Sample records for ramp wave loading

  1. Design of a Sample Recovery Assembly for Magnetic Ramp-Wave Loading

    NASA Astrophysics Data System (ADS)

    Chantrenne, S.; Wise, J. L.; Asay, J. R.; Kipp, M. E.; Hall, C. A.

    2009-06-01

    Characterization of material behavior under dynamic loading requires studies at strain rates ranging from quasi-static to the limiting values of shock compression. For completeness, these studies involve complementary time-resolved data, which define the mechanical constitutive properties, and microstructural data, which reveal physical mechanisms underlying the observed mechanical response. Well-preserved specimens must be recovered for microstructural investigations. Magnetically generated ramp waves produce strain rates lower than those associated with shock waves, but recovery methods have been lacking for this type of loading. We adapted existing shock recovery techniques for application to magnetic ramp loading using 2-D and 3-D ALEGRA MHD code calculations to optimize the recovery design for mitigation of undesired late-time processing of the sample due to edge effects and secondary stress waves. To assess the validity of our simulations, measurements of sample deformation were compared to wavecode predictions.

  2. Shock formation and the ideal shape of ramp compression waves

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Kraus, Richard G.; Loomis, Eric N.; Hicks, Damien G.; McNaney, James M.; Johnson, Randall P.

    2008-12-01

    We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long-duration ramps are desired.

  3. Dynamic Behaviors of Materials under Ramp Wave Loading on Compact Pulsed Power Generators

    NASA Astrophysics Data System (ADS)

    Zhao, Jianheng; Luo, Binqiang; Wang, Guiji; Chong, Tao; Tan, Fuli; Liu, Cangli; Sun, Chengwei

    The technique using intense current to produce magnetic pressure provides a unique way to compress matter near isentrope to high density without obvious temperature increment, which is characterized as ramp wave loading, and firstly developed by Sandia in 1998. Firstly recent advances on compact pulsed power generators developed in our laboratory, such as CQ-4, CQ-3-MMAF and CQ-7 devices, are simply introduced here, which devoted to ramp wave loading from 50GPa to 200 GPa, and to ultrahigh-velocity flyer launching up to 30 km/s. And then, we show our progress in data processing methods and experiments of isentropic compression conducted on these devices mentioned above. The suitability of Gruneisen EOS and Vinet EOS are validated by isentropic experiments of tantalum, and the parameters of SCG constitutive equation of aluminum and copper are modified to give better prediction under isentropic compression. Phase transition of bismuth and tin are investigated under different initial temperatures, parameters of Helmholtz free energy and characteristic relaxation time in kinetic phase transition equation are calibrated. Supported by NNSF of China under Contract No.11327803 and 11176002

  4. Shock-Ramp Loading of Tin and Aluminum

    NASA Astrophysics Data System (ADS)

    Seagle, Christopher; Davis, Jean; Martin, Matthew; Hanshaw, Heath

    2013-06-01

    Equation of state properties for materials off the principle Hugoniot and isentrope are currently poorly constrained. The ability to directly probe regions of phase space between the Hugoniot and isentrope under dynamic loading will greatly improve our ability to constrain equation of state properties under a variety of conditions and study otherwise inaccessible phase transitions. We have developed a technique at Sandia's Z accelerator to send a steady shock wave through a material under test, and subsequently ramp compress from the Hugoniot state. The shock-ramp experimental platform results in a unique loading path and enables probing of equation of state properties in regions of phase space otherwise difficult to access in dynamic experiments. A two-point minimization technique has been developed for the analysis of shock-ramp velocity data. The technique correctly accounts for the ``initial'' Hugoniot density of the material under test before the ramp wave arrives. Elevated quasi-isentropes have been measured for solid aluminum up to 1.4 Mbar and liquid tin up to 1.1 Mbar using the shock ramp technique. These experiments and the analysis of the resulting velocity profiles will be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  5. Control and reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Dolling, David S.; Barter, John W.

    1995-01-01

    The focus was on developing means of controlling and reducing unsteady pressure loads in separated shock wave turbulent boundary layer interactions. Section 1 describes how vortex generators can be used to effectively reduce loads in compression ramp interaction, while Section 2 focuses on the effects of 'boundary-layer separators' on the same interaction.

  6. Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See

    2009-07-01

    The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.

  7. High-Pressure Quasi-Isentropic Loading and Unloading of Interferometer Windows on the Veloce Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    Ao, Tommy; Asay, James; Knudson, Marcus; Davis, Jean-Paul

    2007-06-01

    The Isentropic Compression Experiment technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. However, whereas the high-pressure compression response of window materials has been studied extensively under shock loading, similar knowledge of these materials under ICE loading is limited. We present recent experimental results on the isentropic compression of the high-pressure windows sapphire and LiF. It has previously been observed that c-cut sapphire yields under shock loading at the HEL of ˜15-18GPa, and subsequently loses transparency at higher stresses. However, it will be shown that under isentropic ramp wave loading sapphire appears to remain elastic and transparent at stresses well above 20GPa [D.B. Hayes et al, JAP 94, 2331 (2003)]. LiF is another frequently used window material in isentropic loading and unloading experiments, yet the unloading response of LiF is usually neglected. Research is in progress to measure strength properties of LiF for ramp loading and unloading. It will be shown how the strength of LiF may influence wave profile analysis and thus inferred material strength. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US DOE's NNSA under Contract No.DE-AC04-94AL85000.

  8. Static versus dynamic loads as an influence on bone remodelling

    NASA Technical Reports Server (NTRS)

    Lanyon, L. E.; Rubin, C. T.

    1983-01-01

    Bone remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulna preparation is made by two submetaphyseal osteotomies, the cut ends of the bone being covered with stainless steel caps which, together with the bone they enclosed, are pierced by pins emerging transcutaneously on the dorsal and ventral surfaces of the wing. The 110 mm long undisturbed section of the bone shaft can be protected from functional loading, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression by engaging the pins in an Instron machine. Similar loads (525 n) were used in both static and dynamic cases engendering similar peak strains at the bone's midshaft (-2000 x 10-6). The intermitent load was applied at a frequency of 1 Hz during a single 100 second period per day as a ramped square wave, with a rate of change of strain during the ramp of 0.01 per second.

  9. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments

    NASA Astrophysics Data System (ADS)

    Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang

    2016-06-01

    A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10-2 Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak current of new generators can be increased to 5-6 MA and about 100 GPa ramp stress can be produced on the metallic samples for high pressure physics, and a conceptual design of CQ-5-MMAF was given.

  10. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments.

    PubMed

    Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang

    2016-06-01

    A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10(-2) Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak current of new generators can be increased to 5-6 MA and about 100 GPa ramp stress can be produced on the metallic samples for high pressure physics, and a conceptual design of CQ-5-MMAF was given.

  11. Generation of ramp waves using variable areal density flyers

    NASA Astrophysics Data System (ADS)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.

    2016-07-01

    Ramp loading using graded density impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacturing technique, was used to manufacture a graded density flyer, termed the "bed-of-nails" (BON). A 2.5-mm-thick × 99.4-mm-diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 5.5 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 and 1100 m/s using the 100-mm gas gun at the Institute of Shock Physics at Imperial College London. In each experiment, a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry (Het-V) was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ˜ 2.5 μs, with no indication of a shock jump. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.

  12. Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.

    2011-12-01

    Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials.

    We acknowledge the Omega staff at LLE for their assistance, Micro/Nano fabrication laboratory staff at Princeton University and the Target Engineering Team at LLNL for fabrication and metrology of the targets used in these experiments. The research was supported by DOE under DE-FG52-09NA29037.

  13. Verification of experimental dynamic strength methods with atomistic ramp-release simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Alexander P.; Brown, Justin L.; Lim, Hojun

    Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less

  14. Verification of experimental dynamic strength methods with atomistic ramp-release simulations

    NASA Astrophysics Data System (ADS)

    Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; Lane, J. Matthew D.

    2018-05-01

    Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.

  15. Verification of experimental dynamic strength methods with atomistic ramp-release simulations

    DOE PAGES

    Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; ...

    2018-05-04

    Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less

  16. The dynamics and control of fluctuating pressure loads in the reattachment region of a supersonic free shear layer

    NASA Technical Reports Server (NTRS)

    Smits, A. J.

    1990-01-01

    The primary aim is to investigate the mechanisms which cause the unsteady wall-pressure fluctuations in shock wave turbulent shear layer interactions. The secondary aim is to find means to reduce the magnitude of the fluctuating pressure loads by controlling the unsteady shock motion. The particular flow proposed for study is the unsteady shock wave interaction formed in the reattachment zone of a separated supersonic flow. Similar flows are encountered in many practical situations, and they are associated with high levels of fluctuating wall pressure. Wall pressure fluctuations were measured in the reattachment region of the supersonic free shear layer. The free shear layer was formed by the separation of a Mach 2.9 turbulent boundary layer from a backward facing step. Reattachment occurred on a 20 deg ramp. By adjusting the position of the ramp, the base pressure was set equal to the freestream pressure, and the free shear layer formed in the absence of a separation shock. An array of flush-mounted, miniature, high-frequency pressure transducers was used to make multichannel measurements of the fluctuating wall pressure in the vicinity of the reattachment region. Contrary to previous observations of this flow, the reattachment region was found to be highly unsteady, and the pressure fluctuations were found to be significant. The overall behavior of the wall pressure loading is similar in scale and magnitude to the unsteadiness of the wall pressure field in compression ramp flows at the same Mach number. Rayleigh scattering was used to visualize the instantaneous shock structure in the streamwise and spanwise direction. Spanwise wrinkles on the order of half the boundary layer thickness were observed.

  17. Characterizing and analyzing ramping events in wind power, solar power, load, and netload

    DOE PAGES

    Cui, Mingjian; Zhang, Jie; Feng, Cong; ...

    2017-04-07

    Here, one of the biggest concerns associated with integrating a large amount of renewable energy into the power grid is the ability to handle large ramps in the renewable power output. For the sake of system reliability and economics, it is essential for power system operators to better understand the ramping features of renewable, load, and netload. An optimized swinging door algorithm (OpSDA) is used and extended to accurately and efficiently detect ramping events. For wind power ramps detection, a process of merging 'bumps' (that have a different changing direction) into adjacent ramping segments is included to improve the performancemore » of the OpSDA method. For solar ramps detection, ramping events that occur in both clear-sky and measured (or forecasted) solar power are removed to account for the diurnal pattern of solar generation. Ramping features are extracted and extensively compared between load and netload under different renewable penetration levels (9.77%, 15.85%, and 51.38%). Comparison results show that (i) netload ramp events with shorter durations and smaller magnitudes occur more frequently when renewable penetration level increases, and the total number of ramping events also increases; and (ii) different ramping characteristics are observed in load and netload even with a low renewable penetration level.« less

  18. Non-iterative determination of the stress-density relation from ramp wave data through a window

    NASA Astrophysics Data System (ADS)

    Dowling, Evan; Fratanduono, Dayne; Swift, Damian

    2017-06-01

    In the canonical ramp compression experiment, a smoothly-increasing load is applied the surface of the sample, and the particle velocity history is measured at interfaces two or more different distances into the sample. The velocity histories are used to deduce a stress-density relation by correcting for perturbations caused by reflected release waves, usually via the iterative Lagrangian analysis technique of Rothman and Maw. We previously described a non-iterative (recursive) method of analysis, which was more stable and orders of magnitude faster than iteration, but was subject to the limitation that the free surface velocity had to be sampled at uniform intervals. We have now developed more general recursive algorithms suitable for analyzing ramp data through a finite-impedance window. Free surfaces can be treated seamlessly, and the need for uniform velocity sampling has been removed. These calculations require interpolation of partially-released states using the partially-constructed isentrope, making them slower than the previous free-surface scheme, but they are still much faster than iterative analysis. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Separation attenuation in swept shock wave-boundary-layer interactions using different microvortex generator geometries

    NASA Astrophysics Data System (ADS)

    Martis, R. R.; Misra, A.

    2017-09-01

    A numerical study is conducted to determine the effectiveness of six different microvortex generator geometries in controlling swept shock wave/boundary-layer interactions. The geometries considered are base ramp, base ramp with declining angle of 45°, blunt ramp, split ramp, thick vanes, and ramped vanes. Microvortex generators with a gap were found to be better suited for delaying the separation. Thick vanes showed the largest delay in separation among the devices studied.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Mingjian; Zhang, Jie; Feng, Cong

    Here, one of the biggest concerns associated with integrating a large amount of renewable energy into the power grid is the ability to handle large ramps in the renewable power output. For the sake of system reliability and economics, it is essential for power system operators to better understand the ramping features of renewable, load, and netload. An optimized swinging door algorithm (OpSDA) is used and extended to accurately and efficiently detect ramping events. For wind power ramps detection, a process of merging 'bumps' (that have a different changing direction) into adjacent ramping segments is included to improve the performancemore » of the OpSDA method. For solar ramps detection, ramping events that occur in both clear-sky and measured (or forecasted) solar power are removed to account for the diurnal pattern of solar generation. Ramping features are extracted and extensively compared between load and netload under different renewable penetration levels (9.77%, 15.85%, and 51.38%). Comparison results show that (i) netload ramp events with shorter durations and smaller magnitudes occur more frequently when renewable penetration level increases, and the total number of ramping events also increases; and (ii) different ramping characteristics are observed in load and netload even with a low renewable penetration level.« less

  1. Elastic-Plastic Behavior of U6Nb Under Ramp Wave Loading

    NASA Astrophysics Data System (ADS)

    Hayes, D. B.; Hall, C.; Hixson, R. S.

    2005-07-01

    Prior shock experiments on the alloy uranium-niobium-6 wt.% (U6Nb) were absent an elastic precursor when one was expected (A. K. Zurek, et. al., Journal de Physique IV, 10 (#9) p677-682). This was later explained as a consequence of shear stress relaxation from time-dependent twinning that prevented sufficient shear stress for plastic yielding. (D. B. Hayes, et. al., Shock Compression of Condensed Matter-2003, p1177, American Institute of Physics 2004) Pressure was ramped to 13 GPa in 150-ns on eight U6Nb specimens with thicknesses from 0.5 -- 1.1-mm and the back surface velocities were measured with laser interferometry. This pressure load produces a stress wave with sufficiently fast rise time so that, according to the prior work, twins do not have time to form. Four of the U6Nb specimens had been cold-rolled which increased the yield stress. Each velocity history was analyzed with a backward integration analysis to give the stress-strain response of the U6Nb. Comparison of these results with prior Hugoniot measurements shows that the U6Nb in the present experiments responds as an elastic-plastic material and the deduced yield strength of the baseline and of the cold-rolled material agree with static results.

  2. A novel graded density impactor

    NASA Astrophysics Data System (ADS)

    Winter, Ron; Cotton, Matthew; Harris, Ernest; Eakins, Daniel; Chapman, David

    2013-06-01

    Ramp loading using graded-density-impactors as flyers in plate impact experiments can yield useful information about the dynamic properties of the loaded material. Selective Laser Melting, an additive manufacture technique, was used to fabricate a graded-density flyer, termed the ``bed of nails'' (BON). A 2 mm thick x 100 mm diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 6 mm and spaced 1 mm apart. Two experiments to test the concept were performed at impact velocities of 900 m/s and 1100 m/s using the 100 mm gas gun at The Institute of Shock Physics, Imperial College, London. In each experiment a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, mounted in contact with the back face of the copper. Heterodyne velocimetry was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in free surface velocity over a period of about 2.5 microseconds. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum.

  3. The Effects of Using a Ramp and Elevator to Load and Unload Trailers on the Behavior and Physiology of Piglets

    PubMed Central

    McGlone, John; Sapkota, Avi

    2014-01-01

    Simple Summary Transport is a routine practice in the modern swine industry. Loading the pigs into trailers can be a novel and stressful experience for the animals. This study compared behaviors and physiological variables during and after loading using a ramp or elevator to determine which method is the least stressful to the pigs. Loading pigs by ramp appears to cause more stress than loading by elevator. Abstract Transport is an inevitable process in the modern U.S. swine industry. The loading process is a novel and potentially stressful experience. This study uses behavior, heart rate and leukocyte counts to compare stress one hour before, during and after loading via ramp or elevator. Piglets were held in a home pen (control (CON)), walked up and down an aisle (handled (HAN)), or walked to a truck and loaded via elevator (ELE) or ramp (RAM). Sitting, feeding and blood parameters did not show a significant treatment by time effect (p > 0.05). Standing behavior did not differ between CON and HAN piglets nor between RAM and ELE piglets (p > 0.05); however, CON and HAN piglets stood more than RAM and ELE piglets during treatment (p < 0.05). After treatment, drinking behavior was increased in RAM piglets (p < 0.05). The heart rate of ELE piglets decreased 6.3% after treatment; whereas the heart rate of RAM piglets remained elevated 2.4% (p < 0.05). In terms of heart rate, loading by elevator appears to be less stressful than loading by ramp. PMID:26480323

  4. Static vs dynamic loads as an influence on bone remodelling.

    PubMed

    Lanyon, L E; Rubin, C T

    1984-01-01

    Remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulnar preparation consisted of the 110mm section of the bone shaft between two submetaphyseal osteotomies. Each end of the preparation was transfixed by a stainless steel pin and the shaft either protected from normal functional loading with the pins joined by external fixators, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression for a single 100s period per day by engaging the pins in an Instron machine. Similar loads (525 N) were used in both static and dynamic cases. The strains engendered were determined by strain gauges, and at their maximum around the bone's midshaft were -0.002. The intermittent load was applied at a frequency of 1 Hz as a ramped square wave, with a rate of change of strain during the ramp of 0.01 s-1. Peak strain at the midshaft of the ulna during wing flapping in the intact bone was recorded from bone bonded strain gauges in vivo as -0.0033 with a maximum rate of change of strain of 0.056 s-1. Examination of bone sections from the midpoint of the preparation after an 8 week period indicated that in both non-loaded and statically loaded bones there was an increase in both endosteal diameter and intra cortical porosity. These changes produced a decrease in cross sectional area which was similar in the two groups (-13%).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.

  6. Experimental characterization and constitutive modeling of the mechanical behavior of molybdenum under electromagnetically applied compression-shear ramp loading

    DOE PAGES

    Alexander, C. Scott; Ding, Jow -Lian; Asay, James Russell

    2016-03-09

    Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPSmore » experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. Additionally, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material model for multiaxial loadings.« less

  7. T-Craft Seabase Ramp Loads Model Test Data Report

    DTIC Science & Technology

    2010-12-01

    INTRODUCTION 1 TEST CONDITION MATRIX 2 MODEL DESCRIPTIONS 9 LMSR Model 15 Ramp Models 17 MODEL TEST SETUP 18 Side-by-Side Hull Configuration 19... INTRODUCTION The Office of Naval Research (ONR) sponsored a multiple bodied seakeeping model test designed to investigate vessel motions and loads on the hinge...C. 3. Side-by-Side configuration 137 Ramp Load cell 1.88 27.49 -CG ft I ^ -Hinged Connection 3.00 from CL to jauge • oad ce LMSR

  8. Coarse cross-bedded grainstones in a mid- to outer carbonate ramp, Bartonian of the Urbasa-Andia plateau (W Pyrenees, N Spain)

    NASA Astrophysics Data System (ADS)

    Baceta, José I.; Pomar, Luis; Mateu-Vicens, Guillem

    2017-04-01

    Most marine grainstones in carbonate ramps and platforms are commonly interpreted to form in high-energy, shallow-water settings where wave energy dissipates by friction on the sea floor. The locus of energy dissipation varies with platform type. On rimmed shelves, skeletal-oolitic sands mainly accumulate near the wave-agitated shelf margin as a rim, which restricts wave action and a low-energy lagoon may form landwards. On ramps and open platforms, by contrast, grainstones commonly accumulate in the shallower zone near or attached to the shoreline, grading basinward into muddier carbonate successions. Within this conceptual scheme, most carbonate ramp subdivisions have been established according to the facies and sedimentary structures associated to the bathymetry-related hydraulic regime, in which the bases of the surface storm-waves and the fairweather waves are the boundary layers. Since seagrasses encroached the oceans by the late Cretaceous, baffling the surface wave energy, and burrowing activity increased significantly, most Cenozoic ramp successions lack the bathymetry-related sedimentary structures and the record of wave and storm activity is commonly lost. This has induced ramp subdivision to become progressively based in light penetration, as inferred from the light dependence of the carbonate producers, particularly for the Cenozoic. This new scenario has permitted to recognize grainstone units detached from shoreline and shoals and produced at depths near the limit of light penetration, or even below, in basinal settings. Here we document a 90-100-m thick Eocene example of crossbedded skeletal grainstones composed by echinoderm-, bryozoan-, red-algal fragments and orthophragminid larger benthic foraminifers. This facies belt occurs at 20-km from the paleo-coastline, downdip of Nummulites-Discocyclina facies, and passes basinward into finely comminuted skeletal debris and marls with planktonic foraminifers of the outer ramp. The skeletal composition of the cross-bedded belt indicates carbonate production to have occurred near the lower limit of the light penetration, and hydraulic turbulence to rework the coarser sediments and winnow-away de fines at the transition between middle- and outer ramp. Bedform migration indicates two main flow directions: oblique upslope traction currents (run-up) and downslope backwash return flow. This indicates turbulence to be detached from the surface storm waves and suggests internal waves breaking obliquely to the slopping ramp. This example documents the potential role of internal waves in shaping and redistributing sediments across ancient carbonate ramp systems, producing porous bodies close to basinal facies. These grainstone bodies may become good targets but acquire special relevance when prediction of good drains is needed in both exploration and production of unconventional. ACKNOWLEDGEMENTS Funding from Ministerio de Economía y Competitividad Project CGL2014-52096-P is acknowledged. This is also a contribution to the Research Group of the Basque University System IT-930-16.

  9. A Coupled Model of Langmuir Circulations and Ramp-like Structures in the Upper Ocean Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.; Lukas, R.; Donelan, M. A.; Terray, E. A.

    2016-12-01

    Surface-wave breaking is a powerful mechanism producing significant energy flux to small scale turbulence. Most of the turbulent energy produced by breaking waves dissipates within one significant wave height, while the turbulent diffusion layer extends to approximately ten significant wave heights. Notably, the near-surface shear may practically vanish within the wave-stirred layer due to small-scale turbulent mixing. The surface ocean temperature-salinity structure, circulation, and mass exchanges (including greenhouse gases and pollutants) substantially depend on turbulent mixing and non-local transport in the near-surface layer of the ocean. Spatially coherent organized motions have been recognized as an important part of non-local transport. Langmuir circulation (LC) and ramp-like structures are believed to vertically transfer an appreciable portion of the momentum, heat, gases, pollutants (e.g., oil), and other substances in the upper layer of the ocean. Free surface significantly complicates the analysis of turbulent exchanges at the air-sea interface and the coherent structures are not yet completely understood. In particular, there is growing observational evidence that in the case of developing seas when the wind direction may not coincide with the direction of the energy containing waves, the Langmuir lines are oriented in the wind rather than the wave direction. In addition, the vortex force due to Stokes drift in traditional models is altered in the breaking-wave-stirred layer. Another complication is that the ramp-like structures in the upper ocean turbulent boundary layer have axes perpendicular to the axes of LC. The ramp-like structures are not considered in the traditional model. We have developed a new model, which treats the LC and ramp-like structures in the near-surface layer of the ocean as a coupled system. Using computational fluid dynamics tools (LES), we have been able to reproduce both LC and ramp-like structures coexisting in space though intermittent in time. In the model, helicity isosurfaces appear to be tilted and, in general, coordinated with the tilted velocity isosurfaces produced by ramp-like structures. This is an indication of coupling between the LC and ramp-like structures. Remarkably, the new model is able to explain observations of LC under developing seas.

  10. Increased Coal Plant Flexibility Can Improve Renewables Integration |

    Science.gov Websites

    practices that enable lower turndowns, faster starts and stops, and faster ramping between load set-points faster ramp rates and faster and less expensive starts. Flexible Load - Demand Response Resources Demand response (DR) is a load management practice of deliberately reducing or adding load to balance the system

  11. 3. Cement and Plaster Warehouse, north facade. Loading ramp on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Cement and Plaster Warehouse, north facade. Loading ramp on the right. Utility building, intrusion, on the far right. - Curtis Wharf, Cement & Plaster Warehouse, O & Second Streets, Anacortes, Skagit County, WA

  12. Understanding Micro-Ramp Control for Shock Boundary Layer Interactions

    DTIC Science & Technology

    2008-02-07

    micro-ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier... Supersonic boundary layer flow with micro-ramp and no shock wave 3.2 SBLI with no micro-ramp 3.3 SBLI with micro-ramp 3.4 Micro-ramp size and location IV . C...ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier

  13. Estimation of the Unsteady Aerodynamic Load on Space Shuttle External Tank Protuberances from a Component Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Panda, Jayatana; Martin, Fred W.; Sutliff, Daniel L.

    2008-01-01

    At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.

  14. STEREO Observations of Waves in the Ramp Regions of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (≥ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.

  15. Sequential power-up circuit

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable.

  16. Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Idei, H.; Kariya, T.; Imai, T.; Mishra, K.; Onchi, T.; Watanabe, O.; Zushi, H.; Hanada, K.; Qian, J.; Ejiri, A.; Alam, M. M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Fukuyama, A.; Kubo, S.; Shimozuma, T.; Yoshikawa, M.; Sakamoto, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ide, S.; Maekawa, T.; Takase, Y.; Toi, K.

    2017-12-01

    Fully non-inductive second (2nd) harmonic electron cyclotron (EC) plasma current ramp-up was demonstrated with a newlly developed 28 GHz system in the QUEST spherical tokamak. A high plasma current of 54 kA was non-inductively ramped up and sustained stably for 0.9 s with a 270 kW 28 GHz wave. A higher plasma current of 66 kA was also non-inductively achieved with a slow ramp-up of the vertical field. We have achieved a significantly higher plasma current than those achieved previously with the 2nd harmonic EC waves. This fully non-inductive 2nd harmonic EC plasma ramp-up method might be useful for future burning plasma devices and fusion reactors, in particular for operations at half magnetic field with the same EC heating equipment.

  17. A novel graded density impactor

    NASA Astrophysics Data System (ADS)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.

    2014-05-01

    Ramp loading using graded-density-impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacture technique, was used to manufacture a graded density flyer, termed the "bed of nails" (BON). A 2 mm thick × 100 mm diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 6 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 m/s and 1100 m/s using the 100 mm gas gun at the Institute of Shock Physics at Imperial College, London. In each experiment a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ~2.5 us, with no indication of a shock jump. The measured profiles have been analysed to generate a stress strain curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.

  18. Illusion caused by vibration of muscle spindles reveals an involvement of muscle spindle inputs in regulating isometric contraction of masseter muscles.

    PubMed

    Tsukiboshi, Taisuke; Sato, Hajime; Tanaka, Yuto; Saito, Mitsuru; Toyoda, Hiroki; Morimoto, Toshifumi; Türker, Kemal Sitki; Maeda, Yoshinobu; Kang, Youngnam

    2012-11-01

    Spindle Ia afferents may be differentially involved in voluntary isometric contraction, depending on the pattern of synaptic connections in spindle reflex pathways. We investigated how isometric contraction of masseter muscles is regulated through the activity of their muscle spindles that contain the largest number of intrafusal fibers among skeletal muscle spindles by examining the effects of vibration of muscle spindles on the voluntary isometric contraction. Subjects were instructed to hold the jaw at resting position by counteracting ramp loads applied on lower molar teeth. In response to the increasing-ramp load, the root mean square (RMS) of masseter EMG activity almost linearly increased under no vibration, while displaying a steep linear increase followed by a slower increase under vibration. The regression line of the relationship between the load and RMS was significantly steeper under vibration than under no vibration, suggesting that the subjects overestimated the ramp load and excessively counteracted it as reflected in the emergence of bite pressure. In response to the decreasing-ramp load applied following the increasing one, the RMS hardly decreased under vibration unlike under no vibration, leading to a generation of bite pressure even after the offset of the negative-ramp load until the vibration was ceased. Thus the subjects overestimated the increasing rate of the load while underestimating the decreasing rate of the load, due to the vibration-induced illusion of jaw opening. These observations suggest that spindle Ia/II inputs play crucial roles both in estimating the load and in controlling the isometric contraction of masseter muscles in the jaw-closed position.

  19. Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine

    NASA Astrophysics Data System (ADS)

    D'Almeida, Thierry; Lassalle, Francis; Morell, Alain; Grunenwald, Julien; Zucchini, Frédéric; Loyen, Arnaud; Maysonnave, Thomas; Chuvatin, Alexandre

    2013-06-01

    SPHINX is a 6MA, 1- μs Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being considered for improving the generator performances, there is a compact Dynamic Load Current Amplifier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments, based on electrical and hydrodynamic simulations. Initial results obtained over a set of experiments on an aluminum cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented. Details of the electrical and Photonic Doppler Velocimetry (PDV) setups used to monitor and diagnose the ramp compression experiments are provided. Current profiles measured at various locations across the system, particularly the load current, agree with simulated current profile and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. Higher ramp pressure levels are foreseen in future experiments with an improved DLCM system.

  20. The Future Impact of Wind on BPA Power System Load Following and Regulation Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Lu, Shuai; McManus, Bart

    Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system load following and regulation requirements. Existing methodologies for similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system. It mimics themore » actual power system operations therefore the results are close to reality yet the study based on this methodology is convenient to perform. The capacity, ramp rate and ramp duration characteristics are extracted from the simulation results. System load following and regulation capacity requirements are calculated accordingly. The ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability requirement and regulating units’ energy requirement, respectively.« less

  1. Sequential power-up circuit

    DOEpatents

    Kronberg, J.W.

    1992-06-02

    A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable. 2 figs.

  2. Ramp sedimentation in the Dinantian limestones of the Shannon Trough, Co. Limerick, Ireland

    NASA Astrophysics Data System (ADS)

    Somerville, Ian D.; Strogen, Peter

    1992-08-01

    During the late Chadian and Arundian (Lower Carboniferous), an extensive carbonate ramp (Limerick Ramp) developed over County Limerick, southwest Ireland, dipping northwestwards. Three distinct facies can be recognised corresponding to position on this ramp: inner, mid- and outer ramp. The inner ramp facies of oolitic and crinoidal grainstones (Herbertstown Limestone Formation) in east Limerick formed a major shoal behind which peritidal limestones were deposited. The mid-ramp facies of muddy bioclastic limestones and shales (Cooperhill facies) in north Limerick formed between fairweather and storm wave bases. The outer ramp (basinal) facies of mudstones and thin graded resedimented limestones (Rathkeale Beds) in west Limerick developed below storm wave base when fine terrigenous input was high. Later in the Arundian there was progradation of the nearshore oolitic and crinoidal grainstones over the mid-ramp facies. By the Holkerian, the deep-water basinal facies in west Limerick was buried beneath mid-ramp facies (Durnish Limestone). The initiation of the Limerick Ramp is closely related to the formation of the Shannon Trough. In the late Courceyan, accelerated subsidence in the Shannon area during deposition of Waulsortian facies marked the onset of a sag phase. Following a quiescent period in early Chadian, subsidence was renewed in the late Chadian and Arundian, when major facies changes occurred on the ramp. Comparison of the Shannon Trough with the Dublin Basin shows that in the latter, tectonic events in the Chadian and Arundian, particularly syn-sedimentary faulting, created a sharp division between platform and basinal sedimentation. Such tectonic influence is not recognised in the Shannon Trough. Here differential subsidence and eustatic sea-level changes led to more permanent ramp existence, modified only by westwards progradation.

  3. Plasma current ramp-up by lower hybrid wave using innovative antennas on TST-2

    NASA Astrophysics Data System (ADS)

    Takase, Yuichi; Ejiri, Akira; Moeller, Charles; Roidl, Benedikt; Shinya, Takahiro; Tsujii, Naoto; Yajima, Satoru; Yamazaki, Hibiki; Kitayama, Akichika; Matsumoto, Naoki; Sato, Akito; Sonehara, Masateru; Takahashi, Wataru; Tajiri, Yoshiyuki; Takei, Yuki; Togashi, Hiro; Toida, Kazuya; Yoshida, Yusuke

    2016-10-01

    Non-inductive plasma current (Ip) ramp-up by RF power in the lower hybrid frequency range is being studied on the TST-2 spherical tokamak (R = 0.36 m, a = 0.23 m, Bt = 0.3 T, Ip = 0.1 MA). Up to 400 kW of RF power is available at a frequency of 200 MHz. An innovative antenna called the capacitively-coupled combline (CCC) antenna was developed to excite a sharp, highly directional traveling wave with the electric field polarized in the toroidal direction. It is an array of resonant circuit elements made of capacitance and inductance, coupled to neighboring elements by mutual capacitance. Two CCC antennas are installed in TST-2, a 13-element outboard-launch antenna and a 6-element top-launch antenna. The latter was installed in March 2016 to improve accessibility to the core and to achieve single-pass damping. The suspected wave power loss in the scrape-off layer plasma should also be avoided. Ip ramp-up to 25 kA has been achieved so far. An upgrade of the Bt power supply is planned to take advantage of the observed improvement of Ip ramp-up with Bt. Higher Bt for longer pulses should improve the Ip ramp-up efficiency by improving wave accessibility and by reducing prompt orbit losses of energetic electrons.

  4. Tailored ramp wave generation in gas gun experiments

    NASA Astrophysics Data System (ADS)

    Cotton, Matthew; Chapman, David; Winter, Ron; Harris, Ernie; Eakins, Daniel

    2015-09-01

    Gas guns are traditionally used as platforms to introduce a planar shock wave to a material using plate impact methods, generating states on the Hugoniot. The ability to deliver a ramp wave to a target during a gas gun experiment enables access to different regions of the equation-of-state surface, making it a valuable technique for characterising material behaviour. Previous techniques have relied on the use of multi-material impactors to generate a density gradient, which can be complex to manufacture. In this paper we describe the use of an additively manufactured steel component consisting of an array of tapered spikes which can deliver a ramp wave over ˜ 2 μs. The ability to tailor the input wave by varying the component design is discussed, an approach which makes use of the design freedom offered by additive manufacturing techniques to rapidly iterate the spike profile. Results from gas gun experiments are presented to evaluate the technique, and compared with 3D hydrodynamic simulations.

  5. 36 CFR 1192.83 - Mobility aid accessibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or boarding device (e.g., lift, ramp or bridge plate) complying with either paragraph (b) or (c) of... used by standees and designation of specific spaces is not required. (2) Exception. If lifts, ramps or... a single vehicle. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least...

  6. 49 CFR 38.159 - Mobility aid accessibility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... boarding device (e.g., lift or ramp) complying with paragraph (b) or (c) of this section and sufficient...) Exception. If portable or station-based lifts, ramps or bridge plates meeting the applicable requirements of... device. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least 600 pounds (2665...

  7. 49 CFR 38.83 - Mobility aid accessibility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shall provide a level-change mechanism or boarding device (e.g., lift, ramp or bridge plate) complying... required. (2) Exception. If lifts, ramps or bridge plates meeting the requirements of this section are... accommodated on a single vehicle. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at...

  8. 49 CFR 38.159 - Mobility aid accessibility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... boarding device (e.g., lift or ramp) complying with paragraph (b) or (c) of this section and sufficient...) Exception. If portable or station-based lifts, ramps or bridge plates meeting the applicable requirements of... device. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least 600 pounds (2665...

  9. 49 CFR 38.83 - Mobility aid accessibility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shall provide a level-change mechanism or boarding device (e.g., lift, ramp or bridge plate) complying... required. (2) Exception. If lifts, ramps or bridge plates meeting the requirements of this section are... accommodated on a single vehicle. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at...

  10. 36 CFR 1192.83 - Mobility aid accessibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or boarding device (e.g., lift, ramp or bridge plate) complying with either paragraph (b) or (c) of... used by standees and designation of specific spaces is not required. (2) Exception. If lifts, ramps or... a single vehicle. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least...

  11. 29 CFR 1918.86 - Roll-on roll-off (Ro-Ro) operations (see also § 1918.2, Ro-Ro operations, and § 1918.25).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of vehicular and pedestrian traffic control shall be established and maintained at each entrance/exit ramp and on ramps within the vessel as traffic flow warrants. (b) Ramp load limit. Each ramp shall be plainly...

  12. 29 CFR 1918.86 - Roll-on roll-off (Ro-Ro) operations (see also § 1918.2, Ro-Ro operations, and § 1918.25).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of vehicular and pedestrian traffic control shall be established and maintained at each entrance/exit ramp and on ramps within the vessel as traffic flow warrants. (b) Ramp load limit. Each ramp shall be plainly...

  13. 29 CFR 1918.86 - Roll-on roll-off (Ro-Ro) operations (see also § 1918.2, Ro-Ro operations, and § 1918.25).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of vehicular and pedestrian traffic control shall be established and maintained at each entrance/exit ramp and on ramps within the vessel as traffic flow warrants. (b) Ramp load limit. Each ramp shall be plainly...

  14. Lifestyles of the palaeoproterozoic stromatolite builders in the Vempalle Sea, Cuddapah Basin, India

    NASA Astrophysics Data System (ADS)

    Patranabis-Deb, Sarbani; Majumder, Tuasha; Khan, Sayani

    2018-05-01

    The distribution and changing pattern of stromatolites in the Vempalle Formation of the Cuddapah Basin, India, have been investigated with emphasis on external morphologies, internal fabrics, growth patterns and sediment associations. The stromatolitic limestone occurs in a low angle ramp type carbonate platform, with complete exposures from shallow shelf to basinal facies, provides record of changes in reef-building capacity of stromatolites with change in the depositional milieu. Changing pattern and style of the stromatolites clearly reflect depth partitioned growth of the microbial community. Small and scattered stromatolites, commonly with wavy parallel laminations or stratifications occurred in inner-ramp settings, where they are build up to the sea level. Tepee structure and desiccation cracks in associated sediments and salt pseudomorphs point to shallow water to occasional exposure condition. Large bioherms with columnar and conical stromatolites developed in the headland (mid ramp), which were in continuous interaction with strong waves of the open sea. Growth of the bioherms changed the landform with time and generated a high sloping edge with a sheer drop that extended out into the sea, forming distally steepened ramp. Outer ramp lithofacies characterized by thick layers of shale succession with thin beds of laterally persistent stromatolitic beds with low synoptic relief build-ups. These biotic components, along with the absence of wave-related structures, place the outer ramp below the base of wave action zone. Ooid banks developed in the mid ramp area are in the high surfing zone. High flux of nutrients and high-light show positive correlation; thus the high growth pattern is best observed within the photic zone where wave action is maximum. The ability to change from low synoptic relief algal laminites to high synoptic relief columnar stromatolites point to their adaptive power. The key factor that controlled the shape of these Palaeoproterozoic stromatolites is the dynamic interactions between mat growth, currents and sediment supply. Presence of concentric and radial fibrous ooids indicates change in climate and salinity of the sea.

  15. The Future Impact of Wind on BPA Power System Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Lu, Shuai; McManus, Bart

    Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system ancillary services including load following and regulation. Existing approaches for similar analysis include dispatch model simulation and standard deviation evaluation. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in BPA power system. Then capacity, ramp rate and ramp durationmore » characteristics are extracted from the simulation results, and load following and regulation requirements are calculated accordingly. It mimics the actual power system operations therefore the results can be more realistic yet the approach is convenient to perform. Further, the ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability and energy requirement, respectively, additional to the capacity requirement.« less

  16. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.

  17. Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine

    NASA Astrophysics Data System (ADS)

    d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A.

    2014-05-01

    SPHINX is a 6MA, 1-us Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. A method for performing magnetic ramp compression experiments was developed using a compact Dynamic Load Current Multiplier inserted between the convolute and the load, to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments and initial results obtained over a set of experiments on an aluminum cylindrical liner. Current profiles measured at various critical locations across the system, are in good agreement with simulated current profiles. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency.

  18. Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping.

    PubMed

    Connors, Bret A; Evan, Andrew P; Blomgren, Philip M; Handa, Rajash K; Willis, Lynn R; Gao, Sujuan

    2009-01-01

    To determine if the starting voltage in a step-wise ramping protocol for extracorporeal shock wave lithotripsy (SWL) alters the size of the renal lesion caused by the SWs. To address this question, one kidney from 19 juvenile pigs (aged 7-8 weeks) was treated in an unmodified Dornier HM-3 lithotripter (Dornier Medical Systems, Kennesaw, GA, USA) with either 2000 SWs at 24 kV (standard clinical treatment, 120 SWs/min), 100 SWs at 18 kV followed by 2000 SWs at 24 kV or 100 SWs at 24 kV followed by 2000 SWs at 24 kV. The latter protocols included a 3-4 min interval, between the 100 SWs and the 2000 SWs, used to check the targeting of the focal zone. The kidneys were removed at the end of the experiment so that lesion size could be determined by sectioning the entire kidney and quantifying the amount of haemorrhage in each slice. The average parenchymal lesion for each pig was then determined and a group mean was calculated. Kidneys that received the standard clinical treatment had a mean (sem) lesion size of 3.93 (1.29)% functional renal volume (FRV). The mean lesion size for the 18 kV ramping group was 0.09 (0.01)% FRV, while lesion size for the 24 kV ramping group was 0.51 (0.14)% FRV. The lesion size for both of these groups was significantly smaller than the lesion size in the standard clinical treatment group. The data suggest that initial voltage in a voltage-ramping protocol does not correlate with renal damage. While voltage ramping does reduce injury when compared with SWL with no voltage ramping, starting at low or high voltage produces lesions of the same approximate size. Our findings also suggest that the interval between the initial shocks and the clinical dose of SWs, in our one-step ramping protocol, is important for protecting the kidney against injury.

  19. Phase transition of a new lattice hydrodynamic model with consideration of on-ramp and off-ramp

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Sun, Di-hua; Zhao, Min

    2018-01-01

    A new traffic lattice hydrodynamic model with consideration of on-ramp and off-ramp is proposed in this paper. The influence of on-ramp and off-ramp on the stability of the main road is uncovered by theoretical analysis and computer simulation. Through linear stability theory, the neutral stability condition of the new model is obtained and the results show that the unstable region in the phase diagram is enlarged by considering the on-ramp effect but shrunk with consideration of the off-ramp effect. The mKdV equation near the critical point is derived via nonlinear reductive perturbation method and the occurrence of traffic jamming transition can be described by the kink-antikink soliton solution of the mKdV equation. From the simulation results of space-time evolution of traffic density waves, it is shown that the on-ramp can worsen the traffic stability of the main road but off-ramp is positive in stabilizing the traffic flow of the main road.

  20. A Comparative Study of the Behaviour of Five Dense Glass Materials Under Shock Loading Conditions

    NASA Astrophysics Data System (ADS)

    Radford, Darren D.; Proud, William G.; Field, John E.

    2001-06-01

    Previous work at the Cavendish Laboratory on the properties of glasses under shock loading has demonstrated that the material response is highly dependent upon the composition of the glass. The shock response of glass materials with an open structure, such as borosilicate, exhibits a ramping behaviour in the longitudinal stress histories due to structural collapse. Glass materials with a “filled” microstructure, as in the case of Type-D, Extra Dense Flint (DEDF) do not exhibit a ramping behaviour and behave in a manner similar to polycrystalline ceramics [1]. The current investigation compares the behaviour of five such glasses (SF15, DEDF, LACA, SF57 and DEDF-927210) under shock loading conditions. It is observed that slight changes in material composition can have a large affect on the inelastic behaviour. Principal Hugoniot and shear strength data are presented for all of the materials for pressures ranging from 2 to 14 GPa. Evidence of the so-called failure-front [2] is presented via lateral stress histories measured using manganin stress gauges and confirmed with high-speed photography. 1. Bourne, N.K., Millett, J.C.F., and Field, J.E., “On the strength of shocked glasses” Proc. R. Soc. Lond. A 455 (1999) 1275-1282 2. Brar, N.S., “Failure Waves in Glass and Ceramics Under Shock Compression”, in "Shock Compression of Condensed Matter 1999", ed. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson, American Institute of Physics, Woodbury, New York, (1999) 601-606

  1. Numerical investigation of over expanded flow behavior in a single expansion ramp nozzle

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Mahmood; Pourabidi, Reza; Goshtasbi-Rad, Ebrahim

    2018-05-01

    The single expansion ramp nozzle is severely over-expanded when the vehicle is at low speed, which hinders its ability to provide optimal configurations for combined cycle engines. The over-expansion leads to flow separation as a result of shock wave/boundary-layer interaction. Flow separation, and the presence of shocks themselves, result in a performance loss in the single expansion ramp nozzle, leading to reduced thrust and increased pressure losses. In the present work, the unsteady two dimensional compressible flow in an over expanded single expansion ramp nozzle has been investigated using finite volume code. To achieve this purpose, the Reynolds stress turbulence model and full multigrid initialization, in addition to the Smirnov's method for examining the errors accumulation, have been employed and the results are compared with available experimental data. The results show that the numerical code is capable of predicting the experimental data with high accuracy. Afterward, the effect of discontinuity jump in wall temperature as well as the length of straight ramp on flow behavior have been studied. It is concluded that variations in wall temperature and length of straight ramp change the shock wave boundary layer interaction, shock structure, shock strength as well as the distance between Lambda shocks.

  2. Simulations towards the achievement of non-inductive current ramp-up and sustainment in the National Spherical Torus Experiment Upgrade

    DOE PAGES

    Poli, F. M.; Andre, R. G.; Bertelli, N.; ...

    2015-10-30

    One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW andmore » electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.« less

  3. Analysis of stationary fuel cell dynamic ramping capabilities and ultra capacitor energy storage using high resolution demand data

    NASA Astrophysics Data System (ADS)

    Meacham, James R.; Jabbari, Faryar; Brouwer, Jacob; Mauzey, Josh L.; Samuelsen, G. Scott

    Current high temperature fuel cell (HTFC) systems used for stationary power applications (in the 200-300 kW size range) have very limited dynamic load following capability or are simply base load devices. Considering the economics of existing electric utility rate structures, there is little incentive to increase HTFC ramping capability beyond 1 kWs -1 (0.4% s -1). However, in order to ease concerns about grid instabilities from utility companies and increase market adoption, HTFC systems will have to increase their ramping abilities, and will likely have to incorporate electrical energy storage (EES). Because batteries have low power densities and limited lifetimes in highly cyclic applications, ultra capacitors may be the EES medium of choice. The current analyses show that, because ultra capacitors have a very low energy storage density, their integration with HTFC systems may not be feasible unless the fuel cell has a ramp rate approaching 10 kWs -1 (4% s -1) when using a worst-case design analysis. This requirement for fast dynamic load response characteristics can be reduced to 1 kWs -1 by utilizing high resolution demand data to properly size ultra capacitor systems and through demand management techniques that reduce load volatility.

  4. Microsecond ramp compression of a metallic liner driven by a 5 MA current on the SPHINX machine using a dynamic load current multiplier pulse shaping

    NASA Astrophysics Data System (ADS)

    d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A. S.

    2013-09-01

    SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper, we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or magnetic diffusion across the liner. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency through the use of a closing switch (currently under development), reducing the load dimensions and optimizing the diagnostics.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenkranz, Joshua-Benedict; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias

    Solar power generation, unlike conventional forms of electricity generation, has higher variability and uncertainty in its output because solar plant output is strongly impacted by weather. As the penetration rate of solar capacity increases, grid operators are increasingly concerned about accommodating the increased variability and uncertainty that solar power provides. This paper illustrates the impacts of increasing solar power penetration on the ramping of conventional electricity generators by simulating the operation of the Independent System Operator -- New England power system. A production cost model was used to simulate the power system under five different scenarios, one without solar powermore » and four with increasing solar power penetrations up to 18%, in terms of annual energy. The impact of solar power is analyzed on six different temporal intervals, including hourly and multi-hourly (2- to 6-hour) ramping. The results show how the integration of solar power increases the 1- to 6-hour ramping events of the net load (electric load minus solar power). The study also analyzes the impact of solar power on the distribution of multi-hourly ramping events of fossil-fueled generators and shows increasing 1- to 6-hour ramping events for all different generators. Generators with higher ramp rates such as gas and oil turbine and internal combustion engine generators increased their ramping events by 200% to 280%. For other generator types--including gas combined-cycle generators, coal steam turbine generators, and gas and oil steam turbine generators--more and higher ramping events occurred as well for higher solar power penetration levels.« less

  6. Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data With and Without PAL Ramp

    NASA Technical Reports Server (NTRS)

    Walker, Bruce E.; Panda, Jayanta; Sutliff, Daniel L.

    2008-01-01

    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first 2 min of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.

  7. Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data with and without PAL Ramp

    NASA Technical Reports Server (NTRS)

    Walker, B. E.; Panda, B. E.; Sutliff, D. L.

    2008-01-01

    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first two minutes of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.

  8. Mechanisms of High-Temperature Fatigue Failure in Alloy 800H

    NASA Technical Reports Server (NTRS)

    BhanuSankaraRao, K.; Schuster, H.; Halford, G. R.

    1996-01-01

    The damage mechanisms influencing the axial strain-controlled Low-Cycle Fatigue (LCF) behavior of alloy 800H at 850 C have been evaluated under conditions of equal tension/compression ramp rates (Fast-Fast (F-F): 4 X 10(sup -3)/s and Slow-Slow (S-S): 4 X 10(sup -5)/s) and asymmetrical ramp rates (Fast-Slow (F-S): 4 x 10(sup -3)/s / 4 X 10(sup -5/s and Slow-Fast (S-F): 4 X 10(sup -5) / 4 X 10(sup -3)/s) in tension and compression. The fatigue life, cyclic stress response, and fracture modes were significantly influenced by the waveform shape. The fatigue lives displayed by different loading conditions were in the following order: F-F greater than S-S greater than F-S greater than S-F. The fracture mode was dictated by the ramp rate adopted in the tensile direction. The fast ramp rate in the tensile direction led to the occurrence of transgranular crack initiation and propagation, whereas the slow ramp rate caused intergranular initiation and propagation. The time-dependent processes and their synergistic interactions, which were at the basis of observed changes in cyclic stress response and fatigue life, were identified. Oxidation, creep damage, dynamic strain aging, massive carbide precipitation, time-dependent creep deformation, and deformation ratcheting were among the several factors influencing cyclic life. Irrespective of the loading condition, the largest effect on life was exerted by oxidation processes. Deformation ratcheting had its greatest influence on life under asymmetrical loading conditions. Creep damage accumulated the greatest amount during the slow tensile ramp under S-F conditions.

  9. Application of Micro-ramp Flow Control Devices to an Oblique Shock Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie; Anderson, Bernhard

    2007-01-01

    Tests are planned in the 15cm x 15cm supersonic wind tunnel at NASA Glenn to demonstrate the applicability of micro-ramp flow control to the management of shock wave boundary layer interactions. These tests will be used as a database for computational fluid dynamics (CFD) validation and Design of Experiments (DoE) design information. Micro-ramps show potential for mechanically simple and fail-safe boundary layer control.

  10. Inflatable Launch and Recovery System

    DTIC Science & Technology

    2014-07-31

    clamping fixture connects the ramp structure to the vessel. A snubber element dampens vibrations and transient tow loads. Unclassified Unclassified...integrated dynamic snubber element to dampen out vibrations and transient tow loads. The main air fill line from the handling system to the inflatable ramp...of the vessel A with standard container cam locks 12a (two of which are shown in phantom in FIG. 1). The system 10 can connect to a vessel power

  11. Time dependent heat transfer rates in high Reynolds number hypersonic flowfields

    NASA Technical Reports Server (NTRS)

    Flanagan, Michael J.

    1992-01-01

    Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.

  12. Time dependent heat transfer rates in high Reynolds number hypersonic flowfields

    NASA Astrophysics Data System (ADS)

    Flanagan, Michael J.

    1992-09-01

    Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.

  13. Aeroelastic Response and Protection of Space Shuttle External Tank Cable Trays

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Keller, Donald F.; Schuster, David M.; Piatak, David J.; Rausch, Russ D.; Bartels, Robert E.; Ivanco, Thomas G.; Cole, Stanley R.; Spain, Charles V.

    2005-01-01

    Sections of the Space Shuttle External Tank Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) cable trays are shielded from potentially damaging airloads with foam Protuberance Aerodynamic Load (PAL) Ramps. Flight standard design LO2 and LH2 cable tray sections were tested with and without PAL Ramp models in the United States Air Force Arnold Engineering Development Center s (AEDC) 16T transonic wind tunnel to obtain experimental data on the aeroelastic stability and response characteristics of the trays and as part of the larger effort to determine whether the PAL ramps can be safely modified or removed. Computational Fluid Dynamic simulations of the full-stack shuttle launch configuration were used to investigate the flow characeristics around and under the cable trays without the protective PAL ramps and to define maximum crossflow Mach numbers and dynamic pressures experienced during launch. These crossflow conditions were used to establish wind tunnel test conditions which also included conservative margins. For all of the conditions and configurations tested, no aeroelastic instabilities or unacceptable dynamic response levels were encountered and no visible structural damage was experienced by any of the tested cable tray sections. Based upon this aeroelastic characterization test, three potentially acceptable alternatives are available for the LO2 cable tray PAL Ramps: Mini-Ramps, Tray Fences, or No Ramps. All configurations were tested to maximum conditions, except the LH2 trays at -15 deg. crossflow angle. This exception is the only caveat preventing the proposal of acceptable alternative configurations for the LH2 trays as well. Structural assessment of all tray loads and tray response measurements from launches following the Shuttle Return To Flight with the existing PAL Ramps will determine the acceptability of these PAL Ramp alternatives.

  14. 40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... your own testing. If you submit certification test data collected with both discrete-mode and ramped...-use operation. (d) For full-load operating modes, operate the engine at wide-open throttle. (e) See 40...

  15. Strain-rate dependence of ramp-wave evolution and strength in tantalum

    DOE PAGES

    Lane, J. Matthew D.; Foiles, Stephen M.; Lim, Hojun; ...

    2016-08-25

    We have conducted molecular dynamics (MD) simulations of quasi-isentropic ramp-wave compression to very high pressures over a range of strain rates from 10 11 down to 10 8 1/s. Using scaling methods, we collapse wave profiles from various strain rates to a master profile curve, which shows deviations when material response is strain-rate dependent. Thus, we can show with precision where, and how, strain-rate dependence affects the ramp wave. We find that strain rate affects the stress-strain material response most dramatically at strains below 20%, and that above 30% strain the material response is largely independent of strain rate. Wemore » show good overall agreement with experimental stress-strain curves up to approximately 30% strain, above which simulated response is somewhat too stiff. We postulate that this could be due to our interatomic potential or to differences in grain structure and/or size between simulation and experiment. Strength is directly measured from per-atom stress tensor and shows significantly enhanced elastic response at the highest strain rates. As a result, this enhanced elastic response is less pronounced at higher pressures and at lower strain rates.« less

  16. Microsecond ramp compression of a metallic liner driven by a 5 MA current on the SPHINX machine using a dynamic load current multiplier pulse shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Almeida, T.; Lassalle, F.; Morell, A.

    SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper,more » we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or magnetic diffusion across the liner. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency through the use of a closing switch (currently under development), reducing the load dimensions and optimizing the diagnostics.« less

  17. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, D.; Brinkman, G.; Kumar, N.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-statemore » operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.« less

  18. Ramp Creek and Harrodsburg Limestones: A shoaling-upward sequence with storm-produced features in southern Indiana, U.S.A.. Carbonate petrology seminar, Indiana University

    NASA Astrophysics Data System (ADS)

    1987-05-01

    Most previously described examples of storm-produced stratification have been reported from siliciclastic rocks. However, such features should also be common in carbonate rocks. The Mississippian (Valmeyeran) Ramp Creek and Harrodsburg Limestones, deposited on the east margin of the Illinois Basin on top of the Borden Delta, contain storm-produced features. The dolomitic, geode-bearing Ramp Creek Limestone contains muddying-upward sequences, commonly with scoured bases overlain by grainstones, packstones, wackestones, and burrowed mudstones. These sequences are similar to hummocky sequences formed by storm waves below fair-weather wave base. The middle portion of the section including the upper Ramp Creek and lower Harrodsburg Limestones contains dolomitized mud lenses of uncertain origin. They may have formed by the baffling effect of bryozoans and/or unpreserved algae. The Harrodsburg is gradational with the Ramp Creek and consists predominantly of grainstones and packstones deposited in shallower water. Low-angle cross-stratification and truncation surfaces suggest a foreshore depositional environment for the Harrodsburg. Neither formation contains any indication of supratidal deposition as has been previously suggested. Open marine conditions during deposition of both formations are indicated by the fauna which includes crinoids, bryozoans, brachiopods, corals, ostracods, echinoids, trilobites, molluscs, fish (sharks), and trace fossils.

  19. Transportation of market-weight pigs: II. effect of season and location within truck on behavior with an eight-hour transport.

    PubMed

    Torrey, S; Bergeron, R; Faucitano, L; Widowski, T; Lewis, N; Crowe, T; Correa, J A; Brown, J; Hayne, S; Gonyou, H W

    2013-06-01

    Transportation of pigs to slaughter has the potential to negatively impact animal welfare, particularly in hot temperatures and over long transport durations. The objective of this experiment was to determine if season and location within vehicle influenced the behavior of market-weight pigs during loading, transit, unloading, and lairage after a long-distance trip to slaughter. On a pot-belly truck, 1,170 pigs were transported (n = 195 pigs/wk in 7 experimental compartments) for 8 h to a commercial abattoir in summer (6 wk) and winter (5 wk). Pig behavior was observed at loading, in transit, at unloading, and in lairage. Handler intervention at loading was observed, and the time to load and unload was recorded. Although season did not (P = 0.91) affect loading time, more prods (P = 0.014) were necessary to load pigs in summer than winter. Loading in winter also tended to be longer (P = 0.071) into compartments involving internal ramps. In transit, more pigs (P = 0.025) were standing in winter compared with summer. Unloading took longer (P < 0.006) in winter than in summer and from compartments where pigs had to negotiate ramps and 180° turns. Furthermore, pigs in summer experienced more slipping (P = 0.032), falling (P = 0.004), overlapping (P < 0.001), and walking backward (P < 0.001) than pigs in winter. Pigs unloading from compartments with internal ramps slipped more (P < 0.0001) than other pigs. Season influenced latency to rest in lairage, with those transported in summer resting sooner (P < 0.0001) than those in winter. In conclusion, season and location within trucks differentially affect pig behavior before, during, and after long-distance transportation. Differences in lighting and temperature between seasons and the inclusion of internal ramps within vehicles may play important roles in the welfare of pigs transported to slaughter.

  20. Ramp compression of magnesium oxide to 234 GPa

    DOE PAGES

    Wang, Jue; Smith, R. F.; Coppari, F.; ...

    2014-05-07

    Single-crystal magnesium oxide (MgO) samples were ramp compressed to above 200 GPa pressure at the Omega laser facility. Multi-stepped MgO targets were prepared using lithography and wet etching techniques. Free surface velocities of ramp-compressed MgO were measured with a VISAR. The sound velocity and stress-density response were determined using an iterative Lagrangian analysis. The measured equation of state is consistent with expectations from previous shock and static data as well as with a recent X-ray diffraction measurement under ramp loading. The peak elastic stresses observed in our samples had amplitudes of 3-5.5 GPa, decreasing with propagation distance.

  1. Kinetic Properties of an Interplanetary Shock Propagating inside a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Liu, Mingzhe; Liu, Ying D.; Yang, Zhongwei; Wilson, L. B., III; Hu, Huidong

    2018-05-01

    We investigate the kinetic properties of a typical fast-mode shock inside an interplanetary coronal mass ejection (ICME) observed on 1998 August 6 at 1 au, including particle distributions and wave analysis with the in situ measurements from Wind. Key results are obtained concerning the shock and the shock–ICME interaction at kinetic scales: (1) gyrating ions, which may provide energy dissipation at the shock in addition to wave-particle interactions, are observed around the shock ramp; (2) despite the enhanced proton temperature anisotropy of the shocked plasma, the low plasma β inside the ICME constrains the shocked plasma under the thresholds of the ion cyclotron and mirror-mode instabilities; (3) whistler heat flux instabilities, which can pitch-angle scatter halo electrons through a cyclotron resonance, are observed around the shock, and can explain the disappearance of bi-directional electrons (BDEs) inside the ICME together with normal betatron acceleration; (4) whistler waves near the shock are likely associated with the whistler heat flux instabilities excited at the shock ramp, which is consistent with the result that the waves may originate from the shock ramp; (5) the whistlers share a similar characteristic with the shocklet whistlers observed by Wilson et al., providing possible evidence that the shock is decaying because of the strong magnetic field inside the ICME.

  2. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percentmore » by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind« less

  3. Estimating amplitudes of fifth-order sea level fluctuations from peritidal through basinal carbonate deposits, Lower Mississippian, Wyoming-Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrick, M.; Read, J.F.

    1990-05-01

    Three types of 1-10-m upward-shallowing cycles are observed in the Lower Mississippian Lodgepole and lower Madison formations of Wyoming and Montana. Typical peritidal cycles have pellet grainstone bases overlain by algal laminites, which are rarely capped by paleosol/regolith horizons. Shallow ramp cycles have burrowed pellet-skeletal wackestone bases overlain by cross-bedded ooid/crinoid grainstone caps. Deep ramp cycles are characterized by sub-wave base limestone/argillite, storm-deposited limestone, overlain by hummocky stratified grainstone caps. Average cycle periods range from 17-155 k.y. This, rhythmically bedded limestone/argillite deposits of basinal facies do not contain shallowing-upward cycles, but do contain 2-4 k.y. limestone/argillite rhythms. These sub-wave basemore » deposit are associated with Waulsortian-type mud mounds which have >50 m synoptic relief. This relief provides minimum water depth estimates for the deposits, and implies storm-wave base was less than 50 m. Two-dimensional computer modeling of cyclic platform through noncyclic basinal deposits allows for bracketing of fifth-order sea level fluctuation amplitudes, thought responsible for cycle formation. Computer models using fifth-order amplitudes less than 20 m do not produce cycles on the deep ramp (assuming a 25-30 m storm-wave base). Amplitudes >30 m produce water depths on the inner ramp that are too deep, and disconformities extend too far into the basin. The absence of meter-scale cycles in the basin suggests water depths were too great to record the effects of sea level oscillations occurring on the platform, or climatic fluctuation, associated with glacio-eustatic sea level oscillations, were not sufficient to affect hemipelagic depositional patterns in the tropical basin environment.« less

  4. Optimal Asset Distribution for Environmental Assessment and Forecasting Based on Observations, Adaptive Sampling, and Numerical Prediction

    DTIC Science & Technology

    2013-03-18

    Soliton Ocean Services Inc. to Steve Ramp to complete the work on the grant. Computations in support of Steve Ramp’s work were carried out by Fred...dominant term, even when averaged over the dark hours, which accounts for the large standard deviation. The net long-wave radiation was small and

  5. Fast, precise, and widely tunable frequency control of an optical parametric oscillator referenced to a frequency comb.

    PubMed

    Prehn, Alexander; Glöckner, Rosa; Rempe, Gerhard; Zeppenfeld, Martin

    2017-03-01

    Optical frequency combs (OFCs) provide a convenient reference for the frequency stabilization of continuous-wave lasers. We demonstrate a frequency control method relying on tracking over a wide range and stabilizing the beat note between the laser and the OFC. The approach combines fast frequency ramps on a millisecond timescale in the entire mode-hop free tuning range of the laser and precise stabilization to single frequencies. We apply it to a commercially available optical parametric oscillator (OPO) and demonstrate tuning over more than 60 GHz with a ramping speed up to 3 GHz/ms. Frequency ramps spanning 15 GHz are performed in less than 10 ms, with the OPO instantly relocked to the OFC after the ramp at any desired frequency. The developed control hardware and software are able to stabilize the OPO to sub-MHz precision and to perform sequences of fast frequency ramps automatically.

  6. Effect of walking speed on lower extremity joint loading in graded ramp walking.

    PubMed

    Schwameder, Hermann; Lindenhofer, Elke; Müller, Erich

    2005-07-01

    Lower extremity joint loading during walking is strongly affected by the steepness of the slope and might cause pain and injuries in lower extremity joint structures. One feasible measure to reduce joint loading is the reduction of walking speed. Positive effects have been shown for level walking, but not for graded walking or hiking conditions. The aim of the study was to quantify the effect of walking speed (separated into the two components, step length and cadence) on the joint power of the hip, knee and ankle and to determine the knee joint forces in uphill and downhill walking. Ten participants walked up and down a ramp with step lengths of 0.46, 0.575 and 0.69 m and cadences of 80, 100 and 120 steps per minute. The ramp was equipped with a force platform and the locomotion was filmed with a 60 Hz video camera. Loading of the lower extremity joints was determined using inverse dynamics. A two-dimensional knee model was used to calculate forces in the knee structures during the stance phase. Walking speed affected lower extremity joint loading substantially and significantly. Change of step length caused much greater loading changes for all joints compared with change of cadence; the effects were more distinct in downhill than in uphill walking. The results indicate that lower extremity joint loading can be effectively controlled by varying step length and cadence during graded uphill and downhill walking. Hikers can avoid or reduce pain and injuries by reducing walking speed, particularly in downhill walking.

  7. Recruitment of single human low-threshold motor units with increasing loads at different muscle lengths.

    PubMed

    McNulty, P A; Cresswell, A G

    2004-06-01

    We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P<0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.

  8. Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2008-01-01

    The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.

  9. Development of fully non-inductive plasmas heated by medium and high-harmonic fast waves in the national spherical torus experiment upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Poli, F.; Bertelli, N.; Harvey, R. W.; Hosea, J. C.; Mueller, D.; Perkins, R. J.; Phillips, C. K.; Raman, R.

    2015-12-01

    A major challenge for spherical tokamak development is to start-up and ramp-up the plasma current (Ip) without using a central solenoid. Experiments in the National Spherical Torus eXperiment (NSTX) demonstrated that 1.4 MW of 30 MHz high-harmonic fast wave (HHFW) power could generate an Ip = 300 kA H-mode discharge with a non-inductive Ip fraction, fNI ˜ 0.7. The discharge had an axial toroidal magnetic field (BT(0)) of 0.55 T, the maximum BT(0) available on NSTX. NSTX has undergone a major upgrade (NSTX-U), that will eventually allow the generation of BT(0) ≤ 1 T and Ip ≤ 2 MA plasmas. Full wave simulations of 30 MHz HHFW and medium harmonic fast wave (MHFW) heating in NSTX-U predict significantly reduced FW power loss in the plasma edge at the higher BT(0) achievable in NSTX-U. HHFW experiments will aim to generate stable, fNI ˜ 1, Ip = 300 kA H-mode plasmas and to ramp Ip from 250 to 400 kA with FW power. Time-dependent TRANSP simulations are used to develop non-inductive Ip ramp-up and sustainment using 30 MHz FW power. This paper presents results from these RF simulations and plans for developing non-inductive plasmas heated by FW power.

  10. X-ray Diffraction Study of Molybdenum to 900 GPa

    NASA Astrophysics Data System (ADS)

    Wang, J.; Coppari, F.; Smith, R.; Eggert, J.; Boehly, T.; Collins, G. W.; Duffy, T. S.

    2013-12-01

    Molybdenum (Mo) is a transition metal that is important as a high-pressure standard. Its equation of state, structure, and melting behavior have been explored extensively in both experimental and theoretical studies. Melting data up to the Mbar pressure region from static compression experiments in the diamond anvil cell [Errandonea et al. 2004] are inconsistent with shock wave sound velocity measurements [Hixson et al., 1989]. There are also conflicting reports as to whether body-centered cubic (BCC) Mo transforms to a face-centered cubic (FCC), hexagonal close packed (HCP) or double hexagonal close packed (DHCP) structure at either high pressure or high pressure and temperature conditions [Belonoshko et al. 2008, Mikhaylushkin et al., 2008 and Cazorla et al., 2008]. Recently, a phase transition from BCC to the DHCP phase at 660 GPa and 0 K was predicted using the particle swam optimization (PSO) method (Wang et al, 2013). Here we report an x-ray diffraction study of dynamically compressed molybdenum. Experiments were conducted using the Omega laser at the Laboratory for Laser Energetics at the University of Rochester. Mo targets were either ramp or shock compressed using a laser drive. In ramp loading, the sample is compressed sufficiently slowly that a shock wave does not form. This results in lower temperatures, keeping the sample in the solid state to higher pressures. X-ray diffraction measurements were performed using quasi-monochromatic x-rays from a highly ionized He-α Cu source and image plate detectors. Upon ramp compression, we found no evidence of phase transition in solid Mo up to 900 GPa. The observed peaks can be assigned to the (110) and (200) or (220) reflections of BCC Mo up to the highest pressure, indicating that Mo does not melt under ramp loading to maximum pressure reached. Under shock loading, we did not observe any evidence for the solid-solid phase transformation around 210 GPa as reported in previous work (Hixson et al, 1989). The BCC phase of Mo remained stable along the Hugoniot up to at least 350 GPa. Our observation of diffraction peaks from shocked Mo shows that Hugoniot does not cross the melting curve until at least this pressure. This indicates that previous diamond cell experiments (Errandonea et al., 2004) have underestimated the Mo melting curve. We acknowledge the Omega staff at LLE for their assistance, and the Target Engineering Team at LLNL for fabrication of the targets used in these experiments. The research was supported by NNSA/DOE through the National Laser Users' Facility Program under contracts DE-NA0000856 and DE-FG52-09NA29037. References: [1] R.S. Hixson, D.A. Boness, and J.W. Shaner, Phys. Rev. Lett., 62, 637 (1989). [2] D. Errandonea, B. Schwager, R. Ditz, C. Gessmann, R. Boehler, and M. Ross, Phys. Rev. B, 63, 132104 (2004). [3] A.B. Belonoshko, L. Burakovsky, S.P. Chen, B. Johansson, A.S. Mikhaylushkin, D.L. Preston, S.I. Simak, and D.C. Swift, Phys. Rev. Lett., 100, 135701 (2008). [4] C. Cazorla, D. Alfè, and M.J. Gillan, Phys. Rev. Lett. 101, 049601 (2008). [5] A.S. Mikhaylushkin, S.I. Simak ,L. Burakovsky, S.P. Chen, B. Johansson, D.L. Preston, D.C. Swift, and A.B. Belonoshko Phys. Rev. Lett., 101, 049602 (2008). [6] B. Wang, G. Zhang, and Y. Wang, J. Alloys Compd., 556, 116-120, (2013).

  11. Shock loading and release behavior of silicon nitride

    NASA Astrophysics Data System (ADS)

    Kawai, N.; Tsuru, T.; Hidaka, N.; Liu, X.; Mashimo, T.

    2017-01-01

    Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 and 34.5 GPa, respectively. Below the phase transition stress, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by rapid one. Above phase transition stress, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same shocked condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.

  12. Re-forming supercritical quasi-parallel shocks. I - One- and two-dimensional simulations

    NASA Technical Reports Server (NTRS)

    Thomas, V. A.; Winske, D.; Omidi, N.

    1990-01-01

    The process of reforming supercritical quasi-parallel shocks is investigated using one-dimensional and two-dimensional hybrid (particle ion, massless fluid electron) simulations both of shocks and of simpler two-stream interactions. It is found that the supercritical quasi-parallel shock is not steady. Instread of a well-defined shock ramp between upstream and downstream states that remains at a fixed position in the flow, the ramp periodically steepens, broadens, and then reforms upstream of its former position. It is concluded that the wave generation process is localized at the shock ramp and that the reformation process proceeds in the absence of upstream perturbations intersecting the shock.

  13. Upstream electron oscillations and ion overshoot at an interplanetary shock wave

    NASA Technical Reports Server (NTRS)

    Potter, D. W.; Parks, G. K.

    1983-01-01

    During the passage of a large interplanetary shock on Oct. 13, 1981, the ISEE-1 and -2 spacecraft were in the solar wind outside of the upstream region of the bow shock. The high time resolution data of the University of California particle instruments allow pinpointing the expected electron spike as occurring just before the magnetic ramp. In addition, two features that occur at this shock have not been observed before: electron oscillations associated with low frequency waves upstream of the shock and sharp 'overshoot' (about 1 sec) in the ion fluxes that occur right after the magnetic ramp. This interplanetary shock exhibits many of the same characteristics that are observed at the earth's bow shock.

  14. Operational Impacts of Wind Energy Resources in the Bonneville Power Administration Control Area - Phase I Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Lu, Shuai

    2008-07-15

    This report presents a methodology developed to study the future impact of wind on BPA power system load following and regulation requirements. The methodology uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system, by mimicking the actual power system operations. Therefore, the results are close to reality, yet the study based on this methodology is convenient to conduct. Compared with the proposed methodology, existing methodologies for doing similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. Dispatch model simulation is constrained by the design of themore » dispatch program, and standard deviation evaluation is artificial in separating the load following and regulation requirements, both of which usually do not reflect actual operational practice. The methodology used in this study provides not only capacity requirement information, it also analyzes the ramp rate requirements for system load following and regulation processes. The ramp rate data can be used to evaluate generator response/maneuverability requirements, which is another necessary capability of the generation fleet for the smooth integration of wind energy. The study results are presented in an innovative way such that the increased generation capacity or ramp requirements are compared for two different years, across 24 hours a day. Therefore, the impact of different levels of wind energy on generation requirements at different times can be easily visualized.« less

  15. The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2014-01-01

    Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.

  16. TRANSP-based Trajectory Optimization of the Current Profile Evolution to Facilitate Robust Non-inductive Ramp-up in NSTX-U

    NASA Astrophysics Data System (ADS)

    Wehner, William; Schuster, Eugenio; Poli, Francesca

    2016-10-01

    Initial progress towards the design of non-inductive current ramp-up scenarios in the National Spherical Torus Experiment Upgrade (NSTX-U) has been made through the use of TRANSP predictive simulations. The strategy involves, first, ramping the plasma current with high harmonic fast waves (HHFW) to about 400 kA, and then further ramping to 900 kA with neutral beam injection (NBI). However, the early ramping of neutral beams and application of HHFW leads to an undesirably peaked current profile making the plasma unstable to ballooning modes. We present an optimization-based control approach to improve on the non-inductive ramp-up strategy. We combine the TRANSP code with an optimization algorithm based on sequential quadratic programming to search for time evolutions of the NBI powers, the HHFW powers, and the line averaged density that define an open-loop actuator strategy that maximizes the non-inductive current while satisfying constraints associated with the current profile evolution for MHD stable plasmas. This technique has the potential of playing a critical role in achieving robustly stable non-inductive ramp-up, which will ultimately be necessary to demonstrate applicability of the spherical torus concept to larger devices without sufficient room for a central coil. Supported by the US DOE under the SCGSR Program.

  17. Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task One Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuai; Makarov, Yuri V.

    This is a report for task one of the tail event analysis project for BPA. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, the imbalance between generation and load becomes very significant. This type of events occurs infrequently and appears on the tails of the distribution of system power imbalance; therefore, is referred to as tail events. This report analyzes what happened during the Electric Reliability Council of Texas (ERCOT) reliability event on Februarymore » 26, 2008, which was widely reported because of the involvement of wind generation. The objective is to identify sources of the problem, solutions to it and potential improvements that can be made to the system. Lessons learned from the analysis include the following: (1) Large mismatch between generation and load can be caused by load forecast error, wind forecast error and generation scheduling control error on traditional generators, or a combination of all of the above; (2) The capability of system balancing resources should be evaluated both in capacity (MW) and in ramp rate (MW/min), and be procured accordingly to meet both requirements. The resources need to be able to cover a range corresponding to the variability of load and wind in the system, additional to other uncertainties; (3) Unexpected ramps caused by load and wind can both become the cause leading to serious issues; (4) A look-ahead tool evaluating system balancing requirement during real-time operations and comparing that with available system resources should be very helpful to system operators in predicting the forthcoming of similar events and planning ahead; and (5) Demand response (only load reduction in ERCOT event) can effectively reduce load-generation mismatch and terminate frequency deviation in an emergency situation.« less

  18. The Effect of Micro-ramps on Supersonic Flow over a Forward-Facing Step

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Hu; Yi, Shi-He; Zhu, Yang-Zhu; Chen, Zhi; Wu, Yu

    2013-04-01

    The effect of micro-ramp control on fully developed turbulent flow over a forward-facing step (FFS) is investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and supersonic particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and the average velocity profiles of supersonic flow over the FFS with and without the control of the micro-ramps are captured. The fine structures of both cases, including the coherent structures of fully developed boundary layer and the large-scale hairpin-like vortices originated from the micro-ramps as well as the interaction of shock waves with the large-scale structures, are revealed and compared. Based on the time-correlation images, the temporal and spatial evolutionary characteristics of the coherent structures are investigated. It is beneficial to understand the dynamic mechanisms of the separated flow and the control mechanisms of the micro-ramps. The size of the separation region is determined by the NPLS and PIV. The results indicate that the control of the micro-ramps is capable of delaying the separation and diminishing the extent of recirculation zone.

  19. Coastal eolian sand-ramp development related to paleo-sea-level changes during the Latest Pleistocene and Holocene (21–0 ka) in San Miguel Island, California, U.S.A.

    USGS Publications Warehouse

    Peterson, Curt D.; Erlandson, Jon M.; Stock, Errol; Hostetler, Steven W.; Price, David M.

    2017-01-01

    Coastal eolian sand ramps (5–130 m elevation) on the northern slope (windward) side of the small San Miguel Island (13 km in W-E length) range in age from late Pleistocene to modern time, though a major hiatus in sand-ramp growth occurred during the early Holocene marine transgression (16–9 ka). The Holocene sand ramps (1–5 m measured thicknesses) currently lack large dune forms, thereby representing deflated erosional remnants, locally covering thicker late Pleistocene sand-ramp deposits. The ramp sand was initially supplied from the adjacent island-shelf platform, extending about 20 km north of the present coastline. The sand-ramp deposits and interbedded loess soils were 14C dated using 112 samples from 32 archaeological sites and other geologic sections. Latest Pleistocene sand ramps (66–18 ka) were derived from across-shelf eolian sand transport during marine low stands. Shoreward wave transport supplied remobilized late Pleistocene sand from the inner shelf to Holocene beaches, where dominant NW winds supplied sand to the sand ramps. The onset dates of the sand-ramp deposition in San Miguel are 7.2 ± 1.5 ka (sample n = 14). The internal strata dates in the vertically accreting sand ramps are 3.4 ± 1.7 ka (n = 34). The sand ramps in San Miguel show wide-scale termination of sand supply in the latest Holocene time. The sand-ramp top dates or burial dates are 1.7 ± 0.9 ka (n = 28). The latest Holocene sand ramps are truncated along most of the island's northern coastline, indicating recent losses of nearshore sand reserves to onshore, alongshore, and, possibly, offshore sand sinks. The truncated sand ramps in San Miguel Island and in other sand-depleted marine coastlines provide warnings about future beach erosion and/or shoreline retreat from accelerated sea-level rise accompanying predicted global warming.

  20. Dynamic Loading Experiments In The Massive Exoplanet Regime

    NASA Astrophysics Data System (ADS)

    Swift, Damian; Hicks, D.; Eggert, J.; Milathianaki, D.; Rothman, S.; Rosen, P.; Collins, G.

    2010-10-01

    Exoplanets have been detected with masses and radii suggesting rocky and hydrogen-rich compositions up to 10 times the mass of the Earth and Jupiter, in similar volumes. The formation and evolution of such bodies, and the distribution and properties of brown dwarfs which are an important component of galactic structures, depend on the equation of state (EOS) and chemistry of constituent matter at pressures 2-200 TPa for Fe-rich and hydrogenic matter respectively. Electronic structure calculations can predict these properties, but experimental measurements are crucial to investigate their accuracy in this regime. Hohlraum-driven configurations at the National Ignition Facility can induce planar ramp or shock loading to 30 TPa, over volumes sufficient to enable percent accuracy in EOS measurements. We are designing configurations using convergent ramp and shock loading for EOS experiments to pressures in excess of 100 TPa.

  1. The Dynamic Quasiperpendicular Shock: Cluster Discoveries

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, V.; Balikhin, M.; Walker, S. N.; Schwartz, S.; Sundkvist, D.; Lobzin, V.; Gedalin, M.; Bale, S. D.; Mozer, F.; Soucek, J.; Hobara, Y.; Comisel, H.

    The physics of collisionless shocks is a very broad topic which has been studied for more than five decades. However, there are a number of important issues which remain unresolved. The energy repartition amongst particle populations in quasiperpendicular shocks is a multi-scale process related to the spatial and temporal structure of the electromagnetic fields within the shock layer. The most important processes take place in the close vicinity of the major magnetic transition or ramp region. The distribution of electromagnetic fields in this region determines the characteristics of ion reflection and thus defines the conditions for ion heating and energy dissipation for supercritical shocks and also the region where an important part of electron heating takes place. In other words, the ramp region determines the main characteristics of energy repartition. All these processes are crucially dependent upon the characteristic spatial scales of the ramp and foot region provided that the shock is stationary. The process of shock formation consists of the steepening of a large amplitude nonlinear wave. At some point in its evolution the steepening is arrested by processes occurring within the shock transition. From the earliest studies of collisionless shocks these processes were identified as nonlinearity, dissipation, and dispersion. Their relative role determines the scales of electric and magnetic fields, and so control the characteristics of processes such as ion reflection, electron heating and particle acceleration. The determination of the scales of the electric and magnetic field is one of the key issues in the physics of collisionless shocks. Moreover, it is well known that under certain conditions shocks manifest a nonstationary dynamic behaviour called reformation. It was suggested that the transition from stationary to nonstationary quasiperiodic dynamics is related to gradients, e.g. scales of the ramp region and its associated whistler waves that form a precursor wave train. This implies that the ramp region should be considered as the source of these waves. All these questions have been studied making use observations from the Cluster satellites. The Cluster project continues to provide a unique viewpoint from which to study the scales of shocks. During its lifetime the inter-satellite distance between the Cluster satellites has varied from 100 km to 10000 km allowing scientists to use the data best adapted for the given scientific objective.

  2. Pulsed plane wave analytic solutions for generic shapes and the validation of Maxwell's equations solvers

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Vastano, John A.; Lomax, Harvard

    1992-01-01

    Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.

  3. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the loadmore » and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.« less

  4. Circular zig-zag scan video format

    DOEpatents

    Peterson, C. Glen; Simmons, Charles M.

    1992-01-01

    A circular, ziz-zag scan for use with vidicon tubes. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal.

  5. 36 CFR 1192.23 - Mobility aid accessibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart shall provide a level-change mechanism or boarding device (e.g., lift or ramp) complying with... 22 feet in length or less. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at... upon which the lift depends for support of the load, shall have a safety factor of at least six, based...

  6. 36 CFR 1192.23 - Mobility aid accessibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subpart shall provide a level-change mechanism or boarding device (e.g., lift or ramp) complying with... 22 feet in length or less. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at... upon which the lift depends for support of the load, shall have a safety factor of at least six, based...

  7. Ramp and periodic dynamics across non-Ising critical points

    NASA Astrophysics Data System (ADS)

    Ghosh, Roopayan; Sen, Arnab; Sengupta, K.

    2018-01-01

    We study ramp and periodic dynamics of ultracold bosons in an one-dimensional (1D) optical lattice which supports quantum critical points separating a uniform and a Z3 or Z4 symmetry broken density-wave ground state. Our protocol involves both linear and periodic drives which takes the system from the uniform state to the quantum critical point (for linear drive protocol) or to the ordered state and back (for periodic drive protocols) via controlled variation of a parameter of the system Hamiltonian. We provide exact numerical computation, for finite-size boson chains with L ≤24 using exact diagonalization (ED), of the excitation density D , the wave function overlap F , and the excess energy Q at the end of the drive protocol. For the linear ramp protocol, we identify the range of ramp speeds for which D and Q show Kibble-Zurek scaling. We find, based on numerical analysis with L ≤24 , that such scaling is consistent with that expected from critical exponents of the q -state Potts universality class with q =3 ,4 . For the periodic protocol, we show that the model displays near-perfect dynamical freezing at specific frequencies; at these frequencies D ,Q →0 and |F |→1 . We provide a semi-analytic explanation of such freezing behavior and relate this phenomenon to a many-body version of Stuckelberg interference. We suggest experiments which can test our theory.

  8. Ultrahigh Pressure Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.

    2017-12-01

    Laser-based dynamic compression provides a new opportunity to study the lattice structure and other properties of geological materials to ultrahigh pressure conditions ranging from 100 - 1000 GPa (1 TPa) and beyond. Such studies have fundamental applications to understanding the Earth's core as well as the interior structure of super-Earths and giant planets. This talk will review recent dynamic compression experiments using high-powered lasers on materials including Fe-Si, MgO, and SiC. Experiments were conducted at the Omega laser (University of Rochester) and the Linac Coherent Light Source (LCLS, Stanford). At Omega, laser drives as large as 2 kJ are applied over 10 ns to samples that are 50 microns thick. At peak compression, the sample is probed with quasi-monochromatic X-rays from a laser-plasma source and diffraction is recorded on image plates. At LCLS, shock waves are driven into the sample using a 40-J laser with a 10-ns pulse. The sample is probed with X-rays form the LCLS free electron laser providing 1012 photons in a monochromatic pulse near 10 keV energy. Diffraction is recorded using pixel array detectors. By varying the delay between the laser and the x-ray beam, the sample can be probed at various times relative to the shock wave transiting the sample. By controlling the shape and duration of the incident laser pulse, either shock or ramp (shockless) loading can be produced. Ramp compression produces less heating than shock compression, allowing samples to be probed to ultrahigh pressures without melting. Results for iron alloys, oxides, and carbides provide new constraints on equations of state and phase transitions that are relevant to the interior structure of large, extrasolar terrestrial-type planets.

  9. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control

    NASA Astrophysics Data System (ADS)

    Bo, Wang; Weidong, Liu; Yuxin, Zhao; Xiaoqiang, Fan; Chao, Wang

    2012-05-01

    Using a nanoparticle-based planar laser-scattering technique and supersonic particle image velocimetry, we investigated the effects of micro-ramp control on incident shockwave and boundary-layer interaction (SWBLI) in a low-noise supersonic wind-tunnel with Mach number 2.7 and Reynolds number Rθ = 5845. High spatiotemporal resolution wake structures downstream of the micro-ramps were detected, while a complex evolution process containing a streamwise counter-rotating vortex pair and large-scale hairpin-like vortices with Strouhal number Stδ of about 0.5-0.65 was revealed. The large-scale structures could survive while passing through the SWBLI region. Reflected shockwaves are clearly seen to be distorted accompanied by high-frequency fluctuations. Micro-ramp applications have a distinct influence on flow patterns of the SWBLI field that vary depending on spanwise locations. Both the shock foot and separation line exhibit undulations corresponding with modifications of the velocity distribution of the incoming boundary layer. Moreover, by energizing parts of the boundary flow, the micro-ramp is able to dampen the separation.

  10. Ramping and Uncertainty Prediction Tool - Analysis and Visualization of Wind Generation Impact on Electrical Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etingov, Pavel; Makarov, PNNL Yuri; Subbarao, PNNL Kris

    RUT software is designed for use by the Balancing Authorities to predict and display additional requirements caused by the variability and uncertainty in load and generation. The prediction is made for the next operating hours as well as for the next day. The tool predicts possible deficiencies in generation capability and ramping capability. This deficiency of balancing resources can cause serious risks to power system stability and also impact real-time market energy prices. The tool dynamically and adaptively correlates changing system conditions with the additional balancing needs triggered by the interplay between forecasted and actual load and output of variablemore » resources. The assessment is performed using a specially developed probabilistic algorithm incorporating multiple sources of uncertainty including wind, solar and load forecast errors. The tool evaluates required generation for a worst case scenario, with a user-specified confidence level.« less

  11. Effects of two-temperature parameter and thermal nonlocal parameter on transient responses of a half-space subjected to ramp-type heating

    NASA Astrophysics Data System (ADS)

    Xue, Zhang-Na; Yu, Ya-Jun; Tian, Xiao-Geng

    2017-07-01

    Based upon the coupled thermoelasticity and Green and Lindsay theory, the new governing equations of two-temperature thermoelastic theory with thermal nonlocal parameter is formulated. To more realistically model thermal loading of a half-space surface, a linear temperature ramping function is adopted. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Specific attention is paid to study the effect of thermal nonlocal parameter, ramping time, and two-temperature parameter on the distributions of temperature, displacement and stress distribution.

  12. Circular zig-zag scan video format

    DOEpatents

    Peterson, C.G.; Simmons, C.M.

    1992-06-09

    A circular, ziz-zag scan for use with vidicon tubes is disclosed. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal. 10 figs.

  13. Shock loading and release behavior of silicon nitride

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuaki; Tsuru, Taiki; Hidaka, Naoto; Liu, Xun; Mashimo, Tsutomu

    2015-06-01

    Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 GPa and 34.5 GPa, respectively. Below the phase transition point, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by more rapid one. Above the phase transition point, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.

  14. Modeling ramp-hold indentation measurements based on Kelvin-Voigt fractional derivative model

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; zhe Zhang, Qing; Ruan, Litao; Duan, Junbo; Wan, Mingxi; Insana, Michael F.

    2018-03-01

    Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt fractional derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an atomic force microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R 2  >  0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3-1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.

  15. Fatigue life calculation of desuperheater for solving pipe cracking issue using finite element method (FEM) software

    NASA Astrophysics Data System (ADS)

    Kumar, Aravinda; Singh, Jeetendra Kumar; Mohan, K.

    2012-06-01

    Desuperheater assembly experiences thermal cycling in operation by design. During power plant's start up, load change and shut down, thermal gradient is highest. Desuperheater should be able to handle rapid ramp up or ramp down of temperature in these operations. With "hump style" two nozzle desuperheater, cracks were appearing in the pipe after only few cycles of operation. From the field data, it was clear that desuperheater is not able to handle disproportionate thermal expansion happening in the assembly during temperature ramp up and ramp down in operation and leading to cracks appearing in the piping. Growth of thermal fatigue crack is influenced by several factors including geometry, severity of thermal stress and applied mechanical load. This paper seeks to determine cause of failure of two nozzle "hump style" desuperheater using Finite Element Method (FEM) simulation technique. Thermal stress simulation and fatigue life calculation were performed using commercial FEA software "ANSYS" [from Ansys Inc, USA]. Simulation result showed that very high thermal stress is developing in the region where cracks are seen in the field. From simulation results, it is also clear that variable thermal expansion of two nozzle studs is creating high stress at the water manifold junction. A simple and viable solution is suggested by increasing the length of the manifold which solved the cracking issues in the pipe.

  16. Comparison of mechanical compressive properties of commercial and autologous fibrin glues for tissue engineering applications.

    PubMed

    Cravens, Matthew G; Behn, Anthony W; Dragoo, Jason L

    2017-11-01

    Fibrin glues are widely used in orthopedic surgery as adhesives and hemostatic agents. We evaluated the compressive properties of selected fibrin glues in order to identify which are appropriate for tissue regeneration applications subject to compression. Uniaxial unconfined compression tests were performed on fibrin gels prepared from commercial and autologous products: (1) Evicel (Ethicon), (2) Tisseel (Baxter), (3) Angel (Arthrex), and (4) ProPlaz (Biorich). Cyclic loads were applied from 0 to 30% strain for 100cycles at 0.5Hz. Following cyclic testing, specimens were subjected to ramp displacement of 1% strain per second to 80% strain. Throughout cyclic loading, Evicel and Tisseel deformed (shortened) less than Angel at all but one time point, and deformed less than ProPlaz at cycles 10 and 20. The dynamic moduli, peak stress, and strain energy were significantly greater in Tisseel than all other groups. Evicel displayed significantly greater dynamic moduli, peak stress, and strain energy than Angel and ProPlaz. Following cyclic testing, Tisseel and Evicel were significantly less deformed than Angel. No specimens exhibited gross failure during ramp loading to 80% strain. Ramp loading trends mirrored those of cyclic loading. The tested commercial glues were significantly more resistant to compression than the autologous products. The compressive properties of Tisseel were approximately twice those of Evicel. All preparations displayed moduli multiple orders of magnitude less than that of native articular cartilage. We conclude that in knee surgeries requiring fibrin glue to undergo compression of daily activity, commercial products are preferable to autologous preparations from platelet-poor plasma, though both will deform significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task 2 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuai; Makarov, Yuri V.; McKinstry, Craig A.

    Task report detailing low probability tail event analysis and mitigation in BPA control area. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, causing the imbalance between generation and load to become very significant.

  18. Fully non-inductive plasma start-up with lower-hybrid waves using the outboard-launch and top-launch antennas on the TST-2 spherical tokamak

    NASA Astrophysics Data System (ADS)

    Tsujii, Naoto; Takase, Yuichi; Ejiri, Akira; Shinya, Takahiro; Yajima, Satoru; Yamazaki, Hibiki; Togashi, Hiro; Moeller, Charles P.; Roidl, Benedikt; Takahashi, Wataru; Toida, Kazuya; Yoshida, Yusuke

    2017-10-01

    Removal of the central solenoid is essential to realize an economical spherical tokamak fusion reactor, but non-inductive plasma start-up is a challenge. On the TST-2 spherical tokamak, non-inductive plasma start-up using lower-hybrid (LH) waves has been investigated. Using the capacitively-coupled combline (CCC) antenna installed at the outboard midplane, fully non-inductive plasma current ramp-up up to a quarter of that of the typical Ohmic discharges has been achieved. Although it was desirable to keep the density low during the plasma current ramp-up to avoid the LH density limit, it was recognized that there was a maximum current density that could be carried by a given electron density. Since the density needed to increase as the plasma current was ramped-up, the achievable plasma current was limited by the maximum operational toroidal field of TST-2. The top-launch CCC antenna was installed to access higher density with up-shift of the parallel index of refraction. Numerical analysis of LH current drive with the outboard-launch and top-launch antennas was performed and the results were qualitatively consistent with the experimental observations.

  19. Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity.

    PubMed

    Heitmann, Stewart; Ermentrout, G Bard

    2015-06-01

    Spatiotemporal waves of synchronized activity are known to arise in oscillatory neural networks with lateral inhibitory coupling. How such patterns respond to dynamic changes in coupling strength is largely unexplored. The present study uses analysis and simulation to investigate the evolution of wave patterns when the strength of lateral inhibition is varied dynamically. Neural synchronization was modeled by a spatial ring of Kuramoto oscillators with Mexican hat lateral coupling. Broad bands of coexisting stable wave solutions were observed at all levels of inhibition. The stability of these waves was formally analyzed in both the infinite ring and the finite ring. The broad range of multi-stability predicted hysteresis in transitions between neighboring wave solutions when inhibition is slowly varied. Numerical simulation confirmed the predicted transitions when inhibition was ramped down from a high initial value. However, non-wave solutions emerged from the uniform solution when inhibition was ramped upward from zero. These solutions correspond to spatially periodic deviations of phase that we call ripple states. Numerical continuation showed that stable ripple states emerge from synchrony via a supercritical pitchfork bifurcation. The normal form of this bifurcation was derived analytically, and its predictions compared against the numerical results. Ripple states were also found to bifurcate from wave solutions, but these were locally unstable. Simulation also confirmed the existence of hysteresis and ripple states in two spatial dimensions. Our findings show that spatial synchronization patterns can remain structurally stable despite substantial changes in network connectivity.

  20. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  1. Mechanisms of Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects

    NASA Technical Reports Server (NTRS)

    Schaeffler, Norman W.; Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Mace, W. Derry; Wong, Oliver D.; Tanner, Philip E.

    2016-01-01

    The reduction of the aerodynamic load that acts on a generic rotorcraft fuselage by the application of active flow control was investigated in a wind tunnel test conducted on an approximately 1/3-scale powered rotorcraft model simulating forward flight. The aerodynamic mechanisms that make these reductions, in both the drag and the download, possible were examined in detail through the use of the measured surface pressure distribution on the fuselage, velocity field measurements made in the wake directly behind the ramp of the fuselage and computational simulations. The fuselage tested was the ROBIN-mod7, which was equipped with a series of eight slots located on the ramp section through which flow control excitation was introduced. These slots were arranged in a U-shaped pattern located slightly downstream of the baseline separation line and parallel to it. The flow control excitation took the form of either synthetic jets, also known as zero-net-mass-flux blowing, and steady blowing. The same set of slots were used for both types of excitation. The differences between the two excitation types and between flow control excitation from different combinations of slots were examined. The flow control is shown to alter the size of the wake and its trajectory relative to the ramp and the tailboom and it is these changes to the wake that result in a reduction in the aerodynamic load.

  2. The properties and causes of rippling in quasi-perpendicular collisionless shock fronts

    NASA Astrophysics Data System (ADS)

    Lowe, R. E.; Burgess, D.

    2003-03-01

    The overall structure of quasi-perpendicular, high Mach number collisionless shocks is controlled to a large extent by ion reflection at the shock ramp. Departure from a strictly one-dimensional structure is indicated by simulation results showing that the surface of such shocks is rippled, with variations in the density and all field components. We present a detailed analysis of these shock ripples, using results from a two-dimensional hybrid (particle ions, electron fluid) simulation. The process that generates the ripples is poorly understood, because the large gradients at the shock ramp make it difficult to identify instabilities. Our analysis reveals new features of the shock ripples, which suggest the presence of a surface wave mode dominating the shock normal magnetic field component of the ripples, as well as whistler waves excited by reflected ions.

  3. 49 CFR 38.23 - Mobility aid accessibility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....g., lift or ramp) complying with paragraph (b) or (c) of this section and sufficient clearances to... this section, shall be provided on vehicles 22 feet in length or less. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least 600 pounds. Working parts, such as cables, pulleys, and...

  4. 49 CFR 38.23 - Mobility aid accessibility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....g., lift or ramp) complying with paragraph (b) or (c) of this section and sufficient clearances to... this section, shall be provided on vehicles 22 feet in length or less. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least 600 pounds. Working parts, such as cables, pulleys, and...

  5. 1. LOOKING SOUTH ALONG THE LONG AXIS FROM THE TOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING SOUTH ALONG THE LONG AXIS FROM THE TOP OF THE LOADING RAMP. THE SOUTH ARM OF THE PIT IS COVERED BY A FEW INCHES OF WATER FROM RECENT RAINS. - Edwards Air Force Base, South Base, X-1 Loading Pit, Western Shore of Rogers Dry Lake, Boron, Kern County, CA

  6. Shock Wave Technology and Application: An Update☆

    PubMed Central

    Rassweiler, Jens J.; Knoll, Thomas; Köhrmann, Kai-Uwe; McAteer, James A.; Lingeman, James E.; Cleveland, Robin O.; Bailey, Michael R.; Chaussy, Christian

    2012-01-01

    Context The introduction of new lithotripters has increased problems associated with shock wave application. Recent studies concerning mechanisms of stone disintegration, shock wave focusing, coupling, and application have appeared that may address some of these problems. Objective To present a consensus with respect to the physics and techniques used by urologists, physicists, and representatives of European lithotripter companies. Evidence acquisition We reviewed recent literature (PubMed, Embase, Medline) that focused on the physics of shock waves, theories of stone disintegration, and studies on optimising shock wave application. In addition, we used relevant information from a consensus meeting of the German Society of Shock Wave Lithotripsy. Evidence synthesis Besides established mechanisms describing initial fragmentation (tear and shear forces, spallation, cavitation, quasi-static squeezing), the model of dynamic squeezing offers new insight in stone comminution. Manufacturers have modified sources to either enlarge the focal zone or offer different focal sizes. The efficacy of extracorporeal shock wave lithotripsy (ESWL) can be increased by lowering the pulse rate to 60–80 shock waves/min and by ramping the shock wave energy. With the water cushion, the quality of coupling has become a critical factor that depends on the amount, viscosity, and temperature of the gel. Fluoroscopy time can be reduced by automated localisation or the use of optical and acoustic tracking systems. There is a trend towards larger focal zones and lower shock wave pressures. Conclusions New theories for stone disintegration favour the use of shock wave sources with larger focal zones. Use of slower pulse rates, ramping strategies, and adequate coupling of the shock wave head can significantly increase the efficacy and safety of ESWL. PMID:21354696

  7. Study of wave form compensation at CSNS/RCS magnets

    NASA Astrophysics Data System (ADS)

    Xu, S. Y.; Fu, S. N.; Wang, S.; Kang, W.; Qi, X.; Li, L.; Deng, C. D.; Zhou, J. X.

    2018-07-01

    A method of wave form compensation for magnets of the Rapid Cycling Synchrotron (RCS), which is based on transfer function between magnetic field and exciting current, was investigated on the magnets of RCS of Chinese Spallation Neutron Source (CSNS). By performing wave form compensation, the magnetic field ramping function for RCS magnets can be accurately controlled to the given wave form, which is not limited to sine function. The method of wave form compensation introduced in this paper can be used to reduce the magnetic field tracking errors, and can also be used to accurately control the betatron tune for RCS.

  8. Risk assessment in ramps for heavy vehicles--A French study.

    PubMed

    Cerezo, Veronique; Conche, Florence

    2016-06-01

    This paper presents the results of a study dealing with the risk for heavy vehicles in ramps. Two approaches are used. On one hand, statistics are applied on several accidents databases to detect if ramps are more risky for heavy vehicles and to define a critical value for longitudinal slope. χ(2) test confirmed the risk in ramps and statistical analysis proved that a longitudinal slope superior to 3.2% represents a higher risk for heavy vehicles. On another hand, numerical simulations allow defining the speed profile in ramps for two types of heavy vehicles (tractor semi-trailer and 2-axles rigid body) and different loads. The simulations showed that heavy vehicles must drive more than 1000 m on ramps to reach their minimum speed. Moreover, when the slope is superior to 3.2%, tractor semi-trailer presents a strong decrease of their speed until 50 km/h. This situation represents a high risk of collision with other road users which drive at 80-90 km/h. Thus, both methods led to the determination of a risky configuration for heavy vehicles: ramps with a length superior to 1000 m and a slope superior to 3.2%. An application of this research work concerns design methods and guidelines. Indeed, this study provides threshold values than can be used by engineers to make mandatory specific planning like a lane for slow vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. 30 CFR 57.9303 - Construction of ramps and dumping facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads...

  10. Using high frequency consumption data to identify demand response potential for solar energy integration

    NASA Astrophysics Data System (ADS)

    Jin, L.; Borgeson, S.; Fredman, D.; Hans, L.; Spurlock, A.; Todd, A.

    2015-12-01

    California's renewable portfolio standard (2012) requires the state to get 33% of its electricity from renewable sources by 2020. Increased share of variable renewable sources such as solar and wind in the California electricity system may require more grid flexibility to insure reliable power services. Such grid flexibility can be potentially provided by changes in end use electricity consumptions in response to grid conditions (demand-response). In the solar case, residential consumption in the late afternoon can be used as reserve capacity to balance the drop in solar generation. This study presents our initial attempt to identify, from a behavior perspective, residential demand response potentials in relation to solar ramp events using a data-driven approach. Based on hourly residential energy consumption data, we derive representative daily load shapes focusing on discretionary consumption with an innovative clustering analysis technique. We aggregate the representative load shapes into behavior groups in terms of the timing and rhythm of energy use in the context of solar ramp events. Households of different behavior groups that are active during hours with high solar ramp rates are identified for capturing demand response potential. Insights into the nature and predictability of response to demand-response programs are provided.

  11. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiviluoma, Juha; Holttinen, Hannele; Weir, David

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1more » h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.« less

  12. Online Analysis of Wind and Solar Part I: Ramping Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.

    2012-01-31

    To facilitate wider penetration of renewable resources without compromising system reliability concerns arising from the lack of predictability of intermittent renewable resources, a tool for use by California Independent System Operator (CAISO) power grid operators was developed by Pacific Northwest National Laboratory (PNNL) in conjunction with CAISO with funding from California Energy Commission. This tool predicts and displays additional capacity and ramping requirements caused by uncertainties in forecasts of loads and renewable generation. The tool is currently operational in the CAISO operations center. This is one of two final reports on the project.

  13. Shoulder model validation and joint contact forces during wheelchair activities.

    PubMed

    Morrow, Melissa M B; Kaufman, Kenton R; An, Kai-Nan

    2010-09-17

    Chronic shoulder impingement is a common problem for manual wheelchair users. The loading associated with performing manual wheelchair activities of daily living is substantial and often at a high frequency. Musculoskeletal modeling and optimization techniques can be used to estimate the joint contact forces occurring at the shoulder to assess the soft tissue loading during an activity and to possibly identify activities and strategies that place manual wheelchair users at risk for shoulder injuries. The purpose of this study was to validate an upper extremity musculoskeletal model and apply the model to wheelchair activities for analysis of the estimated joint contact forces. Upper extremity kinematics and handrim wheelchair kinetics were measured over three conditions: level propulsion, ramp propulsion, and a weight relief lift. The experimental data were used as input to a subject-specific musculoskeletal model utilizing optimization to predict joint contact forces of the shoulder during all conditions. The model was validated using a mean absolute error calculation. Model results confirmed that ramp propulsion and weight relief lifts place the shoulder under significantly higher joint contact loading than level propulsion. In addition, they exhibit large superior contact forces that could contribute to impingement. This study highlights the potential impingement risk associated with both the ramp and weight relief lift activities. Level propulsion was shown to have a low relative risk of causing injury, but with consideration of the frequency with which propulsion is performed, this observation is not conclusive.

  14. Gain-scheduled {{\\mathscr{H}}}_{\\infty } buckling control of a circular beam-column subject to time-varying axial loads

    NASA Astrophysics Data System (ADS)

    Schaeffner, Maximilian; Platz, Roland

    2018-06-01

    For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, an approach for gain-scheduled {{\\mathscr{H}}}∞ buckling control of a slender beam-column with circular cross-section subject to time-varying axial loads is investigated experimentally. Piezo-elastic supports with integrated piezoelectric stack actuators at the beam-column ends allow an active stabilization in arbitrary lateral directions. The axial loads on the beam-column influence its lateral dynamic behavior and, eventually, cause the beam-column to buckle. A reduced modal model of the beam-column subject to axial loads including the dynamics of the electrical components is set up and calibrated with experimental data. Particularly, the linear parameter-varying open-loop plant is used to design a model-based gain-scheduled {{\\mathscr{H}}}∞ buckling control that is implemented in an experimental test setup. The beam-column is loaded by ramp- and step-shaped time-varying axial compressive loads that result in a lateral deformation of the beam-column due to imperfections, such as predeformation, eccentric loading or clamping moments. The lateral deformations and the maximum bearable loads of the beam-column are analyzed and compared for the beam-column with and without gain-scheduled {{\\mathscr{H}}}∞ buckling control or, respectively, active and passive configuration. With the proposed gain-scheduled {{\\mathscr{H}}}∞ buckling control it is possible to increase the maximum bearable load of the active beam-column by 19% for ramp-shaped axial loads and to significantly reduce the beam-column deformations for step-shaped axial loads compared to the passive structure.

  15. Reducing Unsteady Loads on a Piggyback Miniature Submarine

    NASA Technical Reports Server (NTRS)

    Lin, John

    2009-01-01

    A small, simple fixture has been found to be highly effective in reducing destructive unsteady hydrodynamic loads on a miniature submarine that is attached in piggyback fashion to the top of a larger, nuclear-powered, host submarine. The fixture, denoted compact ramp, can be installed with minimal structural modification, and the use of it does not entail any change in submarine operations.

  16. Kinetics of transfemoral amputees with osseointegrated fixation performing common activities of daily living.

    PubMed

    Lee, Winson C C; Frossard, Laurent A; Hagberg, Kerstin; Haggstrom, Eva; Brånemark, Rickard; Evans, John H; Pearcy, Mark J

    2007-07-01

    Direct anchorage of a lower-limb prosthesis to the bone through an implanted fixation (osseointegration) has been suggested as an excellent alternative for amputees experiencing complications from use of a conventional socket-type prosthesis. However, an attempt needs to be made to optimize the mechanical design of the fixation and refine the rehabilitation program. Understanding the load applied on the fixation is a crucial step towards this goal. The load applied on the osseointegrated fixation of nine transfemoral amputees was measured using a load transducer, when the amputees performed activities which included straight-line level walking, ascending and descending stairs and a ramp as well as walking around a circle. Force and moment patterns along each gait cycle, magnitudes and time of occurrence of the local extrema of the load, as well as impulses were analysed. Managing a ramp and stairs, and walking around a circle did not produce a significant increase (P>0.05) in load compared to straight-line level walking. The patterns of the moment about the medio-lateral axis were different among the six activities which may reflect the different strategies used in controlling the prosthetic knee joint. This study increases the understanding of biomechanics of bone-anchored osseointegrated prostheses. The loading data provided will be useful in designing the osseointegrated fixation to increase the fatigue life and to refine the rehabilitation protocol.

  17. 30 CFR 77.1605 - Loading and haulage equipment; installations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... passage of wheels. (h) Rocker-bottom or bottom-dump cars shall be equipped with positive locking devices, or other suitable devices. (i) Ramps and dumps shall be of solid construction, of ample width, have...

  18. Determining a Prony Series for a Viscoelastic Material From Time Varying Strain Data

    NASA Technical Reports Server (NTRS)

    Tzikang, Chen

    2000-01-01

    In this study a method of determining the coefficients in a Prony series representation of a viscoelastic modulus from rate dependent data is presented. Load versus time test data for a sequence of different rate loading segments is least-squares fitted to a Prony series hereditary integral model of the material tested. A nonlinear least squares regression algorithm is employed. The measured data includes ramp loading, relaxation, and unloading stress-strain data. The resulting Prony series which captures strain rate loading and unloading effects, produces an excellent fit to the complex loading sequence.

  19. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and windmore » forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.« less

  20. Ramp management and control handbook

    DOT National Transportation Integrated Search

    1999-03-01

    Tech Brief: Description study of driving simulator study to assess truck driver fatigue or alertness as affected by non-driving, but on-duty activities, such as loading/unloading a vehicle. It also examined the effects of driver performance on extend...

  1. Regulation of Catch Bonds by Rate of Force Application*

    PubMed Central

    Sarangapani, Krishna K.; Qian, Jin; Chen, Wei; Zarnitsyna, Veronika I.; Mehta, Padmaja; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng

    2011-01-01

    The current paradigm for receptor-ligand dissociation kinetics assumes off-rates as functions of instantaneous force without impact from its prior history. This a priori assumption is the foundation for predicting dissociation from a given initial state using kinetic equations. Here we have invalidated this assumption by demonstrating the impact of force history with single-bond kinetic experiments involving selectins and their ligands that mediate leukocyte tethering and rolling on vascular surfaces during inflammation. Dissociation of bonds between L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) loaded at a constant ramp rate to a constant hold force behaved as catch-slip bonds at low ramp rates that transformed to slip-only bonds at high ramp rates. Strikingly, bonds between L-selectin and 6-sulfo-sialyl Lewis X were impervious to ramp rate changes. This ligand-specific force history effect resembled the effect of a point mutation at the L-selectin surface (L-selectinA108H) predicted to contact the former but not the latter ligand, suggesting that the high ramp rate induced similar structural changes as the mutation. Although the A108H substitution in L-selectin eliminated the ramp rate responsiveness of its dissociation from PSGL-1, the inverse mutation H108A in P-selectin acquired the ramp rate responsiveness. Our data are well explained by the sliding-rebinding model for catch-slip bonds extended to incorporate the additional force history dependence, with Ala-108 playing a pivotal role in this structural mechanism. These results call for a paradigm shift in modeling the mechanical regulation of receptor-ligand bond dissociation, which includes conformational coupling between binding pocket and remote regions of the interacting molecules. PMID:21775439

  2. Three-dimensional nonlinear responses to impact loads on free-span pipeline: Torsional coupling and load steps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, J.S.; Huttelmaier, H.P.; Cheng, B.R.

    1995-12-31

    For a heavy object falling on a free-span pipeline, this study assesses three-dimensional (3-D) pipe-span responses with the torsional ({theta}x-) coupling of a pipeline through the biaxial (y) bending responses. The static pipe-span equilibrium is achieved with its self-weight and buoyancy and the external torsional moment induced by the cross-flow (y-directional) current on the sagged pipe span. Load steps taken for 2 different sequences of applying static loads induced different pipe deformations, and the pipe twists in entirely different pattern. The two types of impact loads are applied in the vertical (z-) direction to excite the pipe span in itsmore » static equilibrium: (1) triangular impulse loading and (2) ramp loading. Boundary condition of the span supports is ``fixed-fixed`` at both ends in both displacement and rotation. 3-D coupled axial (x-), bending (y- and z-) and torsional ({theta}x-) responses, both state and dynamic, to the z-directional impact loadings, are modeled and analyzed by a nonlinear FEM method for a 16-in pipeline. The 3-D responses are compared with 2-D responses. The comparison shows significant torsional vibrations caused by the cross-flow current, especially for longer spans. The torsional ({theta}x-) coupling is very sensitive to the time-step size in achieving numerical stability and accuracy, particularly for the ramp loading and for a shorter span. For very large impact loads, the response frequencies differ from the fundamental frequencies of the span, exhibiting beatings and strong bending-to-axial and to-twist couplings. Also, the eigenvalues for the linear system are not necessarily the resonance frequencies for these nonlinear coupled responses.« less

  3. Verification and Validation of the Coastal Modeling System. Report 3: CMS-Flow: Hydrodynamics

    DTIC Science & Technology

    2011-12-01

    Jansen (1978) Spectrum TMA Directional spreading distribution Cosine Power Directional spreading parameter γ 3.3 Bottom friction Off (default...Ramp duration 3 hr The wave breaking formula applied was Battjes and Jansen (1978) because it is the recommended wave breaking formula when using...Li, Z.H., K.D. Nguyen , J.C. Brun-Cottan and J.M. Martin. 1994. Numerical simulation of the turbidity maximum transport in the Gironde Estuary (France

  4. Plasma Gradient Piston: a new approach to precision pulse shaping

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon T.

    2011-10-01

    We have successfully developed a method to create shaped pressure drives from large shocks that can be applied to a wide variety of experimental platforms. The method consists of transforming a large shock or blast wave into a ramped pressured drive by utilizing a graded density reservoir that unloads across a gap and stagnates against the sample being studied. The utilization of a graded density reservoir, different materials, and a gap transforms the energy in the initial large shock into a quasi-isentropic ramped compression. Control of the ramp history is via the size of the initial shock, the chosen reservoir materials, their densities, the thickness of each density layer, and the gap size. There are two keys to utilizing this approach to create ramped drives: the ability to produce a large shock, and making the layered density reservoir. A number of facilities can produce the strong initial shock (Z, Omega, NIF, Phoenix, high explosives, NIKE, LMJ, pulsed power,...). We have demonstrated ramped drives from 0.5 to 1.5 Mbar utilizing a large shock created at the Omega laser facility. We recently concluded a pair of NIF drive shots where we successfully converted a hohlraum-generated shock into a stepped, ramped pressure drive with a peak pressure of ~4 - 5 Mbar in a Ta sample. We will explain the basic concepts needed for producing a ramped pressure drive, compare experimental data with simulations from Omega (Pmax ~ 1 Mbar) and NIF (Pmax ~ 5-10 Mbar), and present designs for ramped, staged-shock designs up to Pmax ~ 30 Mbar. The approach that we have developed enables precision pulse shaping of the drive (applied pressure vs. time) via target characteristics, as opposed to tailoring laser power vs time or Z-pinch facility current vs time. This enables ramped, quasi-isentropic materials studies to be performed on a wide variety of HED facilities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-490532.

  5. Gas turbine power plant with supersonic shock compression ramps

    DOEpatents

    Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA

    2008-10-14

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  6. Interaction of rate- and size-effect using a dislocation density based strain gradient viscoplasticity model

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung N.; Siegmund, Thomas; Tomar, Vikas; Kruzic, Jamie J.

    2017-12-01

    Size effects occur in non-uniform plastically deformed metals confined in a volume on the scale of micrometer or sub-micrometer. Such problems have been well studied using strain gradient rate-independent plasticity theories. Yet, plasticity theories describing the time-dependent behavior of metals in the presence of size effects are presently limited, and there is no consensus about how the size effects vary with strain rates or whether there is an interaction between them. This paper introduces a constitutive model which enables the analysis of complex load scenarios, including loading rate sensitivity, creep, relaxation and interactions thereof under the consideration of plastic strain gradient effects. A strain gradient viscoplasticity constitutive model based on the Kocks-Mecking theory of dislocation evolution, namely the strain gradient Kocks-Mecking (SG-KM) model, is established and allows one to capture both rate and size effects, and their interaction. A formulation of the model in the finite element analysis framework is derived. Numerical examples are presented. In a special virtual creep test with the presence of plastic strain gradients, creep rates are found to diminish with the specimen size, and are also found to depend on the loading rate in an initial ramp loading step. Stress relaxation in a solid medium containing cylindrical microvoids is predicted to increase with decreasing void radius and strain rate in a prior ramp loading step.

  7. Pulsed power accelerator for material physics experiments

    DOE PAGES

    Reisman, D.  B.; Stoltzfus, B.  S.; Stygar, W.  A.; ...

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered tomore » the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.« less

  8. 14 CFR 25.509 - Towing loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... static positions; and (3) With W T as the design ramp weight, the towing load, F TOW, is— (i) 0.3 W T for W T less than 30,000 pounds; (ii) (6W T+450,000)/7 for W T between 30,000 and 100,000 pounds; and (iii) 0.15 W T for W T over 100,000 pounds. (b) For towing points not on the landing gear but near the...

  9. 14 CFR 25.509 - Towing loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... static positions; and (3) With W T as the design ramp weight, the towing load, F TOW, is— (i) 0.3 W T for W T less than 30,000 pounds; (ii) (6W T+450,000)/7 for W T between 30,000 and 100,000 pounds; and (iii) 0.15 W T for W T over 100,000 pounds. (b) For towing points not on the landing gear but near the...

  10. 14 CFR Appendix E to Part 151 - Appendix E to Part 151

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: Typical Eligible Items 1. Basic types of pavement listed as eligible under § 151.77. 2. Loading ramps. 3... of pavement listed as ineligible under § 151.77. 2. Aprons serving installations for nonpublic use. 3...

  11. Transient difference solutions of the inhomogeneous wave equation - Simulation of the Green's function

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1983-01-01

    A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.

  12. Transient difference solutions of the inhomogeneous wave equation: Simulation of the Green's function

    NASA Technical Reports Server (NTRS)

    Baumeiste, K. J.

    1983-01-01

    A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.

  13. Enhancing Power System Operational Flexibility With Flexible Ramping Products: A Review

    DOE PAGES

    Wang, Qin; Hodge, Bri-Mathias

    2016-12-09

    With the increased variability and uncertainty of net load induced from high penetrations of renewable energy resources and more flexible interchange schedules, power systems are facing great operational challenges in maintaining balance. Among these, the scarcity of ramp capability is an important culprit of power balance violations and high scarcity prices. To address this issue, market-based flexible ramping products (FRPs) have been proposed in the industry to improve the availability of ramp capacity. This paper presents an in-depth review of the modeling and implementation of FRPs. The major motivation is that although FRPs are widely discussed in the literature, itmore » is still unclear to many how they can be incorporated into a co-optimization framework that includes energy and ancillary services. The concept and a definition of power system operational flexibility as well as the needs for FRPs are introduced. The industrial practices of implementing FRPs under different market structures are presented. Market operation issues and future research topics are also discussed. In conclusion, this paper can provide researchers and power engineers with further insights into the state of the art, technical barriers, and potential directions for FRPs.« less

  14. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation.

    PubMed

    Bellmann, Malte; Schmalz, Thomas; Ludwigs, Eva; Blumentritt, Siegmar

    2012-03-01

    To investigate the immediate biomechanical effects after transition to a new microprocessor-controlled prosthetic knee joint. Intervention cross-over study with repeated measures. Only prosthetic knee joints were changed. Motion analysis laboratory. Men (N=11; mean age ± SD, 36.7±10.2y; Medicare functional classification level, 3-4) with unilateral transfemoral amputation. Two microprocessor-controlled prosthetic knee joints: C-Leg and a new prosthetic knee joint, Genium. Static prosthetic alignment, time-distance parameters, kinematic and kinetic parameters, and center of pressure. After a half-day training and an additional half-day accommodation, improved biomechanical outcomes were demonstrated by the Genium: lower ground reaction forces at weight acceptance during level walking at various velocities, increased swing phase flexion angles during walking on a ramp, and level walking with small steps. Maximum knee flexion angle during swing phase at various velocities was nearly equal for Genium. Step-over-step stair ascent with the Genium knee was more physiologic as demonstrated by a more equal load distribution between the prosthetic and contralateral sides and a more natural gait pattern. When descending stairs and ramps, knee flexion moments with the Genium tended to increase. During quiet stance on a decline, subjects using Genium accepted higher loading of the prosthetic side knee joint, thus reducing same side hip joint loading as well as postural sway. In comparision to the C-Leg, the Genium demonstrated immediate biomechanical advantages during various daily ambulatory activities, which may lead to an increase in range and diversity of activity of people with above-knee amputations. Results showed that use of the Genium facilitated more natural gait biomechanics and load distribution throughout the affected and sound musculoskeletal structure. This was observed during quiet stance on a decline, walking on level ground, and walking up and down ramps and stairs. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Fast machine-learning online optimization of ultra-cold-atom experiments.

    PubMed

    Wigley, P B; Everitt, P J; van den Hengel, A; Bastian, J W; Sooriyabandara, M A; McDonald, G D; Hardman, K S; Quinlivan, C D; Manju, P; Kuhn, C C N; Petersen, I R; Luiten, A N; Hope, J J; Robins, N P; Hush, M R

    2016-05-16

    We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our 'learner' discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system.

  16. Fast machine-learning online optimization of ultra-cold-atom experiments

    PubMed Central

    Wigley, P. B.; Everitt, P. J.; van den Hengel, A.; Bastian, J. W.; Sooriyabandara, M. A.; McDonald, G. D.; Hardman, K. S.; Quinlivan, C. D.; Manju, P.; Kuhn, C. C. N.; Petersen, I. R.; Luiten, A. N.; Hope, J. J.; Robins, N. P.; Hush, M. R.

    2016-01-01

    We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system. PMID:27180805

  17. Control of a Normal Shock Boundary Layer Interaction with Ramped Vanes of Various Sizes

    NASA Astrophysics Data System (ADS)

    Lee, Sang; Loth, Eric

    2017-11-01

    A novel vortex generator design positioned upstream of a normal shock and a subsequent diffuser was investigated using large eddy simulations. In particular, ``ramped-vane'' flow control devices with three difference heights relative to the incoming boundary layer thickness (0.34 δ 0.52 δ and 0.75 δ were placed in a supersonic boundary layer with a freestream Mach number of 1.3 and a Reynolds number of 2,400 based on momentum thickness. These devices are similar to subsonic vanes but are designed to be more mechanically robust while having low wave drag. The devices generated strong streamwise vortices that entrained high momentum fluid to the near-wall region and increased turbulent mixing. The devices also decreased shock-induced flow separation, which resulted in a higher downstream skin friction in the diffuser. In general, the largest ramped-vane (0.75 δ) produced the largest reductions in flow separation, shape factor and overall unsteadiness. However, the medium-sized ramped vane (0.52 δ) was able to also reduce both the separation area and the diffuser displacement thickness. The smallest device (0.34 δ) had a weak impact of the flow in the diffuser, though a 10% reduction in the shape factor was achieved.

  18. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less

  19. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    DOE PAGES

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; ...

    2017-03-16

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less

  20. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    NASA Astrophysics Data System (ADS)

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-03-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

  1. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power.

    PubMed

    Li, Binsong; Bian, Kaifu; Lane, J Matthew D; Salerno, K Michael; Grest, Gary S; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-03-16

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

  2. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    PubMed Central

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-01-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales. PMID:28300067

  3. Free Sixteen Harmonic Fourier Series Web App with Sound

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2018-01-01

    An online HTML5 Fourier synthesizer app is provided that allows students to manipulate sixteen harmonics and construct periodic waves. Students can set the amplitudes and phases for each harmonic, seeing the resulting waveforms and hearing the sounds. Five waveform presets are included: sine, triangle, square, ramp (sawtooth), and pulse train. The…

  4. Transportation of market-weight pigs: I. effect of season, truck type, and location within truck on behavior with a two-hour transport.

    PubMed

    Torrey, S; Bergeron, R; Widowski, T; Lewis, N; Crowe, T; Correa, J A; Brown, J; Gonyou, H W; Faucitano, L

    2013-06-01

    There is evidence that season and truck/trailer design play important roles in pig welfare during transportation although little is known about their interaction and effect on pig behavior. This experiment was designed to examine the influence of season and truck/trailer design on the behavior during loading, transit, unloading, and lairage of market-weight pigs transported to slaughter. A total of 3,756 pigs were transported on either a 3-deck pot-belly trailer (PB; n = 181 pigs/wk in 8 experimental compartments) or a double-decker hydraulic truck (DD; n = 85 pigs/wk in 4 compartments) for 2 h to a commercial abattoir in summer and winter (6 wk in each season). Density on both vehicles was 0.40 m(2)/pig. Accounting for the number of pigs, loading took longer (P = 0.033) onto the DD than the PB, but season did not (P = 0.571) influence loading time. Pigs loaded onto the PB moved backward more (P = 0.003) frequently than those loaded onto the DD. The frequency of tapping by handler was the lone handling intervention affected by truck type, with more (P = 0.014) tapping needed to move pigs on and off DD than PB. During loading, pigs made more (P < 0.001) slips and falls, overlaps, 180° turns, underlaps, and vocalizations in winter compared with summer. On truck, more (P < 0.001) pigs were standing on the DD at the farm and in transit than on the PB whereas more (P = 0.012) pigs were lying in transit in summer than in winter. Pigs took longer to unload (P < 0.001) from the PB than the DD, but no difference between vehicles (P = 0.473) in latency to rest in lairage was found. Pigs slipped and fell more (P < 0.001) during unloading, took longer (P < 0.001) to unload, and had a shorter (P = 0.006) latency to rest in lairage in winter than summer. Vehicle design, in particular the presence of ramps, influenced pig behavior before, during, and after transportation, regardless of the season. Season affected loading and unloading behavior, especially in terms of slips and falls on the ramp, and differences in truck/trailer designs were also partly to blame for unloading times and lairage behavior. Ramps and changes in direction during unloading appear to slow down the handling process.

  5. Extracting Strength from Ramp-Release Experiments on Z

    NASA Astrophysics Data System (ADS)

    Brown, Justin

    2013-06-01

    Releasing from a compressed state has long been recognized as a sensitive measure of a material's constitutive response. The initial elastic unloading provides insights which can be related to changes in shear stress or, in the context of classic plasticity, to the material's yield surface. Ramp compression and subsequent release experiments on Sandia's Z machine typically consist of a driving aluminum electrode pushing a sample material which is backed by a window. A particle velocity measurement of the sample/window interface provides a ramp-release profile. Under most circumstances, however, the impedance mismatch at this interface results in the measurement of a highly perturbed velocity, particularly at the late times of interest. Wave attenuation, the finite pressure range over which the material elastically unloads, and rate effects additionally complicate the interpretation of the experiment. In an effort to accurately analyze experiments of this type, each of these complications is addressed. The wave interactions are accounted for through the so-called transfer function methodology and involves a coupling of the experimental measurements with numerical simulations. Simulated window velocity measurements are combined with the corresponding in situ simulations to define a mapping describing the wave interactions due to the presence of the window. Applying this mapping to the experimentally measured velocity results in an in situ sample response which may then be used in a classic Lagrangian analysis from which the strength can be extracted via the self-consistent method. Corrections for attenuation, pressure averaging, and limitations of the analysis due to rate-effects are verified through the use of synthetic data. To date, results on the strength of aluminum to 1.2 MBar, beryllium to 1 MBar, and tantalum to over 2 MBar have been obtained through this methodology and will be presented. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Bad Colourmaps Can Hide Big Structures

    NASA Astrophysics Data System (ADS)

    Kovesi, Peter

    2014-05-01

    Colourmaps are often selected with little awareness of the perceptual distortions they might introduce. A colourmap can be thought of as a line or curve drawn through a three dimensional colour space. Individual data values are mapped to positions along this line which, in turn, allows them to be mapped to a colour. For a colourmap to be effective it is important that the perceptual contrast that occurs as one moves along the line in the colour space is close to uniform. Many colourmaps are designed as piecewise linear paths through RGB space. This is a poor colour space to use because it is not perceptually uniform. Accordingly many colourmaps supplied by vendors have uneven perceptual contrast over their range. They may include points of locally high colour contrast leading you to think there might be some anomaly in your data when there is none. Conversely, colourmaps may also have flat spots of low perceptual contrast that prevent you from seeing features in your data. In some cases it is possible for structures having a magnitude of 10% of the full data range to be completely hidden by a flat spot in the colourmap. The deficiencies of many colourmaps can be revealed using a simple test image consisting of a high frequency sine wave superimposed on a ramp function. The amplitude of the sine wave is modulated from a maximum value at the top of the image to zero at the bottom. Ideally the sine wave should be uniformly visible across the image at all points on the ramp. For many colourmaps this will not be the case. At the very bottom of the image, where the sine wave amplitude has been modulated to 0, we just have a linear ramp which simply reproduces the colourmap. Given that the underlying data is a featureless ramp the colourmap should not induce the perception of any features across the bottom of the test image. Good colourmaps are difficult to design. A greyscale colourmap is generally a safe choice but is not always what is desired. For non-greyscale colourmaps the perceptual colour contrast between adjacent entries of the map should be constant across the whole colourmap. In addition, and more importantly, the colour lightness change between successive entries in the colourmap should also be constant. These conditions, if observed, constrain the design of colourmaps considerably, and they exclude the construction of rainbow style colourmaps. It is shown that good colourmaps can be formed from smooth curves constructed in a perceptually uniform colour space such as CIELAB. Colour lightness values should be monotonically increasing at a constant rate while at the same time the colourmap curve should stay close to the boundary of the colour space gamut to ensure that the colours are vivid.

  7. COS/FUV Special Recovery

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2011-10-01

    This proposal consists of the steps necessary for turning on and ramping up {in magnitude} the COS FUV high voltage and returning the FUV detector to science operations in a conservative manner after a HV anomalous or burst event {similar to what has been seen on FUSE} shutdown. HSTAR 13305 provides details and timeline of the present shutdown. The complete step-by-step procedure is detailed in the Observing Description, but in summary, the following is done: Groups of sequences with one dayâ??s activities with the QE grid off and one dayâ??s activities with the QE grid on alternate to progressively higher voltages with the QE off group leading by one sequence. The initial HV turn on {Day 1} occurs with the QE grid off; the initial transition from FUV Operate to HVLow is broken into two parts with a 1- hour wait between turning the HV on and ramping to HVLow {SAA}. The next Day 1 visit is 1 hour later, where the HV is turned off by returning the FUV Operate state. After another1-hour wait, the QE grid is turned on, the HV is turned on and the voltage is not ramped. After another 1-hour wait, the HV is turned off returning to FUV Operate. The Day 1 ends with the NSSC-1 COS flag 3 is set to prevent any FUV HV commanding. This is followed by 10 cycles {2 * 5 cycles - one set of cycles with the grid off and one set with the grid on} of HV ramp-ups and returns to FUV Operate {HV off} alternating between grid off and on with the QE off group leading by one HV setting. The HV Commanded Counts for each group of cycles are: 154/151, 160/157, 166/163, 172/169, HVNom {178/175}. {The formula to convert Command Counts to HV is: Volts = {Command Counts * -15.69V} -2500V.}The QE off and QE on cycles are similar except for the QE commanding. One typical QE off cycle is shown below:V14 QE off - Ramp to 166/163After V10 by 2D for analysis. Flag 3 must be cleared to execute. 1. QE off - Turn HV on 2. Ramp to HVLow {100/100} 3. Ramp HV to 166/163 4. DCE RAM dump 5. Dark exposure 6. Wave exposureV15 Return to OperateAfter V14 by 1hr 1. Dark exposure 2. Wave exposure 3. Return to HVLow {100/100} 4. Return to Operate {HV off} 5. DCE RAM Dump 6. Set flag 3In some later cycles with the QE grid on, ground system QasiStates are used to auto-schedule the Operate to HVNom transition. Visits 21 and 25 are going to HVNom {178/175} with the QE grid off and on, respectively. There will be a gap of 2days between grid-off cycles and 2 days between grid-on cycles, offset by 1 day. {See the proposal description for exact timing.}All HV ramp-up will be done at the nominal value of 3 seconds per HV "step" rather than 10 seconds per HV "step" used in SMOV. The concern during SMOV was that gas exposure during launch would allow gas to adsorb on the MCP pore surfaces, and that slower ramping would help to remove this excess gas. This concern no longer exists. The cycle voltage values {for Segments A and B} must be patched in FSW in each cycle prior to the HV ramp commanding. Memory monitors will be set on the patched memory locations. Immediately after obtaining the commanded voltage for that cycle and after return to FUV Operate {HV-off} commanding, the DCE memory will be dumped. After HV ramp-up commanding starting with HVLow and prior to returning to HV off, short DARK exposures {300 secs.} with Stim Rate = 2000 will be obtained and after HV ramp-up commanding starting with levels above HVLow and prior to returning to HV off, short WAVE exposures {60 secs.} will be obtained. After all visits that end with Return to Operate {HV off}, NSSC-1 COS event flag 3 will be set to inhibit any FUV commanding, a.k.a. a â??dead manâ??sâ?? switch. If the flag remains set, subsequent FUV commanding will be skipped. Thus, Operations Requests must be in place to clear the flag prior to those subsequent visits. Real-time monitoring of the telemetry will be used to guide the decisions whether or not to clear the flag. This is also required after the final visit.Throughout the proposal, different â??after byâ?? times, sequence containers, and new alignments are used to optimize flow, schedulability, telemetry and science data analyses, and the clearing of flag 3. The proposal is designed such that the visits and exposures MUST be executed in order.Additionally, all visits are compliant with CARD 3.4.12.8 - COS FUV Mandatory Dwell Time at HVLow {1 hour dwell at HVLow before ramping to a more negative voltage} and CARD 3.4.12.9 â?? COS FUV High Voltage QE Grid Operation {HV must be less negative or equal to the HVLow to switch grid on or off}.

  8. Computational Analysis of End-of-Injection Transients and Combustion Recession

    NASA Astrophysics Data System (ADS)

    Jarrahbashi, Dorrin; Kim, Sayop; Knox, Benjamin W.; Genzale, Caroline L.; Georgia Institute of Technology Team

    2016-11-01

    Mixing and combustion of ECN Spray A after end of injection are modeled with different chemical kinetics models to evaluate the impact of mechanism formulation and low-temperature chemistry on predictions of combustion recession. Simulations qualitatively agreed with the past experimental observations of combustion recession. Simulations with the Cai mechanism show second-stage ignition in distinct regions near the nozzle, initially spatially separated from the lifted diffusion flame, but then rapidly merge with flame. By contrast, the Yao mechanism fails to predict sufficient low-temperature chemistry in mixtures upstream of the diffusion flame and combustion recession. The effects of the shape and duration of the EOI transient on the entrainment wave near the nozzle, the likelihood of combustion recession, and the spatiotemporal development of mixing and chemistry in near-nozzle mixtures are also investigated. With a more rapid ramp-down injection profile, a weaker combustion recession occurs. For extremely fast ramp-down, the entrainment flux varies rapidly near the nozzle and over-leaning of the mixture completely suppresses combustion recession. For a slower ramp-down profile complete combustion recession back toward the nozzle is observed.

  9. Does Stepwise Voltage Ramping Protect the Kidney from Injury During Extracorporeal Shockwave Lithotripsy? Results of a Prospective Randomized Trial.

    PubMed

    Skuginna, Veronika; Nguyen, Daniel P; Seiler, Roland; Kiss, Bernhard; Thalmann, George N; Roth, Beat

    2016-02-01

    Renal damage is more frequent with new-generation lithotripters. However, animal studies suggest that voltage ramping minimizes the risk of complications following extracorporeal shock wave lithotripsy (SWL). In the clinical setting, the optimal voltage strategy remains unclear. To evaluate whether stepwise voltage ramping can protect the kidney from damage during SWL. A total of 418 patients with solitary or multiple unilateral kidney stones were randomized to receive SWL using a Modulith SLX-F2 lithotripter with either stepwise voltage ramping (n=213) or a fixed maximal voltage (n=205). SWL. The primary outcome was sonographic evidence of renal hematomas. Secondary outcomes included levels of urinary markers of renal damage, stone disintegration, stone-free rate, and rates of secondary interventions within 3 mo of SWL. Descriptive statistics were used to compare clinical outcomes between the two groups. A logistic regression model was generated to assess predictors of hematomas. Significantly fewer hematomas occurred in the ramping group(12/213, 5.6%) than in the fixed group (27/205, 13%; p=0.008). There was some evidence that the fixed group had higher urinary β2-microglobulin levels after SWL compared to the ramping group (p=0.06). Urinary microalbumin levels, stone disintegration, stone-free rate, and rates of secondary interventions did not significantly differ between the groups. The logistic regression model showed a significantly higher risk of renal hematomas in older patients (odds ratio [OR] 1.03, 95% confidence interval [CI] 1.00-1.05; p=0.04). Stepwise voltage ramping was associated with a lower risk of hematomas (OR 0.39, 95% CI 0.19-0.80; p=0.01). The study was limited by the use of ultrasound to detect hematomas. In this prospective randomized study, stepwise voltage ramping during SWL was associated with a lower risk of renal damage compared to a fixed maximal voltage without compromising treatment effectiveness. Lithotripsy is a noninvasive technique for urinary stone disintegration using ultrasonic energy. In this study, two voltage strategies are compared. The results show that a progressive increase in voltage during lithotripsy decreases the risk of renal hematomas while maintaining excellent outcomes. ISRCTN95762080. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  10. Modeling the effect of orientation on the shock response of a damageable composite material

    NASA Astrophysics Data System (ADS)

    Lukyanov, Alexander A.

    2012-10-01

    A carbon fiber-epoxy composite (CFEC) shock response in the through thickness orientation and in one of the fiber directions is significantly different. The hydrostatic pressure inside anisotropic materials depends on deviatoric strain components as well as volumetric strain. Non-linear effects, such as shock effects, can be incorporated through the volumetric straining in the material. Thus, a new basis is required to couple the anisotropic material stiffness and strength with anisotropic shock effects, associated energy dependence, and damage softening process. This article presents these constitutive equations for shock wave modeling of a damageable carbon fiber-epoxy composite. Modeling the effect of fiber orientation on the shock response of a CFEC has been performed using a generalized decomposition of the stress tensor [A. A. Lukyanov, Int. J. Plast. 24, 140 (2008)] and Mie-Grüneisen's extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked CFEC materials. The three-wave structure (non-linear anisotropic, fracture, and isotropic elastic waves) that accompanies damage softening process is also proposed in this work for describing CFEC behavior under shock loading which allows to remove any discontinuities observed in the linear case for relation between shock velocities and particle velocities [A. A. Lukyanov, Eur. Phys. J. B 74, 35 (2010)]. Different Hugoniot stress levels are obtained when the material is impacted in different directions; their good agreement with the experiment demonstrates that the anisotropic equation of state, strength, and damage model are adequate for the simulation of shock wave propagation within damageable CFEC material. Remarkably, in the through thickness orientation, the material behaves similar to a simple polymer whereas in the fiber direction, the proposed in this paper model explains an initial ramp, before at sufficiently high stresses, and a much faster rising shock above it. The numerical results for shock wave modeling using proposed constitutive equations are presented, discussed, and future studies are outlined.

  11. 9 CFR 91.23 - Loading ramps and doors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 91.23 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... of not less than 6 feet for cattle and 6 feet 6 inches for horses. (b) Alleyways running fore and aft... inches in width shall be provided to afford ready access to scuppers and to ends of alleyways running...

  12. 9 CFR 91.23 - Loading ramps and doors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 91.23 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... of not less than 6 feet for cattle and 6 feet 6 inches for horses. (b) Alleyways running fore and aft... inches in width shall be provided to afford ready access to scuppers and to ends of alleyways running...

  13. Highly Loaded Composite Strut Test Results

    NASA Technical Reports Server (NTRS)

    Wu, K. C.; Jegley, Dawn C.; Barnard, Ansley; Phelps, James E.; McKeney, Martin J.

    2011-01-01

    Highly loaded composite struts from a proposed truss-based Altair lunar lander descent stage concept were selected for development under NASA's Advanced Composites Technology program. Predicted compressive member forces during launch and ascent of over -100,000 lbs were much greater than the tensile loads. Therefore, compressive failure modes, including structural stability, were primary design considerations. NASA's industry partner designed and built highly loaded struts that were delivered to NASA for testing. Their design, fabricated on a washout mandrel, had a uniform-diameter composite tube with composite tapered ends. Each tapered end contained a titanium end fitting with facing conical ramps that are overlaid and overwrapped with composite materials. The highly loaded struts were loaded in both tension and compression, with ultimate failure produced in compression. Results for the two struts tested are presented and discussed, along with measured deflections, strains and observed failure mechanisms.

  14. [Research on adaptive quasi-linear viscoelastic model for nonlinear viscoelastic properties of in vivo soft tissues].

    PubMed

    Wang, Heng; Sang, Yuanjun

    2017-10-01

    The mechanical behavior modeling of human soft biological tissues is a key issue for a large number of medical applications, such as surgery simulation, surgery planning, diagnosis, etc. To develop a biomechanical model of human soft tissues under large deformation for surgery simulation, the adaptive quasi-linear viscoelastic (AQLV) model was proposed and applied in human forearm soft tissues by indentation tests. An incremental ramp-and-hold test was carried out to calibrate the model parameters. To verify the predictive ability of the AQLV model, the incremental ramp-and-hold test, a single large amplitude ramp-and-hold test and a sinusoidal cyclic test at large strain amplitude were adopted in this study. Results showed that the AQLV model could predict the test results under the three kinds of load conditions. It is concluded that the AQLV model is feasible to describe the nonlinear viscoelastic properties of in vivo soft tissues under large deformation. It is promising that this model can be selected as one of the soft tissues models in the software design for surgery simulation or diagnosis.

  15. Identification of moving sinusoidal wave loads for sensor structural configuration by finite element inverse method

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Yu, S.

    2018-03-01

    In this paper, a beam structure of composite materials with elastic foundation supports is established as the sensor model, which propagates moving sinusoidal wave loads. The inverse Finite Element Method (iFEM) is applied for reconstructing moving wave loads which are compared with true wave loads. The conclusion shows that iFEM is accurate and robust in the determination of wave propagation. This helps to seek a suitable new wave sensor method.

  16. Quantitative allochem compositional analysis of Lochkovian-Pragian boundary sections in the Prague Basin (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Weinerová, Hedvika; Hron, Karel; Bábek, Ondřej; Šimíček, Daniel; Hladil, Jindřich

    2017-06-01

    Quantitative allochem compositional trends across the Lochkovian-Pragian boundary Event were examined at three sections recording the proximal to more distal carbonate ramp environment of the Prague Basin. Multivariate statistical methods (principal component analysis, correspondence analysis, cluster analysis) of point-counted thin section data were used to reconstruct facies stacking patterns and sea-level history. Both the closed-nature allochem percentages and their centred log-ratio (clr) coordinates were used. Both these approaches allow for distinguishing of lowstand, transgressive and highstand system tracts within the Praha Formation, which show gradual transition from crinoid-dominated facies deposited above the storm wave base to dacryoconarid-dominated facies of deep-water environment below the storm wave base. Quantitative compositional data also indicate progradative-retrogradative trends in the macrolithologically monotonous shallow-water succession and enable its stratigraphic correlation with successions from deeper-water environments. Generally, the stratigraphic trends of the clr data are more sensitive to subtle changes in allochem composition in comparison to the results based on raw data. A heterozoan-dominated allochem association in shallow-water environments of the Praha Formation supports the carbonate ramp environment assumed by previous authors.

  17. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... You may extend the sampling time to improve measurement accuracy of PM emissions, using good...-speed engines whose design prevents full-load operation for extended periods, you may ask for approval... designed to operate for extended periods. (e) See 40 CFR part 1065 for detailed specifications of...

  18. Thermo-Vibro-Acoustic Loads and Fatigue of Hypersonic Flight Vehicle Structure

    DTIC Science & Technology

    2009-06-01

    on the title page or on the first page of thiS document. 3 FORM NO. 6531-0 standards: 20 Btu/ft2-sec alang the lawer surface ramp at Mach 20 and Q...exceed ather laads alang their line af shack-skin interactian. ANALYSIS AND RESULTS Three panels were chasen for detailed finite analysis: the

  19. Multiphysics modelling of the separation of suspended particles via frequency ramping of ultrasonic standing waves.

    PubMed

    Trujillo, Francisco J; Eberhardt, Sebastian; Möller, Dirk; Dual, Jurg; Knoerzer, Kai

    2013-03-01

    A model was developed to determine the local changes of concentration of particles and the formations of bands induced by a standing acoustic wave field subjected to a sawtooth frequency ramping pattern. The mass transport equation was modified to incorporate the effect of acoustic forces on the concentration of particles. This was achieved by balancing the forces acting on particles. The frequency ramping was implemented as a parametric sweep for the time harmonic frequency response in time steps of 0.1s. The physics phenomena of piezoelectricity, acoustic fields and diffusion of particles were coupled and solved in COMSOL Multiphysics™ (COMSOL AB, Stockholm, Sweden) following a three step approach. The first step solves the governing partial differential equations describing the acoustic field by assuming that the pressure field achieves a pseudo steady state. In the second step, the acoustic radiation force is calculated from the pressure field. The final step allows calculating the locally changing concentration of particles as a function of time by solving the modified equation of particle transport. The diffusivity was calculated as function of concentration following the Garg and Ruthven equation which describes the steep increase of diffusivity when the concentration approaches saturation. However, it was found that this steep increase creates numerical instabilities at high voltages (in the piezoelectricity equations) and high initial particle concentration. The model was simplified to a pseudo one-dimensional case due to computation power limitations. The predicted particle distribution calculated with the model is in good agreement with the experimental data as it follows accurately the movement of the bands in the centre of the chamber. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  20. Intelligent electric vehicle charging: Rethinking the valley-fill

    NASA Astrophysics Data System (ADS)

    Valentine, Keenan; Temple, William G.; Zhang, K. Max

    This study proposes an intelligent PEV charging scheme that significantly reduces power system cost while maintaining reliability compared to the widely discussed valley-fill method of aggregated charging in the early morning. This study considers optimal PEV integration into the New York Independent System Operator's (NYISO) day-ahead and real-time wholesale energy markets for 21 days in June, July, and August of 2006, a record-setting summer for peak load. NYISO market and load data is used to develop a statistical Locational Marginal Price (LMP) and wholesale energy cost model. This model considers the high cost of ramping generators at peak-load and the traditional cost of steady-state operation, resulting in a framework with two competing cost objectives. Results show that intelligent charging assigns roughly 80% of PEV load to valley hours to take advantage of low steady-state cost, while placing the remaining 20% equally at shoulder and peak hours to reduce ramping cost. Compared to unregulated PEV charging, intelligent charging reduces system cost by 5-16%; a 4-9% improvement over the flat valley-fill approach. Moreover, a Charge Flexibility Constraint (CFC), independent of market modeling, is constructed from a vehicle-at-home profile and the mixture of Level 1 and Level 2 charging infrastructure. The CFC is found to severely restrict the ability to charge vehicles during the morning load valley. This study further shows that adding more Level 2 chargers without regulating PEV charging will significantly increase wholesale energy cost. Utilizing the proposed intelligent PEV charging method, there is a noticeable reduction in system cost if the penetration of Level 2 chargers is increased from 70/30 to 50/50 (Level 1/Level 2). However, the system benefit is drastically diminished for higher penetrations of Level 2 chargers.

  1. Floquet Engineering in Quantum Chains

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; de la Torre, A.; Ron, A.; Hsieh, D.; Millis, A. J.

    2018-03-01

    We consider a one-dimensional interacting spinless fermion model, which displays the well-known Luttinger liquid (LL) to charge density wave (CDW) transition as a function of the ratio between the strength of the interaction U and the hopping J . We subject this system to a spatially uniform drive which is ramped up over a finite time interval and becomes time periodic in the long-time limit. We show that by using a density matrix renormalization group approach formulated for infinite system sizes, we can access the large-time limit even when the drive induces finite heating. When both the initial and long-time states are in the gapless (LL) phase, the final state has power-law correlations for all ramp speeds. However, when the initial and final state are gapped (CDW phase), we find a pseudothermal state with an effective temperature that depends on the ramp rate, both for the Magnus regime in which the drive frequency is very large compared to other scales in the system and in the opposite limit where the drive frequency is less than the gap. Remarkably, quantum defects (instantons) appear when the drive tunes the system through the quantum critical point, in a realization of the Kibble-Zurek mechanism.

  2. Experimental Quantum-Walk Revival with a Time-Dependent Coin

    NASA Astrophysics Data System (ADS)

    Xue, P.; Zhang, R.; Qin, H.; Zhan, X.; Bian, Z. H.; Li, J.; Sanders, Barry C.

    2015-04-01

    We demonstrate a quantum walk with time-dependent coin bias. With this technique we realize an experimental single-photon one-dimensional quantum walk with a linearly ramped time-dependent coin flip operation and thereby demonstrate two periodic revivals of the walker distribution. In our beam-displacer interferometer, the walk corresponds to movement between discretely separated transverse modes of the field serving as lattice sites, and the time-dependent coin flip is effected by implementing a different angle between the optical axis of half-wave plate and the light propagation at each step. Each of the quantum-walk steps required to realize a revival comprises two sequential orthogonal coin-flip operators, with one coin having constant bias and the other coin having a time-dependent ramped coin bias, followed by a conditional translation of the walker.

  3. Numerical modeling of the load effect on PZT-induced guided wave for load compensation of damage detection

    NASA Astrophysics Data System (ADS)

    Sun, Hu; Zhang, Aijia; Wang, Yishou; Qing, Xinlin P.

    2017-04-01

    Guided wave-based structural health monitoring (SHM) has been given considerable attention and widely studied for large-scale aircraft structures. Nevertheless, it is difficult to apply SHM systems on board or online, for which one of the most serious reasons is the environmental influence. Load is one fact that affects not only the host structure, in which guided wave propagates, but also the PZT, by which guided wave is transmitted and received. In this paper, numerical analysis using finite element method is used to study the load effect on guided wave acquired by PZT. The static loads with different grades are considered to analyze its effect on guided wave signals that PZT transmits and receives. Based on the variation trend of guided waves versus load, a load compensation method is developed to eliminate effects of load in the process of damage detection. The probabilistic reconstruction algorithm based on the signal variation of transmitter-receiver path is employed to identify the damage. Numerical tests is conducted to verify the feasibility and effectiveness of the given method.

  4. Simple constant-current-regulated power supply

    NASA Technical Reports Server (NTRS)

    Priebe, D. H. E.; Sturman, J. C.

    1977-01-01

    Supply incorporates soft-start circuit that slowly ramps current up to set point at turn-on. Supply consists of full-wave rectifier, regulating pass transistor, current feedback circuit, and quad single-supply operational-amplifier circuit providing control. Technique is applicable to any system requiring constant dc current, such as vacuum tube equipment, heaters, or battery charges; it has been used to supply constant current for instrument calibration.

  5. Organised Motion in a Tall Spruce Canopy: Temporal Scales, Structure Spacing and Terrain Effects

    NASA Astrophysics Data System (ADS)

    Thomas, Christoph; Foken, Thomas

    2007-01-01

    This study investigates the organised motion near the canopy-atmosphere interface of a moderately dense spruce forest in heterogeneous, complex terrain. Wind direction is used to assess differences in topography and surface properties. Observations were obtained at several heights above and within the canopy using sonic anemometers and fast-response gas analysers over the course of several weeks. Analysed variables include the three-dimensional wind vector, the sonic temperature, and the concentration of carbon dioxide. Wavelet analysis was used to extract the organised motion from time series and to derive its temporal scales. Spectral Fourier analysis was deployed to compute power spectra and phase spectra. Profiles of temporal scales of ramp-like coherent structures in the vertical and longitudinal wind components showed a reversed variation with height and were of similar size within the canopy. Temporal scales of scalar fields were comparable to those of the longitudinal wind component suggesting that the lateral scalar transport dominates. The existence of a 1 power law in the longitudinal power spectra was confirmed for a few cases only, with a majority showing a clear 5/3 decay. The variation of effective scales of organised motion in the longitudinal velocity and temperature were found to vary with atmospheric stability, suggesting that both Kelvin-Helmholtz instabilities and attached eddies dominate the flow with increasing convectional forcing. The canopy mixing-layer analogy was observed to be applicable for ramp-like coherent structures in the vertical wind component for selected wind directions only. Departures from the prediction of m = Λ w L {/s -1} = 8 10 (where Λ w is the streamwise spacing of coherent structures in the vertical wind w and L s is a canopy shear length scale) were caused by smaller shear length scales associated with large-scale changes in the terrain as well as the vertical structure of the canopy. The occurrence of linear gravity waves was related to a rise in local topography and can therefore be referred to as mountain-type gravity waves. Temporal scales of wave motion and ramp-like coherent structures were observed to be comparable.

  6. Facies architecture and compositional variations of coves associated with recurrent mass wasting in the Norwegian North Sea.

    NASA Astrophysics Data System (ADS)

    Olakunle Omosanya, Kamaldeen; Johansen, Ståle

    2017-04-01

    Coves represent incisions commonly found on the gliding plane of mass-transport deposits (MTDs). Their association with ramps and promontories together causes marked topographic shift at the base of MTDs. Over the past decades, the majority of previous studies have focused on ramps rather than the coves. A debate emanating from these works centre on the origin and mode of formation of ramps. Some authors favour ramps to be tectonic structures while others show that they are erosional features. In this work, we have employed high-resolution 3D seismic reflection dataset and seismic attributes to investigate the evolution, kind and composition of coves found beneath three MTDs. Our attention is not only on the coves but also on the ramps with which they are associated. To do achieve this objective, we have chosen an area characterized by recurrent mass wasting, where one of the biggest submarine landslide in history have been documented. We restored the coves to their depositional geometries by applying techniques of geomorphologic analysis to the tops and bases of the MTDs. Our results revealed the presence of several coves at the base of three major slides i.e., Storegga, Tampen and Slide S. Coves are rugged and scoured sections of the basal shear surface on seismic sections. Their internal architecture includes continuous to slightly deformed reflections, blocky and faulted to strongly deformed packages, and low amplitude chaotic failed mass corresponding to slides, slumps and debris flow deposits. Stratigraphic succession of these seismic facies vary and differ from one coves to another, an indication of the multifaceted flow transformation during mass wasting. Ramps marking the boundaries of the coves are serrated scarps in map view. Our geomorphologic analyses show that blocks within the coves have compacted and are now slumps or deformed reflections on present day seismic data. Slump folds in the coves are kinematic indicators for mass flow direction, which in this study is multidirectional for two of the MTDs. An initial WSW direction of mass flow was succeeded by NW flow during which the coves were filled up to match the topographic position or zenith of the adjacent ramps. We demonstrate that coves, ramps, and slump folds are non-tectonic in origin instead coves are excavation zones or erosional features beneath the MTDs, ramps are their sidewalls, and slump folds are sedimentary imbrications. The coves are formed preferentially on paleo highs where fluid-flow features are prevalent and result from a complex interaction of erosion, sediment loading, and compaction. In the study area, coves are to be found recurring with the three slides and have significant implication for sediment preservation and budget during mass wasting events.

  7. Monitoring the mechanical behaviour of electrically conductive polymer nanocomposites under ramp and creep conditions.

    PubMed

    Pedrazzoli, D; Dorigato, A; Pegoretti, A

    2012-05-01

    Various amounts of carbon black (CB) and carbon nanofibres (CNF) were dispersed in an epoxy resin to prepare nanocomposites whose mechanical behaviour, under ramp and creep conditions, was monitored by electrical measurements. The electrical resistivity of the epoxy resin was dramatically reduced by both nanofillers after the percolation threshold (1 wt% for CB and 0.5 wt% for CNF), reaching values in the range of 10(3)-10(4) omega . cm for filler loadings higher than 2 wt%. Due to the synergistic effects between the nanofillers, an epoxy system containing a total nanofiller amount of 2 wt%, with a relative CB/CNF ratio of 90/10 was selected for the specific applications. A direct correlation between the tensile strain and the increase of the electrical resistance was observed over the whole experimental range, and also the final failure of the samples was clearly detected. Creep tests confirmed the possibility to monitor the various deformational stages under constant loads, with a strong dependency from the temperature and the applied stress. The obtained results are encouraging for a possible application of nanomodified epoxy resin as a matrix for the preparation of structural composites with sensing (i.e., damage-monitoring) capabilities.

  8. Study and development of a cryogenic heat exchanger for life support systems

    NASA Technical Reports Server (NTRS)

    Soliman, M. M.

    1973-01-01

    A prototype cryogenic heat exchanger for removal of waste heat from a spacecraft environmental control life support system was developed. The heat exchanger uses the heat sink capabilities of the cryogenic propellants and, hence, can operate over all mission phases from prelaunch to orbit, to post landing, with quiescent periods during orbit. A survey of candidate warm fluids resulted in the selection of E-2, a fluorocarbon compound, because of its low freezing point and high boiling point. The final design and testing of the heat exchanger was carried out, however, using Freon-21, which is similar to E-2 except for its low boiling point. This change was motivated by the desire for cost effectiveness of the experimental program. The transient performance of the heat exchanger was demonstrated by an analog simulation of the heat sink system. Under the realistic transient heat load conditions (20 sec ramp from minimum to maximum Freon-21 inlet temperature), the control system was able to maintain the warm fluid outlet temperature within + or - 3 F. For a 20-sec ramp from 0 F to -400 F in the hydrogen inlet temperature, at maximum heat load, the warm fluid outlet temperature was maintained within + or - 7 F.

  9. Temporal gradients in shear stimulate osteoblastic proliferation via ERK1/2 and retinoblastoma protein

    NASA Technical Reports Server (NTRS)

    Jiang, Guang-Liang; White, Charles R.; Stevens, Hazel Y.; Frangos, John A.

    2002-01-01

    Bone cells are subject to interstitial fluid flow (IFF) driven by venous pressure and mechanical loading. Rapid dynamic changes in mechanical loading cause transient gradients in IFF. The effects of pulsatile flow (temporal gradients in fluid shear) on rat UMR106 cells and rat primary osteoblastic cells were studied. Pulsatile flow induced a 95% increase in S-phase UMR106 cells compared with static controls. In contrast, ramped steady flow stimulated only a 3% increase. Similar patterns of S-phase induction were also observed in rat primary osteoblastic cells. Pulsatile flow significantly increased relative UMR106 cell number by 37 and 62% at 1.5 and 24 h, respectively. Pulsatile flow also significantly increased extracellular signal-regulated kinase (ERK1/2) phosphorylation by 418%, whereas ramped steady flow reduced ERK1/2 activation to 17% of control. Correspondingly, retinoblastoma protein was significantly phosphorylated by pulsatile fluid flow. Inhibition of mitogen-activated protein (MAP)/ERK kinase (MEK)1/2 by U0126 (a specific MEK1/2 inhibitor) reduced shear-induced ERK1/2 phosphorylation and cell proliferation. These findings suggest that temporal gradients in fluid shear stress are potent stimuli of bone cell proliferation.

  10. Transmitral flow velocity-contour variation after premature ventricular contractions: a novel test of the load-independent index of diastolic filling.

    PubMed

    Boskovski, Marko T; Shmuylovich, Leonid; Kovács, Sándor J

    2008-12-01

    The new echocardiography-based, load-independent index of diastolic filling (LIIDF) M was assessed using load-/shape-varying E-waves after premature ventricular contractions (PVCs). Twenty-six PVCs in 15 subjects from a preexisting simultaneous echocardiography-catheterization database were selected. Perturbed load-state beats, defined as the first two post-PVC E-waves, and steady-state E-waves, were subjected to conventional and model-based analysis. M, a dimensionless index, defined by the slope of the peak driving-force vs. peak (filling-opposing) resistive-force regression, was determined from steady-state E-waves alone, and from load-perturbed E-waves combined with a matched number of subsequent beats. Despite high degrees of E-wave shape variation, M derived from load-varying, perturbed beats and M derived from steady-state beats alone were indistinguishable. Because the peak driving-force vs. peak resistive-force relation determining M remains highly linear in the extended E-wave shape and load variation regime observed, we conclude that M is a robust LIIDF.

  11. KSC-06pd1018

    NASA Image and Video Library

    2006-06-09

    KENNEDY SPACE CENTER, FLA. - Tug boats maneuver the Pegasus barge next to the dock in the turn basin at the Launch Complex 39 Area. The barge holds the redesigned external fuel tank, designated ET-118, that will launch Space Shuttle Atlantis on the next shuttle mission, STS-115. The tank was shipped from the Michoud Assembly Facility in New Orleans. After off-loading, the tank will be moved into the Vehicle Assembly Building and lifted into a checkout cell for further work. The tank will fly with many major safety changes, including the removal of the protuberance air load ramps. Photo credit: NASA/Kim Shiflett

  12. KSC-06pd1019

    NASA Image and Video Library

    2006-06-09

    KENNEDY SPACE CENTER, FLA. - Tug boats maneuver the Pegasus barge next to the dock in the turn basin at the Launch Complex 39 Area. The barge holds the redesigned external fuel tank, seen inside, that will launch Space Shuttle Atlantis on the next shuttle mission, STS-115. The tank, designated ET-118, was shipped from the Michoud Assembly Facility in New Orleans. After off-loading, the tank will be moved into the Vehicle Assembly Building and lifted into a checkout cell for further work. The tank will fly with many major safety changes, including the removal of the protuberance air load ramps. Photo credit: NASA/Kim Shiflett

  13. Influence of sweeping detonation-wave loading on damage evolution during spallation loading of tantalum in both a planar and curved geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less

  14. Swept-Ramp Detonation Initiation Performance in a High-Pressure Pulse Detonation Combustor

    DTIC Science & Technology

    2010-12-01

    conditions at sea level, but at elevated temperatures of 300–500°F in the combustor. The current work was motivated by a need to experimentally...The current work was motivated by a need to experimentally evaluate the detonation initiation performance of a PDC at elevated combustor pressures...High-Speed Propulsion Technologies (After [3]) .....................2 Figure 2. Stationary One-Dimensional Combustion Wave Model (From [7

  15. Free sixteen harmonic Fourier series web app with sound

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.

    2018-03-01

    An online HTML5 Fourier synthesizer app is provided that allows students to manipulate sixteen harmonics and construct periodic waves. Students can set the amplitudes and phases for each harmonic, seeing the resulting waveforms and hearing the sounds. Five waveform presets are included: sine, triangle, square, ramp (sawtooth), and pulse train. The program is free for non-commercial use and can also be downloaded for running offline.

  16. Full-Shift Trunk and Upper Arm Postures and Movements Among Aircraft Baggage Handlers.

    PubMed

    Wahlström, Jens; Bergsten, Eva; Trask, Catherine; Mathiassen, Svend Erik; Jackson, Jennie; Forsman, Mikael

    2016-10-01

    The present study assessed full-shift trunk and upper arm postural exposure amplitudes, frequencies, and durations among Swedish airport baggage handlers and aimed to determine whether exposures differ between workers at the ramp (loading and unloading aircraft) and baggage sorting areas. Trunk and upper arm postures were measured using inclinometers during three full work shifts on each of 27 male baggage handlers working at a large Swedish airport. Sixteen of the baggage handlers worked on the ramp and 11 in the sorting area. Variables summarizing postures and movements were calculated, and mean values and variance components between subjects and within subject (between days) were estimated using restricted maximum likelihood algorithms in a one-way random effect model. In total, data from 79 full shifts (651h) were collected with a mean recording time of 495min per shift (range 319-632). On average, baggage handlers worked with the right and left arm elevated >60° for 6.4% and 6.3% of the total workday, respectively. The 90th percentile trunk forward projection (FP) was 34.1°, and the 50th percentile trunk movement velocity was 8° s(-1). For most trunk (FP) and upper arm exposure variables, between-subject variability was considerable, suggesting that the flight baggage handlers were not a homogeneously exposed group. A notable between-days variability pointed to the contents of the job differing on different days. Peak exposures (>90°) were higher for ramp workers than for sorting area workers (trunk 0.6% ramp versus 0.3% sorting; right arm 1.3% ramp versus 0.7% sorting). Trunk and upper arm postures and movements among flight baggage handlers measured by inclinometry were similar to those found in other jobs comprising manual material handling, known to be associated with increased risks for musculoskeletal disorders. The results showed that full-shift trunk (FP) and, to some extent, peak arm exposures were higher for ramp workers compared with sorting workers. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp

    NASA Astrophysics Data System (ADS)

    Tong, Fulin; Li, Xinliang; Duan, Yanhui; Yu, Changping

    2017-12-01

    Numerical investigations on a supersonic turbulent boundary layer over a longitudinal curved compression ramp are conducted using direct numerical simulation for a free stream Mach number M∞ = 2.9 and Reynolds number Reθ = 2300. The total turning angle is 24°, and the concave curvature radius is 15 times the thickness of the incoming turbulent boundary layer. Under the selected conditions, the shock foot is transferred to a fan of the compression wave because of the weaker adverse pressure gradient. The time-averaged flow-field in the curved ramp is statistically attached where the instantaneous flow-field is close to the intermittent transitory detachment state. Studies on coherent vortex structures have shown that large-scale vortex packets are enhanced significantly when the concave curvature is aligned in the spanwise direction. Consistent with findings of previous experiments, the effect of the concave curvature on the logarithmic region of the mean velocity profiles is found to be small. The intensity of the turbulent fluctuations is amplified across the curved ramp. Based on the analysis of the Reynolds stress anisotropy tensor, the evolutions of the turbulence state in the inner and outer layers of the boundary layer are considerably different. The curvature effect on the transport mechanism of the turbulent kinetic energy is studied using the balance analysis of the contributing terms in the transport equation. Furthermore, the Görtler instability in the curved ramp is quantitatively analyzed using a stability criterion. The instantaneous streamwise vorticity confirms the existence of the Görtler-like structures. These structures are characterized by an unsteady motion. In addition, the dynamic mode decomposition analysis of the instantaneous flow field at the spanwise/wall-normal plane reveals that four dynamical relevant modes with performance loss of 16% provide an optimal low-order representation of the essential characteristics of the numerical data. The spatial structures of the dominated low-frequency dynamic modes are found to be similar to that of the Görtler-like vortices.

  18. Dynamic tensile fracture of mortar at ultra-high strain-rates

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-12-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

  19. Closed-form solution of the Ogden-Hill's compressible hyperelastic model for ramp loading

    NASA Astrophysics Data System (ADS)

    Berezvai, Szabolcs; Kossa, Attila

    2017-05-01

    This article deals with the visco-hyperelastic modelling approach for compressible polymer foam materials. Polymer foams can exhibit large elastic strains and displacements in case of volumetric compression. In addition, they often show significant rate-dependent properties. This material behaviour can be accurately modelled using the visco-hyperelastic approach, in which the large strain viscoelastic description is combined with the rate-independent hyperelastic material model. In case of polymer foams, the most widely used compressible hyperelastic material model, the so-called Ogden-Hill's model, was applied, which is implemented in the commercial finite element (FE) software Abaqus. The visco-hyperelastic model is defined in hereditary integral form, therefore, obtaining a closed-form solution for the stress is not a trivial task. However, the parameter-fitting procedure could be much faster and accurate if closed-form solution exists. In this contribution, exact stress solutions are derived in case of uniaxial, biaxial and volumetric compression loading cases using ramp-loading history. The analytical stress solutions are compared with the stress results in Abaqus using FE analysis. In order to highlight the benefits of the analytical closed-form solution during the parameter-fitting process experimental work has been carried out on a particular open-cell memory foam material. The results of the material identification process shows significant accuracy improvement in the fitting procedure by applying the derived analytical solutions compared to the so-called separated approach applied in the engineering practice.

  20. Internal viscoelastic loading in cat papillary muscle.

    PubMed Central

    Chiu, Y L; Ballou, E W; Ford, L E

    1982-01-01

    The passive mechanical properties of myocardium were defined by measuring force responses to rapid length ramps applied to unstimulated cat papillary muscles. The immediate force changes following these ramps recovered partially to their initial value, suggesting a series combination of viscous element and spring. Because the stretched muscle can bear force at rest, the viscous element must be in parallel with an additional spring. The instantaneous extension-force curves measured at different lengths were nonlinear, and could be made to superimpose by a simple horizontal shift. This finding suggests that the same spring was being measured at each length, and that this spring was in series with both the viscous element and its parallel spring (Voigt configuration), so that the parallel spring is held nearly rigid by the viscous element during rapid steps. The series spring in the passive muscle could account for most of the series elastic recoil in the active muscle, suggesting that the same spring is in series with both the contractile elements and the viscous element. It is postulated that the viscous element might be coupled to the contractile elements by a compliance, so that the load imposed on the contractile elements by the passive structures is viscoelastic rather than purely viscous. Such a viscoelastic load would give the muscle a length-independent, early diastolic restoring force. The possibility is discussed that the length-independent restoring force would allow some of the energy liberated during active shortening to be stored and released during relaxation. Images FIGURE 7 FIGURE 8 PMID:7171707

  1. (U) Influence of Compaction Model Form on Planar and Cylindrical Compaction Geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredenburg, David A.; Carney, Theodore Clayton; Fichtl, Christopher Allen

    The dynamic compaction response of CeO 2 is examined within the frameworks of the Ramp and P-a compaction models. Hydrocode calculations simulating the dynamic response of CeO 2 at several distinct pressures within the compaction region are investigated in both planar and cylindrically convergent geometries. Findings suggest additional validation of the compaction models is warranted under complex loading configurations.

  2. Protection of Advanced Copper Alloys With Lean Cu-Cr Coatings

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.

    2003-01-01

    Advanced copper alloys are used as liners of rocket thrusters and nozzle ramps to ensure dissipation of the high thermal load generated during launch, and Cr-lean coatings are preferred for the protection of these liners from the aggressive ambient environment. It is shown that adequate protection can be achieved with thin Cu-Cr coatings containing as little as 17 percent Cr.

  3. β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp

    NASA Astrophysics Data System (ADS)

    Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu

    2017-12-01

    A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.

  4. A new atomic force microscope force ramp technique using digital force feedback control reveals mechanically weak protein unfolding events.

    PubMed

    Kawakami, M; Smith, D A

    2008-12-10

    We have developed a new force ramp modification of the atomic force microscope (AFM) which can control multiple unfolding events of a multi-modular protein using software-based digital force feedback control. With this feedback the force loading rate can be kept constant regardless the length of soft elastic linkage or number of unfolded polypeptide domains. An unfolding event is detected as a sudden drop in force, immediately after which the feedback control reduces the applied force to a low value of a few pN by lowering the force set point. Hence the remaining folded domains can relax and the subsequent force ramp is applied to relaxed protein domains identically in each case. We have applied this technique to determine the kinetic parameters x(u), which is the distance between the native state and transition state, and α(0), which is the unfolding rate constant at zero force, for the mechanical unfolding of a pentamer of I27 domains of titin. In each force ramp the unfolding probability depends on the number of folded domains remaining in the system and we had to take account of this effect in the analysis of unfolding force data. We obtained values of x(u) and α(0) to be 0.28 nm and 1.02 × 10(-3) s(-1), which are in good agreement with those obtained from conventional constant velocity experiments. This method reveals unfolding data at low forces that are not seen in constant velocity experiments and corrects for the change in stiffness that occurs with most mechanical systems throughout the unfolding process to allow constant force ramp experiments to be carried out. In addition, a mechanically weak structure was detected, which formed from the fully extended polypeptide chain during a force quench. This indicates that the new technique will allow studies of the folding kinetics of previously hidden, mechanically weak species.

  5. Rayleigh wave effects in an elastic half-space.

    NASA Technical Reports Server (NTRS)

    Aggarwal, H. R.

    1972-01-01

    Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.

  6. Numerical study on wave loads and motions of two ships advancing in waves by using three-dimensional translating-pulsating source

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Dong, Wen-Cai

    2013-08-01

    A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to measure the wave loads and the freemotions for a pair of side-byside arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numerical resonances and peak shift can be found in the 3DP predictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free surface and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two vessels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.

  7. Development and test of an HTSMA supersonic inlet ramp actuator

    NASA Astrophysics Data System (ADS)

    Quackenbush, Todd R.; Carpenter, Bernie F.; Boschitsch, Alexander H.; Danilov, Pavel V.

    2008-03-01

    Use of Shape Memory Alloy (SMA) actuation technology is a candidate method for reducing weight and power requirements for inlet flow control actuators in prospective supersonic passenger aircraft. The high speed/high Mach operating points of such aircraft can also call for the use of High Temperature SMAs, with transition temperatures beyond those of typical binary NiTi alloys. This paper outlines a demonstration project that entailed both testing and assessment of newly developed NiTiPt HTSMAs, as well as their use in an actuation application representative of inlet configurations. The project featured benchtop testing of an HTSMA-actuated ramp model as well as experiments in a high speed wind tunnel at loads representative of supersonic conditions. The ability of the model to generate adequate force and actuation stroke for this application is encouraging evidence the feasibility of NiTiPt-based devices for inlet flow control.

  8. Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh C.; Waigh, Thomas A.; Singh, Jagdish P.

    2008-03-01

    The optical phase conjugation signal in nearly nondegenerate four wave mixing was studied using a rhodamine 110 doped boric acid glass saturable absorber nonlinear medium. We have demonstrated a narrow band optical filter (2.56±0.15Hz) using an optical phase conjugation signal in the frequency modulation of a weak probe beam in the presence of two strong counterpropagating pump beams in rhodamine 110 doped boric acid glass thin films (10-4m). Both the pump beams and the probe beam are at a wavelength of 488nm (continuous-wave Ar+ laser). The probe beam frequency was detuned with a ramp signal using a piezoelectric transducer mirror.

  9. Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders

    PubMed

    Shin; Rose

    1999-06-01

    Guided waves generated by axisymmetric and non-axisymmetric surface loading on a hollow cylinder are studied. For the theoretical analysis of the superposed guided waves, a normal mode concept is employed. The amplitude factors of individual guided wave modes are studied with respect to varying surface pressure loading profiles. Both theoretical and experimental focus is given to the guided waves generated by both axisymmetric and non-axisymmetric excitation. For the experiments, a comb transducer and high power tone burst function generator system are used on a sample Inconel tube. Surface loading conditions, such as circumferential loading angles and axial loading lengths, are used with the frequency and phase velocity to control the axisymmetric and non-axisymmetric mode excitations. The experimental study demonstrates the use of a practical non-axisymmetric partial loading technique in generating axisymmetric modes, particularly useful in the inspection of tubing and piping with limited circumferential access. From both theoretical and experimental studies, it also could be said that the amount of flexural modes reflected from a defect contains information on the reflector's circumferential angle, as well as potentially other classification and sizing feature information. The axisymmetric and non-axisymmetric guided wave modes should both be carefully considered for improvement of the overall analysis of guided waves generated in hollow cylinders.

  10. KSC-06pd1016

    NASA Image and Video Library

    2006-06-09

    KENNEDY SPACE CENTER, FLA. - Viewed from the NASA News Center, a tug boat in the background maneuvers the Pegasus barge into the turn basin at the Launch Complex 39 Area. The barge holds the redesigned external fuel tank, designated ET-118, that will launch Space Shuttle Atlantis on the next shuttle mission, STS-115. The tank was shipped from the Michoud Assembly Facility in New Orleans. After off-loading, the tank will be moved into the Vehicle Assembly Building and lifted into a checkout cell for further work. The tank will fly with many major safety changes, including the removal of the protuberance air load ramps. Photo credit: NASA/Kim Shiflett

  11. Inverse relationship between VO2max and economy/efficiency in world-class cyclists.

    PubMed

    Lucía, Alejandro; Hoyos, Jesus; Pérez, Margarita; Santalla, Alfredo; Chicharro, José L

    2002-12-01

    To determine the relationship that exists between VO2max and cycling economy/efficiency during intense, submaximal exercise in world-class road professional cyclists. METHODS Each of 11 male cyclists (26+/-1 yr (mean +/- SEM); VO2max: 72.0 +/- 1.8 mL x kg(-1) x min(-1)) performed: 1) a ramp test for O2max determination and 2) a constant-load test of 20-min duration at the power output eliciting 80% of subjects' VO2max during the previous ramp test (mean power output of 385 +/- 7 W). Cycling economy (CE) and gross mechanical efficiency (GE) were calculated during the constant-load tests. CE and GE averaged 85.2 +/- 2.3 W x L(-1) x min(-1) and 24.5 +/- 0.7%, respectively. An inverse, significant correlation was found between 1) VO2max (mL x kg(-0.32) x min(-1)) and both CE (r = -0.71; P = 0.01) and GE (-0.72; P = 0.01), and 2) VO2max (mL x kg(-1) x min(-1)) and both CE (r = -0.65; P = 0.03) and GE (-0.64; P = 0.03). A high CE/GE seems to compensate for a relatively low VO2max in professional cyclists.

  12. Capture, acceleration and bunching rf systems for the MEIC booster and storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei

    2015-09-01

    The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energymore » ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.« less

  13. Numerical investigation of improving the performance of a single expansion ramp nozzle at off-design conditions by secondary injection

    NASA Astrophysics Data System (ADS)

    Lv, Zheng; Xu, Jinglei; Mo, Jianwei

    2017-04-01

    The performance of a single expansion ramp nozzle (SERN) is poor due to over-expansion at off-design conditions. The present study focuses on improving the SERN performance by secondary injection on the cowl and is carried out by using the k - ε RNG turbulence model. The incidence shock wave resulting from the secondary injection impinges on the expansion ramp, resulting in separation and the increase of the pressure distribution along the ramp. The performance of the SERN can be improved significantly, and the augmentation of the thrust coefficient, lift and pitch moment can be as high as 3.16%, 29.43% and 41.67%, respectively, when the nozzle pressure ratio (NPR) is 10. The location of the injection has a considerable effect on the lift and pitching moment, and the direction of the pitch moment can be changed from nose-up to nose-down when the injection is on the tail of the cowl. The effect of the injection on the axial thrust coefficient is much more apparent, if the operation NPR is far from the design point, and however, the results for the lift and pitching moment are opposite. The increases of injection total pressure and injection width have positive impacts on the SERN performance. And if the parameter φ maintains constant, the axial thrust coefficient would increase when the injection total pressure decreases, so low energy flow can also be used as the secondary injection without decreasing the lift and pitching moment. The mass flow rate of the injection can be decreased by applying the higher total temperature flow without reducing the performance of the SERN.

  14. Large-eddy simulation/Reynolds-averaged Navier-Stokes hybrid schemes for high speed flows

    NASA Astrophysics Data System (ADS)

    Xiao, Xudong

    Three LES/RANS hybrid schemes have been proposed for the prediction of high speed separated flows. Each method couples the k-zeta (Enstrophy) BANS model with an LES subgrid scale one-equation model by using a blending function that is coordinate system independent. Two of these functions are based on turbulence dissipation length scale and grid size, while the third one has no explicit dependence on the grid. To implement the LES/RANS hybrid schemes, a new rescaling-reintroducing method is used to generate time-dependent turbulent inflow conditions. The hybrid schemes have been tested on a Mach 2.88 flow over 25 degree compression-expansion ramp and a Mach 2.79 flow over 20 degree compression ramp. A special computation procedure has been designed to prevent the separation zone from expanding upstream to the recycle-plane. The code is parallelized using Message Passing Interface (MPI) and is optimized for running on IBM-SP3 parallel machine. The scheme was validated first for a flat plate. It was shown that the blending function has to be monotonic to prevent the RANS region from appearing in the LES region. In the 25 deg ramp case, the hybrid schemes provided better agreement with experiment in the recovery region. Grid refinement studies demonstrated the importance of using a grid independent blend function and further improvement with experiment in the recovery region. In the 20 deg ramp case, with a relatively finer grid, the hybrid scheme characterized by grid independent blending function well predicted the flow field in both the separation region and the recovery region. Therefore, with "appropriately" fine grid, current hybrid schemes are promising for the simulation of shock wave/boundary layer interaction problems.

  15. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    PubMed Central

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  16. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-20

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  17. Dynamic tensile fracture of mortar at ultra-high strain-rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y.

    2013-12-28

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of thismore » cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.« less

  18. Particle sizes in Saturn's rings from UVIS stellar occultations 1. Variations with ring region

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Esposito, L. W.; Cooney, J. H.

    2018-01-01

    The Cassini spacecraft's Ultraviolet Imaging Spectrograph (UVIS) includes a high speed photometer (HSP) that has observed stellar occultations by Saturn's rings with a radial resolution of ∼10 m. In the absence of intervening ring material, the time series of measurements by the HSP is described by Poisson statistics in which the variance equals the mean. The finite sizes of the ring particles occulting the star lead to a variance that is larger than the mean due to correlations in the blocking of photons due to finite particle size and due to random variations in the number of individual particles in each measurement area. This effect was first exploited by Showalter and Nicholson (1990) with the stellar occultation observed by Voyager 2. At a given optical depth, a larger excess variance corresponds to larger particles or clumps that results in greater variation of the signal from measurement to measurement. Here we present analysis of the excess variance in occultations observed by Cassini UVIS. We observe differences in the best-fitting particle size in different ring regions. The C ring plateaus show a distinctly smaller effective particle size, R, than the background C ring, while the background C ring itself shows a positive correlation between R and optical depth. The innermost 700 km of the B ring has a distribution of excess variance with optical depth that is consistent with the C ring ramp and C ring but not with the remainder of the B1 region. The Cassini Division, while similar to the C ring in spectral and structural properties, has different trends in effective particle size with optical depth. There are discrete jumps in R on either side of the Cassini Division ramp, while the C ring ramp shows a smooth transition in R from the C ring to the B ring. The A ring is dominated by self-gravity wakes whose shadow size depends on the occultation geometry. The spectral ;halo; regions around the strongest density waves in the A ring correspond to decreases in R. There is also a pronounced dip in R at the Mimas 5:3 bending wave corresponding to an increase in optical depth there, suggesting that at these waves small particles are liberated from clumps or self-gravity wakes leading to a reduction in effective particle size and an increase in optical depth.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennock, Kenneth; Makarov, Yuri V.; Rajagopal, Sankaran

    The need for proactive closed-loop integration of uncertainty information into system operations and probability-based controls is widely recognized, but rarely implemented in system operations. Proactive integration for this project means that the information concerning expected uncertainty ranges for net load and balancing requirements, including required balancing capacity, ramping and ramp duration characteristics, will be fed back into the generation commitment and dispatch algorithms to modify their performance so that potential shortages of these characteristics can be prevented. This basic, yet important, premise is the motivating factor for this project. The achieved project goal is to demonstrate the benefit of suchmore » a system. The project quantifies future uncertainties, predicts additional system balancing needs including the prediction intervals for capacity and ramping requirements of future dispatch intervals, evaluates the impacts of uncertainties on transmission including the risk of overloads and voltage problems, and explores opportunities for intra-hour generation adjustments helping to provide more flexibility for system operators. The resulting benefits culminate in more reliable grid operation in the face of increased system uncertainty and variability caused by solar power. The project identifies that solar power does not require special separate penetration level restrictions or penalization for its intermittency. Ultimately, the collective consideration of all sources of intermittency distributed over a wide area unified with the comprehensive evaluation of various elements of balancing process, i.e. capacity, ramping, and energy requirements, help system operators more robustly and effectively balance generation against load and interchange. This project showed that doing so can facilitate more solar and other renewable resources on the grid without compromising reliability and control performance. Efforts during the project included developing and integrating advanced probabilistic solar forecasts, including distributed PV forecasts, into closed –loop decision making processes. Additionally, new uncertainty quantifications methods and tools for the direct integration of uncertainty and variability information into grid operations at the transmission and distribution levels were developed and tested. During Phase 1, project work focused heavily on the design, development and demonstration of a set of processes and tools that could reliably and efficiently incorporate solar power into California’s grid operations. In Phase 2, connectivity between the ramping analysis tools and market applications software were completed, multiple dispatch scenarios demonstrated a successful reduction of overall uncertainty and an analysis to quantify increases in system operator reliability, and the transmission and distribution system uncertainty prediction tool was introduced to system operation engineers in a live webinar. The project met its goals, the experiments prove the advancements to methods and tools, when working together, are beneficial to not only the California Independent System Operator, but the benefits are transferable to other system operators in the United States.« less

  20. Optimal Load-Side Control for Frequency Regulation in Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Changhong; Mallada, Enrique; Low, Steven

    Frequency control rebalances supply and demand while maintaining the network state within operational margins. It is implemented using fast ramping reserves that are expensive and wasteful, and which are expected to become increasingly necessary with the current acceleration of renewable penetration. The most promising solution to this problem is the use of demand response, i.e., load participation in frequency control. Yet it is still unclear how to efficiently integrate load participation without introducing instabilities and violating operational constraints. In this paper, we present a comprehensive load-side frequency control mechanism that can maintain the grid within operational constraints. In particular, ourmore » controllers can rebalance supply and demand after disturbances, restore the frequency to its nominal value, and preserve interarea power flows. Furthermore, our controllers are distributed (unlike the currently implemented frequency control), can allocate load updates optimally, and can maintain line flows within thermal limits. We prove that such a distributed load-side control is globally asymptotically stable and robust to unknown load parameters. We illustrate its effectiveness through simulations.« less

  1. ELF/VLF Waves Generated by an Artificially-Modulated Auroral Electrojet Above the HAARP HF Transmitter

    NASA Astrophysics Data System (ADS)

    Moore, R. C.; Inan, U. S.; Bell, T. F.

    2004-12-01

    Naturally-forming, global-scale currents, such as the polar electrojet current and the mid-latitude dynamo, have been used as current sources to generate electromagnetic waves in the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands since the 1970's. While many short-duration experiments have been performed, no continuous multi-week campaign data sets have been published providing reliable statistics for ELF/VLF wave generation. In this paper, we summarize the experimental data resulting from multiple ELF/VLF wave generation campaigns conducted at the High-frequency Active Auroral Research Project (HAARP) HF transmitter in Gakona, Alaska. For one 14-day period in March, 2002, and one 24-day period in November, 2002, the HAARP HF transmitter broadcast ELF/VLF wave generation sequences for 10 hours per day, between 0400 and 1400 UT. Five different modulation frequencies broadcast separately using two HF carrier frequencies are examined at receivers located 36, 44, 147, and 155 km from the HAARP facility. Additionally, a continuous 24-hour transmission period is analyzed to compare day-time wave generation to night-time wave generation. Lastly, a power-ramping scheme was employed to investigate possible thresholding effects at the wave-generating altitude. Wave generation statistics are presented along with source-region property calculations performed using a simple model.

  2. Inclusion of Structural Flexibility in Design Load Analysis for Wave Energy Converters: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi; Yu, Yi-Hsiang; van Rij, Jennifer A

    2017-08-14

    Hydroelastic interactions, caused by ocean wave loading on wave energy devices with deformable structures, are studied in the time domain. A midfidelity, hybrid modeling approach of rigid-body and flexible-body dynamics is developed and implemented in an open-source simulation tool for wave energy converters (WEC-Sim) to simulate the dynamic responses of wave energy converter component structural deformations under wave loading. A generalized coordinate system, including degrees of freedom associated with rigid bodies, structural modes, and constraints connecting multiple bodies, is utilized. A simplified method of calculating stress loads and sectional bending moments is implemented, with the purpose of sizing and designingmore » wave energy converters. Results calculated using the method presented are verified with those of high-fidelity fluid-structure interaction simulations, as well as low-fidelity, frequency-domain, boundary element method analysis.« less

  3. Guided wave propagation in metallic and resin plates loaded with water on single surface

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Inoue, Daisuke

    2016-02-01

    Our previous papers reported dispersion curves for leaky Lamb waves in a water-loaded plate and wave structures for several typical modes including quasi-Scholte waves [1,2]. The calculations were carried out with a semi-analytical finite element (SAFE) method developed for leaky Lamb waves. This study presents SAFE calculations for transient guided waves including time-domain waveforms and animations of wave propagation in metallic and resin water-loaded plates. The results show that non-dispersive and non-attenuated waves propagating along the interface between the fluid and the plate are expected for effective non-destructive evaluation of such fluid-loaded plates as storage tanks and transportation pipes. We calculated transient waves in both steel and polyvinyl chloride (PVC) plates loaded with water on a single side and input dynamic loading from a point source on the other water-free surface as typical examples of metallic and resin plates. For a steel plate, there exists a non-dispersive and non-attenuated mode, called the quasi-Scholte wave, having an almost identical phase velocity to that of water. The quasi-Scholte wave has superior generation efficiency in the low frequency range due to its broad energy distribution across the plate, whereas it is localized near the plate-water interface at higher frequencies. This means that it has superior detectability of inner defects. For a PVC plate, plural non-attenuated modes exist. One of the non-attenuated modes similar to the A0 mode of the Lamb wave in the form of a group velocity dispersion curve is promising for the non-destructive evaluation of the PVC plate because it provides prominent characteristics of generation efficiency and low dispersion.

  4. Load-Differential Features for Automated Detection of Fatigue Cracks Using Guided Waves (Preprint)

    DTIC Science & Technology

    2011-11-01

    AFRL-RX-WP-TP-2011-4363 LOAD-DIFFERENTIAL FEATURES FOR AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) Jennifer E...AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...tensile loads open fatigue cracks and thus enhance their detectability using ultrasonic methods. Here we introduce a class of load-differential methods

  5. Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load

    PubMed Central

    Yang, Bin; Xuan, Fu-Zhen; Xiang, Yanxun; Li, Dan; Zhu, Wujun; Tang, Xiaojun; Xu, Jichao; Yang, Kang; Luo, Chengqiang

    2017-01-01

    Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE) simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved. PMID:28773014

  6. Determination of blueberry and strawberry maturity and aroma quality and effect of HLB on orange juice aroma: comparison of Z-nose, E-nose and GC-MS technologies

    USDA-ARS?s Scientific Manuscript database

    Electronic nose technology could be very useful in quality control discrimination of products. The Z-nose (Electronic Sensory Technology, Model 4500) was equipped with a Tenax trap (2 mg, 225 ºC), and 1 m DB5 column, an acoustic wave detector and an oven set to ramp from 40-180 ºC at a rate of 10 ºC...

  7. Low frequency ac waveform generator

    DOEpatents

    Bilharz, O.W.

    1983-11-22

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  8. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves.

    PubMed

    Marano, Francesca; Rinella, Letizia; Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D'Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-01-01

    To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect.

  9. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.

    PubMed

    Cleveland, Robin O; Sapozhnikov, Oleg A

    2005-10-01

    A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.

  10. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications.

    PubMed

    Paisley, Dennis L; Luo, Sheng-Nian; Greenfield, Scott R; Koskelo, Aaron C

    2008-02-01

    We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples.

  11. Container System Hardware Status Report

    DTIC Science & Technology

    1986-01-01

    includes the proureentofeight SL-7 class high - speed containerships and their Subsequent conversion to a cargo configuration specifically designed for...wide, 53.5-in high , 242-in long, and Weighs 4,000 lbs. The MILVAN chassis were competitively procured from incustry utilizing a performance military...accept load transfer from a cargo ship and equipped with a ramp for Roll On/Roll Off (RO/RO) discharge systems. The LAMP-H will :1replace the LARC-LX

  12. Prevalence of Neck and Back Pain amongst Aircrew at the Extremes of Anthropometric Measurements

    DTIC Science & Technology

    2012-09-06

    of these safety systems, with potential to exceed the designed upper load limits. Current ergonomics assessments use the 1988 National Health and...position in UH-60 Long goggle flights NVG weight- neck sore. Long hours in poorly designed seats ; helmet/ NVGs and hours of manipulating control...landing Long hours in poorly designed seats ; helmet/ NVGs and hours of manipulating control display units in glass cockpits Repetitive use Poor ramp

  13. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    PubMed

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  14. Method for exciting inductive-resistive loads with high and controllable direct current

    DOEpatents

    Hill, Jr., Homer M.

    1976-01-01

    Apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100% duty factor, amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity.

  15. Electrically tunable metasurface based on Mie-type dielectric resonators.

    PubMed

    Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo

    2017-02-21

    In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.

  16. Electrically tunable metasurface based on Mie-type dielectric resonators

    PubMed Central

    Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo

    2017-01-01

    In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak. PMID:28220861

  17. Electrically tunable metasurface based on Mie-type dielectric resonators

    NASA Astrophysics Data System (ADS)

    Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo

    2017-02-01

    In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.

  18. Isentropic compression of liquid metals near the melt line

    NASA Astrophysics Data System (ADS)

    Seagle, Christopher; Porwitzky, Andrew

    2017-06-01

    A series of experiments designed to study the liquid metal response to isentropic compression have been conducted at Sandia's Z Pulsed Power Facility. Cerium and Tin have been shock melted by driving a quasi-ballistic flyer into the samples followed by a ramp compression wave generated by an increased driving magnetic field. The sound speed of the liquid metals has been investigated with the purpose of exploring possible solidification on ramp compression. Additional surface sensitive diagnostics have been employed to search for signatures of solidification at the window interface. Results of these experiments will be discussed in relation to the existing equation of state models and phase diagrams for these materials as well as future plans for exploring the response of liquid metals near the melt line. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Thrust faulting and 3D ground deformation of the 3 July 2015 Mw 6.4 Pishan, China earthquake from Sentinel-1A radar interferometry

    NASA Astrophysics Data System (ADS)

    Sun, Jianbao; Shen, Zheng-Kang; Li, Tao; Chen, Jie

    2016-06-01

    Boosted by the launch of Sentinel-1A radar satellite from the European Space Agency (ESA), we now have the opportunity of fast, full and multiple coverage of the land based deformation field of earthquakes. Here we use the data to investigate a strong earthquake struck Pishan, western China on July 3, 2015. The earthquake fault is blind and no ground break features are found on-site, thus Synthetic Aperture Radar (SAR) data give full play to its technical advantage for the recovery of coseismic deformation field. By using the Sentinel-1A radar data in the Interferometric Wide Swath mode, we obtain 3 tracks of InSAR data over the struck region, and resolve the 3D ground deformation generated by the earthquake. Then the Line-of-Sight (LOS) InSAR data are inverted for the slip-distribution of the seismogenic fault. The final model shows that the earthquake is completely blind with pure-thrust motion. The maximum slip is 0.48 m at a depth of 7 km, consistent with the depth estimate from seismic reflection data. In particular, the inverted model is also compatible with a south-dipping fault ramp among a group of fault interfaces detected by the seismic reflection profile over the region. The seismic moment obtained equals to a Mw 6.4 earthquake. The Pishan earthquake ruptured the frontal part of the thrust ramps under the Slik anticline, and unloaded the coulomb stress of them. However, it may have loaded stress to the back-thrust above the thrust ramps by 1-4 bar, and promoted it for future failure. Moreover, the stress loading on the west side of the earthquake fault is much larger than that on the east side, indicating a higher risk for failure to the west of the Zepu fault.

  20. A kinematic wave model in Lagrangian coordinates incorporating capacity drop: Application to homogeneous road stretches and discontinuities

    NASA Astrophysics Data System (ADS)

    Yuan, Kai; Knoop, Victor L.; Hoogendoorn, Serge P.

    2017-01-01

    On freeways, congestion always leads to capacity drop. This means the queue discharge rate is lower than the pre-queue capacity. Our recent research findings indicate that the queue discharge rate increases with the speed in congestion, that is the capacity drop is strongly correlated with the congestion state. Incorporating this varying capacity drop into a kinematic wave model is essential for assessing consequences of control strategies. However, to the best of authors' knowledge, no such a model exists. This paper fills the research gap by presenting a Lagrangian kinematic wave model. "Lagrangian" denotes that the new model is solved in Lagrangian coordinates. The new model can give capacity drops accompanying both of stop-and-go waves (on homogeneous freeway section) and standing queues (at nodes) in a network. The new model can be applied in a network operation. In this Lagrangian kinematic wave model, the queue discharge rate (or the capacity drop) is a function of vehicular speed in traffic jams. Four case studies on links as well as at lane-drop and on-ramp nodes show that the Lagrangian kinematic wave model can give capacity drops well, consistent with empirical observations.

  1. Tool For Driving Many Fasteners Simultaneously

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr.

    1995-01-01

    Proposed tool tightens or loosens several bolts, screws, nuts, or other threaded fasteners arranged in circle on compressor head, automotive wheel, pipe-end flange, or similar object. Enables assembly or disassembly in fraction of time needed to tighten fasteners one at a time. Simultaneously applies same torque to all fasteners, preventing distortion and enhancing reliability. Concept not limited to circular fastener patterns. Adapted to rectangular configurations like on engine intake manifolds, by adding gears to drive train to provide proper spacing. Designed to deliver fixed or adjustable maximum torque. To ensure even seal loading, piston pressure simultaneously ramped from initial to final values to maintain relatively constant torque loading on all fasteners until final specifications limit achieved.

  2. Shock Sensitivity of energetic materials

    NASA Technical Reports Server (NTRS)

    Kim, K.

    1980-01-01

    Viscoplastic deformation is examined as the principal source of hot energy. Some shock sensitivity data on a proposed model is explained. A hollow sphere model is used to approximate complex porous matrix of energetic materials. Two pieces of shock sensitivity data are qualitatively compared with results of the proposed model. The first is the p2 tau law. The second is the desensitization of energetic materials by a ramp wave applied stress. An approach to improve the model based on experimental observations is outlined.

  3. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves

    PubMed Central

    Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D’Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-01-01

    To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect. PMID:28002459

  4. Vortex Generators to Control Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  5. Impact analysis of air gap motion with respect to parameters of mooring system for floating platform

    NASA Astrophysics Data System (ADS)

    Shen, Zhong-xiang; Huo, Fa-li; Nie, Yan; Liu, Yin-dong

    2017-04-01

    In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions.

  6. Physical measurements of breaking wave impact on a floating wave energy converter

    NASA Astrophysics Data System (ADS)

    Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison

    2013-04-01

    Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.

  7. Receptor activity-modifying protein-dependent effects of mutations in the calcitonin receptor-like receptor: implications for adrenomedullin and calcitonin gene-related peptide pharmacology

    PubMed Central

    Watkins, H A; Walker, C S; Ly, K N; Bailey, R J; Barwell, J; Poyner, D R; Hay, D L

    2014-01-01

    Background and Purpose Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear. Experimental Approach Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants. Key Results An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide. Conclusions and Implications RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2. PMID:24199627

  8. Evaluation of a fuzzy logic ramp metering algorithm : a comparative study among three ramp metering algorithms used in the greater Seattle area

    DOT National Transportation Integrated Search

    2000-02-01

    A Fuzzy Logic Ramp Metering Algorithm was implemented on 126 ramps in the greater Seattle area. Two multiple-ramp study sites were evaluted by comparing the fuzzy logic controller (FLC) to the other two ramp metering algorithms in operation at those ...

  9. Fatigue Crack Detection via Load-Differential Guided Wave Methods (Preprint)

    DTIC Science & Technology

    2011-11-01

    AFRL-RX-WP-TP-2011-4362 FATIGUE CRACK DETECTION VIA LOAD- DIFFERENTIAL GUIDED WAVE METHODS (PREPRINT) Jennifer E. Michaels, Sang Jun Lee...November 2011 Technical Paper 1 November 2011 – 1 November 2011 4. TITLE AND SUBTITLE FATIGUE CRACK DETECTION VIA LOAD-DIFFERENTIAL GUIDED WAVE...document contains color. 14. ABSTRACT Detection of fatigue cracks originating from fastener holes is an important application for structural health

  10. Experimental verification of the vaporization's contribution to the shock waves generated by underwater electrical wire explosion under micro-second timescale pulsed discharge

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Clayson, Thomas; Ren, Hang; Wu, Jian; Zhang, Yongmin; Qiu, Aici

    2017-06-01

    This paper studies pressure waves generated by exploding a copper wire in a water medium, demonstrating the significant contribution of the vaporization process to the formation of shock waves. A test platform including a pulsed current source, wire load, chamber, and diagnostic system was developed to study the shock wave and optical emission characteristics during the explosion process. In the experiment, a total of 500 J was discharged through a copper wire load 0.2 mm in diameter and 4 cm in length. A water gap was installed adjacent to the load so that the current was diverted away from the load after breakdown occurred across the water gap. This allows the electrical energy injection into the load to be interrupted at different times and at different stages of the wire explosion process. Experimental results indicate that when the load was bypassed before the beginning of the vaporization phase, the measured peak pressure was less than 2.5 MPa. By contrast, the peak pressure increased significantly to over 6.5 MPa when the water gap broke down after the beginning of the vaporization phase. It was also found that when bypassing the load after the voltage peak, similar shock waves were produced to those from a non-bypassed load. However, the total optical emission of these bypassed loads was at least an order of magnitude smaller. These results clearly demonstrate that the vaporization process is vital to the formation of shock waves and the energy deposited after the voltage collapse may only have a limited effect.

  11. KENNEDY SPACE CENTER, FLA. -Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building, with a Mobile Launcher Platform on top, on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. -Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building, with a Mobile Launcher Platform on top, on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds.

  12. Wave loading on bridge decks : final report, December 2009.

    DOT National Transportation Integrated Search

    2009-12-01

    This report covers the results of experimental and theoretical analyses of wave loading on bridge superstructures. A number of wave tank tests were performed on both slab and girder type spans with different water depths, span positions relative to t...

  13. Apparatus for measurement of acoustic wave propagation under uniaxial loading with application to measurement of third-order elastic constants of piezoelectric single crystals.

    PubMed

    Zhang, Haifeng; Kosinski, J A; Karim, Md Afzalul

    2013-05-01

    We describe an apparatus for the measurement of acoustic wave propagation under uniaxial loading featuring a special mechanism designed to assure a uniform mechanical load on a cube-shaped sample of piezoelectric material. We demonstrate the utility of the apparatus by determining the effects of stresses on acoustic wave speed, which forms a foundation for the final determination of the third-order elastic constants of langasite and langatate single crystals. The transit time method is used to determine changes in acoustic wave velocity as the loading is varied. In order to minimize error and improve the accuracy of the wave speed measurements, the cross correlation method is used to determine the small changes in the time of flight. Typical experimental results are presented and discussed.

  14. In Situ Estimation of Applied Biaxial Loads with Lamb Waves (Preprint)

    DTIC Science & Technology

    2012-07-01

    be correct. IV. EXPERIMENTS AND RESULTS Fatigue tests were conducted for an array of six surface-bonded PZT transducers permanently attached to...because of their cumulative effects on the fatigue life of the structures. Waves propagating between array elements are directly affected by applied loads...their cumulative effects on the fatigue life of the structures. Waves propagating between array elements are directly affected by applied loads

  15. Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading

    NASA Astrophysics Data System (ADS)

    Seeram, Madhuri; Manohar, Y.

    2018-06-01

    In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.

  16. Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading

    NASA Astrophysics Data System (ADS)

    Seeram, Madhuri; Manohar, Y.

    2018-02-01

    In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.

  17. Porous silicon based anode material formed using metal reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V tomore » 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.« less

  18. Permafrost Organic Carbon Mobilization From the Watershed to the Colville River Delta: Evidence From 14C Ramped Pyrolysis and Lignin Biomarkers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Bianchi, Thomas S.; Cui, Xingqian; Rosenheim, Brad E.; Ping, Chien-Lu; Hanna, Andrea J. M.; Kanevskiy, Mikhail; Schreiner, Kathryn M.; Allison, Mead A.

    2017-11-01

    The deposition of terrestrial-derived permafrost particulate organic carbon (POC) has been recorded in major Arctic river deltas. However, associated transport pathways of permafrost POC from the watershed to the coast have not been well constrained. Here we utilized a combination of ramped pyrolysis-oxidation radiocarbon analysis (RPO 14C) along with lignin biomarkers, to track the linkages between soils and river and delta sediments. Surface and deep soils showed distinct RPO thermographs which may be related to degradation and organo-mineral interaction. Soil material in the bed load of the river channel was mostly derived from deep old permafrost. Both surface and deep soils were transported and deposited to the coast. Hydrodynamic sorting and barrier island protection played important roles in terrestrial-derived permafrost POC deposition near the coast. On a large scale, ice processes (e.g., ice gauging and strudel scour) and ocean currents controlled the transport and distribution of permafrost POC on the Beaufort Shelf.

  19. Enhanced IMC design of load disturbance rejection for integrating and unstable processes with slow dynamics.

    PubMed

    Liu, Tao; Gao, Furong

    2011-04-01

    In view of the deficiencies in existing internal model control (IMC)-based methods for load disturbance rejection for integrating and unstable processes with slow dynamics, a modified IMC-based controller design is proposed to deal with step- or ramp-type load disturbance that is often encountered in engineering practices. By classifying the ways through which such load disturbance enters into the process, analytical controller formulae are correspondingly developed, based on a two-degree-of-freedom (2DOF) control structure that allows for separate optimization of load disturbance rejection from setpoint tracking. An obvious merit is that there is only a single adjustable parameter in the proposed controller, which in essence corresponds to the time constant of the closed-loop transfer function for load disturbance rejection, and can be monotonically tuned to meet a good trade-off between disturbance rejection performance and closed-loop robust stability. At the same time, robust tuning constraints are given to accommodate process uncertainties in practice. Illustrative examples from the recent literature are used to show effectiveness and merits of the proposed method for different cases of load disturbance. Copyright © 2010. Published by Elsevier Ltd.

  20. Operational wave now- and forecast in the German Bight as a basis for the assessment of wave-induced hydrodynamic loads on coastal dikes

    NASA Astrophysics Data System (ADS)

    Dreier, Norman; Fröhle, Peter

    2017-12-01

    The knowledge of the wave-induced hydrodynamic loads on coastal dikes including their temporal and spatial resolution on the dike in combination with actual water levels is of crucial importance of any risk-based early warning system. As a basis for the assessment of the wave-induced hydrodynamic loads, an operational wave now- and forecast system is set up that consists of i) available field measurements from the federal and local authorities and ii) data from numerical simulation of waves in the German Bight using the SWAN wave model. In this study, results of the hindcast of deep water wave conditions during the winter storm on 5-6 December, 2013 (German name `Xaver') are shown and compared with available measurements. Moreover field measurements of wave run-up from the local authorities at a sea dike on the German North Sea Island of Pellworm are presented and compared against calculated wave run-up using the EurOtop (2016) approach.

  1. Oolitic sandbody depositional models and geometries, Mississippian of southwest Britain: implications for petroleum exploration in carbonate ramp settings

    NASA Astrophysics Data System (ADS)

    Burchette, Trevor P.; Paul Wright, V.; Faulkner, Tom J.

    1990-07-01

    A 1000 m thick early Mississippian carbonate supersequence, the "Carboniferous Limestone" of southwest Britain, consists of three third-order depositional sequences. These comprise parasequences in various configurations, and the whole forms a carbonate ramp stack. Within this framework five major oolitic carbonate sandbodies developed: (a) Castell Coch Limestone, (b) Stowe Oolite, (c) Brofiscin Oolite, (d) Gully Oolite, and (e) High Tor Limestone. The depositional regime was storm- and wave-dominated throughout and the major sandbodies represent a range of progradational carbonate beaches, barriers and detached subtidal shoals. Analysis of the three-dimensional shapes and distribution of these five examples shows that they evolved to produce three major carbonate sandbody geometries: (a) strings, (b) sheets, and (c) wedges. These geometries are characterised using the five field examples and offered as a template which may assist in the exploration and reservoir modelling of petroleum-rich high-energy ramp systems. Progradation, for up to 40 km, of barrier islands (Stowe Oolite) and beach-ridge plains (Gully Oolite Formation) generated strings, and "thick" sheets individually up to 10-20 m thick. "Thin" shoreface-retreat carbonate packstone/grainstone sheets up to 5 m thick (High Tor limestone) developed during transgressions as veneers across flooding surfaces. These are comparable with sheet sands developed in siliciclastic shelf depositional systems. Progradation, for up to 30 km, and vertical aggradation of shoreline-detached oolite shoals (Castell Coch limestone, Brofiscin Oolite), generated basinwards-expanding or thinning wedges up to 30 m thick. Tectonically controlled stacking of strandplain sheets produced a composite carbonate sandbody up to 80 m thick (Gully Oolite). The intrinsic (sedimentary) and extrinsic (eustacy, tectonism, climate) factors which controlled these sandbody geometries are addressed. Establishing the positions of the sandbodies accurately within depositional sequences allows them to be located within inferred seismic sequence geometries and provides one possible solution to the difficult problem of predicting carbonate facies distribution in subtle stratigraphic plays. In this ramp system, the most homogeneous sandbodies (up to 30 m grainstones), with greatest reservoir facies potential, are represented by shoal-belt wedges. Potential grainstone reservoir facies in the prograding shorelines are limited to the upper parts of individual shoreface sequences (max. 10 m grainstones). For shoreline carbonate sandbodies, the greatest reservoir and stratigraphic trapping potential exists in the earliest ramp parasequences where enveloping offshore sediments are siliciclastic mudstones. In later stages, potential seals are likely to be less reliable, low-porosity outer ramp carbonates.

  2. Deformation mechanism of CrN/nitriding coated steel in wear and nano-scratch experiments under heavy loading conditions

    NASA Astrophysics Data System (ADS)

    Wang, Yongguang; Chen, Yao; Zhao, Dong; Lu, Xiaolong; Liu, Weiwei; Qi, Fei; Chen, Yang

    2018-07-01

    CrN coatings are widely used to protect metals from wear in industrial engineering. However, fundamental deformation mechanism of these coatings under heavy loading conditions remains elusive. In this paper, multilayered hard coatings with a CrN matrix and a supporting layer were developed by means of the hybrid deposition process combined with PVD and ionicnitriding. The tribological behavior of coatings with and without ionicnitriding were investigated by a pin-on-disk arrangement under heavy loading conditions. In addition, the deformation mechanism of the multilayered hard coatings was studied by nano-scratch experiment with ramp load model, which has not been discussed previously. It was found that the deformation process of coatings could be divided into three regimes based on the evolution of frictional coefficient. The insertion of nitriding films leads to the further increase in frictional resistance owing to the elastic-plastic deformation. The results and analysis reveal some insights into the coating design for multilayered hard coatings with the consideration of deformation mechanisms.

  3. Creep Behavior of Passive Bovine Extraocular Muscle

    PubMed Central

    Yoo, Lawrence; Kim, Hansang; Shin, Andrew; Gupta, Vijay; Demer, Joseph L.

    2011-01-01

    This paper characterized bovine extraocular muscles (EOMs) using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV) relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed for each loading rate and was similar among all six anatomical EOMs. The mean creep coefficient after 1,500 seconds for a wide range of initial loading rates was at 1.37 ± 0.03 (standard deviation, SD). The creep function derived from the relaxation-based QLV model agreed with observed creep to within 2.7% following 16.67%/s ramp loading. Measured creep agrees closely with a derived QLV model of EOM relaxation, validating a previous QLV model for characterization of EOM biomechanics. PMID:22131809

  4. Spectrum study on unsteadiness of shock wave-vortex ring interaction

    NASA Astrophysics Data System (ADS)

    Dong, Xiangrui; Yan, Yonghua; Yang, Yong; Dong, Gang; Liu, Chaoqun

    2018-05-01

    Shock oscillation with low-frequency unsteadiness commonly occurs in supersonic flows and is a top priority for the control of flow separation caused by shock wave and boundary layer interaction. In this paper, the interaction of the shock caused by the compression ramp and the vortex rings generated by a micro-vortex generator (MVG) in a supersonic flow at Ma = 2.5 is simulated by the implicit large eddy simulation method. The analysis of observation and the frequency of both the vortex ring motion and the shock oscillation is carried out. The results show that the shock produced by a compression ramp flow at Ma = 2.5 has a dominant non-dimensional low frequency, which is around St = 0.002, while the vortex rings behind the MVG have a dominant high frequency which is around St = 0.038. The dominant low frequency of the shock, which is harmful, can be removed or weakened through the shock-vortex ring interaction by the vortex rings which generate high frequency fluctuations. In the shock and vortex ring interaction region, a dominant high frequency St = 0.037-0.038 has been detected rather than the low frequency St = 0.002, which indicates that the vortex ring is stiff enough to break or weaken the shock. This analysis could provide an effective tool to remove or weaken the low frequency pressure fluctuation below 500 Hz, which has a negative effect on the flight vehicle structures and the environmental protection, through the high frequency vortex generation.

  5. Millimeter-Wave Generation Via Plasma Three-Wave Mixing

    DTIC Science & Technology

    1988-06-01

    are coupled to a third space -charge wave with dispersion 2w W k -k k . (16) A plasma-loaded-waveguide mode is excited at the intersection of this...DISPERSION "FAST" W PLASMA WAVE Wc PLASMA WAVE A-lA oppositely directed EPWs with different phase velocities (wp/k., and wO/k. 2) are coupled to a third ... space -charge wave with dispersion 2w I- k k .(16) e 2 A plaama-loaded-waveguide mode is excited at the intersection of this coupled space-charge wave

  6. Structure-function analysis of amino acid 74 of human RAMP1 and RAMP3 and its role in peptide interactions with adrenomedullin and calcitonin gene-related peptide receptors.

    PubMed

    Qi, Tao; Ly, Kien; Poyner, David R; Christopoulos, George; Sexton, Patrick M; Hay, Debbie L

    2011-05-01

    The receptors for calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are complexes of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying proteins (RAMP). The CGRP receptor is a CLR/RAMP1 pairing whereas CLR/RAMP2 and CLR/RAMP3 constitute two subtypes of AM receptor: AM(1) and AM(2), respectively. Previous studies identified Glu74 in RAMP3 to be important for AM binding and potency. To further understand the importance of this residue and its equivalent in RAMP1 (Trp74) we substituted the native amino acids with several others. In RAMP3, these were Trp, Phe, Tyr, Ala, Ser, Thr, Arg and Asn; in RAMP1, Glu, Phe, Tyr, Ala and Asn substitutions were made. The mutant RAMPs were co-expressed with CLR in Cos7 cells; receptor function in response to AM, AM(2)/intermedin and CGRP was measured in a cAMP assay and cell surface expression was determined by ELISA. Phe reduced AM potency in RAMP3 but had no effect in RAMP1. In contrast, Tyr had no effect in RAMP3 but enhanced AM potency in RAMP1. Most other substitutions had a small effect on AM potency in both receptors whereas there was little impact on CGRP or AM(2) potency. Overall, these data suggest that the geometry and charge of the residue at position 74 contribute to how AM interacts with the AM(2) and CGRP receptors and confirms the role of this position in dictating differential AM pharmacology at the AM(2) and CGRP receptors. Copyright © 2011. Published by Elsevier Inc.

  7. Assessment of First- and Second-Order Wave-Excitation Load Models for Cylindrical Substructures: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereyra, Brandon; Wendt, Fabian; Robertson, Amy

    2017-03-09

    The hydrodynamic loads on an offshore wind turbine's support structure present unique engineering challenges for offshore wind. Two typical approaches used for modeling these hydrodynamic loads are potential flow (PF) and strip theory (ST), the latter via Morison's equation. This study examines the first- and second-order wave-excitation surge forces on a fixed cylinder in regular waves computed by the PF and ST approaches to (1) verify their numerical implementations in HydroDyn and (2) understand when the ST approach breaks down. The numerical implementation of PF and ST in HydroDyn, a hydrodynamic time-domain solver implemented as a module in the FASTmore » wind turbine engineering tool, was verified by showing the consistency in the first- and second-order force output between the two methods across a range of wave frequencies. ST is known to be invalid at high frequencies, and this study investigates where the ST solution diverges from the PF solution. Regular waves across a range of frequencies were run in HydroDyn for a monopile substructure. As expected, the solutions for the first-order (linear) wave-excitation loads resulting from these regular waves are similar for PF and ST when the diameter of the cylinder is small compared to the length of the waves (generally when the diameter-to-wavelength ratio is less than 0.2). The same finding applies to the solutions for second-order wave-excitation loads, but for much smaller diameter-to-wavelength ratios (based on wavelengths of first-order waves).« less

  8. Assessment of First- and Second-Order Wave-Excitation Load Models for Cylindrical Substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereyra, Brandon; Wendt, Fabian; Robertson, Amy

    2016-07-01

    The hydrodynamic loads on an offshore wind turbine's support structure present unique engineering challenges for offshore wind. Two typical approaches used for modeling these hydrodynamic loads are potential flow (PF) and strip theory (ST), the latter via Morison's equation. This study examines the first- and second-order wave-excitation surge forces on a fixed cylinder in regular waves computed by the PF and ST approaches to (1) verify their numerical implementations in HydroDyn and (2) understand when the ST approach breaks down. The numerical implementation of PF and ST in HydroDyn, a hydrodynamic time-domain solver implemented as a module in the FASTmore » wind turbine engineering tool, was verified by showing the consistency in the first- and second-order force output between the two methods across a range of wave frequencies. ST is known to be invalid at high frequencies, and this study investigates where the ST solution diverges from the PF solution. Regular waves across a range of frequencies were run in HydroDyn for a monopile substructure. As expected, the solutions for the first-order (linear) wave-excitation loads resulting from these regular waves are similar for PF and ST when the diameter of the cylinder is small compared to the length of the waves (generally when the diameter-to-wavelength ratio is less than 0.2). The same finding applies to the solutions for second-order wave-excitation loads, but for much smaller diameter-to-wavelength ratios (based on wavelengths of first-order waves).« less

  9. Load Measurement in Structural Members Using Guided Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Wilcox, Paul D.

    2006-03-01

    A non-destructive technique to measure load in structures such as rails and bridge cables by using guided acoustic waves is investigated both theoretically and experimentally. Robust finite element models for predicting the effect of load on guided wave propagation are developed and example results are presented for rods. Reasonably good agreement of experimental results with modelling prediction is obtained. The measurement technique has been developed to perform tests on larger specimens.

  10. Sea loads on ships and offshore structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faltinsen, O.

    1990-01-01

    The book introduces the theory of the structural loading on ships and offshore structures caused by wind, waves and currents, and goes on to describe the applications of this theory in terms of real structures. The main topics described are linear-wave induced motions, loads on floating structures, numerical methods for ascertaining wave induced motions and loads, viscous wave loads and damping, stationkeeping and water impact and entry. The applications of the theoretical principles are introduced with extensive use of exercises and examples. Applications covered include conventional ships, barges, high speed marine vehicles, semisubmersibles, tension leg platforms, moored or dynamic positionedmore » ships, risers, buoys, fishing nets, jacket structures and gravity platforms. One aim of the book is to provide a physical understanding through simplified mathematical models. In this way one can develop analytical tools to evaluate results from test models, full scale trials or computer simulation, and learns which parameters represent the major contributions and influences on sea loads.« less

  11. Wave Journal Bearing. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1995-01-01

    A wave journal bearing concept features a waved inner bearing diameter of the non-rotating bearing side and it is an alternative to the plain journal bearing. The wave journal bearing has a significantly increased load capacity in comparison to the plain journal bearing operating at the same eccentricity. It also offers greater stability than the plain circular bearing under all operating conditions. The wave bearing's design is relatively simple and allows the shaft to rotate in either direction. Three wave bearings are sensitive to the direction of an applied stationary side load. Increasing the number of waves reduces the wave bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the wave bearing design for a specific application. It is concluded that the stiffness of an air journal bearing, due to hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  12. Precision linear ramp function generator

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  13. Precision linear ramp function generator

    DOEpatents

    Jatko, W. Bruce; McNeilly, David R.; Thacker, Louis H.

    1986-01-01

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  14. Forward masking of dynamic acoustic intensity: effects of intensity region and end-level.

    PubMed

    Olsen, Kirk N; Stevens, Catherine J

    2012-01-01

    Overestimation of loudness change typically occurs in response to up-ramp auditory stimuli (increasing intensity) relative to down-ramps (decreasing intensity) matched on frequency, duration, and end-level. In the experiment reported, forward masking is used to investigate a sensory component of up-ramp overestimation: persistence of excitation after stimulus presentation. White-noise and synthetic vowel 3.6 s up-ramp and down-ramp maskers were presented over two regions of intensity change (40-60 dB SPL, 60-80 dB SPL). Three participants detected 10 ms 1.5 kHz pure tone signals presented at masker-offset to signal-offset delays of 10, 20, 30, 50, 90, 170 ms. Masking magnitude was significantly greater in response to up-ramps compared with down-ramps for masker-signal delays up to and including 50 ms. When controlling for an end-level recency bias (40-60 dB SPL up-ramp vs 80-60 dB SPL down-ramp), the difference in masking magnitude between up-ramps and down-ramps was not significant at each masker-signal delay. Greater sensory persistence in response to up-ramps is argued to have minimal effect on perceptual overestimation of loudness change when response biases are controlled. An explanation based on sensory adaptation is discussed.

  15. Instant Variations in Velocity and Attenuation of Seismic Waves in a Friable Medium Under a Vibrational Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Geza, N.; Yushin, V.

    2007-12-01

    Instant variations of the velocities and attenuation of seismic waves in a friable medium subjected to dynamic loading have been studied by new experimental techniques using a powerful seismic vibrator. The half-space below the operating vibrator baseplate was scanned by high-frequency elastic waves, and the recorded fluctuations were exposed to a stroboscopic analysis. It was found that the variations of seismic velocities and attenuation are synchronous with the external vibrational load but have phase shift from it. Instant variations of the seismic waves parameters depend on the magnitude and absolute value of deformation, which generally result in decreasing of the elastic-wave velocities. New experimental techniques have a high sensitivity to the dynamic disturbance in the medium and allow one to detect a weak seismic boundaries. The relaxation process after dynamic vibrational loading were investigated and the results of research are presented.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diakov, Victor; Brinkman, Gregory; Denholm, Paul

    Using production-cost model (PLEXOS), we simulate the Western Interchange (WECC) at several levels of the yearly renewable energy (RE) generation, between 13% and 40% of the total load for the year. We look at the overall energy exchange between a region and the rest of the system (net interchange, NI), and find it useful to examine separately (i) (time-)variable and (ii) year-average components of the NI. Both contribute to inter-regional energy exchange, and are affected by wind and PV generation in the system. We find that net load variability (in relatively large portions of WECC) is the leading factor affectingmore » the variable component of inter-regional energy exchange, and the effect is quantifiable: higher regional net load correlation with the rest of the WECC lowers net interchange variability. Further, as the power mix significantly varies between WECC regions, effects of ‘flexibility import’ (regions ‘borrow’ ramping capability) are also observed.« less

  17. Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading

    DOE PAGES

    Seagle, Christopher T.; Davis, Jean-Paul; Knudson, Marcus D.

    2016-10-26

    Single crystal lithium fluoride (LiF), oriented [100], was shock loaded and subsequently shocklessly compressed in two experiments at the Z Machine. We employed velocimetry measurements in order to obtain an impactor velocity, shock transit times, and in-situ particle velocities for LiF samples up to ~1.8 mm thick. We also performed a dual thickness Lagrangian analysis on the in-situ velocimetry data to obtain the mechanical response along the loading path of these experiments. Finally, we observed an elastic response on one experiment during initial shockless compression from 100 GPa before yielding. The relatively large thickness differences utilized for the dual samplemore » analyses (up to ~1.8 mm) combined with a relative timing accuracy of ~0.2 ns resulted in an uncertainty of less than 1% on density and stress at ~200 GPa peak loading on one experiment and <4% on peak loading at ~330 GPa for another. The stress-density analyses from these experiments compare favorably with recent equation of state models for LiF.« less

  18. Integrated database and analysis system for the evaluation of freeway corridors for potential ramp signaling : [summary].

    DOT National Transportation Integrated Search

    2011-01-01

    Ramp signaling is the installation of traffic signals on freeway on-ramps. Studies have shown that in many locations, ramp signaling helped alleviate traffic congestion and improve safety. However, not all freeway locations are suitable for ramp sign...

  19. ELF/VLF Wave Generation and Scattering from Modulated Heating of the Ionosphere at Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; McCormick, J.; Cohen, M.; Hosseini, P.; Bittle, J.

    2017-12-01

    The recently completed ionospheric heater at Arecibo Observatory is used for modulated HF (5 or 8 MHz) heating of the ionosphere, to generate ELF/VLF (3 Hz - 30 kHz) waves. Observation of ramp and tone signals at frequencies from hundreds of Hz to several kHz at multiple receivers confirms the ability of the heater to modulate D region currents and create an ELF/VLF antenna in the ionosphere. Observed ELF/VLF signal amplitudes are lower than for similar experiments performed at high latitudes at the HAARP and Tromso facilities, for a variety of reasons including the reduced natural currents at mid latitudes, and the lower HF power of the Arecibo heater. The heating of the overhead ionosphere is also observed to change the Earth-ionosphere waveguide propagation characteristics as is evident from simultaneous observations of lightning induced sferics and VLF transmitter signals that propagate under the heated region. The active heating of the ionosphere modifies the reflection of incident VLF (3-30 kHz) waves. We present initial observations of HF heating of the D-region and resulting ELF/VLF wave generation.

  20. Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Ivy Bo, E-mail: bopeng@kth.se; Markidis, Stefano; Laure, Erwin

    2015-09-15

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has beenmore » identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.« less

  1. Low frequency AC waveform generator

    DOEpatents

    Bilharz, Oscar W.

    1986-01-01

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  2. Maintenance Facilities for Ammunition, Explosives, and Toxics. Design Manual 28.3.

    DTIC Science & Technology

    1981-11-01

    LOADING DOCK RAMP PROTECTION 28.3-2 8. FIRE PROTECTION 28.3-2 9. SECURITY 28.3-2 10. SAFETY 28.3-2 Section 2. GENERAL AMMUNITION MAINTENANCE SHOPS 28.3...protection in accordance with Section 3 1910.23c, Occupatioual Safety and Health Act Standards Manual. 5 8. FIRE PROTECTION. Fire protection for all...Volume 1, and Fire Protection Engineering, NAVFAC DM-8. 9. SECURITY. Maintenance facilities for ammunition, explosives, and I toxics shall be located so

  3. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid (Spanish Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Tian; Chernyakhovskiy, Ilya; Brancucci Martinez-Anido, Carlo

    This document is the Spanish version of 'Greening the Grid- Forecasting Wind and Solar Generation Improving System Operations'. It discusses improving system operations with forecasting with and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  4. Using the Auditory Hazard Assessment Algorithm for Humans (AHAAH) With Hearing Protection Software, Release MIL-STD-1474E

    DTIC Science & Technology

    2013-12-01

    points in the waveform. This is useful if the digitization rate is unnecessarily high and the waveform content remains unchanged at lower sampling...there is a precursor acoustic event not included in the waveform, like another impulse or high background noise. MIL-STD-1474E defines an exposure as...Breaking strain of annular ligament filaments Ramp 6 unitless ratio Ratio of resistance to stiffness of annular ligament at high loads So 1.00E+09

  5. Effect of magnetic and density fluctuations on the propagation of lower hybrid waves in tokamaks

    NASA Astrophysics Data System (ADS)

    Vahala, George; Vahala, Linda; Bonoli, Paul T.

    1992-12-01

    Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization. The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For Alcator-C-Mod [I. H. Hutchinson and the Alcator Group, Proceedings of the IEEE 13th Symposium on Fusion Engineering (IEEE, New York, 1990), Cat. No. 89CH 2820-9, p. 13] parameters, it seems possible to be able to infer information on internal magnetic fluctuations from hard x-ray data—especially since the effects of fluctuations on electron power density can explain the hard x-ray data from the JT-60 tokamak [H. Kishimoto and JT-60 Team, in Plasma Physics and Controlled Fusion (International Atomic Energy Agency, Vienna, 1989), Vol. I, p. 67].

  6. Rock ramp design guidelines

    USGS Publications Warehouse

    Mooney, David M.; Holmquist-Johnson, Christopher L.; Broderick, Susan

    2007-01-01

    Rock ramps or roughened channels consist of steep reaches stabilized by large immobile material (riprap). Primary objectives for rock ramps include: Create adequate head for diversionMaintain fish passage during low-flow conditionsMaintain hydraulic conveyance during high-flow conditionsSecondary objectives for rock ramp design include:Emulate natural systemsMinimize costsThe rock ramp consists of a low-flow channel designed to maintain biologically adequate depth and velocity conditions during periods of small discharges. The remainder of the ramp is designed to withstand and pass large flows with minimal structural damage. The following chapters outline a process for designing rock ramps.

  7. Potential Hydrodynamic Loads on Coastal Bridges in the Greater New York Area due to Extreme Storm Surge and Wave

    DOT National Transportation Integrated Search

    2018-04-18

    This project makes a computer modeling study on vulnerability of coastal bridges in New York City (NYC) metropolitan region to storm surges and waves. Prediction is made for potential surges and waves in the region and consequent hydrodynamic load an...

  8. Construction strength analysis of landing craft tank conversion to passenger ship using finite element method

    NASA Astrophysics Data System (ADS)

    Nurul Misbah, Mohammad; Setyawan, Dony; Murti Dananjaya, Wisnu

    2018-03-01

    This research aims to determine the longitudinal strength of passenger ship which was converted from Landing Craft Tank with 54 m of length as stated by BKI (Biro Klasifikasi Indonesia / Indonesian Classification Bureau). Verification of strength value is done to 4 (four) loading conditions which are (1) empty load condition during sagging wave, (2) empty load condition during hogging wave, (3) full load condition during sagging wave and (4) full load condition during hogging wave. Analysis is done using Finite Element Analysis (FEA) software by modeling the entire part of passenger ship and its loading condition. The back and upfront part of ship centerline were used as the boundary condition. From that analysis it can be concluded that the maximum stress for load condition (1) is 72,393 MPa, 74,792 MPa for load condition (2), 129,92 MPa for load condition (3), and 132,4 MPa for load condition (4). Longitudinal strength of passenger ship fulfilled the criteria of empty load condition having smaller stress value than allowable stress which is 90 MPa, and during full load condition with smaller stress value than allowable stress which is 150 MPa. Analysis on longitudinal strength comparison with entire ship plate thickness variation of ± 2 mm from initial plate was also done during this research. From this research it can be concluded that plate thickness reduction causes the value of longitudinal strength to decrease, while plate thickness addition causes the value of longitudinal strength to increase.

  9. ELF/VLF Wave Generation via HF Modulation of the Equatorial Electrojet at Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Flint, Q. A.; Moore, R. C.; Burch, H.; Erdman, A.; Wilkes, R.

    2017-12-01

    In this work we generate ELF/VLF waves by modulating the conductivity of the lower ionosphere using the HF heater at Arecibo. For many years, researchers have generated ELF/VLF waves using the powerful HF transmitters at HAARP, but few have attempted to do the same in the mid- to low- latitude region. While HAARP users have benefitted from the auroral electrojet, we attempt to exploit the equatorial electrojet to generate radio waves. On 31 July 2017, we transmitted at an HF frequency of 5.1 MHz (X-Mode) applying sinusoidal amplitude modulation in a step-like fashion from 0-5 kHz in 200 Hz steps over 10 seconds at 100% peak power to approximate a linear frequency ramp. We also transmitted 10-second-long fixed frequency tones spaced from 1 to 5 kHz. The frequency sweep is a helpful visual tool to identify generated waves, but is also used to determine optimal modulation frequencies for future campaigns. The tones allow us to perform higher SNR analysis. Ground-based B-field VLF receivers recorded the amplitude and phase of the generated radio waves. We employ time-of-arrival techniques to determine the altitude of the ELF/VLF signal source. In this paper, we present the initial analysis of these experimental results.

  10. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.

  11. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  12. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE PAGES

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.; ...

    2017-04-18

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  13. Microbarograph - ESRL Hi-Res Microbarograph, Goldendale - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  14. Microbarograph - ESRL Hi-Res Microbarograph, Condon - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  15. Microbarograph - ESRL Hi-Res Microbarograph, Troutdale - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  16. Microbarograph - ESRL Hi-Res Microbarograph, Troutdale - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  17. Microbarograph - ESRL Hi-Res Microbarograph, Condon - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  18. Microbarograph - ESRL Hi-Res Microbarograph, Wasco Airport - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  19. Microbarograph - ESRL Hi-Res Microbarograph, Walla Walla - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  20. Microbarograph - ESRL Hi-Res Microbarograph, Goldendale - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  1. Microbarograph - ESRL Hi-Res Microbarograph, Walla Walla - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  2. Microbarograph - ESRL Hi-Res Microbarograph, Wasco Airport - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  3. Microbarograph - ESRL Hi-Res Microbarograph, Boardman - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  4. Microbarograph - ESRL Hi-Res Microbarograph, John Day - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  5. Microbarograph - ESRL Hi-Res Microbarograph, Hood River - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  6. Microbarograph - ESRL Hi-Res Microbarograph, Umatilla - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  7. Microbarograph - ESRL Hi-Res Microbarograph, Boardman - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  8. Microbarograph - ESRL Hi-Res Microbarograph, Bonneville - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  9. Microbarograph - ESRL Hi-Res Microbarograph, Bonneville - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  10. Microbarograph - ESRL Hi-Res Microbarograph, Umatilla - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  11. Microbarograph - ESRL Hi-Res Microbarograph, John Day - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  12. Microbarograph - ESRL Hi-Res Microbarograph, Hood River - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  13. Upwind differencing and LU factorization for chemical non-equilibrium Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    By means of either the Roe or the Van Leer flux-splittings for inviscid terms, in conjunction with central differencing for viscous terms in the explicit operator and the Steger-Warming splitting and lower-upper approximate factorization for the implicit operator, the present, robust upwind method for solving the chemical nonequilibrium Navier-Stokes equations yields formulas for finite-volume discretization in general coordinates. Numerical tests in the illustrative cases of a hypersonic blunt body, a ramped duct, divergent nozzle flows, and shock wave/boundary layer interactions, establish the method's efficiency.

  14. Collisionless dissipation in quasi-perpendicular shocks. [in terresrial bow waves

    NASA Technical Reports Server (NTRS)

    Forslund, D. W.; Quest, K. B.; Brackbill, J. U.; Lee, K.

    1984-01-01

    Microscopic dissipation processes in quasi-perpendicular shocks are studied by two-dimensional plasma simulations in which electrons and ions are treated as particles moving in self-consistent electric and magnetic fields. Cross-field currents induce substantial turbulence at the shock front reducing the reflected ion fraction, increasing the bulk ion temperature behind the shock, doubling the average magnetic ramp thickness, and enhancing the upstream field aligned electron heat flow. The short scale length magnetic fluctuations observed in the bow shock are probably associated with this turbulence.

  15. Excitation of plane Lamb wave in plate-like structures under applied surface loading

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Xu, Xinsheng; Zhao, Zhen; Yang, Zhengyan; Zhou, Zhenhuan; Wu, Zhanjun

    2018-02-01

    Lamb waves play an important role in structure health monitoring (SHM) systems. The excitation of Lamb waves has been discussed for a long time with absorbing results. However, little effort has been made towards the precise characterization of Lamb wave excitation by various transducer models with mathematical foundation. In this paper, the excitation of plane Lamb waves with plane strain assumption in isotropic plate structures under applied surface loading is solved with the Hamiltonian system. The response of the Lamb modes excited by applied loading is expressed analytically. The effect of applied loading is divided into the product of two parts as the effect of direction and the effect of distribution, which can be changed by selecting different types of transducer and the corresponding transducer configurations. The direction of loading determines the corresponding displacement of each mode. The effect of applied loading on the in-plane and normal directions depends on the in-plane and normal displacements at the surface respectively. The effect of the surface loading distribution on the Lamb mode amplitudes is mainly reflected by amplitude versus frequency or wavenumber. The frequencies at which the maxima and minima of the S0 or A0 mode response occur depend on the distribution of surface loading. The numerical results of simulations conducted on an infinite aluminum plate verify the theoretical prediction of not only the direction but also the distribution of applied loading. A pure S0 or A0 mode can be excited by selecting the appropriate direction and distribution at the corresponding frequency.

  16. Lack of behavioural responses of humpback whales (Megaptera novaeangliae) indicate limited effectiveness of sonar mitigation

    PubMed Central

    Kvadsheim, Petter H.; Lam, Frans-Peter A.; von Benda-Beckmann, Alexander M.; Sivle, Lise D.; Visser, Fleur; Curé, Charlotte; Tyack, Peter L.; Miller, Patrick J. O.

    2017-01-01

    ABSTRACT Exposure to underwater sound can cause permanent hearing loss and other physiological effects in marine animals. To reduce this risk, naval sonars are sometimes gradually increased in intensity at the start of transmission (‘ramp-up’). Here, we conducted experiments in which tagged humpback whales were approached with a ship to test whether a sonar operation preceded by ramp-up reduced three risk indicators – maximum sound pressure level (SPLmax), cumulative sound exposure level (SELcum) and minimum source–whale range (Rmin) – compared with a sonar operation not preceded by ramp-up. Whales were subject to one no-sonar control session and either two successive ramp-up sessions (RampUp1, RampUp2) or a ramp-up session (RampUp1) and a full-power session (FullPower). Full-power sessions were conducted only twice; for other whales we used acoustic modelling that assumed transmission of the full-power sequence during their no-sonar control. Averaged over all whales, risk indicators in RampUp1 (n=11) differed significantly from those in FullPower (n=12) by −3.0 dB (SPLmax), −2.0 dB (SELcum) and +168 m (Rmin), but not significantly from those in RampUp2 (n=9). Only five whales in RampUp1, four whales in RampUp2 and none in FullPower or control sessions avoided the sound source. For RampUp1, we found statistically significant differences in risk indicators between whales that avoided the sonar and whales that did not: −4.7 dB (SPLmax), −3.4 dB (SELcum) and +291 m (Rmin). In contrast, for RampUp2, these differences were smaller and not significant. This study suggests that sonar ramp-up has a positive but limited mitigative effect for humpback whales overall, but that ramp-up can reduce the risk of harm more effectively in situations when animals are more responsive and likely to avoid the sonar, e.g. owing to novelty of the stimulus, when they are in the path of an approaching sonar ship. PMID:29141878

  17. Role of Receptor Activity Modifying Protein 1 in Function of the Calcium Sensing Receptor in the Human TT Thyroid Carcinoma Cell Line

    PubMed Central

    Desai, Aditya J.; Roberts, David J.

    2014-01-01

    The Calcium Sensing Receptor (CaSR) plays a role in calcium homeostasis by sensing minute changes in serum Ca2+ and modulating secretion of calciotropic hormones. It has been shown in transfected cells that accessory proteins known as Receptor Activity Modifying Proteins (RAMPs), specifically RAMPs 1 and 3, are required for cell-surface trafficking of the CaSR. These effects have only been demonstrated in transfected cells, so their physiological relevance is unclear. Here we explored CaSR/RAMP interactions in detail, and showed that in thyroid human carcinoma cells, RAMP1 is required for trafficking of the CaSR. Furthermore, we show that normal RAMP1 function is required for intracellular responses to ligands. Specifically, to confirm earlier studies with tagged constructs, and to provide the additional benefit of quantitative stoichiometric analysis, we used fluorescence resonance energy transfer to show equal abilities of RAMP1 and 3 to chaperone CaSR to the cell surface, though RAMP3 interacted more efficiently with the receptor. Furthermore, a higher fraction of RAMP3 than RAMP1 was observed in CaSR-complexes on the cell-surface, suggesting different ratios of RAMPs to CaSR. In order to determine relevance of these findings in an endogenous expression system we assessed the effect of RAMP1 siRNA knock-down in medullary thyroid carcinoma TT cells, (which express RAMP1, but not RAMP3 constitutively) and measured a significant 50% attenuation of signalling in response to CaSR ligands Cinacalcet and neomycin. Blockade of RAMP1 using specific antibodies induced a concentration-dependent reduction in CaSR-mediated signalling in response to Cinacalcet in TT cells, suggesting a novel functional role for RAMP1 in regulation of CaSR signalling in addition to its known role in receptor trafficking. These data provide evidence that RAMPs traffic the CaSR as higher-level oligomers and play a role in CaSR signalling even after cell surface localisation has occurred. PMID:24454825

  18. Role of receptor activity modifying protein 1 in function of the calcium sensing receptor in the human TT thyroid carcinoma cell line.

    PubMed

    Desai, Aditya J; Roberts, David J; Richards, Gareth O; Skerry, Timothy M

    2014-01-01

    The Calcium Sensing Receptor (CaSR) plays a role in calcium homeostasis by sensing minute changes in serum Ca(2+) and modulating secretion of calciotropic hormones. It has been shown in transfected cells that accessory proteins known as Receptor Activity Modifying Proteins (RAMPs), specifically RAMPs 1 and 3, are required for cell-surface trafficking of the CaSR. These effects have only been demonstrated in transfected cells, so their physiological relevance is unclear. Here we explored CaSR/RAMP interactions in detail, and showed that in thyroid human carcinoma cells, RAMP1 is required for trafficking of the CaSR. Furthermore, we show that normal RAMP1 function is required for intracellular responses to ligands. Specifically, to confirm earlier studies with tagged constructs, and to provide the additional benefit of quantitative stoichiometric analysis, we used fluorescence resonance energy transfer to show equal abilities of RAMP1 and 3 to chaperone CaSR to the cell surface, though RAMP3 interacted more efficiently with the receptor. Furthermore, a higher fraction of RAMP3 than RAMP1 was observed in CaSR-complexes on the cell-surface, suggesting different ratios of RAMPs to CaSR. In order to determine relevance of these findings in an endogenous expression system we assessed the effect of RAMP1 siRNA knock-down in medullary thyroid carcinoma TT cells, (which express RAMP1, but not RAMP3 constitutively) and measured a significant 50% attenuation of signalling in response to CaSR ligands Cinacalcet and neomycin. Blockade of RAMP1 using specific antibodies induced a concentration-dependent reduction in CaSR-mediated signalling in response to Cinacalcet in TT cells, suggesting a novel functional role for RAMP1 in regulation of CaSR signalling in addition to its known role in receptor trafficking. These data provide evidence that RAMPs traffic the CaSR as higher-level oligomers and play a role in CaSR signalling even after cell surface localisation has occurred.

  19. Ramp-related incidents involving wheeled mobility device users during transit bus boarding/alighting.

    PubMed

    Frost, Karen L; Bertocci, Gina; Smalley, Craig

    2015-05-01

    To estimate the prevalence of wheeled mobility device (WhMD) ramp-related incidents while boarding/alighting a public transit bus and to determine whether the frequency of incidents is less when the ramp slope meets the proposed Americans with Disabilities Act (ADA) maximum allowable limit of ≤9.5°. Observational study. Community public transportation. WhMD users (N=414) accessing a public transit bus equipped with an instrumented ramp. Not applicable. Prevalence of boarding/alighting incidents involving WhMD users and associated ramp slopes; factors affecting incidents. A total of 4.6% (n=35) of WhMD users experienced an incident while boarding/alighting a transit bus. Significantly more incidents occurred during boarding (6.3%, n=26) than during alighting (2.2%, n=9) (P<.01), and when the ramp was deployed to street level (mean slope=11.4°) compared with sidewalk level (mean slope=4.2°) (P=.01). The odds ratio for experiencing an incident when the ramp slope exceeded the proposed ADA maximum allowable ramp slope was 5.4 (95% confidence interval, 2.4-12.2; P<.01). The odds ratio for assistance being rendered to board/alight when the ramp slope exceeded the proposed ADA maximum allowable ramp slope was 5.1 (95% confidence interval, 2.9-9.0; P<.01). The findings of this study support the proposed ADA maximum allowable ramp slope of 9.5°. Ramp slopes >9.5° and ramps deployed to street level are associated with a higher frequency of incidents and provision of assistance. Transit agencies should increase awareness among bus operators of the effect kneeling and deployment location (street/sidewalk) have on the ramp slope. In addition, ramp components and the built environment may contribute to incidents. When prescribing WhMDs, skills training must include ascending/descending ramps at slopes encountered during boarding/alighting to ensure safe and independent access to public transit buses. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. The Total-Pressure Recovery and Drag Characteristics of Several Auxiliary Inlets at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Dennard, John S.

    1959-01-01

    Several flush and scoop-type auxiliary inlets have been tested for a range of Mach numbers from 0.55 to 1.3 to determine their transonic total-pressure recovery and drag characteristics. The inlet dimensions were comparable with the thickness of the boundary layer in which they were tested. Results indicate that flush inlets should be inclined at very shallow angles with respect to the surface for optimum total-pressure recovery and drag characteristics. Deep, narrow inlets have lower drag than wide shallow ones at Mach numbers greater than 0.9 but at lower Mach numbers the wider inlets proved superior. Inlets with a shallow approach ramp, 7 deg, and diverging ramp walls which incorporated boundary-layer bypass had lower drag than any other inlet tested for Mach numbers up to 1.2 and had the highest pressure recovery of all of the flush inlets. The scoop inlets, which operated in a higher velocity flow than the flush inlets, had higher drag coefficients. Several of these auxiliary inlets projected multiple, periodic shock waves into the stream when they were operated at low mass-flow ratios.

  1. New Experimental Capabilities and Theoretical Insights of High Pressure Compression Waves

    NASA Astrophysics Data System (ADS)

    Orlikowski, Daniel; Nguyen, Jeffrey H.; Patterson, J. Reed; Minich, Roger; Martin, L. Peter; Holmes, Neil C.

    2007-12-01

    Currently there are three platforms that offer quasi-isentropic compression or ramp-wave compression (RWC): light-gas gun, magnetic flux (Z-pinch), and laser. We focus here on the light-gas gun technique and on some current theoretical insights from experimental data. An impedance gradient through the length of the impactor provides the pressure pulse upon impact to the subject material. Applications and results are given concerning high-pressure strength and the liquid-to-solid, phase transition of water giving its first associated phase fraction history. We also introduce the Korteweg-deVries-Burgers equation as a means to understand the evolution of these RWC waves as they propagate through the thickness of the subject material. This model equation has the necessary competition between non-linear, dispersion, and dissipation processes, which is shown through observed structures that are manifested in the experimental particle velocity histories. Such methodology points towards a possibility of quantifying dissipation, through which RWC experiments may be analyzed.

  2. High Resolution Millimeter Wave Detection of Vertical Cracks in the Space Shuttle External Tank Spray-On-Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Zoughi, R.; Hepburn, F.

    2006-01-01

    Space Shuttle Columbia s catastrophic failure, the separation of a piece of spray-on-foam insulation (SOFI) from the external tank (ET) in the Space Shuttle Discovery s flight in 2005 and crack detected in its ET foam prior to its successful launch in 2006 emphasize the need for effective nondestructive methods for inspecting the shuttle ET SOFI. Millimeter wave nondestructive testing methods have been considered as potential and effective inspection tools for evaluating the integrity of the SOFI. This paper presents recent results of an investigation for the purpose of detecting vertical cracks in SOFI panels using a focused millimeter wave (150 GHz) reflectometer. The presented images of the SOFI panels show the capability of this reflectometer for detecting tight vertical cracks (also as a function of crack opening dimension) in exposed SOFI panels and while covered by a piece of SOFI ramp simulating a more realistic and challenging situation.

  3. Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions

    NASA Astrophysics Data System (ADS)

    Wu, Yanling

    2018-05-01

    In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.

  4. Reevaluation of Ramp Design Speed Criteria

    DOT National Transportation Integrated Search

    1999-12-01

    Current freeway entry ramp design speed criteria were evaluated through observations of twenty ramps in four Texas cities. Field observations of ramp and freeway traffic speed-distance relationships were made using videotaping methods. Traffic operat...

  5. Rough-water Impact-load Investigation of a Chine-immersed V-bottom Model Having a Dead-rise Angle of 10 Degrees

    NASA Technical Reports Server (NTRS)

    Markey, Melvin F; Carpini, Thomas D

    1957-01-01

    A hydrodynamic rough-water impact-loads investigation of a fixed-trim V-bottom float with a beam-loading coefficient of 5.78 and dead-rise angle of 10 degrees was made at the Langley impact basin. The size of the waves varied from approximately 10 to 60 feet in length and 1 to 2 feet in height. Time histories were obtained showing the position of the model relative to the wave throughout the impact and typical examples are presented. The load coefficient was found to vary primarily with the slope of the impacting wave.

  6. Allostatic Load and Effort-Reward Imbalance: Associations over the Working-Career

    PubMed Central

    Coronado, José Ignacio Cuitún; Chandola, Tarani; Steptoe, Andrew

    2018-01-01

    Although associations between work stressors and stress-related biomarkers have been reported in cross-sectional studies, the use of single time measurements of work stressors could be one of the reasons for inconsistent associations. This study examines whether repeated reports of work stress towards the end of the working career predicts allostatic load, a measure of chronic stress related physiological processes. Data from waves 2 to 6 of the English Longitudinal Study of Ageing (ELSA) were analysed, with a main analytical sample of 2663 older adults (aged 50+) who had at least one measurement of effort-reward imbalance between waves 2–6 and a measurement of allostatic load at wave 6. Cumulative work stress over waves 2–6 were measured by the effort-reward imbalance model. ELSA respondents who had reported two or more occasions of imbalance had a higher (0.3) estimate of the allostatic load index than those who did not report any imbalance, controlling for a range of health and socio-demographic factors, as well as allostatic load at baseline. More recent reports of imbalance were significantly associated with a higher allostatic load index, whereas reports of imbalance from earlier waves of ELSA were not. The accumulation of work related stressors could have adverse effects on chronic stress biological processes. PMID:29364177

  7. Allostatic Load and Effort-Reward Imbalance: Associations over the Working-Career.

    PubMed

    Coronado, José Ignacio Cuitún; Chandola, Tarani; Steptoe, Andrew

    2018-01-24

    Although associations between work stressors and stress-related biomarkers have been reported in cross-sectional studies, the use of single time measurements of work stressors could be one of the reasons for inconsistent associations. This study examines whether repeated reports of work stress towards the end of the working career predicts allostatic load, a measure of chronic stress related physiological processes. Data from waves 2 to 6 of the English Longitudinal Study of Ageing (ELSA) were analysed, with a main analytical sample of 2663 older adults (aged 50+) who had at least one measurement of effort-reward imbalance between waves 2-6 and a measurement of allostatic load at wave 6. Cumulative work stress over waves 2-6 were measured by the effort-reward imbalance model. ELSA respondents who had reported two or more occasions of imbalance had a higher (0.3) estimate of the allostatic load index than those who did not report any imbalance, controlling for a range of health and socio-demographic factors, as well as allostatic load at baseline. More recent reports of imbalance were significantly associated with a higher allostatic load index, whereas reports of imbalance from earlier waves of ELSA were not. The accumulation of work related stressors could have adverse effects on chronic stress biological processes.

  8. A waved journal bearing concept with improved steady-state and dynamic performance

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1994-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. A three wave, waved journal bearing geometry is used to show the geometry of this concept. The performance of generic waved bearings having either three, four, six, or eight waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of dynamic coefficients and fluid film stability. It was found that the bearing wave amplitude has an important influence on both steady-state and dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases. Also, the waved bearing becomes more stable as the wave amplitude increases. In addition, increasing the number of waves reduces the waved bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the waved bearing design for a specific application. It is concluded that the stiffness of an air bearing, due to the hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  9. Is the activity of CGRP and Adrenomedullin regulated by RAMP (-2) and (-3) in Trypanosomatidae? An in-silico approach.

    PubMed

    Febres, Anthony; Vanegas, Oriana; Giammarresi, Michelle; Gomes, Carlos; Díaz, Emilia; Ponte-Sucre, Alicia

    2018-07-01

    The Calcitonin-Like Receptor (CLR) belongs to the classical seven-transmembrane segment molecules coupled to heterotrimeric G proteins. Its pharmacology depends on the simultaneous expression of the so-called Receptor Activity Modifier Proteins (RAMP-) -1, -2 and -3. RAMP-associated proteins modulate glycosylation and cellular traffic of CLR, therefore determining its pharmacodynamics. In higher eukaryotes, the complex formed by CLR and RAMP-1 is more akin to bind Calcitonin Gene-Related Peptide (CGRP), whereas those formed by CLR and RAMP-2 or RAMP-3, bind preferentially Adrenomedullin (AM). In lower eukaryotes, RAMPs, or any homologous protein, have not been identified until now. Herein we demonstrated a negative chemotactic response elicited by CGRP (10 -9 and 10 -8  M) and AM (10 -9 to 10 -5  M). Whether or not this response is receptor mediated should be verified, as well as the expression of a 24 kDa band in Leishmania, recognized by western blot analysis by the use of (human-)-RAMP-2 antibodies as detection probes. Queries with human RAMP-2 and RAMP-3 protein sequences in blastp against Leishmania (Viannia) braziliensis predicted proteome, allowed us to detect two sequence alignments in the parasite: A RAMP-2-aligned sequence corresponding to Leishmania folylpolyglutamate synthase (FPGS), and a RAMP-3 aligned protein, a hypothetical Leishmania protein with yet unknown function. The presence of homologous of these proteins was described in-silico in other members of the Trypanosomatidae. These preliminary and not yet complete data suggest the feasibility that both CGRP and Adrenomedullin activities may be regulated by homologs of RAMP- (-2) and (-3) in these parasites. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. San Antonio relay ramp: Area of stratal continuity between large-displacement barrier faults of the Edwards aquifer and Balcones fault zone, central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, E.W.

    1996-09-01

    The San Antonio relay ramp, a gentle southwest-dipping monocline, formed between the tips of two en echelon master faults having maximum throws of >240 in. Structural analysis of this relay ramp is important to studies of Edwards aquifer recharge and ground-water flow because the ramp is an area of relatively good stratal continuity linking the outcrop belt recharge zone and unconfined aquifer with the downdip confined aquifer. Part of the relay ramp lies within the aquifer recharge zone and is crossed by several southeast-draining creeks, including Salado, Cibolo, and Comal Creeks, that supply water to the ramp recharge area. Thismore » feature is an analog for similar structures within the aquifer and for potential targets for hydrocarbons in other Gulf Coast areas. Defining the ramp is an {approximately}13-km-wide right step of the Edwards Group outcrop belt and the en echelon master faults that bound the ramp. The master faults strike N55-75{degrees}E, and maximum displacement exceeds the {approximately}165-m thickness of the Edwards Group strata. The faults therefore probably serve as barriers to Edwards ground-water flow. Within the ramp, tilted strata gently dip southwestward at {approximately}5 m/km, and the total structural relief along the ramp`s southwest-trending axis is <240 in. The ramp`s internal framework is defined by three fault blocks that are {approximately}4 to {approximately}6 km wide and are bound by northeast-striking faults having maximum throws between 30 and 150 m. Within the fault blocks, local areas of high fracture permeability may exist where smaller faults and joints are well connected.« less

  11. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms

    PubMed Central

    Lee, Sang-Min; Hay, Debbie L.; Pioszak, Augen A.

    2016-01-01

    Receptor activity-modifying proteins (RAMP1–3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8–37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. PMID:26895962

  12. Disruption avoidance and fast ramp-down techniques for the DIII-D experimental scenarios

    NASA Astrophysics Data System (ADS)

    Barr, Jayson; Eidietis, N. W.; Humphreys, D. A.; Sammuli, B.; Luce, T.

    2017-10-01

    Plasma current ramp-down in ITER will continue in H-mode from 15 MA to 10 MA, and will keep a diverted shape until termination. This is in contrast to the limited ramp-down scenarios typically used in DIII-D operations. Additionally, fast emergency ramp-down scenarios for ITER and future reactors are a priority for disruption avoidance. New experiments in DIII-D use the ramp-down phase of a variety of experiments including in the ITER baseline scenario to survey and identify optimized ramp-down scenarios for both scheduled terminations and terminations triggered by off-normal event detection. Systematic scans in current ramp-rate (1-5 MA/s), neutral beam power (including βN feedback) and ramp-down shaping (limited versus continued diverted) have identified fast ramp-down scenarios for Lower Single Null (LSN) and Double Null (DN) plasmas. Scenario-specific methods and their rates of successful termination will be presented and compared relative to a historical data-set of ramp-down programming in the limiter configuration. Locked modes are found to be the most significant challenge to disruption avoidance in diverted ramp-downs. Results for LSN diverted discharges that begin the rampdown with large locked-modes will also be presented. If available, results of similar experiments on EAST will be presented. Work supported by US DOE under DE-FC02-04ER54698 and DE-SC0010685.

  13. Hall effects on unsteady MHD flow of second grade fluid through porous medium with ramped wall temperature and ramped surface concentration

    NASA Astrophysics Data System (ADS)

    VeeraKrishna, M.; Chamkha, Ali J.

    2018-05-01

    The heat generation/absorption and thermo-diffusion on an unsteady free convective MHD flow of radiating and chemically reactive second grade fluid near an infinite vertical plate through a porous medium and taking the Hall current into account have been studied. Assume that the bounding plate has a ramped temperature with a ramped surface concentration and isothermal temperature with a ramped surface concentration. The analytical solutions for the governing equations are obtained by making use of the Laplace transforms technique. The velocity, temperature, and concentration profiles are discussed through graphs. We also found that velocity, temperature, and concentration profiles in the case of ramped temperature with ramped surface concentrations are less than those of isothermal temperature with ramped surface concentrations. Also, the expressions of the skin friction, Nusselt number, and Sherwood number are obtained and represented computationally through a tabular form.

  14. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength doesmore » in wave-guides loaded by means of corrugations.« less

  15. Using 300 Pretreatment Shock Waves in a Voltage Ramping Protocol Can Significantly Reduce Tissue Injury During Extracorporeal Shock Wave Lithotripsy.

    PubMed

    Connors, Bret A; Evan, Andrew P; Handa, Rajash K; Blomgren, Philip M; Johnson, Cynthia D; Liu, Ziyue; Lingeman, James E

    2016-09-01

    Pretreating a pig kidney with 500 low-energy shock waves (SWs) before delivering a clinical dose of SWs (2000 SWs, 24 kV, 120 SWs/min) has been shown to significantly reduce the size of the hemorrhagic lesion produced in that treated kidney, compared with a protocol without pretreatment. However, since the time available for patient care is limited, we wanted to determine if fewer pretreatment SWs could be used in this protocol. As such, we tested if pretreating with 300 SWs can initiate the same reduction in renal lesion size as has been observed with 500 SWs. Fifteen female farm pigs were placed in an unmodified Dornier HM-3 lithotripter, where the left kidney of each animal was targeted for lithotripsy treatment. The kidneys received 300 SWs at 12 kV (120 SWs/min) followed immediately by 2000 SWs at 24 kV (120 SWs/min) focused on the lower pole. These kidneys were compared with kidneys given a clinical dose of SWs with 500 SW pretreatment, and without pretreatment. Renal function was measured both before and after SW exposure, and lesion size analysis was performed to assess the volume of hemorrhagic tissue injury (% functional renal volume, FRV) created by the 300 SW pretreatment regimen. Glomerular filtration rate fell significantly in the 300 SW pretreatment group by 1 hour after lithotripsy treatment. For most animals, low-energy pretreatment with 300 SWs significantly reduced the size of the hemorrhagic injury (to 0.8% ± 0.4%FRV) compared with the injury produced by a typical clinical dose of SWs. The results suggest that 300 pretreatment SWs in a voltage ramping treatment regimen can initiate a protective response in the majority of treated kidneys and significantly reduce tissue injury in our model of lithotripsy injury.

  16. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less

  17. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less

  18. Evaluation of temporary ramp metering for work zones.

    DOT National Transportation Integrated Search

    2012-11-01

    Ramp metering has been successfully implemented in many states to improve traffic operations on freeways. Studies have documented the positive mobility and safety benefits of ramp metering. However, there have been no studies on the use of ramp meter...

  19. Supersonic Elliptical Ramp Inlet

    NASA Technical Reports Server (NTRS)

    Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)

    2016-01-01

    A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.

  20. Lack of behavioural responses of humpback whales (Megaptera novaeangliae) indicate limited effectiveness of sonar mitigation.

    PubMed

    Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; von Benda-Beckmann, Alexander M; Sivle, Lise D; Visser, Fleur; Curé, Charlotte; Tyack, Peter L; Miller, Patrick J O

    2017-11-15

    Exposure to underwater sound can cause permanent hearing loss and other physiological effects in marine animals. To reduce this risk, naval sonars are sometimes gradually increased in intensity at the start of transmission ('ramp-up'). Here, we conducted experiments in which tagged humpback whales were approached with a ship to test whether a sonar operation preceded by ramp-up reduced three risk indicators - maximum sound pressure level (SPL max ), cumulative sound exposure level (SEL cum ) and minimum source-whale range ( R min ) - compared with a sonar operation not preceded by ramp-up. Whales were subject to one no-sonar control session and either two successive ramp-up sessions (RampUp1, RampUp2) or a ramp-up session (RampUp1) and a full-power session (FullPower). Full-power sessions were conducted only twice; for other whales we used acoustic modelling that assumed transmission of the full-power sequence during their no-sonar control. Averaged over all whales, risk indicators in RampUp1 ( n =11) differed significantly from those in FullPower ( n =12) by -3.0 dB (SPL max ), -2.0 dB (SEL cum ) and +168 m ( R min ), but not significantly from those in RampUp2 ( n =9). Only five whales in RampUp1, four whales in RampUp2 and none in FullPower or control sessions avoided the sound source. For RampUp1, we found statistically significant differences in risk indicators between whales that avoided the sonar and whales that did not: -4.7 dB (SPL max ), -3.4 dB (SEL cum ) and +291 m ( R min ). In contrast, for RampUp2, these differences were smaller and not significant. This study suggests that sonar ramp-up has a positive but limited mitigative effect for humpback whales overall, but that ramp-up can reduce the risk of harm more effectively in situations when animals are more responsive and likely to avoid the sonar, e.g. owing to novelty of the stimulus, when they are in the path of an approaching sonar ship. © 2017. Published by The Company of Biologists Ltd.

  1. An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Achenbach, J. D.; Tang, Z.

    1999-01-01

    In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive bond nonlinearity and which can be conveniently obtained by an ultrasonic measurement, has been used as an indication of adhesive bond degradation. Experimental results have shown that the temperature increase method is a convenient and productive alternative to static loading. A technique which uses the reflected waveform data to obtain the fundamental ultrasonic parameters (transit time, reflection coefficient and attenuation coefficient) of an adhesive bond has also been presented.

  2. Static internal performance of convergent single-expansion-ramp nozzles with various combinations of internal geometric parameters

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Capone, Francis J.

    1989-01-01

    An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.

  3. Update on the Comparison of Second-Order Loads on a Tension Leg Platform for Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueydon, Sebastien; Jonkman, Jason

    2016-07-01

    In comparison to other kinds of floaters (like a spar or a semisubmersible), the tension leg platform has several notable advantages: its vertical motions are negligible, its weight is lighter, and its mooring system's footprint is smaller. Although a tension leg platform has a negligible response to first-order vertical wave loads, the second-order wave loads need to be addressed. This paper follows up on a verification study of second-order wave loads on a tension leg platform for wind turbines done by the Maritime Research Institute of The Netherlands and National Renewable Energy Laboratory and it brings some corrections to itsmore » conclusions.« less

  4. Effect of ramp configuration on easiness of handling, heart rate, and behavior of near-market weight pigs at unloading.

    PubMed

    Goumon, S; Faucitano, L; Bergeron, R; Crowe, T; Connor, M L; Gonyou, H W

    2013-08-01

    Three experiments, each using 280 pigs, were conducted in a simulated compartment to test the effect of angle of entrance (AOE) to the ramp (90°, 60°, 30°, or 0°), ramp slope (0°, 16°, 21°, or 26°), and an initial 20-cm step associated with 16° or 21° ramp slopes on the ease of handling, heart rate (HR), and behavior of near market-weight pigs during unloading. Heart rate (pigs and handler), unloading time, interventions of the handler, and reactions of the pigs were monitored. The results of the first experiment show that using a 90° AOE had detrimental effects on ease of handling (P < 0.05), HR of the pig (P < 0.05), and behavior (P < 0.05). The 0° and 30° AOE appeared to improve the ease of unloading, whereas the 60° AOE had an intermediate effect. The 30° AOE appeared to be preferable, because pigs moved at this angle balked less frequently (P < 0.01) and required less manipulation (P < 0.05) than pigs moved with a 0° AOE. The results of the second experiment show that the use of a flat ramp led to the easiest unloading, as demonstrated by the lower number of balks (P < 0.001) when pigs were moved to the ramp and less frequent use of paddle (P = 0.001) or voice (P < 0.001) on the ramp, compared with the other treatments. However, the flat ramp did not differ from the 21° ramp in many of the variables reflecting ease of handling, which may be explained by the difference in configuration between the ramps. The results also show that the use of the steepest ramp slope had the most detrimental effect on balking and backing up behavior of pigs (P < 0.001), and handling (touches, slaps, and pushes; P < 0.05 for all) when moved to the ramp and on unloading time (P < 0.01). No differences in pig HR (P < 0.05) and ease of handling on the ramp (P < 0.05) were found between a 26° and 16° ramp slope, suggesting that the length of the ramp may be one of the factors that make unloading more difficult. The results of the last experiment show that an initial step made unloading physically more demanding for the handler (P < 0.001) and pigs on the ramp (P < 0.05) as demonstrated by their greater HR. The greater difficulty of handling (P < 0.01) and reluctance to move (P < 0.05) of pigs moved toward the 16° ramp with a step suggest that pigs perceived this ramp as more psychologically challenging. Making a few changes in terms of the design of the ramp could improve the efficiency of handling and reduce stress in pigs.

  5. Global strength assessment in oblique waves of a large gas carrier ship, based on a non-linear iterative method

    NASA Astrophysics Data System (ADS)

    Domnisoru, L.; Modiga, A.; Gasparotti, C.

    2016-08-01

    At the ship's design, the first step of the hull structural assessment is based on the longitudinal strength analysis, with head wave equivalent loads by the ships' classification societies’ rules. This paper presents an enhancement of the longitudinal strength analysis, considering the general case of the oblique quasi-static equivalent waves, based on the own non-linear iterative procedure and in-house program. The numerical approach is developed for the mono-hull ships, without restrictions on 3D-hull offset lines non-linearities, and involves three interlinked iterative cycles on floating, pitch and roll trim equilibrium conditions. Besides the ship-wave equilibrium parameters, the ship's girder wave induced loads are obtained. As numerical study case we have considered a large LPG liquefied petroleum gas carrier. The numerical results of the large LPG are compared with the statistical design values from several ships' classification societies’ rules. This study makes possible to obtain the oblique wave conditions that are inducing the maximum loads into the large LPG ship's girder. The numerical results of this study are pointing out that the non-linear iterative approach is necessary for the computation of the extreme loads induced by the oblique waves, ensuring better accuracy of the large LPG ship's longitudinal strength assessment.

  6. The plastic response of Tantalum in Quasi-Isentropic Compression Ramp and Release

    NASA Astrophysics Data System (ADS)

    Moore, Alexander; Brown, Justin; Lim, Hojun; Lane, J. Matthew D.

    2017-06-01

    The mechanical response of various forms of tantalum under extreme pressures and strain rates is studied using dynamic quasi-isentropic compression loading conditions in atomistic simulations. Ramp compression in bcc metals under these conditions tend to show a significant strengthening effect with increasing pressure; however, due to limitations of experimental methods in such regimes, the underlying physics for this phenomenon is not well understood. Molecular dynamics simulations provide important information about the plasticity mechanisms and can be used to investigate this strengthening. MD simulations are performed on nanocrystalline Ta and single crystal defective Ta with dislocations and point defects to uncover how the material responds and the underlying plasticity mechanisms. The different systems of solid Ta are seen to plastically deform through different mechanisms. Fundamental understanding of tantalum plasticity in these high pressure and strain rate regimes is needed to model and fully understand experimental results. Sandia National Labs is a multi program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Mark Harry; Hutsel, Brian Thomas; Jennings, Christopher Ashley

    Recent Magnetized Liner Inertial Fusion experiments at the Sandia National Laboratories Z pulsed power facility have featured a PDV (Photonic Doppler Velocimetry) diagnostic in the final power feed section for measuring load current. In this paper, we report on an anomalous pressure that is detected on this PDV diagnostic very early in time during the current ramp. Early time load currents that are greater than both B-dot upstream current measurements and existing Z machine circuit models by at least 1 MA would be necessary to describe the measured early time velocity of the PDV flyer. This leads us to infermore » that the pressure producing the early time PDV flyer motion cannot be attributed to the magnetic pressure of the load current but rather to an anomalous pressure. Using the MHD code ALEGRA, we are able to compute a time-dependent anomalous pressure function, which when added to the magnetic pressure of the load current, yields simulated flyer velocities that are in excellent agreement with the PDV measurement. As a result, we also provide plausible explanations for what could be the origin of the anomalous pressure.« less

  8. Reconfigurable Resonant Regulating Rectifier With Primary Equalization for Extended Coupling- and Loading-Range in Bio-Implant Wireless Power Transfer.

    PubMed

    Li, Xing; Meng, Xiaodong; Tsui, Chi-Ying; Ki, Wing-Hung

    2015-12-01

    Wireless power transfer using reconfigurable resonant regulating (R(3)) rectification suffers from limited range in accommodating varying coupling and loading conditions. A primary-assisted regulation principle is proposed to mitigate these limitations, of which the amplitude of the rectifier input voltage on the secondary side is regulated by accordingly adjusting the voltage amplitude Veq on the primary side. A novel current-sensing method and calibration scheme track Veq on the primary side. A ramp generator simultaneously provides three clock signals for different modules. Both the primary equalizer and the R(3) rectifier are implemented as custom integrated circuits fabricated in a 0.35 μm CMOS process, with the global control implemented in FPGA. Measurements show that with the primary equalizer, the workable coupling and loading ranges are extended by 250% at 120 mW load and 300% at 1.2 cm coil distance compared to the same system without the primary equalizer. A maximum rectifier efficiency of 92.5% and a total system efficiency of 62.4% are demonstrated.

  9. Development of a Shipboard Remote Control and Telemetry Experimental System for Large-Scale Model’s Motions and Loads Measurement in Realistic Sea Waves

    PubMed Central

    Jiao, Jialong; Ren, Huilong; Adenya, Christiaan Adika; Chen, Chaohe

    2017-01-01

    Wave-induced motion and load responses are important criteria for ship performance evaluation. Physical experiments have long been an indispensable tool in the predictions of ship’s navigation state, speed, motions, accelerations, sectional loads and wave impact pressure. Currently, majority of the experiments are conducted in laboratory tank environment, where the wave environments are different from the realistic sea waves. In this paper, a laboratory tank testing system for ship motions and loads measurement is reviewed and reported first. Then, a novel large-scale model measurement technique is developed based on the laboratory testing foundations to obtain accurate motion and load responses of ships in realistic sea conditions. For this purpose, a suite of advanced remote control and telemetry experimental system was developed in-house to allow for the implementation of large-scale model seakeeping measurement at sea. The experimental system includes a series of technique sensors, e.g., the Global Position System/Inertial Navigation System (GPS/INS) module, course top, optical fiber sensors, strain gauges, pressure sensors and accelerometers. The developed measurement system was tested by field experiments in coastal seas, which indicates that the proposed large-scale model testing scheme is capable and feasible. Meaningful data including ocean environment parameters, ship navigation state, motions and loads were obtained through the sea trial campaign. PMID:29109379

  10. Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor.

    PubMed

    Armour, S L; Foord, S; Kenakin, T; Chen, W J

    1999-12-01

    Receptor-activity-modifying proteins (RAMPs) are a family of single transmembrane domain proteins shown to be important for the transport and ligand specificity of the calcitonin gene-related peptide (CGRP) receptor. In this report, we describe the analysis of pharmacological properties of the human calcitonin receptor (hCTR) coexpressed with different RAMPs with the use of the Xenopus laevis melanophore expression system. We show that coexpression of RAMP3 with human calcitonin receptor changed the relative potency of hCTR to human calcitonin (hCAL) and rat amylin. RAMP1 and RAMP2, in contrast, had little effect on the change of hCTR potency to hCAL or rat amylin. When coexpressed with RAMP3, hCTR reversed the relative potency by a 3.5-fold loss in sensitivity to hCAL and a 19-fold increase in sensitivity to rat amylin. AC66, an inverse agonist, produced apparent simple competitive antagonism of hCAL and rat amylin, as indicated by linear Schild regressions. The potency of AC66 was changed in the blockade of rat amylin but not hCAL responses with RAMP3 coexpression. The mean pK(B) for AC66 to hCAL was 9.4 +/- 0.3 without RAMP3 and 9.45 +/- 0.07 with RAMP3. For the antagonism of AC66 to rat amylin, the pK(B) was 9.25 +/- 0.15 without RAMP3 and 8.2 +/- 0.35 with RAMP3. The finding suggests that RAMP3 might modify the active states of calcitonin receptor in such a way as to create a new receptor phenotype that is "amylin-like." Irrespective of the physiological association of the new receptor species, the finding that a coexpressed membrane protein can completely change agonist and antagonist affinities for a receptor raises implications for screening in recombinant receptor systems.

  11. Plasma Waves Associated with Mass-Loaded Comets

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce; Glassmeier, Karl-Heinz

    2015-01-01

    Plasma waves and instabilities are integrally involved with the plasma "pickup" process and the mass loading of the solar wind (thus the formation of ion tails and the magnetic tails). Anisotropic plasmas generated by solar wind-comet interactions (the bow shock, magnetic field pileup) cause the generation of plasma waves which in turn "smooth out" these discontinuities. The plasma waves evolve and form plasma turbulence. Comets are perhaps the best "laboratories" to study waves and turbulence because over time (and distance) one can identify the waves and their evolution. We will argue that comets in some ways are better laboratories than magnetospheres, interplanetary space and fusion devices to study nonlinear waves and their evolution.

  12. A Waved Journal Bearing Concept-Evaluating Steady-State and Dynamic Performance with a Potential Active Control Alternative

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1993-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. The performance of generic waved bearings having either three or four waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of fluid film stability and dynamic coefficients. It was found that the bearing wave amplitude has an important influence on both the steady-state and the dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases.

  13. On the tsunami wave-submerged breakwater interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filianoti, P.; Piscopo, R.

    The tsunami wave loads on a submerged rigid breakwater are inertial. It is the result arising from the simple calculation method here proposed, and it is confirmed by the comparison with results obtained by other researchers. The method is based on the estimate of the speed drop of the tsunami wave passing over the breakwater. The calculation is rigorous for a sinusoidal wave interacting with a rigid submerged obstacle, in the framework of the linear wave theory. This new approach gives a useful and simple tool for estimating tsunami loads on submerged breakwaters.An unexpected novelty come out from a workedmore » example: assuming the same wave height, storm waves are more dangerous than tsunami waves, for the safety against sliding of submerged breakwaters.« less

  14. Tsunamis generated by long and thin granular landslides in a large flume

    NASA Astrophysics Data System (ADS)

    Miller, Garrett S.; Andy Take, W.; Mulligan, Ryan P.; McDougall, Scott

    2017-01-01

    In this experimental study, granular material is released down slope to investigate landslide-generated waves. Starting with a known volume and initial position of the landslide source, detailed data are obtained on the velocity and thickness of the granular flow, the shape and location of the submarine landslide deposit, the amplitude and shape of the near-field wave, the far-field wave evolution, and the wave runup elevation on a smooth impermeable slope. The experiments are performed on a 6.7 m long 30° slope on which gravity accelerates the landslides into a 2.1 m wide and 33.0 m long wave flume that terminates with a 27° runup ramp. For a fixed landslide volume of 0.34 m3, tests are conducted in a range of still water depths from 0.05 to 0.50 m. Observations from high-speed cameras and measurements from wave probes indicate that the granular landslide moves as a long and thin train of material, and that only a portion of the landslide (termed the "effective mass") is engaged in activating the leading wave. The wave behavior is highly dependent on the water depth relative to the size of the landslide. In deeper water, the near-field wave behaves as a stable solitary-like wave, while in shallower water, the wave behaves as a breaking dissipative bore. Overall, the physical model observations are in good agreement with the results of existing empirical equations when the effective mass is used to predict the maximum near-field wave amplitude, the far-field amplitude, and the runup of tsunamis generated by granular landslides.

  15. Maintenance manager's manual for small transit agencies. Special report 1985-1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, W.

    1988-03-01

    This publication contains information to assist operators of transit agencies providing public transportation in rural and smaller urban areas to better manage their vehicle maintenance programs. The report includes discussions of maintenance management, maintenance programs preventive maintenance, recordkeeping, selection of type of maintenance operation, in-house maintenance, and maintenance practices. Also included are appendixes giving supplementary information about tire loads; lubrication oil; mechanic hand tools; shop tools; mechanic aptitude tests; technical training resources; maintenance management training resources; and lists of manufacturers of air-conditioning systems, wheelchair lifts and wheelchair ramps.

  16. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  17. Detection of an anomalous pressure on a magneto-inertial-fusion load current diagnostic

    DOE PAGES

    Hess, Mark Harry; Hutsel, Brian Thomas; Jennings, Christopher Ashley; ...

    2017-01-30

    Recent Magnetized Liner Inertial Fusion experiments at the Sandia National Laboratories Z pulsed power facility have featured a PDV (Photonic Doppler Velocimetry) diagnostic in the final power feed section for measuring load current. In this paper, we report on an anomalous pressure that is detected on this PDV diagnostic very early in time during the current ramp. Early time load currents that are greater than both B-dot upstream current measurements and existing Z machine circuit models by at least 1 MA would be necessary to describe the measured early time velocity of the PDV flyer. This leads us to infermore » that the pressure producing the early time PDV flyer motion cannot be attributed to the magnetic pressure of the load current but rather to an anomalous pressure. Using the MHD code ALEGRA, we are able to compute a time-dependent anomalous pressure function, which when added to the magnetic pressure of the load current, yields simulated flyer velocities that are in excellent agreement with the PDV measurement. As a result, we also provide plausible explanations for what could be the origin of the anomalous pressure.« less

  18. The effects of shockwave profile shape and shock obliquity on spallation in Cu and Ta: kinetic and stress-state effects on damage evolution(u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George T

    2010-12-14

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure,more » and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.« less

  19. Effectiveness of a multidisciplinary risk assessment and management programme-diabetes mellitus (RAMP-DM) on patient-reported outcomes.

    PubMed

    Wan, Eric Yuk Fai; Fung, Colman Siu Cheung; Wong, Carlos King Ho; Choi, Edmond Pui Hang; Jiao, Fang Fang; Chan, Anca Ka Chun; Chan, Karina Hiu Yen; Lam, Cindy Lo Kuen

    2017-02-01

    Little is known about how the patient-reported outcomes is influenced by multidisciplinary-risk-assessment-and-management-programme for patients with diabetes mellitus (RAMP-DM). This paper aims to evaluate the effectiveness of RAMP-DM on patient-reported outcomes. This was a prospective longitudinal study on 1039 diabetes mellitus patients (714/325 RAMP-DM/non-RAMP-DM) managed in primary care setting. 536 and 402 RAMP-DM participants, and 237 and 187 non-RAMP-DM participants were followed up at 12 and 24 months with completed survey, respectively. Patient-reported outcomes included health-related quality of life, change in global health condition and patient enablement measured by Short Form-12 Health Survey version-2 (SF-12v2), Global Rating Scale, Patient Enablement Instrument respectively. The effects of RAMP-DM on patient-reported outcomes were evaluated by mixed effect models. Subgroup analysis was performed by stratifying haemoglobin A1c (HbA1c) (optimal HbA1c < 7 % and suboptimal HbA1c ≥ 7 %). RAMP-DM with suboptimal HbA1c was associated with greater improvement in SF-12v2 physical component summary score at 12-month (coefficient:3.80; P-value < 0.05) and 24-month (coefficient:3.82;P-value < 0.05), more likely to feel more enabled at 12-month (odds ratio: 2.57; P-value < 0.05), and have improved in GRS at 24-month (odds ratio:4.05; P-value < 0.05) compared to non-RAMP-DM participants. However, there was no significant difference in patient-reported outcomes between RAMP-DM and non-RAMP-DM participants with optimal HbA1c. Participation in RAMP-DM is effective in improving physical component of HRQOL, Global Rating Scale and patient enablement among diabetes mellitus patients with suboptimal HbA1c, but not in those with optimal HbA1c. Patients with sub-optimal diabetes mellitus control should be the priority target population for RAMP-DM. This observational study design may have potential bias in the characteristics between groups, and randomized clinical trial is needed to confirm the results.

  20. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms: INSIGHTS INTO PEPTIDE-BINDING MODES AND ALLOSTERIC MODULATION OF THE CALCITONIN RECEPTOR BY RECEPTOR ACTIVITY-MODIFYING PROTEINS.

    PubMed

    Lee, Sang-Min; Hay, Debbie L; Pioszak, Augen A

    2016-04-15

    Receptor activity-modifying proteins (RAMP1-3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8-37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Time-Dependent Simulations of Fast-Wave Heated High-Non-Inductive-Fraction H-Mode Plasmas in the National Spherical Torus Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, Gary; Bertelli, Nicola; Gerhardt, Stefan P.; Hosea, Joel C.; Mueller, Dennis; Perkins, Rory J.; Poli, Francesca M.; Wilson, James R.; Raman, Roger

    2017-10-01

    30 MHz fast-wave heating may be an effective tool for non-inductively ramping low-current plasmas to a level suitable for initiating up to 12 MW of neutral beam injection on the National Spherical Tokamak Experiment Upgrade (NSTX-U). Previously on NSTX 30 MHz fast wave heating was shown to efficiently and rapidly heat electrons; at the NSTX maximum axial toroidal magnetic field (BT(0)) of 0.55 T, 1.4 MW of 30 MHz heating increased the central electron temperature from 0.2 to 2 keV in 30 ms and generated an H-mode plasma with a non-inductive fraction (fNI) ˜ 0.7 at a plasma current (Ip) of 300 kA. NSTX-U will operate at BT(0) up to 1 T, with up to 4 MW of 30 MHz power (Prf). Predictive TRANSP free boundary transport simulations, using the TORIC full wave spectral code to calculate the fast-wave heating and current drive, have been run for NSTX-U Ip = 300 kA H-mode plasmas. Favorable scaling of fNI with 30 MHz heating power is predicted, with fNI ≥ 1 for Prf ≥ 2 MW.

  2. Static internal performance of single-expansion-ramp nozzles with various combinations of internal geometric parameters

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Leavitt, L. D.

    1984-01-01

    The effects of five geometric design parameters on the internal performance of single-expansion-ramp nozzles were investigated at nozzle pressure ratios up to 10 in the static-test facility of the Langley 16-Foot Transonic Tunnel. The geometric variables on the expansion-ramp surface of the upper flap consisted of ramp chordal angle, ramp length, and initial ramp angle. On the lower flap, the geometric variables consisted of flap angle and flap length. Both internal performance and static-pressure distributions on the centerlines of the upper and lower flaps were obtained for all 43 nozzle configurations tested.

  3. Programmer's guide to the fuzzy logic ramp metering algorithm : software design, integration, testing, and evaluation

    DOT National Transportation Integrated Search

    2000-02-01

    A Fuzzy Logic Ramp Metering Algorithm was implemented on 126 ramps in the greater Seattle area. This report documents the implementation of the Fuzzy Logic Ramp Metering Algorithm at the Northwest District of the Washington State Department of Transp...

  4. Safety and operational performance evaluation of four types of exit ramps on Florida's freeways (final report).

    DOT National Transportation Integrated Search

    2010-12-01

    This project mainly focuses on exit ramp performance analysis of safety and operations. In addition, issues of advance guide sign for exit ramp are also mentioned. : Safety analysis evaluates safety performances of different exit ramps used in Florid...

  5. Magnetic ramp scale at supercritical perpendicular collisionless shocks: Full particle electromagnetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhongwei; SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136; Lu, Quanming

    2013-09-15

    Supercritical perpendicular collisionless shocks are known to exhibit foot, ramp, and overshoot structures. The shock ramp structure is in a smaller scale in contrast to other microstructures (foot and overshoot) within the shock front. One-dimensional full particle simulations of strictly perpendicular shocks over wide ranges of ion beta β{sub i}, Alfvén Mach number M{sub A}, and ion-to-electron mass ratio m{sub i}/m{sub e} are presented to investigate the impact of plasma parameters on the shock ramp scale. Main results are (1) the ramp scale can be as small as several electron inertial length. (2) The simulations suggest that in a regimemore » below the critical ion beta value, the shock front undergoes a periodic self-reformation and the shock ramp scale is time-varying. At higher ion beta values, the shock front self-reformation is smeared. At still higher ion beta value, the motion of reflected ions is quite diffuse so that they can lead to a quasi-steady shock ramp. Throughout the above three conditions, the shock ramp thickness increases with β{sub i}. (3) The increase (decrease) in Mach number and the decrease (increase) in the beta value have almost equivalent impact on the state (i.e., stationary or nonstationary) of the shock ramp. Both of front and ramp thicknesses are increased with M{sub A}.« less

  6. Muscles do more positive than negative work in human locomotion

    PubMed Central

    DeVita, Paul; Helseth, Joseph; Hortobagyi, Tibor

    2008-01-01

    Summary Muscle work during level walking and ascent and descent ramp and stairway walking was assessed in order to explore the proposition that muscles perform more positive than negative work during these locomotion tasks. Thirty four healthy human adults were tested while maintaining a constant average walking velocity in the five gait conditions. Ground reaction force and sagittal plane kinematic data were obtained during the stance phases of these gaits and used in inverse dynamic analyses to calculate joint torques and powers at the hip, knee and ankle. Muscle work was derived as the area under the joint power vs time curves and was partitioned into positive, negative and net components. Dependent t-tests were used to compare positive and negative work in level walking and net joint work between ascent and descent gaits on the ramp and stairs (P<0.010). Total negative and positive work in level walking was −34 J and 50 J, respectively, with the difference in magnitude being statistically significant (P<0.001). Level walking was therefore performed with 16 J of net positive muscle work per step. The magnitude of the net work in ramp ascent was 25% greater than the magnitude of net work in ramp descent (89 vs −71 J m−1, P<0.010). Similarly, the magnitude of the net work in stair ascent was 43% greater than the magnitude of net work in stair descent (107 vs −75 J step−1, P<0.000). We identified three potential causes for the reduced negative vs positive work in these locomotion tasks: (1) the larger magnitude of the accelerations induced by the larger ground reaction forces in descending compared to ascending gaits elicited greater energy dissipation in non-muscular tissues, (2) the ground reaction force vector was directed closer to the joint centers in ramp and stair descent compared to ascent, which reduced the load on the muscular tissues and their energy dissipating response, and (3) despite the need to produce negative muscle work in descending gaits, both ramp and stair descent also had positive muscle work to propel the lower extremity upward and forward into the swing phase movement trajectory. We used these data to formulate two novel hypotheses about human locomotion. First, level walking requires muscles to generate a net positive amount of work per gait cycle to overcome energy losses by other tissues. Second, skeletal muscles generate more mechanical energy in gait tasks that raise the center of mass compared to the mechanical energy they dissipate in gait tasks that lower the center of mass, despite equivalent changes in total mechanical energy. PMID:17872990

  7. Muscles do more positive than negative work in human locomotion.

    PubMed

    DeVita, Paul; Helseth, Joseph; Hortobagyi, Tibor

    2007-10-01

    Muscle work during level walking and ascent and descent ramp and stairway walking was assessed in order to explore the proposition that muscles perform more positive than negative work during these locomotion tasks. Thirty four healthy human adults were tested while maintaining a constant average walking velocity in the five gait conditions. Ground reaction force and sagittal plane kinematic data were obtained during the stance phases of these gaits and used in inverse dynamic analyses to calculate joint torques and powers at the hip, knee and ankle. Muscle work was derived as the area under the joint power vs time curves and was partitioned into positive, negative and net components. Dependent t-tests were used to compare positive and negative work in level walking and net joint work between ascent and descent gaits on the ramp and stairs (P<0.010). Total negative and positive work in level walking was -34 J and 50 J, respectively, with the difference in magnitude being statistically significant (P<0.001). Level walking was therefore performed with 16 J of net positive muscle work per step. The magnitude of the net work in ramp ascent was 25% greater than the magnitude of net work in ramp descent (89 vs -71 J m(-1), P<0.010). Similarly, the magnitude of the net work in stair ascent was 43% greater than the magnitude of net work in stair descent (107 vs -75 J step(-1), P<0.000). We identified three potential causes for the reduced negative vs positive work in these locomotion tasks: (1) the larger magnitude of the accelerations induced by the larger ground reaction forces in descending compared to ascending gaits elicited greater energy dissipation in non-muscular tissues, (2) the ground reaction force vector was directed closer to the joint centers in ramp and stair descent compared to ascent, which reduced the load on the muscular tissues and their energy dissipating response, and (3) despite the need to produce negative muscle work in descending gaits, both ramp and stair descent also had positive muscle work to propel the lower extremity upward and forward into the swing phase movement trajectory. We used these data to formulate two novel hypotheses about human locomotion. First, level walking requires muscles to generate a net positive amount of work per gait cycle to overcome energy losses by other tissues. Second, skeletal muscles generate more mechanical energy in gait tasks that raise the center of mass compared to the mechanical energy they dissipate in gait tasks that lower the center of mass, despite equivalent changes in total mechanical energy.

  8. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  9. Microstructurally based variations on the dwell fatgue life of titanium alloy IMI 834

    NASA Technical Reports Server (NTRS)

    Thomsen, Mark L.; Hoeppner, David W.

    1994-01-01

    An experimental study was undertaken to determine the role of microstructure on the fatigue life reduction observed in titanium alloy IMI 834 under dwell loading conditions. The wave forms compared were a trapezoid with 15 and 30 second hold times at the maximum test load and a baseline, 10 Hertz, haversine. The stress ratio for both loading wave forms was 0.10. The fatigue loading of each specimen was conducted in a vacuum within a scanning electron microscope chamber which minimized the possibility that the laboratory environment would adversely affect the material behavior. Two microstructural conditions were investigated in the experimental program. The first involved standard 'disk' material with equiaxed alpha in a transformed beta matrix. The second material was cut from the same disk forging as the first but was heat treated to obtain a martensitic alpha prime microstructure. Tensile tests were performed prior to the onset of the fatigue loading portion of the study, and it was determined that the yield strengths of the specimens from both material conditions were within ten percent. The maximum fatigue loads were chosen to be 72 percent of the average yield strength for both materials as determined from the tensile tests. It was found that the cycles to failure from the 10 Hertz loading wave form were reduced by a factor of approximately five when the loading was changed to the trapezoidal wave form for the standard 'disk' material. The fatigue life reduction for the martensitic structure under identical test conditions was approximately 1.75. The improvement observed with the martensitic structure also was accompanied by an increase in overall fatigue life for the wave forms tested. This paper will review the results and conclusions of this effort.

  10. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Following the completion of the third test phase of the applicable ramped modal cycle, conduct the post... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped modal... locomotive notch settings. Ramped modal cycles combine multiple test modes of a discrete-mode steady-state...

  11. 3. Ramp No. 6 connection between Medical Detachment Barracks: Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Ramp No. 6 connection between Medical Detachment Barracks: Building Nos. 9970-B (left) and 9969-B (right). The many windows makes this section almost unique among the ramps and corridors. - Madigan Hospital, Corridors & Ramps, Bounded by Wilson & McKinley Avenues & Garfield & Lincoln Streets, Tacoma, Pierce County, WA

  12. An Extended IEEE 118-Bus Test System With High Renewable Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, Ivonne; Martinez-Anido, Carlo Brancucci; Hodge, Bri-Mathias

    This article describes a new publicly available version of the IEEE 118-bus test system, named NREL-118. The database is based on the transmission representation (buses and lines) of the IEEE 118-bus test system, with a reconfigured generation representation using three regions of the US Western Interconnection from the latest Western Electricity Coordination Council (WECC) 2024 Common Case [1]. Time-synchronous hourly load, wind, and solar time series are provided for over one year (8784 hours). The public database presented and described in this manuscript will allow researchers to model a test power system using detailed transmission, generation, load, wind, and solarmore » data. This database includes key additional features that add to the current IEEE 118-bus test model, such as: the inclusion of 10 generation technologies with different heat rate functions, minimum stable levels and ramping rates, GHG emissions rates, regulation and contingency reserves, and hourly time series data for one full year for load, wind and solar generation.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueydon, Sebastien; Jonkman, Jason

    In comparison to other kinds of floaters (like a spar or a semisubmersible), the tension leg platform has several notable advantages: its vertical motions are negligible, its weight is lighter, and its mooring system's footprint is smaller. Although a tension leg platform has a negligible response to first-order vertical wave loads, the second-order wave loads need to be addressed. This paper follows up on a verification study of second-order wave loads on a tension leg platform for wind turbines done by the Maritime Research Institute of The Netherlands and National Renewable Energy Laboratory and it brings some corrections to itsmore » conclusions.« less

  14. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    NASA Astrophysics Data System (ADS)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  15. Effect of Shock Waves on Dielectric Properties of KDP Crystal

    NASA Astrophysics Data System (ADS)

    Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.

    2018-05-01

    An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.

  16. Differentially-charged and sequentially-switched square-wave pulse forming network

    DOEpatents

    North, George G. [Stockton, CA; Vogilin, George E. [Livermore, CA

    1980-04-01

    A pulse forming network for delivering a high-energy square-wave pulse to a load, including a series of inductive-capacitive sections wherein the capacitors are differentially charged higher further from the load. Each charged capacitor is isolated from adjacent sections and the load by means of a normally open switch at the output of each section. The switch between the load and the closest section to the load is closed to begin discharge of the capacitor in that section into the load. During discharge of each capacitor, the voltage thereacross falls to a predetermined potential with respect to the potential across the capacitor in the next adjacent section further from the load. When this potential is reached, it is used to close the switch in the adjacent section further from the load and thereby apply the charge in that section to the load through the adjacent section toward the load. Each successive section further from the load is sequentially switched in this manner to continuously and evenly supply energy to the load over the period of the pulse, with the differentially charged capacitors providing higher potentials away from the load to compensate for the voltage drop across the resistance of each inductor. This arrangement is low in cost and yet provides a high-energy pulse in an acceptable square-wave form.

  17. Differentially-charged and sequentially-switched square-wave pulse forming network

    DOEpatents

    North, G.G.; Vogilin, G.E.

    1980-04-01

    Disclosed is a pulse forming network for delivering a high-energy square-wave pulse to a load, including a series of inductive-capacitive sections wherein the capacitors are differentially charged higher further from the load. Each charged capacitor is isolated from adjacent sections and the load by means of a normally open switch at the output of each section. The switch between the load and the closest section to the load is closed to begin discharge of the capacitor in that section into the load. During discharge of each capacitor, the voltage thereacross falls to a predetermined potential with respect to the potential across the capacitor in the next adjacent section further from the load. When this potential is reached, it is used to close the switch in the adjacent section further from the load and thereby apply the charge in that section to the load through the adjacent section toward the load. Each successive section further from the load is sequentially switched in this manner to continuously and evenly supply energy to the load over the period of the pulse, with the differentially charged capacitors providing higher potentials away from the load to compensate for the voltage drop across the resistance of each inductor. This arrangement is low in cost and yet provides a high-energy pulse in an acceptable square-wave form. 5 figs.

  18. Vehicle operation characteristic under different ramp entrance conditions in underground road: Analysis, simulation and modelling

    NASA Astrophysics Data System (ADS)

    Yao, Qiming; Liu, Shuo; Liu, Yang

    2018-05-01

    An experimental design was used to study the vehicle operation characteristics of different ramp entrance conditions in underground road. With driving simulator, the experimental scenarios include left or right ramp with first, second and third service level, respectively, to collect vehicle speed, acceleration, lateral displacement and location information at the ramp entrance section. By using paired t-test and ANOVA, the influence factors of vehicle operating characteristics are studied. The result shows that effects of ramp layout and mainline traffic environment on vehicle operation characteristics are significant. The regression model of vehicle traveling distance on acceleration lane is established. Suggestions are made for ramp entrance design of underground road.

  19. Fabrication of interface-modified ramp-edge junction on YBCO ground plane with multilayer structure

    NASA Astrophysics Data System (ADS)

    Wakana, H.; Adachi, S.; Kamitani, A.; Sugiyama, H.; Sugano, T.; Horibe, M.; Ishimaru, Y.; Tarutani, Y.; Tanabe, K.

    2003-10-01

    We examined the fabrication conditions to obtain high-quality ramp-edge Josephson junctions on a liquid-phase-epitaxy YBa 2Cu 3O y (LPE-YBCO) ground plane, in particular, focusing on the fabrication of a suitable insulating layer on the ground plane and the post-annealing conditions to load oxygen to the ground plane. A (LaAlO 3) 0.3-(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) insulating film on the ground planes exhibited a conductance ranging from 10 -4 to 10 -8 S after deposition of an upper superconducting film, suggesting existence of some leak paths through the LSAT insulating layer. By introducing approximately 30 nm thick SrTiO 3 (STO) buffer layers on both side of the LSAT insulating layer. We reproducibly obtained a conductance lower than 10 -8 S. The dielectric constant of the STO/LSAT/STO layer was 32, which was slightly larger than that of the single LSAT layer. It was found that a very slow cooling rate of 1.0 °C/h in oxygen was needed to fully oxidize the ground plane through the STO/LSAT/STO insulating layers, while the oxidation time could be effectively reduced by introducing via holes in the insulating layer at an interval of 200 μm. Ramp-edge junctions on LPE-YBCO ground planes with STO/LSAT/STO insulating layers exhibited a 1 σ-spread in Ic of 8% for 100-junction series-arrays and a sheet inductance of 0.7 pH/□ at 4.2 K.

  20. Response spectrum method for extreme wave loading with higher order components of drag force

    NASA Astrophysics Data System (ADS)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Ali, Dastan Diznab Mohammad; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-03-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  1. Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Gnyusov, S. F.; Rotshtein, V. P.; Polevin, S. D.; Kitsanov, S. A.

    2011-03-01

    Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s-1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer.

  2. Development and evaluation of RAMP I - a practitioner's tool for screening of musculoskeletal disorder risk factors in manual handling.

    PubMed

    Lind, Carl Mikael; Forsman, Mikael; Rose, Linda Maria

    2017-10-16

    RAMP I is a screening tool developed to support practitioners in screening for work-related musculoskeletal disorder risk factors related to manual handling. RAMP I, which is part of the RAMP tool, is based on research-based studies combined with expert group judgments. More than 80 practitioners participated in the development of RAMP I. The tool consists of dichotomous assessment items grouped into seven categories. Acceptable reliability was found for a majority of the assessment items for 15 practitioners who were given 1 h of training. The usability evaluation points to RAMP I being usable for screening for musculoskeletal disorder risk factors, i.e., usable for assessing risks, being usable as a decision base, having clear results and that the time needed for an assessment is acceptable. It is concluded that RAMP I is a usable tool for practitioners.

  3. Effects of ramp reset pulses on the address discharge in a shadow mask plasma display panel

    NASA Astrophysics Data System (ADS)

    Yang, Lanlan; Tu, Yan; Zhang, Xiong; Jiang, Youyan; Zhang, Jian; Wang, Baoping

    2007-05-01

    A two-dimensional self-consistent numerical simulation model is used to analyse the effects of the ramp reset pulses on the address discharge in a shadow mask plasma display panel (SM-PDP). Some basic parameters such as the slope of the ramp pulse and the terminal voltage of the ramp reset period are varied to investigate their effects. The simulation results illustrate that the wall voltage is mainly decided by the terminal voltage and the firing voltage at the end of the ramp reset period. Moreover, the variation of the ramp slope will also bring a few modifications to the wall voltage. The priming particles in the beginning of the addressing period are related to the slope of the ramping down voltage pulse. The simulation results can help us optimize the driving scheme of the SM-PDP.

  4. A microfluidic separation platform using an array of slanted ramps

    NASA Astrophysics Data System (ADS)

    Risbud, Sumedh; Bernate, Jorge; Drazer, German

    2013-03-01

    The separation of the different components of a sample is a crucial step in many micro- and nano-fluidic applications, including the detection of infections, the capture of circulating tumor cells, the isolation of proteins, RNA and DNA, to mention but a few. Vector chromatography, in which different species migrate in different directions in a planar microfluidic device thus achieving spatial as well as temporal resolution, offers the promise of high selectivity along with high throughput. In this work, we present a microfluidic vector chromatography platform consisting of slanted ramps in a microfluidic channel for the separation of suspended particles. We construct these ramps using inclined UV lithography, such that the inclined portion of the ramps is upstream. We show that particles of different size displace laterally to a different extent when driven by a flow field over a slanted ramp. The flow close to the ramp reorients along the ramp, causing the size-dependent deflection of the particles. The cumulative effect of an array of these ramps would cause particles of different size to migrate in different directions, thus allowing their passive and continuous separation.

  5. Modeling effectiveness of gradual increases in source level to mitigate effects of sonar on marine mammals.

    PubMed

    Von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2014-02-01

    Ramp-up or soft-start procedures (i.e., gradual increase in the source level) are used to mitigate the effect of sonar sound on marine mammals, although no one to date has tested whether ramp-up procedures are effective at reducing the effect of sound on marine mammals. We investigated the effectiveness of ramp-up procedures in reducing the area within which changes in hearing thresholds can occur. We modeled the level of sound killer whales (Orcinus orca) were exposed to from a generic sonar operation preceded by different ramp-up schemes. In our model, ramp-up procedures reduced the risk of killer whales receiving sounds of sufficient intensity to affect their hearing. The effectiveness of the ramp-up procedure depended strongly on the assumed response threshold and differed with ramp-up duration, although extending the duration of the ramp up beyond 5 min did not add much to its predicted mitigating effect. The main factors that limited effectiveness of ramp up in a typical antisubmarine warfare scenario were high source level, rapid moving sonar source, and long silences between consecutive sonar transmissions. Our exposure modeling approach can be used to evaluate and optimize mitigation procedures. © 2013 Society for Conservation Biology.

  6. The influence of heavy vehicles on traffic dynamics around on-ramp system: Cellular automata approach

    NASA Astrophysics Data System (ADS)

    Kong, Dewen; Guo, Xiucheng; Wu, Dingxin

    Although the on-ramp system has been widely studied, the influence of heavy vehicles is unknown because researchers only investigate the traffic dynamics around on-ramp system under homogeneous traffic conditions, which is different in real-world settings. This paper uses an improved cellular automaton model to study the heterogeneous traffic around on-ramp system. The forward motion rules are improved by considering the differences of driving behavior in different vehicle combinations. The lane change rules are improved by reflecting the aggressive behavior in mandatory lane changes. The phase diagram, traffic flow, capacity and spatial-temporal diagram are analyzed under the influences of heavy vehicles. The results show that by increasing the percentage of heavy vehicles, there will be more severe traffic congestion around on-ramp system, lower saturated flow and capacity. Also, the interactions between main road and on-ramp have been investigated. Increasing the percentage of heavy vehicles at the upstream of the conflict area on the main road or restricting heavy vehicles on the outside lane of the main road will deteriorate the performance of on-ramp. While the main road will have better performance as the percentage of heavy vehicles on the on-ramp increases when the on-ramp inflow rate is not low.

  7. Successful lyophilization by adopting a fast ramp rate during primary drying in protein formulations.

    PubMed

    Ohori, Ryo; Akita, Tomomi; Yamashita, Chikamasa

    2018-06-15

    In the lyophilization process for injections, the shelf temperature (T s ) and chamber pressure (P c ) have mainly been investigated to optimize the primary drying process. The objective of this study was to show that lyophilization of protein formulations can be achieved by adopting a fast ramp rate of T s in the beginning of the primary drying process. Bovine serum albumin was used as the model protein, and seven different lyophilized formulations obtained were stored at elevated temperature. We found that although acceptable cake appearance was confirmed by the fast ramp cycle, all formulations of lyophilized cakes obtained by the slow ramp cycle severely collapsed (macrocollapse). It is thought that the collapse in the slow ramp cycle occurred during the shelf ramp in the beginning of primary drying and that insufficient removal of water from the dried matrix caused viscous flow (product collapse). Regarding storage stability, moisture-induced degradation was confirmed in some of the formulations prepared by the slow ramp cycle, whereas all lyophilized BSA formulations prepared by the fast ramp cycle were stable. Thus, the results indicate that the ramp rate appears to be one of the critical operational parameters required to establish a successful lyophilization cycle. Copyright © 2018. Published by Elsevier B.V.

  8. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine

    DOE PAGES

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.; ...

    2017-10-01

    This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems through the comparison of simulated responses of select system designs to physical test data. Validation activities such as these lead to improvement of offshore wind modeling tools, which will enable the development of more innovative and cost-effective offshore wind designs. For Phase II of the project, numerical models of the DeepCwind floating semisubmersible wind system weremore » validated using measurement data from a 1/50th-scale validation campaign performed at the Maritime Research Institute Netherlands offshore wave basin. Validation of the models was performed by comparing the calculated ultimate and fatigue loads for eight different wave-only and combined wind/wave test cases against the measured data, after calibration was performed using free-decay, wind-only, and wave-only tests. The results show a decent estimation of both the ultimate and fatigue loads for the simulated results, but with a fairly consistent underestimation in the tower and upwind mooring line loads that can be attributed to an underestimation of wave-excitation forces outside the linear wave-excitation region, and the presence of broadband frequency excitation in the experimental measurements from wind. Participant results showed varied agreement with the experimental measurements based on the modeling approach used. Modeling attributes that enabled better agreement included: the use of a dynamic mooring model; wave stretching, or some other hydrodynamic modeling approach that excites frequencies outside the linear wave region; nonlinear wave kinematics models; and unsteady aerodynamics models. Also, it was observed that a Morison-only hydrodynamic modeling approach could create excessive pitch excitation and resulting tower loads in some frequency bands.« less

  9. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.

    This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems through the comparison of simulated responses of select system designs to physical test data. Validation activities such as these lead to improvement of offshore wind modeling tools, which will enable the development of more innovative and cost-effective offshore wind designs. For Phase II of the project, numerical models of the DeepCwind floating semisubmersible wind system weremore » validated using measurement data from a 1/50th-scale validation campaign performed at the Maritime Research Institute Netherlands offshore wave basin. Validation of the models was performed by comparing the calculated ultimate and fatigue loads for eight different wave-only and combined wind/wave test cases against the measured data, after calibration was performed using free-decay, wind-only, and wave-only tests. The results show a decent estimation of both the ultimate and fatigue loads for the simulated results, but with a fairly consistent underestimation in the tower and upwind mooring line loads that can be attributed to an underestimation of wave-excitation forces outside the linear wave-excitation region, and the presence of broadband frequency excitation in the experimental measurements from wind. Participant results showed varied agreement with the experimental measurements based on the modeling approach used. Modeling attributes that enabled better agreement included: the use of a dynamic mooring model; wave stretching, or some other hydrodynamic modeling approach that excites frequencies outside the linear wave region; nonlinear wave kinematics models; and unsteady aerodynamics models. Also, it was observed that a Morison-only hydrodynamic modeling approach could create excessive pitch excitation and resulting tower loads in some frequency bands.« less

  10. Performance of Optimization Heuristics for the Operational Planning of Multi-energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Haas, J.; Schradi, J.; Nowak, W.

    2016-12-01

    In the transition to low-carbon energy sources, energy storage systems (ESS) will play an increasingly important role. Particularly in the context of solar power challenges (variability, uncertainty), ESS can provide valuable services: energy shifting, ramping, robustness against forecast errors, frequency support, etc. However, these qualities are rarely modelled in the operational planning of power systems because of the involved computational burden, especially when multiple ESS technologies are involved. This work assesses two optimization heuristics for speeding up the optimal operation problem. It compares their accuracy (in terms of costs) and speed against a reference solution. The first heuristic (H1) is based on a merit order. Here, the ESS are sorted from lower to higher operational costs (including cycling costs). For each time step, the cheapest available ESS is used first, followed by the second one and so on, until matching the net load (demand minus available renewable generation). The second heuristic (H2) uses the Fourier transform to detect the main frequencies that compose the net load. A specific ESS is assigned to each frequency range, aiming to smoothen the net load. Finally, the reference solution is obtained with a mixed integer linear program (MILP). H1, H2 and MILP are subject to technical constraints (energy/power balance, ramping rates, on/off states...). Costs due to operation, replacement (cycling) and unserved energy are considered. Four typical days of a system with a high share of solar energy were used in several test cases, varying the resolution from one second to fifteen minutes. H1 and H2 achieve accuracies of about 90% and 95% in average, and speed-up times of two to three and one to two orders of magnitude, respectively. The use of the heuristics looks promising in the context of planning the expansion of power systems, especially when their loss of accuracy is outweighed by solar or wind forecast errors.

  11. Cavity mode enhancement of terahertz emission from equilateral triangular microstrip antennas of the high-Tc superconductor Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Doty, Constance; Cerkoney, Daniel; Gramajo, Ashley; Campbell, Tyler; Reid, Candy; Morales, Manuel; Delfanazari, Kaveh; Yamamoto, Takashi; Tsujimoto, Manabu; Kashiwagi, Takanari; Watanabe, Chiharu; Minami, Hidetoshi; Kadowaki, Kazuo; Klemm, Richard

    We study the transverse magnetic (TM) electromagnetic cavity mode wave functions for an ideal equilateral triangular microstrip antenna exhibiting C3v point group symmetry, which restricts the number of TM(n,m) modes to | m - n | = 3 p , where the integer p > 0 for the modes odd and even about the three mirror planes, but p = 0 can also exist for the even modes. We calculate the wave functions and the power distribution forms from the uniform Josephson current source and from the excitation of one of these cavity modes, and fit data on an early equilateral triangular Bi2Sr2CaCu2O8+δ mesa, for which the C3v symmetry was apparently broken. Work supported in part by the UCF RAMP, JSPS Fellowship, CREST-JST, and WPI-MANA.

  12. Electron Bernstein Wave Research on NSTX and CDX-U

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Efthimion, P. C.; Jones, B.; Bell, G. L.; Bers, A.; Bigelow, T. S.; Carter, M. D.; Harvey, R. W.; Ram, A. K.; Rasmussen, D. A.; Smirnov, A. P.; Wilgen, J. B.; Wilson, J. R.

    2003-12-01

    Studies of thermally emitted electron Bernstein waves (EBWs) on CDX-U and NSTX, via mode conversion (MC) to electromagnetic radiation, support the use of EBWs to measure the Te profile and provide local electron heating and current drive (CD) in overdense spherical torus plasmas. An X-mode antenna with radially adjustable limiters successfully controlled EBW MC on CDX-U and enhanced MC efficiency to ˜ 100%. So far the X-mode MC efficiency on NSTX has been increased by a similar technique to 40-50% and future experiments are focused on achieving ⩾ 80% MC. MC efficiencies on both machines agree well with theoretical predictions. Ray tracing and Fokker-Planck modeling for NSTX equilibria are being conducted to support the design of a 3 MW, 15 GHz EBW heating and CD system for NSTX to assist non-inductive plasma startup, current ramp up, and to provide local electron heating and CD in high β NSTX plasmas.

  13. Spinning Reserve From Hotel Load Response: Initial Progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueck, John D; Kirby, Brendan J

    2008-11-01

    This project was motivated by the fundamental match between hotel space conditioning load response capability and power system contingency response needs. As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. At ORNL s suggestion, Digital Solutions Inc. adapted its hotel air conditioning control technology to supply power system spinning reserve. This energy saving technology is primarily designed to provide the hotel operator with the ability to control individual room temperature set-points based upon occupancy (25% to 50% energy savings based on an earlier study [Kirby andmore » Ally, 2002]). DSI added instantaneous local load shedding capability in response to power system frequency and centrally dispatched load shedding capability in response to power system operator command. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host the spinning reserve test. The Tennessee Valley Authority supplied real-time metering equipment in the form of an internet connected Dranetz-BMI power quality meter and monitoring expertise to record total hotel load during both normal operations and test results. The Sevier County Electric System installed the metering. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. These results are prior to implementing control over the common area air conditioning loads. Testing was also not at times of highest system or hotel loading. Full response occurred in 12 to 60 seconds from when the system operator s command to shed load was issued. The load drop was very rapid, essentially as fast as the 2 second metering could detect, with all units responding essentially simultaneously. Load restoration was ramped back in over several minutes. The restoration ramp can be adjusted to the power system needs. Frequency response testing was not completed. Initial testing showed that the units respond very quickly. Problems with local power quality generated false low frequency signals which required testing to be stopped. This should not be a problem in actual operation since the frequency trip points will be staggered to generate a droop curve which mimics generator governor response. The actual trip frequencies will also be low enough to avoid power quality problems. The actual trip frequencies are too low to generate test events with sufficient regularity to complete testing in a reasonable amount of time. Frequency response testing will resume once the local power quality problem is fully understood and reasonable test frequency settings can be determined. Overall the preliminary testing was extremely successful. The hotel response capability matches the power system reliability need, being faster than generation response and inherently available when the power system is under the most stress (times of high system and hotel load). Periodic testing is scheduled throughout the winter and spring to characterize hotel response capability under a full range of conditions. More extensive testing will resume when summer outdoor temperatures are again high enough to fully test hotel response.« less

  14. Dynamic characteristics and simplified numerical methods of an all-vertical-piled wharf in offshore deep water

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-qing; Sun, Xi-ping; Wang, Yuan-zhan; Yin, Ji-long; Wang, Chao-yang

    2015-10-01

    There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.

  15. Green's function and Bloch theory for the analysis of the dynamic response of a periodically supported beam to a moving load

    NASA Astrophysics Data System (ADS)

    Lassoued, R.; Lecheheb, M.; Bonnet, G.

    2012-08-01

    This paper describes an analytical method for the wave field induced by a moving load on a periodically supported beam. The Green's function for an Euler beam without support is evaluated by using the direct integration. Afterwards, it introduces the supports into the model established by using the superposition principle which states that the response from all the sleeper points and from the external point force add up linearly to give a total response. The periodicity of the supports is described by Bloch's theorem. The homogeneous system thus obtained represents a linear differential equation which governs rail response. It is initially solved in the homogeneous case, and it admits a no null solution if its determinant is null, this permits the establishment the dispersion equation to Bloch waves and wave bands. The Bloch waves and dispersion curves contain all the physics of the dynamic problem and the wave field induced by a dynamic load applied to the system is finally obtained by decomposition into Bloch waves, similarly to the usual decomposition into dynamic modes on a finite structure. The method is applied to obtain the field induced by a load moving at constant velocity on a thin beam supported by periodic elastic supports.

  16. Highly Efficient Design-of-Experiments Methods for Combining CFD Analysis and Experimental Data

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Haller, Harold S.

    2009-01-01

    It is the purpose of this study to examine the impact of "highly efficient" Design-of-Experiments (DOE) methods for combining sets of CFD generated analysis data with smaller sets of Experimental test data in order to accurately predict performance results where experimental test data were not obtained. The study examines the impact of micro-ramp flow control on the shock wave boundary layer (SWBL) interaction where a complete paired set of data exist from both CFD analysis and Experimental measurements By combining the complete set of CFD analysis data composed of fifteen (15) cases with a smaller subset of experimental test data containing four/five (4/5) cases, compound data sets (CFD/EXP) were generated which allows the prediction of the complete set of Experimental results No statistical difference were found to exist between the combined (CFD/EXP) generated data sets and the complete Experimental data set composed of fifteen (15) cases. The same optimal micro-ramp configuration was obtained using the (CFD/EXP) generated data as obtained with the complete set of Experimental data, and the DOE response surfaces generated by the two data sets were also not statistically different.

  17. Focused and Steady-State Characteristics of Shaped Sonic Boom Signatures: Prediction and Analysis

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Bobbitt, Percy J.; Massey, Steven J.; Plotkin, Kenneth J.; Kandil, Osama A.; Zheng, Xudong

    2011-01-01

    The objective of this study is to examine the effect of flight, at off-design conditions, on the propagated sonic boom pressure signatures of a small "low-boom" supersonic aircraft. The amplification, or focusing, of the low magnitude "shaped" signatures produced by maneuvers such as the accelerations from transonic to supersonic speeds, climbs, turns, pull-up and pushovers is the concern. To analyze these effects, new and/or improved theoretical tools have been developed, in addition to the use of existing methodology. Several shaped signatures are considered in the application of these tools to the study of selected maneuvers and off-design conditions. The results of these applications are reported in this paper as well as the details of the new analytical tools. Finally, the magnitude of the focused boom problem for "low boom" supersonic aircraft designs has been more accurately quantified and potential "mitigations" suggested. In general, "shaped boom" signatures, designed for cruise flight, such as asymmetric and symmetric flat-top and initial-shock ramp waveforms retain their basic shape during transition flight. Complex and asymmetric and symmetric initial shock ramp waveforms provide lower magnitude focus boom levels than N-waves or asymmetric and symmetric flat-top signatures.

  18. Allostatic Load and Health in the Older Population of England: A Crossed-Lagged Analysis

    PubMed Central

    Read, Sanna; Grundy, Emily

    2014-01-01

    Objective Allostatic load, a composite measure of accumulated physical wear and tear, has been proposed as an early sign of physiological dysregulation predictive of health problems, functional limitation, and disability. However, much previous research has been cross sectional and few studies consider repeated measures. We investigate the directionality of associations between allostatic load, self-rated health, and a measure of physical function (walking speed). Methods The sample included men and women 60 and older who participated in Wave 2 (2004) and Wave 4 (2008) of the English Longitudinal Study of Ageing (n = 6132 in Wave 2). Allostatic load was measured with nine biomarkers using a multisystem summary approach. Self-rated health was measured using a global 5 point summary indicator. Time to walk 8 ft was used as a measure of function. We fitted and tested autoregressive cross-lagged models between the allostatic load measure, self-rated health, and walking speed in Waves 2 and 4. Models were adjusted for age, sex, educational level, and smoking status at Wave 2 and for time-varying indicators of marital status, wealth, physical activity, and social support. Results Allostatic load predicted slower walking speed (standardized estimate = −0.08, 95% confidence interval [CI] = −0.10 to −0.05). Better self-rated health predicted faster walking speed (standardized estimate = 0.11, 95% CI = 0.08-0.13) as well as lower allostatic load (standardized estimate = −0.15, 95% CI = −0.22 to −0.09), whereas paths from allostatic load and walking speed to self-rated health were weaker (standardized estimates = −0.05 [95% CI = −0.07 to −0.02] and 0.06 [95% CI = 0.04–0.08]). Conclusions Allostatic load can be a useful risk indicator of subsequent poor health or function. PMID:25153937

  19. Structural Changes in Alloys of the Al-Cu-Mg System Under Ion Bombardment and Shock-Wave Loading

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, V. V.; Gushchina, N. V.; Romanov, I. Yu.; Kaigorodova, L. I.; Grigor'ev, A. N.; Pavlenko, A. V.; Plokhoi, V. V.

    2017-02-01

    To confirm the hypothesis on the shock-wave nature of long-range effects upon corpuscular irradiation of condensed media presumably caused by emission and propagation of post-cascade shock waves, comparative experiments on ion beam modification and mechanical shock-wave loading of specimens of VD1 and D16 alloys of the Al-Cu-Mg system are performed. Direct analogy between the processes of microstructural change of cold-deformed VD1 and D16 alloys under mechanical shock loading and irradiation by beams of accelerated Ar+ ions (E = 20-40 keV) with low fluences (1015-1016 cm-2) is established. This demonstrates the important role of the dynamic long-range effects that have not yet been considered in classical radiation physics of solids.

  20. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants.

    PubMed

    Zhan, Yu; Liu, Changsheng; Zhang, Fengpeng; Qiu, Zhaoguo

    2016-07-01

    The laser ultrasonic generation of Rayleigh surface wave and longitudinal wave in an elastic plate is studied by experiment and finite element method. In order to eliminate the measurement error and the time delay of the experimental system, the linear fitting method of experimental data is applied. The finite element analysis software ABAQUS is used to simulate the propagation of Rayleigh surface wave and longitudinal wave caused by laser excitation on a sheet metal sample surface. The equivalent load method is proposed and applied. The pulsed laser is equivalent to the surface load in time and space domain to meet the Gaussian profile. The relationship between the physical parameters of the laser and the load is established by the correction factor. The numerical solution is in good agreement with the experimental result. The simple and effective numerical and experimental methods for laser ultrasonic measurement of the elastic constants are demonstrated. Copyright © 2016. Published by Elsevier B.V.

  1. Comparison of two parametric methods to estimate pesticide mass loads in California's Central Valley

    USGS Publications Warehouse

    Saleh, Dina K.; Lorenz, David L.; Domagalski, Joseph L.

    2011-01-01

    Mass loadings were calculated for four pesticides in two watersheds with different land uses in the Central Valley, California, by using two parametric models: (1) the Seasonal Wave model (SeaWave), in which a pulse signal is used to describe the annual cycle of pesticide occurrence in a stream, and (2) the Sine Wave model, in which first-order Fourier series sine and cosine terms are used to simulate seasonal mass loading patterns. The models were applied to data collected during water years 1997 through 2005. The pesticides modeled were carbaryl, diazinon, metolachlor, and molinate. Results from the two models show that the ability to capture seasonal variations in pesticide concentrations was affected by pesticide use patterns and the methods by which pesticides are transported to streams. Estimated seasonal loads compared well with results from previous studies for both models. Loads estimated by the two models did not differ significantly from each other, with the exceptions of carbaryl and molinate during the precipitation season, where loads were affected by application patterns and rainfall. However, in watersheds with variable and intermittent pesticide applications, the SeaWave model is more suitable for use on the basis of its robust capability of describing seasonal variation of pesticide concentrations.

  2. Theoretical, Experimental, and Computational Evaluation of Disk-Loaded Circular Wave Guides

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.; Qureshi, A. Haq

    1994-01-01

    A disk-loaded circular wave guide structure and test fixture were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the codes ARGUS and SOS. Interaction impedances were computed based on the corresponding dispersion characteristics. Finally, an equivalent circuit model for one period of the structure was chosen using equivalent circuit models for cylindrical wave guides of different radii. Optimum values for the discrete capacitors and inductors describing discontinuities between cylindrical wave guides were found using the computer code TOUCHSTONE.

  3. Evaluation of WRF-Predicted Near-Hub-Height Winds and Ramp Events over a Pacific Northwest Site with Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing; Berg, Larry K.; Pekour, Mikhail

    The WRF model version 3.3 is used to simulate near hub-height winds and power ramps utilizing three commonly used planetary boundary-layer (PBL) schemes: Mellor-Yamada-Janjic (MYJ), University of Washington (UW), and Yonsei University (YSU). The predicted winds have small mean biases compared with observations. Power ramps and step changes (changes within an hour) consistently show that the UW scheme performed better in predicting up ramps under stable conditions with higher prediction accuracy and capture rates. Both YSU and UW scheme show good performance predicting up- and down- ramps under unstable conditions with YSU being slightly better for ramp durations longer thanmore » an hour. MYJ is the most successful simulating down-ramps under stable conditions. The high wind speed and large shear associated with low-level jets are frequently associated with power ramps, and the biases in predicted low-level jet explain some of the shown differences in ramp predictions among different PBL schemes. Low-level jets were observed as low as ~200 m in altitude over the Columbia Basin Wind Energy Study (CBWES) site, located in an area of complex terrain. The shear, low-level peak wind speeds, as well as the height of maximum wind speed are not well predicted. Model simulations with 3 PBL schemes show the largest variability among them under stable conditions.« less

  4. Comprehensive School Counseling Programs and Student Achievement Outcomes: A Comparative Analysis of Ramp versus Non-Ramp Schools

    ERIC Educational Resources Information Center

    Wilkerson, Kevin; Perusse, Rachelle; Hughes, Ashley

    2013-01-01

    This study compares school-wide Annual Yearly Progress (AYP) results in Indiana schools earning the Recognized ASCA Model Program (RAMP) designation (n = 75) with a sample of control schools stratified by level and locale (n = 226). K-12 schools earning the RAMP designation in 2007, 2008, and 2009 comprise the experimental group. Findings indicate…

  5. 29 CFR 1918.86 - Roll-on roll-off (Ro-Ro) operations (see also § 1918.2, Ro-Ro operations, and § 1918.25).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Ro-Ro operations, and § 1918.25). 9 [Reserved] (a) Traffic control system. An organized system of... simultaneous use of the ramp by vehicles and pedestrians. (d) Ramp maintenance. Ramps shall be properly...: (1) Sufficient power to ascend ramp inclines safely; and (2) Sufficient braking capacity to descend...

  6. 29 CFR 1918.86 - Roll-on roll-off (Ro-Ro) operations (see also § 1918.2, Ro-Ro operations, and § 1918.25).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... simultaneous use of the ramp by vehicles and pedestrians. (d) Ramp maintenance. Ramps shall be properly... ramp inclines safely. (j) Safe speeds. Power driven vehicles used in Ro-Ro operations shall be operated at speeds that are safe for prevailing conditions. (k) Ventilation. Internal combustion engine-driven...

  7. Experimental Investigation of Transverse Supersonic Gaseous Injection Enhancement Into Supersonic Flow

    DTIC Science & Technology

    1996-12-01

    Ramp AR 2........................................................ A.2 A. 9 . Test Section, No Injection or PME Ramp...B.2 B.8. Wide Ramp AR 1 ......................................................... B.2 B. 9 . Narrow Ramp AR 2...identified as a major near-field mixing factor.5 𔄀 While work has continued in transverse injection, 7𔄂 ’ 9 later studies sought to produce greater

  8. Rover deployment system for lunar landing mission

    NASA Astrophysics Data System (ADS)

    Sutoh, Masataku; Hoshino, Takeshi; Wakabayashi, Sachiko

    2017-09-01

    For lunar surface exploration, a deployment system is necessary to allow a rover to leave the lander. The system should be as lightweight as possible and stored retracted when launched. In this paper, two types of retractable deployment systems for lunar landing missions, telescopic- and fold-type ramps, are discussed. In the telescopic-type system, a ramp is stored with the sections overlapping and slides out during deployment. In the fold-type system, it is stored folded and unfolds for the deployment. For the development of these ramps, a design concept study and structural analysis were conducted first. Subsequently, ramp deployment and rover release tests were performed using the developed ramp prototypes. Through these tests, the validity of their design concepts and functions have been confirmed. In the rover release test, it was observed that the developed lightweight ramp was sufficiently strong for a 50-kg rover to descend. This result suggests that this ramp system is suitable for the deployment of a 300-kg-class rover on the Moon, where the gravity is about one-sixth that on Earth. The lightweight and sturdy ramp developed in this study will contribute to both safe rover deployment and increase of lander/rover payload.

  9. Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Li, Zhipeng; Sun, Jian

    2015-12-01

    Recurring bottlenecks at freeway/expressway are considered as the main cause of traffic congestion in urban traffic system while on-ramp bottlenecks are the most significant sites that may result in congestion. In this paper, the traffic bottleneck characteristics for a simple and typical expressway on-ramp are investigated by the means of simulation modeling under the open boundary condition. In simulations, the running behaviors of each vehicle are described by a car-following model with a calibrated optimal velocity function, and lane changing actions at the merging section are modeled by a novel set of rules. We numerically derive the traffic volume of on-ramp bottleneck under different upstream arrival rates of mainline and ramp flows. It is found that the vehicles from the ramp strongly affect the pass of mainline vehicles and the merging ratio changes with the increasing of ramp vehicle, when the arrival rate of mainline flow is greater than a critical value. In addition, we clarify the dependence of the merging ratio of on-ramp bottleneck on the probability of lane changing and the length of the merging section, and some corresponding intelligent control strategies are proposed in actual traffic application.

  10. Turning behaviors of T cells climbing up ramp-like structures are regulated by myosin light chain kinase activity and lamellipodia formation.

    PubMed

    Song, Kwang Hoon; Lee, Jaehyun; Jung, Hong-Ryul; Park, HyoungJun; Doh, Junsang

    2017-09-14

    T cells navigate diverse microenvironments to perform immune responses. Micro-scale topographical structures within the tissues, which may inherently exist in normal tissues or may be formed by inflammation or injury, can influence T cell migration, but how T cell migration is affected by such topographical structures have not been investigated. In this study, we fabricated ramp-like structures with a 5 μm height and various slopes, and observed T cells climbing up the ramp-like structures. T cells encountering the ramp-like structures exhibited MLC accumulation near head-tail junctions contacting the ramp-like structures, and made turns to the direction perpendicular to the ramp-like structures. Pharmacological study revealed that lamellipodia formation mediated by arp2/3 and contractility regulated by myosin light chain kinase (MLCK) were responsible for the intriguing turning behavior of T cells climbing the ramp-like structures. Arp2/3 or MLCK inhibition substantially reduced probability of T cells climbing sharp-edged ramp-like structures, indicating intriguing turning behavior of T cells mediated by lamellipodia formation and MLCK activity may be important for T cells to access inflamed or injured tissues with abrupt topographical changes.

  11. On the Use of Coupled Wind, Wave, and Current Fields in the Simulation of Loads on Bottom-Supported Offshore Wind Turbines during Hurricanes: March 2012 - September 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eungsoo; Manuel, Lance; Curcic, Milan

    In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of themore » changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces, and soil-structure interaction effects. A detailed framework is presented that explains how coupled inputs can be included in turbine loads studies during a hurricane. This framework can aid in future efforts aimed at developing offshore wind turbine design criteria and load cases related to hurricanes.« less

  12. Benchmark solution for vibrations from a moving point source in a tunnel embedded in a half-space

    NASA Astrophysics Data System (ADS)

    Yuan, Zonghao; Boström, Anders; Cai, Yuanqiang

    2017-01-01

    A closed-form semi-analytical solution for the vibrations due to a moving point load in a tunnel embedded in a half-space is given in this paper. The tunnel is modelled as an elastic hollow cylinder and the ground surrounding the tunnel as a linear viscoelastic material. The total wave field in the half-space with a cylindrical hole is represented by outgoing cylindrical waves and down-going plane waves. To apply the boundary conditions on the ground surface and at the tunnel-soil interface, the transformation properties between the plane and cylindrical wave functions are employed. The proposed solution can predict the ground vibration from an underground railway tunnel of circular cross-section with a reasonable computational effort and can serve as a benchmark solution for other computational methods. Numerical results for the ground vibrations on the free surface due to a moving constant load and a moving harmonic load applied at the tunnel invert are presented for different load velocities and excitation frequencies. It is found that Rayleigh waves play an important role in the ground vibrations from a shallow tunnel.

  13. Terasaki Spiral Ramps in the Rough Endoplasmic Reticulum

    NASA Astrophysics Data System (ADS)

    Guven, Jemal; Huber, Greg; Valencia, Dulce María

    2014-10-01

    We present a model describing the morphology as well as the assembly of "Terasaki ramps," the recently discovered helicoidal connections linking adjacent sheets of the rough endoplasmic reticulum (ER). The fundamental unit is a localized symmetric double-ramped "parking garage" formed by two separated gently pitched, approximately helicoidal, ramps of opposite chiralities. This geometry is stabilized by a short-range repulsive interaction between ramps associated with bending energy which opposes the long-range attraction associated with tension. The ramp inner boundaries are themselves stabilized by the condensation of membrane-shaping proteins along their length. A mechanism for parking garage self-assembly is proposed involving the nucleation of dipoles at the center of tubular three-way junctions within the smooth ER. Our predictions are compared with the experimental data.

  14. Use of a complete starter feed in grain adaptation programs for feedlot cattle.

    PubMed

    Schneider, C J; Nuttelman, B L; Shreck, A L; Burken, D B; Griffin, W A; Gramkow, J L; Stock, R A; Klopfenstein, T J; Erickson, G E

    2017-08-01

    Four experiments evaluated the use of a complete starter feed (RAMP; Cargill Corn Milling, Blair, NE) for grain adaptation. In Exp. 1, 229 yearling steers (397 ± 28.4 kg BW) were used to compare a traditional adaptation program (CON) with adapting cattle with RAMP in either a 1- (RAMP-1RS) or 2- (RAMP-2RS) ration system. From d 23 to slaughter, cattle were fed a common finishing diet. In Exp. 2, 390 yearling steers (341 ± 14 kg BW) were used to compare accelerated grain adaptation programs with RAMP with 2 control treatments where RAMP was blended with a finishing diet containing either 25 (CON25) or 47.5% (CON47) Sweet Bran (Cargill Corn Milling) in 4 steps fed over 24 d to adapt cattle. Rapid adaptation treatments involved feeding RAMP for 10 d followed by a blend of RAMP and a 47% Sweet Bran finishing diet to transition cattle with 3 blends fed for 1 d each (3-1d), 2 blends fed for 2 d each (2-2d), or 1 blend fed for 4 d (1-4d). From d 29 to slaughter, all cattle were fed a common finishing diet. In Exp. 3, 300 steer calves (292 ± 21 kg BW) were used to compare the CON47 and 1-4d adaptation programs with directly transitioning cattle from RAMP, which involved feeding RAMP for 10 d and then switching directly to F1 on d 11 (1-STEP). From d 29 until slaughter, F2 was fed to all cattle. In Exp. 4, 7 ruminally fistulated steers (482 ± 49 kg BW) were used in a 35-d trial to compare the CON47 and 1-STEP adaptation programs. Ruminal pH and intake data from the first 6 d of F1and first 6 d of F2 were used to compare adaptation systems. Adaptation with RAMP-1RS and RAMP-2RS increased ( < 0.01) G:F compared with cattle adapted using CON in Exp. 1. Feeding RAMP-1RS increased ADG ( = 0.03) compared with CON. Intakes were similar ( = 0.39) among treatments. Daily gain, DMI, G:F, and carcass traits were similar ( > 0.11) among treatments in Exp. 2. Daily gain, DMI, and G:F were not different ( > 0.20) among treatments on d 39 or over the entire feeding period in Exp. 3. When F1 or F2 was being fed, DMI was similar ( ≥ 0.40) for CON47 and 1-STEP in Exp. 4. When F1 or F2 was being fed, 1-STEP cattle had lower average ruminal pH ( ≤ 0.03) and greater time below a pH of 5.3 ( ≤ 0.03). Using RAMP for grain adaptation improved performance compared with traditional adaptation. Rapid adaptation with RAMP decreased pH, but no performance differences were observed between long and rapid RAMP adaptation programs. Therefore, cattle started on RAMP do not require extensive adaptation before feeding a finishing diet with Sweet Bran.

  15. Mixed Linear/Square-Root Encoded Single Slope Ramp Provides a Fast, Low Noise Analog to Digital Converter with Very High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Cunningham, Thomas J. (Inventor); Newton, Kenneth W. (Inventor)

    2014-01-01

    An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.

  16. Quarter-Wave buncher for NICA project

    NASA Astrophysics Data System (ADS)

    Trushin, M.; Fatkullin, R.; Sitnikov, A.; Seleznev, D.; Koshelev, V. A.; Plastun, A. S.; Barabin, S. V.; Kozlov, A. V.; Kuzmichev, V. G.; Kropachev, G. N.; Kulevoy, T.

    2017-12-01

    This paper represents the results of modeling the electrodynamic characteristics (EDC) for a quarter-wave coaxial beam buncher, simulation of thermal loads of the buncher, modeling of the mechanical changes in the geometric parameters caused by the thermal load of the buncher and modeling of the new EDC depended on this changes.

  17. Higher order acoustoelastic Lamb wave propagation in stressed plates.

    PubMed

    Pei, Ning; Bond, Leonard J

    2016-11-01

    Modeling and experiments are used to investigate Lamb wave propagation in the direction perpendicular to an applied stress. Sensitivity, in terms of changes in velocity, for both symmetrical and anti-symmetrical modes was determined. Codes were developed based on analytical expressions for waves in loaded plates and they were used to give wave dispersion curves. The experimental system used a pair of compression wave transducers on variable angle wedges, with set separation, and variable frequency tone burst excitation, on an aluminum plate 0.16 cm thick with uniaxial applied loads. The loads, which were up to 600 με, were measured using strain gages. Model results and experimental data are in good agreement. It was found that the change in Lamb wave velocity, due to the acoustoelastic effect, for the S 1 mode exhibits about ten times more sensitive, in terms of velocity change, than the traditional bulk wave measurements, and those performed using the fundamental Lamb modes. The data presented demonstrate the potential for the use of higher order Lamb modes for online industrial stress measurement in plate, and that the higher sensitivity seen offers potential for improved measurement systems.

  18. Study of guided wave propagation on a plate between two solid bodies with imperfect contact conditions.

    PubMed

    Balvantín, A J; Diosdado-De-la-Peña, J A; Limon-Leyva, P A; Hernández-Rodríguez, E

    2018-02-01

    In this work, fundamental symmetric Lamb wave S0 mode is characterized in terms of its velocity variation as function of the interfacial conditions between solid bodies in contact. Imperfect contact conditions are numerically and experimentally determined by using ultrasonic Lamb wave propagation parameters. For the study, an experimental system was used, formed by two solid aluminum rods (25.4mm in diameter) axially loading a thin aluminum plate to control contact interfacial stiffness. The axially applied load on the aluminum plate was varied from 0MPa to 10MPa. Experimental Lamb wave signals were excited on the plate through two longitudinal contact transducers (1MHz of central frequency) using a pitch-catch configuration. Numerical simulations of contact conditions and Lamb wave propagation were performed through Finite Element Analysis (FEA) in commercial software, ANSYS 15®. Simulated Lamb wave signals were generated by means of a 5 cycles tone burst signals with different frequency values. Results indicate a velocity change in both, experimental and simulated Lamb wave signals as function of the applied load. Finally, a comparison between numerical results and experimental measurements was performed obtaining a good agreement. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Launch of a Vehicle from a Ramp

    ERIC Educational Resources Information Center

    Cross, Rod

    2011-01-01

    A vehicle proceeding up an inclined ramp will become airborne if the ramp comes to a sudden end and if the vehicle fails to stop before it reaches the end of the ramp. A vehicle may also become airborne if it passes over the top of a hill at sufficient speed. In both cases, the vehicle becomes airborne if the point of support underneath the…

  20. An FMM-FFT Accelerated SIE Simulator for Analyzing EM Wave Propagation in Mine Environments Loaded With Conductors

    PubMed Central

    Sheng, Weitian; Zhou, Chenming; Liu, Yang; Bagci, Hakan; Michielssen, Eric

    2018-01-01

    A fast and memory efficient three-dimensional full-wave simulator for analyzing electromagnetic (EM) wave propagation in electrically large and realistic mine tunnels/galleries loaded with conductors is proposed. The simulator relies on Muller and combined field surface integral equations (SIEs) to account for scattering from mine walls and conductors, respectively. During the iterative solution of the system of SIEs, the simulator uses a fast multipole method-fast Fourier transform (FMM-FFT) scheme to reduce CPU and memory requirements. The memory requirement is further reduced by compressing large data structures via singular value and Tucker decompositions. The efficiency, accuracy, and real-world applicability of the simulator are demonstrated through characterization of EM wave propagation in electrically large mine tunnels/galleries loaded with conducting cables and mine carts. PMID:29726545

  1. Evidence for Conservation of the Calcitonin Superfamily and Activity-regulating Mechanisms in the Basal Chordate Branchiostoma floridae: INSIGHTS INTO THE MOLECULAR AND FUNCTIONAL EVOLUTION IN CHORDATES.

    PubMed

    Sekiguchi, Toshio; Kuwasako, Kenji; Ogasawara, Michio; Takahashi, Hiroki; Matsubara, Shin; Osugi, Tomohiro; Muramatsu, Ikunobu; Sasayama, Yuichi; Suzuki, Nobuo; Satake, Honoo

    2016-01-29

    The calcitonin (CT)/CT gene-related peptide (CGRP) family is conserved in vertebrates. The activities of this peptide family are regulated by a combination of two receptors, namely the calcitonin receptor (CTR) and the CTR-like receptor (CLR), and three receptor activity-modifying proteins (RAMPs). Furthermore, RAMPs act as escort proteins by translocating CLR to the cell membrane. Recently, CT/CGRP family peptides have been identified or inferred in several invertebrates. However, the molecular characteristics and relevant functions of the CTR/CLR and RAMPs in invertebrates remain unclear. In this study, we identified three CT/CGRP family peptides (Bf-CTFPs), one CTR/CLR-like receptor (Bf-CTFP-R), and three RAMP-like proteins (Bf-RAMP-LPs) in the basal chordate amphioxus (Branchiostoma floridae). The Bf-CTFPs were shown to possess an N-terminal circular region typical of the CT/CGRP family and a C-terminal Pro-NH2. The Bf-CTFP genes were expressed in the central nervous system and in endocrine cells of the midgut, indicating that Bf-CTFPs serve as brain and/or gut peptides. Cell surface expression of the Bf-CTFP-R was enhanced by co-expression with each Bf-RAMP-LP. Furthermore, Bf-CTFPs activated Bf-CTFP-R·Bf-RAMP-LP complexes, resulting in cAMP accumulation. These results confirmed that Bf-RAMP-LPs, like vertebrate RAMPs, are prerequisites for the function and translocation of the Bf-CTFP-R. The relative potencies of the three peptides at each receptor were similar. Bf-CTFP2 was a potent ligand at all receptors in cAMP assays. Bf-RAMP-LP effects on ligand potency order were distinct to vertebrate CGRP/adrenomedullin/amylin receptors. To the best of our knowledge, this is the first molecular and functional characterization of an authentic invertebrate CT/CGRP family receptor and RAMPs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Possibilities of fish passage through the block ramp: Model-based estimation of permeability.

    PubMed

    Plesiński, Karol; Bylak, Aneta; Radecki-Pawlik, Artur; Mikołajczyk, Tomasz; Kukuła, Krzysztof

    2018-08-01

    Block ramps offer an opportunity to combine hydrotechnical structures with fish passages. The primary study objective was to evaluate the effectiveness of a block ramp for upstream fish movement in a mountain stream. Geodetic measurements of the bottom surface and water level were taken for three cross-sections. The description of the geometric and hydrodynamic parameters of the block ramp was supplemented with information on the width and length of crevices between boulders. Measurements of the geometric and hydrodynamic parameters of the block ramp were performed at 76 measurement sites, at three different types of discharge. Ichthyological data were collected in the analyzed stream. Measurements covered among others total length, width, and height of caught fish. Salmonid, cottid, balitorid, and cyprinid fish were studied. The determination of the main effects of the geometric and hydrodynamic parameters of the block ramp on the possibilities of use by target fish species employed generalized linear models (GLMs). The study shows that the block ramp cannot provide longitudinal connectivity and migration of fish occurring in the mountain stream. According to estimates, the block ramp did not meet the permeability expectations. The reason for low usefulness of the ramp for fish is particularly excessively strong water current. The stream concentration constituted an unsurmountable velocity barrier for fish moving upstream for each of the analyzed discharges. The developed model suggests that some crevices in the side zones of the ramp could be parts of the migration corridor, but only for small and medium-sized fish. At medium and high water stages, movement of fish in crevices was difficult due to fast water current, and at low and very low discharges, some crevices lost their permeability, and could become ecological traps for fish. The necessity of estimation of ramp permeability during pre-construction phase was emphasized. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Nearshore wave-induced cyclical flexing of sea cliffs

    USGS Publications Warehouse

    Adams, P.N.; Storlazzi, C.D.; Anderson, R. Scott

    2005-01-01

    [1] Evolution of a tectonically active coast is driven by geomorphically destructive energy supplied by ocean waves. Wave energy is episodic and concentrated; sea cliffs are battered by the geomorphic wrecking ball every 4-25 s. We measure the response of sea cliffs to wave assault by sensing the ground motion using near-coastal seismometers. Sea cliffs respond to waves in two distinct styles. High-frequency motion (20 Hz) reflects the natural frequency of the sea cliff as it rings in response to direct wave impact. Low-frequency motion in the 0.1-0.05 Hz (10-20 s) band consistently agrees with the dominant nearshore wave period. Integrating microseismic velocities suggests 50 ??m and 10 ??m displacements in horizontal and vertical directions, respectively. Displacement ellipsoids exhibit simultaneous downward and seaward sea cliff motion with each wave. Video footage corroborates the downward sea cliff flex in response to the imposed water load on the wave cut platform. Gradients in displacement amplitudes documented using multiple seismometers suggest longitudinal and shear strain of the flexing sea cliff on the order of 0.5-4 ?? strains during each wave loading cycle. As this sea cliff flexure occurs approximately 3 million times annually, it has the potential to fatigue the rock through cyclical loading. Local sea cliff retreat rates of 10 cm/yr imply that a given parcel of rock is flexed through roughly 109 cycles of increasing amplitude before exposure to direct wave attack at the cliff face. Copyright 2005 by the American Geophysical Union.

  4. Space and Time Distribution of Pu Isotopes inside The First Experimental Fuel Pin Designed for PWR and Manufactured in Indonesia

    NASA Astrophysics Data System (ADS)

    Suwardi; Setiawan, J.; Susilo, J.

    2017-01-01

    The first short fuel pin containing natural UO2 pellet in Zry4 cladding has been prepared and planned to be tested in power ramp irradiation. An irradiation test should be designed to allow an experiment can be performed safely and giving maximum results of many performance aspects of design and manufacturing. Performance analysis to the fuel specimen shows that the specimen is not match to be used for power ramp testing. Enlargement by 0.20 mm of pellet diameter has been proposed. The present work is evaluation of modified design for important aspect of isotopic Pu distribution during irradiation test, because generated Pu isotopes in natural UO2 fuel, contribute more power relative to the contribution by enriched UO2 fuel. The axial profile of neutrons flux have been chosen from both experimental measurement and model calculation. The parameters of ramp power has been obtained from statistical experiment data. A simplified and typical base-load commercial PHWR profile of LHR history has been chosen, to determine the minimum irradiation time before ramp test can be performed. The data design and Mat pro XI materials properties models have been chosen. The axial profile of neutrons flux has been accommodated by 5 slices of discrete pin. The Pu distribution of slice-4 with highest power rate has been chosen to be evaluated. The radial discretion of pellet and cladding and numerical parameter have been used the default best practice of TU. The results shows that Pu 239 increased rapidly. The maximum burn up of slice 4 at upper the median slice, it reached nearly 90% of maximum value at about 6000 h with peak of 0.8%a Pu/HM at 22000 h, which is higher than initial U 235. Each 240, 241 and 240 Pu grows slower and ends up to 0.4, 0.2 and 0.18 % respectively. This results can be used for verification of other aspect of fuel behavior in the modeling results and also can be used as guide and comparison to the future post irradiation examination for Pu isotopes distribution.

  5. The in vitro inflation response of mouse sclera.

    PubMed

    Myers, Kristin M; Cone, Frances E; Quigley, Harry A; Gelman, Scott; Pease, Mary E; Nguyen, Thao D

    2010-12-01

    The purpose of this research was to develop a reliable and repeatable inflation protocol to measure the scleral inflation response of mouse eyes to elevations in intraocular pressure (IOP), comparing the inflation response exhibited by the sclera of younger and older C57BL/6 mice. Whole, enucleated eyes from younger (2 month) and older (11 month) C57BL/6 mice were mounted by the cornea on a custom fixture and inflated according to a load-unload, ramp-hold pressurization regimen via a cannula connected to a saline-filled programmable syringe pump. First, the tissue was submitted to three load-unload cycles from 6 mmHg to 15 mmHg at a rate of 0.25 mmHg/s with ten minutes of recovery between cycles. Next the tissue was submitted to a series of ramp-hold tests to measure the creep behavior at different pressure levels. For each ramp-hold test, the tissue was loaded from 6 mmHg to the set pressure at a rate of 0.25 mmHg/s and held for 30 min, and then the specimens were unloaded to 6 mmHg for 10 min. This sequence was repeated for set pressures of: 10.5, 15, 22.5, 30, 37.5, and 45 mmHg. Scleral displacement was measured using digital image correlation (DIC), and fresh scleral thickness was measured optically for each specimen after testing. For comparison, scleral thickness was measured on untested fresh tissue and epoxy-fixed tissue from age-matched animals. Comparing the apex displacement of the different aged specimens, the sclera of older animals had a statistically significant stiffer response to pressurization than the sclera of younger animals. The stiffness of the pressure-displacement response of the apex measured in the small-strain (6-15 mmHg) and the large-strain (37.5-45 mmHg) regime, respectively, were 287 ± 100 mmHg/mm and 2381 ± 191 mmHg/mm for the older tissue and 193 ± 40 mmHg/mm and 1454 ± 93 mmHg/mm for the younger tissue (Student t-test, p<0.05). The scleral thickness varied regionally, being thickest in the peripapillary region and thinnest at the equator. Fresh scleral thickness did not differ significantly by age in this group of animals. This study presents a reliable inflation test protocol to measure the mechanical properties of mouse sclera. The inflation methodology was sensitive enough to measure scleral response to changes in IOP elevations between younger and older C57BL/6 mice. Further, the specimen-specific scleral displacement profile and thickness measurements will enable future development of specimen-specific finite element models to analyze the inflation data for material properties. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Freeway ramp management in Pennsylvania.

    DOT National Transportation Integrated Search

    2011-03-31

    This research identified the opportunities to implement ramp management strategies on freeways in Pennsylvania. The research : explored the need to integrate local arterial traffic signal systems with ramp management strategies to reduce the impacts ...

  7. Lateral ramps in the folded Appalachians and in overthrust belts worldwide; a fundamental element of thrust-belt architecture

    USGS Publications Warehouse

    Pohn, Howard A.

    2000-01-01

    Lateral ramps are zones where decollements change stratigraphic level along strike; they differ from frontal ramps, which are zones where decollements change stratigraphic level perpendicular to strike. In the Appalachian Mountains, the surface criteria for recognizing the subsurface presence of lateral ramps include (1) an abrupt change in wavelength or a termination of folds along strike, (2) a conspicuous change in the frequency of mapped faults or disturbed zones (extremely disrupted duplexes) at the surface, (3) long, straight river trends emerging onto the coastal plain or into the Appalachian Plateaus province, (4) major geomorphic discontinuities in the trend of the Blue Ridge province, (5) interruption of Mesozoic basins by cross-strike border faults, and (6) zones of modern and probable ancient seismic activity. Additional features related to lateral ramps include tectonic windows, cross-strike igneous intrusions, areas of giant landslides, and abrupt changes in Paleozoic sedimentation along strike. Proprietary strike-line seismic-reflection profiles cross three of the lateral ramps that were identified by using the surface criteria. The profiles confirm their presence and show their detailed nature in the subsurface. Like frontal ramps, lateral ramps are one of two possible consequences of fold-and-thrust-belt tectonics and are common elements in the Appalachian fold-and-thrust belt. A survey of other thrust belts in the United States and elsewhere strongly suggests that lateral ramps at depth can be identified by their surface effects. Lateral ramps probably are the result of thrust sheet motion caused by continued activation of ancient cratonic fracture systems. Such fractures localized the transform faults along which the continental segments adjusted during episodes of sea-floor spreading.

  8. Power converter for raindrop energy harvesting application: Half-wave rectifier

    NASA Astrophysics Data System (ADS)

    Izrin, Izhab Muhammad; Dahari, Zuraini

    2017-10-01

    Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

  9. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave-particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collision-less shocks.

  10. Laser drive development for the APS Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Lagrange, Thomas; Swift, Damian; Reed, Bryan; Bernier, Joel; Kumar, Mukul; Hawreliak, James; Eggert, Jon; Dixit, Sham; Collins, Gilbert

    2013-06-01

    The Dynamic Compression Sector (DCS) at the APS synchrotron offers unprecedented possibilities for x-ray diffraction and scattering measurements in-situ during dynamic loading, including single-shot data collection with x-ray energies high enough (tens of kV) to study high-Z samples in transmission as well as reflection. Dynamic loading induced by laser ablation is an important component of load generation, as the duration, strain rate, and pressure can be controlled via the energy, spot size, and pulse shape. Using radiation hydrodynamics simulations, validated by experiments at several laser facilities, we have investigated the relationship between irradiance history and pressure for ablative loads designed to induce shock and ramp loading in the nanosecond to microsecond range, and including free ablation and also ablation confined by a transparent substrate. We have investigated the effects of lateral release, which constrains the minimum diameter of the focal spot for a given drive duration. In this way, we are able to relate the desired drive conditions to the total laser energy needed, which dictates the laser technologies suitable for a given type of experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Load-Differential Imaging for Detection and Localization of Fatigue Cracks Using Lamb Waves (Preprint)

    DTIC Science & Technology

    2012-03-01

    AFRL-RX-WP-TP-2012-0278 LOAD-DIFFERENTIAL IMAGING FOR DETECTION AND LOCALIZATION OF FATIGUE CRACKS USING LAMB WAVES (PREPRINT) X. Chen...OF FATIGUE CRACKS USING LAMB WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6...Jan 2012. Preprint journal article to be submitted to NDT & E. This document contains color. 14. ABSTRACT Fatigue cracks are common and

  12. Non destructive testing of concrete nuclear containment plants with surface waves: Lab experiment on decimeter slabs and on the VeRCoRs mock-up

    NASA Astrophysics Data System (ADS)

    Abraham, Odile; Legland, Jean-Baptiste; Durand, Olivier; Hénault, Jean-Marie; Garnier, Vincent

    2018-04-01

    The maintenance and evaluation of concrete nuclear containment walls is a major concern as they must, in case of an accident, ensure the confinement of the nuclear radiations and resist to the loads. A homemade multi-receiver multi-source dry contact linear probe to record ultrasonic surface waves on concrete in the frequency range [60 kHz - 200 kHz] has been used in this context. The measurement protocol includes the summation of up to 50 spatially distributed seismograms and the determination of the surface waves phase velocity dispersion curve. The probe has been tested against several concrete states under no loading (water saturation level, temperature damage). Then, the same measurements have been performed on sound and fire damaged slabs submitted to uniaxial loading (stress up to 30 % of the concrete compression resistance). It is shown that the robustness and precision of the surface waves measurement protocol make it possible to follow the stress level. In March 2017 a first experiment with this surface wave probe has been conducted on a reduced 1:3 scale nuclear containment plant (EDF VeRCoRs mock-up) under loading conditions that replicates that of decennial inspection. The surface wave phase velocity dispersion curves of each state are compared and cross-validated with other NDT results.

  13. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.

  14. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. [Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  15. DIELECTRIC-LOADED WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Mullett, L.B.

    1957-04-23

    This patent presents a particular arrangement for delectric loading of a wave-guide carrying an electromagnetic wave in the E or TM mode of at least the second order, to reduce the power dissipated as the result of conduction loss in the wave-guide walls. To achieve this desirabie result, the effective dielectric constants in the radial direction of adjacent coaxial tubular regions bounded approximateiy by successive nodai surfaces within the electromagnetic field are of two different values alternating in the radial direction, the intermost and outermost regions being of the lower value, and the dielectric constants between nodes are uniform.

  16. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading: Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  17. Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.; hide

    2017-01-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  18. Electron Scattering by High-frequency Whistler Waves at Earth’s Bow Shock

    NASA Astrophysics Data System (ADS)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gershman, D. J.; Khotyaintsev, Y. V.; Burch, J. L.; Torbert, R. B.; Pollock, C.; Dorelli, J. C.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Ergun, R. E.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.

    2017-06-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earth’s bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvén Mach number ˜11 and a shock angle ˜84°. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5-2 keV) electron flux, correlated with high-frequency (0.2-0.4 {{{Ω }}}{ce}, where {{{Ω }}}{ce} is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  19. Impedance of strip-traveling waves on an elastic half space - Asymptotic solution

    NASA Technical Reports Server (NTRS)

    Crandall, S. H.; Nigam, A. K.

    1973-01-01

    The dynamic normal-load distribution across a strip that is required to maintain a plane progressive wave along its length is studied for the case where the strip is of infinite length and lies on the surface of a homogeneous isotropic elastic half space. This configuration is proposed as a preliminary idealized model for analyzing the dynamic interaction between soils and flexible foundations. The surface load distribution across the strip and the motion of the strip are related by a pair of dual integral equations. An asymptotic solution is obtained for the limiting case of small wavelength. The nature of this solution depends importantly on the propagation velocity of the strip-traveling wave in comparison with the Rayleigh wave speed, the shear wave speed and the dilatational wave speed. When the strip-traveling wave propagates faster than the Rayleigh wave speed, a pattern of trailing Rayleigh waves is shed from the strip. The limiting amplitude of the trailing waves is provided by the asymptotic solution.

  20. Wave Journal Bearings Under Dynamic Loads

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Dimofte, Florin

    2002-01-01

    The dynamic behavior of the wave journal bearing was determined by running a three-wave bearing with an eccentrically mounted shaft. A transient analysis was developed and used to predict numerical data for the experimental cases. The three-wave journal bearing ran stably under dynamic loads with orbits well inside the bearing clearance. The orbits were almost circular and nearly free of the influence of, but dynamically dependent on, bearing wave shape. Experimental observations for both the absolute bearing-housing-center orbits and the relative bearing-housing-center-to-shaft-center orbits agreed well with the predictions. Moreover, the subsynchronous whirl motion generated by the fluid film was found experimentally and predicted theoretically for certain speeds.

  1. Evaluation of Four Advanced Nozzle Concepts for Short Takeoff and Landing Performance

    NASA Technical Reports Server (NTRS)

    Quinto, P. Frank; Kemmerly, Guy T.; Paulson, John W., Jr.

    1993-01-01

    Four advanced nozzle concepts were tested on a canard-wing fighter in the Langley 14- by 22-Foot Subsonic Tunnel. The four vectoring-nozzle concepts were as follows: (1) an axisymmetric nozzle (AXI); (2) an asymmetric, load balanced exhaust nozzle (ALBEN); (3) a low aspect ratio, single expansion ramp nozzle (LASERN); and (4) a high aspect ratio, single expansion ramp nozzle (HASERN). The investigation was conducted to determine the most suitable nozzle concept for short takeoff and landing (STOL) performance. The criterion for the best STOL performance was a takeoff ground roll of less than 1000 ft. At approach, the criteria were high lift and sufficient drag to maintain a glide slope of -3 to -6 deg with enough pitching-moment control from the canards. The test was performed at a dynamic pressure of 45 lb/sq ft and an angle-of-attack range of 0 to 20 deg. The nozzle pressure ratio was varied from 1.0 to 4.3 at both dry power and after burning nozzle configurations with nozzle vectoring to 60 deg. In addition, the model was tested in and out of ground effects. The ALBEN concept was the best of the four nozzle concepts tested for STOL performance.

  2. Effect of traffic and driving characteristics on morphology of atmospheric soot particles at freeway on-ramps.

    PubMed

    China, Swarup; Salvadori, Neila; Mazzoleni, Claudio

    2014-03-18

    Vehicles represent a major source of soot in urban environments. Knowledge of the morphology and mixing of soot particles is fundamental to understand their potential health and climatic impacts. We investigate 5738 single particles collected at six different cloverleaf freeway on-ramps in Southern Michigan, using 2D images from scanning electron microscopy. Of those, 3364 particles are soot. We present an analysis of the morphological and mixing properties of those soot particles. The relative abundance of soot particles shows a positive association with traffic density (number of vehicles per minute). A classification of the mixing state of freshly emitted soot particles shows that most of them are bare (or thinly coated) (72%) and some are partly coated (22%). We find that the fractal dimension of soot particles (one of the most relevant morphological descriptors) varies from site to site, and increases with increasing vehicle specific power that represents the driving/engine load conditions, and with increasing percentage of vehicles older than 15 years. Our results suggest that driving conditions, and vehicle age and type have significant influence on the morphology of soot particles.

  3. Study on Trailing Edge Ramp of Supercritical Airfoil

    DTIC Science & Technology

    2016-03-30

    7 th Asia-Pacific International Symposium on Aerospace Technology, 25 – 27 November 2015, Cairns Study on Trailing Edge Ramp of Supercritical...China Abstract Trailing edge flow control method could improve the performance of supercritical airfoil with a small modification on the original...airfoil. In this paper, a ramp of 2%~7% chord length is sliced near the trailing edge to improve airfoil performance. The trailing edge ramp is

  4. Wind-Friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Mingjian; Zhang, Jie; Wu, Hongyu

    With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less

  5. Balancing Power Absorption and Structural Loading for a Novel Fixed-Bottom Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Yu, Yi-Hsiang; Wright, Alan D

    In this work, the net power delivered to the grid from a nonideal power take-off (PTO) is introduced followed by a review of the pseudo-spectral control theory. A power-to-load ratio, used to evaluate the pseudo-spectral controller performance, is discussed, and the results obtained from optimizing a multiterm objective function are compared against results obtained from maximizing the net output power to the grid. Simulation results are then presented for four different oscillating wave energy converter geometries to highlight the potential of combing both geometry and PTO control to maximize power while minimizing loads.

  6. Structural Loads Analysis for Wave Energy Converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Rij, Jennifer A; Yu, Yi-Hsiang; Guo, Yi

    2017-06-03

    This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluidmore » dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process.« less

  7. Balancing the Power-to-Load Ratio for a Novel Variable Geometry Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Yu, Yi-Hsiang; Wright, Alan D

    This work attempts to balance power absorption against structural loading for a novel variable geometry wave energy converter. The variable geometry consists of four identical flaps that will be opened in ascending order starting with the flap closest to the seafloor and moving to the free surface. The influence of a pitch motion constraint on power absorption when utilizing a nonideal power take-off (PTO) is examined and found to reduce the losses associated with bidirectional energy flow. The power-to-load ratio is evaluated using pseudo-spectral control to determine the optimum PTO torque based on a multiterm objective function. The pseudo-spectral optimalmore » control problem is extended to include load metrics in the objective function, which may now consist of competing terms. Separate penalty weights are attached to the surge-foundation force and PTO control torque to tune the optimizer performance to emphasize either power absorption or load shedding. PTO efficiency is not included in the objective function, but the penalty weights are utilized to limit the force and torque amplitudes, thereby reducing losses associated with bidirectional energy flow. Results from pseudo-spectral control demonstrate that shedding a portion of the available wave energy can provide greater reductions in structural loads and reactive power.« less

  8. Comparison of Two Parametric Methods to Estimate Pesticide Mass Loads in California's Central Valley

    USGS Publications Warehouse

    Saleh, D.K.; Lorenz, D.L.; Domagalski, Joseph L.

    2011-01-01

    Mass loadings were calculated for four pesticides in two watersheds with different land uses in the Central Valley, California, by using two parametric models: (1) the Seasonal Wave model (SeaWave), in which a pulse signal is used to describe the annual cycle of pesticide occurrence in a stream, and (2) the Sine Wave model, in which first-order Fourier series sine and cosine terms are used to simulate seasonal mass loading patterns. The models were applied to data collected during water years 1997 through 2005. The pesticides modeled were carbaryl, diazinon, metolachlor, and molinate. Results from the two models show that the ability to capture seasonal variations in pesticide concentrations was affected by pesticide use patterns and the methods by which pesticides are transported to streams. Estimated seasonal loads compared well with results from previous studies for both models. Loads estimated by the two models did not differ significantly from each other, with the exceptions of carbaryl and molinate during the precipitation season, where loads were affected by application patterns and rainfall. However, in watersheds with variable and intermittent pesticide applications, the SeaWave model is more suitable for use on the basis of its robust capability of describing seasonal variation of pesticide concentrations. ?? 2010 American Water Resources Association. This article is a US Government work and is in the public domain in the USA.

  9. Ramp meter design manual

    DOT National Transportation Integrated Search

    2000-01-01

    Caltrans is committed to using ramp metering as an effective traffic management strategy to maintain an efficient freeway system and protect the investment made in constructing freeways by keeping them operating at or near capacity. Ramp Metering is ...

  10. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    PubMed

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  11. Flow control of micro-ramps on supersonic forward-facing step flow

    NASA Astrophysics Data System (ADS)

    Qing-Hu, Zhang; Tao, Zhu; Shihe, Yi; Anping, Wu

    2016-05-01

    The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326 and 11502280).

  12. Testing the effects of topography, geometry, and kinematics on modeled thermochronometer cooling ages in the eastern Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    Gilmore, Michelle E.; McQuarrie, Nadine; Eizenhöfer, Paul R.; Ehlers, Todd A.

    2018-05-01

    In this study, reconstructions of a balanced geologic cross section in the Himalayan fold-thrust belt of eastern Bhutan are used in flexural-kinematic and thermokinematic models to understand the sensitivity of predicted cooling ages to changes in fault kinematics, geometry, topography, and radiogenic heat production. The kinematics for each scenario are created by sequentially deforming the cross section with ˜ 10 km deformation steps while applying flexural loading and erosional unloading at each step to develop a high-resolution evolution of deformation, erosion, and burial over time. By assigning ages to each increment of displacement, we create a suite of modeled scenarios that are input into a 2-D thermokinematic model to predict cooling ages. Comparison of model-predicted cooling ages to published thermochronometer data reveals that cooling ages are most sensitive to (1) the location and size of fault ramps, (2) the variable shortening rates between 68 and 6.4 mm yr-1, and (3) the timing and magnitude of out-of-sequence faulting. The predicted ages are less sensitive to (4) radiogenic heat production and (5) estimates of topographic evolution. We used the observed misfit of predicted to measured cooling ages to revise the cross section geometry and separate one large ramp previously proposed for the modern décollement into two smaller ramps. The revised geometry results in an improved fit to observed ages, particularly young AFT ages (2-6 Ma) located north of the Main Central Thrust. This study presents a successful approach for using thermochronometer data to test the viability of a proposed cross section geometry and kinematics and describes a viable approach to estimating the first-order topographic evolution of a compressional orogen.

  13. Vibrational Responses Of Structures To Impulses

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1990-01-01

    Report discusses propagation of vibrations in structure in response to impulsive and/or concentrated loads. Effects of pulsed loads treated by analyzing propagation of characteristic vibrational waves explicitly through each member of structure. This wave-front analysis used in combination with usual finite-element modal analysis to obtain more accurate representation of overall vibrational behavior.

  14. Relationship Factors Contributing to the Progression of Combat Related PTSD and Suicidality over Time

    DTIC Science & Technology

    2014-04-01

    Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The RAMP project is designed to examine the key social context of intimate romantic...report is the “Relationships Among Military Personnel (RAMP) Project”. The RAMP project is designed to examine the key social context of intimate...making the RAMP Facebook page accessible (https://www.facebook.com/TheRAMPProject. As of March 1, 2014, 1531 individuals completed the eligibility

  15. [Air transport biomechanical risk: reduced mobility passengers' handling].

    PubMed

    Draicchio, F; Campoli, G; Silvetti, A; Badellino, E; Forzano, F; Ranavolo, A; Iavicoli, S; Campagna, G; Raffaele, G; Gismondi, M

    2012-01-01

    As the airport traffic increases there is a continuous increase of passengers with different motor disabilities. Disabled passenger's assistance causes a biomechanical overload in airport workers. Some disabled passengers are classified by IATA as WCHC (wheel chair in cabin or Charlie). Our study, was performed in one of the most important Italian airport on Charlie passengers (about 10% of all assistances). We identified four critical points: 1) wheelchair and baggage moving (unstable load), 2) inclined ramps with worker's backwards steps and braked wheelchair to prevent passenger tipping or falling, 3) transfer from standard wheelchair to bicycle wheelchair, specifically designed for the aisle; 4.) transfer from bicycle wheelchair to aircraft seat. The last two points required sometimes to lift passengers over the armrest and positioning them on a window side seat, causing a serious increase of biomechanical load. For each critical point we have proposed technical and organizational measures to reduce airport worker's biomechanical risk.

  16. Indentation Size Effect on the Creep Behavior of a SnAgCu Solder

    NASA Astrophysics Data System (ADS)

    Han, Y. D.; Jing, H. Y.; Nai, S. M. L.; Xu, L. Y.; Tan, C. M.; Wei, J.

    In the present study, nanoindentation studies of the 95.8Sn-3.5Ag-0.7Cu lead-free solder were conducted over a range of maximum loads from 20 mN to 100 mN, under a constant ramp rate of 0.05 s-1. The indentation scale dependence of creep behavior was investigated. The results revealed that the creep rate, creep strain rate and indentation stress are all dependent on the indentation depth. As the maximum load increased, an increasing trend in the creep rate was observed, while a decreasing trend in creep strain rate and indentation stress were observed. On the contrary, for the case of stress exponent value, no trend was observed and the values were found to range from 6.16 to 7.38. Furthermore, the experimental results also showed that the creep mechanism of the lead-free solder is dominated by dislocation climb.

  17. Quantification of thickness loss in a liquid-loaded plate using ultrasonic guided wave tomography

    NASA Astrophysics Data System (ADS)

    Rao, Jing; Ratassepp, Madis; Fan, Zheng

    2017-12-01

    Ultrasonic guided wave tomography (GWT) provides an attractive solution to map thickness changes from remote locations. It is based on the velocity-to-thickness mapping employing the dispersive characteristics of selected guided modes. This study extends the application of GWT on a liquid-loaded plate. It is a more challenging case than the application on a free plate, due to energy of the guided waves leaking into the liquid. In order to ensure the accuracy of thickness reconstruction, advanced forward models are developed to consider attenuation effects using complex velocities. The reconstruction of the thickness map is based on the frequency-domain full waveform inversion (FWI) method, and its accuracy is discussed using different frequencies and defect dimensions. Validation experiments are carried out on a water-loaded plate with an irregularly shaped defect using S0 guided waves, showing excellent performance of the reconstruction algorithm.

  18. Experimental investigation of leaky lamb modes by an optically induced grating.

    PubMed

    Van de Rostyne, Kris; Glorieux, Christ; Gao, Weimin; Lauriks, Walter; Thoen, Jan

    2002-09-01

    By removing the symmetry of a free plate configuration, fluid loading significantly modifies the nature of acoustic waves travelling along a plate, and it even gives existence to new acoustic modes. We present theoretical predictions for the existence, dispersive behavior, and spatial distribution of leaky Lamb waves in a fluid-loaded film. Although Lamb modes are often investigated by studying the radiated fluid waves resulting from their leakage, here their properties are assessed by detecting the wave displacements directly using laser beam deflection. By using crossed laser beam excitation, the detection and analysis of the different modes is done at a fixed wavelength, allowing one to verify the existence, the velocity, and the damping of each predicted mode in a simple and unambiguous way. Our theoretical predictions for the nature of the modes in a water-loaded Plexiglas film, including parts of looping modes, are experimentally confirmed.

  19. Propagation behavior of the stress wave in a hollow Hopkinson transmission bar

    NASA Astrophysics Data System (ADS)

    Zou, G.; Shen, X.; Guo, C.; Vecchio, K. S.; Jiang, F.

    2018-03-01

    In order to investigate the stress wave propagation behavior through a hollow elastic bar that is used in a Hopkinson-bar-loaded fracture testing system, three-point bending fracture experiments were performed in such a system. The effects of sample span and diameter and wall thickness of the hollow elastic bar on the stress wave propagation behavior were studied numerically using the software of ANSYS/LS-DYNA. The experimental results demonstrated that the incident, reflected, and transmitted pulses calculated by the finite element method are coincident with those obtained from the Hopkinson-bar-loaded fracture tests. Compared to the solid transmission bar, the amplitude of the transmitted pulse is relatively larger in the hollow transmission bar under the same loading conditions and decreases with increasing wall thickness. On the other hand, when the inside diameter is fixed, the effect of the wall thickness on the stress wave characteristics is more obvious.

  20. Development of a nearshore oscillating surge wave energy converter with variable geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, N. M.; Lawson, M. J.; Yu, Y. H.

    This paper presents an analysis of a novel wave energy converter concept that combines an oscillating surge wave energy converter (OSWEC) with control surfaces. The control surfaces allow for a variable device geometry that enables the hydrodynamic properties to be adapted with respect to structural loading, absorption range and power-take-off capability. The device geometry is adjusted on a sea state-to-sea state time scale and combined with wave-to-wave manipulation of the power take-off (PTO) to provide greater control over the capture efficiency, capacity factor, and design loads. This work begins with a sensitivity study of the hydrodynamic coefficients with respect tomore » device width, support structure thickness, and geometry. A linear frequency domain analysis is used to evaluate device performance in terms of absorbed power, foundation loads, and PTO torque. Previous OSWEC studies included nonlinear hydrodynamics, in response a nonlinear model that includes a quadratic viscous damping torque that was linearized via the Lorentz linearization. Inclusion of the quadratic viscous torque led to construction of an optimization problem that incorporated motion and PTO constraints. Results from this study found that, when transitioning from moderate-to-large sea states the novel OSWEC was capable of reducing structural loads while providing a near constant power output.« less

  1. Estimation of in-situ stresses in concrete members using polarized ultrasonic shear waves

    NASA Astrophysics Data System (ADS)

    Chen, Andrew; Schumacher, Thomas

    2014-02-01

    Ultrasonic testing is commonly used to detect flaws, estimate geometries, and characterize properties of materials and structures. Acoustoelasticity refers to the dependency of stress wave velocity with applied stresses and is a phenomenon that has been known by geophysicists since the 1960s. A way to capitalize on this effect for concrete applications is by using ultrasonic shear waves which are particularly sensitive to applied stresses when polarized in the direction of the applied stress. The authors conducted an experiment on a 150 mm (6 in.) diameter concrete cylinder specimen with a length of 305 mm (12 in.) that was loaded in discrete load steps to failure. At each load step two ultrasonic shear waves were transmitted through the specimen, one with the polarization perpendicular and the other transverse to the applied stress. The velocity difference between the two sets of polarized shear waves was found to correlate with the applied stress in the specimen. Two potential applications for this methodology include estimation of stresses in pre-stressed concrete bridge girders and investigation of load redistribution in structural support elements after extreme events. This paper introduces the background of the methodology, presents an analysis of the collected data, and discusses the relationship between the recorded signals and the applied stress.

  2. Determining the spatial and temporal variability of Enceladus' mass-loading rate from ion-cyclotron wave observations and hybrid simulations

    NASA Astrophysics Data System (ADS)

    Powell, Ronald; Wei, Hanying; Cowee, Misa; Russell, Christopher; Leisner, Jared; Dougherty, Michele

    2014-05-01

    The southern plume of Enceladus releases a significant amount of neutrals, ions and dust into the inner magnetosphere of Saturn, thus it plays a critical role in the dynamics of plasma transport. The moon is also considered to be the ultimate source for the dusty E-ring and the extended neutral cloud from 3.5 to 6.5 Saturn radii. The mass loading rate from the plume can not only be directly measured from plasma instruments, but can also be obtained from the magnetic signatures produced by the plume and the properties of ion-cyclotron waves (ICW) generated by pickup ions from the plume. The ICWs grow from the free energy of the highly anisotropic distribution of the pickup ions, and their powers are proportional to the density and energy of the pickup ions. At Enceladus, ICWs are detected by Cassini not only near the moon but throughout the extended neutral cloud in all local times. However, the wave power is largely enhanced near the moon's longitude rather than far away from it. This indicates that on top of the relatively azimuthally symmetric mass-loading source of the neutral cloud, there is a much denser cloud of neutrals centered on the moon and rotating with it. The latter source is the instantaneous mass loading from Enceladus' plume, which leads to asymmetry and dynamics in the magnetosphere. From hybrid simulations, we study the ICW generation and understand the relationship between wave power and pickup ion densities. From observations, we obtain the spatial profiles of the ICW power near and far from the moon. Through comparison with waves at longitudes far away from the moon, we investigate how significant is the plume's mass-loading with respect to the neutral cloud mass-loading. We also compare the waves along several groups of identical trajectories and find that the temporal variability of the plume is within a factor of two.

  3. Mass loading and heating of the Enceladus torus from ion-cyclotron wave observations and hybrid simulations in the Saturn magnetosphere

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Dougherty, Michele K.; Cowee, Misa M.; Wei, Hanying; Leisner, Jared; Powell, Ronald

    The southern plume of Enceladus releases a significant amount of neutrals, ions and dust into the inner magnetosphere of Saturn, thus it plays a critical role in the dynamics of plasma transport. The moon is also considered to be the ultimate source for the dusty E-ring and the extended neutral cloud from 3.5 to 6.5 Saturn radii. The mass loading rate from the plume can not only be directly measured from plasma instruments, but can also be obtained from the magnetic signatures produced by the plume and the properties of ion-cyclotron waves (ICW) generated by pickup ions from the plume. The ICWs grow from the free energy of the highly anisotropic distribution of the pickup ions, and their powers are proportional to the density and energy of the pickup ions. At Enceladus, ICWs are detected by Cassini not only near the moon but throughout the extended neutral cloud in all local times. However, the wave power is largely enhanced near the moon’s longitude rather than far away from it. This indicates that on top of the relatively azimuthally symmetric mass-loading source of the neutral cloud, there is a much denser cloud of neutrals centered on the moon and rotating with it. The latter source is the instantaneous mass loading from Enceladus’ plume, which leads to asymmetry and dynamics in the magnetosphere. From hybrid simulations, we study the ICW generation and understand the relationship between wave power and pickup ion densities. From observations, we obtain the spatial profiles of the ICW power near and far from the moon. Through comparison with waves at longitudes far away from the moon, we investigate how significant is the plume’s mass-loading with respect to the neutral cloud mass-loading. We also compare the waves along several groups of identical trajectories and find that the temporal variability of the plume is within a factor of two.

  4. Effect of Valsartan on Cerebellar Adrenomedullin System Dysregulation During Hypertension.

    PubMed

    Figueira, Leticia; Israel, Anita

    2017-02-01

    Adrenomedullin (AM) and its receptors components, calcitonin-receptor-like receptor (CRLR), and receptor activity-modifying protein (RAMP1, RAMP2, and RAMP3) are expressed in cerebellum. Cerebellar AM, AM binding sites and receptor components are altered during hypertension, suggesting a role for cerebellar AM in blood pressure regulation. Thus, we assessed the effect of valsartan, on AM and its receptor components expression in the cerebellar vermis of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Additionally, we evaluated AM action on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity, and thiobarbituric acid reactive substances (TBARS) production in cerebellar vermis. Animals were treated with valsartan or vehicle for 11 days. Rats were sacrificed by decapitation; cerebellar vermis was dissected; and AM, CRLR, RAMP1, RAMP2, and RAMP3 expression was quantified by Western blot analysis. CAT, SOD, and GPx activity was determined spectrophotometrically and blood pressure by non-invasive plethysmography. We demonstrate that AM and RAMP2 expression was lower in cerebellum of SHR rats, while CRLR, RAMP1, and RAMP3 expression was higher than those of WKY rats. AM reduced cerebellar CAT, SOD, GPx activities, and TBARS production in WKY rats, but not in SHR rats. Valsartan reduced blood pressure and reversed the altered expression of AM and its receptors components, as well the loss of AM capacity to reduce antioxidant enzyme activity and TBARS production in SHR rats. These findings demonstrate that valsartan is able to reverse the dysregulation of cerebellar adrenomedullinergic system; and they suggest that altered AM system in the cerebellum could represent the primary abnormality leading to hypertension.

  5. Breaking phase focused wave group loads on offshore wind turbine monopiles

    NASA Astrophysics Data System (ADS)

    Ghadirian, A.; Bredmose, H.; Dixen, M.

    2016-09-01

    The current method for calculating extreme wave loads on offshore wind turbine structures is based on engineering models for non-breaking regular waves. The present article has the aim of validating previously developed models at DTU, namely the OceanWave3D potential flow wave model and a coupled OceanWave3D-OpenFOAM solver, against measurements of focused wave group impacts on a monopile. The focused 2D and 3D wave groups are reproduced and the free surface elevation and the in-line forces are compared to the experimental results. In addition, the pressure distribution on the monopile is examined at the time of maximum force and discussed in terms of shape and magnitude. Relative pressure time series are also compared between the simulations and experiments and detailed pressure fields for a 2D and 3D impact are discussed in terms of impact type. In general a good match for free surface elevation, in-line force and wave-induced pressures is found.

  6. Dielectric-loaded waveguide circulator for cryogenically cooled and cascaded maser waveguide structures

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.; Quinn, R. B. (Inventor)

    1980-01-01

    A dielectrically loaded four port waveguide circulator is used with a reflected wave maser connected to a second port between first and third ports to form one of a plurality of cascaded maser waveguide structures. The fourth port is connected to a waveguide loaded with microwave energy absorbing material. The third (output signal) port of one maser waveguide structure is connected by a waveguide loaded with dielectric material to the first (input) port of an adjacent maser waveguide structure, and the second port is connected to a reflected wave maser by a matching transformer which passes the signal to be amplified into and out of the reflected wavemaser and blocks pumping energy in the reflected wave maser from entering the circulator. A number of cascaded maser waveguide structures are thus housed in a relatively small volume of conductive material placed within a cryogenically cooled magnet assembly.

  7. Nondestructive evaluation of orthopaedic implant stability in THA using highly nonlinear solitary waves

    NASA Astrophysics Data System (ADS)

    Yang, Jinkyu; Silvestro, Claudio; Sangiorgio, Sophia N.; Borkowski, Sean L.; Ebramzadeh, Edward; De Nardo, Luigi; Daraio, Chiara

    2012-01-01

    We propose a new biomedical sensing technique based on highly nonlinear solitary waves to assess orthopaedic implant stability in a nondestructive and efficient manner. We assemble a granular crystal actuator consisting of a one-dimensional tightly packed array of spherical particles, to generate acoustic solitary waves. Via direct contact with the specimen, we inject acoustic solitary waves into a biomedical prosthesis, and we nondestructively evaluate the mechanical integrity of the bone-prosthesis interface, studying the properties of the waves reflected from the contact zone between the granular crystal and the implant. The granular crystal contains a piezoelectric sensor to measure the travelling solitary waves, which allows it to function also as a sensor. We perform a feasibility study using total hip arthroplasty (THA) samples made of metallic stems implanted in artificial composite femurs using polymethylmethacrylate for fixation. We first evaluate the sensitivity of the proposed granular crystal sensor to various levels of prosthesis insertion into the composite femur. Then, we impose a sequence of harsh mechanical loading on the THA samples to degrade the mechanical integrity at the stem-cement interfaces, using a femoral load simulator that simulates aggressive, accelerated physiological loading. We investigate the implant stability via the granular crystal sensor-actuator during testing. Preliminary results suggest that the reflected waves respond sensitively to the degree of implant fixation. In particular, the granular crystal sensor-actuator successfully detects implant loosening at the stem-cement interface following violent cyclic loading. This study suggests that the granular crystal sensor and actuator has the potential to detect metal-cement defects in a nondestructive manner for orthopaedic applications.

  8. Twin Cities ramp meter evaluation : executive summary

    DOT National Transportation Integrated Search

    2001-02-01

    This report details the results of a study on the traffic flow and safety impacts of ramp metering. The study served two important public purposes. 1. It thoroughly documented the benefits resulting from ramp metering to traffic operations and relate...

  9. Developing an area-wide system for coordinated ramp meter control.

    DOT National Transportation Integrated Search

    2008-12-01

    Ramp metering has been broadly accepted and deployed as an effective countermeasure : against both recurrent and non-recurrent congestion on freeways. However, many current ramp : metering algorithms tend to improve only freeway travels using local d...

  10. Facility No. S362, view across the ramp U.S. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility No. S362, view across the ramp - U.S. Naval Base, Pearl Harbor, Seaplane Ramps - World War II Type, Southwest and west shore of Ford Island, near Wasp Boulevard, Pearl City, Honolulu County, HI

  11. Congestion-Responsive On-Ramp Metering : Before and After Studies - Phase 1

    DOT National Transportation Integrated Search

    2016-07-06

    The objective of this project was to develop recommendations toward a statewide policy of congestion responsive freeway ramp metering operation. The research is performed in two phases. In phase 1, alternative ramp metering activation strategies were...

  12. An exploratory investigation of cumulative shock fatigue.

    NASA Technical Reports Server (NTRS)

    Simonson, D.; Byrne, J. G.

    1972-01-01

    A simple device for producing cumulative shock loading in solids is described. The device uses a ballistic-impact-driven projectile to introduce high-stress waves into a solid. The impact time and load amplitude can be varied to produce fracture in one or several impacts in PMMA rods. The wavefront approached a square wave shape. Materials other than PMMA were loaded to failure to demonstrate the versatility of the device. Fracture morphologies observed with optical and scanning-electron microscopy are described.

  13. Assessing the Effectiveness of Ramp-Up During Sonar Operations Using Exposure Models.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2016-01-01

    Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures.

  14. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.

    PubMed

    Then, C; Stassen, B; Depta, K; Silber, G

    2017-07-01

    Mechanical characterization of human superficial facial tissue has important applications in biomedical science, computer assisted forensics, graphics, and consumer goods development. Specifically, the latter may include facial hair removal devices. Predictive accuracy of numerical models and their ability to elucidate biomechanically relevant questions depends on the acquisition of experimental data and mechanical tissue behavior representation. Anisotropic viscoelastic behavioral characterization of human facial tissue, deformed in vivo with finite strain, however, is sparse. Employing an experimental-numerical approach, a procedure is presented to evaluate multidirectional tensile properties of superficial tissue layers of the face in vivo. Specifically, in addition to stress relaxation, displacement-controlled multi-step ramp-and-hold protocols were performed to separate elastic from inelastic properties. For numerical representation, an anisotropic hyperelastic material model in conjunction with a time domain linear viscoelasticity formulation with Prony series was employed. Model parameters were inversely derived, employing finite element models, using multi-criteria optimization. The methodology provides insight into mechanical superficial facial tissue properties. Experimental data shows pronounced anisotropy, especially with large strain. The stress relaxation rate does not depend on the loading direction, but is strain-dependent. Preconditioning eliminates equilibrium hysteresis effects and leads to stress-strain repeatability. In the preconditioned state tissue stiffness and hysteresis insensitivity to strain rate in the applied range is evident. The employed material model fits the nonlinear anisotropic elastic results and the viscoelasticity model reasonably reproduces time-dependent results. Inversely deduced maximum anisotropic long-term shear modulus of linear elasticity is G ∞,max aniso =2.43kPa and instantaneous initial shear modulus at an applied rate of ramp loading is G 0,max aniso =15.38kPa. Derived mechanical model parameters constitute a basis for complex skin interaction simulation. Copyright © 2017. Published by Elsevier Ltd.

  15. KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transportation (CT) number 2 shows the new muffler system on the vehicle. The CT also recently underwent modifications to the cab. The CT is transporting a Mobile Launch Platform (MLP). The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transportation (CT) number 2 shows the new muffler system on the vehicle. The CT also recently underwent modifications to the cab. The CT is transporting a Mobile Launch Platform (MLP). The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  16. KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building with a Mobile Launcher Platform (MLP) on top on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building with a Mobile Launcher Platform (MLP) on top on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  17. KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2 nears the launch pad with a Mobile Launcher Platform (MLP) on top. After recent modifications to the cab and muffler system, the CT was taken on a test run. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2 nears the launch pad with a Mobile Launcher Platform (MLP) on top. After recent modifications to the cab and muffler system, the CT was taken on a test run. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  18. KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab, at left, that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab, at left, that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  19. KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab (left, above the tracks) that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab (left, above the tracks) that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  20. An age-structured model of hiv infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells.

    PubMed

    Nelson, Patrick W; Gilchrist, Michael A; Coombs, Daniel; Hyman, James M; Perelson, Alan S

    2004-09-01

    Mathematical models of HIV-1 infection can help interpret drug treatment experiments and improve our understanding of the interplay between HIV-1 and the immune system. We develop and analyze an age- structured model of HIV-1 infection that allows for variations in the death rate of productively infected T cells and the production rate of viral particles as a function of the length of time a T cell has been infected. We show that this model is a generalization of the standard differential equation and of delay models previously used to describe HIV-1 infection, and provides a means for exploring fundamental issues of viral production and death. We show that the model has uninfected and infected steady states, linked by a transcritical bifurcation. We perform a local stability analysis of the nontrivial equilibrium solution and provide a general stability condition for models with age structure. We then use numerical methods to study solutions of our model focusing on the analysis of primary HIV infection. We show that the time to reach peak viral levels in the blood depends not only on initial conditions but also on the way in which viral production ramps up. If viral production ramps up slowly, we find that the time to peak viral load is delayed compared to results obtained using the standard (constant viral production) model of HIV infection. We find that data on viral load changing over time is insufficient to identify the functions specifying the dependence of the viral production rate or infected cell death rate on infected cell age. These functions must be determined through new quantitative experiments.

  1. Improving short-term forecasting during ramp events by means of Regime-Switching Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Gallego, C.; Costa, A.; Cuerva, A.

    2010-09-01

    Since nowadays wind energy can't be neither scheduled nor large-scale storaged, wind power forecasting has been useful to minimize the impact of wind fluctuations. In particular, short-term forecasting (characterised by prediction horizons from minutes to a few days) is currently required by energy producers (in a daily electricity market context) and the TSO's (in order to keep the stability/balance of an electrical system). Within the short-term background, time-series based models (i.e., statistical models) have shown a better performance than NWP models for horizons up to few hours. These models try to learn and replicate the dynamic shown by the time series of a certain variable. When considering the power output of wind farms, ramp events are usually observed, being characterized by a large positive gradient in the time series (ramp-up) or negative (ramp-down) during relatively short time periods (few hours). Ramp events may be motivated by many different causes, involving generally several spatial scales, since the large scale (fronts, low pressure systems) up to the local scale (wind turbine shut-down due to high wind speed, yaw misalignment due to fast changes of wind direction). Hence, the output power may show unexpected dynamics during ramp events depending on the underlying processes; consequently, traditional statistical models considering only one dynamic for the hole power time series may be inappropriate. This work proposes a Regime Switching (RS) model based on Artificial Neural Nets (ANN). The RS-ANN model gathers as many ANN's as different dynamics considered (called regimes); a certain ANN is selected so as to predict the output power, depending on the current regime. The current regime is on-line updated based on a gradient criteria, regarding the past two values of the output power. 3 Regimes are established, concerning ramp events: ramp-up, ramp-down and no-ramp regime. In order to assess the skillness of the proposed RS-ANN model, a single-ANN model (without regime classification) is adopted as a reference model. Both models are evaluated in terms of Improvement over Persistence on the Mean Square Error basis (IoP%) when predicting horizons form 1 time-step to 5. The case of a wind farm located in the complex terrain of Alaiz (north of Spain) has been considered. Three years of available power output data with a hourly resolution have been employed: two years for training and validation of the model and the last year for assessing the accuracy. Results showed that the RS-ANN overcame the single-ANN model for one step-ahead forecasts: the overall IoP% was up to 8.66% for the RS-ANN model (depending on the gradient criterion selected to consider the ramp regime triggered) and 6.16% for the single-ANN. However, both models showed similar accuracy for larger horizons. A locally-weighted evaluation during ramp events for one-step ahead was also performed. It was found that the IoP% during ramps-up increased from 17.60% (case of single-ANN) to 22.25% (case of RS-ANN); however, during the ramps-down events this improvement increased from 18.55% to 19.55%. Three main conclusions are derived from this case study: It highlights the importance of considering statistical models capable of differentiate several regimes showed by the output power time series in order to improve the forecasting during extreme events like ramps. On-line regime classification based on available power output data didn't seem to contribute to improve forecasts for horizons beyond one-step ahead. Tacking into account other explanatory variables (local wind measurements, NWP outputs) could lead to a better understanding of ramp events, improving the regime assessment also for further horizons. The RS-ANN model slightly overcame the single-ANN during ramp-down events. If further research reinforce this effect, special attention should be addressed to understand the underlying processes during ramp-down events.

  2. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  3. RAMP2 Influences Glucagon Receptor Pharmacology via Trafficking and Signaling.

    PubMed

    Cegla, Jaimini; Jones, Ben J; Gardiner, James V; Hodson, David J; Marjot, Thomas; McGlone, Emma R; Tan, Tricia M; Bloom, Stephen R

    2017-08-01

    Endogenous satiety hormones provide an attractive target for obesity drugs. Glucagon causes weight loss by reducing food intake and increasing energy expenditure. To further understand the cellular mechanisms by which glucagon and related ligands activate the glucagon receptor (GCGR), we investigated the interaction of the GCGR with receptor activity modifying protein (RAMP)2, a member of the family of receptor activity modifying proteins. We used a combination of competition binding experiments, cell surface enzyme-linked immunosorbent assay, functional assays assessing the Gαs and Gαq pathways and β-arrestin recruitment, and small interfering RNA knockdown to examine the effect of RAMP2 on the GCGR. Ligands tested were glucagon; glucagonlike peptide-1 (GLP-1); oxyntomodulin; and analog G(X), a GLP-1/glucagon coagonist developed in-house. Confocal microscopy was used to assess whether RAMP2 affects the subcellular distribution of GCGR. Here we demonstrate that coexpression of RAMP2 and the GCGR results in reduced cell surface expression of the GCGR. This was confirmed by confocal microscopy, which demonstrated that RAMP2 colocalizes with the GCGR and causes significant GCGR cellular redistribution. Furthermore, the presence of RAMP2 influences signaling through the Gαs and Gαq pathways, as well as recruitment of β-arrestin. This work suggests that RAMP2 may modify the agonist activity and trafficking of the GCGR, with potential relevance to production of new peptide analogs with selective agonist activities.

  4. Flexural edge waves generated by steady-state propagation of a loaded rectilinear crack in an elastically supported thin plate

    NASA Astrophysics Data System (ADS)

    Nobili, Andrea; Radi, Enrico; Lanzoni, Luca

    2017-08-01

    The problem of a rectilinear crack propagating at constant speed in an elastically supported thin plate and acted upon by an equally moving load is considered. The full-field solution is obtained and the spotlight is set on flexural edge wave generation. Below the critical speed for the appearance of travelling waves, a threshold speed is met which marks the transformation of decaying edge waves into edge waves propagating along the crack and dying away from it. Yet, besides these, and for any propagation speed, a pair of localized edge waves, which rapidly decay behind the crack tip, is also shown to exist. These waves are characterized by a novel dispersion relation and fade off from the crack line in an oscillatory manner, whence they play an important role in the far field behaviour. Dynamic stress intensity factors are obtained and, for speed close to the critical speed, they show a resonant behaviour which expresses the most efficient way to channel external work into the crack. Indeed, this behaviour is justified through energy considerations regarding the work of the applied load and the energy release rate. Results might be useful in a wide array of applications, ranging from fracturing and machining to acoustic emission and defect detection.

  5. Flexural edge waves generated by steady-state propagation of a loaded rectilinear crack in an elastically supported thin plate.

    PubMed

    Nobili, Andrea; Radi, Enrico; Lanzoni, Luca

    2017-08-01

    The problem of a rectilinear crack propagating at constant speed in an elastically supported thin plate and acted upon by an equally moving load is considered. The full-field solution is obtained and the spotlight is set on flexural edge wave generation. Below the critical speed for the appearance of travelling waves, a threshold speed is met which marks the transformation of decaying edge waves into edge waves propagating along the crack and dying away from it. Yet, besides these, and for any propagation speed, a pair of localized edge waves, which rapidly decay behind the crack tip, is also shown to exist. These waves are characterized by a novel dispersion relation and fade off from the crack line in an oscillatory manner, whence they play an important role in the far field behaviour. Dynamic stress intensity factors are obtained and, for speed close to the critical speed, they show a resonant behaviour which expresses the most efficient way to channel external work into the crack. Indeed, this behaviour is justified through energy considerations regarding the work of the applied load and the energy release rate. Results might be useful in a wide array of applications, ranging from fracturing and machining to acoustic emission and defect detection.

  6. Twin Cities ramp meter evaluation : evaluation plan

    DOT National Transportation Integrated Search

    2000-09-25

    The Minnesota Department of Transportation (Mn/DOT) uses ramp meters to manage freeway access on approximately 210 miles of freeways in the Twin Cities metropolitan area. Mn/DOT first tested ramp meters in 1969 as a method to optimize freeway safety ...

  7. 16. Built c. 1936, this ramp from the first to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Built c. 1936, this ramp from the first to the second floor along the northwestern side of Pier G (shown at the first floor) was called 'ramp C.' - Lehigh Valley Railroad, Pier G, Jersey City, Hudson County, NJ

  8. Visualization of the energy flow for guided forward and backward waves in and around a fluid-loaded elastic cylindrical shell via the Poynting vector field

    NASA Astrophysics Data System (ADS)

    Dean, Cleon E.; Braselton, James P.

    2004-05-01

    Color-coded and vector-arrow grid representations of the Poynting vector field are used to show the energy flow in and around a fluid-loaded elastic cylindrical shell for both forward- and backward-propagating waves. The present work uses a method adapted from a simpler technique due to Kaduchak and Marston [G. Kaduchak and P. L. Marston, ``Traveling-wave decomposition of surface displacements associated with scattering by a cylindrical shell: Numerical evaluation displaying guided forward and backward wave properties,'' J. Acoust. Soc. Am. 98, 3501-3507 (1995)] to isolate unidirectional energy flows.

  9. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. Volume 2, Part 1; Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  10. Variation of Time Domain Failure Probabilities of Jack-up with Wave Return Periods

    NASA Astrophysics Data System (ADS)

    Idris, Ahmad; Harahap, Indra S. H.; Ali, Montassir Osman Ahmed

    2018-04-01

    This study evaluated failure probabilities of jack up units on the framework of time dependent reliability analysis using uncertainty from different sea states representing different return period of the design wave. Surface elevation for each sea state was represented by Karhunen-Loeve expansion method using the eigenfunctions of prolate spheroidal wave functions in order to obtain the wave load. The stochastic wave load was propagated on a simplified jack up model developed in commercial software to obtain the structural response due to the wave loading. Analysis of the stochastic response to determine the failure probability in excessive deck displacement in the framework of time dependent reliability analysis was performed by developing Matlab codes in a personal computer. Results from the study indicated that the failure probability increases with increase in the severity of the sea state representing a longer return period. Although the results obtained are in agreement with the results of a study of similar jack up model using time independent method at higher values of maximum allowable deck displacement, it is in contrast at lower values of the criteria where the study reported that failure probability decreases with increase in the severity of the sea state.

  11. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Nikhar; Tom, Nathan M

    2017-06-03

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less

  12. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Nikhar; Tom, Nathan

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less

  13. Examining Relay Ramp Evolution Through Paleo-shoreline Deformation Analysis, Warner Valley Fault, Oregon

    NASA Astrophysics Data System (ADS)

    Young, C. S.; Dawers, N. H.

    2017-12-01

    Fault growth is often accomplished by linking a series of en echelon faults through relay ramps. A relay ramp is the area between two overlapping fault segments that tilts and deforms as the faults accrue displacement. The structural evolution of breached normal fault relay ramps remains poorly understood because of the difficulty in defining how slip is partitioned between the most basinward fault (known as the outboard fault), the overlapping fault (inboard fault), and any ramp-breaching linking faults. Along the Warner Valley fault in south-central Oregon, two relay ramps displaying different fault linkage geometries are lined with a series of paleo-lacustrine shorelines that record a Pleistocene paleolake regression. The inner edges of these shorelines act as paleo-horizontal datums that have been deformed by fault activity, and are used to measure relative slip variations across the relay ramp bounding faults. By measuring the elevation changes using a 10m digital elevation model (DEM) of shoreline inner edges, we estimate the amount of slip partitioned between the inboard, outboard and ramp-breaching linking faults. In order to attribute shoreline deformation to fault activity we identify shoreline elevation anomalies, where deformation exceeds a ± 3.34 m window, which encompass our conservative estimates of natural variability in the shoreline geomorphology and the error associated with the data collection. Fault activity along the main length of the fault for each ramp-breaching style is concentrated near the intersection of the linking fault and the outboard portion of the main fault segment. However, fault activity along the outboard fault tip varies according to breaching style. At a footwall breach the entire outboard fault tip appears relatively inactive. At a mid-ramp breach the outboard fault tip remains relatively active because of the proximity of the linking fault to this fault tip.

  14. The ability of laying pullets to negotiate two ramp designs as measured by bird preference and behaviour

    PubMed Central

    Weeks, Claire A.; Norman, Kate I.; Nicol, Christine J.

    2017-01-01

    Background Laying hens are often kept in barn or free-range systems where they must negotiate level changes in the house to access resources. However, collisions and resultant keel fractures are commonplace. Producers sometimes add ramps to make raised areas more accessible but designs vary and very little research has investigated bird preference or behaviour when using different ramp designs, or the effect of ramp design on falls and collisions. Methods Two ramp designs were studied in an experimental setting—a ramp made of plastic poultry slats (grid ramp, GR) and a ramp made of wooden rungs (ladder ramp, LR). Sixty-four young female hens were trained to move to a food reward and this was used to test their behavioural responses when first negotiating the two different ramps during individual tests. Both upward and downward transitions were studied. Ramp preference was also tested using a room that replicated a commercial single-tier system with both types of ramp available. Birds were placed in this room in groups of 16 for three days and their use of the ramps studied. Results A greater percentage of birds successfully completed (reached the reward bowl) on the GR than the LR during both upward (58% vs 37%) and downward (83% vs 73%) transitions, and a smaller percentage of birds made zero attempts to use the GR than the LR (upwards: 13% vs 56%, downwards: 8% vs 26%). When making a downward transition, more hesitation behaviours were seen (head orientations, stepping on the spot, moving away) for the LR. However, more head orientations were seen for the GR during the upward transition. Birds were more likely to abort attempts (an attempt began when a bird placed both feet on the ramp) to move up the GR than the LR. Birds took longer to negotiate the LR than the GR in both directions, and more pauses were seen during a successful upward transition on the LR. Birds were more likely to move down the GR by walking/running whereas birds tended to jump over the entire LR. More collisions with the food reward bowl were seen for the LR. In the group tests, birds preferred to use the GR, with more transitions seen at all timepoints. However, in these tests, birds preferred to rest on the LR with greater numbers of birds counted on this type of ramp during scan sampling at all timepoints. Discussion Behavioural results suggest that the GR was easier for the birds to use than the LR, particularly on the downward transition. The GR was also less likely to result in collisions. However, the upward transition may be more difficult on the GR for some birds, potentially because of the inability to pause on a level surface during the transition. The results suggest that the GR was preferred by pullets for moving between a raised area and the ground but the LR was preferred for resting. PMID:29177116

  15. Guidelines for Evaluation of Ramp Signaling Deployments in a Real-Time Operations Environment

    DOT National Transportation Integrated Search

    2017-12-01

    State agencies have developed warrants and guidelines for the identification of on-ramps for metering. However, these warrants only consider recurrent traffic conditions in the vicinity of each on-ramp without considering the need to meter multiple r...

  16. Ramp metering : a review of the literature.

    DOT National Transportation Integrated Search

    1998-01-01

    Ramp metering is an effective, viable, and practical strategy used to manage freeway traffic. It is a proven freeway management technique as various forms of ramp control have been in place since the 1960s in the Chicago, Detroit, and Los Angeles are...

  17. Aerial view looking northwest showing location of seaplane ramps 2,3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial view looking northwest showing location of seaplane ramps 2,3, and 4. Ramps lead from buildings 1 and 2, bayside left center, into San Diego Bay. - Naval Air Station North Island, North Island, San Diego, San Diego County, CA

  18. Measuring the effectiveness of ramp metering strategies on I-12 : [tech summary].

    DOT National Transportation Integrated Search

    2013-10-01

    In recent years, more emphasis has been placed on Active Traffi c Management (ATM) strategies such as speed harmonization, managed lanes, and : ramp metering. Ramp metering is one of the successful active traffi c control strategies, controlling the ...

  19. Experimental analysis on the dynamic wake of an actuator disc undergoing transient loads

    NASA Astrophysics Data System (ADS)

    Yu, W.; Hong, V. W.; Ferreira, C.; van Kuik, G. A. M.

    2017-10-01

    The Blade Element Momentum model, which is based on the actuator disc theory, is still the model most used for the design of open rotors. Although derived from steady cases with a fully developed wake, this approach is also applied to unsteady cases, with additional engineering corrections. This work aims to study the impact of an unsteady loading on the wake of an actuator disc. The load and flow of an actuator disc are measured in the Open Jet Facility wind tunnel of Delft University of Technology, for steady and unsteady cases. The velocity and turbulence profiles are characterized in three regions: the inner wake region, the shear layer region and the region outside the wake. For unsteady load cases, the measured velocity field shows a hysteresis effect in relation to the loading, showing differences between the cases when loading is increased and loading is decreased. The flow field also shows a transient response to the step change in loading, with either an overshoot or undershoot of the velocity in relation to the steady-state velocity. In general, a smaller reduced ramp time results in a faster velocity transient, and in turn a larger amplitude of overshoot or undershoot. Time constants analysis shows that the flow reaches the new steady-state slower for load increase than for load decrease; the time constants outside the wake are generally larger than at other radial locations for a given downstream plane; the time constants of measured velocity in the wake show radial dependence.The data are relevant for the validation of numerical models for unsteady actuator discs and wind turbines, and are made available in an open source database (see Appendix).

  20. Gas loading of graphene-quartz surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Whitehead, E. F.; Chick, E. M.; Bandhu, L.; Lawton, L. M.; Nash, G. R.

    2013-08-01

    Graphene was transferred to the propagation path of quartz surface acoustic wave devices and the attenuation due to gas loading of air and argon measured at 70 MHz and 210 MHz and compared to devices with no graphene. Under argon loading, there was no significant difference between the graphene and non-graphene device and the values of measured attenuation agree well with those calculated theoretically. Under air loading, at 210 MHz, there was a significant difference between the non-graphene and graphene devices, with the average value of attenuation obtained with the graphene devices being approximately twice that obtained from the bare quartz devices.

Top