). This fraction is greater than that achieved using rectangular tanks. Recycling Si and SiC abrasives from the silicon sawing waste is regarded as an economical solution to reduce the sawing waste. However, the separation of Si and SiC is difficult. This study reports the separation of Si and SiC using a ramp settling tank under an applied electrical field. As they settle in an electrical field, small Si particles with higher negative charges have a longer horizontal displacement than SiC particles in a solution of pH 7, resulting in the separation of Si and SiC. Compared with the rectangular tanks, the recycling fraction of Si-rich powders using a ramp tank is greater, and the proposed ramp settling tank is more suitable for industrial applications.
32. Underside of tracks showing columns, concreteencased Ibeams, and ramps ...
32. Underside of tracks showing columns, concrete-encased I-beams, and ramps near storage room. Looking southwest. - Stillwell Avenue Station, Intersection of Stillwell & Surf Avenues, Brooklyn, Kings County, NY
2004-07-01
The ability of a magnetically-filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is...MFFP, boxed Faraday probe (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operated over the
The flat density profiles of massive, and relaxed galaxy clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popolo, A. Del, E-mail: adelpopolo@oact.inaf.it
2014-07-01
The present paper is an extension and continuation of Del Popolo (2012a) which studied the role of baryon physics on clusters of galaxies formation. In the present paper, we studied by means of the SIM introduced in Del Popolo (2009), the total and DM density profiles, and the correlations among different quantities, observed by Newman et al. (2012a,b), in seven massive and relaxed clusters, namely MS2137, A963, A383, A611, A2537, A2667, A2390. As already found in Del Popolo 2012a, the density profiles depend on baryonic fraction, angular momentum, and the angular momentum transferred from baryons to DM through dynamical friction.more » Similarly to Newman et al. (2012a,b), the total density profile, in the radius range 0.003–0.03r{sub 200}, has a mean total density profile in agreement with dissipationless simulations. The slope of the DM profiles of all clusters is flatter than -1. The slope, α, has a maximum value (including errors) of α = −0.88 in the case of A2390, and minimum value α = −0.14 for A2537. The baryonic component dominates the mass distribution at radii < 5–10 kpc, while the outer distribution is dark matter dominated. We found an anti-correlation among the slope α, the effective radius, R{sub e}, and the BCG mass, and a correlation among the core radius r{sub core}, and R{sub e}. Moreover, the mass in 100 kpc (mainly dark matter) is correlated with the mass inside 5 kpc (mainly baryons). The behavior of the total mass density profile, the DM density profile, and the quoted correlations can be understood in a double phase scenario. In the first dissipative phase the proto-BCG forms, and in the second dissipationless phase, dynamical friction between baryonic clumps (collapsing to the center) and the DM halo flattens the inner slope of the density profile. In simple terms, the large scatter in the inner slope from cluster to cluster, and the anti-correlation among the slope, α and R{sub e} is due to the fact that in order to have a total mass density profile which is NFW-like, clusters having more massive BCGs at their centers must contain less DM in their center. Consequently the inner profile has a flatter slope.« less
... representatives are factory-trained accessibility specialists in ramp design and installation and will provide a free evaluation and consultation to determine what ramp is best for your needs. Video Series Free From Falls Some MS symptoms and treatments ...
3. Cement and Plaster Warehouse, north facade. Loading ramp on ...
3. Cement and Plaster Warehouse, north facade. Loading ramp on the right. Utility building, intrusion, on the far right. - Curtis Wharf, Cement & Plaster Warehouse, O & Second Streets, Anacortes, Skagit County, WA
Code of Federal Regulations, 2010 CFR
2010-07-01
... Cars and Systems § 1192.101 Lighting. (a) Any stepwell or doorway with a lift, ramp or bridge plate..., ramp, bridge plate, or lift platform. (b) The doorways of cars not operating at lighted station...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Cars and Systems § 1192.119 Lighting. (a) Any stepwell, or doorway with a lift, ramp or bridge plate..., ramp, bridge plate or lift platform. (b) The doorways of cars not operating at lighted station...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cars and Systems § 1192.119 Lighting. (a) Any stepwell, or doorway with a lift, ramp or bridge plate..., ramp, bridge plate or lift platform. (b) The doorways of cars not operating at lighted station...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cars and Systems § 1192.101 Lighting. (a) Any stepwell or doorway with a lift, ramp or bridge plate..., ramp, bridge plate, or lift platform. (b) The doorways of cars not operating at lighted station...
West view, general; Station Building, covered ramp, and Street Car ...
West view, general; Station Building, covered ramp, and Street Car Waiting House - North Philadelphia Station, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA
Analysis Balance Parameter of Optimal Ramp metering
NASA Astrophysics Data System (ADS)
Li, Y.; Duan, N.; Yang, X.
2018-05-01
Ramp metering is a motorway control method to avoid onset congestion through limiting the access of ramp inflows into the main road of the motorway. The optimization model of ramp metering is developed based upon cell transmission model (CTM). With the piecewise linear structure of CTM, the corresponding motorway traffic optimization problem can be formulated as a linear programming (LP) problem. It is known that LP problem can be solved by established solution algorithms such as SIMPLEX or interior-point methods for the global optimal solution. The commercial software (CPLEX) is adopted in this study to solve the LP problem within reasonable computational time. The concept is illustrated through a case study of the United Kingdom M25 Motorway. The optimal solution provides useful insights and guidances on how to manage motorway traffic in order to maximize the corresponding efficiency.
Weston, Cathryn; Winfield, Ian; Harris, Matthew; Hodgson, Rose; Shah, Archna; Dowell, Simon J; Mobarec, Juan Carlos; Woodlock, David A; Reynolds, Christopher A; Poyner, David R; Watkins, Harriet A; Ladds, Graham
2016-10-14
The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gα s -mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gα s and Gα q but also identify a Gα i component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gα s , Gα i , and Gα q/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Tearing modes induced by perpendicular electron cyclotron resonance heating in the KSTAR tokamak
NASA Astrophysics Data System (ADS)
Lee, H. H.; Lee, S. G.; Seol, J.; Aydemir, A. Y.; Bae, C.; Yoo, J. W.; Na, Y. S.; Kim, H. S.; Woo, M. H.; Kim, J.; Joung, M.; You, K. I.; Park, B. H.
2014-10-01
This paper reports on experimental evidence that shows perpendicular electron cyclotron resonance heating (ECRH) can trigger classical tearing modes when deposited near a rational flux surface. The complex evolution of an m = 2 island is followed during current ramp-up in KSTAR plasmas, from its initial onset as the rational surface enters the ECRH resonance layer to its eventual lock on the wall after the rational surface leaves the layer. Stability analysis coupled to a transport calculation of the current profile with ECRH shows that the perpendicular ECRH may play a significant role in triggering and destabilizing classical m = 2 tearing modes, in agreement with our experimental observation.
Light impurity transport in JET ILW L-mode plasmas
NASA Astrophysics Data System (ADS)
Bonanomi, N.; Mantica, P.; Giroud, C.; Angioni, C.; Manas, P.; Menmuir, S.; Contributors, JET
2018-03-01
A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of 3He, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of 3He density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Cui, Mingjian; Hodge, Bri-Mathias
The large variability and uncertainty in wind power generation present a concern to power system operators, especially given the increasing amounts of wind power being integrated into the electric power system. Large ramps, one of the biggest concerns, can significantly influence system economics and reliability. The Wind Forecast Improvement Project (WFIP) was to improve the accuracy of forecasts and to evaluate the economic benefits of these improvements to grid operators. This paper evaluates the ramp forecasting accuracy gained by improving the performance of short-term wind power forecasting. This study focuses on the WFIP southern study region, which encompasses most ofmore » the Electric Reliability Council of Texas (ERCOT) territory, to compare the experimental WFIP forecasts to the existing short-term wind power forecasts (used at ERCOT) at multiple spatial and temporal scales. The study employs four significant wind power ramping definitions according to the power change magnitude, direction, and duration. The optimized swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental WFIP forecasts improve the accuracy of the wind power ramp forecasting. This improvement can result in substantial costs savings and power system reliability enhancements.« less
Time dependent heat transfer rates in high Reynolds number hypersonic flowfields
NASA Technical Reports Server (NTRS)
Flanagan, Michael J.
1992-01-01
Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.
Time dependent heat transfer rates in high Reynolds number hypersonic flowfields
NASA Astrophysics Data System (ADS)
Flanagan, Michael J.
1992-09-01
Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.
NASA Technical Reports Server (NTRS)
Hayashi, Miwa; Hoang, Ty; Jung, Yoon C.; Malik, Waqar; Lee, Hanbong; Dulchinos, Victoria L.
2015-01-01
This paper proposes a new departure pushback decision-support tool (DST) for airport ramp-tower controllers. It is based on NASA's Spot and Runway Departure Advisor (SARDA) collaborative decision-making concept, except with the modification that the gate releases now are controlled by tactical pushback (or gate-hold) advisories instead of strategic pre-assignments of target pushback times to individual departure flights. The proposed ramp DST relies on data exchange with the airport traffic control tower (ATCT) to coordinate pushbacks with the ATCT's flow-management intentions under current operational constraints, such as Traffic Management Initiative constraints. Airlines would benefit in reduced taxi delay and fuel burn. The concept was evaluated in a human-in-the-loop simulation experiment with current ramp-tower controllers at the Charlotte Douglas International Airport as participants. The results showed that the tool helped reduce taxi time by one minute per flight and overall departure flight fuel consumption by 10-12% without reducing runway throughput. Expect Departure Clearance Time (EDCT) conformance also was improved when advisories were provided. These benefits were attained without increasing the ramp-tower controllers' workload. Additionally, the advisories reduced the ATCT controllers' workload.
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
2017-08-31
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
NASA Astrophysics Data System (ADS)
Hiremath, Varun; Pope, Stephen B.
2013-04-01
The Rate-Controlled Constrained-Equilibrium (RCCE) method is a thermodynamic based dimension reduction method which enables representation of chemistry involving n s species in terms of fewer n r constraints. Here we focus on the application of the RCCE method to Lagrangian particle probability density function based computations. In these computations, at every reaction fractional step, given the initial particle composition (represented using RCCE), we need to compute the reaction mapping, i.e. the particle composition at the end of the time step. In this work we study three different implementations of RCCE for computing this reaction mapping, and compare their relative accuracy and efficiency. These implementations include: (1) RCCE/TIFS (Trajectory In Full Space): this involves solving a system of n s rate-equations for all the species in the full composition space to obtain the reaction mapping. The other two implementations obtain the reaction mapping by solving a reduced system of n r rate-equations obtained by projecting the n s rate-equations for species evaluated in the full space onto the constrained subspace. These implementations include (2) RCCE: this is the classical implementation of RCCE which uses a direct projection of the rate-equations for species onto the constrained subspace; and (3) RCCE/RAMP (Reaction-mixing Attracting Manifold Projector): this is a new implementation introduced here which uses an alternative projector obtained using the RAMP approach. We test these three implementations of RCCE for methane/air premixed combustion in the partially-stirred reactor with chemistry represented using the n s=31 species GRI-Mech 1.2 mechanism with n r=13 to 19 constraints. We show that: (a) the classical RCCE implementation involves an inaccurate projector which yields large errors (over 50%) in the reaction mapping; (b) both RCCE/RAMP and RCCE/TIFS approaches yield significantly lower errors (less than 2%); and (c) overall the RCCE/TIFS approach is the most accurate, efficient (by orders of magnitude) and robust implementation.
Influence of the resonant magnetic perturbations on transport in the Large Helical Device
NASA Astrophysics Data System (ADS)
Jakubowski, M. W.; Drewelow, P.; Masuzaki, S.; Tanaka, K.; Pedersen, T. S.; Akiyama, T.; Bozhenkov, S.; Dinklage, A.; Kobayashi, M.; Narushima, Y.; Sakakibara, S.; Suzuki, Y.; Wolf, R.; Yamada, H.; the LHD Experimental Group
2013-11-01
The purpose of this study is the investigation of the non-linear plasma response of transport due to stochastic effects. On the Large Helical Device, perturbation coils create a resonant magnetic perturbation (RMP) with the m/n = 1/1 and 2/1 Fourier components. Depending on the plasma conditions, the perturbation either enhances or heals the natural m/n = 1/1 magnetic island. For the case of an amplified island the enhanced heat and particle transport across the island causes a rather significant reduction in the confinement. For a healed island, there is a small decrease in beta with increasing perturbation current. These changes coincide with an increasing width of the open stochastic volume at the plasma edge near the x-point. Systematic experiments are performed, changing the amplitude of the perturbation linearly with IRMP in the range from 0 to 2.7 kA. Two scenarios are investigated: first, the discharge is ramped up with an external perturbation already superimposed on the main magnetic field. Second, the external perturbation is applied to the plasma already ignited (similar to experiments with RMPs in tokamaks). As will be shown, there is a clear difference in the size of the 1/1 island and the dependence of ne and Te on the perturbation when comparing these two scenarios. A hysteresis is observed up to a certain amplitude of the external perturbation. The particle transport and confinement are affected substantially in the discharges with a pre-existing magnetic perturbation. Interestingly, a global reduction in Te and ne is observed above a certain value of perturbation current in both cases. However, for the same island width, the plasma reacts differently to the applied perturbation depending on the direction of the ramp. For ramp-downs, we observe steeper electron density and temperature gradients, which leads to better plasma performance.
Surface currents associated with external kink modes in tokamak plasmas during a major disruption
NASA Astrophysics Data System (ADS)
Ng, C. S.; Bhattacharjee, A.
2017-10-01
The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by a strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with an internal structure, concentrated within the region with a strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.
ALINEA local ramp metering : summary of field results
DOT National Transportation Integrated Search
1997-01-01
Asservissement Linaire dEntre Autoroutire (ALINEA), a local feedback ramp-metering strategy, has had multiple field applications, and more applications are planned in several European countries. The main features of ALINEA are presented and ...
Guidelines for spacing between freeway ramps.
DOT National Transportation Integrated Search
2009-11-01
Existing geometric design guidance related to interchange ramp spacing in the Texas Roadway Design : Manual and the AASHTOs A Policy on Geometric Design of Highways and Streets (Green Book) is not : speed-dependent even though intuition indicates ...
Highway Safety Manual applied in Missouri - freeway/software : research summary.
DOT National Transportation Integrated Search
2016-03-01
AASHTOs Highway Safety Manual (HSM) : includes models for freeway segments, speedchange : lanes (transitional area between mainline : and ramps), ramps, and interchange terminals. : These predictive models for freeway : interchanges need to be cal...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., or doorway with a lift, ramp or bridge plate, shall have, when the door is open, at least 2 foot-candles of illumination measured on the step tread, ramp, bridge plate or lift platform. (b) The doorways...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., or doorway with a lift, ramp or bridge plate, shall have, when the door is open, at least 2 foot-candles of illumination measured on the step tread, ramp, bridge plate or lift platform. (b) The doorways...
Code of Federal Regulations, 2011 CFR
2011-10-01
... doorway with a lift, ramp or bridge plate shall have, when the door is open, at least 2 footcandles of illumination measured on the step tread, ramp, bridge plate, or lift platform. (b) The doorways of cars not...
Code of Federal Regulations, 2010 CFR
2010-10-01
... doorway with a lift, ramp or bridge plate shall have, when the door is open, at least 2 footcandles of illumination measured on the step tread, ramp, bridge plate, or lift platform. (b) The doorways of cars not...
30. Underside of tracks showing columns, concreteencased Ibeams, and ramps ...
30. Underside of tracks showing columns, concrete-encased I-beams, and ramps near token booths at street level. Looking southeast. - Stillwell Avenue Station, Intersection of Stillwell & Surf Avenues, Brooklyn, Kings County, NY
WALK UP RAMP - ASTRONAUT THOMAS P. STAFFORD - MISC.
1966-06-03
S66-32149 (3 June 1966) --- Astronauts Thomas P. Stafford (foreground), command pilot, and Eugene A. Cernan, pilot, walk up the ramp at Pad 19 during the Gemini-9A prelaunch countdown. Photo credit: NASA
North rear, east part. Ramp leads to basement utility rooms ...
North rear, east part. Ramp leads to basement utility rooms and specimen preparation rooms. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA
On Asymptotically Good Ramp Secret Sharing Schemes
NASA Astrophysics Data System (ADS)
Geil, Olav; Martin, Stefano; Martínez-Peñas, Umberto; Matsumoto, Ryutaroh; Ruano, Diego
Asymptotically good sequences of linear ramp secret sharing schemes have been intensively studied by Cramer et al. in terms of sequences of pairs of nested algebraic geometric codes. In those works the focus is on full privacy and full reconstruction. In this paper we analyze additional parameters describing the asymptotic behavior of partial information leakage and possibly also partial reconstruction giving a more complete picture of the access structure for sequences of linear ramp secret sharing schemes. Our study involves a detailed treatment of the (relative) generalized Hamming weights of the considered codes.
Programmable Multiple-Ramped-Voltage Power Supply
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Howell, S. K.
1993-01-01
Ramp waveforms range up to 2,000 V. Laboratory high-voltage power-supply system puts out variety of stable voltages programmed to remain fixed with respect to ground or float with respect to ramp waveform. Measures voltages it produces with high resolution; automatically calibrates, zeroes, and configures itself; and produces variety of input/output signals for use with other instruments. Developed for use with ultraviolet spectrometer. Also applicable to control of electron guns in general and to operation of such diverse equipment used in measuring scattering cross sections of subatomic particles and in industrial electron-beam welders.
Susceptibility of superconductor disks and rings with and without flux creep
NASA Astrophysics Data System (ADS)
Brandt, Ernst Helmut
1997-06-01
First some consequences of the Bean assumption of constant critical current Jc in type-II superconductors are listed and the Bean ac susceptibility of narrow rings is derived. Then flux creep is described by a nonlinear current-voltage law E~Jn, from which the saturated magnetic moment at constant ramp rate H-|Apa(t) is derived for rings with general hole radius a1 and general creep exponent n. Next the exact formulation for rings in a perpendicular applied field Ha(t) is presented in the form of an equation of motion for the current density in thick rings and disks or the sheet current in thin rings and disks. This method is used to compute general magnetization curves m(Ha) and ac susceptibilities χ of rings with and without creep, accounting also for nonconstant Jc(B). Typical current and field (B) profiles are depicted. The initial slope of m(Ha) (the ideal diamagnetic moment) and the field of full penetration are expressed as functions of the inner and outer ring radii a1 and a. A scaling law is derived which states that for arbitrary creep exponent n the complex nonlinear ac susceptibility χ(H0,ω) depends only on the combination Hn-10/ω of the ac amplitude H0 and the ac frequency ω/2π. This scaling law thus connects the known dependencies χ=χ(ω) in the ohmic limit (n=1) and χ=χ(H0) in the Bean limit (n-->∞).
Effects of additives on thermal stability of Li ion cells
NASA Astrophysics Data System (ADS)
Doughty, Daniel H.; Roth, E. Peter; Crafts, Chris C.; Nagasubramanian, G.; Henriksen, Gary; Amine, Khalil
Li ion cells are being developed for high-power applications in hybrid electric vehicles, because these cells offer superior combination of power and energy density over current cell chemistries. Cells using this chemistry are proposed for battery systems in both internal combustion engine and fuel cell-powered hybrid electric vehicles. However, the safety of these cells needs to be understood and improved for eventual widespread commercial applications. The thermal-abuse response of Li ion cells has been improved by the incorporation of more stable anode carbons and electrolyte additives. Electrolyte solutions containing vinyl ethylene carbonate (VEC), triphenyl phosphate (TPP), tris(trifluoroethyl)phosphate (TFP) as well as some proprietary flame-retardant additives were evaluated. Test cells in the 18,650 configuration were built at Sandia National Laboratories using new stable electrode materials and electrolyte additives. A special test fixture was designed to allow determination of self-generated cell heating during a thermal ramp profile. The flammability of vented gas and expelled electrolyte was studied using a novel arrangement of a spark generator placed near the cell to ignite vent gas if a flammable gas mixture was present. Flammability of vent gas was somewhat reduced by the presence of certain additives. Accelerating rate calorimetry (ARC) was also used to characterize 18,650-size test cell heat and gas generation. Gas composition was analyzed by gas chromatography (GC) and was found to consist of CO 2, H 2, CO, methane, ethane, ethylene and small amounts of C1-C4 organic molecules.
Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility
NASA Astrophysics Data System (ADS)
Rigg, P. A.; Knudson, M. D.; Scharff, R. J.; Hixson, R. S.
2014-07-01
Lithium fluoride (LiF) is a common window material used in shock- and ramp-compression experiments because it displays a host of positive attributes in these applications. Most commonly, it is used to maintain stress at an interface and velocimetry techniques are used to record the particle velocity at that interface. In this application, LiF remains transparent to stresses up to 200 GPa. In this stress range, LiF has an elastic-plastic response with a very low (<0.5 GPa) elastic precursor and exhibits no known solid-solid phase transformations. However, because the density dependence of the refractive index of LiF does not follow the Gladstone-Dale relation, the measured particle velocity at this interface is not the true particle velocity and must be corrected. For that reason, the measured velocity is often referred to as the apparent velocity in these types of experiments. In this article, we describe a series of shock-compression experiments that have been performed to determine the refractive index of LiF at the two most commonly used wavelengths (532 nm and 1550 nm) between 35 and 200 GPa to high precision. A modified form of the Gladstone-Dale relation was found to work best to fit the determined values of refractive index. In addition, we provide a direct relationship between the apparent and true particle velocity to correct experimentally obtained wave profiles by others using these velocimetry techniques.
Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigg, P. A., E-mail: prigg@lanl.gov; Scharff, R. J.; Hixson, R. S.
2014-07-21
Lithium fluoride (LiF) is a common window material used in shock- and ramp-compression experiments because it displays a host of positive attributes in these applications. Most commonly, it is used to maintain stress at an interface and velocimetry techniques are used to record the particle velocity at that interface. In this application, LiF remains transparent to stresses up to 200 GPa. In this stress range, LiF has an elastic-plastic response with a very low (<0.5 GPa) elastic precursor and exhibits no known solid-solid phase transformations. However, because the density dependence of the refractive index of LiF does not follow the Gladstone-Dale relation,more » the measured particle velocity at this interface is not the true particle velocity and must be corrected. For that reason, the measured velocity is often referred to as the apparent velocity in these types of experiments. In this article, we describe a series of shock-compression experiments that have been performed to determine the refractive index of LiF at the two most commonly used wavelengths (532 nm and 1550 nm) between 35 and 200 GPa to high precision. A modified form of the Gladstone-Dale relation was found to work best to fit the determined values of refractive index. In addition, we provide a direct relationship between the apparent and true particle velocity to correct experimentally obtained wave profiles by others using these velocimetry techniques.« less
Effects of pressing schedule on formation of vertical density profile for MDF panels
Zhiyong Cai; James H. Muehl; Jerrold E. Winandy
2006-01-01
A fundamental understanding of mat consolidation during hot pressing will help to optimize the medium-density fiberboard (MDF) manufacturing process by increasing productivity, improving product quality, and enhancing durability. Effects of panel density, fiber moisture content (MC), and pressing schedule on formation of vertical density profile (VDP) during hot...
NASA Astrophysics Data System (ADS)
Baceta, José I.; Pomar, Luis; Mateu-Vicens, Guillem
2017-04-01
Most marine grainstones in carbonate ramps and platforms are commonly interpreted to form in high-energy, shallow-water settings where wave energy dissipates by friction on the sea floor. The locus of energy dissipation varies with platform type. On rimmed shelves, skeletal-oolitic sands mainly accumulate near the wave-agitated shelf margin as a rim, which restricts wave action and a low-energy lagoon may form landwards. On ramps and open platforms, by contrast, grainstones commonly accumulate in the shallower zone near or attached to the shoreline, grading basinward into muddier carbonate successions. Within this conceptual scheme, most carbonate ramp subdivisions have been established according to the facies and sedimentary structures associated to the bathymetry-related hydraulic regime, in which the bases of the surface storm-waves and the fairweather waves are the boundary layers. Since seagrasses encroached the oceans by the late Cretaceous, baffling the surface wave energy, and burrowing activity increased significantly, most Cenozoic ramp successions lack the bathymetry-related sedimentary structures and the record of wave and storm activity is commonly lost. This has induced ramp subdivision to become progressively based in light penetration, as inferred from the light dependence of the carbonate producers, particularly for the Cenozoic. This new scenario has permitted to recognize grainstone units detached from shoreline and shoals and produced at depths near the limit of light penetration, or even below, in basinal settings. Here we document a 90-100-m thick Eocene example of crossbedded skeletal grainstones composed by echinoderm-, bryozoan-, red-algal fragments and orthophragminid larger benthic foraminifers. This facies belt occurs at 20-km from the paleo-coastline, downdip of Nummulites-Discocyclina facies, and passes basinward into finely comminuted skeletal debris and marls with planktonic foraminifers of the outer ramp. The skeletal composition of the cross-bedded belt indicates carbonate production to have occurred near the lower limit of the light penetration, and hydraulic turbulence to rework the coarser sediments and winnow-away de fines at the transition between middle- and outer ramp. Bedform migration indicates two main flow directions: oblique upslope traction currents (run-up) and downslope backwash return flow. This indicates turbulence to be detached from the surface storm waves and suggests internal waves breaking obliquely to the slopping ramp. This example documents the potential role of internal waves in shaping and redistributing sediments across ancient carbonate ramp systems, producing porous bodies close to basinal facies. These grainstone bodies may become good targets but acquire special relevance when prediction of good drains is needed in both exploration and production of unconventional. ACKNOWLEDGEMENTS Funding from Ministerio de Economía y Competitividad Project CGL2014-52096-P is acknowledged. This is also a contribution to the Research Group of the Basque University System IT-930-16.
NASA Astrophysics Data System (ADS)
Radecki-Pawlik, Artur; Plesiński, Karol
2016-04-01
In modern river management practices and philosophy one can notice coming more into use ecological friendly hydraulic structures. Those, which are especially needed for river training works, as far as expectation of Water Framework Directive is concerned, are block ramps which are hydraulic structures working similar to riffles known very well from fluvial geomorphology studies and are natural features in streams and rivers. What is important well designed block ramps do not stop fish and invertebrates against migrating, provide natural and esthetical view being built within the river channel, still working as hydraulic engineering structures and might be used in river management in different river ecosystems. The main aim of the research was to describe changes of values of hydrodynamics parameters upstream and downstream of the block ramps and to find out their influence on hydrodynamics of the stream. The study was undertaken on the Porębianka River in the Gorce Mountains, Polish Carpathians. Observed hydrodynamic parameters within the reach of the block ramps depend on the location of measuring point and the influence of individual part of the structure. We concluded that: 1. Hydrodynamic parameters close to block ramps depend on the location of the measurement points in relation to particular elements of the structure; 2. The highest value of velocities don't cause the highest force values, which acting on the bed of the watercourse, because they are rather related to the water level of the channel; 3. The values of mean velocities, shear velocities and shear stresses were similar upstream and downstream the block ramps, which means that the structures stabilize the river bed. This study was performed within the scope of the Science Activity money from Ministry of High Education and Young Scientist's Activity Money of Department of Hydraulics Engineering and Geotechnique, University of Agriculture, Cracow, Poland
Deems-Dluhy, Susan L; Jayaraman, Chandrasekaran; Green, Steve; Albert, Mark V; Jayaraman, Arun
2017-05-01
Difficulty ascending ramps and inclines with a manual wheelchair adversely affects the everyday mobility and overall quality of life of manual wheelchair users. Currently, various anti-rollback devices are available to assist manual wheelchair users to ascend ramps and inclines. However, these devices have 2 main shortcomings: restriction to backward motion limiting recovery from an overturning wheelchair, which is a safety concern; and difficulty in engaging/disengaging the device while on the ramp. To evaluate the functionality and usability of 2 novel wheelchair anti-rollback devices developed to address these shortcomings (prototypes "Wheel" and "Brake"). Cross-sectional. Rehabilitation research facility. Twelve adult participants with chronic spinal cord injury. Participants completed training and tested with both the wheelchair anti-rollback devices on a 7.3-m-long ramp. Number of stops, perceived physical exertion, pain, and ease of use of these devices as participants maneuvered their wheelchairs up a 7.3-m ramp were assessed. Participants also evaluated their satisfaction with the usability of both the devices using the Quebec User Evaluation of Satisfaction With Assistive Technology (QUEST 2.0). Both prototypes evaluated overcame the limitations of the existing anti-rollback devices. Nonparametric statistical tests showed that participants rated both prototypes similarly for the overall functional and usability aspects. However, the participants' satisfactory rating were higher for the prototype "Brake" than for the prototype "Wheel" based on a functional aspect (ie, engaging/disengaging easiness), and higher for Wheel than for Brake, based on a usability aspect (prototype size). The qualitative and quantitative outcomes of this investigation, based on the usability and functional evaluations, provided useful information for the improvement in the design of both anti-rollback devices, which may allow manual wheelchair users to manage ramp ascent more safely and easily. Further evaluations with a different SCI population is recommended. IV. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Lifestyles of the palaeoproterozoic stromatolite builders in the Vempalle Sea, Cuddapah Basin, India
NASA Astrophysics Data System (ADS)
Patranabis-Deb, Sarbani; Majumder, Tuasha; Khan, Sayani
2018-05-01
The distribution and changing pattern of stromatolites in the Vempalle Formation of the Cuddapah Basin, India, have been investigated with emphasis on external morphologies, internal fabrics, growth patterns and sediment associations. The stromatolitic limestone occurs in a low angle ramp type carbonate platform, with complete exposures from shallow shelf to basinal facies, provides record of changes in reef-building capacity of stromatolites with change in the depositional milieu. Changing pattern and style of the stromatolites clearly reflect depth partitioned growth of the microbial community. Small and scattered stromatolites, commonly with wavy parallel laminations or stratifications occurred in inner-ramp settings, where they are build up to the sea level. Tepee structure and desiccation cracks in associated sediments and salt pseudomorphs point to shallow water to occasional exposure condition. Large bioherms with columnar and conical stromatolites developed in the headland (mid ramp), which were in continuous interaction with strong waves of the open sea. Growth of the bioherms changed the landform with time and generated a high sloping edge with a sheer drop that extended out into the sea, forming distally steepened ramp. Outer ramp lithofacies characterized by thick layers of shale succession with thin beds of laterally persistent stromatolitic beds with low synoptic relief build-ups. These biotic components, along with the absence of wave-related structures, place the outer ramp below the base of wave action zone. Ooid banks developed in the mid ramp area are in the high surfing zone. High flux of nutrients and high-light show positive correlation; thus the high growth pattern is best observed within the photic zone where wave action is maximum. The ability to change from low synoptic relief algal laminites to high synoptic relief columnar stromatolites point to their adaptive power. The key factor that controlled the shape of these Palaeoproterozoic stromatolites is the dynamic interactions between mat growth, currents and sediment supply. Presence of concentric and radial fibrous ooids indicates change in climate and salinity of the sea.
Jiao, Fang Fang; Fung, Colman Siu Cheung; Wong, Carlos King Ho; Wan, Yuk Fai; Dai, Daisy; Kwok, Ruby; Lam, Cindy Lo Kuen
2014-08-21
To assess whether the Multidisciplinary Risk Assessment and Management Program for Patients with Diabetes Mellitus (RAMP-DM) led to improvements in biomedical outcomes, observed cardiovascular events and predicted cardiovascular risks after 12-month intervention in the primary care setting. A random sample of 1,248 people with diabetes enrolled to RAMP-DM for at least 12 months was selected and 1,248 people with diabetes under the usual primary care were matched by age, sex, and HbA1c level at baseline as the usual care group. Biomedical and cardiovascular outcomes were measured at baseline and at 12-month after the enrollment. Difference-in-differences approach was employed to measure the effect of RAMP-DM on the changes in biomedical outcomes, proportion of subjects reaching treatment targets, observed and predicted cardiovascular risks. Compared to the usual care group, RAMP-DM group had lower cardiovascular events incidence (1.21% vs 2.89%, P = 0.003), and net decrease in HbA1c (-0.20%, P < 0.01), SBP (-3.62 mmHg, P < 0.01) and 10-year cardiovascular disease (CVD) risks (total CVD risk, -2.06%, P < 0.01; coronary heart disease (CHD) risk, -1.43%, P < 0.01; stroke risk, -0.71%, P < 0.01). The RAMP-DM subjects witnessed significant rises in the proportion of reaching treatment targets of HbA1c, and SBP/DBP. After adjusting for confounding variables, the significance remained for HbA1c, predicted CHD and stroke risks. The RAMP-DM resulted in greater improvements in HbA1c and reduction in observed and predicted cardiovascular risks at 12 months follow-up, which indicated a risk-stratification multidisciplinary intervention was an effective strategy for managing Chinese people with diabetes in the primary care setting. ClinicalTrials.gov, NCT02034695.
NASA Astrophysics Data System (ADS)
Ohba, Masamichi; Nohara, Daisuke; Kadokura, Shinji
2016-04-01
Severe storms or other extreme weather events can interrupt the spin of wind turbines in large scale that cause unexpected "wind ramp events". In this study, we present an application of self-organizing maps (SOMs) for climatological attribution of the wind ramp events and their probabilistic prediction. The SOM is an automatic data-mining clustering technique, which allows us to summarize a high-dimensional data space in terms of a set of reference vectors. The SOM is applied to analyze and connect the relationship between atmospheric patterns over Japan and wind power generation. SOM is employed on sea level pressure derived from the JRA55 reanalysis over the target area (Tohoku region in Japan), whereby a two-dimensional lattice of weather patterns (WPs) classified during the 1977-2013 period is obtained. To compare with the atmospheric data, the long-term wind power generation is reconstructed by using a high-resolution surface observation network AMeDAS (Automated Meteorological Data Acquisition System) in Japan. Our analysis extracts seven typical WPs, which are linked to frequent occurrences of wind ramp events. Probabilistic forecasts to wind power generation and ramps are conducted by using the obtained SOM. The probability are derived from the multiple SOM lattices based on the matching of output from TIGGE multi-model global forecast to the WPs on the lattices. Since this method effectively takes care of the empirical uncertainties from the historical data, wind power generation and ramp is probabilistically forecasted from the forecasts of global models. The predictability skill of the forecasts for the wind power generation and ramp events show the relatively good skill score under the downscaling technique. It is expected that the results of this study provides better guidance to the user community and contribute to future development of system operation model for the transmission grid operator.
NASA Astrophysics Data System (ADS)
Brunini, Claudio; Azpilicueta, Francisco; Nava, Bruno
2013-09-01
Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,, and the height, . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve and values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between and elec/m for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (2 %).
Air-Deployable Profiling Floats for Tropical Cyclone Research
NASA Astrophysics Data System (ADS)
Jayne, S. R.; Robbins, P.; Owens, B.; Ekholm, A.; Dufour, J. E.; Sanabia, E.
2016-02-01
The development of a smaller profiling float that can be launched from Hurricane Hunter aircraft offers the opportunity to monitor the upper-ocean thermal structure over a time span of many months. These Argo-type profiling floats can be deployed in advance of, or during, a tropical cyclone from any aircraft equipped with an A-sized (AXBT) launch tube, or from the stern ramp of a C-130. The floats have the same dimensions as an AXBT and weigh about 8.5 kg. Upon deployment, the floats parachute to the surface, detach and automatically begin their programmed mission. The recorded temperature data is averaged over 1-meter bins that are reported back via the Iridium satellite phone network, which is then automatically processed and posted to the GTS. The floats are also reprogrammable via the 2-way communication afforded by Iridium. We report on the results of deployments during the 2014 and 2015 hurricane seasons. Unique observations of the ocean response from Hurricane Ignacio are particularly noteworthy and will be presented. Further plans for continued development of floats include measuring salinity (from an inductive conductivity sensor) and observations of the surface wave field (measured by an onboard accelerometer) will also be described.
NASA Astrophysics Data System (ADS)
Ghosh, Subhajit; Das, Animesh; Bose, Santanu; Mandal, Nibir
2017-04-01
A moment magnitude (Mw) 7.8 earthquake associated with a Mw 7.3 aftershock hit the Gorkha region near Kathmandu, Nepal on April 25, 2015. The rupture propagated eastward for about 140 km and caused thousands of deaths. The focal mechanism of the Gorkha earthquake shows thrust sense over the mid-crustal steeply dipping ramp on the basal décollement known as the Main Himalayan Thrust (MHT). The MHT is the largest and fastest slipping continental megathrust over which the southward tapering Himalayan thrust wedge similar to the accretionary wedges is moving. The MHT ramps up to the surface beneath the Siwalik group of rocks as the Main Frontal Thrust (MFT). Below the MFT the basal décollement is flat until it reaches the mid-crustal ramp ( 20°) below the Himalayan klippen and then again it becomes flat. This geometry of the décollement is consistent with the balanced cross sections, microseismic data, magnetotelluric images, INDEPTH seismic reflection profile, present day stress distribution and fits well with the prominent topographic break (physiographic transition) in the Lesser Himalaya. Lithologically stratified sedimentary sequences in the upper crust are mechanically heterogeneous. It has been long known that the mechanical properties of the stratigraphic succession influence the resultant structural architecture of the fold and thrust belts. The rheologically weak stratigraphic horizon generally contains the basal décollement due to its relatively low frictional strength. Hence, any vertical or lateral change in frictional property may control the effective strength and the positions of the décollement in space. In the present study, we used non-cohesive sand and mica dust layers as analogue materials for simulating the strong and weak layers respectively in the sandbox apparatus. Experimental results with relatively high basal friction (μ=0.46) show that such a weak horizon at a shallow depth perturbs the sequential thrust progression, and forces a thrust to localize in the close vicinity of the weak zone, splaying from the basal décollement. Eventually, the weak horizon starts to deform by accumulating shear strain along it, leading to a new detachment at a shallow depth. At this stage, entire shallow part of the sandpack lying over the weak layer is deformed by closely-spaced imbricate thrusts. Extrapolating the model results to the natural prototype, we propose that the unmetamorphosed coal-shale-sand stone-black shale horizons below the Siwaliks as a key mechanical attribute to the basal décollement shift and the consequent flat-ramp-flat geometry of the MHT.
Design and scope of impact of auxiliary lanes : technical report.
DOT National Transportation Integrated Search
2014-06-01
For decades, Texas Department of Transportation districts have constructed auxiliary lanes to support interchange : ramp operations and to resolve congestion proximate to freeway entrance and exit ramps. While auxiliary lanes are : built throughout T...
4. Threequarter view of Asylum (Western) Avenue viaduct and ramp ...
4. Three-quarter view of Asylum (Western) Avenue viaduct and ramp on southeast corner of bridge, facing northwest. - Asylum Avenue Viaduct, Spanning Second Creek & Southern Railroad at State Route 62, Knoxville, Knox County, TN
15. FIGUEROA STREET NORTHBOUND EXIT RAMP UNDER SOUTHBOUND LANES. UPPER ...
15. FIGUEROA STREET NORTHBOUND EXIT RAMP UNDER SOUTHBOUND LANES. UPPER LEVEL IS INTERSTATE 1-5. LOOKING 162° SSE. - Arroyo Seco Parkway, Figueroa Street Viaduct, Spanning Los Angeles River, Los Angeles, Los Angeles County, CA
X-36 on Ramp Viewed from Above
1997-07-16
This look-down view of the X-36 Tailless Fighter Agility Research Aircraft on the ramp at NASA’s Dryden Flight Research Center, Edwards, California, clearly shows the unusual wing and canard design of the remotely-piloted aircraft.
South view; Interior view of covered ramp to Street Car ...
South view; Interior view of covered ramp to Street Car Waiting House from Station Building - North Philadelphia Station, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA