Liu, Xian; Engel, Charles C
2012-12-20
Researchers often encounter longitudinal health data characterized with three or more ordinal or nominal categories. Random-effects multinomial logit models are generally applied to account for potential lack of independence inherent in such clustered data. When parameter estimates are used to describe longitudinal processes, however, random effects, both between and within individuals, need to be retransformed for correctly predicting outcome probabilities. This study attempts to go beyond existing work by developing a retransformation method that derives longitudinal growth trajectories of unbiased health probabilities. We estimated variances of the predicted probabilities by using the delta method. Additionally, we transformed the covariates' regression coefficients on the multinomial logit function, not substantively meaningful, to the conditional effects on the predicted probabilities. The empirical illustration uses the longitudinal data from the Asset and Health Dynamics among the Oldest Old. Our analysis compared three sets of the predicted probabilities of three health states at six time points, obtained from, respectively, the retransformation method, the best linear unbiased prediction, and the fixed-effects approach. The results demonstrate that neglect of retransforming random errors in the random-effects multinomial logit model results in severely biased longitudinal trajectories of health probabilities as well as overestimated effects of covariates on the probabilities. Copyright © 2012 John Wiley & Sons, Ltd.
Multidimensional Computerized Adaptive Testing for Indonesia Junior High School Biology
ERIC Educational Resources Information Center
Kuo, Bor-Chen; Daud, Muslem; Yang, Chih-Wei
2015-01-01
This paper describes a curriculum-based multidimensional computerized adaptive test that was developed for Indonesia junior high school Biology. In adherence to the Indonesian curriculum of different Biology dimensions, 300 items was constructed, and then tested to 2238 students. A multidimensional random coefficients multinomial logit model was…
ERIC Educational Resources Information Center
Lee, John Chi-Kin; Zhang, Zhonghua; Yin, Hongbiao
2010-01-01
This article used the multidimensional random coefficients multinomial logit model to examine the construct validity and detect the substantial differential item functioning (DIF) of the Chinese version of motivated strategies for learning questionnaire (MSLQ-CV). A total of 1,354 Hong Kong junior high school students were administered the…
Ye, Xin; Garikapati, Venu M.; You, Daehyun; ...
2017-11-08
Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Xin; Garikapati, Venu M.; You, Daehyun
Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less
Sarma, Sisira; Simpson, Wayne
2007-12-01
Utilizing a unique longitudinal survey linked with home care use data, this paper analyzes the determinants of elderly living arrangements in Manitoba, Canada using a random effects multinomial logit model that accounts for unobserved individual heterogeneity. Because current home ownership is potentially endogenous in a living arrangements choice model, we use prior home ownership as an instrument. We also use prior home care use as an instrument for home care and use a random coefficient framework to account for unobserved health status. After controlling for relevant socio-demographic factors and accounting for unobserved individual heterogeneity, we find that home care and home ownership reduce the probability of living in a nursing home. Consistent with previous studies, we find that age is a strong predictor of nursing home entry. We also find that married people, those who have lived longer in the same community, and those who are healthy are more likely to live independently and less likely to be institutionalized or to cohabit with individuals other than their spouse.
What influences participation in genetic carrier testing? Results from a discrete choice experiment.
Hall, Jane; Fiebig, Denzil G; King, Madeleine T; Hossain, Ishrat; Louviere, Jordan J
2006-05-01
This study explores factors that influence participation in genetic testing programs and the acceptance of multiple tests. Tay Sachs and cystic fibrosis are both genetically determined recessive disorders with differing severity, treatment availability, and prevalence in different population groups. We used a discrete choice experiment with a general community and an Ashkenazi Jewish sample; data were analysed using multinomial logit with random coefficients. Although Jewish respondents were more likely to be tested, both groups seem to be making very similar tradeoffs across attributes when they make genetic testing choices.
An INAR(1) Negative Multinomial Regression Model for Longitudinal Count Data.
ERIC Educational Resources Information Center
Bockenholt, Ulf
1999-01-01
Discusses a regression model for the analysis of longitudinal count data in a panel study by adapting an integer-valued first-order autoregressive (INAR(1)) Poisson process to represent time-dependent correlation between counts. Derives a new negative multinomial distribution by combining INAR(1) representation with a random effects approach.…
A Dirichlet-Multinomial Bayes Classifier for Disease Diagnosis with Microbial Compositions.
Gao, Xiang; Lin, Huaiying; Dong, Qunfeng
2017-01-01
Dysbiosis of microbial communities is associated with various human diseases, raising the possibility of using microbial compositions as biomarkers for disease diagnosis. We have developed a Bayes classifier by modeling microbial compositions with Dirichlet-multinomial distributions, which are widely used to model multicategorical count data with extra variation. The parameters of the Dirichlet-multinomial distributions are estimated from training microbiome data sets based on maximum likelihood. The posterior probability of a microbiome sample belonging to a disease or healthy category is calculated based on Bayes' theorem, using the likelihood values computed from the estimated Dirichlet-multinomial distribution, as well as a prior probability estimated from the training microbiome data set or previously published information on disease prevalence. When tested on real-world microbiome data sets, our method, called DMBC (for Dirichlet-multinomial Bayes classifier), shows better classification accuracy than the only existing Bayesian microbiome classifier based on a Dirichlet-multinomial mixture model and the popular random forest method. The advantage of DMBC is its built-in automatic feature selection, capable of identifying a subset of microbial taxa with the best classification accuracy between different classes of samples based on cross-validation. This unique ability enables DMBC to maintain and even improve its accuracy at modeling species-level taxa. The R package for DMBC is freely available at https://github.com/qunfengdong/DMBC. IMPORTANCE By incorporating prior information on disease prevalence, Bayes classifiers have the potential to estimate disease probability better than other common machine-learning methods. Thus, it is important to develop Bayes classifiers specifically tailored for microbiome data. Our method shows higher classification accuracy than the only existing Bayesian classifier and the popular random forest method, and thus provides an alternative option for using microbial compositions for disease diagnosis.
Graffelman, Jan; Sánchez, Milagros; Cook, Samantha; Moreno, Victor
2013-01-01
In genetic association studies, tests for Hardy-Weinberg proportions are often employed as a quality control checking procedure. Missing genotypes are typically discarded prior to testing. In this paper we show that inference for Hardy-Weinberg proportions can be biased when missing values are discarded. We propose to use multiple imputation of missing values in order to improve inference for Hardy-Weinberg proportions. For imputation we employ a multinomial logit model that uses information from allele intensities and/or neighbouring markers. Analysis of an empirical data set of single nucleotide polymorphisms possibly related to colon cancer reveals that missing genotypes are not missing completely at random. Deviation from Hardy-Weinberg proportions is mostly due to a lack of heterozygotes. Inbreeding coefficients estimated by multiple imputation of the missings are typically lowered with respect to inbreeding coefficients estimated by discarding the missings. Accounting for missings by multiple imputation qualitatively changed the results of 10 to 17% of the statistical tests performed. Estimates of inbreeding coefficients obtained by multiple imputation showed high correlation with estimates obtained by single imputation using an external reference panel. Our conclusion is that imputation of missing data leads to improved statistical inference for Hardy-Weinberg proportions.
Estimation from incomplete multinomial data. Ph.D. Thesis - Harvard Univ.
NASA Technical Reports Server (NTRS)
Credeur, K. R.
1978-01-01
The vector of multinomial cell probabilities was estimated from incomplete data, incomplete in that it contains partially classified observations. Each such partially classified observation was observed to fall in one of two or more selected categories but was not classified further into a single category. The data were assumed to be incomplete at random. The estimation criterion was minimization of risk for quadratic loss. The estimators were the classical maximum likelihood estimate, the Bayesian posterior mode, and the posterior mean. An approximation was developed for the posterior mean. The Dirichlet, the conjugate prior for the multinomial distribution, was assumed for the prior distribution.
A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA.
Fong, Duncan K H; Kim, Sunghoon; Chen, Zhe; DeSarbo, Wayne S
2016-03-01
A new Bayesian multinomial probit model is proposed for the analysis of panel choice data. Using a parameter expansion technique, we are able to devise a Markov Chain Monte Carlo algorithm to compute our Bayesian estimates efficiently. We also show that the proposed procedure enables the estimation of individual level coefficients for the single-period multinomial probit model even when the available prior information is vague. We apply our new procedure to consumer purchase data and reanalyze a well-known scanner panel dataset that reveals new substantive insights. In addition, we delineate a number of advantageous features of our proposed procedure over several benchmark models. Finally, through a simulation analysis employing a fractional factorial design, we demonstrate that the results from our proposed model are quite robust with respect to differing factors across various conditions.
Multinomial mixture model with heterogeneous classification probabilities
Holland, M.D.; Gray, B.R.
2011-01-01
Royle and Link (Ecology 86(9):2505-2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data. ?? 2010 Springer Science+Business Media, LLC.
Higgs, Megan D.; Link, William; White, Gary C.; Haroldson, Mark A.; Bjornlie, Daniel D.
2013-01-01
Mark-resight designs for estimation of population abundance are common and attractive to researchers. However, inference from such designs is very limited when faced with sparse data, either from a low number of marked animals, a low probability of detection, or both. In the Greater Yellowstone Ecosystem, yearly mark-resight data are collected for female grizzly bears with cubs-of-the-year (FCOY), and inference suffers from both limitations. To overcome difficulties due to sparseness, we assume homogeneity in sighting probabilities over 16 years of bi-annual aerial surveys. We model counts of marked and unmarked animals as multinomial random variables, using the capture frequencies of marked animals for inference about the latent multinomial frequencies for unmarked animals. We discuss undesirable behavior of the commonly used discrete uniform prior distribution on the population size parameter and provide OpenBUGS code for fitting such models. The application provides valuable insights into subtleties of implementing Bayesian inference for latent multinomial models. We tie the discussion to our application, though the insights are broadly useful for applications of the latent multinomial model.
[Depression Symptoms of Mothers and Fathers of Persons with Schizophrenia].
Alexandrowicz, Rainer W; König, Daniel; Unger, Annemarie; Klug, Günter; Soulier, Nathalie; Freidl, Marion; Friedrich, Fabian
2016-05-01
The purpose of the present study was to investigate if depression symptomatology of patients' parents is predicted by the symptoms of schizophrenia. 101 mothers and 101 fathers of the same patients suffering from schizophrenia were included into this study. Parents filled in the "Beck Depression Inventory". Patients were assessed by means of the "Positive and Negative Syndrome Scale". For statistical analyses a Multidimensional Random Coefficients Multinomial Logit Model was applied. We found a significant positive association between negative symptoms and depression severity of fathers and mothers. Further, a significant positive association between positive symptoms and depression severity of fathers, but not of mothers was found. Our results show that depression of mothers and of fathers is associated with symptoms of schizophrenia even when controlling for potential predictors. © Georg Thieme Verlag KG Stuttgart · New York.
Harrell-Williams, Leigh; Wolfe, Edward W
2014-01-01
Previous research has investigated the influence of sample size, model misspecification, test length, ability distribution offset, and generating model on the likelihood ratio difference test in applications of item response models. This study extended that research to the evaluation of dimensionality using the multidimensional random coefficients multinomial logit model (MRCMLM). Logistic regression analysis of simulated data reveal that sample size and test length have a large effect on the capacity of the LR difference test to correctly identify unidimensionality, with shorter tests and smaller sample sizes leading to smaller Type I error rates. Higher levels of simulated misfit resulted in fewer incorrect decisions than data with no or little misfit. However, Type I error rates indicate that the likelihood ratio difference test is not suitable under any of the simulated conditions for evaluating dimensionality in applications of the MRCMLM.
NASA Astrophysics Data System (ADS)
Zeraatpisheh, Mojtaba; Ayoubi, Shamsollah; Jafari, Azam; Finke, Peter
2017-05-01
The efficiency of different digital and conventional soil mapping approaches to produce categorical maps of soil types is determined by cost, sample size, accuracy and the selected taxonomic level. The efficiency of digital and conventional soil mapping approaches was examined in the semi-arid region of Borujen, central Iran. This research aimed to (i) compare two digital soil mapping approaches including Multinomial logistic regression and random forest, with the conventional soil mapping approach at four soil taxonomic levels (order, suborder, great group and subgroup levels), (ii) validate the predicted soil maps by the same validation data set to determine the best method for producing the soil maps, and (iii) select the best soil taxonomic level by different approaches at three sample sizes (100, 80, and 60 point observations), in two scenarios with and without a geomorphology map as a spatial covariate. In most predicted maps, using both digital soil mapping approaches, the best results were obtained using the combination of terrain attributes and the geomorphology map, although differences between the scenarios with and without the geomorphology map were not significant. Employing the geomorphology map increased map purity and the Kappa index, and led to a decrease in the 'noisiness' of soil maps. Multinomial logistic regression had better performance at higher taxonomic levels (order and suborder levels); however, random forest showed better performance at lower taxonomic levels (great group and subgroup levels). Multinomial logistic regression was less sensitive than random forest to a decrease in the number of training observations. The conventional soil mapping method produced a map with larger minimum polygon size because of traditional cartographic criteria used to make the geological map 1:100,000 (on which the conventional soil mapping map was largely based). Likewise, conventional soil mapping map had also a larger average polygon size that resulted in a lower level of detail. Multinomial logistic regression at the order level (map purity of 0.80), random forest at the suborder (map purity of 0.72) and great group level (map purity of 0.60), and conventional soil mapping at the subgroup level (map purity of 0.48) produced the most accurate maps in the study area. The multinomial logistic regression method was identified as the most effective approach based on a combined index of map purity, map information content, and map production cost. The combined index also showed that smaller sample size led to a preference for the order level, while a larger sample size led to a preference for the great group level.
2012-01-01
Background A discrete choice experiment (DCE) is a preference survey which asks participants to make a choice among product portfolios comparing the key product characteristics by performing several choice tasks. Analyzing DCE data needs to account for within-participant correlation because choices from the same participant are likely to be similar. In this study, we empirically compared some commonly-used statistical methods for analyzing DCE data while accounting for within-participant correlation based on a survey of patient preference for colorectal cancer (CRC) screening tests conducted in Hamilton, Ontario, Canada in 2002. Methods A two-stage DCE design was used to investigate the impact of six attributes on participants' preferences for CRC screening test and willingness to undertake the test. We compared six models for clustered binary outcomes (logistic and probit regressions using cluster-robust standard error (SE), random-effects and generalized estimating equation approaches) and three models for clustered nominal outcomes (multinomial logistic and probit regressions with cluster-robust SE and random-effects multinomial logistic model). We also fitted a bivariate probit model with cluster-robust SE treating the choices from two stages as two correlated binary outcomes. The rank of relative importance between attributes and the estimates of β coefficient within attributes were used to assess the model robustness. Results In total 468 participants with each completing 10 choices were analyzed. Similar results were reported for the rank of relative importance and β coefficients across models for stage-one data on evaluating participants' preferences for the test. The six attributes ranked from high to low as follows: cost, specificity, process, sensitivity, preparation and pain. However, the results differed across models for stage-two data on evaluating participants' willingness to undertake the tests. Little within-patient correlation (ICC ≈ 0) was found in stage-one data, but substantial within-patient correlation existed (ICC = 0.659) in stage-two data. Conclusions When small clustering effect presented in DCE data, results remained robust across statistical models. However, results varied when larger clustering effect presented. Therefore, it is important to assess the robustness of the estimates via sensitivity analysis using different models for analyzing clustered data from DCE studies. PMID:22348526
ERIC Educational Resources Information Center
Hladky, Paul W.
2007-01-01
Random-climb models enable undergraduate chemistry students to visualize polymer molecules, quantify their configurational properties, and relate molecular structure to a variety of physical properties. The model could serve as an introduction to more elaborate models of polymer molecules and could help in learning topics such as lattice models of…
The Dirichlet-Multinomial Model for Multivariate Randomized Response Data and Small Samples
ERIC Educational Resources Information Center
Avetisyan, Marianna; Fox, Jean-Paul
2012-01-01
In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…
Large Sample Confidence Limits for Goodman and Kruskal's Proportional Prediction Measure TAU-b
ERIC Educational Resources Information Center
Berry, Kenneth J.; Mielke, Paul W.
1976-01-01
A Fortran Extended program which computes Goodman and Kruskal's Tau-b, its asymmetrical counterpart, Tau-a, and three sets of confidence limits for each coefficient under full multinomial and proportional stratified sampling is presented. A correction of an error in the calculation of the large sample standard error of Tau-b is discussed.…
Tian, Xinyu; Wang, Xuefeng; Chen, Jun
2014-01-01
Classic multinomial logit model, commonly used in multiclass regression problem, is restricted to few predictors and does not take into account the relationship among variables. It has limited use for genomic data, where the number of genomic features far exceeds the sample size. Genomic features such as gene expressions are usually related by an underlying biological network. Efficient use of the network information is important to improve classification performance as well as the biological interpretability. We proposed a multinomial logit model that is capable of addressing both the high dimensionality of predictors and the underlying network information. Group lasso was used to induce model sparsity, and a network-constraint was imposed to induce the smoothness of the coefficients with respect to the underlying network structure. To deal with the non-smoothness of the objective function in optimization, we developed a proximal gradient algorithm for efficient computation. The proposed model was compared to models with no prior structure information in both simulations and a problem of cancer subtype prediction with real TCGA (the cancer genome atlas) gene expression data. The network-constrained mode outperformed the traditional ones in both cases.
Nazem-Zadeh, Mohammad-Reza; Elisevich, Kost V; Schwalb, Jason M; Bagher-Ebadian, Hassan; Mahmoudi, Fariborz; Soltanian-Zadeh, Hamid
2014-12-15
Multiple modalities are used in determining laterality in mesial temporal lobe epilepsy (mTLE). It is unclear how much different imaging modalities should be weighted in decision-making. The purpose of this study is to develop response-driven multimodal multinomial models for lateralization of epileptogenicity in mTLE patients based upon imaging features in order to maximize the accuracy of noninvasive studies. The volumes, means and standard deviations of FLAIR intensity and means of normalized ictal-interictal SPECT intensity of the left and right hippocampi were extracted from preoperative images of a retrospective cohort of 45 mTLE patients with Engel class I surgical outcomes, as well as images of a cohort of 20 control, nonepileptic subjects. Using multinomial logistic function regression, the parameters of various univariate and multivariate models were estimated. Based on the Bayesian model averaging (BMA) theorem, response models were developed as compositions of independent univariate models. A BMA model composed of posterior probabilities of univariate response models of hippocampal volumes, means and standard deviations of FLAIR intensity, and means of SPECT intensity with the estimated weighting coefficients of 0.28, 0.32, 0.09, and 0.31, respectively, as well as a multivariate response model incorporating all mentioned attributes, demonstrated complete reliability by achieving a probability of detection of one with no false alarms to establish proper laterality in all mTLE patients. The proposed multinomial multivariate response-driven model provides a reliable lateralization of mesial temporal epileptogenicity including those patients who require phase II assessment. Copyright © 2014 Elsevier B.V. All rights reserved.
The Mixed Effects Trend Vector Model
ERIC Educational Resources Information Center
de Rooij, Mark; Schouteden, Martijn
2012-01-01
Maximum likelihood estimation of mixed effect baseline category logit models for multinomial longitudinal data can be prohibitive due to the integral dimension of the random effects distribution. We propose to use multidimensional unfolding methodology to reduce the dimensionality of the problem. As a by-product, readily interpretable graphical…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd
Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test ofmore » the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.« less
NASA Astrophysics Data System (ADS)
Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd; Baharum, Adam
2015-10-01
Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test of the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.
Ordinal probability effect measures for group comparisons in multinomial cumulative link models.
Agresti, Alan; Kateri, Maria
2017-03-01
We consider simple ordinal model-based probability effect measures for comparing distributions of two groups, adjusted for explanatory variables. An "ordinal superiority" measure summarizes the probability that an observation from one distribution falls above an independent observation from the other distribution, adjusted for explanatory variables in a model. The measure applies directly to normal linear models and to a normal latent variable model for ordinal response variables. It equals Φ(β/2) for the corresponding ordinal model that applies a probit link function to cumulative multinomial probabilities, for standard normal cdf Φ and effect β that is the coefficient of the group indicator variable. For the more general latent variable model for ordinal responses that corresponds to a linear model with other possible error distributions and corresponding link functions for cumulative multinomial probabilities, the ordinal superiority measure equals exp(β)/[1+exp(β)] with the log-log link and equals approximately exp(β/2)/[1+exp(β/2)] with the logit link, where β is the group effect. Another ordinal superiority measure generalizes the difference of proportions from binary to ordinal responses. We also present related measures directly for ordinal models for the observed response that need not assume corresponding latent response models. We present confidence intervals for the measures and illustrate with an example. © 2016, The International Biometric Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooman, A.; Mohammadzadeh, M
Some medical and epidemiological surveys have been designed to predict a nominal response variable with several levels. With regard to the type of pregnancy there are four possible states: wanted, unwanted by wife, unwanted by husband and unwanted by couple. In this paper, we have predicted the type of pregnancy, as well as the factors influencing it using three different models and comparing them. Regarding the type of pregnancy with several levels, we developed a multinomial logistic regression, a neural network and a flexible discrimination based on the data and compared their results using tow statistical indices: Surface under curvemore » (ROC) and kappa coefficient. Based on these tow indices, flexible discrimination proved to be a better fit for prediction on data in comparison to other methods. When the relations among variables are complex, one can use flexible discrimination instead of multinomial logistic regression and neural network to predict the nominal response variables with several levels in order to gain more accurate predictions.« less
Arrow, P; Klobas, E
2017-06-01
To compare changes in child dental anxiety after treatment for early childhood caries (ECC) using two treatment approaches. Children with ECC were randomized to test (atraumatic restorative treatment (ART)-based approach) or control (standard care approach) groups. Children aged 3 years or older completed a dental anxiety scale at baseline and follow up. Changes in child dental anxiety from baseline to follow up were tested using the chi-squared statistic, Wilcoxon rank sum test, McNemar's test and multinomial logistic regression. Two hundred and fifty-four children were randomized (N = 127 test, N = 127 control). At baseline, 193 children completed the dental anxiety scale, 211 at follow up and 170 completed the scale on both occasions. Children who were anxious at baseline (11%) were no longer anxious at follow up, and 11% non-anxious children became anxious. Multinomial logistic regression found each increment in the number of visits increased the odds of worsening dental anxiety (odds ratio (OR), 2.2; P < 0.05), whereas each increment in the number of treatments lowered the odds of worsening anxiety (OR, 0.50; P = 0.05). The ART-based approach to managing ECC resulted in similar levels of dental anxiety to the standard treatment approach and provides a valuable alternative approach to the management of ECC in a primary dental care setting. © 2016 Australian Dental Association.
The analysis of the pilot's cognitive and decision processes
NASA Technical Reports Server (NTRS)
Curry, R. E.
1975-01-01
Articles are presented on pilot performance in zero-visibility precision approach, failure detection by pilots during automatic landing, experiments in pilot decision-making during simulated low visibility approaches, a multinomial maximum likelihood program, and a random search algorithm for laboratory computers. Other topics discussed include detection of system failures in multi-axis tasks and changes in pilot workload during an instrument landing.
Tests of Hypotheses Arising In the Correlated Random Coefficient Model*
Heckman, James J.; Schmierer, Daniel
2010-01-01
This paper examines the correlated random coefficient model. It extends the analysis of Swamy (1971), who pioneered the uncorrelated random coefficient model in economics. We develop the properties of the correlated random coefficient model and derive a new representation of the variance of the instrumental variable estimator for that model. We develop tests of the validity of the correlated random coefficient model against the null hypothesis of the uncorrelated random coefficient model. PMID:21170148
Chaibub Neto, Elias
2015-01-01
In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson’s sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling. PMID:26125965
An introduction to multidimensional measurement using Rasch models.
Briggs, Derek C; Wilson, Mark
2003-01-01
The act of constructing a measure requires a number of important assumptions. Principle among these assumptions is that the construct is unidimensional. In practice there are many instances when the assumption of unidimensionality does not hold, and where the application of a multidimensional measurement model is both technically appropriate and substantively advantageous. In this paper we illustrate the usefulness of a multidimensional approach to measurement with the Multidimensional Random Coefficient Multinomial Logit (MRCML) model, an extension of the unidimensional Rasch model. An empirical example is taken from a collection of embedded assessments administered to 541 students enrolled in middle school science classes with a hands-on science curriculum. Student achievement on these assessments are multidimensional in nature, but can also be treated as consecutive unidimensional estimates, or as is most common, as a composite unidimensional estimate. Structural parameters are estimated for each model using ConQuest, and model fit is compared. Student achievement in science is also compared across models. The multidimensional approach has the best fit to the data, and provides more reliable estimates of student achievement than under the consecutive unidimensional approach. Finally, at an interpretational level, the multidimensional approach may well provide richer information to the classroom teacher about the nature of student achievement.
Panwar, Bharat; Raghava, Gajendra P S
2015-04-01
The RNA-protein interactions play a diverse role in the cells, thus identification of RNA-protein interface is essential for the biologist to understand their function. In the past, several methods have been developed for predicting RNA interacting residues in proteins, but limited efforts have been made for the identification of protein-interacting nucleotides in RNAs. In order to discriminate protein-interacting and non-interacting nucleotides, we used various classifiers (NaiveBayes, NaiveBayesMultinomial, BayesNet, ComplementNaiveBayes, MultilayerPerceptron, J48, SMO, RandomForest, SMO and SVM(light)) for prediction model development using various features and achieved highest 83.92% sensitivity, 84.82 specificity, 84.62% accuracy and 0.62 Matthew's correlation coefficient by SVM(light) based models. We observed that certain tri-nucleotides like ACA, ACC, AGA, CAC, CCA, GAG, UGA, and UUU preferred in protein-interaction. All the models have been developed using a non-redundant dataset and are evaluated using five-fold cross validation technique. A web-server called RNApin has been developed for the scientific community (http://crdd.osdd.net/raghava/rnapin/). Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Faxian; Yang, Zhijing; Ren, Jinchang; Ling, Wing-Kuen; Zhao, Huimin; Marshall, Stephen
2017-12-01
Although the sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework.
Lampoudi, Sotiria; Gillespie, Dan T; Petzold, Linda R
2009-03-07
The Inhomogeneous Stochastic Simulation Algorithm (ISSA) is a variant of the stochastic simulation algorithm in which the spatially inhomogeneous volume of the system is divided into homogeneous subvolumes, and the chemical reactions in those subvolumes are augmented by diffusive transfers of molecules between adjacent subvolumes. The ISSA can be prohibitively slow when the system is such that diffusive transfers occur much more frequently than chemical reactions. In this paper we present the Multinomial Simulation Algorithm (MSA), which is designed to, on the one hand, outperform the ISSA when diffusive transfer events outnumber reaction events, and on the other, to handle small reactant populations with greater accuracy than deterministic-stochastic hybrid algorithms. The MSA treats reactions in the usual ISSA fashion, but uses appropriately conditioned binomial random variables for representing the net numbers of molecules diffusing from any given subvolume to a neighbor within a prescribed distance. Simulation results illustrate the benefits of the algorithm.
Using choice-based conjoint to determine the relative importance of dental benefit plan attributes.
Cunningham, M A; Gaeth, G J; Juang, C; Chakraborty, G
1999-05-01
The purpose of this study was to use conjoint analysis to determine the importance of specific dental benefit plan features for University of Iowa (UI) staff and to build a model to predict enrollment. From a random sample of 2000 UI staff, 40 percent responded (N = 773). The survey instrument was developed using seven attributes (five dental benefit plan features and two facility characteristics) each offered at three levels (e.g., premium = $20, $15, $10/month). Pilot testing was used to find a realistic range of plan options. Twenty-seven hypothetical dental benefit plans were developed using fractional factorial combinations of the three levels for each of the seven attributes. For all of the hypothetical plans, dental care was to be provided in the UI predoctoral dental clinic. Plan profiles were arranged four per page by combining the existing plan with three hypothetical plans, for a total of nine pages. Respondents' task was to select one plan from each set of four. A regression-like statistical model (Multinomial Logit) was used to estimate importance of each attribute and each attribute level. Relative importance (and coefficients) for each of the seven attributes are as follows: maximum annual benefit (.98), orthodontic coverage (.72), routine restorative (.70), major restorative (.67), time to complete treatment (.61), clinic hours of operation (.47), premium (.18). For each attribute, relative importance of each of three levels will also be presented. These coefficients for each level are used to predict enrollment for plans with specific combinations of the dental benefit plan features.
Modeling Information Content Via Dirichlet-Multinomial Regression Analysis.
Ferrari, Alberto
2017-01-01
Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.
2012-01-01
Background Identifying risk factors for Salmonella Enteritidis (SE) infections in Ontario will assist public health authorities to design effective control and prevention programs to reduce the burden of SE infections. Our research objective was to identify risk factors for acquiring SE infections with various phage types (PT) in Ontario, Canada. We hypothesized that certain PTs (e.g., PT8 and PT13a) have specific risk factors for infection. Methods Our study included endemic SE cases with various PTs whose isolates were submitted to the Public Health Laboratory-Toronto from January 20th to August 12th, 2011. Cases were interviewed using a standardized questionnaire that included questions pertaining to demographics, travel history, clinical symptoms, contact with animals, and food exposures. A multinomial logistic regression method using the Generalized Linear Latent and Mixed Model procedure and a case-case study design were used to identify risk factors for acquiring SE infections with various PTs in Ontario, Canada. In the multinomial logistic regression model, the outcome variable had three categories representing human infections caused by SE PT8, PT13a, and all other SE PTs (i.e., non-PT8/non-PT13a) as a referent category to which the other two categories were compared. Results In the multivariable model, SE PT8 was positively associated with contact with dogs (OR=2.17, 95% CI 1.01-4.68) and negatively associated with pepper consumption (OR=0.35, 95% CI 0.13-0.94), after adjusting for age categories and gender, and using exposure periods and health regions as random effects to account for clustering. Conclusions Our study findings offer interesting hypotheses about the role of phage type-specific risk factors. Multinomial logistic regression analysis and the case-case study approach are novel methodologies to evaluate associations among SE infections with different PTs and various risk factors. PMID:23057531
NASA Astrophysics Data System (ADS)
Indarsih, Indrati, Ch. Rini
2016-02-01
In this paper, we define variance of the fuzzy random variables through alpha level. We have a theorem that can be used to know that the variance of fuzzy random variables is a fuzzy number. We have a multi-objective linear programming (MOLP) with fuzzy random of objective function coefficients. We will solve the problem by variance approach. The approach transform the MOLP with fuzzy random of objective function coefficients into MOLP with fuzzy of objective function coefficients. By weighted methods, we have linear programming with fuzzy coefficients and we solve by simplex method for fuzzy linear programming.
An Empirical Bayes Estimate of Multinomial Probabilities.
1982-02-01
multinomial probabilities has been considered from a decision theoretic point of view by Steinhaus (1957), Trybula (1958) and Rutkowska (1977). In a recent...variate Rypergeometric and Multinomial Distributions," Zastosowania Matematyki, 16, 9-21. Steinhaus , H. (1957), "The Problem of Estimation." Annals of
Modeling abundance using multinomial N-mixture models
Royle, Andy
2016-01-01
Multinomial N-mixture models are a generalization of the binomial N-mixture models described in Chapter 6 to allow for more complex and informative sampling protocols beyond simple counts. Many commonly used protocols such as multiple observer sampling, removal sampling, and capture-recapture produce a multivariate count frequency that has a multinomial distribution and for which multinomial N-mixture models can be developed. Such protocols typically result in more precise estimates than binomial mixture models because they provide direct information about parameters of the observation process. We demonstrate the analysis of these models in BUGS using several distinct formulations that afford great flexibility in the types of models that can be developed, and we demonstrate likelihood analysis using the unmarked package. Spatially stratified capture-recapture models are one class of models that fall into the multinomial N-mixture framework, and we discuss analysis of stratified versions of classical models such as model Mb, Mh and other classes of models that are only possible to describe within the multinomial N-mixture framework.
Towards dropout training for convolutional neural networks.
Wu, Haibing; Gu, Xiaodong
2015-11-01
Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advocate employing our proposed probabilistic weighted pooling, instead of commonly used max-pooling, to act as model averaging at test time. Empirical evidence validates the superiority of probabilistic weighted pooling. We also empirically show that the effect of convolutional dropout is not trivial, despite the dramatically reduced possibility of over-fitting due to the convolutional architecture. Elaborately designing dropout training simultaneously in max-pooling and fully-connected layers, we achieve state-of-the-art performance on MNIST, and very competitive results on CIFAR-10 and CIFAR-100, relative to other approaches without data augmentation. Finally, we compare max-pooling dropout and stochastic pooling, both of which introduce stochasticity based on multinomial distributions at pooling stage. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Jahshan, S. N.; Singleterry, R. C.
2001-01-01
The effect of random fuel redistribution on the eigenvalue of a one-speed reactor is investigated. An ensemble of such reactors that are identical to a homogeneous reference critical reactor except for the fissile isotope density distribution is constructed such that it meets a set of well-posed redistribution requirements. The average eigenvalue,
Burgette, Lane F; Reiter, Jerome P
2013-06-01
Multinomial outcomes with many levels can be challenging to model. Information typically accrues slowly with increasing sample size, yet the parameter space expands rapidly with additional covariates. Shrinking all regression parameters towards zero, as often done in models of continuous or binary response variables, is unsatisfactory, since setting parameters equal to zero in multinomial models does not necessarily imply "no effect." We propose an approach to modeling multinomial outcomes with many levels based on a Bayesian multinomial probit (MNP) model and a multiple shrinkage prior distribution for the regression parameters. The prior distribution encourages the MNP regression parameters to shrink toward a number of learned locations, thereby substantially reducing the dimension of the parameter space. Using simulated data, we compare the predictive performance of this model against two other recently-proposed methods for big multinomial models. The results suggest that the fully Bayesian, multiple shrinkage approach can outperform these other methods. We apply the multiple shrinkage MNP to simulating replacement values for areal identifiers, e.g., census tract indicators, in order to protect data confidentiality in public use datasets.
Ardoino, Ilaria; Lanzoni, Monica; Marano, Giuseppe; Boracchi, Patrizia; Sagrini, Elisabetta; Gianstefani, Alice; Piscaglia, Fabio; Biganzoli, Elia M
2017-04-01
The interpretation of regression models results can often benefit from the generation of nomograms, 'user friendly' graphical devices especially useful for assisting the decision-making processes. However, in the case of multinomial regression models, whenever categorical responses with more than two classes are involved, nomograms cannot be drawn in the conventional way. Such a difficulty in managing and interpreting the outcome could often result in a limitation of the use of multinomial regression in decision-making support. In the present paper, we illustrate the derivation of a non-conventional nomogram for multinomial regression models, intended to overcome this issue. Although it may appear less straightforward at first sight, the proposed methodology allows an easy interpretation of the results of multinomial regression models and makes them more accessible for clinicians and general practitioners too. Development of prediction model based on multinomial logistic regression and of the pertinent graphical tool is illustrated by means of an example involving the prediction of the extent of liver fibrosis in hepatitis C patients by routinely available markers.
Random effects coefficient of determination for mixed and meta-analysis models
Demidenko, Eugene; Sargent, James; Onega, Tracy
2011-01-01
The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, Rr2, that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If Rr2 is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of Rr2 apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects—the model can be estimated using the dummy variable approach. We derive explicit formulas for Rr2 in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine. PMID:23750070
An instrumental variable random-coefficients model for binary outcomes
Chesher, Andrew; Rosen, Adam M
2014-01-01
In this paper, we study a random-coefficients model for a binary outcome. We allow for the possibility that some or even all of the explanatory variables are arbitrarily correlated with the random coefficients, thus permitting endogeneity. We assume the existence of observed instrumental variables Z that are jointly independent with the random coefficients, although we place no structure on the joint determination of the endogenous variable X and instruments Z, as would be required for a control function approach. The model fits within the spectrum of generalized instrumental variable models, and we thus apply identification results from our previous studies of such models to the present context, demonstrating their use. Specifically, we characterize the identified set for the distribution of random coefficients in the binary response model with endogeneity via a collection of conditional moment inequalities, and we investigate the structure of these sets by way of numerical illustration. PMID:25798048
Hoppe, Fred M
2008-06-01
We show that the formula of Faà di Bruno for the derivative of a composite function gives, in special cases, the sampling distributions in population genetics that are due to Ewens and to Pitman. The composite function is the same in each case. Other sampling distributions also arise in this way, such as those arising from Dirichlet, multivariate hypergeometric, and multinomial models, special cases of which correspond to Bose-Einstein, Fermi-Dirac, and Maxwell-Boltzmann distributions in physics. Connections are made to compound sampling models.
Random effects coefficient of determination for mixed and meta-analysis models.
Demidenko, Eugene; Sargent, James; Onega, Tracy
2012-01-01
The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, [Formula: see text], that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If [Formula: see text] is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of [Formula: see text] apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects-the model can be estimated using the dummy variable approach. We derive explicit formulas for [Formula: see text] in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine.
Markov switching multinomial logit model: An application to accident-injury severities.
Malyshkina, Nataliya V; Mannering, Fred L
2009-07-01
In this study, two-state Markov switching multinomial logit models are proposed for statistical modeling of accident-injury severities. These models assume Markov switching over time between two unobserved states of roadway safety as a means of accounting for potential unobserved heterogeneity. The states are distinct in the sense that in different states accident-severity outcomes are generated by separate multinomial logit processes. To demonstrate the applicability of the approach, two-state Markov switching multinomial logit models are estimated for severity outcomes of accidents occurring on Indiana roads over a four-year time period. Bayesian inference methods and Markov Chain Monte Carlo (MCMC) simulations are used for model estimation. The estimated Markov switching models result in a superior statistical fit relative to the standard (single-state) multinomial logit models for a number of roadway classes and accident types. It is found that the more frequent state of roadway safety is correlated with better weather conditions and that the less frequent state is correlated with adverse weather conditions.
Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable
ERIC Educational Resources Information Center
du Toit, Stephen H. C.; Cudeck, Robert
2009-01-01
A method is presented for marginal maximum likelihood estimation of the nonlinear random coefficient model when the response function has some linear parameters. This is done by writing the marginal distribution of the repeated measures as a conditional distribution of the response given the nonlinear random effects. The resulting distribution…
Adaptive threshold shearlet transform for surface microseismic data denoising
NASA Astrophysics Data System (ADS)
Tang, Na; Zhao, Xian; Li, Yue; Zhu, Dan
2018-06-01
Random noise suppression plays an important role in microseismic data processing. The microseismic data is often corrupted by strong random noise, which would directly influence identification and location of microseismic events. Shearlet transform is a new multiscale transform, which can effectively process the low magnitude of microseismic data. In shearlet domain, due to different distributions of valid signals and random noise, shearlet coefficients can be shrunk by threshold. Therefore, threshold is vital in suppressing random noise. The conventional threshold denoising algorithms usually use the same threshold to process all coefficients, which causes noise suppression inefficiency or valid signals loss. In order to solve above problems, we propose the adaptive threshold shearlet transform (ATST) for surface microseismic data denoising. In the new algorithm, we calculate the fundamental threshold for each direction subband firstly. In each direction subband, the adjustment factor is obtained according to each subband coefficient and its neighboring coefficients, in order to adaptively regulate the fundamental threshold for different shearlet coefficients. Finally we apply the adaptive threshold to deal with different shearlet coefficients. The experimental denoising results of synthetic records and field data illustrate that the proposed method exhibits better performance in suppressing random noise and preserving valid signal than the conventional shearlet denoising method.
A Structural Modeling Approach to a Multilevel Random Coefficients Model.
ERIC Educational Resources Information Center
Rovine, Michael J.; Molenaar, Peter C. M.
2000-01-01
Presents a method for estimating the random coefficients model using covariance structure modeling and allowing one to estimate both fixed and random effects. The method is applied to real and simulated data, including marriage data from J. Belsky and M. Rovine (1990). (SLD)
Development of scales relating to professional development of community college administrators.
Wolfe, Edward W; Van Der Linden, Kim E
2010-01-01
This article reports the results of an application of the Multidimensional Random Coefficients Multinomial Logit Model (MRCMLM) to the measurement of professional development activities in which community college administrators participate. The analyses focus on confirmation of the factorial structure of the instrument, evaluation of the quality of the activities calibrations, examination of the internal structure of the instrument, and comparison of groups of administrators. The dimensionality analysis results suggest a five-dimensional model that is consistent with previous literature concerning career paths of community college administrators - education and specialized training, internal professional development and mentoring, external professional development, employer support, and seniority. The indicators of the quality of the activity calibrations suggest that measures of the five dimensions are adequately reliable, that the activities in each dimension are internally consistent, and that the observed responses to each activity are consistent with the expected values of the MRCMLM. The hierarchy of administrator measure means and of activity calibrations is consistent with substantive theory relating to professional development for community college administrators. For example, readily available activities that occur at the institution were most likely to be engaged in by administrators, while participation in selective specialized training institutes were the least likely activities. Finally, group differences with respect to age and title were consistent with substantive expectations - the greater the administrator's age and the higher the rank of the administrator's title, the greater the probability of having engaged in various types of professional development.
ERIC Educational Resources Information Center
Kong, Nan
2007-01-01
In multivariate statistics, the linear relationship among random variables has been fully explored in the past. This paper looks into the dependence of one group of random variables on another group of random variables using (conditional) entropy. A new measure, called the K-dependence coefficient or dependence coefficient, is defined using…
Efficient sampling of complex network with modified random walk strategies
NASA Astrophysics Data System (ADS)
Xie, Yunya; Chang, Shuhua; Zhang, Zhipeng; Zhang, Mi; Yang, Lei
2018-02-01
We present two novel random walk strategies, choosing seed node (CSN) random walk and no-retracing (NR) random walk. Different from the classical random walk sampling, the CSN and NR strategies focus on the influences of the seed node choice and path overlap, respectively. Three random walk samplings are applied in the Erdös-Rényi (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and the weighted USAir networks, respectively. Then, the major properties of sampled subnets, such as sampling efficiency, degree distributions, average degree and average clustering coefficient, are studied. The similar conclusions can be reached with these three random walk strategies. Firstly, the networks with small scales and simple structures are conducive to the sampling. Secondly, the average degree and the average clustering coefficient of the sampled subnet tend to the corresponding values of original networks with limited steps. And thirdly, all the degree distributions of the subnets are slightly biased to the high degree side. However, the NR strategy performs better for the average clustering coefficient of the subnet. In the real weighted USAir networks, some obvious characters like the larger clustering coefficient and the fluctuation of degree distribution are reproduced well by these random walk strategies.
Strategic Use of Random Subsample Replication and a Coefficient of Factor Replicability
ERIC Educational Resources Information Center
Katzenmeyer, William G.; Stenner, A. Jackson
1975-01-01
The problem of demonstrating replicability of factor structure across random variables is addressed. Procedures are outlined which combine the use of random subsample replication strategies with the correlations between factor score estimates across replicate pairs to generate a coefficient of replicability and confidence intervals associated with…
Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Tao, E-mail: tzhou@lsec.cc.ac.c; Tang Tao, E-mail: ttang@hkbu.edu.h
2010-11-01
In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266-281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coefficient matrix. In this work, we will provide some results related to the open question.
Fuzzy multinomial logistic regression analysis: A multi-objective programming approach
NASA Astrophysics Data System (ADS)
Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan
2017-05-01
Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.
Weather impacts on single-vehicle truck crash injury severity.
Naik, Bhaven; Tung, Li-Wei; Zhao, Shanshan; Khattak, Aemal J
2016-09-01
The focus of this paper is on illustrating the feasibility of aggregating data from disparate sources to investigate the relationship between single-vehicle truck crash injury severity and detailed weather conditions. Specifically, this paper presents: (a) a methodology that combines detailed 15-min weather station data with crash and roadway data, and (b) an empirical investigation of the effects of weather on crash-related injury severities of single-vehicle truck crashes. Random parameters ordinal and multinomial regression models were used to investigate crash injury severity under different weather conditions, taking into account the individual unobserved heterogeneity. The adopted methodology allowed consideration of environmental, roadway, and climate-related variables in single-vehicle truck crash injury severity. Results showed that wind speed, rain, humidity, and air temperature were linked with single-vehicle truck crash injury severity. Greater recorded wind speed added to the severity of injuries in single-vehicle truck crashes in general. Rain and warmer air temperatures were linked to more severe crash injuries in single-vehicle truck crashes while higher levels of humidity were linked to less severe injuries. Random parameters ordered logit and multinomial logit, respectively, revealed some individual heterogeneity in the data and showed that integrating comprehensive weather data with crash data provided useful insights into factors associated with single-vehicle truck crash injury severity. The research provided a practical method that combined comprehensive 15-min weather station data with crash and roadway data, thereby providing useful insights into crash injury severity of single-vehicle trucks. Those insights are useful for future truck driver educational programs and for truck safety in different weather conditions. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Min; Gong, Zhaoning; Zhao, Wenji; Pu, Ruiliang; Liu, Ke
2016-01-01
Mapping vegetation abundance by using remote sensing data is an efficient means for detecting changes of an eco-environment. With Landsat-8 operational land imager (OLI) imagery acquired on July 31, 2013, both linear spectral mixture analysis (LSMA) and multinomial logit model (MNLM) methods were applied to estimate and assess the vegetation abundance in the Wild Duck Lake Wetland in Beijing, China. To improve mapping vegetation abundance and increase the number of endmembers in spectral mixture analysis, normalized difference vegetation index was extracted from OLI imagery along with the seven reflective bands of OLI data for estimating the vegetation abundance. Five endmembers were selected, which include terrestrial plants, aquatic plants, bare soil, high albedo, and low albedo. The vegetation abundance mapping results from Landsat OLI data were finally evaluated by utilizing a WorldView-2 multispectral imagery. Similar spatial patterns of vegetation abundance produced by both fully constrained LSMA algorithm and MNLM methods were observed: higher vegetation abundance levels were distributed in agricultural and riparian areas while lower levels in urban/built-up areas. The experimental results also indicate that the MNLM model outperformed the LSMA algorithm with smaller root mean square error (0.0152 versus 0.0252) and higher coefficient of determination (0.7856 versus 0.7214) as the MNLM model could handle the nonlinear reflection phenomenon better than the LSMA with mixed pixels.
Yamazaki, Takeshi; Takeda, Hisato; Hagiya, Koichi; Yamaguchi, Satoshi; Sasaki, Osamu
2018-03-13
Because lactation periods in dairy cows lengthen with increasing total milk production, it is important to predict individual productivities after 305 days in milk (DIM) to determine the optimal lactation period. We therefore examined whether the random regression (RR) coefficient from 306 to 450 DIM (M2) can be predicted from those during the first 305 DIM (M1) by using a random regression model. We analyzed test-day milk records from 85690 Holstein cows in their first lactations and 131727 cows in their later (second to fifth) lactations. Data in M1 and M2 were analyzed separately by using different single-trait RR animal models. We then performed a multiple regression analysis of the RR coefficients of M2 on those of M1 during the first and later lactations. The first-order Legendre polynomials were practical covariates of random regression for the milk yields of M2. All RR coefficients for the additive genetic (AG) effect and the intercept for the permanent environmental (PE) effect of M2 had moderate to strong correlations with the intercept for the AG effect of M1. The coefficients of determination for multiple regression of the combined intercepts for the AG and PE effects of M2 on the coefficients for the AG effect of M1 were moderate to high. The daily milk yields of M2 predicted by using the RR coefficients for the AG effect of M1 were highly correlated with those obtained by using the coefficients of M2. Milk production after 305 DIM can be predicted by using the RR coefficient estimates of the AG effect during the first 305 DIM.
Is the Non-Dipole Magnetic Field Random?
NASA Technical Reports Server (NTRS)
Walker, Andrew D.; Backus, George E.
1996-01-01
Statistical modelling of the Earth's magnetic field B has a long history. In particular, the spherical harmonic coefficients of scalar fields derived from B can be treated as Gaussian random variables. In this paper, we give examples of highly organized fields whose spherical harmonic coefficients pass tests for independent Gaussian random variables. The fact that coefficients at some depth may be usefully summarized as independent samples from a normal distribution need not imply that there really is some physical, random process at that depth. In fact, the field can be extremely structured and still be regarded for some purposes as random. In this paper, we examined the radial magnetic field B(sub r) produced by the core, but the results apply to any scalar field on the core-mantle boundary (CMB) which determines B outside the CMB.
Parent-Child Resemblance in Weight Status and Its Correlates in the United States
Liang, Lan; Wang, Youfa
2013-01-01
Background Few studies have examined parent-child resemblance in body weight status using nationally representative data for the US. Design We analyzed Body Mass Index (BMI), weight status, and related correlates for 4,846 boys, 4,725 girls, and their parents based on US nationally representative data from the 2006 and 2007 Medical Expenditure Panel Survey (MEPS). Pearson partial correlation coefficients, percent agreement, weighted kappa coefficients, and binary and multinomial logistic regression were used to examine parent-child resemblance, adjusted for complex sampling design. Results Pearson partial correlation coefficients between parent and child’s BMI measures were 0.15 for father-son pairs, 0.17 for father-daughter pairs, 0.20 for mother-son pairs, and 0.23 for mother-daughter pairs. The weighted kappa coefficients between BMI quintiles of parent and child ranged from −0.02 to 0.25. Odds ratio analyses found children were 2.1 (95% confidence interval (CI): 1.6, 2.8) times more likely to be obese if only their father was obese, 1.9 (95% CI: 1.5, 2.4) times more likely if only their mother was obese, and 3.2 (95% CI: 2.5, 4.2) times more likely if both parents were obese. Conclusions Parent-child resemblance in BMI appears weak and may vary across parent-child dyad types in the US population. However, parental obesity status is associated with children’s obesity status. Use of different measures of parent-child resemblance in body weight status can lead to different conclusions. PMID:23762352
Perturbed effects at radiation physics
NASA Astrophysics Data System (ADS)
Külahcı, Fatih; Şen, Zekâi
2013-09-01
Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.
Draine; Greenwald; Banaji
1996-03-01
In the preceding article, Buchner and Wippich used a guessing-corrected, multinomial process-dissociation analysis to test whether a gender bias in fame judgments reported by Banaji and Greenwald (Journal of Personality and Social Psychology, 1995, 68, 181-198) was unconscious. In their two experiments, Buchner and Wippich found no evidence for unconscious mediation of this gender bias. Their conclusion can be questioned by noting that (a) the gender difference in familiarity of previously seen names that Buchner and Wippich modeled was different from the gender difference in criterion for fame judgments reported by Banaji and Greenwald, (b) the assumptions of Buchner and Wippich's multinomial model excluded processes that are plausibly involved in the fame judgment task, and (c) the constructs of Buchner and Wippich's model that corresponded most closely to Banaji and Greenwald's gender-bias interpretation were formulated so as to preclude the possibility of modeling that interpretation. Perhaps a more complex multinomial model can model the Banaji and Greenwald interpretation.
Draine, S C; Greenwald, A G; Banaji, M R
1996-01-01
In the preceding article, Buchner and Wippich used a guessing-corrected, multinomial process-dissociation analysis to test whether a gender bias in fame judgements reported by Banaji and Greenwald (Journal of Personality and Social Psychology, 1995, 68, 181-198) was unconscious. In their two experiments, Buchner and Wippich found no evidence for unconscious mediation of this gender bias. Their conclusion can be questioned by noting that (a) the gender difference in familiarity of previously seen names that Buchner and Wippich modeled was different from the gender difference in criterion for fame judgements reported by Banaji and Greenwald, (b) the assumptions of Buchner and Wippich's multinomial model excluded processes that are plausibly involved in the fame judgement task, and (c) the constructs of Buchner and Wippich's model that corresponded most closely to Banaji and Greenwald's gender-bias interpretation were formulated so as to preclude the possibility of modeling that interpretation. Perhaps a more complex multinomial model can model the Banaji and Greenwald interpretation.
Analysis of multinomial models with unknown index using data augmentation
Royle, J. Andrew; Dorazio, R.M.; Link, W.A.
2007-01-01
Multinomial models with unknown index ('sample size') arise in many practical settings. In practice, Bayesian analysis of such models has proved difficult because the dimension of the parameter space is not fixed, being in some cases a function of the unknown index. We describe a data augmentation approach to the analysis of this class of models that provides for a generic and efficient Bayesian implementation. Under this approach, the data are augmented with all-zero detection histories. The resulting augmented dataset is modeled as a zero-inflated version of the complete-data model where an estimable zero-inflation parameter takes the place of the unknown multinomial index. Interestingly, data augmentation can be justified as being equivalent to imposing a discrete uniform prior on the multinomial index. We provide three examples involving estimating the size of an animal population, estimating the number of diabetes cases in a population using the Rasch model, and the motivating example of estimating the number of species in an animal community with latent probabilities of species occurrence and detection.
NASA Astrophysics Data System (ADS)
Lai, Xiaoming; Zhu, Qing; Zhou, Zhiwen; Liao, Kaihua
2017-12-01
In this study, seven random combination sampling strategies were applied to investigate the uncertainties in estimating the hillslope mean soil water content (SWC) and correlation coefficients between the SWC and soil/terrain properties on a tea + bamboo hillslope. One of the sampling strategies is the global random sampling and the other six are the stratified random sampling on the top, middle, toe, top + mid, top + toe and mid + toe slope positions. When each sampling strategy was applied, sample sizes were gradually reduced and each sampling size contained 3000 replicates. Under each sampling size of each sampling strategy, the relative errors (REs) and coefficients of variation (CVs) of the estimated hillslope mean SWC and correlation coefficients between the SWC and soil/terrain properties were calculated to quantify the accuracy and uncertainty. The results showed that the uncertainty of the estimations decreased as the sampling size increasing. However, larger sample sizes were required to reduce the uncertainty in correlation coefficient estimation than in hillslope mean SWC estimation. Under global random sampling, 12 randomly sampled sites on this hillslope were adequate to estimate the hillslope mean SWC with RE and CV ≤10%. However, at least 72 randomly sampled sites were needed to ensure the estimated correlation coefficients with REs and CVs ≤10%. Comparing with all sampling strategies, reducing sampling sites on the middle slope had the least influence on the estimation of hillslope mean SWC and correlation coefficients. Under this strategy, 60 sites (10 on the middle slope and 50 on the top and toe slopes) were enough to ensure the estimated correlation coefficients with REs and CVs ≤10%. This suggested that when designing the SWC sampling, the proportion of sites on the middle slope can be reduced to 16.7% of the total number of sites. Findings of this study will be useful for the optimal SWC sampling design.
Improved estimates of partial volume coefficients from noisy brain MRI using spatial context.
Manjón, José V; Tohka, Jussi; Robles, Montserrat
2010-11-01
This paper addresses the problem of accurate voxel-level estimation of tissue proportions in the human brain magnetic resonance imaging (MRI). Due to the finite resolution of acquisition systems, MRI voxels can contain contributions from more than a single tissue type. The voxel-level estimation of this fractional content is known as partial volume coefficient estimation. In the present work, two new methods to calculate the partial volume coefficients under noisy conditions are introduced and compared with current similar methods. Concretely, a novel Markov Random Field model allowing sharp transitions between partial volume coefficients of neighbouring voxels and an advanced non-local means filtering technique are proposed to reduce the errors due to random noise in the partial volume coefficient estimation. In addition, a comparison was made to find out how the different methodologies affect the measurement of the brain tissue type volumes. Based on the obtained results, the main conclusions are that (1) both Markov Random Field modelling and non-local means filtering improved the partial volume coefficient estimation results, and (2) non-local means filtering was the better of the two strategies for partial volume coefficient estimation. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Madhu, B.; Ashok, N. C.; Balasubramanian, S.
2014-11-01
Multinomial logistic regression analysis was used to develop statistical model that can predict the probability of breast cancer in Southern Karnataka using the breast cancer occurrence data during 2007-2011. Independent socio-economic variables describing the breast cancer occurrence like age, education, occupation, parity, type of family, health insurance coverage, residential locality and socioeconomic status of each case was obtained. The models were developed as follows: i) Spatial visualization of the Urban- rural distribution of breast cancer cases that were obtained from the Bharat Hospital and Institute of Oncology. ii) Socio-economic risk factors describing the breast cancer occurrences were complied for each case. These data were then analysed using multinomial logistic regression analysis in a SPSS statistical software and relations between the occurrence of breast cancer across the socio-economic status and the influence of other socio-economic variables were evaluated and multinomial logistic regression models were constructed. iii) the model that best predicted the occurrence of breast cancer were identified. This multivariate logistic regression model has been entered into a geographic information system and maps showing the predicted probability of breast cancer occurrence in Southern Karnataka was created. This study demonstrates that Multinomial logistic regression is a valuable tool for developing models that predict the probability of breast cancer Occurrence in Southern Karnataka.
Past epidemiologic studies suggest maternal ambient air pollution exposure during critical periods of the pregnancy is associated with fetal development. We introduce a multinomial probit model that allows for the joint identification of susceptible daily periods during the pregn...
Pig Data and Bayesian Inference on Multinomial Probabilities
ERIC Educational Resources Information Center
Kern, John C.
2006-01-01
Bayesian inference on multinomial probabilities is conducted based on data collected from the game Pass the Pigs[R]. Prior information on these probabilities is readily available from the instruction manual, and is easily incorporated in a Dirichlet prior. Posterior analysis of the scoring probabilities quantifies the discrepancy between empirical…
Inequality in the hepatitis B awareness level in rural residents from 7 provinces in China.
Zheng, Juan; Li, Quan; Wang, Jian; Zhang, Guojie; Wangen, Knut R
2017-05-04
The hepatitis B (HB) awareness level is an important factor affecting the rates of HB virus vaccination. To better understand income-related inequalities in the HB awareness level, it is imperative to identify the sources of inequalities and assess the contribution rates of these influential factors. This study analyzed the unequal distribution of the HB awareness level and the contributions of various influential factors. We performed a cross-sectional household survey with questionnaire-based, face-to-face interviews in 7 Chinese provinces. Responses from 7271 respondents were used in this analysis. Multinomial logistic regression was used for the analysis of contributing factors, and the concentration index was used as a measure of HB awareness inequalities. The HB awareness level varied across participants with different characteristics. Multinomial logistic regression of the explanatory factors of the HB awareness level showed that several estimated coefficients and relative risk ratios were statistically significant for middle- and high-level awareness, except for sex, occupation, and household income. The concentration index of the HB knowledge score was 0.140, indicating inequality gradients disadvantageous to the poor. The contribution rate of socioeconomic factors was the largest (60.8%), followed by demographic characteristics (29.0%) and geographic factors (4.3%). Demographic, socioeconomic, and geographic factors are associated with the HB awareness inequality. Therefore, to reduce inequality, HB-related health education targeting individuals with low socioeconomic status should be performed. Less-developed provinces, especially with high proportions of poor residents, warrant particular attention. Our findings may be beneficial to improve the HB virus vaccination rate for individuals with low socioeconomic status.
Yi, SoJeong; An, Hyungmi; Lee, Howard; Lee, Sangin; Ieiri, Ichiro; Lee, Youngjo; Cho, Joo-Youn; Hirota, Takeshi; Fukae, Masato; Yoshida, Kenji; Nagatsuka, Shinichiro; Kimura, Miyuki; Irie, Shin; Sugiyama, Yuichi; Shin, Dong Wan; Lim, Kyoung Soo; Chung, Jae-Yong; Yu, Kyung-Sang; Jang, In-Jin
2014-10-01
Interethnic differences in genetic polymorphism in genes encoding drug-metabolizing enzymes and transporters are one of the major factors that cause ethnic differences in drug response. This study aimed to investigate genetic polymorphisms in genes involved in drug metabolism, transport, and excretion among Korean, Japanese, and Chinese populations, the three major East Asian ethnic groups. The frequencies of 1936 variants representing 225 genes encoding drug-metabolizing enzymes and transporters were determined from 786 healthy participants (448 Korean, 208 Japanese, and 130 Chinese) using the Affymetrix Drug-Metabolizing Enzymes and Transporters Plus microarray. To compare allele or genotype frequencies in the high-dimensional data among the three East Asian ethnic groups, multiple testing, principal component analysis (PCA), and regularized multinomial logit model through least absolute shrinkage and selection operator were used. On microarray analysis, 1071 of 1936 variants (>50% of markers) were found to be monomorphic. In a large number of genetic variants, the fixation index and Pearson's correlation coefficient of minor allele frequencies were less than 0.034 and greater than 0.95, respectively, among the three ethnic groups. PCA identified 47 genetic variants with multiple testing, but was unable to discriminate ethnic groups by the first three components. Multinomial least absolute shrinkage and selection operator analysis identified 269 genetic variants that showed different frequencies among the three ethnic groups. However, none of those variants distinguished between the three ethnic groups during subsequent PCA. Korean, Japanese, and Chinese populations are not pharmacogenetically distant from one another, at least with regard to drug disposition, metabolism, and elimination.
Effects of ignoring baseline on modeling transitions from intact cognition to dementia.
Yu, Lei; Tyas, Suzanne L; Snowdon, David A; Kryscio, Richard J
2009-07-01
This paper evaluates the effect of ignoring baseline when modeling transitions from intact cognition to dementia with mild cognitive impairment (MCI) and global impairment (GI) as intervening cognitive states. Transitions among states are modeled by a discrete-time Markov chain having three transient (intact cognition, MCI, and GI) and two competing absorbing states (death and dementia). Transition probabilities depend on two covariates, age and the presence/absence of an apolipoprotein E-epsilon4 allele, through a multinomial logistic model with shared random effects. Results are illustrated with an application to the Nun Study, a cohort of 678 participants 75+ years of age at baseline and followed longitudinally with up to ten cognitive assessments per nun.
Latent spatial models and sampling design for landscape genetics
Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.
2016-01-01
We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.
Random diffusion and leverage effect in financial markets.
Perelló, Josep; Masoliver, Jaume
2003-03-01
We prove that Brownian market models with random diffusion coefficients provide an exact measure of the leverage effect [J-P. Bouchaud et al., Phys. Rev. Lett. 87, 228701 (2001)]. This empirical fact asserts that past returns are anticorrelated with future diffusion coefficient. Several models with random diffusion have been suggested but without a quantitative study of the leverage effect. Our analysis lets us to fully estimate all parameters involved and allows a deeper study of correlated random diffusion models that may have practical implications for many aspects of financial markets.
Mariko, Mamadou
2003-03-01
The public finance and foreign exchange crisis of the 1980s aggravated the unfavourable economic trends in many developing countries and resulted in budget cuts in the health sector. Policymakers, following the suggestions of World Bank experts, introduced user fees. Economic analysis of the demand for health care in these countries focused on the impact of price and income on health service utilisation. But the lesson to date from experiences in cost recovery is that without visible and fairly immediate improvements in the quality of care, the implementation of user fees will cause service utilisation to drop. For this reason, the role of quality of health care has been recently a subject of investigation in a number of health care demand studies. In spite of using the data from both households and facilities, recent studies are quite limited because they measure quality only by structural attributes (availability of drugs, equipment, number and qualifications of staff, and so on). Structural attributes of quality are necessary but not sufficient conditions for demand. A unique feature of this study is that it also considers the processes followed by practitioners and the outcome of care, to determine simultaneously the respective influence of price and quality on decision making. A nested multinomial logit was used to examine the choice between six alternatives (self-treatment, modern treatment at home, public hospital, public dispensary, for-profit facility and non-profit facility). The estimations are based on data from a statistically representative sample of 1104 patients from 1191 households and the data from a stratified random sample of 42 out of 84 facilities identified. The results indicate that omitting the process quality variables from the demand model produces a bias not only in the estimated coefficient of the "price" variable but also in coefficients of some structural attributes of the quality. The simulations suggest that price has a minor effect on utilisation of health services, and that health authorities can simultaneously double user fees and increase utilisation by emphasising improvement of both the structural and process quality of care in public health facilities.
Ye, Xin; Pendyala, Ram M.; Zou, Yajie
2017-01-01
A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimation. The proposed method is applied to model commute mode choice among four alternatives (auto, transit, bicycle and walk) using travel behavior data from Argau, Switzerland. Comparisons between the multinomial logit model and the proposed semi-nonparametric model show that violations of the standard Gumbel distribution assumption lead to considerable inconsistency in parameter estimates and model inferences. PMID:29073152
Wang, Ke; Ye, Xin; Pendyala, Ram M; Zou, Yajie
2017-01-01
A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimation. The proposed method is applied to model commute mode choice among four alternatives (auto, transit, bicycle and walk) using travel behavior data from Argau, Switzerland. Comparisons between the multinomial logit model and the proposed semi-nonparametric model show that violations of the standard Gumbel distribution assumption lead to considerable inconsistency in parameter estimates and model inferences.
A General Family of Limited Information Goodness-of-Fit Statistics for Multinomial Data
ERIC Educational Resources Information Center
Joe, Harry; Maydeu-Olivares, Alberto
2010-01-01
Maydeu-Olivares and Joe (J. Am. Stat. Assoc. 100:1009-1020, "2005"; Psychometrika 71:713-732, "2006") introduced classes of chi-square tests for (sparse) multidimensional multinomial data based on low-order marginal proportions. Our extension provides general conditions under which quadratic forms in linear functions of cell residuals are…
Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach
ERIC Educational Resources Information Center
Klauer, Karl Christoph
2010-01-01
Multinomial processing tree models are widely used in many areas of psychology. A hierarchical extension of the model class is proposed, using a multivariate normal distribution of person-level parameters with the mean and covariance matrix to be estimated from the data. The hierarchical model allows one to take variability between persons into…
Institutional Climate and Student Departure: A Multinomial Multilevel Modeling Approach
ERIC Educational Resources Information Center
Yi, Pyong-sik
2008-01-01
This study applied a multinomial HOLM technique to examine the extent to which the institutional climate for diversity influences the different types of college student withdrawal, such as stop out, drop out, and transfer. Based on a reformulation of Tinto's model along with the conceptualization of institutional climate for diversity by Hurtado…
ERIC Educational Resources Information Center
Anderson, Carolyn J.; Verkuilen, Jay; Peyton, Buddy L.
2010-01-01
Survey items with multiple response categories and multiple-choice test questions are ubiquitous in psychological and educational research. We illustrate the use of log-multiplicative association (LMA) models that are extensions of the well-known multinomial logistic regression model for multiple dependent outcome variables to reanalyze a set of…
A Multinomial Model of Event-Based Prospective Memory
ERIC Educational Resources Information Center
Smith, Rebekah E.; Bayen, Ute J.
2004-01-01
Prospective memory is remembering to perform an action in the future. The authors introduce the 1st formal model of event-based prospective memory, namely, a multinomial model that includes 2 separate parameters related to prospective memory processes. The 1st measures preparatory attentional processes, and the 2nd measures retrospective memory…
Resonance energy transfer process in nanogap-based dual-color random lasing
NASA Astrophysics Data System (ADS)
Shi, Xiaoyu; Tong, Junhua; Liu, Dahe; Wang, Zhaona
2017-04-01
The resonance energy transfer (RET) process between Rhodamine 6G and oxazine in the nanogap-based random systems is systematically studied by revealing the variations and fluctuations of RET coefficients with pump power density. Three working regions stable fluorescence, dynamic laser, and stable laser are thus demonstrated in the dual-color random systems. The stable RET coefficients in fluorescence and lasing regions are generally different and greatly dependent on the donor concentration and the donor-acceptor ratio. These results may provide a way to reveal the energy distribution regulars in the random system and to design the tunable multi-color coherent random lasers for colorful imaging.
NASA Astrophysics Data System (ADS)
Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun
2014-12-01
Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.
Maximum Entropy Principle for Transportation
NASA Astrophysics Data System (ADS)
Bilich, F.; DaSilva, R.
2008-11-01
In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.
Statistical Analysis for Multisite Trials Using Instrumental Variables with Random Coefficients
ERIC Educational Resources Information Center
Raudenbush, Stephen W.; Reardon, Sean F.; Nomi, Takako
2012-01-01
Multisite trials can clarify the average impact of a new program and the heterogeneity of impacts across sites. Unfortunately, in many applications, compliance with treatment assignment is imperfect. For these applications, we propose an instrumental variable (IV) model with person-specific and site-specific random coefficients. Site-specific IV…
Habers, G Esther A; Huber, Adam M; Mamyrova, Gulnara; Targoff, Ira N; O'Hanlon, Terrance P; Adams, Sharon; Pandey, Janardan P; Boonacker, Chantal; van Brussel, Marco; Miller, Frederick W; van Royen-Kerkhof, Annet; Rider, Lisa G
2016-03-01
To identify early factors associated with disease course in patients with juvenile idiopathic inflammatory myopathies (IIMs). Univariable and multivariable multinomial logistic regression analyses were performed in a large juvenile IIM registry (n = 365) and included demographic characteristics, early clinical features, serum muscle enzyme levels, myositis autoantibodies, environmental exposures, and immunogenetic polymorphisms. Multivariable associations with chronic or polycyclic courses compared to a monocyclic course included myositis-specific autoantibodies (multinomial odds ratio [OR] 4.2 and 2.8, respectively), myositis-associated autoantibodies (multinomial OR 4.8 and 3.5), and a documented infection within 6 months of illness onset (multinomial OR 2.5 and 4.7). A higher overall clinical symptom score at diagnosis was associated with chronic or monocyclic courses compared to a polycyclic course. Furthermore, severe illness onset was associated with a chronic course compared to monocyclic or polycyclic courses (multinomial OR 2.1 and 2.6, respectively), while anti-p155/140 autoantibodies were associated with chronic or polycyclic courses compared to a monocyclic course (multinomial OR 3.9 and 2.3, respectively). Additional univariable associations of a chronic course compared to a monocyclic course included photosensitivity, V-sign or shawl sign rashes, and cuticular overgrowth (OR 2.2-3.2). The mean ultraviolet index and highest ultraviolet index in the month before diagnosis were associated with a chronic course compared to a polycyclic course in boys (OR 1.5 and 1.3), while residing in the Northwest was less frequently associated with a chronic course (OR 0.2). Our findings indicate that myositis autoantibodies, in particular anti-p155/140, and a number of early clinical features and environmental exposures are associated with a chronic course in patients with juvenile IIM. These findings suggest that early factors, which are associated with poorer outcomes in juvenile IIM, can be identified. © 2016, American College of Rheumatology.
A nonparametric multiple imputation approach for missing categorical data.
Zhou, Muhan; He, Yulei; Yu, Mandi; Hsu, Chiu-Hsieh
2017-06-06
Incomplete categorical variables with more than two categories are common in public health data. However, most of the existing missing-data methods do not use the information from nonresponse (missingness) probabilities. We propose a nearest-neighbour multiple imputation approach to impute a missing at random categorical outcome and to estimate the proportion of each category. The donor set for imputation is formed by measuring distances between each missing value with other non-missing values. The distance function is calculated based on a predictive score, which is derived from two working models: one fits a multinomial logistic regression for predicting the missing categorical outcome (the outcome model) and the other fits a logistic regression for predicting missingness probabilities (the missingness model). A weighting scheme is used to accommodate contributions from two working models when generating the predictive score. A missing value is imputed by randomly selecting one of the non-missing values with the smallest distances. We conduct a simulation to evaluate the performance of the proposed method and compare it with several alternative methods. A real-data application is also presented. The simulation study suggests that the proposed method performs well when missingness probabilities are not extreme under some misspecifications of the working models. However, the calibration estimator, which is also based on two working models, can be highly unstable when missingness probabilities for some observations are extremely high. In this scenario, the proposed method produces more stable and better estimates. In addition, proper weights need to be chosen to balance the contributions from the two working models and achieve optimal results for the proposed method. We conclude that the proposed multiple imputation method is a reasonable approach to dealing with missing categorical outcome data with more than two levels for assessing the distribution of the outcome. In terms of the choices for the working models, we suggest a multinomial logistic regression for predicting the missing outcome and a binary logistic regression for predicting the missingness probability.
Composite Linear Models | Division of Cancer Prevention
By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty
ERIC Educational Resources Information Center
Smith, Rebekah E.; Bayen, Ute J.
2006-01-01
Event-based prospective memory involves remembering to perform an action in response to a particular future event. Normal younger and older adults performed event-based prospective memory tasks in 2 experiments. The authors applied a formal multinomial processing tree model of prospective memory (Smith & Bayen, 2004) to disentangle age differences…
NASA Astrophysics Data System (ADS)
Suciu, N.; Vamos, C.; Vereecken, H.; Vanderborght, J.; Hardelauf, H.
2003-04-01
When the small scale transport is modeled by a Wiener process and the large scale heterogeneity by a random velocity field, the effective coefficients, Deff, can be decomposed as sums between the local coefficient, D, a contribution of the random advection, Dadv, and a contribution of the randomness of the trajectory of plume center of mass, Dcm: Deff=D+Dadv-Dcm. The coefficient Dadv is similar to that introduced by Taylor in 1921, and more recent works associate it with the thermodynamic equilibrium. The ``ergodic hypothesis'' says that over large time intervals Dcm vanishes and the effect of the heterogeneity is described by Dadv=Deff-D. In this work we investigate numerically the long time behavior of the effective coefficients as well as the validity of the ergodic hypothesis. The transport in every realization of the velocity field is modeled with the Global Random Walk Algorithm, which is able to track as many particles as necessary to achieve a statistically reliable simulation of the process. Averages over realizations are further used to estimate mean coefficients and standard deviations. In order to remain in the frame of most of the theoretical approaches, the velocity field was generated in a linear approximation and the logarithm of the hydraulic conductivity was taken to be exponential decaying correlated with variance equal to 0.1. Our results show that even in these idealized conditions, the effective coefficients tend to asymptotic constant values only when the plume travels thousands of correlations lengths (while the first order theories usually predict Fickian behavior after tens of correlations lengths) and that the ergodicity conditions are still far from being met.
NASA Astrophysics Data System (ADS)
Wang, Gang-Jin; Xie, Chi; Chen, Shou; Yang, Jiao-Jiao; Yang, Ming-Yan
2013-09-01
In this study, we first build two empirical cross-correlation matrices in the US stock market by two different methods, namely the Pearson’s correlation coefficient and the detrended cross-correlation coefficient (DCCA coefficient). Then, combining the two matrices with the method of random matrix theory (RMT), we mainly investigate the statistical properties of cross-correlations in the US stock market. We choose the daily closing prices of 462 constituent stocks of S&P 500 index as the research objects and select the sample data from January 3, 2005 to August 31, 2012. In the empirical analysis, we examine the statistical properties of cross-correlation coefficients, the distribution of eigenvalues, the distribution of eigenvector components, and the inverse participation ratio. From the two methods, we find some new results of the cross-correlations in the US stock market in our study, which are different from the conclusions reached by previous studies. The empirical cross-correlation matrices constructed by the DCCA coefficient show several interesting properties at different time scales in the US stock market, which are useful to the risk management and optimal portfolio selection, especially to the diversity of the asset portfolio. It will be an interesting and meaningful work to find the theoretical eigenvalue distribution of a completely random matrix R for the DCCA coefficient because it does not obey the Marčenko-Pastur distribution.
Measuring multivariate association and beyond
Josse, Julie; Holmes, Susan
2017-01-01
Simple correlation coefficients between two variables have been generalized to measure association between two matrices in many ways. Coefficients such as the RV coefficient, the distance covariance (dCov) coefficient and kernel based coefficients are being used by different research communities. Scientists use these coefficients to test whether two random vectors are linked. Once it has been ascertained that there is such association through testing, then a next step, often ignored, is to explore and uncover the association’s underlying patterns. This article provides a survey of various measures of dependence between random vectors and tests of independence and emphasizes the connections and differences between the various approaches. After providing definitions of the coefficients and associated tests, we present the recent improvements that enhance their statistical properties and ease of interpretation. We summarize multi-table approaches and provide scenarii where the indices can provide useful summaries of heterogeneous multi-block data. We illustrate these different strategies on several examples of real data and suggest directions for future research. PMID:29081877
Maziak, W; Ward, K D; Eissenberg, T
2004-10-05
To evaluate factors related to level of narghile (waterpipe) use as a first step towards modeling tobacco dependence among narghile users. Cross sectional survey done in 2003 using interviewer-administered anonymous questionnaires. Cafes/restaurants serving narghiles in Aleppo, Syria. Narghile smokers (161 men and 107 women; mean age, 30.1 +/- 10.2, 161; age range, 18-68 years; response rate, 95.3%) randomly selected from the 17 cafes/restaurants sampled. Frequency of narghile use (daily, weekly, monthly) was assessed as a function of several factors potentially indicative of dependence, including situational characteristics (where, when, and with whom smoking occurs; seasonality of use, and sharing of narghile), attitudes, and experience with quitting narghile use, escalation of use over time, future intentions regarding use, perception of being "hooked" on narghile, and cognitions/behaviors engaged in to support use (carrying one's own narghile; think of narghile when it is not available; considering narghile for selection of cafes/restaurants). Frequency of narghile use was strongly correlated with participant's subjective judgment of how hooked they are on narghile (coefficient, 0.5). Predictors of narghile use frequency according to multinomial logistic regression were: male gender, smoking mainly alone versus with others; smoking mainly at home versus outside; smoking more frequently since initiation, being hooked on narghile, carrying narghile, and considering it for cafe/restaurant choice. Our data reveal two main domains of a tobacco dependence syndrome likely to be relevant to narghile; the first reflects the effects of nicotine contained in narghile tobacco, and is not very different from what is seen with other tobacco products, and the second is unique to narghile and is related mainly to its social dimension, with more intensive smokers showing an increasingly individual pattern of narghile smoking.
Finbråten, Hanne Søberg; Pettersen, Kjell Sverre; Wilde-Larsson, Bodil; Nordström, Gun; Trollvik, Anne; Guttersrud, Øystein
2017-11-01
To validate the European Health Literacy Survey Questionnaire (HLS-EU-Q47) in people with type 2 diabetes mellitus. The HLS-EU-Q47 latent variable is outlined in a framework with four cognitive domains integrated in three health domains, implying 12 theoretically defined subscales. Valid and reliable health literacy measurers are crucial to effectively adapt health communication and education to individuals and groups of patients. Cross-sectional study applying confirmatory latent trait analyses. Using a paper-and-pencil self-administered approach, 388 adults responded in March 2015. The data were analysed using the Rasch methodology and confirmatory factor analysis. Response violation (response dependency) and trait violation (multidimensionality) of local independence were identified. Fitting the "multidimensional random coefficients multinomial logit" model, 1-, 3- and 12-dimensional Rasch models were applied and compared. Poor model fit and differential item functioning were present in some items, and several subscales suffered from poor targeting and low reliability. Despite multidimensional data, we did not observe any unordered response categories. Interpreting the domains as distinct but related latent dimensions, the data fit a 12-dimensional Rasch model and a 12-factor confirmatory factor model best. Therefore, the analyses did not support the estimation of one overall "health literacy score." To support the plausibility of claims based on the HLS-EU score(s), we suggest: removing the health care aspect to reduce the magnitude of multidimensionality; rejecting redundant items to avoid response dependency; adding "harder" items and applying a six-point rating scale to improve subscale targeting and reliability; and revising items to improve model fit and avoid bias owing to person factors. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Elmore, K. L.
2016-12-01
The Metorological Phenomemna Identification NeartheGround (mPING) project is an example of a crowd-sourced, citizen science effort to gather data of sufficeint quality and quantity needed by new post processing methods that use machine learning. Transportation and infrastructure are particularly sensitive to precipitation type in winter weather. We extract attributes from operational numerical forecast models and use them in a random forest to generate forecast winter precipitation types. We find that random forests applied to forecast soundings are effective at generating skillful forecasts of surface ptype with consideralbly more skill than the current algorithms, especuially for ice pellets and freezing rain. We also find that three very different forecast models yuield similar overall results, showing that random forests are able to extract essentially equivalent information from different forecast models. We also show that the random forest for each model, and each profile type is unique to the particular forecast model and that the random forests developed using a particular model suffer significant degradation when given attributes derived from a different model. This implies that no single algorithm can perform well across all forecast models. Clearly, random forests extract information unavailable to "physically based" methods because the physical information in the models does not appear as we expect. One intersting result is that results from the classic "warm nose" sounding profile are, by far, the most sensitive to the particular forecast model, but this profile is also the one for which random forests are most skillful. Finally, a method for calibrarting probabilties for each different ptype using multinomial logistic regression is shown.
ERIC Educational Resources Information Center
Boll, Christina; Leppin, Julian Sebastian; Schömann, Klaus
2016-01-01
Overeducation potentially signals a productivity loss. With Socio-Economic Panel data from 1984 to 2011 we identify drivers of educational mismatch for East and West medium and highly educated Germans. Addressing measurement error, state dependence and unobserved heterogeneity, we run dynamic mixed multinomial logit models for three different…
Effects of ignoring baseline on modeling transitions from intact cognition to dementia
Yu, Lei; Tyas, Suzanne L.; Snowdon, David A.; Kryscio, Richard J.
2009-01-01
This paper evaluates the effect of ignoring baseline when modeling transitions from intact cognition to dementia with mild cognitive impairment (MCI) and global impairment (GI) as intervening cognitive states. Transitions among states are modeled by a discrete-time Markov chain having three transient (intact cognition, MCI, and GI) and two competing absorbing states (death and dementia). Transition probabilities depend on two covariates, age and the presence/absence of an apolipoprotein E-ε4 allele, through a multinomial logistic model with shared random effects. Results are illustrated with an application to the Nun Study, a cohort of 678 participants 75+ years of age at baseline and followed longitudinally with up to ten cognitive assessments per nun. PMID:20161282
Prediction of Nursing Workload in Hospital.
Fiebig, Madlen; Hunstein, Dirk; Bartholomeyczik, Sabine
2018-01-01
A dissertation project at the Witten/Herdecke University [1] is investigating which (nursing sensitive) patient characteristics are suitable for predicting a higher or lower degree of nursing workload. For this research project four predictive modelling methods were selected. In a first step, SUPPORT VECTOR MACHINE, RANDOM FOREST, and GRADIENT BOOSTING were used to identify potential predictors from the nursing sensitive patient characteristics. The results were compared via FEATURE IMPORTANCE. To predict nursing workload the predictors identified in step 1 were modelled using MULTINOMIAL LOGISTIC REGRESSION. First results from the data mining process will be presented. A prognostic determination of nursing workload can be used not only as a basis for human resource planning in hospital, but also to respond to health policy issues.
Inequality in the hepatitis B awareness level in rural residents from 7 provinces in China
Zheng, Juan; Li, Quan; Wang, Jian; Zhang, Guojie; Wangen, Knut R.
2017-01-01
ABSTRACT The hepatitis B (HB) awareness level is an important factor affecting the rates of HB virus vaccination. To better understand income-related inequalities in the HB awareness level, it is imperative to identify the sources of inequalities and assess the contribution rates of these influential factors. This study analyzed the unequal distribution of the HB awareness level and the contributions of various influential factors. We performed a cross-sectional household survey with questionnaire-based, face-to-face interviews in 7 Chinese provinces. Responses from 7271 respondents were used in this analysis. Multinomial logistic regression was used for the analysis of contributing factors, and the concentration index was used as a measure of HB awareness inequalities. The HB awareness level varied across participants with different characteristics. Multinomial logistic regression of the explanatory factors of the HB awareness level showed that several estimated coefficients and relative risk ratios were statistically significant for middle- and high-level awareness, except for sex, occupation, and household income. The concentration index of the HB knowledge score was 0.140, indicating inequality gradients disadvantageous to the poor. The contribution rate of socioeconomic factors was the largest (60.8%), followed by demographic characteristics (29.0%) and geographic factors (4.3%). Demographic, socioeconomic, and geographic factors are associated with the HB awareness inequality. Therefore, to reduce inequality, HB-related health education targeting individuals with low socioeconomic status should be performed. Less-developed provinces, especially with high proportions of poor residents, warrant particular attention. Our findings may be beneficial to improve the HB virus vaccination rate for individuals with low socioeconomic status. PMID:28277091
A Walk (or Cycle) to the Park: Active Transit to Neighborhood Amenities, the CARDIA Study
Boone-Heinonen, Janne; Jacobs, David R.; Sidney, Stephen; Sternfeld, Barbara; Lewis, Cora E.; Gordon-Larsen, Penny
2009-01-01
Background Building on known associations between active commuting and reduced cardiovascular disease (CVD) risk, this study examines active transit to neighborhood amenities and differences between walking versus cycling for transportation. Method Year 20 data from the Coronary Artery Risk Development in Young Adults (CARDIA) study (3549 black and white adults aged 38–50 years in 2005–06) were analyzed in 2008–2009. Sociodemographic correlates of transportation mode (car-only, walk-only, any cycling, other) to neighborhood amenities were examined in multivariable multinomial logistic models. Gender-stratified, multivariable linear or multinomial regression models compared CVD risk factors across transit modes. Results Active transit was most common to parks and public transit stops; walking was more common than cycling. Among those who used each amenity, active transit (walk-only and any cycling versus car-only transit) was more common in men and those with no live-in partner and less than full-time employment [significant OR's (95% CI) ranging from 1.56 (1.08, 2.27) to 4.52 (1.70, 12.14)], and less common in those with children. Active transit to any neighborhood amenity was associated with more favorable BMI, waist circumference, and fitness [largest coefficient (95% CI) −1.68 (−2.81, −0.55) for BMI, −3.41 (−5.71, −1.11) for waist circumference (cm), and 36.65 (17.99, 55.31) for treadmill test duration (sec)]. Only cycling was associated with lower lifetime CVD risk classification. Conclusion Active transit to neighborhood amenities was related to sociodemographics and CVD risk factors. Variation in health-related benefits by active transit mode, if validated in prospective studies, may have implications for transportation planning and research. PMID:19765499
ERIC Educational Resources Information Center
Bloom, Howard S.; Raudenbush, Stephen W.; Weiss, Michael J.; Porter, Kristin
2017-01-01
The present article considers a fundamental question in evaluation research: "By how much do program effects vary across sites?" The article first presents a theoretical model of cross-site impact variation and a related estimation model with a random treatment coefficient and fixed site-specific intercepts. This approach eliminates…
MATIN: a random network coding based framework for high quality peer-to-peer live video streaming.
Barekatain, Behrang; Khezrimotlagh, Dariush; Aizaini Maarof, Mohd; Ghaeini, Hamid Reza; Salleh, Shaharuddin; Quintana, Alfonso Ariza; Akbari, Behzad; Cabrera, Alicia Triviño
2013-01-01
In recent years, Random Network Coding (RNC) has emerged as a promising solution for efficient Peer-to-Peer (P2P) video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay.
Macroscopic damping model for structural dynamics with random polycrystalline configurations
NASA Astrophysics Data System (ADS)
Yang, Yantao; Cui, Junzhi; Yu, Yifan; Xiang, Meizhen
2018-06-01
In this paper the macroscopic damping model for dynamical behavior of the structures with random polycrystalline configurations at micro-nano scales is established. First, the global motion equation of a crystal is decomposed into a set of motion equations with independent single degree of freedom (SDOF) along normal discrete modes, and then damping behavior is introduced into each SDOF motion. Through the interpolation of discrete modes, the continuous representation of damping effects for the crystal is obtained. Second, from energy conservation law the expression of the damping coefficient is derived, and the approximate formula of damping coefficient is given. Next, the continuous damping coefficient for polycrystalline cluster is expressed, the continuous dynamical equation with damping term is obtained, and then the concrete damping coefficients for a polycrystalline Cu sample are shown. Finally, by using statistical two-scale homogenization method, the macroscopic homogenized dynamical equation containing damping term for the structures with random polycrystalline configurations at micro-nano scales is set up.
Gonzalez-Vazquez, J P; Anta, Juan A; Bisquert, Juan
2009-11-28
The random walk numerical simulation (RWNS) method is used to compute diffusion coefficients for hopping transport in a fully disordered medium at finite carrier concentrations. We use Miller-Abrahams jumping rates and an exponential distribution of energies to compute the hopping times in the random walk simulation. The computed diffusion coefficient shows an exponential dependence with respect to Fermi-level and Arrhenius behavior with respect to temperature. This result indicates that there is a well-defined transport level implicit to the system dynamics. To establish the origin of this transport level we construct histograms to monitor the energies of the most visited sites. In addition, we construct "corrected" histograms where backward moves are removed. Since these moves do not contribute to transport, these histograms provide a better estimation of the effective transport level energy. The analysis of this concept in connection with the Fermi-level dependence of the diffusion coefficient and the regime of interest for the functioning of dye-sensitised solar cells is thoroughly discussed.
The status of diabetes control in Kurdistan province, west of Iran.
Esmailnasab, Nader; Afkhamzadeh, Abdorrahim; Roshani, Daem; Moradi, Ghobad
2013-09-17
Based on some estimation more than two million peoples in Iran are affected by Type 2 diabetes. The present study was designed to evaluate the status of diabetes control among Type 2 diabetes patients in Kurdistan, west of Iran and its associated factors. In our cross sectional study conducted in 2010, 411 Type 2 diabetes patients were randomly recruited from Sanandaj, Capital of Kurdistan. Chi square test was used in univariate analysis to address the association between HgAlc and FBS status and other variables. The significant results from Univariate analysis were entered in multivariate analysis and multinomial logistic regression model. In 38% of patients, FBS was in normal range (70-130) and in 47% HgA1c was <7% which is normal range for HgA1c. In univariate analysis, FBS level was associated with educational levels (P=0.001), referral style (P=0.001), referral time (P=0.009), and insulin injection (P=0.016). In addition, HgA1c had a relationship with sex (P=0.023), age (P=0.035), education (P=0.001), referral style (P=0.001), and insulin injection (P=0.008). After using multinomial logistic regression for significant results of univariate analysis, it was found that FBS was significantly associated with referral style. In addition HgA1c was significantly associated with referral style and Insulin injection. Although some of patients were under the coverage of specialized cares, but their diabetes were not properly controlled.
The influence of statistical properties of Fourier coefficients on random Gaussian surfaces.
de Castro, C P; Luković, M; Andrade, R F S; Herrmann, H J
2017-05-16
Many examples of natural systems can be described by random Gaussian surfaces. Much can be learned by analyzing the Fourier expansion of the surfaces, from which it is possible to determine the corresponding Hurst exponent and consequently establish the presence of scale invariance. We show that this symmetry is not affected by the distribution of the modulus of the Fourier coefficients. Furthermore, we investigate the role of the Fourier phases of random surfaces. In particular, we show how the surface is affected by a non-uniform distribution of phases.
Maximum entropy principal for transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilich, F.; Da Silva, R.
In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utilitymore » concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.« less
1987-07-01
multinomial distribution as a magazine exposure model. J. of Marketing Research . 21, 100-106. Lehmann, E.L. (1983). Theory of Point Estimation. John Wiley and... Marketing Research . 21, 89-99. V I flWflW WflW~WWMWSS tWN ,rw fl rwwrwwr-w~ w-. ~. - - -- .~ 4’.) ~a 4’ ., . ’-4. .4.: .4~ I .4. ~J3iAf a,’ -a’ 4
Bayesian dynamic modeling of time series of dengue disease case counts.
Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander
2017-07-01
The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health.
MATIN: A Random Network Coding Based Framework for High Quality Peer-to-Peer Live Video Streaming
Barekatain, Behrang; Khezrimotlagh, Dariush; Aizaini Maarof, Mohd; Ghaeini, Hamid Reza; Salleh, Shaharuddin; Quintana, Alfonso Ariza; Akbari, Behzad; Cabrera, Alicia Triviño
2013-01-01
In recent years, Random Network Coding (RNC) has emerged as a promising solution for efficient Peer-to-Peer (P2P) video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay. PMID:23940530
"L"-Bivariate and "L"-Multivariate Association Coefficients. Research Report. ETS RR-08-40
ERIC Educational Resources Information Center
Kong, Nan; Lewis, Charles
2008-01-01
Given a system of multiple random variables, a new measure called the "L"-multivariate association coefficient is defined using (conditional) entropy. Unlike traditional correlation measures, the L-multivariate association coefficient measures the multiassociations or multirelations among the multiple variables in the given system; that…
Design and analysis of simple choice surveys for natural resource management
Fieberg, John; Cornicelli, Louis; Fulton, David C.; Grund, Marrett D.
2010-01-01
We used a simple yet powerful method for judging public support for management actions from randomized surveys. We asked respondents to rank choices (representing management regulations under consideration) according to their preference, and we then used discrete choice models to estimate probability of choosing among options (conditional on the set of options presented to respondents). Because choices may share similar unmodeled characteristics, the multinomial logit model, commonly applied to discrete choice data, may not be appropriate. We introduced the nested logit model, which offers a simple approach for incorporating correlation among choices. This forced choice survey approach provides a useful method of gathering public input; it is relatively easy to apply in practice, and the data are likely to be more informative than asking constituents to rate attractiveness of each option separately.
Arsenic exposure and oral cavity lesions in Bangladesh.
Syed, Emdadul H; Melkonian, Stephanie; Poudel, Krishna C; Yasuoka, Junko; Otsuka, Keiko; Ahmed, Alauddin; Islam, Tariqul; Parvez, Faruque; Slavkovich, Vesna; Graziano, Joseph H; Ahsan, Habibul; Jimba, Masamine
2013-01-01
To evaluate the relationship between arsenic exposure and oral cavity lesions among an arsenic-exposed population in Bangladesh. We carried out an analysis utilizing the baseline data of the Health Effects of Arsenic Exposure Longitudinal Study, which is an ongoing population-based cohort study to investigate health outcomes associated with arsenic exposure via drinking water in Araihazar, Bangladesh. We used multinomial regression models to estimate the risk of oral cavity lesions. Participants with high urinary arsenic levels (286.1 to 5000.0 μg/g) were more likely to develop arsenical lesions of the gums (multinomial odds ratio = 2.90; 95% confidence interval, 1.11 to 7.54), and tongue (multinomial odds ratio = 2.79; 95% confidence interval, 1.51 to 5.15), compared with those with urinary arsenic levels of 7.0 to 134.0 μg/g. Higher level of arsenic exposure was positively associated with increased arsenical lesions of the gums and tongue.
NASA Astrophysics Data System (ADS)
Dokuchaev, P. M.; Meshalkina, J. L.; Yaroslavtsev, A. M.
2018-01-01
Comparative analysis of soils geospatial modeling using multinomial logistic regression, decision trees, random forest, regression trees and support vector machines algorithms was conducted. The visual interpretation of the digital maps obtained and their comparison with the existing map, as well as the quantitative assessment of the individual soil groups detection overall accuracy and of the models kappa showed that multiple logistic regression, support vector method, and random forest models application with spatial prediction of the conditional soil groups distribution can be reliably used for mapping of the study area. It has shown the most accurate detection for sod-podzolics soils (Phaeozems Albic) lightly eroded and moderately eroded soils. In second place, according to the mean overall accuracy of the prediction, there are sod-podzolics soils - non-eroded and warp one, as well as sod-gley soils (Umbrisols Gleyic) and alluvial soils (Fluvisols Dystric, Umbric). Heavy eroded sod-podzolics and gray forest soils (Phaeozems Albic) were detected by methods of automatic classification worst of all.
Parallel Algorithms for Switching Edges in Heterogeneous Graphs.
Bhuiyan, Hasanuzzaman; Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav
2017-06-01
An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors.
Parallel Algorithms for Switching Edges in Heterogeneous Graphs☆
Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav
2017-01-01
An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors. PMID:28757680
Search for Directed Networks by Different Random Walk Strategies
NASA Astrophysics Data System (ADS)
Zhu, Zi-Qi; Jin, Xiao-Ling; Huang, Zhi-Long
2012-03-01
A comparative study is carried out on the efficiency of five different random walk strategies searching on directed networks constructed based on several typical complex networks. Due to the difference in search efficiency of the strategies rooted in network clustering, the clustering coefficient in a random walker's eye on directed networks is defined and computed to be half of the corresponding undirected networks. The search processes are performed on the directed networks based on Erdös—Rényi model, Watts—Strogatz model, Barabási—Albert model and clustered scale-free network model. It is found that self-avoiding random walk strategy is the best search strategy for such directed networks. Compared to unrestricted random walk strategy, path-iteration-avoiding random walks can also make the search process much more efficient. However, no-triangle-loop and no-quadrangle-loop random walks do not improve the search efficiency as expected, which is different from those on undirected networks since the clustering coefficient of directed networks are smaller than that of undirected networks.
NASA Astrophysics Data System (ADS)
Yuste, S. B.; Abad, E.; Baumgaertner, A.
2016-07-01
We address the problem of diffusion on a comb whose teeth display varying lengths. Specifically, the length ℓ of each tooth is drawn from a probability distribution displaying power law behavior at large ℓ ,P (ℓ ) ˜ℓ-(1 +α ) (α >0 ). To start with, we focus on the computation of the anomalous diffusion coefficient for the subdiffusive motion along the backbone. This quantity is subsequently used as an input to compute concentration recovery curves mimicking fluorescence recovery after photobleaching experiments in comblike geometries such as spiny dendrites. Our method is based on the mean-field description provided by the well-tested continuous time random-walk approach for the random-comb model, and the obtained analytical result for the diffusion coefficient is confirmed by numerical simulations of a random walk with finite steps in time and space along the backbone and the teeth. We subsequently incorporate retardation effects arising from binding-unbinding kinetics into our model and obtain a scaling law characterizing the corresponding change in the diffusion coefficient. Finally, we show that recovery curves obtained with the help of the analytical expression for the anomalous diffusion coefficient cannot be fitted perfectly by a model based on scaled Brownian motion, i.e., a standard diffusion equation with a time-dependent diffusion coefficient. However, differences between the exact curves and such fits are small, thereby providing justification for the practical use of models relying on scaled Brownian motion as a fitting procedure for recovery curves arising from particle diffusion in comblike systems.
A Graph Theory Practice on Transformed Image: A Random Image Steganography
Thanikaiselvan, V.; Arulmozhivarman, P.; Subashanthini, S.; Amirtharajan, Rengarajan
2013-01-01
Modern day information age is enriched with the advanced network communication expertise but unfortunately at the same time encounters infinite security issues when dealing with secret and/or private information. The storage and transmission of the secret information become highly essential and have led to a deluge of research in this field. In this paper, an optimistic effort has been taken to combine graceful graph along with integer wavelet transform (IWT) to implement random image steganography for secure communication. The implementation part begins with the conversion of cover image into wavelet coefficients through IWT and is followed by embedding secret image in the randomly selected coefficients through graph theory. Finally stegoimage is obtained by applying inverse IWT. This method provides a maximum of 44 dB peak signal to noise ratio (PSNR) for 266646 bits. Thus, the proposed method gives high imperceptibility through high PSNR value and high embedding capacity in the cover image due to adaptive embedding scheme and high robustness against blind attack through graph theoretic random selection of coefficients. PMID:24453857
Biases and Standard Errors of Standardized Regression Coefficients
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Chan, Wai
2011-01-01
The paper obtains consistent standard errors (SE) and biases of order O(1/n) for the sample standardized regression coefficients with both random and given predictors. Analytical results indicate that the formulas for SEs given in popular text books are consistent only when the population value of the regression coefficient is zero. The sample…
NASA Astrophysics Data System (ADS)
Yoo, Jin Woo
In my 1st essay, the study explores Pennsylvania residents. willingness to pay for development of renewable energy technologies such as solar power, wind power, biomass electricity, and other renewable energy using a choice experiment method. Principle component analysis identified 3 independent attitude components that affect the variation of preference, a desire for renewable energy and environmental quality and concern over cost. The results show that urban residents have a higher desire for environmental quality and concern less about cost than rural residents and consequently have a higher willingness to pay to increase renewable energy production. The results of sub-sample analysis show that a representative respondent in rural (urban) Pennsylvania is willing to pay 3.8(5.9) and 4.1(5.7)/month for increasing the share of Pennsylvania electricity generated from wind power and other renewable energy by 1 percent point, respectively. Mean WTP for solar and biomass electricity was not significantly different from zero. In my second essay, heterogeneity of individual WTP for various renewable energy technologies is investigated using several different variants of the multinomial logit model: a simple MNL with interaction terms, a latent class choice model, a random parameter mixed logit choice model, and a random parameter-latent class choice model. The results of all models consistently show that respondents. preference for individual renewable technology is heterogeneous, but the degree of heterogeneity differs for different renewable technologies. In general, the random parameter logit model with interactions and a hybrid random parameter logit-latent class model fit better than other models and better capture respondents. heterogeneity of preference for renewable energy. The impact of the land under agricultural conservation easement (ACE) contract on the values of nearby residential properties is investigated using housing sales data in two Pennsylvania Counties. The spatial-lag (SLM), the spatial error (SEM) and the spatial error component (SEC) models were compared. A geographically weighted regression (GWR) model is estimated to study the spatial heterogeneity of the marginal implicit prices of ACE impact within each county. New hybrid spatial hedonic models, the GWR-SEC and a modified GWR-SEM, are estimated such that both spatial autocorrelation and heterogeneity are accounted. The results show that the coefficient of land under easement contract varies spatially within one county, but not within the other county studied. Also, ACE's are found to have both positive and negative impacts on the values of nearby residential properties. Among global spatial models, the SEM fit better than the SLM and the SEC. Statistical goodness of fit measures showed that the GWR-SEC model fit better than the GWR or the GWR-SEC model. Finally, the GWR-SEC showed spatial autocorrelation is stronger in one county than in the other county.
Numeric score-based conditional and overall change-in-status indices for ordered categorical data.
Lyles, Robert H; Kupper, Lawrence L; Barnhart, Huiman X; Martin, Sandra L
2015-11-30
Planned interventions and/or natural conditions often effect change on an ordinal categorical outcome (e.g., symptom severity). In such scenarios, it is sometimes desirable to assign a priori scores to observed changes in status, typically giving higher weight to changes of greater magnitude. We define change indices for such data based upon a multinomial model for each row of a c × c table, where the rows represent the baseline status categories. We distinguish an index designed to assess conditional changes within each baseline category from two others designed to capture overall change. One of these overall indices measures expected change across a target population. The other is scaled to capture the proportion of total possible change in the direction indicated by the data, so that it ranges from -1 (when all subjects finish in the least favorable category) to +1 (when all finish in the most favorable category). The conditional assessment of change can be informative regardless of how subjects are sampled into the baseline categories. In contrast, the overall indices become relevant when subjects are randomly sampled at baseline from the target population of interest, or when the investigator is able to make certain assumptions about the baseline status distribution in that population. We use a Dirichlet-multinomial model to obtain Bayesian credible intervals for the conditional change index that exhibit favorable small-sample frequentist properties. Simulation studies illustrate the methods, and we apply them to examples involving changes in ordinal responses for studies of sleep deprivation and activities of daily living. Copyright © 2015 John Wiley & Sons, Ltd.
A generalized nonlinear model-based mixed multinomial logit approach for crash data analysis.
Zeng, Ziqiang; Zhu, Wenbo; Ke, Ruimin; Ash, John; Wang, Yinhai; Xu, Jiuping; Xu, Xinxin
2017-02-01
The mixed multinomial logit (MNL) approach, which can account for unobserved heterogeneity, is a promising unordered model that has been employed in analyzing the effect of factors contributing to crash severity. However, its basic assumption of using a linear function to explore the relationship between the probability of crash severity and its contributing factors can be violated in reality. This paper develops a generalized nonlinear model-based mixed MNL approach which is capable of capturing non-monotonic relationships by developing nonlinear predictors for the contributing factors in the context of unobserved heterogeneity. The crash data on seven Interstate freeways in Washington between January 2011 and December 2014 are collected to develop the nonlinear predictors in the model. Thirteen contributing factors in terms of traffic characteristics, roadway geometric characteristics, and weather conditions are identified to have significant mixed (fixed or random) effects on the crash density in three crash severity levels: fatal, injury, and property damage only. The proposed model is compared with the standard mixed MNL model. The comparison results suggest a slight superiority of the new approach in terms of model fit measured by the Akaike Information Criterion (12.06 percent decrease) and Bayesian Information Criterion (9.11 percent decrease). The predicted crash densities for all three levels of crash severities of the new approach are also closer (on average) to the observations than the ones predicted by the standard mixed MNL model. Finally, the significance and impacts of the contributing factors are analyzed. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Frees, Edward W.; Kim, Jee-Seon
2006-01-01
Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…
An efficient algorithm for generating random number pairs drawn from a bivariate normal distribution
NASA Technical Reports Server (NTRS)
Campbell, C. W.
1983-01-01
An efficient algorithm for generating random number pairs from a bivariate normal distribution was developed. Any desired value of the two means, two standard deviations, and correlation coefficient can be selected. Theoretically the technique is exact and in practice its accuracy is limited only by the quality of the uniform distribution random number generator, inaccuracies in computer function evaluation, and arithmetic. A FORTRAN routine was written to check the algorithm and good accuracy was obtained. Some small errors in the correlation coefficient were observed to vary in a surprisingly regular manner. A simple model was developed which explained the qualities aspects of the errors.
Fluctuating Navier-Stokes equations for inelastic hard spheres or disks.
Brey, J Javier; Maynar, P; de Soria, M I García
2011-04-01
Starting from the fluctuating Boltzmann equation for smooth inelastic hard spheres or disks, closed equations for the fluctuating hydrodynamic fields to Navier-Stokes order are derived. This requires deriving constitutive relations for both the fluctuating fluxes and the correlations of the random forces. The former are identified as having the same form as the macroscopic average fluxes and involving the same transport coefficients. On the other hand, the random force terms exhibit two peculiarities as compared with their elastic limit for molecular systems. First, they are not white but have some finite relaxation time. Second, their amplitude is not determined by the macroscopic transport coefficients but involves new coefficients. ©2011 American Physical Society
The Analysis of Completely Randomized Factorial Experiments When Observations Are Lost at Random.
ERIC Educational Resources Information Center
Hummel, Thomas J.
An investigation was conducted of the characteristics of two estimation procedures and corresponding test statistics used in the analysis of completely randomized factorial experiments when observations are lost at random. For one estimator, contrast coefficients for cell means did not involve the cell frequencies. For the other, contrast…
Mollenhauer, Robert; Brewer, Shannon K.
2017-01-01
Failure to account for variable detection across survey conditions constrains progressive stream ecology and can lead to erroneous stream fish management and conservation decisions. In addition to variable detection’s confounding long-term stream fish population trends, reliable abundance estimates across a wide range of survey conditions are fundamental to establishing species–environment relationships. Despite major advancements in accounting for variable detection when surveying animal populations, these approaches remain largely ignored by stream fish scientists, and CPUE remains the most common metric used by researchers and managers. One notable advancement for addressing the challenges of variable detection is the multinomial N-mixture model. Multinomial N-mixture models use a flexible hierarchical framework to model the detection process across sites as a function of covariates; they also accommodate common fisheries survey methods, such as removal and capture–recapture. Effective monitoring of stream-dwelling Smallmouth Bass Micropterus dolomieu populations has long been challenging; therefore, our objective was to examine the use of multinomial N-mixture models to improve the applicability of electrofishing for estimating absolute abundance. We sampled Smallmouth Bass populations by using tow-barge electrofishing across a range of environmental conditions in streams of the Ozark Highlands ecoregion. Using an information-theoretic approach, we identified effort, water clarity, wetted channel width, and water depth as covariates that were related to variable Smallmouth Bass electrofishing detection. Smallmouth Bass abundance estimates derived from our top model consistently agreed with baseline estimates obtained via snorkel surveys. Additionally, confidence intervals from the multinomial N-mixture models were consistently more precise than those of unbiased Petersen capture–recapture estimates due to the dependency among data sets in the hierarchical framework. We demonstrate the application of this contemporary population estimation method to address a longstanding stream fish management issue. We also detail the advantages and trade-offs of hierarchical population estimation methods relative to CPUE and estimation methods that model each site separately.
Weibull crack density coefficient for polydimensional stress states
NASA Technical Reports Server (NTRS)
Gross, Bernard; Gyekenyesi, John P.
1989-01-01
A structural ceramic analysis and reliability evaluation code has recently been developed encompassing volume and surface flaw induced fracture, modeled by the two-parameter Weibull probability density function. A segment of the software involves computing the Weibull polydimensional stress state crack density coefficient from uniaxial stress experimental fracture data. The relationship of the polydimensional stress coefficient to the uniaxial stress coefficient is derived for a shear-insensitive material with a random surface flaw population.
Bayesian dynamic modeling of time series of dengue disease case counts
López-Quílez, Antonio; Torres-Prieto, Alexander
2017-01-01
The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health. PMID:28671941
Neighborhood Structural Inequality, Collective Efficacy, and Sexual Risk Behavior among Urban Youth
BROWNING, CHRISTOPHER R.; BURRINGTON, LORI A.; LEVENTHAL, TAMA; BROOKS-GUNN, JEANNE
2011-01-01
We draw on collective efficacy theory to extend a contextual model of early adolescent sexual behavior. Specifically, we hypothesize that neighborhood structural disadvantage—as measured by levels of concentrated poverty, residential instability, and aspects of immigrant concentration—and diminished collective efficacy have consequences for the prevalence of early adolescent multiple sexual partnering. Findings from random effects multinomial logistic regression models of the number of sexual partners among a sample of youth, age 11 to 16, from the Project on Human Development in Chicago Neighborhoods (N = 768) reveal evidence of neighborhood effects on adolescent higher-risk sexual activity. Collective efficacy is negatively associated with having two or more sexual partners versus one (but not zero versus one) sexual partner. The effect of collective efficacy is dependent upon age: The regulatory effect of collective efficacy increases for older adolescents. PMID:18771063
Braschel, Melissa C; Svec, Ivana; Darlington, Gerarda A; Donner, Allan
2016-04-01
Many investigators rely on previously published point estimates of the intraclass correlation coefficient rather than on their associated confidence intervals to determine the required size of a newly planned cluster randomized trial. Although confidence interval methods for the intraclass correlation coefficient that can be applied to community-based trials have been developed for a continuous outcome variable, fewer methods exist for a binary outcome variable. The aim of this study is to evaluate confidence interval methods for the intraclass correlation coefficient applied to binary outcomes in community intervention trials enrolling a small number of large clusters. Existing methods for confidence interval construction are examined and compared to a new ad hoc approach based on dividing clusters into a large number of smaller sub-clusters and subsequently applying existing methods to the resulting data. Monte Carlo simulation is used to assess the width and coverage of confidence intervals for the intraclass correlation coefficient based on Smith's large sample approximation of the standard error of the one-way analysis of variance estimator, an inverted modified Wald test for the Fleiss-Cuzick estimator, and intervals constructed using a bootstrap-t applied to a variance-stabilizing transformation of the intraclass correlation coefficient estimate. In addition, a new approach is applied in which clusters are randomly divided into a large number of smaller sub-clusters with the same methods applied to these data (with the exception of the bootstrap-t interval, which assumes large cluster sizes). These methods are also applied to a cluster randomized trial on adolescent tobacco use for illustration. When applied to a binary outcome variable in a small number of large clusters, existing confidence interval methods for the intraclass correlation coefficient provide poor coverage. However, confidence intervals constructed using the new approach combined with Smith's method provide nominal or close to nominal coverage when the intraclass correlation coefficient is small (<0.05), as is the case in most community intervention trials. This study concludes that when a binary outcome variable is measured in a small number of large clusters, confidence intervals for the intraclass correlation coefficient may be constructed by dividing existing clusters into sub-clusters (e.g. groups of 5) and using Smith's method. The resulting confidence intervals provide nominal or close to nominal coverage across a wide range of parameters when the intraclass correlation coefficient is small (<0.05). Application of this method should provide investigators with a better understanding of the uncertainty associated with a point estimator of the intraclass correlation coefficient used for determining the sample size needed for a newly designed community-based trial. © The Author(s) 2015.
Quality and provider choice: a multinomial logit-least-squares model with selectivity.
Haas-Wilson, D; Savoca, E
1990-01-01
A Federal Trade Commission survey of contact lens wearers is used to estimate a multinomial logit-least-squares model of the joint determination of provider choice and quality of care in the contact lens industry. The effect of personal and industry characteristics on a consumer's choice among three types of providers--opticians, ophthalmologists, and optometrists--is estimated via multinomial logit. The regression model of the quality of care has two features that distinguish it from previous work in the area. First, it uses an outcome rather than a structural or process measure of quality. Quality is measured as an index of the presence of seven potentially pathological eye conditions caused by poorly fitted lenses. Second, the model controls for possible selection bias that may arise from the fact that the sample observations on quality are generated by consumers' nonrandom choices of providers. The multinomial logit estimates of provider choice indicate that professional regulations limiting the commercial practices of optometrists shift demand for contact lens services away from optometrists toward ophthalmologists. Further, consumers are more likely to have their lenses fitted by opticians in states that require the licensing of opticians. The regression analysis of variations in quality across provider types shows a strong positive selection bias in the estimate of the quality of care received by consumers of ophthalmologists' services. Failure to control for this selection bias results in an overestimate of the quality of care provided by ophthalmologists. PMID:2312308
Multinomial logistic regression in workers' health
NASA Astrophysics Data System (ADS)
Grilo, Luís M.; Grilo, Helena L.; Gonçalves, Sónia P.; Junça, Ana
2017-11-01
In European countries, namely in Portugal, it is common to hear some people mentioning that they are exposed to excessive and continuous psychosocial stressors at work. This is increasing in diverse activity sectors, such as, the Services sector. A representative sample was collected from a Portuguese Services' organization, by applying a survey (internationally validated), which variables were measured in five ordered categories in Likert-type scale. A multinomial logistic regression model is used to estimate the probability of each category of the dependent variable general health perception where, among other independent variables, burnout appear as statistically significant.
A computer program for estimation from incomplete multinomial data
NASA Technical Reports Server (NTRS)
Credeur, K. R.
1978-01-01
Coding is given for maximum likelihood and Bayesian estimation of the vector p of multinomial cell probabilities from incomplete data. Also included is coding to calculate and approximate elements of the posterior mean and covariance matrices. The program is written in FORTRAN 4 language for the Control Data CYBER 170 series digital computer system with network operating system (NOS) 1.1. The program requires approximately 44000 octal locations of core storage. A typical case requires from 72 seconds to 92 seconds on CYBER 175 depending on the value of the prior parameter.
Categorical Data Analysis Using a Skewed Weibull Regression Model
NASA Astrophysics Data System (ADS)
Caron, Renault; Sinha, Debajyoti; Dey, Dipak; Polpo, Adriano
2018-03-01
In this paper, we present a Weibull link (skewed) model for categorical response data arising from binomial as well as multinomial model. We show that, for such types of categorical data, the most commonly used models (logit, probit and complementary log-log) can be obtained as limiting cases. We further compare the proposed model with some other asymmetrical models. The Bayesian as well as frequentist estimation procedures for binomial and multinomial data responses are presented in details. The analysis of two data sets to show the efficiency of the proposed model is performed.
Measurement of the absorption coefficient using the sound-intensity technique
NASA Technical Reports Server (NTRS)
Atwal, M.; Bernhard, R.
1984-01-01
The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.
Silvis, Alexander; Ford, W. Mark; Britzke, Eric R.
2015-01-01
Bat day-roost selection often is described through comparisons of day-roosts with randomly selected, and assumed unused, trees. Relatively few studies, however, look at patterns of multi-year selection or compare day-roosts used across years. We explored day-roost selection using 2 years of roost selection data for female northern long-eared bats (Myotis septentrionalis) on the Fort Knox Military Reservation, Kentucky, USA. We compared characteristics of randomly selected non-roost trees and day-roosts using a multinomial logistic model and day-roost species selection using chi-squared tests. We found that factors differentiating day-roosts from non-roosts and day-roosts between years varied. Day-roosts differed from non-roosts in the first year of data in all measured factors, but only in size and decay stage in the second year. Between years, day-roosts differed in size and canopy position, but not decay stage. Day-roost species selection was non-random and did not differ between years. Although bats used multiple trees, our results suggest that there were additional unused trees that were suitable as roosts at any time. Day-roost selection pattern descriptions will be inadequate if based only on a single year of data, and inferences of roost selection based only on comparisons of roost to non-roosts should be limited.
Silvis, Alexander; Ford, W. Mark; Britzke, Eric R.
2015-01-01
Bat day-roost selection often is described through comparisons of day-roosts with randomly selected, and assumed unused, trees. Relatively few studies, however, look at patterns of multi-year selection or compare day-roosts used across years. We explored day-roost selection using 2 years of roost selection data for female northern long-eared bats (Myotis septentrionalis) on the Fort Knox Military Reservation, Kentucky, USA. We compared characteristics of randomly selected non-roost trees and day-roosts using a multinomial logistic model and day-roost species selection using chi-squared tests. We found that factors differentiating day-roosts from non-roosts and day-roosts between years varied. Day-roosts differed from non-roosts in the first year of data in all measured factors, but only in size and decay stage in the second year. Between years, day-roosts differed in size and canopy position, but not decay stage. Day-roost species selection was non-random and did not differ between years. Although bats used multiple trees, our results suggest that there were additional unused trees that were suitable as roosts at any time. Day-roost selection pattern descriptions will be inadequate if based only on a single year of data, and inferences of roost selection based only on comparisons of roost to non-roosts should be limited.
Active microwave remote sensing of an anisotropic random medium layer
NASA Technical Reports Server (NTRS)
Lee, J. K.; Kong, J. A.
1985-01-01
A two-layer anisotropic random medium model has been developed to study the active remote sensing of the earth. The dyadic Green's function for a two-layer anisotropic medium is developed and used in conjunction with the first-order Born approximation to calculate the backscattering coefficients. It is shown that strong cross-polarization occurs in the single scattering process and is indispensable in the interpretation of radar measurements of sea ice at different frequencies, polarizations, and viewing angles. The effects of anisotropy on the angular responses of backscattering coefficients are also illustrated.
Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.
Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei
2017-10-26
A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.
Utility-based designs for randomized comparative trials with categorical outcomes
Murray, Thomas A.; Thall, Peter F.; Yuan, Ying
2016-01-01
A general utility-based testing methodology for design and conduct of randomized comparative clinical trials with categorical outcomes is presented. Numerical utilities of all elementary events are elicited to quantify their desirabilities. These numerical values are used to map the categorical outcome probability vector of each treatment to a mean utility, which is used as a one-dimensional criterion for constructing comparative tests. Bayesian tests are presented, including fixed sample and group sequential procedures, assuming Dirichlet-multinomial models for the priors and likelihoods. Guidelines are provided for establishing priors, eliciting utilities, and specifying hypotheses. Efficient posterior computation is discussed, and algorithms are provided for jointly calibrating test cutoffs and sample size to control overall type I error and achieve specified power. Asymptotic approximations for the power curve are used to initialize the algorithms. The methodology is applied to re-design a completed trial that compared two chemotherapy regimens for chronic lymphocytic leukemia, in which an ordinal efficacy outcome was dichotomized and toxicity was ignored to construct the trial’s design. The Bayesian tests also are illustrated by several types of categorical outcomes arising in common clinical settings. Freely available computer software for implementation is provided. PMID:27189672
A scattering model for forested area
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1988-01-01
A forested area is modeled as a volume of randomly oriented and distributed disc-shaped, or needle-shaped leaves shading a distribution of branches modeled as randomly oriented finite-length, dielectric cylinders above an irregular soil surface. Since the radii of branches have a wide range of sizes, the model only requires the length of a branch to be large compared with its radius which may be any size relative to the incident wavelength. In addition, the model also assumes the thickness of a disc-shaped leaf or the radius of a needle-shaped leaf is much smaller than the electromagnetic wavelength. The scattering phase matrices for disc, needle, and cylinder are developed in terms of the scattering amplitudes of the corresponding fields which are computed by the forward scattering theorem. These quantities along with the Kirchoff scattering model for a randomly rough surface are used in the standard radiative transfer formulation to compute the backscattering coefficient. Numerical illustrations for the backscattering coefficient are given as a function of the shading factor, incidence angle, leaf orientation distribution, branch orientation distribution, and the number density of leaves. Also illustrated are the properties of the extinction coefficient as a function of leaf and branch orientation distributions. Comparisons are made with measured backscattering coefficients from forested areas reported in the literature.
Random attractor of non-autonomous stochastic Boussinesq lattice system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Min, E-mail: zhaomin1223@126.com; Zhou, Shengfan, E-mail: zhoushengfan@yahoo.com
2015-09-15
In this paper, we first consider the existence of tempered random attractor for second-order non-autonomous stochastic lattice dynamical system of nonlinear Boussinesq equations effected by time-dependent coupled coefficients and deterministic forces and multiplicative white noise. Then, we establish the upper semicontinuity of random attractors as the intensity of noise approaches zero.
Random walk study of electron motion in helium in crossed electromagnetic fields
NASA Technical Reports Server (NTRS)
Englert, G. W.
1972-01-01
Random walk theory, previously adapted to electron motion in the presence of an electric field, is extended to include a transverse magnetic field. In principle, the random walk approach avoids mathematical complexity and concomitant simplifying assumptions and permits determination of energy distributions and transport coefficients within the accuracy of available collisional cross section data. Application is made to a weakly ionized helium gas. Time of relaxation of electron energy distribution, determined by the random walk, is described by simple expressions based on energy exchange between the electron and an effective electric field. The restrictive effect of the magnetic field on electron motion, which increases the required number of collisions per walk to reach a terminal steady state condition, as well as the effect of the magnetic field on electron transport coefficients and mean energy can be quite adequately described by expressions involving only the Hall parameter.
Knox, Stephanie A; Viney, Rosalie C; Street, Deborah J; Haas, Marion R; Fiebig, Denzil G; Weisberg, Edith; Bateson, Deborah
2012-12-01
In the past decade, the range of contraceptives available has increased dramatically. There are limited data on the factors that determine women's choices on contraceptive alternatives or what factors providers consider most important when recommending contraceptive products to women. Our objectives were to compare women's (consumers') preferences and GPs' (providers') views in relation to existing and new contraceptive methods, and particularly to examine what factors increase the acceptability of different contraceptive products. A best-worst attribute stated-choice experiment was completed online. Participants (Australian women of reproductive age and Australian GPs) completed questions on 16 contraceptive profiles. 200 women of reproductive age were recruited through a commercial panel. GPs from all states of Australia were randomly sampled and approached by phone; 162 GPs agreed to participate. Participants chose the best and worst attribute levels of hypothetical but realistic prescribed contraceptive products. Best and worst choices were modelled using multinomial logit and product features were ranked from best to worst according to the size of model coefficients. The most attractive feature of the contraceptive products for both GPs and women consumers were an administration frequency of longer than 1 year and light or no bleeding. Women indicated that the hormonal vaginal ring was the least attractive mode of administration. Women and GPs agree that longer-acting methods with less bleeding are important features in preferred methods of contraception; however, women are also attracted to products involving less invasive modes of administration. While the vaginal ring may fill the niche in Australia for a relatively non-invasive, moderately long-acting and effective contraceptive, the results of this study indicate that GPs will need to promote the benefits of the vaginal ring to overcome negative perceptions about this method among women who may benefit from using it.
Chow, Tan; Wolfe, Edward W; Olson, Beth H
2012-07-01
Manager attitude is influential in female employees' perceptions of workplace breastfeeding support. Currently, no instrument is available to assess manager attitude toward supporting women who wish to combine breastfeeding with work. We developed and piloted an instrument to measure manager attitudes toward workplace breastfeeding support entitled the "Managers' Attitude Toward Breastfeeding Support Questionnaire," an instrument that measures four constructs using 60 items that are rated agree/disagree on a 4-point Likert rating scale. We established the content validity of the Managers' Attitude Toward Breastfeeding Support Questionnaire measures through expert content review (n=22), expert assessment of item fit (n=11), and cognitive interviews (n=8). Data were collected from a purposive sample of 185 front-line managers who had experience supervising female employees, and responses were scaled using the Multidimensional Random Coefficients Multinomial Logit Model. Dimensionality analyses supported the proposed four-construct model. Reliability ranged from 0.75 to 0.86, and correlations between the constructs were moderately strong (0.47 to 0.71). Four items in two constructs exhibited model-to-data misfit and/or a low score-measure correlation. One item was revised and the other three items were retained in the Managers' Attitude Toward Breastfeeding Support Questionnaire. Findings of this study suggest that the Managers' Attitude Toward Breastfeeding Support Questionnaire measures are reliable and valid indicators of manager attitude toward workplace breastfeeding support, and future research should be conducted to establish external validity. The Managers' Attitude Toward Breastfeeding Support Questionnaire could be used to collect data in a standardized manner within and across companies to measure and compare manager attitudes toward supporting breastfeeding. Organizations can subsequently develop targeted strategies to improve support for breastfeeding employees through efforts influencing managerial attitude. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Tay, Laura; Lim, Wee Shiong; Chan, Mark; Ali, Noorhazlina; Chong, Mei Sian
2016-01-01
Gait disorders are common in early dementia, with particularly pronounced dual-task deficits, contributing to the increased fall risk and mobility decline associated with cognitive impairment. This study examines the effects of a combined cognitive stimulation and physical exercise programme (MINDVital) on gait performance under single- and dual-task conditions in older adults with mild dementia. Thirty-nine patients with early dementia participated in a multi-disciplinary rehabilitation programme comprising both physical exercise and cognitive stimulation. The programme was conducted in 8-week cycles with participants attending once weekly, and all participants completed 2 successive cycles. Cognitive, functional performance and behavioural symptoms were assessed at baseline and at the end of each 8-week cycle. Gait speed was examined under both single- (Timed Up and Go and 6-metre walk tests) and dual-task (animal category and serial counting) conditions. A random effects model was performed for the independent effect of MINDVital on the primary outcome variable of gait speed under dual-task conditions. The mean age of patients enroled in the rehabilitation programme was 79 ± 6.2 years; 25 (64.1%) had a diagnosis of Alzheimer's dementia, and 26 (66.7%) were receiving a cognitive enhancer therapy. There was a significant improvement in cognitive performance [random effects coefficient (standard error) = 0.90 (0.31), p = 0.003] and gait speed under both dual-task situations [animal category: random effects coefficient = 0.04 (0.02), p = 0.039; serial counting: random effects coefficient = 0.05 (0.02), p = 0.013], with reduced dual-task cost for gait speed [serial counting: random effects coefficient = -4.05 (2.35), p = 0.086] following successive MINDVital cycles. No significant improvement in single-task gait speed was observed. Improved cognitive performance over time was a significant determinant of changes in dual-task gait speed [random effects coefficients = 0.01 (0.005), p = 0.048, and 0.02 (0.005), p = 0.003 for category fluency and counting backwards, respectively]. A combined physical and cognitive rehabilitation programme leads to significant improvements in dual-task walking in early dementia, which may be contributed by improvement in cognitive performance, as single-task gait performance remained stable. © 2016 S. Karger AG, Basel.
Mixture Model and MDSDCA for Textual Data
NASA Astrophysics Data System (ADS)
Allouti, Faryel; Nadif, Mohamed; Hoai An, Le Thi; Otjacques, Benoît
E-mailing has become an essential component of cooperation in business. Consequently, the large number of messages manually produced or automatically generated can rapidly cause information overflow for users. Many research projects have examined this issue but surprisingly few have tackled the problem of the files attached to e-mails that, in many cases, contain a substantial part of the semantics of the message. This paper considers this specific topic and focuses on the problem of clustering and visualization of attached files. Relying on the multinomial mixture model, we used the Classification EM algorithm (CEM) to cluster the set of files, and MDSDCA to visualize the obtained classes of documents. Like the Multidimensional Scaling method, the aim of the MDSDCA algorithm based on the Difference of Convex functions is to optimize the stress criterion. As MDSDCA is iterative, we propose an initialization approach to avoid starting with random values. Experiments are investigated using simulations and textual data.
NASA Astrophysics Data System (ADS)
Nong, Yu; Du, Qingyun; Wang, Kun; Miao, Lei; Zhang, Weiwei
2008-10-01
Urban growth modeling, one of the most important aspects of land use and land cover change study, has attracted substantial attention because it helps to comprehend the mechanisms of land use change thus helps relevant policies made. This study applied multinomial logistic regression to model urban growth in the Jiayu county of Hubei province, China to discover the relationship between urban growth and the driving forces of which biophysical and social-economic factors are selected as independent variables. This type of regression is similar to binary logistic regression, but it is more general because the dependent variable is not restricted to two categories, as those previous studies did. The multinomial one can simulate the process of multiple land use competition between urban land, bare land, cultivated land and orchard land. Taking the land use type of Urban as reference category, parameters could be estimated with odds ratio. A probability map is generated from the model to predict where urban growth will occur as a result of the computation.
Bivariate categorical data analysis using normal linear conditional multinomial probability model.
Sun, Bingrui; Sutradhar, Brajendra
2015-02-10
Bivariate multinomial data such as the left and right eyes retinopathy status data are analyzed either by using a joint bivariate probability model or by exploiting certain odds ratio-based association models. However, the joint bivariate probability model yields marginal probabilities, which are complicated functions of marginal and association parameters for both variables, and the odds ratio-based association model treats the odds ratios involved in the joint probabilities as 'working' parameters, which are consequently estimated through certain arbitrary 'working' regression models. Also, this later odds ratio-based model does not provide any easy interpretations of the correlations between two categorical variables. On the basis of pre-specified marginal probabilities, in this paper, we develop a bivariate normal type linear conditional multinomial probability model to understand the correlations between two categorical variables. The parameters involved in the model are consistently estimated using the optimal likelihood and generalized quasi-likelihood approaches. The proposed model and the inferences are illustrated through an intensive simulation study as well as an analysis of the well-known Wisconsin Diabetic Retinopathy status data. Copyright © 2014 John Wiley & Sons, Ltd.
Single-image super-resolution based on Markov random field and contourlet transform
NASA Astrophysics Data System (ADS)
Wu, Wei; Liu, Zheng; Gueaieb, Wail; He, Xiaohai
2011-04-01
Learning-based methods are well adopted in image super-resolution. In this paper, we propose a new learning-based approach using contourlet transform and Markov random field. The proposed algorithm employs contourlet transform rather than the conventional wavelet to represent image features and takes into account the correlation between adjacent pixels or image patches through the Markov random field (MRF) model. The input low-resolution (LR) image is decomposed with the contourlet transform and fed to the MRF model together with the contourlet transform coefficients from the low- and high-resolution image pairs in the training set. The unknown high-frequency components/coefficients for the input low-resolution image are inferred by a belief propagation algorithm. Finally, the inverse contourlet transform converts the LR input and the inferred high-frequency coefficients into the super-resolved image. The effectiveness of the proposed method is demonstrated with the experiments on facial, vehicle plate, and real scene images. A better visual quality is achieved in terms of peak signal to noise ratio and the image structural similarity measurement.
PET-CT image fusion using random forest and à-trous wavelet transform.
Seal, Ayan; Bhattacharjee, Debotosh; Nasipuri, Mita; Rodríguez-Esparragón, Dionisio; Menasalvas, Ernestina; Gonzalo-Martin, Consuelo
2018-03-01
New image fusion rules for multimodal medical images are proposed in this work. Image fusion rules are defined by random forest learning algorithm and a translation-invariant à-trous wavelet transform (AWT). The proposed method is threefold. First, source images are decomposed into approximation and detail coefficients using AWT. Second, random forest is used to choose pixels from the approximation and detail coefficients for forming the approximation and detail coefficients of the fused image. Lastly, inverse AWT is applied to reconstruct fused image. All experiments have been performed on 198 slices of both computed tomography and positron emission tomography images of a patient. A traditional fusion method based on Mallat wavelet transform has also been implemented on these slices. A new image fusion performance measure along with 4 existing measures has been presented, which helps to compare the performance of 2 pixel level fusion methods. The experimental results clearly indicate that the proposed method outperforms the traditional method in terms of visual and quantitative qualities and the new measure is meaningful. Copyright © 2017 John Wiley & Sons, Ltd.
Neither fixed nor random: weighted least squares meta-regression.
Stanley, T D; Doucouliagos, Hristos
2017-03-01
Our study revisits and challenges two core conventional meta-regression estimators: the prevalent use of 'mixed-effects' or random-effects meta-regression analysis and the correction of standard errors that defines fixed-effects meta-regression analysis (FE-MRA). We show how and explain why an unrestricted weighted least squares MRA (WLS-MRA) estimator is superior to conventional random-effects (or mixed-effects) meta-regression when there is publication (or small-sample) bias that is as good as FE-MRA in all cases and better than fixed effects in most practical applications. Simulations and statistical theory show that WLS-MRA provides satisfactory estimates of meta-regression coefficients that are practically equivalent to mixed effects or random effects when there is no publication bias. When there is publication selection bias, WLS-MRA always has smaller bias than mixed effects or random effects. In practical applications, an unrestricted WLS meta-regression is likely to give practically equivalent or superior estimates to fixed-effects, random-effects, and mixed-effects meta-regression approaches. However, random-effects meta-regression remains viable and perhaps somewhat preferable if selection for statistical significance (publication bias) can be ruled out and when random, additive normal heterogeneity is known to directly affect the 'true' regression coefficient. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Valyaev, A. B.; Krivoshlykov, S. G.
1989-06-01
It is shown that the problem of investigating the mode composition of a partly coherent radiation beam in a randomly inhomogeneous medium can be reduced to a study of evolution of the energy of individual modes and of the coefficients of correlations between the modes. General expressions are obtained for the coupling coefficients of modes in a parabolic waveguide with a random microbending of the axis and an analysis is made of their evolution as a function of the excitation conditions. An estimate is obtained of the distance in which a steady-state energy distribution between the modes is established. Explicit expressions are obtained for the correlation function in the case when a waveguide is excited by off-axial Gaussian beams or Gauss-Hermite modes.
Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope
Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei
2017-01-01
A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10−5 deg/h. PMID:29072605
Recovering DC coefficients in block-based DCT.
Uehara, Takeyuki; Safavi-Naini, Reihaneh; Ogunbona, Philip
2006-11-01
It is a common approach for JPEG and MPEG encryption systems to provide higher protection for dc coefficients and less protection for ac coefficients. Some authors have employed a cryptographic encryption algorithm for the dc coefficients and left the ac coefficients to techniques based on random permutation lists which are known to be weak against known-plaintext and chosen-ciphertext attacks. In this paper we show that in block-based DCT, it is possible to recover dc coefficients from ac coefficients with reasonable image quality and show the insecurity of image encryption methods which rely on the encryption of dc values using a cryptoalgorithm. The method proposed in this paper combines dc recovery from ac coefficients and the fact that ac coefficients can be recovered using a chosen ciphertext attack. We demonstrate that a method proposed by Tang to encrypt and decrypt MPEG video can be completely broken.
UNSTEADY DISPERSION IN RANDOM INTERMITTENT FLOW
The longitudinal dispersion coefficient of a conservative tracer was calculated from flow tests in a dead-end pipe loop system. Flow conditions for these tests ranged from laminar to transitional flow, and from steady to intermittent and random. Two static mixers linked in series...
Spielman, Stephanie J; Wilke, Claus O
2016-11-01
The mutation-selection model of coding sequence evolution has received renewed attention for its use in estimating site-specific amino acid propensities and selection coefficient distributions. Two computationally tractable mutation-selection inference frameworks have been introduced: One framework employs a fixed-effects, highly parameterized maximum likelihood approach, whereas the other employs a random-effects Bayesian Dirichlet Process approach. While both implementations follow the same model, they appear to make distinct predictions about the distribution of selection coefficients. The fixed-effects framework estimates a large proportion of highly deleterious substitutions, whereas the random-effects framework estimates that all substitutions are either nearly neutral or weakly deleterious. It remains unknown, however, how accurately each method infers evolutionary constraints at individual sites. Indeed, selection coefficient distributions pool all site-specific inferences, thereby obscuring a precise assessment of site-specific estimates. Therefore, in this study, we use a simulation-based strategy to determine how accurately each approach recapitulates the selective constraint at individual sites. We find that the fixed-effects approach, despite its extensive parameterization, consistently and accurately estimates site-specific evolutionary constraint. By contrast, the random-effects Bayesian approach systematically underestimates the strength of natural selection, particularly for slowly evolving sites. We also find that, despite the strong differences between their inferred selection coefficient distributions, the fixed- and random-effects approaches yield surprisingly similar inferences of site-specific selective constraint. We conclude that the fixed-effects mutation-selection framework provides the more reliable software platform for model application and future development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Polynomials with Restricted Coefficients and Their Applications
1987-01-01
sums of exponentials of quadratics, he reduced such ýzums to exponentials of linears (geometric sums!) by simplg multiplying by their conjugates...n, the same algebraic manipulations as before lead to rn V`-~ v ie ? --8-- el4V’ .fk ts with = a+(2r+l)t, A = a+(2r+2m+l)t. To estimate the right...coefficients. These random polynomials represent the deviation in frequency response of a linear , equispaced antenna array cauised by coefficient
Anta, Juan A; Mora-Seró, Iván; Dittrich, Thomas; Bisquert, Juan
2008-08-14
We make use of the numerical simulation random walk (RWNS) method to compute the "jump" diffusion coefficient of electrons in nanostructured materials via mean-square displacement. First, a summary of analytical results is given that relates the diffusion coefficient obtained from RWNS to those in the multiple-trapping (MT) and hopping models. Simulations are performed in a three-dimensional lattice of trap sites with energies distributed according to an exponential distribution and with a step-function distribution centered at the Fermi level. It is observed that once the stationary state is reached, the ensemble of particles follow Fermi-Dirac statistics with a well-defined Fermi level. In this stationary situation the diffusion coefficient obeys the theoretical predictions so that RWNS effectively reproduces the MT model. Mobilities can be also computed when an electrical bias is applied and they are observed to comply with the Einstein relation when compared with steady-state diffusion coefficients. The evolution of the system towards the stationary situation is also studied. When the diffusion coefficients are monitored along simulation time a transition from anomalous to trap-limited transport is observed. The nature of this transition is discussed in terms of the evolution of electron distribution and the Fermi level. All these results will facilitate the use of RW simulation and related methods to interpret steady-state as well as transient experimental techniques.
Congdon, Peter
2010-01-01
Different indicators of morbidity for chronic disease may not necessarily be available at a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). Instead certain indicators may only be available at a more highly aggregated spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level are important for assessing health need. An instance is provided by England where deaths and hospital admissions for coronary heart disease are available for small areas known as wards, but prevalence is only available for relatively large health authority areas. To estimate CHD prevalence at small area level in such a situation, a shared random effect method is proposed that pools information regarding spatial morbidity contrasts over different indicators (deaths, hospitalizations, prevalence). The shared random effect approach also incorporates differences between small areas in known risk factors (e.g., income, ethnic structure). A Poisson-multinomial equivalence may be used to ensure small area prevalence estimates sum to the known higher area total. An illustration is provided by data for London using hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for considerably larger local health authority areas. The shared random effect involved a spatially correlated common factor, that accounts for clustering in latent risk factors, and also provides a summary measure of small area CHD morbidity.
Congdon, Peter
2010-01-01
Different indicators of morbidity for chronic disease may not necessarily be available at a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). Instead certain indicators may only be available at a more highly aggregated spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level are important for assessing health need. An instance is provided by England where deaths and hospital admissions for coronary heart disease are available for small areas known as wards, but prevalence is only available for relatively large health authority areas. To estimate CHD prevalence at small area level in such a situation, a shared random effect method is proposed that pools information regarding spatial morbidity contrasts over different indicators (deaths, hospitalizations, prevalence). The shared random effect approach also incorporates differences between small areas in known risk factors (e.g., income, ethnic structure). A Poisson-multinomial equivalence may be used to ensure small area prevalence estimates sum to the known higher area total. An illustration is provided by data for London using hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for considerably larger local health authority areas. The shared random effect involved a spatially correlated common factor, that accounts for clustering in latent risk factors, and also provides a summary measure of small area CHD morbidity. PMID:20195439
Backscattering from a randomly rough dielectric surface
NASA Technical Reports Server (NTRS)
Fung, Adrian K.; Li, Zongqian; Chen, K. S.
1992-01-01
A backscattering model for scattering from a randomly rough dielectric surface is developed based on an approximate solution of a pair of integral equations for the tangential surface fields. Both like and cross-polarized scattering coefficients are obtained. It is found that the like polarized scattering coefficients contain two types of terms: single scattering terms and multiple scattering terms. The single scattering terms in like polarized scattering are shown to reduce the first-order solutions derived from the small perturbation method when the roughness parameters satisfy the slightly rough conditions. When surface roughnesses are large but the surface slope is small, only a single scattering term corresponding to the standard Kirchhoff model is significant. If the surface slope is large, the multiple scattering term will also be significant. The cross-polarized backscattering coefficients satisfy reciprocity and contain only multiple scattering terms. The difference between vertical and horizontal scattering coefficients is found to increase with the dielectric constant and is generally smaller than that predicted by the first-order small perturbation model. Good agreements are obtained between this model and measurements from statistically known surfaces.
Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach.
Xu, Pengpeng; Huang, Helai; Dong, Ni; Wong, S C
2017-01-01
This study was performed to investigate the spatially varying relationships between crash frequency and related risk factors. A Bayesian spatially varying coefficients model was elaborately introduced as a methodological alternative to simultaneously account for the unstructured and spatially structured heterogeneity of the regression coefficients in predicting crash frequencies. The proposed method was appealing in that the parameters were modeled via a conditional autoregressive prior distribution, which involved a single set of random effects and a spatial correlation parameter with extreme values corresponding to pure unstructured or pure spatially correlated random effects. A case study using a three-year crash dataset from the Hillsborough County, Florida, was conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both unstructured and spatially correlated variations in the effects of contributory factors on severe crash occurrences. The findings also suggested that ignoring spatially structured heterogeneity may result in biased parameter estimates and incorrect inferences, while assuming the regression coefficients to be spatially clustered only is probably subject to the issue of over-smoothness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Long-range correlations and charge transport properties of DNA sequences
NASA Astrophysics Data System (ADS)
Liu, Xiao-liang; Ren, Yi; Xie, Qiong-tao; Deng, Chao-sheng; Xu, Hui
2010-04-01
By using Hurst's analysis and transfer approach, the rescaled range functions and Hurst exponents of human chromosome 22 and enterobacteria phage lambda DNA sequences are investigated and the transmission coefficients, Landauer resistances and Lyapunov coefficients of finite segments based on above genomic DNA sequences are calculated. In a comparison with quasiperiodic and random artificial DNA sequences, we find that λ-DNA exhibits anticorrelation behavior characterized by a Hurst exponent 0.5
Electromagnetic wave extinction within a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.
A measurement theory of illusory conjunctions.
Prinzmetal, William; Ivry, Richard B; Beck, Diane; Shimizu, Naomi
2002-04-01
Illusory conjunctions refer to the incorrect perceptual combination of correctly perceived features, such as color and shape. Research on the phenomenon has been hampered by the lack of a measurement theory that accounts for guessing features, as well as the incorrect combination of correctly perceived features. Recently, several investigators have suggested using multinomial models as a tool for measuring feature integration. The authors examined the adequacy of these models in 2 experiments by testing whether model parameters reflect changes in stimulus factors. In a third experiment, confidence ratings were used as a tool for testing the model. Multinomial models accurately reflected both variations in stimulus factors and observers' trial-by-trial confidence ratings.
Classifying emotion in Twitter using Bayesian network
NASA Astrophysics Data System (ADS)
Surya Asriadie, Muhammad; Syahrul Mubarok, Mohamad; Adiwijaya
2018-03-01
Language is used to express not only facts, but also emotions. Emotions are noticeable from behavior up to the social media statuses written by a person. Analysis of emotions in a text is done in a variety of media such as Twitter. This paper studies classification of emotions on twitter using Bayesian network because of its ability to model uncertainty and relationships between features. The result is two models based on Bayesian network which are Full Bayesian Network (FBN) and Bayesian Network with Mood Indicator (BNM). FBN is a massive Bayesian network where each word is treated as a node. The study shows the method used to train FBN is not very effective to create the best model and performs worse compared to Naive Bayes. F1-score for FBN is 53.71%, while for Naive Bayes is 54.07%. BNM is proposed as an alternative method which is based on the improvement of Multinomial Naive Bayes and has much lower computational complexity compared to FBN. Even though it’s not better compared to FBN, the resulting model successfully improves the performance of Multinomial Naive Bayes. F1-Score for Multinomial Naive Bayes model is 51.49%, while for BNM is 52.14%.
Classification of Effective Soil Depth by Using Multinomial Logistic Regression Analysis
NASA Astrophysics Data System (ADS)
Chang, C. H.; Chan, H. C.; Chen, B. A.
2016-12-01
Classification of effective soil depth is a task of determining the slopeland utilizable limitation in Taiwan. The "Slopeland Conservation and Utilization Act" categorizes the slopeland into agriculture and husbandry land, land suitable for forestry and land for enhanced conservation according to the factors including average slope, effective soil depth, soil erosion and parental rock. However, sit investigation of the effective soil depth requires a cost-effective field work. This research aimed to classify the effective soil depth by using multinomial logistic regression with the environmental factors. The Wen-Shui Watershed located at the central Taiwan was selected as the study areas. The analysis of multinomial logistic regression is performed by the assistance of a Geographic Information Systems (GIS). The effective soil depth was categorized into four levels including deeper, deep, shallow and shallower. The environmental factors of slope, aspect, digital elevation model (DEM), curvature and normalized difference vegetation index (NDVI) were selected for classifying the soil depth. An Error Matrix was then used to assess the model accuracy. The results showed an overall accuracy of 75%. At the end, a map of effective soil depth was produced to help planners and decision makers in determining the slopeland utilizable limitation in the study areas.
Fault Detection of Aircraft System with Random Forest Algorithm and Similarity Measure
Park, Wookje; Jung, Sikhang
2014-01-01
Research on fault detection algorithm was developed with the similarity measure and random forest algorithm. The organized algorithm was applied to unmanned aircraft vehicle (UAV) that was readied by us. Similarity measure was designed by the help of distance information, and its usefulness was also verified by proof. Fault decision was carried out by calculation of weighted similarity measure. Twelve available coefficients among healthy and faulty status data group were used to determine the decision. Similarity measure weighting was done and obtained through random forest algorithm (RFA); RF provides data priority. In order to get a fast response of decision, a limited number of coefficients was also considered. Relation of detection rate and amount of feature data were analyzed and illustrated. By repeated trial of similarity calculation, useful data amount was obtained. PMID:25057508
Craig, Benjamin M; Busschbach, Jan JV
2009-01-01
Background To present an episodic random utility model that unifies time trade-off and discrete choice approaches in health state valuation. Methods First, we introduce two alternative random utility models (RUMs) for health preferences: the episodic RUM and the more common instant RUM. For the interpretation of time trade-off (TTO) responses, we show that the episodic model implies a coefficient estimator, and the instant model implies a mean slope estimator. Secondly, we demonstrate these estimators and the differences between the estimates for 42 health states using TTO responses from the seminal Measurement and Valuation in Health (MVH) study conducted in the United Kingdom. Mean slopes are estimates with and without Dolan's transformation of worse-than-death (WTD) responses. Finally, we demonstrate an exploded probit estimator, an extension of the coefficient estimator for discrete choice data that accommodates both TTO and rank responses. Results By construction, mean slopes are less than or equal to coefficients, because slopes are fractions and, therefore, magnify downward errors in WTD responses. The Dolan transformation of WTD responses causes mean slopes to increase in similarity to coefficient estimates, yet they are not equivalent (i.e., absolute mean difference = 0.179). Unlike mean slopes, coefficient estimates demonstrate strong concordance with rank-based predictions (Lin's rho = 0.91). Combining TTO and rank responses under the exploded probit model improves the identification of health state values, decreasing the average width of confidence intervals from 0.057 to 0.041 compared to TTO only results. Conclusion The episodic RUM expands upon the theoretical framework underlying health state valuation and contributes to health econometrics by motivating the selection of coefficient and exploded probit estimators for the analysis of TTO and rank responses. In future MVH surveys, sample size requirements may be reduced through the incorporation of multiple responses under a single estimator. PMID:19144115
Permeability of model porous medium formed by random discs
NASA Astrophysics Data System (ADS)
Gubaidullin, A. A.; Gubkin, A. S.; Igoshin, D. E.; Ignatev, P. A.
2018-03-01
Two-dimension model of the porous medium with skeleton of randomly located overlapping discs is proposed. The geometry and computational grid are built in open package Salome. Flow of Newtonian liquid in longitudinal and transverse directions is calculated and its flow rate is defined. The numerical solution of the Navier-Stokes equations for a given pressure drop at the boundaries of the area is realized in the open package OpenFOAM. Calculated value of flow rate is used for defining of permeability coefficient on the base of Darcy law. For evaluating of representativeness of computational domain the permeability coefficients in longitudinal and transverse directions are compered.
The Bayesian group lasso for confounded spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.
2017-01-01
Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.
NASA Astrophysics Data System (ADS)
Longoria, Raul Gilberto
An experimental apparatus has been developed which can be used to generate a general time-dependent planar flow across a cylinder. A mass of water enclosed with no free surface within a square cross-section tank and two spring pre-loaded pistons is oscillated using a hydraulic actuator. A circular cylinder is suspended horizontally in the tank by two X-Y force transducers used to simultaneously measure the total in-line and transverse forces. Fluid motion is measured using a differential pressure transducer for instantaneous acceleration and an LVDT for displacement. This investigation provides measurement of forces on cylinders subjected to planar fluid flow velocity with a time (and frequency) dependence which more accurately represent the random conditions encountered in a natural ocean environment. The use of the same apparatus for both sinusoidal and random experiments provides a quantified assessment of the applicability of sinusoidal planar oscillatory flow data in offshore structure design methods. The drag and inertia coefficients for a Morison equation representation of the inline force are presented for both sinusoidal and random flow. Comparison of the sinusoidal results is favorable with those of previous investigations. The results from random experiments illustrates the difference in the force mechanism by contrasting the force transfer coefficients for the inline and transverse forces. It is found that application of sinusoidal results to random hydrodynamic inline force prediction using the Morison equation wrongly weighs the drag and inertia components, and the transverse force is overpredicted. The use of random planar oscillatory flow in the laboratory, contrasted with sinusoidal planar oscillatory flow, quantifies the accepted belief that the force transfer coefficients from sinusoidal flow experiments are conservative for prediction of forces on cylindrical structures subjected to random sea waves and the ensuing forces. Further analysis of data is conducted in the frequency domain to illustrate models used for predicting the power spectral density of the inline force including a nonlinear describing function method. It is postulated that the large-scale vortex activity prominent in sinusoidal oscillatory flow is subdued in random flow conditions.
NASA Astrophysics Data System (ADS)
Li, Jin Hua; Xu, Hui; Sun, Ting Ting; Pei, Shi Xin; Ren, Hai Dong
2018-05-01
We analyze in detail the effects of the intermode nonlinearity (IEMN) and intramode nonlinearity (IRMN) on modulation instability (MI) in randomly birefringent two-mode optical fibers (RB-TMFs). In the anomalous dispersion regime, the MI gain enhances significantly as the IEMN and IRMN coefficients increases. In the normal dispersion regime, MI can be generated without the differential mode group delay (DMGD) effect, as long as the IEMN coefficient between two distinct modes is above a critical value, or the IRMN coefficient inside a mode is below a critical value. This critical IEMN (IRMN) coefficient depends strongly on the given IRMN (IEMN) coefficient and DMGD for a given nonlinear RB-TMF structure, and is independent on the input total power, the power ratio distribution and the group velocity dispersion (GVD) ratio between the two modes. On the other hand, in contrast to the MI band arising from the pure effect of DMGD in the normal dispersion regime, where MI vanishes after a critical total power, the generated MI band under the combined effects of IEMN and IRMN without DMGD exists for any total power and enhances with the total power. The MI analysis is verified numerically by launching perturbed continuous waves (CWs) with wave propagation method.
NASA Astrophysics Data System (ADS)
Kalnin, Juris R.; Berezhkovskii, Alexander M.
2013-11-01
The Lifson-Jackson formula provides the effective free diffusion coefficient for a particle diffusing in an arbitrary one-dimensional periodic potential. Its counterpart, when the underlying dynamics is described in terms of an unbiased nearest-neighbor Markovian random walk on a one-dimensional periodic lattice is given by the formula obtained by Derrida. It is shown that the latter formula can be considered as a discretized version of the Lifson-Jackson formula with correctly chosen position-dependent diffusion coefficient.
Knox, Stephanie A; Chondros, Patty
2004-01-01
Background Cluster sample study designs are cost effective, however cluster samples violate the simple random sample assumption of independence of observations. Failure to account for the intra-cluster correlation of observations when sampling through clusters may lead to an under-powered study. Researchers therefore need estimates of intra-cluster correlation for a range of outcomes to calculate sample size. We report intra-cluster correlation coefficients observed within a large-scale cross-sectional study of general practice in Australia, where the general practitioner (GP) was the primary sampling unit and the patient encounter was the unit of inference. Methods Each year the Bettering the Evaluation and Care of Health (BEACH) study recruits a random sample of approximately 1,000 GPs across Australia. Each GP completes details of 100 consecutive patient encounters. Intra-cluster correlation coefficients were estimated for patient demographics, morbidity managed and treatments received. Intra-cluster correlation coefficients were estimated for descriptive outcomes and for associations between outcomes and predictors and were compared across two independent samples of GPs drawn three years apart. Results Between April 1999 and March 2000, a random sample of 1,047 Australian general practitioners recorded details of 104,700 patient encounters. Intra-cluster correlation coefficients for patient demographics ranged from 0.055 for patient sex to 0.451 for language spoken at home. Intra-cluster correlations for morbidity variables ranged from 0.005 for the management of eye problems to 0.059 for management of psychological problems. Intra-cluster correlation for the association between two variables was smaller than the descriptive intra-cluster correlation of each variable. When compared with the April 2002 to March 2003 sample (1,008 GPs) the estimated intra-cluster correlation coefficients were found to be consistent across samples. Conclusions The demonstrated precision and reliability of the estimated intra-cluster correlations indicate that these coefficients will be useful for calculating sample sizes in future general practice surveys that use the GP as the primary sampling unit. PMID:15613248
Zemp, Roland; Tanadini, Matteo; Plüss, Stefan; Schnüriger, Karin; Singh, Navrag B; Taylor, William R; Lorenzetti, Silvio
2016-01-01
Occupational musculoskeletal disorders, particularly chronic low back pain (LBP), are ubiquitous due to prolonged static sitting or nonergonomic sitting positions. Therefore, the aim of this study was to develop an instrumented chair with force and acceleration sensors to determine the accuracy of automatically identifying the user's sitting position by applying five different machine learning methods (Support Vector Machines, Multinomial Regression, Boosting, Neural Networks, and Random Forest). Forty-one subjects were requested to sit four times in seven different prescribed sitting positions (total 1148 samples). Sixteen force sensor values and the backrest angle were used as the explanatory variables (features) for the classification. The different classification methods were compared by means of a Leave-One-Out cross-validation approach. The best performance was achieved using the Random Forest classification algorithm, producing a mean classification accuracy of 90.9% for subjects with which the algorithm was not familiar. The classification accuracy varied between 81% and 98% for the seven different sitting positions. The present study showed the possibility of accurately classifying different sitting positions by means of the introduced instrumented office chair combined with machine learning analyses. The use of such novel approaches for the accurate assessment of chair usage could offer insights into the relationships between sitting position, sitting behaviour, and the occurrence of musculoskeletal disorders.
Pandis, Nikolaos; Polychronopoulou, Argy; Madianos, Phoebus; Makou, Margarita; Eliades, Theodore
2011-06-01
The objective of this article was to record reporting characteristics related to study quality of research published in major specialty dental journals with the highest impact factor (Journal of Endodontics, Journal of Oral and Maxillofacial Surgery, American Journal of Orthodontics and Dentofacial Orthopedics; Pediatric Dentistry, Journal of Clinical Periodontology, and International Journal of Prosthetic Dentistry). The included articles were classified into the following 3 broad subject categories: (1) cross-sectional (snap-shot), (2) observational, and (3) interventional. Multinomial logistic regression was conducted for effect estimation using the journal as the response and randomization, sample calculation, confounding discussed, multivariate analysis, effect measurement, and confidence intervals as the explanatory variables. The results showed that cross-sectional studies were the dominant design (55%), whereas observational investigations accounted for 13%, and interventions/clinical trials for 32%. Reporting on quality characteristics was low for all variables: random allocation (15%), sample size calculation (7%), confounding issues/possible confounders (38%), effect measurements (16%), and multivariate analysis (21%). Eighty-four percent of the published articles reported a statistically significant main finding and only 13% presented confidence intervals. The Journal of Clinical Periodontology showed the highest probability of including quality characteristics in reporting results among all dental journals. Copyright © 2011 Elsevier Inc. All rights reserved.
Small individual loans and mental health: a randomized controlled trial among South African adults
Fernald, Lia CH; Hamad, Rita; Karlan, Dean; Ozer, Emily J; Zinman, Jonathan
2008-01-01
Background In the developing world, access to small, individual loans has been variously hailed as a poverty-alleviation tool – in the context of "microcredit" – but has also been criticized as "usury" and harmful to vulnerable borrowers. Prior studies have assessed effects of access to credit on traditional economic outcomes for poor borrowers, but effects on mental health have been largely ignored. Methods Applicants who had previously been rejected (n = 257) for a loan (200% annual percentage rate – APR) from a lender in South Africa were randomly assigned to a "second-look" that encouraged loan officers to approve their applications. This randomized encouragement resulted in 53% of applicants receiving a loan they otherwise would not have received. All subjects were assessed 6–12 months later with questions about demographics, socio-economic status, and two indicators of mental health: the Center for Epidemiologic Studies – Depression Scale (CES-D) and Cohen's Perceived Stress scale. Intent-to-treat analyses were calculated using multinomial probit regressions. Results Randomization into receiving a "second look" for access to credit increased perceived stress in the combined sample of women and men; the findings were stronger among men. Credit access was associated with reduced depressive symptoms in men, but not women. Conclusion Our findings suggest that a mechanism used to reduce the economic stress of extremely poor individuals can have mixed effects on their experiences of psychological stress and depressive symptomatology. Our data support the notion that mental health should be included as a measure of success (or failure) when examining potential tools for poverty alleviation. Further longitudinal research is needed in South Africa and other settings to understand how borrowing at high interest rates affects gender roles and daily life activities. CCT: ISRCTN 10734925 PMID:19087316
Small individual loans and mental health: a randomized controlled trial among South African adults.
Fernald, Lia C H; Hamad, Rita; Karlan, Dean; Ozer, Emily J; Zinman, Jonathan
2008-12-16
In the developing world, access to small, individual loans has been variously hailed as a poverty-alleviation tool - in the context of "microcredit" - but has also been criticized as "usury" and harmful to vulnerable borrowers. Prior studies have assessed effects of access to credit on traditional economic outcomes for poor borrowers, but effects on mental health have been largely ignored. Applicants who had previously been rejected (n = 257) for a loan (200% annual percentage rate - APR) from a lender in South Africa were randomly assigned to a "second-look" that encouraged loan officers to approve their applications. This randomized encouragement resulted in 53% of applicants receiving a loan they otherwise would not have received. All subjects were assessed 6-12 months later with questions about demographics, socio-economic status, and two indicators of mental health: the Center for Epidemiologic Studies - Depression Scale (CES-D) and Cohen's Perceived Stress scale. Intent-to-treat analyses were calculated using multinomial probit regressions. Randomization into receiving a "second look" for access to credit increased perceived stress in the combined sample of women and men; the findings were stronger among men. Credit access was associated with reduced depressive symptoms in men, but not women. Our findings suggest that a mechanism used to reduce the economic stress of extremely poor individuals can have mixed effects on their experiences of psychological stress and depressive symptomatology. Our data support the notion that mental health should be included as a measure of success (or failure) when examining potential tools for poverty alleviation. Further longitudinal research is needed in South Africa and other settings to understand how borrowing at high interest rates affects gender roles and daily life activities. CCT: ISRCTN 10734925.
A Geometrical Framework for Covariance Matrices of Continuous and Categorical Variables
ERIC Educational Resources Information Center
Vernizzi, Graziano; Nakai, Miki
2015-01-01
It is well known that a categorical random variable can be represented geometrically by a simplex. Accordingly, several measures of association between categorical variables have been proposed and discussed in the literature. Moreover, the standard definitions of covariance and correlation coefficient for continuous random variables have been…
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
2017-09-04
In this paper, we present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support ourmore » construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Lastly, our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less
Xu, Jia; Li, Chao; Li, Yiran; Lim, Chee Wah; Zhu, Zhiwen
2018-05-04
In this paper, a kind of single-walled carbon nanotube nonlinear model is developed and the strongly nonlinear dynamic characteristics of such carbon nanotubes subjected to random magnetic field are studied. The nonlocal effect of the microstructure is considered based on Eringen’s differential constitutive model. The natural frequency of the strongly nonlinear dynamic system is obtained by the energy function method, the drift coefficient and the diffusion coefficient are verified. The stationary probability density function of the system dynamic response is given and the fractal boundary of the safe basin is provided. Theoretical analysis and numerical simulation show that stochastic resonance occurs when varying the random magnetic field intensity. The boundary of safe basin has fractal characteristics and the area of safe basin decreases when the intensity of the magnetic field permeability increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numericalmore » experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less
A simplified conjoint recognition paradigm for the measurement of gist and verbatim memory.
Stahl, Christoph; Klauer, Karl Christoph
2008-05-01
The distinction between verbatim and gist memory traces has furthered the understanding of numerous phenomena in various fields, such as false memory research, research on reasoning and decision making, and cognitive development. To measure verbatim and gist memory empirically, an experimental paradigm and multinomial measurement model has been proposed but rarely applied. In the present article, a simplified conjoint recognition paradigm and multinomial model is introduced and validated as a measurement tool for the separate assessment of verbatim and gist memory processes. A Bayesian metacognitive framework is applied to validate guessing processes. Extensions of the model toward incorporating the processes of phantom recollection and erroneous recollection rejection are discussed.
Gottfredson, Nisha C; Sterba, Sonya K; Jackson, Kristina M
2017-01-01
Random coefficient-dependent (RCD) missingness is a non-ignorable mechanism through which missing data can arise in longitudinal designs. RCD, for which we cannot test, is a problematic form of missingness that occurs if subject-specific random effects correlate with propensity for missingness or dropout. Particularly when covariate missingness is a problem, investigators typically handle missing longitudinal data by using single-level multiple imputation procedures implemented with long-format data, which ignores within-person dependency entirely, or implemented with wide-format (i.e., multivariate) data, which ignores some aspects of within-person dependency. When either of these standard approaches to handling missing longitudinal data is used, RCD missingness leads to parameter bias and incorrect inference. We explain why multilevel multiple imputation (MMI) should alleviate bias induced by a RCD missing data mechanism under conditions that contribute to stronger determinacy of random coefficients. We evaluate our hypothesis with a simulation study. Three design factors are considered: intraclass correlation (ICC; ranging from .25 to .75), number of waves (ranging from 4 to 8), and percent of missing data (ranging from 20 to 50%). We find that MMI greatly outperforms the single-level wide-format (multivariate) method for imputation under a RCD mechanism. For the MMI analyses, bias was most alleviated when the ICC is high, there were more waves of data, and when there was less missing data. Practical recommendations for handling longitudinal missing data are suggested.
Dissecting random and systematic differences between noisy composite data sets.
Diederichs, Kay
2017-04-01
Composite data sets measured on different objects are usually affected by random errors, but may also be influenced by systematic (genuine) differences in the objects themselves, or the experimental conditions. If the individual measurements forming each data set are quantitative and approximately normally distributed, a correlation coefficient is often used to compare data sets. However, the relations between data sets are not obvious from the matrix of pairwise correlations since the numerical value of the correlation coefficient is lowered by both random and systematic differences between the data sets. This work presents a multidimensional scaling analysis of the pairwise correlation coefficients which places data sets into a unit sphere within low-dimensional space, at a position given by their CC* values [as defined by Karplus & Diederichs (2012), Science, 336, 1030-1033] in the radial direction and by their systematic differences in one or more angular directions. This dimensionality reduction can not only be used for classification purposes, but also to derive data-set relations on a continuous scale. Projecting the arrangement of data sets onto the subspace spanned by systematic differences (the surface of a unit sphere) allows, irrespective of the random-error levels, the identification of clusters of closely related data sets. The method gains power with increasing numbers of data sets. It is illustrated with an example from low signal-to-noise ratio image processing, and an application in macromolecular crystallography is shown, but the approach is completely general and thus should be widely applicable.
NASA Astrophysics Data System (ADS)
Tang, Chuanzi; Ren, Hongmei; Bo, Li; Jing, Huang
2017-11-01
In radar target recognition, the micro motion characteristics of target is one of the characteristics that researchers pay attention to at home and abroad, in which the characteristics of target precession cycle is one of the important characteristics of target movement characteristics. Periodic feature extraction methods have been studied for years, the complex shape of the target and the scattering center stack lead to random fluctuations of the RCS. These random fluctuations also exist certain periodicity, which has a great influence on the target recognition result. In order to solve the problem, this paper proposes a extraction method of micro-motion cycle feature based on confidence coefficient evaluation criteria.
Effect of Items Direction (Positive or Negative) on the Reliability in Likert Scale. Paper-11
ERIC Educational Resources Information Center
Gul, Showkeen Bilal Ahmad; Qasem, Mamun Ali Naji; Bhat, Mehraj Ahmad
2015-01-01
In this paper an attempt was made to analyze the effect of items direction (positive or negative) on the Alpha Cronbach reliability coefficient and the Split Half reliability coefficient in Likert scale. The descriptive survey research method was used for the study and sample of 510 undergraduate students were selected by used random sampling…
Uncovering a latent multinomial: Analysis of mark-recapture data with misidentification
Link, W.A.; Yoshizaki, J.; Bailey, L.L.; Pollock, K.H.
2010-01-01
Natural tags based on DNA fingerprints or natural features of animals are now becoming very widely used in wildlife population biology. However, classic capture-recapture models do not allow for misidentification of animals which is a potentially very serious problem with natural tags. Statistical analysis of misidentification processes is extremely difficult using traditional likelihood methods but is easily handled using Bayesian methods. We present a general framework for Bayesian analysis of categorical data arising from a latent multinomial distribution. Although our work is motivated by a specific model for misidentification in closed population capture-recapture analyses, with crucial assumptions which may not always be appropriate, the methods we develop extend naturally to a variety of other models with similar structure. Suppose that observed frequencies f are a known linear transformation f = A???x of a latent multinomial variable x with cell probability vector ?? = ??(??). Given that full conditional distributions [?? | x] can be sampled, implementation of Gibbs sampling requires only that we can sample from the full conditional distribution [x | f, ??], which is made possible by knowledge of the null space of A???. We illustrate the approach using two data sets with individual misidentification, one simulated, the other summarizing recapture data for salamanders based on natural marks. ?? 2009, The International Biometric Society.
Uncovering a Latent Multinomial: Analysis of Mark-Recapture Data with Misidentification
Link, W.A.; Yoshizaki, J.; Bailey, L.L.; Pollock, K.H.
2009-01-01
Natural tags based on DNA fingerprints or natural features of animals are now becoming very widely used in wildlife population biology. However, classic capture-recapture models do not allow for misidentification of animals which is a potentially very serious problem with natural tags. Statistical analysis of misidentification processes is extremely difficult using traditional likelihood methods but is easily handled using Bayesian methods. We present a general framework for Bayesian analysis of categorical data arising from a latent multinomial distribution. Although our work is motivated by a specific model for misidentification in closed population capture-recapture analyses, with crucial assumptions which may not always be appropriate, the methods we develop extend naturally to a variety of other models with similar structure. Suppose that observed frequencies f are a known linear transformation f=A'x of a latent multinomial variable x with cell probability vector pi= pi(theta). Given that full conditional distributions [theta | x] can be sampled, implementation of Gibbs sampling requires only that we can sample from the full conditional distribution [x | f, theta], which is made possible by knowledge of the null space of A'. We illustrate the approach using two data sets with individual misidentification, one simulated, the other summarizing recapture data for salamanders based on natural marks.
Sample Size Estimation in Cluster Randomized Educational Trials: An Empirical Bayes Approach
ERIC Educational Resources Information Center
Rotondi, Michael A.; Donner, Allan
2009-01-01
The educational field has now accumulated an extensive literature reporting on values of the intraclass correlation coefficient, a parameter essential to determining the required size of a planned cluster randomized trial. We propose here a simple simulation-based approach including all relevant information that can facilitate this task. An…
Ko, Mi-Hwa
2018-01-01
In this paper, we obtain the Hájek-Rényi inequality and, as an application, we study the strong law of large numbers for H -valued m -asymptotically almost negatively associated random vectors with mixing coefficients [Formula: see text] such that [Formula: see text].
Migration of lymphocytes on fibronectin-coated surfaces: temporal evolution of migratory parameters
NASA Technical Reports Server (NTRS)
Bergman, A. J.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)
1999-01-01
Lymphocytes typically interact with implanted biomaterials through adsorbed exogenous proteins. To provide a more complete characterization of these interactions, analysis of lymphocyte migration on adsorbed extracellular matrix proteins must accompany the commonly performed adhesion studies. We report here a comparison of the migratory and adhesion behavior of Jurkat cells (a T lymphoblastoid cell line) on tissue culture treated and untreated polystyrene surfaces coated with various concentrations of fibronectin. The average speed of cell locomotion showed a biphasic response to substrate adhesiveness for cells migrating on untreated polystyrene and a monotonic decrease for cells migrating on tissue culture-treated polystyrene. A modified approach to the persistent random walk model was implemented to determine the time dependence of cell migration parameters. The random motility coefficient showed significant increases with time when cells migrated on tissue culture-treated polystyrene surfaces, while it remained relatively constant for experiments with untreated polystyrene plates. Finally, a cell migration computer model was developed to verify our modified persistent random walk analysis. Simulation results suggest that our experimental data were consistent with temporally increasing random motility coefficients.
A two-level stochastic collocation method for semilinear elliptic equations with random coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Luoping; Zheng, Bin; Lin, Guang
In this work, we propose a novel two-level discretization for solving semilinear elliptic equations with random coefficients. Motivated by the two-grid method for deterministic partial differential equations (PDEs) introduced by Xu, our two-level stochastic collocation method utilizes a two-grid finite element discretization in the physical space and a two-level collocation method in the random domain. In particular, we solve semilinear equations on a coarse meshmore » $$\\mathcal{T}_H$$ with a low level stochastic collocation (corresponding to the polynomial space $$\\mathcal{P}_{P}$$) and solve linearized equations on a fine mesh $$\\mathcal{T}_h$$ using high level stochastic collocation (corresponding to the polynomial space $$\\mathcal{P}_p$$). We prove that the approximated solution obtained from this method achieves the same order of accuracy as that from solving the original semilinear problem directly by stochastic collocation method with $$\\mathcal{T}_h$$ and $$\\mathcal{P}_p$$. The two-level method is computationally more efficient, especially for nonlinear problems with high random dimensions. Numerical experiments are also provided to verify the theoretical results.« less
Allelic variation contributes to bacterial host specificity
Yue, Min; Han, Xiangan; Masi, Leon De; ...
2015-10-30
Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population andmore » functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.« less
Foot placement during error and pedal applications in naturalistic driving.
Wu, Yuqing; Boyle, Linda Ng; McGehee, Daniel; Roe, Cheryl A; Ebe, Kazutoshi; Foley, James
2017-02-01
Data from a naturalistic driving study was used to examine foot placement during routine foot pedal movements and possible pedal misapplications. The study included four weeks of observations from 30 drivers, where pedal responses were recorded and categorized. The foot movements associated with pedal misapplications and errors were the focus of the analyses. A random forest algorithm was used to predict the pedal application types based the video observations, foot placements, drivers' characteristics, drivers' cognitive function levels and anthropometric measurements. A repeated multinomial logit model was then used to estimate the likelihood of the foot placement given various driver characteristics and driving scenarios. The findings showed that prior foot location, the drivers' seat position, and the drive sequence were all associated with incorrect foot placement during an event. The study showed that there is a potential to develop a driver assistance system that can reduce the likelihood of a pedal error. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yeh, C-Y; Schafferer, C; Lee, J-M; Hsieh, C-J
2016-07-01
This study examines the impact on smokers' behaviour of a planned increase in the Health and Welfare Surcharge of Tobacco Products in Taiwan. This study used a structured questionnaire to perform telephone interviews. Stratified random sampling was applied to interview current smokers aged 18-65 years in Taiwan. Based on nationwide survey data of smokers' responses to future increases in cigarette prices, this study used multinomial logistic regression to perform its analyses. After the proposed increase in the Health and Welfare Surcharge of Tobacco Products, subsequent cigarette price increases would motivate nearly 30% of the smokers to adopt smoking-related changes and 10% to change to lower-priced brands. The study suggests that a large increase in the Health and Welfare Surcharge of Tobacco Products would lead to considerable changes in smoking behaviour, which in turn would increase cessation rate at the population level. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Hu, Xisheng; Wu, Zhilong; Wu, Chengzhen; Ye, Limin; Lan, Chaofeng; Tang, Kun; Xu, Lu; Qiu, Rongzu
2016-09-15
Forest cover changes are of global concern due to their roles in global warming and biodiversity. However, many previous studies have ignored the fact that forest loss and forest gain are different processes that may respond to distinct factors by stressing forest loss more than gain or viewing forest cover change as a whole. It behooves us to carefully examine the patterns and drivers of the change by subdividing it into several categories. Our study includes areas of forest loss (4.8% of the study area), forest gain (1.3% of the study area) and forest loss and gain (2.0% of the study area) from 2000 to 2012 in Fujian Province, China. In the study area, approximately 65% and 90% of these changes occurred within 2000m of the nearest road and under road densities of 0.6km/km(2), respectively. We compared two sampling techniques (systematic sampling and random sampling) and four intensities for each technique to investigate the driving patterns underlying the changes using multinomial logistic regression. The results indicated the lack of pronounced differences in the regressions between the two sampling designs, although the sample size had a great impact on the regression outcome. The application of multi-model inference indicated that the low level road density had a negative significant association with forest loss and forest loss and gain, the expressway density had a positive significant impact on forest loss, and the road network was insignificantly related to forest gain. The model including socioeconomic and biophysical variables illuminated potentially different predictors of the different forest change categories. Moreover, the multiple comparisons tested by Fisher's least significant difference (LSD) were a good compensation for the multinomial logistic model to enrich the interpretation of the regression results. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Haitao; Sun, Ying; Qian, Dongfu
2016-11-30
Policy makers require information regarding performance of different primary care delivery models in managing hypertension, which can be helpful for better hypertension management. This study aims to compare continuity of care among hypertensive patients between Direct Management (DM) Model of community health centers (CHCs) in Wuhan and Loose Collaboration (LC) Model in Nanjing. A cross-sectional questionnaire survey was conducted. Four CHCs in each city were randomly selected as study settings. 386 patients in Nanjing and 396 in Wuhan completed face-to-face interview surveys and were included in the final analysis. The relational continuity and coordination continuity (including both information continuity and management continuity) were measured and analyzed. Binary or multinomial logistic regression models were used for comparison between the two cities. Participants from Nanjing had better relational continuity with primary care providers as compared with those from Wuhan, including more likely to be familiar with a CHC physician (OR = 2.762; 95%CI: 1.878 to 4.061), taken care of by the same CHC physician (OR = 1.846; 95%CI: 1.262 to 2.700), and known well by a CHC physician (OR = 1.762; 95%CI: 1.206 to 2.572). Multinomial logistic regression analyses showed there were significant differences between the two cities in reported frequency of communications between hospital and CHC physicians (P = 0.001), whether hospital and CHC physicians gave same treatment suggestions (P = 0.016), as well as how treatment strategy was formulated (P < 0.001). Participants in Wuhan were less likely than those in Nanjing to consider there was continuum regarding health services provided by hospital and CHC physicians (OR = 3.932; 95%CI: 2.394 to 6.459). Our study shows that continuity of care is better for LC Model in Nanjing than DM Model in Wuhan. Our study suggests there is room for improvement regarding relational and information continuity in both cities.
A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.
Bertl, Johanna; Guo, Qianyun; Juul, Malene; Besenbacher, Søren; Nielsen, Morten Muhlig; Hornshøj, Henrik; Pedersen, Jakob Skou; Hobolth, Asger
2018-04-19
Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore, methods that predict the number of different types of mutations in regions or specific genomic elements must consider local genomic explanatory variables. A major drawback of most methods is the need to average the explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the explanatory variable varies dramatically in the element under consideration. To take into account the fine scale of the explanatory variables, we model the probabilities of different types of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes from 14 different cancer types and compare the performance in predicting mutation rate for both regional based models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model predicts the mutation rate much better than regional based models. We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation rate. Finally, our model confirms and quantifies certain well-known mutational signatures. We find that our site-specific multinomial regression model outperforms the regional based models. The possibility of including genomic variables on different scales and patient specific variables makes it a versatile framework for studying different mutational mechanisms. Our model can serve as the neutral null model for the mutational process; regions that deviate from the null model are candidates for elements that drive cancer development.
Lu, Tao; Wang, Min; Liu, Guangying; Dong, Guang-Hui; Qian, Feng
2016-01-01
It is well known that there is strong relationship between HIV viral load and CD4 cell counts in AIDS studies. However, the relationship between them changes during the course of treatment and may vary among individuals. During treatments, some individuals may experience terminal events such as death. Because the terminal event may be related to the individual's viral load measurements, the terminal mechanism is non-ignorable. Furthermore, there exists competing risks from multiple types of events, such as AIDS-related death and other death. Most joint models for the analysis of longitudinal-survival data developed in literatures have focused on constant coefficients and assume symmetric distribution for the endpoints, which does not meet the needs for investigating the nature of varying relationship between HIV viral load and CD4 cell counts in practice. We develop a mixed-effects varying-coefficient model with skewed distribution coupled with cause-specific varying-coefficient hazard model with random-effects to deal with varying relationship between the two endpoints for longitudinal-competing risks survival data. A fully Bayesian inference procedure is established to estimate parameters in the joint model. The proposed method is applied to a multicenter AIDS cohort study. Various scenarios-based potential models that account for partial data features are compared. Some interesting findings are presented.
Failure tolerance of spike phase synchronization in coupled neural networks
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2011-09-01
Neuronal synchronization plays an important role in the various functionality of nervous system such as binding, cognition, information processing, and computation. In this paper, we investigated how random and intentional failures in the nodes of a network influence its phase synchronization properties. We considered both artificially constructed networks using models such as preferential attachment, Watts-Strogatz, and Erdős-Rényi as well as a number of real neuronal networks. The failure strategy was either random or intentional based on properties of the nodes such as degree, clustering coefficient, betweenness centrality, and vulnerability. Hindmarsh-Rose model was considered as the mathematical model for the individual neurons, and the phase synchronization of the spike trains was monitored as a function of the percentage/number of removed nodes. The numerical simulations were supplemented by considering coupled non-identical Kuramoto oscillators. Failures based on the clustering coefficient, i.e., removing the nodes with high values of the clustering coefficient, had the least effect on the spike synchrony in all of the networks. This was followed by errors where the nodes were removed randomly. However, the behavior of the other three attack strategies was not uniform across the networks, and different strategies were the most influential in different network structure.
Box-Cox Mixed Logit Model for Travel Behavior Analysis
NASA Astrophysics Data System (ADS)
Orro, Alfonso; Novales, Margarita; Benitez, Francisco G.
2010-09-01
To represent the behavior of travelers when they are deciding how they are going to get to their destination, discrete choice models, based on the random utility theory, have become one of the most widely used tools. The field in which these models were developed was halfway between econometrics and transport engineering, although the latter now constitutes one of their principal areas of application. In the transport field, they have mainly been applied to mode choice, but also to the selection of destination, route, and other important decisions such as the vehicle ownership. In usual practice, the most frequently employed discrete choice models implement a fixed coefficient utility function that is linear in the parameters. The principal aim of this paper is to present the viability of specifying utility functions with random coefficients that are nonlinear in the parameters, in applications of discrete choice models to transport. Nonlinear specifications in the parameters were present in discrete choice theory at its outset, although they have seldom been used in practice until recently. The specification of random coefficients, however, began with the probit and the hedonic models in the 1970s, and, after a period of apparent little practical interest, has burgeoned into a field of intense activity in recent years with the new generation of mixed logit models. In this communication, we present a Box-Cox mixed logit model, original of the authors. It includes the estimation of the Box-Cox exponents in addition to the parameters of the random coefficients distribution. Probability of choose an alternative is an integral that will be calculated by simulation. The estimation of the model is carried out by maximizing the simulated log-likelihood of a sample of observed individual choices between alternatives. The differences between the predictions yielded by models that are inconsistent with real behavior have been studied with simulation experiments.
Freak waves in random oceanic sea states.
Onorato, M; Osborne, A R; Serio, M; Bertone, S
2001-06-18
Freak waves are very large, rare events in a random ocean wave train. Here we study their generation in a random sea state characterized by the Joint North Sea Wave Project spectrum. We assume, to cubic order in nonlinearity, that the wave dynamics are governed by the nonlinear Schrödinger (NLS) equation. We show from extensive numerical simulations of the NLS equation how freak waves in a random sea state are more likely to occur for large values of the Phillips parameter alpha and the enhancement coefficient gamma. Comparison with linear simulations is also reported.
Photon diffusion coefficient in scattering and absorbing media.
Pierrat, Romain; Greffet, Jean-Jacques; Carminati, Rémi
2006-05-01
We present a unified derivation of the photon diffusion coefficient for both steady-state and time-dependent transport in disordered absorbing media. The derivation is based on a modal analysis of the time-dependent radiative transfer equation. This approach confirms that the dynamic diffusion coefficient is given by the random-walk result D = cl(*)/3, where l(*) is the transport mean free path and c is the energy velocity, independent of the level of absorption. It also shows that the diffusion coefficient for steady-state transport, often used in biomedical optics, depends on absorption, in agreement with recent theoretical and experimental works. These two results resolve a recurrent controversy in light propagation and imaging in scattering media.
Higher-order clustering in networks
NASA Astrophysics Data System (ADS)
Yin, Hao; Benson, Austin R.; Leskovec, Jure
2018-05-01
A fundamental property of complex networks is the tendency for edges to cluster. The extent of the clustering is typically quantified by the clustering coefficient, which is the probability that a length-2 path is closed, i.e., induces a triangle in the network. However, higher-order cliques beyond triangles are crucial to understanding complex networks, and the clustering behavior with respect to such higher-order network structures is not well understood. Here we introduce higher-order clustering coefficients that measure the closure probability of higher-order network cliques and provide a more comprehensive view of how the edges of complex networks cluster. Our higher-order clustering coefficients are a natural generalization of the traditional clustering coefficient. We derive several properties about higher-order clustering coefficients and analyze them under common random graph models. Finally, we use higher-order clustering coefficients to gain new insights into the structure of real-world networks from several domains.
NASA Astrophysics Data System (ADS)
Gözükırmızı, Coşar; Kırkın, Melike Ebru
2017-01-01
Probabilistic evolution theory (PREVTH) provides a powerful framework for the solution of initial value problems of explicit ordinary differential equation sets with second degree multinomial right hand side functions. The use of the recursion between squarified telescope matrices provides the opportunity to obtain accurate results without much effort. Convergence may be considered as one of the drawbacks of PREVTH. It is related to many factors: the initial values and the coefficients in the right hand side functions are the most apparent ones. If a space extension is utilized before PREVTH, the convergence of PREVTH may also be affected by how the space extension is performed. There are works about implementations related to probabilistic evolution and how to improve the convergence by methods like analytic continuation. These works were written before squarification was introduced. Since recursion between squarified telescope matrices has given us the opportunity to obtain results corresponding to relatively higher truncation levels, it is important to obtain and analyze results related to certain problems in different areas of engineering. This manuscript may be considered to be in a series of papers and conference proceedings which serves for this purpose.
Is a Baccalaureate in Nursing Worth It? The Return to Education, 2000–2008
Spetz, Joanne; Bates, Timothy
2013-01-01
Objective. A registered nurse (RN) license can be obtained by completing a baccalaureate degree (BSN), an associate degree (AD), or a diploma program. The aim of this article is to examine the return to baccalaureate education from the perspective of the nurse. Data Sources. National Sample Survey of Registered Nurses, 2000, 2004, and 2008. Study Design. The effect of education on RN wages is estimated using multivariate regression, both for initial education and for completing a second degree. The coefficients are used to calculate lifetime expected earnings. Multinomial logistic regression is used to examine the relationship between education and job title. Principal Findings. Lifetime earnings for nurses whose initial education is the BSN are higher than those of AD nurses only if the AD program requires 3 years and the discount rate is 2 percent. For individuals who enter nursing with an AD, lifetime earnings are higher if they complete a BSN. The BSN is associated with higher likelihood of being an advanced practice registered nurse, having an academic title, and having a management title. Conclusions. Because baccalaureate education confers benefits both for RNs and their patients, policies to encourage the pursuit of BSN degrees need to be supported. PMID:24102422
Automatic Classification of Aerial Imagery for Urban Hydrological Applications
NASA Astrophysics Data System (ADS)
Paul, A.; Yang, C.; Breitkopf, U.; Liu, Y.; Wang, Z.; Rottensteiner, F.; Wallner, M.; Verworn, A.; Heipke, C.
2018-04-01
In this paper we investigate the potential of automatic supervised classification for urban hydrological applications. In particular, we contribute to runoff simulations using hydrodynamic urban drainage models. In order to assess whether the capacity of the sewers is sufficient to avoid surcharge within certain return periods, precipitation is transformed into runoff. The transformation of precipitation into runoff requires knowledge about the proportion of drainage-effective areas and their spatial distribution in the catchment area. Common simulation methods use the coefficient of imperviousness as an important parameter to estimate the overland flow, which subsequently contributes to the pipe flow. The coefficient of imperviousness is the percentage of area covered by impervious surfaces such as roofs or road surfaces. It is still common practice to assign the coefficient of imperviousness for each particular land parcel manually by visual interpretation of aerial images. Based on classification results of these imagery we contribute to an objective automatic determination of the coefficient of imperviousness. In this context we compare two classification techniques: Random Forests (RF) and Conditional Random Fields (CRF). Experimental results performed on an urban test area show good results and confirm that the automated derivation of the coefficient of imperviousness, apart from being more objective and, thus, reproducible, delivers more accurate results than the interactive estimation. We achieve an overall accuracy of about 85 % for both classifiers. The root mean square error of the differences of the coefficient of imperviousness compared to the reference is 4.4 % for the CRF-based classification, and 3.8 % for the RF-based classification.
Multinomial Bayesian learning for modeling classical and nonclassical receptive field properties.
Hosoya, Haruo
2012-08-01
We study the interplay of Bayesian inference and natural image learning in a hierarchical vision system, in relation to the response properties of early visual cortex. We particularly focus on a Bayesian network with multinomial variables that can represent discrete feature spaces similar to hypercolumns combining minicolumns, enforce sparsity of activation to learn efficient representations, and explain divisive normalization. We demonstrate that maximal-likelihood learning using sampling-based Bayesian inference gives rise to classical receptive field properties similar to V1 simple cells and V2 cells, while inference performed on the trained network yields nonclassical context-dependent response properties such as cross-orientation suppression and filling in. Comparison with known physiological properties reveals some qualitative and quantitative similarities.
Disentangling stereotype activation and stereotype application in the stereotype misperception task.
Krieglmeyer, Regina; Sherman, Jeffrey W
2012-08-01
When forming impressions about other people, stereotypes about the individual's social group often influence the resulting impression. At least 2 distinguishable processes underlie stereotypic impression formation: stereotype activation and stereotype application. Most previous research has used implicit measures to assess stereotype activation and explicit measures to assess stereotype application, which has several disadvantages. The authors propose a measure of stereotypic impression formation, the stereotype misperception task (SMT), together with a multinomial model that quantitatively disentangles the contributions of stereotype activation and application to responses in the SMT. The validity of the SMT and of the multinomial model was confirmed in 5 studies. The authors hope to advance research on stereotyping by providing a measurement tool that separates multiple processes underlying impression formation.
Measuring monotony in two-dimensional samples
NASA Astrophysics Data System (ADS)
Kachapova, Farida; Kachapov, Ilias
2010-04-01
This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between |r| and 1, where r is the Pearson's correlation coefficient for the sample; that the monotony coefficient equals 1 for any monotone increasing sample and equals -1 for any monotone decreasing sample. This article contains a few examples demonstrating that the monotony coefficient is a more accurate measure of the degree of monotone dependence for a non-linear relationship than the Pearson's, Spearman's and Kendall's correlation coefficients. The monotony coefficient is a tool that can be applied to samples in order to find dependencies between random variables; it is especially useful in finding couples of dependent variables in a big dataset of many variables. Undergraduate students in mathematics and science would benefit from learning and applying this measure of monotone dependence.
Firm-Related Training Tracks: A Random Effects Ordered Probit Model
ERIC Educational Resources Information Center
Groot, Wim; van den Brink, Henriette Maassen
2003-01-01
A random effects ordered response model of training is estimated to analyze the existence of training tracks and time varying coefficients in training frequency. Two waves of a Dutch panel survey of workers are used covering the period 1992-1996. The amount of training received by workers increased during the period 1994-1996 compared to…
Asymptotic Effect of Misspecification in the Random Part of the Multilevel Model
ERIC Educational Resources Information Center
Berkhof, Johannes; Kampen, Jarl Kennard
2004-01-01
The authors examine the asymptotic effect of omitting a random coefficient in the multilevel model and derive expressions for the change in (a) the variance components estimator and (b) the estimated variance of the fixed effects estimator. They apply the method of moments, which yields a closed form expression for the omission effect. In…
Jaffa, Miran A; Gebregziabher, Mulugeta; Jaffa, Ayad A
2015-06-14
Renal transplant patients are mandated to have continuous assessment of their kidney function over time to monitor disease progression determined by changes in blood urea nitrogen (BUN), serum creatinine (Cr), and estimated glomerular filtration rate (eGFR). Multivariate analysis of these outcomes that aims at identifying the differential factors that affect disease progression is of great clinical significance. Thus our study aims at demonstrating the application of different joint modeling approaches with random coefficients on a cohort of renal transplant patients and presenting a comparison of their performance through a pseudo-simulation study. The objective of this comparison is to identify the model with best performance and to determine whether accuracy compensates for complexity in the different multivariate joint models. We propose a novel application of multivariate Generalized Linear Mixed Models (mGLMM) to analyze multiple longitudinal kidney function outcomes collected over 3 years on a cohort of 110 renal transplantation patients. The correlated outcomes BUN, Cr, and eGFR and the effect of various covariates such patient's gender, age and race on these markers was determined holistically using different mGLMMs. The performance of the various mGLMMs that encompass shared random intercept (SHRI), shared random intercept and slope (SHRIS), separate random intercept (SPRI) and separate random intercept and slope (SPRIS) was assessed to identify the one that has the best fit and most accurate estimates. A bootstrap pseudo-simulation study was conducted to gauge the tradeoff between the complexity and accuracy of the models. Accuracy was determined using two measures; the mean of the differences between the estimates of the bootstrapped datasets and the true beta obtained from the application of each model on the renal dataset, and the mean of the square of these differences. The results showed that SPRI provided most accurate estimates and did not exhibit any computational or convergence problem. Higher accuracy was demonstrated when the level of complexity increased from shared random coefficient models to the separate random coefficient alternatives with SPRI showing to have the best fit and most accurate estimates.
Microwave scattering and emission from a half-space anisotropic random medium
NASA Astrophysics Data System (ADS)
Mudaliar, Saba; Lee, Jay Kyoon
1990-12-01
This paper is a sequel to an earlier paper (Lee and Mudaliar, 1988) where the backscattering coefficients of a half-space anisotropic random medium were obtained. Here the bistatic scattering coefficients are calculated by solving the modified radiative transfer equations under a first-order approximation. The effects of multiple scattering on the results are observed. Emissivities are calculated and compared with those obtained using the Born approximation (single scattering). Several interesting properties of the model are brought to notice using numerical examples. Finally, as an application, the theory is used to interpret the passive remote sensing data of multiyear sea ice in the microwave frequency range. A quite close agreement between theoretical prediction and the measured data is found.
Giant mesoscopic fluctuations of the elastic cotunneling thermopower of a single-electron transistor
NASA Astrophysics Data System (ADS)
Vasenko, A. S.; Basko, D. M.; Hekking, F. W. J.
2015-02-01
We study the thermoelectric transport of a small metallic island weakly coupled to two electrodes by tunnel junctions. In the Coulomb blockade regime, in the case when the ground state of the system corresponds to an even number of electrons on the island, the main mechanism of electron transport at the lowest temperatures is elastic cotunneling. In this regime, the transport coefficients strongly depend on the realization of the random impurity potential or the shape of the island. Using random-matrix theory, we calculate the thermopower and the thermoelectric kinetic coefficient and study the statistics of their mesoscopic fluctuations in the elastic cotunneling regime. The fluctuations of the thermopower turn out to be much larger than the average value.
Time domain simulation of the response of geometrically nonlinear panels subjected to random loading
NASA Technical Reports Server (NTRS)
Moyer, E. Thomas, Jr.
1988-01-01
The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.
On S.N. Bernstein's derivation of Mendel's Law and 'rediscovery' of the Hardy-Weinberg distribution.
Stark, Alan; Seneta, Eugene
2012-04-01
Around 1923 the soon-to-be famous Soviet mathematician and probabilist Sergei N. Bernstein started to construct an axiomatic foundation of a theory of heredity. He began from the premise of stationarity (constancy of type proportions) from the first generation of offspring. This led him to derive the Mendelian coefficients of heredity. It appears that he had no direct influence on the subsequent development of population genetics. A basic assumption of Bernstein was that parents coupled randomly to produce offspring. This paper shows that a simple model of non-random mating, which nevertheless embodies a feature of the Hardy-Weinberg Law, can produce Mendelian coefficients of heredity while maintaining the population distribution. How W. Johannsen's monograph influenced Bernstein is discussed.
Random walks on cubic lattices with bond disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, M.H.; van Velthoven, P.F.J.
1986-12-01
The authors consider diffusive systems with static disorder, such as Lorentz gases, lattice percolation, ants in a labyrinth, termite problems, random resistor networks, etc. In the case of diluted randomness the authors can apply the methods of kinetic theory to obtain systematic expansions of dc and ac transport properties in powers of the impurity concentration c. The method is applied to a hopping model on a d-dimensional cubic lattice having two types of bonds with conductivity sigma and sigma/sub 0/ = 1, with concentrations c and 1-c, respectively. For the square lattice the authors explicitly calculate the diffusion coefficient D(c,sigma)more » as a function of c, to O(c/sup 2/) terms included for different ratios of the bond conductivity sigma. The probability of return at long times is given by P/sub 0/(t) approx. (4..pi..D(c,sigma)t)/sup -d/2/, which is determined by the diffusion coefficient of the disordered system.« less
Jamil, Zubia; Arif, Sharmin; Khan, Anum; Durrani, Asghar Aurangzeb; Yaqoob, Nayyar
2018-01-01
Abstract Background and Aims: Skeletal manifestation in liver diseases represents the minimally scrutinized part of the disease spectrum. Vitamin D deficiency has a central role in developing hepatic osteodystrophy in patients with chronic liver disease. This study aimed to investigate vitamin D levels and their relationship with disease advancement in these patients. Methods: Vitamin D levels were checked in 125 chronic liver disease patients. The patients were classified in three stages according to Child-Pugh score: A, B and C. The relationship of vitamin D levels with Child-Pugh score and other variables in the study was assessed by the contingency coefficient. Correlation and logistic regression analyses were also carried out to find additional predictors of low vitamin D levels. Results: Among the patients, 88% had either insufficient or deficient stores of vitamin D, while only 12% had sufficient vitamin D levels (p >0.05). Vitamin D levels were notably related to Child-Pugh class (contingency coefficient = 0.5, p <0.05). On univariate and multinomial regression analyses, age, female sex, MELD and Child-Pugh class were predictors of low vitamin D levels. Age, model of end-stage liver disease score and Child-Pugh score were negatively correlated to vitamin D levels (p <0.05). Conclusions: Vitamin D deficiency is notably related to age, female sex and model of end-stage liver disease score, in addition to Child-Pugh class of liver cirrhosis. Vitamin D levels should be routinely checked in patients with advanced liver cirrhosis (Child-Pugh class B and C) and this deficiency must be addressed in a timely manner to improve general well-being of cirrhotic patients.
Hong, K; Muntner, P; Kronish, I; Shilane, D; Chang, T I
2016-01-01
Lower adherence to antihypertensive medications may increase visit-to-visit variability of blood pressure (VVV of BP), a risk factor for cardiovascular events and death. We used data from the African American Study of Kidney Disease and Hypertension (AASK) trial to examine whether lower medication adherence is associated with higher systolic VVV of BP in African Americans with hypertensive chronic kidney disease (CKD). Determinants of VVV of BP were also explored. AASK participants (n=988) were categorized by self-report or pill count as having perfect (100%), moderately high (75-99%), moderately low (50-74%) or low (<50%) proportion of study visits with high medication adherence over a 1-year follow-up period. We used multinomial logistic regression to examine determinants of medication adherence, and multivariable-adjusted linear regression to examine the association between medication adherence and systolic VVV of BP, defined as the coefficient of variation or the average real variability (ARV). Participants with lower self-reported adherence were generally younger and had a higher prevalence of comorbid conditions. Compared with perfect adherence, moderately high, moderately low and low adherence was associated with 0.65% (±0.31%), 0.99% (±0.31%) and 1.29% (±0.32%) higher systolic VVV of BP (defined as the coefficient of variation) in fully adjusted models. Results were qualitatively similar when using ARV or when using pill counts as the measure of adherence. Lower medication adherence is associated with higher systolic VVV of BP in African Americans with hypertensive CKD; efforts to improve medication adherence in this population may reduce systolic VVV of BP.
Genetic parameters for stayability to consecutive calvings in Zebu cattle.
Silva, D O; Santana, M L; Ayres, D R; Menezes, G R O; Silva, L O C; Nobre, P R C; Pereira, R J
2017-12-22
Longer-lived cows tend to be more profitable and the stayability trait is a selection criterion correlated to longevity. An alternative to the traditional approach to evaluate stayability is its definition based on consecutive calvings, whose main advantage is the more accurate evaluation of young bulls. However, no study using this alternative approach has been conducted for Zebu breeds. Therefore, the objective of this study was to compare linear random regression models to fit stayability to consecutive calvings of Guzerá, Nelore and Tabapuã cows and to estimate genetic parameters for this trait in the respective breeds. Data up to the eighth calving were used. The models included the fixed effects of age at first calving and year-season of birth of the cow and the random effects of contemporary group, additive genetic, permanent environmental and residual. Random regressions were modeled by orthogonal Legendre polynomials of order 1 to 4 (2 to 5 coefficients) for contemporary group, additive genetic and permanent environmental effects. Using Deviance Information Criterion as the selection criterion, the model with 4 regression coefficients for each effect was the most adequate for the Nelore and Tabapuã breeds and the model with 5 coefficients is recommended for the Guzerá breed. For Guzerá, heritabilities ranged from 0.05 to 0.08, showing a quadratic trend with a peak between the fourth and sixth calving. For the Nelore and Tabapuã breeds, the estimates ranged from 0.03 to 0.07 and from 0.03 to 0.08, respectively, and increased with increasing calving number. The additive genetic correlations exhibited a similar trend among breeds and were higher for stayability between closer calvings. Even between more distant calvings (second v. eighth), stayability showed a moderate to high genetic correlation, which was 0.77, 0.57 and 0.79 for the Guzerá, Nelore and Tabapuã breeds, respectively. For Guzerá, when the models with 4 or 5 regression coefficients were compared, the rank correlations between predicted breeding values for the intercept were always higher than 0.99, indicating the possibility of practical application of the least parameterized model. In conclusion, the model with 4 random regression coefficients is recommended for the genetic evaluation of stayability to consecutive calvings in Zebu cattle.
Forster, Jeri E.; MaWhinney, Samantha; Ball, Erika L.; Fairclough, Diane
2011-01-01
Dropout is common in longitudinal clinical trials and when the probability of dropout depends on unobserved outcomes even after conditioning on available data, it is considered missing not at random and therefore nonignorable. To address this problem, mixture models can be used to account for the relationship between a longitudinal outcome and dropout. We propose a Natural Spline Varying-coefficient mixture model (NSV), which is a straightforward extension of the parametric Conditional Linear Model (CLM). We assume that the outcome follows a varying-coefficient model conditional on a continuous dropout distribution. Natural cubic B-splines are used to allow the regression coefficients to semiparametrically depend on dropout and inference is therefore more robust. Additionally, this method is computationally stable and relatively simple to implement. We conduct simulation studies to evaluate performance and compare methodologies in settings where the longitudinal trajectories are linear and dropout time is observed for all individuals. Performance is assessed under conditions where model assumptions are both met and violated. In addition, we compare the NSV to the CLM and a standard random-effects model using an HIV/AIDS clinical trial with probable nonignorable dropout. The simulation studies suggest that the NSV is an improvement over the CLM when dropout has a nonlinear dependence on the outcome. PMID:22101223
Prospective memory after moderate-to-severe traumatic brain injury: a multinomial modeling approach.
Pavawalla, Shital P; Schmitter-Edgecombe, Maureen; Smith, Rebekah E
2012-01-01
Prospective memory (PM), which can be understood as the processes involved in realizing a delayed intention, is consistently found to be impaired after a traumatic brain injury (TBI). Although PM can be empirically dissociated from retrospective memory, it inherently involves both a prospective component (i.e., remembering that an action needs to be carried out) and retrospective components (i.e., remembering what action needs to be executed and when). This study utilized a multinomial processing tree model to disentangle the prospective (that) and retrospective recognition (when) components underlying PM after moderate-to-severe TBI. Seventeen participants with moderate to severe TBI and 17 age- and education-matched control participants completed an event-based PM task that was embedded within an ongoing computer-based color-matching task. The multinomial processing tree modeling approach revealed a significant group difference in the prospective component, indicating that the control participants allocated greater preparatory attentional resources to the PM task compared to the TBI participants. Participants in the TBI group were also found to be significantly more impaired than controls in the when aspect of the retrospective component. These findings indicated that the TBI participants had greater difficulty allocating the necessary preparatory attentional resources to the PM task and greater difficulty discriminating between PM targets and nontargets during task execution, despite demonstrating intact posttest recall and/or recognition of the PM tasks and targets.
Landscape effects on diets of two canids in Northwestern Texas: A multinomial modeling approach
Lemons, P.R.; Sedinger, J.S.; Herzog, M.P.; Gipson, P.S.; Gilliland, R.L.
2010-01-01
Analyses of feces, stomach contents, and regurgitated pellets are common techniques for assessing diets of vertebrates and typically contain more than 1 food item per sampling unit. When analyzed, these individual food items have traditionally been treated as independent, which represents pseudoreplication. When food types are recorded as present or absent, these samples can be treated as multinomial vectors of food items, with each vector representing 1 realization of a possible diet. We suggest such data have a similar structure to capture histories for closed-capture, capturemarkrecapture data. To assess the effects of landscapes and presence of a potential competitor, we used closed-capture models implemented in program MARK into analyze diet data generated from feces of swift foxes (Vulpes velox) and coyotes (Canis latrans) in northwestern Texas. The best models of diet contained season and location for both swift foxes and coyotes, but year accounted for less variation, suggesting that landscape type is an important predictor of diets of both species. Models containing the effect of coyote reduction were not competitive (??QAICc 53.6685), consistent with the hypothesis that presence of coyotes did not influence diet of swift foxes. Our findings suggest that landscape type may have important influences on diets of both species. We believe that multinomial models represent an effective approach to assess hypotheses when diet studies have a data structure similar to ours. ?? 2010 American Society of Mammalogists.
Nobre, Aline Araújo; Carvalho, Marilia Sá; Griep, Rosane Härter; Fonseca, Maria de Jesus Mendes da; Melo, Enirtes Caetano Prates; Santos, Itamar de Souza; Chor, Dora
2017-08-17
To compare two methodological approaches: the multinomial model and the zero-inflated gamma model, evaluating the factors associated with the practice and amount of time spent on leisure time physical activity. Data collected from 14,823 baseline participants in the Longitudinal Study of Adult Health (ELSA-Brasil - Estudo Longitudinal de Saúde do Adulto ) have been analysed. Regular leisure time physical activity has been measured using the leisure time physical activity module of the International Physical Activity Questionnaire. The explanatory variables considered were gender, age, education level, and annual per capita family income. The main advantage of the zero-inflated gamma model over the multinomial model is that it estimates mean time (minutes per week) spent on leisure time physical activity. For example, on average, men spent 28 minutes/week longer on leisure time physical activity than women did. The most sedentary groups were young women with low education level and income. The zero-inflated gamma model, which is rarely used in epidemiological studies, can give more appropriate answers in several situations. In our case, we have obtained important information on the main determinants of the duration of leisure time physical activity. This information can help guide efforts towards the most vulnerable groups since physical inactivity is associated with different diseases and even premature death.
Effective Stochastic Model for Reactive Transport
NASA Astrophysics Data System (ADS)
Tartakovsky, A. M.; Zheng, B.; Barajas-Solano, D. A.
2017-12-01
We propose an effective stochastic advection-diffusion-reaction (SADR) model. Unlike traditional advection-dispersion-reaction models, the SADR model describes mechanical and diffusive mixing as two separate processes. In the SADR model, the mechanical mixing is driven by random advective velocity with the variance given by the coefficient of mechanical dispersion. The diffusive mixing is modeled as a fickian diffusion with the effective diffusion coefficient. Both coefficients are given in terms of Peclet number (Pe) and the coefficient of molecular diffusion. We use the experimental results of to demonstrate that for transport and bimolecular reactions in porous media the SADR model is significantly more accurate than the traditional dispersion model, which overestimates the mass of the reaction product by as much as 25%.
Analysis of a Split-Plot Experimental Design Applied to a Low-Speed Wind Tunnel Investigation
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2013-01-01
A procedure to analyze a split-plot experimental design featuring two input factors, two levels of randomization, and two error structures in a low-speed wind tunnel investigation of a small-scale model of a fighter airplane configuration is described in this report. Standard commercially-available statistical software was used to analyze the test results obtained in a randomization-restricted environment often encountered in wind tunnel testing. The input factors were differential horizontal stabilizer incidence and the angle of attack. The response variables were the aerodynamic coefficients of lift, drag, and pitching moment. Using split-plot terminology, the whole plot, or difficult-to-change, factor was the differential horizontal stabilizer incidence, and the subplot, or easy-to-change, factor was the angle of attack. The whole plot and subplot factors were both tested at three levels. Degrees of freedom for the whole plot error were provided by replication in the form of three blocks, or replicates, which were intended to simulate three consecutive days of wind tunnel facility operation. The analysis was conducted in three stages, which yielded the estimated mean squares, multiple regression function coefficients, and corresponding tests of significance for all individual terms at the whole plot and subplot levels for the three aerodynamic response variables. The estimated regression functions included main effects and two-factor interaction for the lift coefficient, main effects, two-factor interaction, and quadratic effects for the drag coefficient, and only main effects for the pitching moment coefficient.
Monte Carlo calibration of avalanches described as Coulomb fluid flows.
Ancey, Christophe
2005-07-15
The idea that snow avalanches might behave as granular flows, and thus be described as Coulomb fluid flows, came up very early in the scientific study of avalanches, but it is not until recently that field evidence has been provided that demonstrates the reliability of this idea. This paper aims to specify the bulk frictional behaviour of snow avalanches by seeking a universal friction law. Since the bulk friction coefficient cannot be measured directly in the field, the friction coefficient must be calibrated by adjusting the model outputs to closely match the recorded data. Field data are readily available but are of poor quality and accuracy. We used Bayesian inference techniques to specify the model uncertainty relative to data uncertainty and to robustly and efficiently solve the inverse problem. A sample of 173 events taken from seven paths in the French Alps was used. The first analysis showed that the friction coefficient behaved as a random variable with a smooth and bell-shaped empirical distribution function. Evidence was provided that the friction coefficient varied with the avalanche volume, but any attempt to adjust a one-to-one relationship relating friction to volume produced residual errors that could be as large as three times the maximum uncertainty of field data. A tentative universal friction law is proposed: the friction coefficient is a random variable, the distribution of which can be approximated by a normal distribution with a volume-dependent mean.
Stine, O C; Smith, K D
1990-01-01
The effects of mutation, migration, random drift, and selection on the change in frequency of the alleles associated with Huntington disease, porphyria variegata, and lipoid proteinosis have been assessed in the Afrikaner population of South Africa. Although admixture cannot be completely discounted, it was possible to exclude migration and new mutation as major sources of changes in the frequency of these alleles by limiting analyses to pedigrees descendant from founding families. Calculations which overestimated the possible effect of random drift demonstrated that drift did not account for the observed changes in gene frequencies. Therefore these changes must have been caused by natural selection, and a coefficient of selection was estimated for each trait. For the rare, dominant, deleterious allele associated with Huntington disease, the coefficient of selection was estimated to be .34, indicating that this allele has a selective disadvantage, contrary to some recent studies. For the presumed dominant and probably deleterious allele associated with porphyria variegata, the coefficient of selection lies between .07 and .02. The coefficient of selection for the rare, clinically recessive allele associated with lipoid proteinosis was estimated to be .07. Calculations based on a model system indicate that the observed decrease in allele frequency cannot be explained solely on the basis of selection against the homozygote. Thus, this may be an example of a pleiotropic gene which has a dominant effect in terms of selection even though its known clinical effect is recessive. PMID:2137963
Stine, O C; Smith, K D
1990-03-01
The effects of mutation, migration, random drift, and selection on the change in frequency of the alleles associated with Huntington disease, porphyria variegata, and lipoid proteinosis have been assessed in the Afrikaner population of South Africa. Although admixture cannot be completely discounted, it was possible to exclude migration and new mutation as major sources of changes in the frequency of these alleles by limiting analyses to pedigrees descendant from founding families. Calculations which overestimated the possible effect of random drift demonstrated that drift did not account for the observed changes in gene frequencies. Therefore these changes must have been caused by natural selection, and a coefficient of selection was estimated for each trait. For the rare, dominant, deleterious allele associated with Huntington disease, the coefficient of selection was estimated to be .34, indicating that this allele has a selective disadvantage, contrary to some recent studies. For the presumed dominant and probably deleterious allele associated with porphyria variegata, the coefficient of selection lies between .07 and .02. The coefficient of selection for the rare, clinically recessive allele associated with lipoid proteinosis was estimated to be .07. Calculations based on a model system indicate that the observed decrease in allele frequency cannot be explained solely on the basis of selection against the homozygote. Thus, this may be an example of a pleiotropic gene which has a dominant effect in terms of selection even though its known clinical effect is recessive.
Transport of Charged Particles in Turbulent Magnetic Fields
NASA Astrophysics Data System (ADS)
Parashar, T.; Subedi, P.; Sonsrettee, W.; Blasi, P.; Ruffolo, D. J.; Matthaeus, W. H.; Montgomery, D.; Chuychai, P.; Dmitruk, P.; Wan, M.; Chhiber, R.
2017-12-01
Magnetic fields permeate the Universe. They are found in planets, stars, galaxies, and the intergalactic medium. The magnetic field found in these astrophysical systems are usually chaotic, disordered, and turbulent. The investigation of the transport of cosmic rays in magnetic turbulence is a subject of considerable interest. One of the important aspects of cosmic ray transport is to understand their diffusive behavior and to calculate the diffusion coefficient in the presence of these turbulent fields. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here, we will particularly focus on calculating diffusion coefficients of charged particles and magnetic field lines in a fully three-dimensional isotropic turbulent magnetic field with no mean field, which may be pertinent to many astrophysical situations. For charged particles in isotropic turbulence we identify different ranges of particle energy depending upon the ratio of the Larmor radius of the charged particle to the characteristic outer length scale of the turbulence. Different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical ideas are tested against results of detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields. We also discuss two different methods of generating random magnetic field to study charged particle propagation using numerical simulation. One method is the usual way of generating random fields with a specified power law in wavenumber space, using Gaussian random variables. Turbulence, however, is non-Gaussian, with variability that comes in bursts called intermittency. We therefore devise a way to generate synthetic intermittent fields which have many properties of realistic turbulence. Possible applications of such synthetically generated intermittent fields are discussed.
ERIC Educational Resources Information Center
Glassman, Jill R.; Potter, Susan C.; Baumler, Elizabeth R.; Coyle, Karin K.
2015-01-01
Introduction: Group-randomized trials (GRTs) are one of the most rigorous methods for evaluating the effectiveness of group-based health risk prevention programs. Efficiently designing GRTs with a sample size that is sufficient for meeting the trial's power and precision goals while not wasting resources exceeding them requires estimates of the…
Magnetic field line random walk in models and simulations of reduced magnetohydrodynamic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, A. P.; Ruffolo, D.; Oughton, S.
2013-12-10
The random walk of magnetic field lines is examined numerically and analytically in the context of reduced magnetohydrodynamic (RMHD) turbulence, which provides a useful description of plasmas dominated by a strong mean field, such as in the solar corona. A recently developed non-perturbative theory of magnetic field line diffusion is compared with the diffusion coefficients obtained by accurate numerical tracing of magnetic field lines for both synthetic models and direct numerical simulations of RMHD. Statistical analysis of an ensemble of trajectories confirms the applicability of the theory, which very closely matches the numerical field line diffusion coefficient as a functionmore » of distance z along the mean magnetic field for a wide range of the Kubo number R. This theory employs Corrsin's independence hypothesis, sometimes thought to be valid only at low R. However, the results demonstrate that it works well up to R = 10, both for a synthetic RMHD model and an RMHD simulation. The numerical results from the RMHD simulation are compared with and without phase randomization, demonstrating a clear effect of coherent structures on the field line random walk for a very low Kubo number.« less
Regression Models For Multivariate Count Data
Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei
2016-01-01
Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data. PMID:28348500
Regression Models For Multivariate Count Data.
Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei
2017-01-01
Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.
Scattering from a random layer of leaves in the physical optics limit
NASA Technical Reports Server (NTRS)
Lang, R. H.; Seker, S. S.; Le Vine, D. M.
1982-01-01
Backscatter of electromagnetic radiation from a layer of vegetation over flat lossy ground has been studied in collaborative research at the George Washingnton University and the Goddard Space Flight Center. In this work the vegetation is composed of leaves which are modeled by a random collection of lossy dielectric disks. Backscattering coefficients for the vegetation layer have been calculated in the case of disks whose diameter is large compared to wavelength. These backscattering coefficients are obtained in terms of the scattering amplitude of an individual disk by employing the distorted Born procedure. The scattering amplitude for a disk which is large compared to wavelength is then found by physical optic techniques. Computed results are interpreted in terms of dominant reflected and transmitted contributions from the disks and ground.
NASA Technical Reports Server (NTRS)
Muravyov, Alexander A.
1999-01-01
In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.
On S.N. Bernstein’s derivation of Mendel’s Law and ‘rediscovery’ of the Hardy-Weinberg distribution
Stark, Alan; Seneta, Eugene
2012-01-01
Around 1923 the soon-to-be famous Soviet mathematician and probabilist Sergei N. Bernstein started to construct an axiomatic foundation of a theory of heredity. He began from the premise of stationarity (constancy of type proportions) from the first generation of offspring. This led him to derive the Mendelian coefficients of heredity. It appears that he had no direct influence on the subsequent development of population genetics. A basic assumption of Bernstein was that parents coupled randomly to produce offspring. This paper shows that a simple model of non-random mating, which nevertheless embodies a feature of the Hardy-Weinberg Law, can produce Mendelian coefficients of heredity while maintaining the population distribution. How W. Johannsen’s monograph influenced Bernstein is discussed. PMID:22888285
Generalized linear mixed models with varying coefficients for longitudinal data.
Zhang, Daowen
2004-03-01
The routinely assumed parametric functional form in the linear predictor of a generalized linear mixed model for longitudinal data may be too restrictive to represent true underlying covariate effects. We relax this assumption by representing these covariate effects by smooth but otherwise arbitrary functions of time, with random effects used to model the correlation induced by among-subject and within-subject variation. Due to the usually intractable integration involved in evaluating the quasi-likelihood function, the double penalized quasi-likelihood (DPQL) approach of Lin and Zhang (1999, Journal of the Royal Statistical Society, Series B61, 381-400) is used to estimate the varying coefficients and the variance components simultaneously by representing a nonparametric function by a linear combination of fixed effects and random effects. A scaled chi-squared test based on the mixed model representation of the proposed model is developed to test whether an underlying varying coefficient is a polynomial of certain degree. We evaluate the performance of the procedures through simulation studies and illustrate their application with Indonesian children infectious disease data.
FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer.
Kim, Jun-Whee; Jang, Ji-Hyang; Oh, Min-Cheol; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jae-Hyun; Lee, Jeong-Ik
2014-01-13
The light extraction efficiency of OLEDs with a nano-sized random scattering layer (RSL-OLEDs) was analyzed using the Finite Difference Time Domain (FDTD) method. In contrast to periodic diffraction patterns, the presence of an RSL suppresses the spectral shift with respect to the viewing angle. For FDTD simulation of RSL-OLEDs, a planar light source with a certain spatial and temporal coherence was incorporated, and the light extraction efficiency with respect to the fill factor of the RSL and the absorption coefficient of the material was investigated. The design results were compared to the experimental results of the RSL-OLEDs in order to confirm the usefulness of FDTD in predicting experimental results. According to our FDTD simulations, the light confined within the ITO-organic waveguide was quickly absorbed, and the absorption coefficients of ITO and RSL materials should be reduced in order to obtain significant improvement in the external quantum efficiency (EQE). When the extinction coefficient of ITO was 0.01, the EQE in the RSL-OLED was simulated to be enhanced by a factor of 1.8.
Li, Chengwei; Zhan, Liwei
2015-08-01
To estimate the coefficient of friction between tire and runway surface during airplane touchdowns, we designed an experimental rig to simulate such events and to record the impact and friction forces being executed. Because of noise in the measured signals, we developed a filtering method that is based on the ensemble empirical mode decomposition and the bandwidth of probability density function of each intrinsic mode function to extract friction and impact force signals. We can quantify the coefficient of friction by calculating the maximum values of the filtered force signals. Signal measurements are recorded for different drop heights and tire rotational speeds, and the corresponding coefficient of friction is calculated. The result shows that the values of the coefficient of friction change only slightly. The random noise and experimental artifact are the major reason of the change.
Progress in radar snow research. [Brookings, South Dakota
NASA Technical Reports Server (NTRS)
Stiles, W. H.; Ulaby, F. T.; Fung, A. K.; Aslam, A.
1981-01-01
Multifrequency measurements of the radar backscatter from snow-covered terrain were made at several sites in Brookings, South Dakota, during the month of March of 1979. The data are used to examine the response of the scattering coefficient to the following parameters: (1) snow surface roughness, (2) snow liquid water content, and (3) snow water equivalent. The results indicate that the scattering coefficient is insensitive to snow surface roughness if the snow is drv. For wet snow, however, surface roughness can have a strong influence on the magnitude of the scattering coefficient. These observations confirm the results predicted by a theoretical model that describes the snow as a volume of Rayleig scatterers, bounded by a Gaussian random surface. In addition, empirical models were developed to relate the scattering coefficient to snow liquid water content and the dependence of the scattering coefficient on water equivalent was evaluated for both wet and dry snow conditions.
Loskutov, V V; Sevriugin, V A
2013-05-01
This article presents a new approximation describing fluid diffusion in porous media. Time dependence of the self-diffusion coefficient D(t) in the permeable porous medium is studied based on the assumption that diffusant molecules move randomly. An analytical expression for time dependence of the self-diffusion coefficient was obtained in the following form: D(t)=(D0-D∞)exp(-D0t/λ)+D∞, where D0 is the self-diffusion coefficient of bulk fluid, D∞ is the asymptotic value of the self-diffusion coefficient in the limit of long time values (t→∞), λ is the characteristic parameter of this porous medium with dimensionality of length. Applicability of the solution obtained to the analysis of experimental data is shown. The possibility of passing to short-time and long-time regimes is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Choi, Kilchan; Seltzer, Michael
2010-01-01
In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…
Olstad, Dana Lee; Crawford, David A; Abbott, Gavin; McNaughton, Sarah A; Le, Ha Nd; Ni Mhurchu, Cliona; Pollard, Christina; Ball, Kylie
2017-08-25
The impacts of supermarket-based nutrition promotion interventions might be overestimated if participants shift their proportionate food purchasing away from their usual stores. This study quantified whether participants who received price discounts on fruits and vegetables (FV) in the Supermarket Healthy Eating for Life (SHELf) randomized controlled trial (RCT) shifted their FV purchasing into study supermarkets during the intervention period. Participants were 642 females randomly assigned to a 1) skill-building (n = 160), 2) price reduction (n = 161), 3) combined skill-building and price reduction (n = 160), or 4) control (n = 161) group. Participants self-reported the proportion of FV purchased in study supermarkets at baseline, 3- and 6-months post-intervention. Fisher's exact and χ 2 tests assessed differences among groups in the proportion of FV purchased in study supermarkets at each time point. Multinomial logistic regression assessed differences among groups in the change in proportionate FV purchasing over time. Post-intervention, 49% of participants purchased ≥50% of their FV in study supermarkets. Compared to all other groups, the price reduction group was approximately twice as likely (RRR: 1.8-2.2) to have increased proportionate purchasing of FV in study supermarkets from baseline to post-intervention (p< 0.05). Participants who received price reductions on FV were approximately twice as likely to shift their FV purchasing from other stores into study supermarkets during the intervention period. Unless food purchasing data are available for all sources, differential changes in purchasing patterns can make it difficult to discern the true impacts of nutrition interventions. The SHELf trial is registered with Current Controlled Trials Registration ISRCTN39432901, Registered 30 June 2010, Retrospectively registered ( http://www.isrctn.com/ISRCTN39432901 ).
ERIC Educational Resources Information Center
Pals, Sherri L.; Beaty, Brenda L.; Posner, Samuel F.; Bull, Sheana S.
2009-01-01
Studies designed to evaluate HIV and STD prevention interventions often involve random assignment of groups such as neighborhoods or communities to study conditions (e.g., to intervention or control). Investigators who design group-randomized trials (GRTs) must take the expected intraclass correlation coefficient (ICC) into account in sample size…
ERIC Educational Resources Information Center
Brandon, Paul R.; Harrison, George M.; Lawton, Brian E.
2013-01-01
When evaluators plan site-randomized experiments, they must conduct the appropriate statistical power analyses. These analyses are most likely to be valid when they are based on data from the jurisdictions in which the studies are to be conducted. In this method note, we provide software code, in the form of a SAS macro, for producing statistical…
NASA Technical Reports Server (NTRS)
Holms, A. G.
1977-01-01
As many as three iterated statistical model deletion procedures were considered for an experiment. Population model coefficients were chosen to simulate a saturated 2 to the 4th power experiment having an unfavorable distribution of parameter values. Using random number studies, three model selection strategies were developed, namely, (1) a strategy to be used in anticipation of large coefficients of variation, approximately 65 percent, (2) a strategy to be sued in anticipation of small coefficients of variation, 4 percent or less, and (3) a security regret strategy to be used in the absence of such prior knowledge.
Phase retrieval in generalized optical interferometry systems.
Farriss, Wesley E; Fienup, James R; Malhotra, Tanya; Vamivakas, A Nick
2018-02-05
Modal analysis of an optical field via generalized interferometry (GI) is a novel technique that treats said field as a linear superposition of transverse modes and recovers the amplitudes of modal weighting coefficients. We use phase retrieval by nonlinear optimization to recover the phase of these modal weighting coefficients. Information diversity increases the robustness of the algorithm by better constraining the solution. Additionally, multiple sets of random starting phase values assist the algorithm in overcoming local minima. The algorithm was able to recover nearly all coefficient phases for simulated fields consisting of up to 21 superpositioned Hermite Gaussian modes from simulated data and proved to be resilient to shot noise.
Choosing the best index for the average score intraclass correlation coefficient.
Shieh, Gwowen
2016-09-01
The intraclass correlation coefficient (ICC)(2) index from a one-way random effects model is widely used to describe the reliability of mean ratings in behavioral, educational, and psychological research. Despite its apparent utility, the essential property of ICC(2) as a point estimator of the average score intraclass correlation coefficient is seldom mentioned. This article considers several potential measures and compares their performance with ICC(2). Analytical derivations and numerical examinations are presented to assess the bias and mean square error of the alternative estimators. The results suggest that more advantageous indices can be recommended over ICC(2) for their theoretical implication and computational ease.
Flynn, Terry N; Louviere, Jordan J; Marley, Anthony AJ; Coast, Joanna; Peters, Tim J
2008-01-01
Background Researchers are increasingly investigating the potential for ordinal tasks such as ranking and discrete choice experiments to estimate QALY health state values. However, the assumptions of random utility theory, which underpin the statistical models used to provide these estimates, have received insufficient attention. In particular, the assumptions made about the decisions between living states and the death state are not satisfied, at least for some people. Estimated values are likely to be incorrectly anchored with respect to death (zero) in such circumstances. Methods Data from the Investigating Choice Experiments for the preferences of older people CAPability instrument (ICECAP) valuation exercise were analysed. The values (previously anchored to the worst possible state) were rescaled using an ordinal model proposed previously to estimate QALY-like values. Bootstrapping was conducted to vary artificially the proportion of people who conformed to the conventional random utility model underpinning the analyses. Results Only 26% of respondents conformed unequivocally to the assumptions of conventional random utility theory. At least 14% of respondents unequivocally violated the assumptions. Varying the relative proportions of conforming respondents in sensitivity analyses led to large changes in the estimated QALY values, particularly for lower-valued states. As a result these values could be either positive (considered to be better than death) or negative (considered to be worse than death). Conclusion Use of a statistical model such as conditional (multinomial) regression to anchor quality of life values from ordinal data to death is inappropriate in the presence of respondents who do not conform to the assumptions of conventional random utility theory. This is clearest when estimating values for that group of respondents observed in valuation samples who refuse to consider any living state to be worse than death: in such circumstances the model cannot be estimated. Only a valuation task requiring respondents to make choices in which both length and quality of life vary can produce estimates that properly reflect the preferences of all respondents. PMID:18945358
Multipartite nonlocality and random measurements
NASA Astrophysics Data System (ADS)
de Rosier, Anna; Gruca, Jacek; Parisio, Fernando; Vértesi, Tamás; Laskowski, Wiesław
2017-07-01
We present an exhaustive numerical analysis of violations of local realism by families of multipartite quantum states. As an indicator of nonclassicality we employ the probability of violation for randomly sampled observables. Surprisingly, it rapidly increases with the number of parties or settings and even for relatively small values local realism is violated for almost all observables. We have observed this effect to be typical in the sense that it emerged for all investigated states including some with randomly drawn coefficients. We also present the probability of violation as a witness of genuine multipartite entanglement.
NASA Astrophysics Data System (ADS)
Zhang, Hua; Yang, Hui; Li, Hongxing; Huang, Guangnan; Ding, Zheyi
2018-04-01
The attenuation of random noise is important for improving the signal to noise ratio (SNR). However, the precondition for most conventional denoising methods is that the noisy data must be sampled on a uniform grid, making the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoising method capable of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the denoising method is performed for every time slice extracted from the 3D noisy data along the source and receiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inversion algorithm of the spectral projected-gradient for ℓ1-norm problems. Then local threshold factors are chosen for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients. This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT method and wavelet transformation.
Jack, Clifford R.; Wiste, Heather J.; Weigand, Stephen D.; Rocca, Walter A.; Knopman, David S.; Mielke, Michelle M.; Lowe, Val J.; Senjem, Matthew L.; Gunter, Jeffrey L.; Preboske, Gregory M.; Pankratz, Vernon S.; Vemuri, Prashanthi; Petersen, Ronald C.
2015-01-01
Summary Background As treatment of pre-clinical Alzheimer's disease (AD) becomes a focus of therapeutic intervention, observational research studies should recognize the overlap between imaging abnormalities associated with typical aging vs those associated with AD. Our objective was to characterize how typical aging and pre-clinical AD blend together with advancing age in terms of neurodegeneration and b-amyloidosis. Methods We measured age-specific frequencies of amyloidosis and neurodegeneration in 985 cognitively normal subjects age 50 to 89 from a population-based study of cognitive aging. Potential participants were randomly selected from the Olmsted County, Minnesota population by age- and sex-stratification and invited to participate in cognitive evaluations and undergo multimodality imaging. To be eligible for inclusion, subjects must have been judged clinically to have no cognitive impairment and have undergone amyloid PET, FDG PET and MRI. Imaging studies were obtained from March 2006 to December 2013. Amyloid positive/negative status (A+/A−) was determined by amyloid PET using Pittsburgh Compound B. Neurodegeneration positive/negative status (N+/N−) was determined by an AD-signature FDG PET measure and/or hippocampal volume on MRI. We labeled subjects positive or negative for neurodegeneration (FDG PET or MRI) or amyloidosis by using cutpoints defined such that 90% of 75 clinically diagnosed AD dementia subjects were categorized as abnormal. APOE genotype was assessed using DNA extracted from blood. Every individual was assigned to one of four groups: A−N−, A+N−, A−N+, or A+N+. Age specific frequencies of the 4 A/N groups were determined cross-sectionally using multinomial regression models. Associations with APOE ε4 and sex effects were evaluated by including these covariates in the multinomial models. Findings The population frequency of A−N− was 100% (n=985) at age 50 and declined thereafter. The frequency of A+N− increased to a maximum of 28% (95% CI, 24%-32%) at age 74 then decreased to 17% (95% CI, 11%-25%) by age 89. A−N+ increased from age 60 onward reaching a frequency of 24% (95% CI, 16%-34%) by age 89. A+N+ increased from age 65 onward reaching a frequency of 42% (95% CI, 31%-52%) by age 89. A+N− and A+N+ were more frequent in APOE ε4 carriers. A+N+ was more, and A+N− less frequent in men. Interpretation Accumulation of A/N imaging abnormalities is nearly inevitable by old age yet people are able to remain cognitively normal despite these abnormalities. . The multinomial models suggest the A/N frequency trends by age are modified by APOE ε4 , which increases risk for amyloidosis, and male sex, which increases risk for neurodegeneration. Changing A/N frequencies with age suggest that individuals may follow different pathophysiological sequences. Funding National Institute on Aging; Alexander Family Professorship of Alzheimer's Disease Research. PMID:25201514
Discrete post-processing of total cloud cover ensemble forecasts
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian
2017-04-01
This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.
Emotionally enhanced memory for negatively arousing words: storage or retrieval advantage?
Nadarevic, Lena
2017-12-01
People typically remember emotionally negative words better than neutral words. Two experiments are reported that investigate whether emotionally enhanced memory (EEM) for negatively arousing words is based on a storage or retrieval advantage. Participants studied non-word-word pairs that either involved negatively arousing or neutral target words. Memory for these target words was tested by means of a recognition test and a cued-recall test. Data were analysed with a multinomial model that allows the disentanglement of storage and retrieval processes in the present recognition-then-cued-recall paradigm. In both experiments the multinomial analyses revealed no storage differences between negatively arousing and neutral words but a clear retrieval advantage for negatively arousing words in the cued-recall test. These findings suggest that EEM for negatively arousing words is driven by associative processes.
Yu, Peng; Shaw, Chad A
2014-06-01
The Dirichlet-multinomial (DMN) distribution is a fundamental model for multicategory count data with overdispersion. This distribution has many uses in bioinformatics including applications to metagenomics data, transctriptomics and alternative splicing. The DMN distribution reduces to the multinomial distribution when the overdispersion parameter ψ is 0. Unfortunately, numerical computation of the DMN log-likelihood function by conventional methods results in instability in the neighborhood of [Formula: see text]. An alternative formulation circumvents this instability, but it leads to long runtimes that make it impractical for large count data common in bioinformatics. We have developed a new method for computation of the DMN log-likelihood to solve the instability problem without incurring long runtimes. The new approach is composed of a novel formula and an algorithm to extend its applicability. Our numerical experiments show that this new method both improves the accuracy of log-likelihood evaluation and the runtime by several orders of magnitude, especially in high-count data situations that are common in deep sequencing data. Using real metagenomic data, our method achieves manyfold runtime improvement. Our method increases the feasibility of using the DMN distribution to model many high-throughput problems in bioinformatics. We have included in our work an R package giving access to this method and a vingette applying this approach to metagenomic data. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Factors Associated with Substance Use in Adolescents with Eating Disorders
Mann, Andrea P; Accurso, Erin C.; Stiles-Shields, Colleen; Capra, Lauren; Labuschagne, Zandre; Karnik, Niranjan S.; Grange, Daniel Le
2014-01-01
Purpose To examine the prevalence and potential risk factors associated with substance use in adolescents with eating disorders (EDs). Methods This cross-sectional study included 290 adolescents, ages 12 –18 years, who presented for an initial ED evaluation at The Eating Disorders Program at The University of Chicago Medicine (UCM) between 2001 and 2012. Several factors, including DSM-5 diagnosis, diagnostic scores, and demographic characteristics were examined. Multinomial logistic regression was used to test associations between several factors and patterns of drug use for alcohol, cannabis, tobacco, and any substance. Results Lifetime prevalence of any substance use was found to be 24.6% in those with anorexia nervosa (AN), 48.7% in bulimia nervosa (BN), and 28.6% in eating disorder not otherwise specified (EDNOS). Regular substance use (monthly, daily, and bingeing behaviors) or a substance use disorder (SUD) was found in 27.9% of all patients. Older age was the only factor associated with regular use of any substance in the final multinomial model. Older age and non-White race was associated with greater alcohol and cannabis use. Although binge-purge frequency and BN diagnosis were associated with regular substance use in bivariate analyses, gender, race and age were more robustly associated with substance use in the final multinomial models. Conclusions Co-morbid substance use in adolescents with EDs is an important issue. Interventions targeting high-risk groups reporting regular substance use or SUDs are needed. PMID:24656448
Peng, Yong; Peng, Shuangling; Wang, Xinghua; Tan, Shiyang
2018-06-01
This study aims to identify the effects of characteristics of vehicle, roadway, driver, and environment on fatality of drivers in vehicle-fixed object accidents on expressways in Changsha-Zhuzhou-Xiangtan district of Hunan province in China by developing multinomial logistic regression models. For this purpose, 121 vehicle-fixed object accidents from 2011-2017 are included in the modeling process. First, descriptive statistical analysis is made to understand the main characteristics of the vehicle-fixed object crashes. Then, 19 explanatory variables are selected, and correlation analysis of each two variables is conducted to choose the variables to be concluded. Finally, five multinomial logistic regression models including different independent variables are compared, and the model with best fitting and prediction capability is chosen as the final model. The results showed that the turning direction in avoiding fixed objects raised the possibility that drivers would die. About 64% of drivers died in the accident were found being ejected out of the car, of which 50% did not use a seatbelt before the fatal accidents. Drivers are likely to die when they encounter bad weather on the expressway. Drivers with less than 10 years of driving experience are more likely to die in these accidents. Fatigue or distracted driving is also a significant factor in fatality of drivers. Findings from this research provide an insight into reducing fatality of drivers in vehicle-fixed object accidents.
Fridell, Mats; Hesse, Morten; Jaeger, Mads Meier; Kühlhorn, Eckart
2008-06-01
Mixed findings have been made with regard to the long-term predictive validity of antisocial personality disorder (ASPD) on criminal behaviour in samples of substance abusers. A longitudinal record-linkage study of a cohort of 1052 drug abusers admitted 1977-1995 was undertaken. Subjects were recruited from a detoxification and short-term rehabilitation unit in Lund, Sweden, and followed through criminal justice registers from their first treatment episode to death or to the year 2004. In a ML multinomial random effects regression, subjects diagnosed with antisocial personality disorders were 2.16 times more likely to be charged with theft only (p<0.001), and 2.44 times more likely to be charged committing multiple types of crime during an observation year (p<0.001). The findings of the current study support the predictive validity of the DSM-III-R diagnosis of ASPD. ASPD should be taken seriously in drug abusers, and be targeted in treatment to prevent crime in society.
Disentangling WTP per QALY data: different analytical approaches, different answers.
Gyrd-Hansen, Dorte; Kjaer, Trine
2012-03-01
A large random sample of the Danish general population was asked to value health improvements by way of both the time trade-off elicitation technique and willingness-to-pay (WTP) using contingent valuation methods. The data demonstrate a high degree of heterogeneity across respondents in their relative valuations on the two scales. This has implications for data analysis. We show that the estimates of WTP per QALY are highly sensitive to the analytical strategy. For both open-ended and dichotomous choice data we demonstrate that choice of aggregated approach (ratios of means) or disaggregated approach (means of ratios) affects estimates markedly as does the interpretation of the constant term (which allows for disproportionality across the two scales) in the regression analyses. We propose that future research should focus on why some respondents are unwilling to trade on the time trade-off scale, on how to interpret the constant value in the regression analyses, and on how best to capture the heterogeneity in preference structures when applying mixed multinomial logit. Copyright © 2011 John Wiley & Sons, Ltd.
Williams, David R.
2009-01-01
Objectives. We examined whether perceived chronic discrimination was related to excess body fat accumulation in a random, multiethnic, population-based sample of US adults. Methods. We used multivariate multinomial logistic regression and logistic regression analyses to examine the relationship between interpersonal experiences of perceived chronic discrimination and body mass index and high-risk waist circumference. Results. Consistent with other studies, our analyses showed that perceived unfair treatment was associated with increased abdominal obesity. Compared with Irish, Jewish, Polish, and Italian Whites who did not experience perceived chronic discrimination, Irish, Jewish, Polish, and Italian Whites who perceived chronic discrimination were 2 to 6 times more likely to have a high-risk waist circumference. No significant relationship between perceived discrimination and the obesity measures was found among the other Whites, Blacks, or Hispanics. Conclusions. These findings are not completely unsupported. White ethnic groups including Polish, Italians, Jews, and Irish have historically been discriminated against in the United States, and other recent research suggests that they experience higher levels of perceived discrimination than do other Whites and that these experiences adversely affect their health. PMID:18923119
Analyzing the severity of accidents on the German Autobahn.
Manner, Hans; Wünsch-Ziegler, Laura
2013-08-01
We study the severity of accidents on the German Autobahn in the state of North Rhine-Westphalia using data for the years 2009 until 2011. We use a multinomial logit model to identify statistically relevant factors explaining the severity of the most severe injury, which is classified into the four classes fatal, severe injury, light injury and property damage. Furthermore, to account for unobserved heterogeneity we use a random parameter model. We study the effect of a number of factors including traffic information, road conditions, type of accidents, speed limits, presence of intelligent traffic control systems, age and gender of the driver and location of the accident. Our findings are in line with studies in different settings and indicate that accidents during daylight and at interchanges or construction sites are less severe in general. Accidents caused by the collision with roadside objects, involving pedestrians and motorcycles, or caused by bad sight conditions tend to be more severe. We discuss the measures of the 2011 German traffic safety programm in the light of our results. Copyright © 2013 Elsevier Ltd. All rights reserved.
On marker-based parentage verification via non-linear optimization.
Boerner, Vinzent
2017-06-15
Parentage verification by molecular markers is mainly based on short tandem repeat markers. Single nucleotide polymorphisms (SNPs) as bi-allelic markers have become the markers of choice for genotyping projects. Thus, the subsequent step is to use SNP genotypes for parentage verification as well. Recent developments of algorithms such as evaluating opposing homozygous SNP genotypes have drawbacks, for example the inability of rejecting all animals of a sample of potential parents. This paper describes an algorithm for parentage verification by constrained regression which overcomes the latter limitation and proves to be very fast and accurate even when the number of SNPs is as low as 50. The algorithm was tested on a sample of 14,816 animals with 50, 100 and 500 SNP genotypes randomly selected from 40k genotypes. The samples of putative parents of these animals contained either five random animals, or four random animals and the true sire. Parentage assignment was performed by ranking of regression coefficients, or by setting a minimum threshold for regression coefficients. The assignment quality was evaluated by the power of assignment (P[Formula: see text]) and the power of exclusion (P[Formula: see text]). If the sample of putative parents contained the true sire and parentage was assigned by coefficient ranking, P[Formula: see text] and P[Formula: see text] were both higher than 0.99 for the 500 and 100 SNP genotypes, and higher than 0.98 for the 50 SNP genotypes. When parentage was assigned by a coefficient threshold, P[Formula: see text] was higher than 0.99 regardless of the number of SNPs, but P[Formula: see text] decreased from 0.99 (500 SNPs) to 0.97 (100 SNPs) and 0.92 (50 SNPs). If the sample of putative parents did not contain the true sire and parentage was rejected using a coefficient threshold, the algorithm achieved a P[Formula: see text] of 1 (500 SNPs), 0.99 (100 SNPs) and 0.97 (50 SNPs). The algorithm described here is easy to implement, fast and accurate, and is able to assign parentage using genomic marker data with a size as low as 50 SNPs.
Properties of a new small-world network with spatially biased random shortcuts
NASA Astrophysics Data System (ADS)
Matsuzawa, Ryo; Tanimoto, Jun; Fukuda, Eriko
2017-11-01
This paper introduces a small-world (SW) network with a power-law distance distribution that differs from conventional models in that it uses completely random shortcuts. By incorporating spatial constraints, we analyze the divergence of the proposed model from conventional models in terms of fundamental network properties such as clustering coefficient, average path length, and degree distribution. We find that when the spatial constraint more strongly prohibits a long shortcut, the clustering coefficient is improved and the average path length increases. We also analyze the spatial prisoner's dilemma (SPD) games played on our new SW network in order to understand its dynamical characteristics. Depending on the basis graph, i.e., whether it is a one-dimensional ring or a two-dimensional lattice, and the parameter controlling the prohibition of long-distance shortcuts, the emergent results can vastly differ.
An exact solution of solute transport by one-dimensional random velocity fields
Cvetkovic, V.D.; Dagan, G.; Shapiro, A.M.
1991-01-01
The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity. ?? 1991 Springer-Verlag.
Small, J R
1993-01-01
This paper is a study into the effects of experimental error on the estimated values of flux control coefficients obtained using specific inhibitors. Two possible techniques for analysing the experimental data are compared: a simple extrapolation method (the so-called graph method) and a non-linear function fitting method. For these techniques, the sources of systematic errors are identified and the effects of systematic and random errors are quantified, using both statistical analysis and numerical computation. It is shown that the graph method is very sensitive to random errors and, under all conditions studied, that the fitting method, even under conditions where the assumptions underlying the fitted function do not hold, outperformed the graph method. Possible ways of designing experiments to minimize the effects of experimental errors are analysed and discussed. PMID:8257434
Study Of Genetic Diversity Between Grasspea Landraces Using Morphological And Molecular Marker
NASA Astrophysics Data System (ADS)
Sedehi, Abbasali Vahabi; Lotfi, Asefeh; Solooki, Mahmood
2008-01-01
Grass pea is a beneficial crop to Iran since it has some major advantageous such as high grain and forage quality, high drought tolerance and medium level of salinity tolerance and a good native germplasm variation which accessible for breeding programs. This study was carried out to evaluate morphological traits of the grass pea landraces using a randomized complete block design with 3 replications at Research Farm of Isfahan University of Technology. To evaluate genetic diversity of 14 grass pea landraces from various locations in Iran were investigated using 32 RAPD & ISJ primers at Biocenter of University of Zabol. Analysis of variance indicated a highly significant differences among 14 grass pea landrace for the morphological traits. Average of polymorphism percentage of RAPD primer was 73.9%. Among used primer, 12 random primers showed polymorphism and a total of 56 different bands were observed in the genotypes. Jafar-abad and Sar-chahan genotypes with similarity coefficient of 66% and Khoram-abad 2 and Khoram-abad 7 genotypes with similarity coefficient of 3% were the most related and the most distinct genotypes, respectively. Fourteen primers out of 17 semi random primers produced 70 polymorphic bands which included 56% of the total 126 produced bands. Genetic relatedness among population was investigated using Jacard coefficient and unweighted pair group mean analysis (UPGMA) algorithm. The result of this research verified possibility of use of RAPD & ISJ markers for estimation of genetic diversity, management of genetic resources and determination of repetitive accessions in grass pea.
NASA Astrophysics Data System (ADS)
Avendaño-Valencia, Luis David; Fassois, Spilios D.
2017-07-01
The study focuses on vibration response based health monitoring for an operating wind turbine, which features time-dependent dynamics under environmental and operational uncertainty. A Gaussian Mixture Model Random Coefficient (GMM-RC) model based Structural Health Monitoring framework postulated in a companion paper is adopted and assessed. The assessment is based on vibration response signals obtained from a simulated offshore 5 MW wind turbine. The non-stationarity in the vibration signals originates from the continually evolving, due to blade rotation, inertial properties, as well as the wind characteristics, while uncertainty is introduced by random variations of the wind speed within the range of 10-20 m/s. Monte Carlo simulations are performed using six distinct structural states, including the healthy state and five types of damage/fault in the tower, the blades, and the transmission, with each one of them characterized by four distinct levels. Random vibration response modeling and damage diagnosis are illustrated, along with pertinent comparisons with state-of-the-art diagnosis methods. The results demonstrate consistently good performance of the GMM-RC model based framework, offering significant performance improvements over state-of-the-art methods. Most damage types and levels are shown to be properly diagnosed using a single vibration sensor.
Personal recognition using hand shape and texture.
Kumar, Ajay; Zhang, David
2006-08-01
This paper proposes a new bimodal biometric system using feature-level fusion of hand shape and palm texture. The proposed combination is of significance since both the palmprint and hand-shape images are proposed to be extracted from the single hand image acquired from a digital camera. Several new hand-shape features that can be used to represent the hand shape and improve the performance are investigated. The new approach for palmprint recognition using discrete cosine transform coefficients, which can be directly obtained from the camera hardware, is demonstrated. None of the prior work on hand-shape or palmprint recognition has given any attention on the critical issue of feature selection. Our experimental results demonstrate that while majority of palmprint or hand-shape features are useful in predicting the subjects identity, only a small subset of these features are necessary in practice for building an accurate model for identification. The comparison and combination of proposed features is evaluated on the diverse classification schemes; naive Bayes (normal, estimated, multinomial), decision trees (C4.5, LMT), k-NN, SVM, and FFN. Although more work remains to be done, our results to date indicate that the combination of selected hand-shape and palmprint features constitutes a promising addition to the biometrics-based personal recognition systems.
NASA Astrophysics Data System (ADS)
Iida, S.
1991-03-01
Using statistical scattering theory, we calculate the average and the variance of the conductance coefficients at zero temperature for a small disordered metallic wire composed of three arms. Each arm is coupled at the end to a perfectly conducting lead. The disorder is modeled by a microscopic random Hamiltonian belonging to the Gaussian orthogonal ensemble. As the coupling strength of the third arm (voltage probe) is increased, the variance of the conductance coefficient of the main track changes from the universal value of the two-lead geometry to that of the three-lead geometry. The variance of the resistance coefficient is strongly affected by the coupling strength of the arm whose resistance is being measured and has a relatively weak dependence on those of the other two arms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H.; Chang, C.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw
We report an investigation on the absorption mechanism of a GeSn photodetector with 2.4% Sn composition in the active region. Responsivity is measured and absorption coefficient is calculated. Square root of absorption coefficient linearly depends on photon energy indicating an indirect transition. However, the absorption coefficient is found to be at least one order of magnitude higher than that of most other indirect materials, suggesting that the indirect optical absorption transition cannot be assisted only by phonon. Our analysis of absorption measurements by other groups on the same material system showed the values of absorption coefficient on the same ordermore » of magnitude. Our study reveals that the strong enhancement of absorption for the indirect optical transition is the result of alloy disorder from the incorporation of the much larger Sn atoms into the Ge lattice that are randomly distributed.« less
The Effect of Acidity Coefficient on Crystallization Behavior of Blast Furnace Slag Fibers
NASA Astrophysics Data System (ADS)
Tian, Tie-Lei; Zhang, Yu-Zhu; Xing, Hong-wei; Li, Jie; Zhang, Zun-Qian
2018-01-01
The chemical structure of mineral wool fiber was investigated by using Fourier Transform Infrared Spectroscopy (FTIR). Next, the glass transition temperature and the crystallization temperature of the fibers were studied. Finally, the crystallization kinetics of fiber was studied. The results show that the chemical bond structure of fibers gets more random with the increase of acidity coefficient. The crystallization phases of the fibers are mainly melilites, and also a few anorthites and diopsides. The growth mechanism of the crystals is three dimensional. The fibers with acidity coefficient of 1.2 exhibit the best thermal stability and is hard to crystallize as it has the maximum aviation energy of crystallization kinetics.
NASA Technical Reports Server (NTRS)
Claassen, J. P.; Fung, A. K.
1977-01-01
The radar equation for incoherent scenes is derived and scattering coefficients are introduced in a systematic way to account for the complete interaction between the incident wave and the random scene. Intensity (power) and correlation techniques similar to that for coherent targets are proposed to measure all the scattering parameters. The sensitivity of the intensity technique to various practical realizations of the antenna polarization requirements is evaluated by means of computer simulated measurements, conducted with a scattering characteristic similar to that of the sea. It was shown that for scenes satisfying reciprocity one must admit three new cross-correlation scattering coefficients in addition to the commonly measured autocorrelation coefficients.
Lucini, Filipe R; S Fogliatto, Flavio; C da Silveira, Giovani J; L Neyeloff, Jeruza; Anzanello, Michel J; de S Kuchenbecker, Ricardo; D Schaan, Beatriz
2017-04-01
Emergency department (ED) overcrowding is a serious issue for hospitals. Early information on short-term inward bed demand from patients receiving care at the ED may reduce the overcrowding problem, and optimize the use of hospital resources. In this study, we use text mining methods to process data from early ED patient records using the SOAP framework, and predict future hospitalizations and discharges. We try different approaches for pre-processing of text records and to predict hospitalization. Sets-of-words are obtained via binary representation, term frequency, and term frequency-inverse document frequency. Unigrams, bigrams and trigrams are tested for feature formation. Feature selection is based on χ 2 and F-score metrics. In the prediction module, eight text mining methods are tested: Decision Tree, Random Forest, Extremely Randomized Tree, AdaBoost, Logistic Regression, Multinomial Naïve Bayes, Support Vector Machine (Kernel linear) and Nu-Support Vector Machine (Kernel linear). Prediction performance is evaluated by F1-scores. Precision and Recall values are also informed for all text mining methods tested. Nu-Support Vector Machine was the text mining method with the best overall performance. Its average F1-score in predicting hospitalization was 77.70%, with a standard deviation (SD) of 0.66%. The method could be used to manage daily routines in EDs such as capacity planning and resource allocation. Text mining could provide valuable information and facilitate decision-making by inward bed management teams. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Identifying Bearing Rotodynamic Coefficients Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Miller, Brad A.; Howard, Samuel A.
2008-01-01
An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter's performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.
Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi
2018-01-01
The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.
NASA Astrophysics Data System (ADS)
Al-Mudhafar, W. J.
2013-12-01
Precisely prediction of rock facies leads to adequate reservoir characterization by improving the porosity-permeability relationships to estimate the properties in non-cored intervals. It also helps to accurately identify the spatial facies distribution to perform an accurate reservoir model for optimal future reservoir performance. In this paper, the facies estimation has been done through Multinomial logistic regression (MLR) with respect to the well logs and core data in a well in upper sandstone formation of South Rumaila oil field. The entire independent variables are gamma rays, formation density, water saturation, shale volume, log porosity, core porosity, and core permeability. Firstly, Robust Sequential Imputation Algorithm has been considered to impute the missing data. This algorithm starts from a complete subset of the dataset and estimates sequentially the missing values in an incomplete observation by minimizing the determinant of the covariance of the augmented data matrix. Then, the observation is added to the complete data matrix and the algorithm continues with the next observation with missing values. The MLR has been chosen to estimate the maximum likelihood and minimize the standard error for the nonlinear relationships between facies & core and log data. The MLR is used to predict the probabilities of the different possible facies given each independent variable by constructing a linear predictor function having a set of weights that are linearly combined with the independent variables by using a dot product. Beta distribution of facies has been considered as prior knowledge and the resulted predicted probability (posterior) has been estimated from MLR based on Baye's theorem that represents the relationship between predicted probability (posterior) with the conditional probability and the prior knowledge. To assess the statistical accuracy of the model, the bootstrap should be carried out to estimate extra-sample prediction error by randomly drawing datasets with replacement from the training data. Each sample has the same size of the original training set and it can be conducted N times to produce N bootstrap datasets to re-fit the model accordingly to decrease the squared difference between the estimated and observed categorical variables (facies) leading to decrease the degree of uncertainty.
Determinants of financial performance of home-visit nursing agencies in Japan.
Fukui, Sakiko; Yoshiuchi, Kazuhiro; Fujita, Junko; Ikezaki, Sumie
2014-01-09
Japan has the highest aging population in the world and promotion of home health services is an urgent policy issue. As home-visit nursing plays a major role in home health services, the Japanese government began promotion of this activity in 1994. However, the scale of home-visit nursing agencies has remained small (the average numbers of nursing staff and other staff were 4.2 and 1.7, respectively, in 2011) and financial performance (profitability) is a concern in such small agencies. Additionally, the factors related to profitability in home-visit nursing agencies in Japan have not been examined multilaterally and in detail. Therefore, the purpose of the study was to examine the determinants of financial performance of home-visit nursing agencies. We performed a nationwide survey of 2,912 randomly selected home-visit nursing agencies in Japan. Multinomial logistic regression was used to clarify the determinants of profitability of the agency (profitable, stable or unprofitable) based on variables related to management of the agency (operating structure, management by a nurse manager, employment, patient utilization, quality control, regional cooperation, and financial condition). Among the selected home-visit nursing agencies, responses suitable for analysis were obtained from 1,340 (effective response rate, 46.0%). Multinomial logistic regression analysis showed that both profitability and unprofitability were related to multiple variables in management of the agency when compared to agencies with stable financial performance. These variables included the number of nursing staff/rehabilitation staff/patients, being owned by a hospital, the number of cooperative hospitals, home-death rate among terminal patients, controlling staff objectives by nurse managers, and income going to compensation. The results suggest that many variables in management of a home-visit nursing agency, including the operating structure of the agency, regional cooperation, staff employment, patient utilization, and quality control of care, have an influence in both profitable and unprofitable agencies. These findings indicate the importance of consideration of management issues in achieving stable financial performance in home-visit nursing agencies in Japan. The findings may also be useful in other countries with growing aging populations.
Determinants of financial performance of home-visit nursing agencies in Japan
2014-01-01
Background Japan has the highest aging population in the world and promotion of home health services is an urgent policy issue. As home-visit nursing plays a major role in home health services, the Japanese government began promotion of this activity in 1994. However, the scale of home-visit nursing agencies has remained small (the average numbers of nursing staff and other staff were 4.2 and 1.7, respectively, in 2011) and financial performance (profitability) is a concern in such small agencies. Additionally, the factors related to profitability in home-visit nursing agencies in Japan have not been examined multilaterally and in detail. Therefore, the purpose of the study was to examine the determinants of financial performance of home-visit nursing agencies. Methods We performed a nationwide survey of 2,912 randomly selected home-visit nursing agencies in Japan. Multinomial logistic regression was used to clarify the determinants of profitability of the agency (profitable, stable or unprofitable) based on variables related to management of the agency (operating structure, management by a nurse manager, employment, patient utilization, quality control, regional cooperation, and financial condition). Results Among the selected home-visit nursing agencies, responses suitable for analysis were obtained from 1,340 (effective response rate, 46.0%). Multinomial logistic regression analysis showed that both profitability and unprofitability were related to multiple variables in management of the agency when compared to agencies with stable financial performance. These variables included the number of nursing staff/rehabilitation staff/patients, being owned by a hospital, the number of cooperative hospitals, home-death rate among terminal patients, controlling staff objectives by nurse managers, and income going to compensation. Conclusions The results suggest that many variables in management of a home-visit nursing agency, including the operating structure of the agency, regional cooperation, staff employment, patient utilization, and quality control of care, have an influence in both profitable and unprofitable agencies. These findings indicate the importance of consideration of management issues in achieving stable financial performance in home-visit nursing agencies in Japan. The findings may also be useful in other countries with growing aging populations. PMID:24400964
Genetic diversity of popcorn genotypes using molecular analysis.
Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M
2015-08-19
In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients.
Passive microwave remote sensing of an anisotropic random-medium layer
NASA Technical Reports Server (NTRS)
Lee, J. K.; Kong, J. A.
1985-01-01
The principle of reciprocity is invoked to calculate the brightness temperatures for passive microwave remote sensing of a two-layer anisotropic random medium. The bistatic scattering coefficients are first computed with the Born approximation and then integrated over the upper hemisphere to be subtracted from unity, in order to obtain the emissivity for the random-medium layer. The theoretical results are illustrated by plotting the emissivities as functions of viewing angles and polarizations. They are used to interpret remote sgnsing data obtained from vegetation canopy where the anisotropic random-medium model applies. Field measurements with corn stalks arranged in various configurations with preferred azimuthal directions are successfully interpreted with this model.
Probability of stress-corrosion fracture under random loading.
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1972-01-01
A method is developed for predicting the probability of stress-corrosion fracture of structures under random loadings. The formulation is based on the cumulative damage hypothesis and the experimentally determined stress-corrosion characteristics. Under both stationary and nonstationary random loadings, the mean value and the variance of the cumulative damage are obtained. The probability of stress-corrosion fracture is then evaluated using the principle of maximum entropy. It is shown that, under stationary random loadings, the standard deviation of the cumulative damage increases in proportion to the square root of time, while the coefficient of variation (dispersion) decreases in inversed proportion to the square root of time. Numerical examples are worked out to illustrate the general results.
Diagnosing cysts with correlation coefficient images from 2-dimensional freehand elastography.
Booi, Rebecca C; Carson, Paul L; O'Donnell, Matthew; Richards, Michael S; Rubin, Jonathan M
2007-09-01
We compared the diagnostic potential of using correlation coefficient images versus elastograms from 2-dimensional (2D) freehand elastography to characterize breast cysts. In this preliminary study, which was approved by the Institutional Review Board and compliant with the Health Insurance Portability and Accountability Act, we imaged 4 consecutive human subjects (4 cysts, 1 biopsy-verified benign breast parenchyma) with freehand 2D elastography. Data were processed offline with conventional 2D phase-sensitive speckle-tracking algorithms. The correlation coefficient in the cyst and surrounding tissue was calculated, and appearances of the cysts in the correlation coefficient images and elastograms were compared. The correlation coefficient in the cysts was considerably lower (14%-37%) than in the surrounding tissue because of the lack of sufficient speckle in the cysts, as well as the prominence of random noise, reverberations, and clutter, which decorrelated quickly. Thus, the cysts were visible in all correlation coefficient images. In contrast, the elastograms associated with these cysts each had different elastographic patterns. The solid mass in this study did not have the same high decorrelation rate as the cysts, having a correlation coefficient only 2.1% lower than that of surrounding tissue. Correlation coefficient images may produce a more direct, reliable, and consistent method for characterizing cysts than elastograms.
The Spacetime Between Einstein and Kaluza-Klein: Further Explorations
NASA Astrophysics Data System (ADS)
Vuille, Chris
2017-01-01
Tensor multinomials can be used to create a generalization of Einstein's general relativity that in a mathematical sense falls between Einstein's original theory in four dimensions and the Kaluza-Klein theory in five dimensions. In the extended theory there are only four physical dimensions, but the tensor multinomials are expanded operators that can accommodate other forces of nature. The equivalent Ricci tensor of this geometry yields vacuum general relativity and electromagnetism, as well as a Klein-Gordon-like quantum scalar field. With a generalization of the stress-energy tensor, an exact solution for a plane-symmetric dust can be found where the scalar portion of the field drives early universe inflation, levels off for a period, then causes a later continued universal acceleration, a possible geometric mechanism for the inflaton or dark energy. Some new explorations of the equations, the problems, and possibilities will be presented and discussed.
Identification of nonclassical properties of light with multiplexing layouts
NASA Astrophysics Data System (ADS)
Sperling, J.; Eckstein, A.; Clements, W. R.; Moore, M.; Renema, J. J.; Kolthammer, W. S.; Nam, S. W.; Lita, A.; Gerrits, T.; Walmsley, I. A.; Agarwal, G. S.; Vogel, W.
2017-07-01
In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017), 10.1103/PhysRevLett.118.163602], we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data.
Verbal Ability and Persistent Offending: A Race-Specific Test of Moffitt's Theory
Bellair, Paul E.; McNulty, Thomas L.; Piquero, Alex R.
2014-01-01
Theoretical questions linger over the applicability of the verbal ability model to African Americans and the social control theory hypothesis that educational failure mediates the effect of verbal ability on offending patterns. Accordingly, this paper investigates whether verbal ability distinguishes between offending groups within the context of Moffitt's developmental taxonomy. Questions are addressed with longitudinal data spanning childhood through young-adulthood from an ongoing national panel, and multinomial and hierarchical Poisson models (over-dispersed). In multinomial models, low verbal ability predicts membership in a life-course-persistent-oriented group relative to an adolescent-limited-oriented group. Hierarchical models indicate that verbal ability is associated with arrest outcomes among White and African American subjects, with effects consistently operating through educational attainment (high school dropout). The results support Moffitt's hypothesis that verbal deficits distinguish adolescent-limited- and life-course-persistent-oriented groups within race as well as the social control model of verbal ability. PMID:26924885
Identification of nonclassical properties of light with multiplexing layouts
Sperling, J.; Eckstein, A.; Clements, W. R.; Moore, M.; Renema, J. J.; Kolthammer, W. S.; Nam, S. W.; Lita, A.; Gerrits, T.; Walmsley, I. A.; Agarwal, G. S.; Vogel, W.
2018-01-01
In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017)], we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data. PMID:29670949
Li, Juntao; Wang, Yanyan; Jiang, Tao; Xiao, Huimin; Song, Xuekun
2018-05-09
Diagnosing acute leukemia is the necessary prerequisite to treating it. Multi-classification on the gene expression data of acute leukemia is help for diagnosing it which contains B-cell acute lymphoblastic leukemia (BALL), T-cell acute lymphoblastic leukemia (TALL) and acute myeloid leukemia (AML). However, selecting cancer-causing genes is a challenging problem in performing multi-classification. In this paper, weighted gene co-expression networks are employed to divide the genes into groups. Based on the dividing groups, a new regularized multinomial regression with overlapping group lasso penalty (MROGL) has been presented to simultaneously perform multi-classification and select gene groups. By implementing this method on three-class acute leukemia data, the grouped genes which work synergistically are identified, and the overlapped genes shared by different groups are also highlighted. Moreover, MROGL outperforms other five methods on multi-classification accuracy. Copyright © 2017. Published by Elsevier B.V.
MPTinR: analysis of multinomial processing tree models in R.
Singmann, Henrik; Kellen, David
2013-06-01
We introduce MPTinR, a software package developed for the analysis of multinomial processing tree (MPT) models. MPT models represent a prominent class of cognitive measurement models for categorical data with applications in a wide variety of fields. MPTinR is the first software for the analysis of MPT models in the statistical programming language R, providing a modeling framework that is more flexible than standalone software packages. MPTinR also introduces important features such as (1) the ability to calculate the Fisher information approximation measure of model complexity for MPT models, (2) the ability to fit models for categorical data outside the MPT model class, such as signal detection models, (3) a function for model selection across a set of nested and nonnested candidate models (using several model selection indices), and (4) multicore fitting. MPTinR is available from the Comprehensive R Archive Network at http://cran.r-project.org/web/packages/MPTinR/ .
Caustics, counting maps and semi-classical asymptotics
NASA Astrophysics Data System (ADS)
Ercolani, N. M.
2011-02-01
This paper develops a deeper understanding of the structure and combinatorial significance of the partition function for Hermitian random matrices. The coefficients of the large N expansion of the logarithm of this partition function, also known as the genus expansion (and its derivatives), are generating functions for a variety of graphical enumeration problems. The main results are to prove that these generating functions are, in fact, specific rational functions of a distinguished irrational (algebraic) function, z0(t). This distinguished function is itself the generating function for the Catalan numbers (or generalized Catalan numbers, depending on the choice of weight of the parameter t). It is also a solution of the inviscid Burgers equation for certain initial data. The shock formation, or caustic, of the Burgers characteristic solution is directly related to the poles of the rational forms of the generating functions. As an intriguing application, one gains new insights into the relation between certain derivatives of the genus expansion, in a double-scaling limit, and the asymptotic expansion of the first Painlevé transcendent. This provides a precise expression of the Painlevé asymptotic coefficients directly in terms of the coefficients of the partial fractions expansion of the rational form of the generating functions established in this paper. Moreover, these insights point towards a more general program relating the first Painlevé hierarchy to the higher order structure of the double-scaling limit through the specific rational structure of generating functions in the genus expansion. The paper closes with a discussion of the relation of this work to recent developments in understanding the asymptotics of graphical enumeration. As a by-product, these results also yield new information about the asymptotics of recurrence coefficients for orthogonal polynomials with respect to exponential weights, the calculation of correlation functions for certain tied random walks on a 1D lattice, and the large time asymptotics of random matrix partition functions.
NASA Astrophysics Data System (ADS)
Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.
2017-11-01
The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.
Investment portfolio of a pension fund: Stochastic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosch-Princep, M.; Fontanals-Albiol, H.
1994-12-31
This paper presents a stochastic programming model that aims at getting the optimal investment portfolio of a Pension Funds. The model has been designed bearing in mind the liabilities of the Funds to its members. The essential characteristic of the objective function and the constraints is the randomness of the coefficients and the right hand side of the constraints, so it`s necessary to use techniques of stochastic mathematical programming to get information about the amount of money that should be assigned to each sort of investment. It`s important to know the risky attitude of the person that has to takemore » decisions towards running risks. It incorporates the relation between the different coefficients of the objective function and constraints of each period of temporal horizon, through lineal and discrete random processes. Likewise, it includes the hypotheses that are related to Spanish law concerning the subject of Pension Funds.« less
Stego on FPGA: An IWT Approach
Ramalingam, Balakrishnan
2014-01-01
A reconfigurable hardware architecture for the implementation of integer wavelet transform (IWT) based adaptive random image steganography algorithm is proposed. The Haar-IWT was used to separate the subbands namely, LL, LH, HL, and HH, from 8 × 8 pixel blocks and the encrypted secret data is hidden in the LH, HL, and HH blocks using Moore and Hilbert space filling curve (SFC) scan patterns. Either Moore or Hilbert SFC was chosen for hiding the encrypted data in LH, HL, and HH coefficients, whichever produces the lowest mean square error (MSE) and the highest peak signal-to-noise ratio (PSNR). The fixated random walk's verdict of all blocks is registered which is nothing but the furtive key. Our system took 1.6 µs for embedding the data in coefficient blocks and consumed 34% of the logic elements, 22% of the dedicated logic register, and 2% of the embedded multiplier on Cyclone II field programmable gate array (FPGA). PMID:24723794
The empathy impulse: A multinomial model of intentional and unintentional empathy for pain.
Cameron, C Daryl; Spring, Victoria L; Todd, Andrew R
2017-04-01
Empathy for pain is often described as automatic. Here, we used implicit measurement and multinomial modeling to formally quantify unintentional empathy for pain: empathy that occurs despite intentions to the contrary. We developed the pain identification task (PIT), a sequential priming task wherein participants judge the painfulness of target experiences while trying to avoid the influence of prime experiences. Using multinomial modeling, we distinguished 3 component processes underlying PIT performance: empathy toward target stimuli (Intentional Empathy), empathy toward prime stimuli (Unintentional Empathy), and bias to judge target stimuli as painful (Response Bias). In Experiment 1, imposing a fast (vs. slow) response deadline uniquely reduced Intentional Empathy. In Experiment 2, inducing imagine-self (vs. imagine-other) perspective-taking uniquely increased Unintentional Empathy. In Experiment 3, Intentional and Unintentional Empathy were stronger toward targets with typical (vs. atypical) pain outcomes, suggesting that outcome information matters and that effects on the PIT are not reducible to affective priming. Typicality of pain outcomes more weakly affected task performance when target stimuli were merely categorized rather than judged for painfulness, suggesting that effects on the latter are not reducible to semantic priming. In Experiment 4, Unintentional Empathy was stronger for participants who engaged in costly donation to cancer charities, but this parameter was also high for those who donated to an objectively worse but socially more popular charity, suggesting that overly high empathy may facilitate maladaptive altruism. Theoretical and practical applications of our modeling approach for understanding variation in empathy are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Marcelino, José A P; Silva, Luís; Garcia, Patricia V; Weber, Everett; Soares, António O
2013-08-01
The aim of this study was to assess the impact of anthropogenic disturbance on the partitioning of plant communities (species spectra) across a landcover gradient of community types, categorizing species on the basis of their biogeographic, ecological, and conservation status. We tested a multinomial model to generate species spectra and monitor changes in plant assemblages as anthropogenic disturbance rise, as well as the usefulness of this method to assess the conservation value of a given community. Herbaceous and arborescent communities were sampled in five Azorean islands. Margins were also sampled to account for edge effects. Different multinomial models were applied to a data set of 348 plant species accounting for differences in parameter estimates among communities and/or islands. Different levels of anthropogenic disturbance produced measurable changes on species spectra. Introduced species proliferated and indigenous species declined, as anthropogenic disturbance and management intensity increased. Species assemblages of relevance other than economic (i.e., native, endemic, threatened species) were enclosed not only in natural habitats, but also in human managed arborescent habitats, which can positively contribute for the preservation of indigenous species outside remnants of natural areas, depending on management strategies. A significant presence of invasive species in margin transects of most community types will contribute to an increase in edge effect that might facilitate invasion. The multinomial model developed in this study was found to be a novel and expedient tool to characterize the species spectra at a given community and its use could be extrapolated for other assemblages or organisms, in order to evaluate and forecast the conservation value of a site.
Scavenging and recombination kinetics in a radiation spur: The successive ordered scavenging events
NASA Astrophysics Data System (ADS)
Al-Samra, Eyad H.; Green, Nicholas J. B.
2018-03-01
This study describes stochastic models to investigate the successive ordered scavenging events in a spur of four radicals, a model system based on a radiation spur. Three simulation models have been developed to obtain the probabilities of the ordered scavenging events: (i) a Monte Carlo random flight (RF) model, (ii) hybrid simulations in which the reaction rate coefficient is used to generate scavenging times for the radicals and (iii) the independent reaction times (IRT) method. The results of these simulations are found to be in agreement with one another. In addition, a detailed master equation treatment is also presented, and used to extract simulated rate coefficients of the ordered scavenging reactions from the RF simulations. These rate coefficients are transient, the rate coefficients obtained for subsequent reactions are effectively equal, and in reasonable agreement with the simple correction for competition effects that has recently been proposed.
Modal sound transmission loss of a single leaf panel: Asymptotic solutions.
Wang, Chong
2015-12-01
In a previously published paper [C. Wang, J. Acoust. Soc. Am. 137(6), 3514-3522 (2015)], the modal sound transmission coefficients of a single leaf panel were discussed with regard to the inter-modal coupling effects. By incorporating such effect into the equivalent modal radiation impedance, which is directly related to the modal sound transmission coefficient of each mode, the overall sound transmission loss for both normal and randomized sound incidences was computed through a simple modal superposition. Benefiting from the analytical expressions of the equivalent modal impedance and modal transmission coefficients, in this paper, behaviors of modal sound transmission coefficients in several typical frequency ranges are discussed in detail. Asymptotic solutions are also given for the panels with relatively low bending stiffnesses, for which the sound transmission loss has been assumed to follow the mass law of a limp panel. Results are also compared to numerical analysis and the renowned mass law theories.
Application of random effects to the study of resource selection by animals
Gillies, C.S.; Hebblewhite, M.; Nielsen, S.E.; Krawchuk, M.A.; Aldridge, Cameron L.; Frair, J.L.; Saher, D.J.; Stevens, C.E.; Jerde, C.L.
2006-01-01
1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence.2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability.3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed.4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects.5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection.6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.
Application of random effects to the study of resource selection by animals.
Gillies, Cameron S; Hebblewhite, Mark; Nielsen, Scott E; Krawchuk, Meg A; Aldridge, Cameron L; Frair, Jacqueline L; Saher, D Joanne; Stevens, Cameron E; Jerde, Christopher L
2006-07-01
1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence. 2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability. 3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed. 4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects. 5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection. 6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.
OPTIMAL DESIGN FOR MULTINOMIAL CHOICE EXPERIMENTS. (R827987)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Liu, Huihua; Wang, Bo; Barrow, Colin J; Adhikari, Benu
2014-01-15
The objectives of this study were to quantify the relationship between secondary structure of gelatin and its adsorption at the fish-oil/water interface and to quantify the implication of the adsorption on the dynamic interfacial tension (DST) and emulsion stability. The surface hydrophobicity of the gelatin solutions decreased when the pH increased from 4.0 to 6.0, while opposite tend was observed in the viscosity of the solution. The DST values decreased as the pH increased from 4.0 to 6.0, indicating that higher positive charges (measured trough zeta potential) in the gelatin solution tended to result in higher DST values. The adsorption kinetics of the gelatin solution was examined through the calculated diffusion coefficients (Deff). The addition of acid promoted the random coil and β-turn structures at the expense of α-helical structure. The addition of NaOH decreased the β-turn and increased the α-helix and random coil. The decrease in the random coil and triple helix structures in the gelatin solution resulted into increased Deff values. The highest diffusion coefficients, the highest emulsion stability and the lowest amount of random coil and triple helix structures were observed at pH=4.8. The lowest amount of random coil and triple helix structures in the interfacial protein layer correlated with the highest stability of the emulsion (highest ESI value). The lower amount of random coil and triple helix structures allowed higher coverage of the oil-water interface by relatively highly ordered secondary structure of gelatin. Copyright © 2013 Elsevier Ltd. All rights reserved.
Valenzuela, Carlos Y
2013-01-01
The Neutral Theory of Evolution (NTE) proposes mutation and random genetic drift as the most important evolutionary factors. The most conspicuous feature of evolution is the genomic stability during paleontological eras and lack of variation among taxa; 98% or more of nucleotide sites are monomorphic within a species. NTE explains this homology by random fixation of neutral bases and negative selection (purifying selection) that does not contribute either to evolution or polymorphisms. Purifying selection is insufficient to account for this evolutionary feature and the Nearly-Neutral Theory of Evolution (N-NTE) included negative selection with coefficients as low as mutation rate. These NTE and N-NTE propositions are thermodynamically (tendency to random distributions, second law), biotically (recurrent mutation), logically and mathematically (resilient equilibria instead of fixation by drift) untenable. Recurrent forward and backward mutation and random fluctuations of base frequencies alone in a site make life organization and fixations impossible. Drift is not a directional evolutionary factor, but a directional tendency of matter-energy processes (second law) which threatens the biotic organization. Drift cannot drive evolution. In a site, the mutation rates among bases and selection coefficients determine the resilient equilibrium frequency of bases that genetic drift cannot change. The expected neutral random interaction among nucleotides is zero; however, huge interactions and periodicities were found between bases of dinucleotides separated by 1, 2... and more than 1,000 sites. Every base is co-adapted with the whole genome. Neutralists found that neutral evolution is independent of population size (N); thus neutral evolution should be independent of drift, because drift effect is dependent upon N. Also, chromosome size and shape as well as protein size are far from random.
Kucza, Witold
2013-07-25
Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.
Texture formation in FePt thin films via thermal stress management
NASA Astrophysics Data System (ADS)
Rasmussen, P.; Rui, X.; Shield, J. E.
2005-05-01
The transformation variant of the fcc to fct transformation in FePt thin films was tailored by controlling the stresses in the thin films, thereby allowing selection of in- or out-of-plane c-axis orientation. FePt thin films were deposited at ambient temperature on several substrates with differing coefficients of thermal expansion relative to the FePt, which generated thermal stresses during the ordering heat treatment. X-ray diffraction analysis revealed preferential out-of-plane c-axis orientation for FePt films deposited on substrates with a similar coefficients of thermal expansion, and random orientation for FePt films deposited on substrates with a very low coefficient of thermal expansion, which is consistent with theoretical analysis when considering residual stresses.
Interaction between photons and leaf canopies
NASA Technical Reports Server (NTRS)
Knyazikhin, Yuri V.; Marshak, Alexander L.; Myneni, Ranga B.
1991-01-01
The physics of neutral particle interaction for photons traveling in media consisting of finite-dimensional scattering centers that cross-shade mutually is investigated. A leaf canopy is a typical example of such media. The leaf canopy is idealized as a binary medium consisting of randomly distributed gaps (voids) and regions with phytoelements (turbid phytomedium). In this approach, the leaf canopy is represented by a combination of all possible open oriented spheres. The mathematical approach for characterizing the structure of the host medium is considered. The extinction coefficient at any phase-space location in a leaf canopy is the product of the extinction coefficient in the turbid phytomedium and the probability of absence gaps at that location. Using a similar approach, an expression for the differential scattering coefficient is derived.
NASA Technical Reports Server (NTRS)
Englert, G. W.
1971-01-01
A model of the random walk is formulated to allow a simple computing procedure to replace the difficult problem of solution of the Fokker-Planck equation. The step sizes and probabilities of taking steps in the various directions are expressed in terms of Fokker-Planck coefficients. Application is made to many particle systems with Coulomb interactions. The relaxation of a highly peaked velocity distribution of particles to equilibrium conditions is illustrated.
NASA Astrophysics Data System (ADS)
Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan
2016-11-01
Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.
NASA Technical Reports Server (NTRS)
Tomberlin, T. J.
1985-01-01
Research studies of residents' responses to noise consist of interviews with samples of individuals who are drawn from a number of different compact study areas. The statistical techniques developed provide a basis for those sample design decisions. These techniques are suitable for a wide range of sample survey applications. A sample may consist of a random sample of residents selected from a sample of compact study areas, or in a more complex design, of a sample of residents selected from a sample of larger areas (e.g., cities). The techniques may be applied to estimates of the effects on annoyance of noise level, numbers of noise events, the time-of-day of the events, ambient noise levels, or other factors. Methods are provided for determining, in advance, how accurately these effects can be estimated for different sample sizes and study designs. Using a simple cost function, they also provide for optimum allocation of the sample across the stages of the design for estimating these effects. These techniques are developed via a regression model in which the regression coefficients are assumed to be random, with components of variance associated with the various stages of a multi-stage sample design.
Sample size calculations for the design of cluster randomized trials: A summary of methodology.
Gao, Fei; Earnest, Arul; Matchar, David B; Campbell, Michael J; Machin, David
2015-05-01
Cluster randomized trial designs are growing in popularity in, for example, cardiovascular medicine research and other clinical areas and parallel statistical developments concerned with the design and analysis of these trials have been stimulated. Nevertheless, reviews suggest that design issues associated with cluster randomized trials are often poorly appreciated and there remain inadequacies in, for example, describing how the trial size is determined and the associated results are presented. In this paper, our aim is to provide pragmatic guidance for researchers on the methods of calculating sample sizes. We focus attention on designs with the primary purpose of comparing two interventions with respect to continuous, binary, ordered categorical, incidence rate and time-to-event outcome variables. Issues of aggregate and non-aggregate cluster trials, adjustment for variation in cluster size and the effect size are detailed. The problem of establishing the anticipated magnitude of between- and within-cluster variation to enable planning values of the intra-cluster correlation coefficient and the coefficient of variation are also described. Illustrative examples of calculations of trial sizes for each endpoint type are included. Copyright © 2015 Elsevier Inc. All rights reserved.
Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization
Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali
2014-01-01
Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584
Wave-induced fluid flow in random porous media: Attenuation and dispersion of elastic waves
NASA Astrophysics Data System (ADS)
Müller, Tobias M.; Gurevich, Boris
2005-05-01
A detailed analysis of the relationship between elastic waves in inhomogeneous, porous media and the effect of wave-induced fluid flow is presented. Based on the results of the poroelastic first-order statistical smoothing approximation applied to Biot's equations of poroelasticity, a model for elastic wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous poroelastic media is developed. Attenuation and dispersion depend on linear combinations of the spatial correlations of the fluctuating poroelastic parameters. The observed frequency dependence is typical for a relaxation phenomenon. Further, the analytic properties of attenuation and dispersion are analyzed. It is shown that the low-frequency asymptote of the attenuation coefficient of a plane compressional wave is proportional to the square of frequency. At high frequencies the attenuation coefficient becomes proportional to the square root of frequency. A comparison with the 1-D theory shows that attenuation is of the same order but slightly larger in 3-D random media. Several modeling choices of the approach including the effect of cross correlations between fluid and solid phase properties are demonstrated. The potential application of the results to real porous materials is discussed. .
Unraveling spurious properties of interaction networks with tailored random networks.
Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus
2011-01-01
We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.
Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks
Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus
2011-01-01
We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures – known for their complex spatial and temporal dynamics – we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis. PMID:21850239
Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis
ERIC Educational Resources Information Center
Ansari, Asim; Iyengar, Raghuram
2006-01-01
We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven…
Estimation of Multinomial Probabilities.
1978-11-01
1971) and Alam (1978) have shown that the maximum likelihood estimator is admissible with respect to the quadratic loss. Steinhaus (1957) and Trybula...appear). Johnson, B. Mck. (1971). On admissible estimators for certain fixed sample binomial populations. Ann. Math. Statist. 92, 1579-1587. Steinhaus , H
Diffusive mixing and Tsallis entropy
O'Malley, Daniel; Vesselinov, Velimir V.; Cushman, John H.
2015-04-29
Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q-entropy, which is non-additive, was developed as an alternative to the classical entropy for systems which are non-ergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. In addition, the distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered.
Characteristic-eddy decomposition of turbulence in a channel
NASA Technical Reports Server (NTRS)
Moin, Parviz; Moser, Robert D.
1989-01-01
Lumley's proper orthogonal decomposition technique is applied to the turbulent flow in a channel. Coherent structures are extracted by decomposing the velocity field into characteristic eddies with random coefficients. A generalization of the shot-noise expansion is used to determine the characteristic eddies in homogeneous spatial directions. Three different techniques are used to determine the phases of the Fourier coefficients in the expansion: (1) one based on the bispectrum, (2) a spatial compactness requirement, and (3) a functional continuity argument. Similar results are found from each of these techniques.
Identifying Bearing Rotordynamic Coefficients using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Miller, Brad A.; Howard, Samuel A.
2008-01-01
An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor-dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter s performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor-bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.
NASA Technical Reports Server (NTRS)
Kushner, H. J.
1972-01-01
The field of stochastic stability is surveyed, with emphasis on the invariance theorems and their potential application to systems with randomly varying coefficients. Some of the basic ideas are reviewed, which underlie the stochastic Liapunov function approach to stochastic stability. The invariance theorems are discussed in detail.
Boligon, A A; Baldi, F; Mercadante, M E Z; Lobo, R B; Pereira, R J; Albuquerque, L G
2011-06-28
We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.
Li, Huaizhou; Zhou, Haiyan; Yang, Yang; Wang, Haiyuan; Zhong, Ning
2017-10-01
Previous studies have reported the enhanced randomization of functional brain networks in patients with major depressive disorder (MDD). However, little is known about the changes of key nodal attributes for randomization, the resilience of network, and the clinical significance of the alterations. In this study, we collected the resting-state functional MRI data from 19 MDD patients and 19 healthy control (HC) individuals. Graph theory analysis showed that decreases were found in the small-worldness, clustering coefficient, local efficiency, and characteristic path length (i.e., increase of global efficiency) in the network of MDD group compared with HC group, which was consistent with previous findings and suggested the development toward randomization in the brain network in MDD. In addition, the greater resilience under the targeted attacks was also found in the network of patients with MDD. Furthermore, the abnormal nodal properties were found, including clustering coefficients and nodal efficiencies in the left orbital superior frontal gyrus, bilateral insula, left amygdala, right supramarginal gyrus, left putamen, left posterior cingulate cortex, left angular gyrus. Meanwhile, the correlation analysis showed that most of these abnormal areas were associated with the clinical status. The observed increased randomization and resilience in MDD might be related to the abnormal hub nodes in the brain networks, which were attacked by the disease pathology. Our findings provide new evidence to indicate that the weakening of specialized regions and the enhancement of whole brain integrity could be the potential endophenotype of the depressive pathology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Relaxation dynamics of maximally clustered networks
NASA Astrophysics Data System (ADS)
Klaise, Janis; Johnson, Samuel
2018-01-01
We study the relaxation dynamics of fully clustered networks (maximal number of triangles) to an unclustered state under two different edge dynamics—the double-edge swap, corresponding to degree-preserving randomization of the configuration model, and single edge replacement, corresponding to full randomization of the Erdős-Rényi random graph. We derive expressions for the time evolution of the degree distribution, edge multiplicity distribution and clustering coefficient. We show that under both dynamics networks undergo a continuous phase transition in which a giant connected component is formed. We calculate the position of the phase transition analytically using the Erdős-Rényi phenomenology.
A new neural network model for solving random interval linear programming problems.
Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza
2017-05-01
This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Random walk of passive tracers among randomly moving obstacles.
Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco
2016-04-14
This study is mainly motivated by the need of understanding how the diffusion behavior of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random environment is here considered in the case of a passively diffusing particle among randomly moving and interacting obstacles. The relevant physical quantity which is worked out is the diffusion coefficient of the passive tracer which is computed as a function of the average inter-obstacles distance. The results reported here suggest that if a biomolecule, let us call it a test molecule, moves towards its target in the presence of other independently interacting molecules, its motion can be considerably slowed down.
Characterizing regional soil mineral composition using spectroscopyand geostatistics
Mulder, V.L.; de Bruin, S.; Weyermann, J.; Kokaly, Raymond F.; Schaepman, M.E.
2013-01-01
This work aims at improving the mapping of major mineral variability at regional scale using scale-dependent spatial variability observed in remote sensing data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and statistical methods were combined with laboratory-based mineral characterization of field samples to create maps of the distributions of clay, mica and carbonate minerals and their abundances. The Material Identification and Characterization Algorithm (MICA) was used to identify the spectrally-dominant minerals in field samples; these results were combined with ASTER data using multinomial logistic regression to map mineral distributions. X-ray diffraction (XRD)was used to quantify mineral composition in field samples. XRD results were combined with ASTER data using multiple linear regression to map mineral abundances. We testedwhether smoothing of the ASTER data to match the scale of variability of the target sample would improve model correlations. Smoothing was donewith Fixed Rank Kriging (FRK) to represent the mediumand long-range spatial variability in the ASTER data. Stronger correlations resulted using the smoothed data compared to results obtained with the original data. Highest model accuracies came from using both medium and long-range scaled ASTER data as input to the statistical models. High correlation coefficients were obtained for the abundances of calcite and mica (R2 = 0.71 and 0.70, respectively). Moderately-high correlation coefficients were found for smectite and kaolinite (R2 = 0.57 and 0.45, respectively). Maps of mineral distributions, obtained by relating ASTER data to MICA analysis of field samples, were found to characterize major soil mineral variability (overall accuracies for mica, smectite and kaolinite were 76%, 89% and 86% respectively). The results of this study suggest that the distributions of minerals and their abundances derived using FRK-smoothed ASTER data more closely match the spatial variability of soil and environmental properties at regional scale.
Mohaghegh, Pegah; Yavari, Parvin; Akbari, Mohammad Esmaeil; Abadi, Alireza; Ahmadi, Farzaneh; Shormeij, Zeinab
2015-01-01
Background Not only the expand development of knowledge for reducing risk factors, but also the improvement in early diagnosis and treatment of cancer, and socioeconomic inequalities could affect cancer incidence, diagnosis stage, and mortality. The aim of this study was investigation the relationships between family levels of socioeconomic status and distribution of breast cancer risk factors. Methods This descriptive cross-sectional study has conducted on 526 patients who were suffering from breast cancer, and have registered in Cancer Research Center of Shahid Beheshti University of Medical Sciences from March 2008 to December 2013. A reliable and valid questionnaire about family levels of socioeconomic status has filled by interviewing the patients via phone. For analyzing the data, Multinomial logistic regression, Kendal tau-b correlation coefficient and Contingency Coefficient tests have executed by SPSS19. Results The mean age of the patients was 48.30 (SD=11.41). According to the results of this study, there was a significant relationship between family socioeconomic status and patient's age at diagnosis of breast cancer (p value<0.001). Also, the relationships between socioeconomic status and number of pregnancies, and duration of breast feeding were significant (p value> 0.001). In the multiple logistic regressions, the relationship between excellent socioeconomic status and number of abortions was significant (p value> 0.007). Furthermore, the relationships between moderate and good socioeconomic statuses and smoking were significant (p value=0.05 and p value=0.02, respectively). Conclusion The results have indicated that among those patients having better socioeconomic status, age at cancer diagnosis, number of pregnancies and duration of breast feeding was lower, and then number of abortions was more than the others. According to the results of this study, it was really important to focus on family socioeconomic status as a critical and effective variable on breast cancer risk factors among the Iranian women. PMID:25821572
Mohaghegh, Pegah; Yavari, Parvin; Akbari, Mohammad Esmaeil; Abadi, Alireza; Ahmadi, Farzaneh; Shormeij, Zeinab
2015-01-01
Not only the expand development of knowledge for reducing risk factors, but also the improvement in early diagnosis and treatment of cancer, and socioeconomic inequalities could affect cancer incidence, diagnosis stage, and mortality. The aim of this study was investigation the relationships between family levels of socioeconomic status and distribution of breast cancer risk factors. This descriptive cross-sectional study has conducted on 526 patients who were suffering from breast cancer, and have registered in Cancer Research Center of Shahid Beheshti University of Medical Sciences from March 2008 to December 2013. A reliable and valid questionnaire about family levels of socioeconomic status has filled by interviewing the patients via phone. For analyzing the data, Multinomial logistic regression, Kendal tau-b correlation coefficient and Contingency Coefficient tests have executed by SPSS19. The mean age of the patients was 48.30 (SD=11.41). According to the results of this study, there was a significant relationship between family socioeconomic status and patient's age at diagnosis of breast cancer (p value<0.001). Also, the relationships between socioeconomic status and number of pregnancies, and duration of breast feeding were significant (p value> 0.001). In the multiple logistic regressions, the relationship between excellent socioeconomic status and number of abortions was significant (p value> 0.007). Furthermore, the relationships between moderate and good socioeconomic statuses and smoking were significant (p value=0.05 and p value=0.02, respectively). The results have indicated that among those patients having better socioeconomic status, age at cancer diagnosis, number of pregnancies and duration of breast feeding was lower, and then number of abortions was more than the others. According to the results of this study, it was really important to focus on family socioeconomic status as a critical and effective variable on breast cancer risk factors among the Iranian women.
NASA Astrophysics Data System (ADS)
Xu, Yingru; Bernhard, Jonah E.; Bass, Steffen A.; Nahrgang, Marlene; Cao, Shanshan
2018-01-01
By applying a Bayesian model-to-data analysis, we estimate the temperature and momentum dependence of the heavy quark diffusion coefficient in an improved Langevin framework. The posterior range of the diffusion coefficient is obtained by performing a Markov chain Monte Carlo random walk and calibrating on the experimental data of D -meson RAA and v2 in three different collision systems at the Relativistic Heavy-Ion Collidaer (RHIC) and the Large Hadron Collider (LHC): Au-Au collisions at 200 GeV and Pb-Pb collisions at 2.76 and 5.02 TeV. The spatial diffusion coefficient is found to be consistent with lattice QCD calculations and comparable with other models' estimation. We demonstrate the capability of our improved Langevin model to simultaneously describe the RAA and v2 at both RHIC and the LHC energies, as well as the higher order flow coefficient such as D meson v3. We show that by applying a Bayesian analysis, we are able to quantitatively and systematically study the heavy flavor dynamics in heavy-ion collisions.
Superimposed Code Theoretic Analysis of Deoxyribonucleic Acid (DNA) Codes and DNA Computing
2010-01-01
partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic = position 1, etc. ) and within each collection...movement was modeled by a Brownian motion 3 dimensional random walk. The one dimensional diffusion coefficient D for the ellipsoid shape with 3...temperature, kB is Boltzmann’s constant, and η is the viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three
Analytic Regularity and Polynomial Approximation of Parametric and Stochastic Elliptic PDEs
2010-05-31
Todor : Finite elements for elliptic problems with stochastic coefficients Comp. Meth. Appl. Mech. Engg. 194 (2005) 205-228. [14] R. Ghanem and P. Spanos...for elliptic partial differential equations with random input data SIAM J. Num. Anal. 46(2008), 2411–2442. [20] R. Todor , Robust eigenvalue computation...for smoothing operators, SIAM J. Num. Anal. 44(2006), 865– 878. [21] Ch. Schwab and R.A. Todor , Karhúnen-Loève Approximation of Random Fields by
Analyzing degradation data with a random effects spline regression model
Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip
2017-03-17
This study proposes using a random effects spline regression model to analyze degradation data. Spline regression avoids having to specify a parametric function for the true degradation of an item. A distribution for the spline regression coefficients captures the variation of the true degradation curves from item to item. We illustrate the proposed methodology with a real example using a Bayesian approach. The Bayesian approach allows prediction of degradation of a population over time and estimation of reliability is easy to perform.
Analyzing degradation data with a random effects spline regression model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip
This study proposes using a random effects spline regression model to analyze degradation data. Spline regression avoids having to specify a parametric function for the true degradation of an item. A distribution for the spline regression coefficients captures the variation of the true degradation curves from item to item. We illustrate the proposed methodology with a real example using a Bayesian approach. The Bayesian approach allows prediction of degradation of a population over time and estimation of reliability is easy to perform.
Quantified Risk Ranking Model for Condition-Based Risk and Reliability Centered Maintenance
NASA Astrophysics Data System (ADS)
Chattopadhyaya, Pradip Kumar; Basu, Sushil Kumar; Majumdar, Manik Chandra
2017-06-01
In the recent past, risk and reliability centered maintenance (RRCM) framework is introduced with a shift in the methodological focus from reliability and probabilities (expected values) to reliability, uncertainty and risk. In this paper authors explain a novel methodology for risk quantification and ranking the critical items for prioritizing the maintenance actions on the basis of condition-based risk and reliability centered maintenance (CBRRCM). The critical items are identified through criticality analysis of RPN values of items of a system and the maintenance significant precipitating factors (MSPF) of items are evaluated. The criticality of risk is assessed using three risk coefficients. The likelihood risk coefficient treats the probability as a fuzzy number. The abstract risk coefficient deduces risk influenced by uncertainty, sensitivity besides other factors. The third risk coefficient is called hazardous risk coefficient, which is due to anticipated hazards which may occur in the future and the risk is deduced from criteria of consequences on safety, environment, maintenance and economic risks with corresponding cost for consequences. The characteristic values of all the three risk coefficients are obtained with a particular test. With few more tests on the system, the values may change significantly within controlling range of each coefficient, hence `random number simulation' is resorted to obtain one distinctive value for each coefficient. The risk coefficients are statistically added to obtain final risk coefficient of each critical item and then the final rankings of critical items are estimated. The prioritization in ranking of critical items using the developed mathematical model for risk assessment shall be useful in optimization of financial losses and timing of maintenance actions.
Wiener, R Constance; Vohra, Rini; Sambamoorthi, Usha; Madhavan, S Suresh
2016-12-01
Objective The purpose of this study is to examine the burdens of caregivers on perception of the need and receipt of preventive dental care for a subset of children with special health care needs-children with Autism Spectrum disorder, developmental disability and/or mental health conditions (CASD/DD/MHC). Methods The authors used the 2009-2010 National Survey of CSHCN. The survey included questions addressing preventive dental care and caregivers' financial, employment, and time-related burdens. The associations of these burdens on perceptions and receipt of preventive dental care use were analyzed with bivariate Chi square analyses and multinomial logistic regressions for CASD/DD/MHC (N = 16,323). Results Overall, 16.3 % of CASD/DD/MHC had an unmet preventive dental care need. There were 40.0 % of caregivers who reported financial burden, 20.3 % who reported employment burden, and 10.8 % who reported time burden. A higher percentage of caregivers with financial burden, employment burden, and time-related burden reported that their CASD/DD/MHC did not receive needed preventive dental care (14.1, 16.5, 17.7 % respectively) compared to caregivers without financial, employment, or time burdens (9.0, 9.6 %, 11.0 % respectively). Caregivers with financial burden (adjusted multinomial odds ratio, 1.38 [95 % CI 1.02, 1.86] and employment burden (adjusted multinomial odds ratio, 1.45 [95 % CI 1.02, 2.06] were more likely to report that their child did not receive preventive dental care despite perceived need compared to caregivers without financial or employment burdens. Conclusions for practice Unmet needs for preventive dental care were associated with employment and financial burdens of the caregivers of CASD/DD/MHC.
Vohra, Rini; Sambamoorthi, Usha; Madhavan, S. Suresh
2016-01-01
Objective The purpose of this study is to examine the burdens of caregivers on one perception of the need and receipt of preventive dental care for a subset of children with special health care needs—children with Autism Spectrum disorder, developmental disability and/or mental health conditions (CASD/DD/MHC). Methods The authors used the 2009–2010 National Survey of CSHCN. The survey included questions addressing preventive dental care and caregivers’ financial, employment, and time-related burdens. The associations of these burdens on perceptions and receipt of preventive dental care use were analyzed with bivariate Chi square analyses and multinomial logistic regressions for CASD/DD/MHC (N=16,323). Results Overall, 16.3% of CASD/DD/MHC had an unmet preventive dental care need. There were 40.0% of caregivers who reported financial burden, 20.3% who reported employment burden, and 10.8% who reported time burden. A higher percentage of caregivers with financial burden, employment burden, and time-related burden reported that their CASD/DD/MHC did not receive needed preventive dental care (14.1 %, 16.5%, 17.7% respectively) compared to caregivers without financial, employment, or time burdens (9.0%, 9.6%, 11.0% respectively). Caregivers with financial burden (adjusted multinomial odds ratio, 1.38 [95%CI: 1.02, 1.86]) and employment burden (adjusted multinomial odds ratio, 1.45 [95%CI: 1.02, 2.06]) were more likely to report that their child did not receive preventive dental care despite perceived need compared to caregivers without financial or employment burdens. Conclusions for practice Unmet needs for preventive dental care were associated with employment and financial burdens of the caregivers of CASD/DD/MHC. PMID:27465058
Job Stress among Hispanic Professionals
ERIC Educational Resources Information Center
Rodriguez-Calcagno, Maria; Brewer, Ernest W.
2005-01-01
This study explores job stress among a random sample of 219 Hispanic professionals. Participants complete the Job Stress Survey by Spielberger and Vagg and a demographic questionnaire. Responses are analyzed using descriptive statistics, a factorial analysis of variance, and coefficients of determination. Results indicate that Hispanic…
NASA Technical Reports Server (NTRS)
Odonnell, M.; Miller, J. G.
1981-01-01
The use of a broadband backscatter technique to obtain the frequency dependence of the longitudinal-wave ultrasonic backscatter coefficient from a collection of scatterers in a solid is investigated. Measurements of the backscatter coefficient were obtained over the range of ultrasonic wave vector magnitude-glass sphere radius product between 0.1 and 3.0 from model systems consisting of dilute suspensions of randomly distributed crown glass spheres in hardened polyester resin. The results of these measurements were in good agreement with theoretical prediction. Consequently, broadband measurements of the ultrasonic backscatter coefficient may represent a useful approach toward characterizing the physical properties of scatterers in intrinsically inhomogeneous materials such as composites, metals, and ceramics, and may represent an approach toward nondestructive evaluation of these materials.
Chronic disease prevalence among elderly Saudi men.
Saquib, Nazmus; Saquib, Juliann; Alhadlag, Abdulrahman; Albakour, Mohamad Anas; Aljumah, Bader; Sughayyir, Mohammed; Alhomidan, Ziad; Alminderej, Omar; Aljaser, Mohamed; Al-Mazrou, Abdulrahman
2017-01-01
Saudi demographic composition has changed because of increased life expectancy and decreased fertility rates. Little data are available about health conditions among older adults in Saudi Arabia, who are expected to represent 20% of the population by 2050. The study aim was to assess the prevalence and risk factors for chronic conditions among older Saudi men. The sample pertained to 400 men (age ≥55 years) from Buraidah, Al-Qassim. Research assistants recruited participants in all the mosques from the randomly selected neighborhoods (16 of 95). They administered a structured questionnaire that assessed self-reported disease history (heart disease, hypertension, diabetes, asthma, gastric/peptic ulcer, and cancer), and medication use; participants' height, weight, blood pressure, and random blood glucose (glucometer) were measured. Multinomial logistic regressions were employed to assess correlates of number of chronic diseases. The mean and standard deviation for age and body mass index (BMI) were 63.0 ± 7.5 years and 28.9 ± 4.8 (kg/m 2 ), respectively. 78% (77.8%) were overweight or obese, 35.0% were employed, 54.5% walked daily, 9.3% were current smokers, and 85.0% belonged to the middle class. The prevalence of hypertension, diabetes, heart disease, asthma, ulcer, and cancer were: 71.3% 27.3%, 16.4%, 9.7%, 8.9%, and 2.0%, respectively. Of the participants, 31.0% had one, 34.5% had two or more, and 34.5% did not have any chronic diseases. The likelihood of chronic diseases increased with increased age, higher BMI, and current smoking. The chronic disease prevalence among the Saudi elderly men is substantial.
Stimulus control and affect in dietary behaviours. An intensive longitudinal study.
Schüz, Benjamin; Bower, Jodie; Ferguson, Stuart G
2015-04-01
Dietary behaviours are substantially influenced by environmental and internal stimuli, such as mood, social situation, and food availability. However, little is known about the role of stimulus control for eating in non-clinical populations, and no studies so far have looked at eating and drinking behaviour simultaneously. 53 individuals from the general population took part in an intensive longitudinal study with repeated, real-time assessments of eating and drinking using Ecological Momentary Assessment. Eating was assessed as main meals and snacks, drinks assessments were separated along alcoholic and non-alcoholic drinks. Situational and internal stimuli were assessed during both eating and drinking events, and during randomly selected non-eating occasions. Hierarchical multinomial logistic random effects models were used to analyse data, comparing dietary events to non-eating occasions. Several situational and affective antecedents of dietary behaviours could be identified. Meals were significantly associated with having food available and observing others eat. Snacking was associated with negative affect, having food available, and observing others eat. Engaging in activities and being with others decreased the likelihood of eating behaviours. Non-alcoholic drinks were associated with observing others eat, and less activities and company. Alcoholic drinks were associated with less negative affect and arousal, and with observing others eat. RESULTS support the role of stimulus control in dietary behaviours, with support for both internal and external, in particular availability and social stimuli. The findings for negative affect support the idea of comfort eating, and results point to the formation of eating habits via cue-behaviour associations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Trajectories of suicidal ideation over 6 months among 482 outpatients with bipolar disorder.
Köhler-Forsberg, Ole; Madsen, Trine; Behrendt-Møller, Ida; Sylvia, Louisa; Bowden, Charles L; Gao, Keming; Bobo, William V; Trivedi, Madhukar H; Calabrese, Joseph R; Thase, Michael; Shelton, Richard C; McInnis, Melvin; Tohen, Mauricio; Ketter, Terence A; Friedman, Edward S; Deckersbach, Thilo; McElroy, Susan L; Reilly-Harrington, Noreen A; Nierenberg, Andrew A
2017-12-01
Suicidal ideation occurs frequently among individuals with bipolar disorder; however, its course and persistence over time remains unclear. We aimed to investigate 6-months trajectories of suicidal ideation among adults with bipolar disorder. The Bipolar CHOICE study randomized 482 outpatients with bipolar disorder to 6 months of lithium- or quetiapine-based treatment including other psychotropic medications as clinically indicated. Participants were asked at 9 visits about suicidal ideation using the Concise Health Risk Tracking scale. We performed latent Growth Mixture Modelling analysis to empirically identify trajectories of suicidal ideation. Multinomial logistic regression analyses were applied to estimate associations between trajectories and potential predictors. We identified four distinct trajectories. The Moderate-Stable group represented 11.1% and was characterized by constant suicidal ideation. The Moderate-Unstable group included 2.9% with persistent thoughts about suicide with a more fluctuating course. The third (Persistent-low, 20.8%) and fourth group (Persistent-very-low, 65.1%) were characterized by low levels of suicidal ideation. Higher depression scores and previous suicide attempts (non-significant trend) predicted membership of the Moderate-Stable group, whereas randomized treatment did not. No specific treatments against suicidal ideation were included and suicidal thoughts may persist for several years. More than one in ten adult outpatients with bipolar disorder had moderately increased suicidal ideation throughout 6 months of pharmacotherapy. The identified predictors may help clinicians to identify those with additional need for treatment against suicidal thoughts and future studies need to investigate whether targeted treatment (pharmacological and non-pharmacological) may improve the course of persistent suicidal ideation. Copyright © 2017 Elsevier B.V. All rights reserved.
Zehnder, Pascal; Roth, Beat; Burkhard, Fiona C; Kessler, Thomas M
2008-09-01
We determined and compared urethral pressure measurements using air charged and microtip catheters in a prospective, single-blind, randomized trial. A consecutive series of 64 women referred for urodynamic investigation underwent sequential urethral pressure measurements using an air charged and a microtip catheter in randomized order. Patients were blinded to the type and sequence of catheter used. Agreement between the 2 catheter systems was assessed using the Bland and Altman 95% limits of agreement method. Intraclass correlation coefficients of air charged and microtip catheters for maximum urethral closure pressure at rest were 0.97 and 0.93, and for functional profile length they were 0.9 and 0.78, respectively. Pearson's correlation coefficients and Lin's concordance coefficients of air charged and microtip catheters were r = 0.82 and rho = 0.79 for maximum urethral closure pressure at rest, and r = 0.73 and rho = 0.7 for functional profile length, respectively. When applying the Bland and Altman method, air charged catheters gave higher readings than microtip catheters for maximum urethral closure pressure at rest (mean difference 7.5 cm H(2)O) and functional profile length (mean difference 1.8 mm). There were wide 95% limits of agreement for differences in maximum urethral closure pressure at rest (-24.1 to 39 cm H(2)O) and functional profile length (-7.7 to 11.3 mm). For urethral pressure measurement the air charged catheter is at least as reliable as the microtip catheter and it generally gives higher readings. However, air charged and microtip catheters cannot be used interchangeably for clinical purposes because of insufficient agreement. Hence, clinicians should be aware that air charged and microtip catheters may yield completely different results, and these differences should be acknowledged during clinical decision making.
Roberts, Michaela; Hanley, Nick; Cresswell, Will
2017-09-15
While ecological links between ecosystems have been long recognised, management rarely crosses ecosystem boundaries. Coral reefs are susceptible to damage through terrestrial run-off, and failing to account for this within management threatens reef protection. In order to quantify the extent to that coral reef users are willing to support management actions to improve ecosystem quality, we conducted a choice experiment with SCUBA divers on the island of Bonaire, Caribbean Netherlands. Specifically, we estimated their willingness to pay to reduce terrestrial overgrazing as a means to improve reef health. Willingness to pay was estimated using the multinomial, random parameter and latent class logit models. Willingness to pay for improvements to reef quality was positive for the majority of respondents. Estimates from the latent class model determined willingness to pay for reef improvements of between $31.17 - $413.18/year, dependent on class membership. This represents a significant source of funding for terrestrial conservation, and illustrates the potential for user fees to be applied across ecosystem boundaries. We argue that such across-ecosystem-boundary funding mechanisms are an important avenue for future investigation in many connected systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exploring Sampling in the Detection of Multicategory EEG Signals
Siuly, Siuly; Kabir, Enamul; Wang, Hua; Zhang, Yanchun
2015-01-01
The paper presents a structure based on samplings and machine leaning techniques for the detection of multicategory EEG signals where random sampling (RS) and optimal allocation sampling (OS) are explored. In the proposed framework, before using the RS and OS scheme, the entire EEG signals of each class are partitioned into several groups based on a particular time period. The RS and OS schemes are used in order to have representative observations from each group of each category of EEG data. Then all of the selected samples by the RS from the groups of each category are combined in a one set named RS set. In the similar way, for the OS scheme, an OS set is obtained. Then eleven statistical features are extracted from the RS and OS set, separately. Finally this study employs three well-known classifiers: k-nearest neighbor (k-NN), multinomial logistic regression with a ridge estimator (MLR), and support vector machine (SVM) to evaluate the performance for the RS and OS feature set. The experimental outcomes demonstrate that the RS scheme well represents the EEG signals and the k-NN with the RS is the optimum choice for detection of multicategory EEG signals. PMID:25977705
Francis, Wendy S; Taylor, Randolph S; Gutiérrez, Marisela; Liaño, Mary K; Manzanera, Diana G; Penalver, Renee M
2018-05-19
Two experiments investigated how well bilinguals utilise long-standing semantic associations to encode and retrieve semantic clusters in verbal episodic memory. In Experiment 1, Spanish-English bilinguals (N = 128) studied and recalled word and picture sets. Word recall was equivalent in L1 and L2, picture recall was better in L1 than in L2, and the picture superiority effect was stronger in L1 than in L2. Semantic clustering in word and picture recall was equivalent in L1 and L2. In Experiment 2, Spanish-English bilinguals (N = 128) and English-speaking monolinguals (N = 128) studied and recalled word sequences that contained semantically related pairs. Data were analyzed using a multinomial processing tree approach, the pair-clustering model. Cluster formation was more likely for semantically organised than for randomly ordered word sequences. Probabilities of cluster formation, cluster retrieval, and retrieval of unclustered items did not differ across languages or language groups. Language proficiency has little if any impact on the utilisation of long-standing semantic associations, which are language-general.
Risk Factors Associated with Peer Victimization and Bystander Behaviors among Adolescent Students.
Huang, Zepeng; Liu, Zhenni; Liu, Xiangxiang; Lv, Laiwen; Zhang, Yan; Ou, Limin; Li, Liping
2016-07-27
Despite the prevalence of the phenomena of peer victimization and bystander behaviors, little data has generated to describe their relationships and risk factors. In this paper, a self-administered survey using a cross-sectional cluster-random sampling method in a sample of 5450 participants (2734 girls and 2716 boys) between 4th and 11th grades was conducted at six schools (two primary schools and four middle schools) located in Shantou, China. Self-reported peer victimization, bystander behaviors and information regarding parents' risky behaviors and individual behavioral factors were collected. Multinomial logistic regression analysis was applied to evaluate risk factors affecting peer victimization and bystander behaviors. The results indicated that urban participants were more likely to become bullying victims but less likely to become passive bystanders. Contrarily, bullying victimization was related to the increasing of passive bystander behaviors. Father drinking and mother smoking as independent factors were risk factors for peer victimization. Participants who were smoking or drinking had a tendency to be involved in both peer victimization and passive bystander behaviors. This study suggested that bystander behaviors, victims' and parents' educations play a more important role in peer victimization than previously thought.
Contributions of sociodemographic factors to criminal behavior
Mundia, Lawrence; Matzin, Rohani; Mahalle, Salwa; Hamid, Malai Hayati; Osman, Ratna Suriani
2016-01-01
We explored the extent to which prisoner sociodemographic variables (age, education, marital status, employment, and whether their parents were married or not) influenced offending in 64 randomly selected Brunei inmates, comprising both sexes. A quantitative field survey design ideal for the type of participants used in a prison context was employed to investigate the problem. Hierarchical multiple regression analysis with backward elimination identified prisoner marital status and age groups as significantly related to offending. Furthermore, hierarchical multinomial logistic regression analysis with backward elimination indicated that prisoners’ age, primary level education, marital status, employment status, and parental marital status as significantly related to stealing offenses with high odds ratios. All 29 nonrecidivists were false negatives and predicted to reoffend upon release. Similarly, all 33 recidivists were projected to reoffend after release. Hierarchical binary logistic regression analysis revealed age groups (24–29 years and 30–35 years), employed prisoner, and primary level education as variables with high likelihood trends for reoffending. The results suggested that prisoner interventions (educational, counseling, and psychotherapy) in Brunei should treat not only antisocial personality, psychopathy, and mental health problems but also sociodemographic factors. The study generated offending patterns, trends, and norms that may inform subsequent investigations on Brunei prisoners. PMID:27382342
A Bayesian hierarchical model for discrete choice data in health care.
Antonio, Anna Liza M; Weiss, Robert E; Saigal, Christopher S; Dahan, Ely; Crespi, Catherine M
2017-01-01
In discrete choice experiments, patients are presented with sets of health states described by various attributes and asked to make choices from among them. Discrete choice experiments allow health care researchers to study the preferences of individual patients by eliciting trade-offs between different aspects of health-related quality of life. However, many discrete choice experiments yield data with incomplete ranking information and sparsity due to the limited number of choice sets presented to each patient, making it challenging to estimate patient preferences. Moreover, methods to identify outliers in discrete choice data are lacking. We develop a Bayesian hierarchical random effects rank-ordered multinomial logit model for discrete choice data. Missing ranks are accounted for by marginalizing over all possible permutations of unranked alternatives to estimate individual patient preferences, which are modeled as a function of patient covariates. We provide a Bayesian version of relative attribute importance, and adapt the use of the conditional predictive ordinate to identify outlying choice sets and outlying individuals with unusual preferences compared to the population. The model is applied to data from a study using a discrete choice experiment to estimate individual patient preferences for health states related to prostate cancer treatment.
Social branding to decrease smoking among young adults in bars.
Ling, Pamela M; Lee, Youn Ok; Hong, Juliette; Neilands, Torsten B; Jordan, Jeffrey W; Glantz, Stanton A
2014-04-01
We evaluated a Social Branding antitobacco intervention for "hipster" young adults that was implemented between 2008 and 2011 in San Diego, California. We conducted repeated cross-sectional surveys of random samples of young adults going to bars at baseline and over a 3-year follow-up. We used multinomial logistic regression to evaluate changes in daily smoking, nondaily smoking, and binge drinking, controlling for demographic characteristics, alcohol use, advertising receptivity, trend sensitivity, and tobacco-related attitudes. During the intervention, current (past 30 day) smoking decreased from 57% (baseline) to 48% (at follow-up 3; P = .002), and daily smoking decreased from 22% to 15% (P < .001). There were significant interactions between hipster affiliation and alcohol use on smoking. Among hipster binge drinkers, the odds of daily smoking (odds ratio [OR] = 0.44; 95% confidence interval [CI] = 0.30, 0.63) and nondaily smoking (OR = 0.57; 95% CI = 0.42, 0.77) decreased significantly at follow-up 3. Binge drinking also decreased significantly at follow-up 3 (OR = 0.64; 95% CI = 0.53, 0.78). Social Branding campaigns are a promising strategy to decrease smoking in young adult bar patrons.
Cwik, Jan C; Papen, Fabienne; Lemke, Jan-Erik; Margraf, Jürgen
2016-01-01
This study examines the utility of checklists in attaining more accurate diagnoses in the context of diagnostic decision-making for mental disorders. The study also aimed to replicate results from a meta-analysis indicating that there is no association between patients' gender and misdiagnoses. To this end, 475 psychotherapists were asked to judge three case vignettes describing patients with Major Depressive Disorder (MDD), Generalized Anxiety Disorder, and Borderline Personality Disorder. Therapists were randomly assigned to experimental conditions in a 2 (diagnostic method: with using diagnostic checklists vs. without using diagnostic checklists) × 2 (gender: male vs. female case vignettes) between-subjects design. Multinomial logistic and linear regression analyses were used to examine the association between the usage of diagnostic checklists as well as patients' gender and diagnostic decisions. The results showed that when checklists were used, fewer incorrect co-morbid diagnoses were made, but clinicians were less likely to diagnose MDD even when the criteria were met. Additionally, checklists improved therapists' confidence with diagnostic decisions, but were not associated with estimations of patients' characteristics. As expected, there were no significant associations between gender and diagnostic decisions.
A Comparison of Methods for Detecting Differential Distractor Functioning
ERIC Educational Resources Information Center
Koon, Sharon
2010-01-01
This study examined the effectiveness of the odds-ratio method (Penfield, 2008) and the multinomial logistic regression method (Kato, Moen, & Thurlow, 2009) for measuring differential distractor functioning (DDF) effects in comparison to the standardized distractor analysis approach (Schmitt & Bleistein, 1987). Students classified as participating…
A frequent goal in ecology is to understand the relationships between biological communities and their environment. Anderson and McCardle (2001) provided a nonparametric method, known as Permanova, that is often used for this purpose. Permanova represents a significant advance,...
Statistical Development and Application of Cultural Consensus Theory
2012-03-31
Bulletin & Review , 17, 275-286. Schmittmann, V.D., Dolan, C.V., Raijmakers, M.E.J., and Batchelder, W.H. (2010). Parameter identification in...Wu, H., Myung, J.I., and Batchelder, W.H. (2010). Minimum description length model selection of multinomial processing tree models. Psychonomic
Polcicová, Gabriela; Tino, Peter
2004-01-01
We introduce topographic versions of two latent class models (LCM) for collaborative filtering. Latent classes are topologically organized on a square grid. Topographic organization of latent classes makes orientation in rating/preference patterns captured by the latent classes easier and more systematic. The variation in film rating patterns is modelled by multinomial and binomial distributions with varying independence assumptions. In the first stage of topographic LCM construction, self-organizing maps with neural field organized according to the LCM topology are employed. We apply our system to a large collection of user ratings for films. The system can provide useful visualization plots unveiling user preference patterns buried in the data, without loosing potential to be a good recommender model. It appears that multinomial distribution is most adequate if the model is regularized by tight grid topologies. Since we deal with probabilistic models of the data, we can readily use tools from probability and information theories to interpret and visualize information extracted by our system.
A multilevel model for comorbid outcomes: obesity and diabetes in the US.
Congdon, Peter
2010-02-01
Multilevel models are overwhelmingly applied to single health outcomes, but when two or more health conditions are closely related, it is important that contextual variation in their joint prevalence (e.g., variations over different geographic settings) is considered. A multinomial multilevel logit regression approach for analysing joint prevalence is proposed here that includes subject level risk factors (e.g., age, race, education) while also taking account of geographic context. Data from a US population health survey (the 2007 Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method, with a six category multinomial outcome defined by diabetic status and weight category (obese, overweight, normal). The influence of geographic context is partly represented by known geographic variables (e.g., county poverty), and partly by a model for latent area influences. In particular, a shared latent variable (common factor) approach is proposed to measure the impact of unobserved area influences on joint weight and diabetes status, with the latent variable being spatially structured to reflect geographic clustering in risk.
Compensation of hospital-based physicians.
Steinwald, B
1983-01-01
This study is concerned with methods of compensating hospital-based physicians (HBPs) in five medical specialties: anesthesiology, pathology, radiology, cardiology, and emergency medicine. Data on 2232 nonfederal, short-term general hospitals came from a mail questionnaire survey conducted in Fall 1979. The data indicate that numerous compensation methods exist but these methods, without much loss of precision, can be reduced to salary, percentage of department revenue, and fee-for-service. When HBPs are compensated by salary or percentage methods, most patient billing is conducted by the hospital. In contrast, most fee-for-service HBPs bill their patients directly. Determinants of HBP compensation methods are investigated via multinomial logit analysis. This analysis indicates that choice of HBP compensation methods are investigated via multinomial logit analysis. This analysis indicates that choice of HBP compensation methods is sensitive to a number of hospital characteristics and attributes of both the hospital and physicians' services markets. The empirical findings are discussed in light of past conceptual and empirical research on physician compensation, and current policy issues in the health services sector. PMID:6841112
Oscillations and chaos in neural networks: an exactly solvable model.
Wang, L P; Pichler, E E; Ross, J
1990-01-01
We consider a randomly diluted higher-order network with noise, consisting of McCulloch-Pitts neurons that interact by Hebbian-type connections. For this model, exact dynamical equations are derived and solved for both parallel and random sequential updating algorithms. For parallel dynamics, we find a rich spectrum of different behaviors including static retrieving and oscillatory and chaotic phenomena in different parts of the parameter space. The bifurcation parameters include first- and second-order neuronal interaction coefficients and a rescaled noise level, which represents the combined effects of the random synaptic dilution, interference between stored patterns, and additional background noise. We show that a marked difference in terms of the occurrence of oscillations or chaos exists between neural networks with parallel and random sequential dynamics. Images PMID:2251287
A weighted ℓ{sub 1}-minimization approach for sparse polynomial chaos expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Ji; Hampton, Jerrad; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu
2014-06-15
This work proposes a method for sparse polynomial chaos (PC) approximation of high-dimensional stochastic functions based on non-adapted random sampling. We modify the standard ℓ{sub 1}-minimization algorithm, originally proposed in the context of compressive sampling, using a priori information about the decay of the PC coefficients, when available, and refer to the resulting algorithm as weightedℓ{sub 1}-minimization. We provide conditions under which we may guarantee recovery using this weighted scheme. Numerical tests are used to compare the weighted and non-weighted methods for the recovery of solutions to two differential equations with high-dimensional random inputs: a boundary value problem with amore » random elliptic operator and a 2-D thermally driven cavity flow with random boundary condition.« less
Mei, Juan; Zhao, Ji
2018-06-14
Presynaptic neurotoxins and postsynaptic neurotoxins are two important neurotoxins isolated from venoms of venomous animals and have been proven to be potential effective in neurosciences and pharmacology. With the number of toxin sequences appeared in the public databases, there was a need for developing a computational method for fast and accurate identification and classification of the novel presynaptic neurotoxins and postsynaptic neurotoxins in the large databases. In this study, the Multinomial Naive Bayes Classifier (MNBC) had been developed to discriminate the presynaptic neurotoxins and postsynaptic neurotoxins based on the different kinds of features. The Minimum Redundancy Maximum Relevance (MRMR) feature selection method was used for ranking 400 pseudo amino acid (PseAA) compositions and 50 top ranked PseAA compositions were selected for improving the prediction results. The motif features, 400 PseAA compositions and 50 PseAA compositions were combined together, and selected as the input parameters of MNBC. The best correlation coefficient (CC) value of 0.8213 was obtained when the prediction quality was evaluated by the jackknife test. It was anticipated that the algorithm presented in this study may become a useful tool for identification of presynaptic neurotoxin and postsynaptic neurotoxin sequences and may provide some useful help for in-depth investigation into the biological mechanism of presynaptic neurotoxins and postsynaptic neurotoxins. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cross over of recurrence networks to random graphs and random geometric graphs
NASA Astrophysics Data System (ADS)
Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.
2017-02-01
Recurrence networks are complex networks constructed from the time series of chaotic dynamical systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the topology of every recurrence network unique with the degree distribution determined by the probability density variations of the representative attractor from which it is constructed. Here we numerically investigate the properties of recurrence networks from standard low-dimensional chaotic attractors using some basic network measures and show how the recurrence networks are different from random and scale-free networks. In particular, we show that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to the time series and into the classical random graphs by increasing the range of interaction to the system size. We also highlight the effectiveness of a combined plot of characteristic path length and clustering coefficient in capturing the small changes in the network characteristics.
Measuring Developmental Students' Mathematics Anxiety
ERIC Educational Resources Information Center
Ding, Yanqing
2016-01-01
This study conducted an item-level analysis of mathematics anxiety and examined the dimensionality of mathematics anxiety in a sample of developmental mathematics students (N = 162) by Multi-dimensional Random Coefficients Multinominal Logit Model (MRCMLM). The results indicate a moderately correlated factor structure of mathematics anxiety (r =…
OCT Amplitude and Speckle Statistics of Discrete Random Media.
Almasian, Mitra; van Leeuwen, Ton G; Faber, Dirk J
2017-11-01
Speckle, amplitude fluctuations in optical coherence tomography (OCT) images, contains information on sub-resolution structural properties of the imaged sample. Speckle statistics could therefore be utilized in the characterization of biological tissues. However, a rigorous theoretical framework relating OCT speckle statistics to structural tissue properties has yet to be developed. As a first step, we present a theoretical description of OCT speckle, relating the OCT amplitude variance to size and organization for samples of discrete random media (DRM). Starting the calculations from the size and organization of the scattering particles, we analytically find expressions for the OCT amplitude mean, amplitude variance, the backscattering coefficient and the scattering coefficient. We assume fully developed speckle and verify the validity of this assumption by experiments on controlled samples of silica microspheres suspended in water. We show that the OCT amplitude variance is sensitive to sub-resolution changes in size and organization of the scattering particles. Experimentally determined and theoretically calculated optical properties are compared and in good agreement.
Fang, Yun; Wu, Hulin; Zhu, Li-Xing
2011-07-01
We propose a two-stage estimation method for random coefficient ordinary differential equation (ODE) models. A maximum pseudo-likelihood estimator (MPLE) is derived based on a mixed-effects modeling approach and its asymptotic properties for population parameters are established. The proposed method does not require repeatedly solving ODEs, and is computationally efficient although it does pay a price with the loss of some estimation efficiency. However, the method does offer an alternative approach when the exact likelihood approach fails due to model complexity and high-dimensional parameter space, and it can also serve as a method to obtain the starting estimates for more accurate estimation methods. In addition, the proposed method does not need to specify the initial values of state variables and preserves all the advantages of the mixed-effects modeling approach. The finite sample properties of the proposed estimator are studied via Monte Carlo simulations and the methodology is also illustrated with application to an AIDS clinical data set.
Perrone, T M; Gonzatti, M I; Villamizar, G; Escalante, A; Aso, P M
2009-05-12
Nine Trypanosoma sp. Venezuelan isolates, initially presumed to be T. evansi, were collected from three different hosts, capybara (Apure state), horse (Apure state) and donkey (Guarico state) and compared by the random amplification polymorphic DNA technique (RAPD). Thirty-one to 46 reproducible fragments were obtained with 12 of the 40 primers that were used. Most of the primers detected molecular profiles with few polymorphisms between the seven horse, capybara and donkey isolates. Quantitative analyses of the RAPD profiles of these isolates revealed a high degree of genetic conservation with similarity coefficients between 85.7% and 98.5%. Ten of the primers generated polymorphic RAPD profiles with two of the three Trypanosoma sp. horse isolates, namely TeAp-N/D1 and TeGu-N/D1. The similarity coefficient between these two isolates and the rest, ranged from 57.9% to 68.4% and the corresponding dendrogram clustered TeAp-N/D1 and Te Gu-N/D1 in a genetically distinct group.
Active motion assisted by correlated stochastic torques.
Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter
2011-07-01
The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.
Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.
Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus
2015-01-01
The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.
Andreae, Michael H; Nair, Singh; Gabry, Jonah S; Goodrich, Ben; Hall, Charles; Shaparin, Naum
2017-11-01
We investigated if human reminder phone calls in the patient's preferred language increase adherence with scheduled appointments in an inner-city chronic pain clinic. We hypothesized that language and cultural incongruence is the underlying mechanism to explain poor attendance at clinic appointments in underserved Hispanic populations. Pragmatic randomized controlled clinical trial SETTING: Innercity academic chronic pain clinic with a diverse, predominantly African-American and Hispanic population PATIENTS: All (n=963) adult patients with a scheduled first appointment between October 2014 and October 2015 at the Montefiore Pain Center in the Bronx, New York were enrolled. Patients were randomized to receive a human reminder call in their preferred language before their appointment, or no contact. We recorded patients' demographic characteristics and as primary outcome attendance as scheduled, failure to attend and/or cancellation calls. We fit Bayesian and classical multinomial logistic regression models to test if the intervention improved adherence with scheduled appointments. Among the 953 predominantly African American and Hispanic/Latino patients, 475 patients were randomly selected to receive a language-congruent, human reminder call, while 478 were assigned to receive no prior contact, (after we excluded 10 patients, scheduled for repeat appointments). In the experimental group, 275 patients adhered to their scheduled appointment, while 84 cancelled and 116 failed to attend. In the control group, 249 patients adhered to their scheduled appointment, 31 cancelled and 198 failed to attend. Human phone reminders in the preferred language increased adherence (RR 1.89, CI95% [1.42, 1.42], (p<0.01). The intervention seemed particularly effective in Hispanic patients, supporting our hypothesis of cultural congruence as possible underlying mechanism. Human reminder phone calls prior in the patient's preferred language increased adherence with scheduled appointments. The intervention facilitated access to much needed care in an ethnically diverse, resource poor population, presumably by overcoming language barriers. Copyright © 2017 Elsevier Inc. All rights reserved.
Stochastic uncertainty analysis for unconfined flow systems
Liu, Gaisheng; Zhang, Dongxiao; Lu, Zhiming
2006-01-01
A new stochastic approach proposed by Zhang and Lu (2004), called the Karhunen‐Loeve decomposition‐based moment equation (KLME), has been extended to solving nonlinear, unconfined flow problems in randomly heterogeneous aquifers. This approach is on the basis of an innovative combination of Karhunen‐Loeve decomposition, polynomial expansion, and perturbation methods. The random log‐transformed hydraulic conductivity field (lnKS) is first expanded into a series in terms of orthogonal Gaussian standard random variables with their coefficients obtained as the eigenvalues and eigenfunctions of the covariance function of lnKS. Next, head h is decomposed as a perturbation expansion series Σh(m), where h(m) represents the mth‐order head term with respect to the standard deviation of lnKS. Then h(m) is further expanded into a polynomial series of m products of orthogonal Gaussian standard random variables whose coefficients hi1,i2,...,im(m) are deterministic and solved sequentially from low to high expansion orders using MODFLOW‐2000. Finally, the statistics of head and flux are computed using simple algebraic operations on hi1,i2,...,im(m). A series of numerical test results in 2‐D and 3‐D unconfined flow systems indicated that the KLME approach is effective in estimating the mean and (co)variance of both heads and fluxes and requires much less computational effort as compared to the traditional Monte Carlo simulation technique.
A Numerical Simulation of Scattering from One-Dimensional Inhomogeneous Dielectric Random Surfaces
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Oh, Yisok; Ulaby, Fawwaz T.
1996-01-01
In this paper, an efficient numerical solution for the scattering problem of inhomogeneous dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods with nonuniform moisture content and rocks are modeled by inhomogeneous dielectric humps and the underlying smooth wet soil surface is modeled by an impedance surface. In this technique, an efficient numerical solution for the constituent dielectric humps over an impedance surface is obtained using Green's function derived by the exact image theory in conjunction with the method of moments. The scattered field from a sample of the rough surface is obtained by summing the scattered fields from all the individual humps of the surface coherently ignoring the effect of multiple scattering between the humps. The statistical behavior of the scattering coefficient sigma(sup 0) is obtained from the calculation of scattered fields of many different realizations of the surface. Numerical results are presented for several different roughnesses and dielectric constants of the random surfaces. The numerical technique is verified by comparing the numerical solution with the solution based on the small perturbation method and the physical optics model for homogeneous rough surfaces. This technique can be used to study the behavior of scattering coefficient and phase difference statistics of rough soil surfaces for which no analytical solution exists.
Sample size for estimating mean and coefficient of variation in species of crotalarias.
Toebe, Marcos; Machado, Letícia N; Tartaglia, Francieli L; Carvalho, Juliana O DE; Bandeira, Cirineu T; Cargnelutti Filho, Alberto
2018-04-16
The objective of this study was to determine the sample size necessary to estimate the mean and coefficient of variation in four species of crotalarias (C. juncea, C. spectabilis, C. breviflora and C. ochroleuca). An experiment was carried out for each species during the season 2014/15. At harvest, 1,000 pods of each species were randomly collected. In each pod were measured: mass of pod with and without seeds, length, width and height of pods, number and mass of seeds per pod, and mass of hundred seeds. Measures of central tendency, variability and distribution were calculated, and the normality was verified. The sample size necessary to estimate the mean and coefficient of variation with amplitudes of the confidence interval of 95% (ACI95%) of 2%, 4%, ..., 20% was determined by resampling with replacement. The sample size varies among species and characters, being necessary a larger sample size to estimate the mean in relation of the necessary for the coefficient of variation.
QR code-based non-linear image encryption using Shearlet transform and spiral phase transform
NASA Astrophysics Data System (ADS)
Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan
2018-02-01
In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.
Rumor Diffusion in an Interests-Based Dynamic Social Network
Mao, Xinjun; Guessoum, Zahia; Zhou, Huiping
2013-01-01
To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1) positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2) with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3) a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4) a network with a smaller clustering coefficient has a larger efficiency. PMID:24453911
Rumor diffusion in an interests-based dynamic social network.
Tang, Mingsheng; Mao, Xinjun; Guessoum, Zahia; Zhou, Huiping
2013-01-01
To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1) positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2) with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3) a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4) a network with a smaller clustering coefficient has a larger efficiency.
Fried, Itzhak; Koch, Christof
2014-01-01
Peristimulus time histograms are a widespread form of visualizing neuronal responses. Kernel convolution methods transform these histograms into a smooth, continuous probability density function. This provides an improved estimate of a neuron's actual response envelope. We here develop a classifier, called the h-coefficient, to determine whether time-locked fluctuations in the firing rate of a neuron should be classified as a response or as random noise. Unlike previous approaches, the h-coefficient takes advantage of the more precise response envelope estimation provided by the kernel convolution method. The h-coefficient quantizes the smoothed response envelope and calculates the probability of a response of a given shape to occur by chance. We tested the efficacy of the h-coefficient in a large data set of Monte Carlo simulated smoothed peristimulus time histograms with varying response amplitudes, response durations, trial numbers, and baseline firing rates. Across all these conditions, the h-coefficient significantly outperformed more classical classifiers, with a mean false alarm rate of 0.004 and a mean hit rate of 0.494. We also tested the h-coefficient's performance in a set of neuronal responses recorded in humans. The algorithm behind the h-coefficient provides various opportunities for further adaptation and the flexibility to target specific parameters in a given data set. Our findings confirm that the h-coefficient can provide a conservative and powerful tool for the analysis of peristimulus time histograms with great potential for future development. PMID:25475352
Kaambwa, Billingsley; Bryan, Stirling; Billingham, Lucinda
2012-06-27
Missing data is a common statistical problem in healthcare datasets from populations of older people. Some argue that arbitrarily assuming the mechanism responsible for the missingness and therefore the method for dealing with this missingness is not the best option-but is this always true? This paper explores what happens when extra information that suggests that a particular mechanism is responsible for missing data is disregarded and methods for dealing with the missing data are chosen arbitrarily. Regression models based on 2,533 intermediate care (IC) patients from the largest evaluation of IC done and published in the UK to date were used to explain variation in costs, EQ-5D and Barthel index. Three methods for dealing with missingness were utilised, each assuming a different mechanism as being responsible for the missing data: complete case analysis (assuming missing completely at random-MCAR), multiple imputation (assuming missing at random-MAR) and Heckman selection model (assuming missing not at random-MNAR). Differences in results were gauged by examining the signs of coefficients as well as the sizes of both coefficients and associated standard errors. Extra information strongly suggested that missing cost data were MCAR. The results show that MCAR and MAR-based methods yielded similar results with sizes of most coefficients and standard errors differing by less than 3.4% while those based on MNAR-methods were statistically different (up to 730% bigger). Significant variables in all regression models also had the same direction of influence on costs. All three mechanisms of missingness were shown to be potential causes of the missing EQ-5D and Barthel data. The method chosen to deal with missing data did not seem to have any significant effect on the results for these data as they led to broadly similar conclusions with sizes of coefficients and standard errors differing by less than 54% and 322%, respectively. Arbitrary selection of methods to deal with missing data should be avoided. Using extra information gathered during the data collection exercise about the cause of missingness to guide this selection would be more appropriate.
A crash-prediction model for multilane roads.
Caliendo, Ciro; Guida, Maurizio; Parisi, Alessandra
2007-07-01
Considerable research has been carried out in recent years to establish relationships between crashes and traffic flow, geometric infrastructure characteristics and environmental factors for two-lane rural roads. Crash-prediction models focused on multilane rural roads, however, have rarely been investigated. In addition, most research has paid but little attention to the safety effects of variables such as stopping sight distance and pavement surface characteristics. Moreover, the statistical approaches have generally included Poisson and Negative Binomial regression models, whilst Negative Multinomial regression model has been used to a lesser extent. Finally, as far as the authors are aware, prediction models involving all the above-mentioned factors have still not been developed in Italy for multilane roads, such as motorways. Thus, in this paper crash-prediction models for a four-lane median-divided Italian motorway were set up on the basis of accident data observed during a 5-year monitoring period extending between 1999 and 2003. The Poisson, Negative Binomial and Negative Multinomial regression models, applied separately to tangents and curves, were used to model the frequency of accident occurrence. Model parameters were estimated by the Maximum Likelihood Method, and the Generalized Likelihood Ratio Test was applied to detect the significant variables to be included in the model equation. Goodness-of-fit was measured by means of both the explained fraction of total variation and the explained fraction of systematic variation. The Cumulative Residuals Method was also used to test the adequacy of a regression model throughout the range of each variable. The candidate set of explanatory variables was: length (L), curvature (1/R), annual average daily traffic (AADT), sight distance (SD), side friction coefficient (SFC), longitudinal slope (LS) and the presence of a junction (J). Separate prediction models for total crashes and for fatal and injury crashes only were considered. For curves it is shown that significant variables are L, 1/R and AADT, whereas for tangents they are L, AADT and junctions. The effect of rain precipitation was analysed on the basis of hourly rainfall data and assumptions about drying time. It is shown that a wet pavement significantly increases the number of crashes. The models developed in this paper for Italian motorways appear to be useful for many applications such as the detection of critical factors, the estimation of accident reduction due to infrastructure and pavement improvement, and the predictions of accidents counts when comparing different design options. Thus this research may represent a point of reference for engineers in adjusting or designing multilane roads.
Dynamical Stochastic Processes of Returns in Financial Markets
NASA Astrophysics Data System (ADS)
Kim, Kyungsik; Kim, Soo Yong; Lim, Gyuchang; Zhou, Junyuan; Yoon, Seung-Min
2006-03-01
We show how the evolution of probability distribution functions of the returns from the tick data of the Korean treasury bond futures (KTB) and the S&P 500 stock index can be described by means of the Fokker-Planck equation. We derive the Fokker- Planck equation from the estimated Kramers-Moyal coefficients estimated directly from the empirical data. By analyzing the statistics of the returns, we present the quantitative deterministic and random influences on both financial time series, for which we can give a simple physical interpretation. Finally, we remark that the diffusion coefficient should be significantly considered to make a portfolio.
Coefficient of Thermal Expansion of Pressed PETN Pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Darla Graff; DeLuca, Racci
2015-03-11
The PETN single crystal coefficient of thermal expansion (CTE) values were measured and reported by Cady in 1972 [1] over the temperature range of -160 to 100°C. Measurements were made in the (001) and (100) crystallographic directions, see Figure 1 (a replicate of Figure 1 from the Cady paper). Cady used his single-crystal data to calculate the linear CTE for a randomly-oriented multi-crystal pressing of PETN, and his values ranged from 76.5 με/°C (at 20°C) to 89.9 5 με/°C (at 90°C).
A test for patterns of modularity in sequences of developmental events.
Poe, Steven
2004-08-01
This study presents a statistical test for modularity in the context of relative timing of developmental events. The test assesses whether sets of developmental events show special phylogenetic conservation of rank order. The test statistic is the correlation coefficient of developmental ranks of the N events of the hypothesized module across taxa. The null distribution is obtained by taking correlation coefficients for randomly sampled sets of N events. This test was applied to two datasets, including one where phylogenetic information was taken into account. The events of limb development in two frog species were found to behave as a module.
NASA Astrophysics Data System (ADS)
Stegmann, Patrick G.; Tang, Guanglin; Yang, Ping; Johnson, Benjamin T.
2018-05-01
A structural model is developed for the single-scattering properties of snow and graupel particles with a strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to provide a mechanism to consider particle mass density variation in the microwave scattering coefficients implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicontinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain (FDTD) method to compute the single-scattering properties of the resulting complex morphology.
Predictors of Early Termination in a University Counseling Training Clinic
ERIC Educational Resources Information Center
Lampropoulos, Georgios K.; Schneider, Mercedes K.; Spengler, Paul M.
2009-01-01
Despite the existence of counseling dropout research, there are limited predictive data for counseling in training clinics. Potential predictor variables were investigated in this archival study of 380 client files in a university counseling training clinic. Multinomial logistic regression, predictive discriminant analysis, and classification and…
Understanding Civic Identity in College
ERIC Educational Resources Information Center
Weerts, David J.; Cabrera, Alberto F.
2015-01-01
Past literature has examined ways in which college students adopt civic identities. However, little is known about characteristics of students that vary in their expression of these identities. Drawing on data from American College Testing (ACT), this study employs multinomial logistic regression to understand attributes of students who vary in…
Evaluating the Locational Attributes of Education Management Organizations (EMOs)
ERIC Educational Resources Information Center
Gulosino, Charisse; Miron, Gary
2017-01-01
This study uses logistic and multinomial logistic regression models to analyze neighborhood factors affecting EMO (Education Management Organization)-operated schools' locational attributes (using census tracts) in 41 states for the 2014-2015 school year. Our research combines market-based school reform, institutional theory, and resource…
Intergroup Relations and Predictors of Immigrant Experience
ERIC Educational Resources Information Center
Danso, Kofi; Lum, Terry
2013-01-01
Using survey data from 1,036 participants, which included 4 immigrant groups, we examined the factors that influence immigrants' experiences as they interact with nonimmigrant Americans. Logistic and multinomial regression results indicate that non-European immigrants were more likely to report negative experiences with Americans. The odds of…
The Role of Predictor Courses and Teams on Individual Student Success
ERIC Educational Resources Information Center
Baker-Eveleth, Lori Jo; O'Neill, Michele; Sisodiya, Sanjay R.
2014-01-01
Research suggests that diverse environments enhance conscious modes of thought, resulting in greater intellectual engagement and active thinking. Ordinal and multinomial logistic regression results indicate that accounting courses and business law classes are useful predictors of subsequent performance. Odds ratio estimates indicate that students…
Choice-Based Segmentation as an Enrollment Management Tool
ERIC Educational Resources Information Center
Young, Mark R.
2002-01-01
This article presents an approach to enrollment management based on target marketing strategies developed from a choice-based segmentation methodology. Students are classified into "switchable" or "non-switchable" segments based on their probability of selecting specific majors. A modified multinomial logit choice model is used to identify…
Caregivers' Retirement Congruency: A Case for Caregiver Support
ERIC Educational Resources Information Center
Humble, Aine M.; Keefe, Janice M.; Auton, Greg M.
2012-01-01
Using the concept of "retirement congruency" (RC), which takes into account greater variation in retirement decisions (low, moderate, or high RC) than a dichotomous conceptualization (forced versus chosen), multinomial logistic regression was conducted on a sample of caregivers from the 2002 Canadian General Social Survey who were…
Disordered quivers and cold horizons
Anninos, Dionysios; Anous, Tarek; Denef, Frederik
2016-12-15
We analyze the low temperature structure of a supersymmetric quiver quantum mechanics with randomized superpotential coefficients, treating them as quenched disorder. These theories describe features of the low energy dynamics of wrapped branes, which in large number backreact into extremal black holes. We show that the low temperature theory, in the limit of a large number of bifundamentals, exhibits a time reparametrization symmetry as well as a specific heat linear in the temperature. Both these features resemble the behavior of black hole horizons in the zero temperature limit. We demonstrate similarities between the low temperature physics of the random quivermore » model and a theory of large N free fermions with random masses.« less
Plasma fluctuations as Markovian noise.
Li, B; Hazeltine, R D; Gentle, K W
2007-12-01
Noise theory is used to study the correlations of stationary Markovian fluctuations that are homogeneous and isotropic in space. The relaxation of the fluctuations is modeled by the diffusion equation. The spatial correlations of random fluctuations are modeled by the exponential decay. Based on these models, the temporal correlations of random fluctuations, such as the correlation function and the power spectrum, are calculated. We find that the diffusion process can give rise to the decay of the correlation function and a broad frequency spectrum of random fluctuations. We also find that the transport coefficients may be estimated by the correlation length and the correlation time. The theoretical results are compared with the observed plasma density fluctuations from the tokamak and helimak experiments.
Enhancing Security of Double Random Phase Encoding Based on Random S-Box
NASA Astrophysics Data System (ADS)
Girija, R.; Singh, Hukum
2018-06-01
In this paper, we propose a novel asymmetric cryptosystem for double random phase encoding (DRPE) using random S-Box. While utilising S-Box separately is not reliable and DRPE does not support non-linearity, so, our system unites the effectiveness of S-Box with an asymmetric system of DRPE (through Fourier transform). The uniqueness of proposed cryptosystem lies on employing high sensitivity dynamic S-Box for our DRPE system. The randomness and scalability achieved due to applied technique is an additional feature of the proposed solution. The firmness of random S-Box is investigated in terms of performance parameters such as non-linearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. S-Boxes convey nonlinearity to cryptosystems which is a significant parameter and very essential for DRPE. The strength of proposed cryptosystem has been analysed using various parameters such as MSE, PSNR, correlation coefficient analysis, noise analysis, SVD analysis, etc. Experimental results are conferred in detail to exhibit proposed cryptosystem is highly secure.
Neither fixed nor random: weighted least squares meta-analysis.
Stanley, T D; Doucouliagos, Hristos
2015-06-15
This study challenges two core conventional meta-analysis methods: fixed effect and random effects. We show how and explain why an unrestricted weighted least squares estimator is superior to conventional random-effects meta-analysis when there is publication (or small-sample) bias and better than a fixed-effect weighted average if there is heterogeneity. Statistical theory and simulations of effect sizes, log odds ratios and regression coefficients demonstrate that this unrestricted weighted least squares estimator provides satisfactory estimates and confidence intervals that are comparable to random effects when there is no publication (or small-sample) bias and identical to fixed-effect meta-analysis when there is no heterogeneity. When there is publication selection bias, the unrestricted weighted least squares approach dominates random effects; when there is excess heterogeneity, it is clearly superior to fixed-effect meta-analysis. In practical applications, an unrestricted weighted least squares weighted average will often provide superior estimates to both conventional fixed and random effects. Copyright © 2015 John Wiley & Sons, Ltd.
Automatic liver segmentation on Computed Tomography using random walkers for treatment planning
Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M. Iqbal Bin
2016-01-01
Segmentation of the liver from Computed Tomography (CT) volumes plays an important role during the choice of treatment strategies for liver diseases. Despite lots of attention, liver segmentation remains a challenging task due to the lack of visible edges on most boundaries of the liver coupled with high variability of both intensity patterns and anatomical appearances with all these difficulties becoming more prominent in pathological livers. To achieve a more accurate segmentation, a random walker based framework is proposed that can segment contrast-enhanced livers CT images with great accuracy and speed. Based on the location of the right lung lobe, the liver dome is automatically detected thus eliminating the need for manual initialization. The computational requirements are further minimized utilizing rib-caged area segmentation, the liver is then extracted by utilizing random walker method. The proposed method was able to achieve one of the highest accuracies reported in the literature against a mixed healthy and pathological liver dataset compared to other segmentation methods with an overlap error of 4.47 % and dice similarity coefficient of 0.94 while it showed exceptional accuracy on segmenting the pathological livers with an overlap error of 5.95 % and dice similarity coefficient of 0.91. PMID:28096782
Ristić-Medić, Danijela; Dullemeijer, Carla; Tepsić, Jasna; Petrović-Oggiano, Gordana; Popović, Tamara; Arsić, Aleksandra; Glibetić, Marija; Souverein, Olga W; Collings, Rachel; Cavelaars, Adriënne; de Groot, Lisette; van't Veer, Pieter; Gurinović, Mirjana
2014-03-01
The objective of this systematic review was to identify studies investigating iodine intake and biomarkers of iodine status, to assess the data of the selected studies, and to estimate dose-response relationships using meta-analysis. All randomized controlled trials, prospective cohort studies, nested case-control studies, and cross-sectional studies that supplied or measured dietary iodine and measured iodine biomarkers were included. The overall pooled regression coefficient (β) and the standard error of β were calculated by random-effects meta-analysis on a double-log scale, using the calculated intake-status regression coefficient (β) for each individual study. The results of pooled randomized controlled trials indicated that the doubling of dietary iodine intake increased urinary iodine concentrations by 14% in children and adolescents, by 57% in adults and the elderly, and by 81% in pregnant women. The dose-response relationship between iodine intake and biomarkers of iodine status indicated a 12% decrease in thyroid-stimulating hormone and a 31% decrease in thyroglobulin in pregnant women. The model of dose-response quantification used to describe the relationship between iodine intake and biomarkers of iodine status may be useful for providing complementary evidence to support recommendations for iodine intake in different population groups.
Hewitt, Angela L.; Popa, Laurentiu S.; Pasalar, Siavash; Hendrix, Claudia M.
2011-01-01
Encoding of movement kinematics in Purkinje cell simple spike discharge has important implications for hypotheses of cerebellar cortical function. Several outstanding questions remain regarding representation of these kinematic signals. It is uncertain whether kinematic encoding occurs in unpredictable, feedback-dependent tasks or kinematic signals are conserved across tasks. Additionally, there is a need to understand the signals encoded in the instantaneous discharge of single cells without averaging across trials or time. To address these questions, this study recorded Purkinje cell firing in monkeys trained to perform a manual random tracking task in addition to circular tracking and center-out reach. Random tracking provides for extensive coverage of kinematic workspaces. Direction and speed errors are significantly greater during random than circular tracking. Cross-correlation analyses comparing hand and target velocity profiles show that hand velocity lags target velocity during random tracking. Correlations between simple spike firing from 120 Purkinje cells and hand position, velocity, and speed were evaluated with linear regression models including a time constant, τ, as a measure of the firing lead/lag relative to the kinematic parameters. Across the population, velocity accounts for the majority of simple spike firing variability (63 ± 30% of Radj2), followed by position (28 ± 24% of Radj2) and speed (11 ± 19% of Radj2). Simple spike firing often leads hand kinematics. Comparison of regression models based on averaged vs. nonaveraged firing and kinematics reveals lower Radj2 values for nonaveraged data; however, regression coefficients and τ values are highly similar. Finally, for most cells, model coefficients generated from random tracking accurately estimate simple spike firing in either circular tracking or center-out reach. These findings imply that the cerebellum controls movement kinematics, consistent with a forward internal model that predicts upcoming limb kinematics. PMID:21795616
Ponrartana, Skorn; Andrade, Kristine E; Wren, Tishya A L; Ramos-Platt, Leigh; Hu, Houchun H; Bluml, Stefan; Gilsanz, Vicente
2014-06-01
The purpose of this study was to assess the repeatability of water-fat MRI and diffusion-tensor imaging (DTI) as quantitative biomarkers of pediatric lower extremity skeletal muscle. MRI at 3 T of a randomly selected thigh and lower leg of seven healthy children was studied using water-fat separation and DTI techniques. Muscle-fat fraction, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) values were calculated. Test-retest and interrater repeatability were assessed by calculating the Pearson correlation coefficient, intraclass correlation coefficient, and Bland-Altman analysis. Bland-Altman plots show that the mean difference between test-retest and interrater measurements of muscle-fat fraction, ADC, and FA was near 0. The correlation coefficients and intraclass correlation coefficients were all between 0.88 and 0.99 (p < 0.05), suggesting excellent reliability of the measurements. Muscle-fat fraction measurements from water-fat MRI exhibited the highest intraclass correlation coefficient. Interrater agreement was consistently better than test-retest comparisons. Water-fat MRI and DTI measurements in lower extremity skeletal muscles are objective repeatable biomarkers in children. This knowledge should aid in the understanding of the number of participants needed in clinical trials when using these determinations as an outcome measure to noninvasively monitor neuromuscular disease.
Subramaniyam, Narayan Puthanmadam; Hyttinen, Jari
2015-02-01
Recently Andrezejak et al. combined the randomness and nonlinear independence test with iterative amplitude adjusted Fourier transform (iAAFT) surrogates to distinguish between the dynamics of seizure-free intracranial electroencephalographic (EEG) signals recorded from epileptogenic (focal) and nonepileptogenic (nonfocal) brain areas of epileptic patients. However, stationarity is a part of the null hypothesis for iAAFT surrogates and thus nonstationarity can violate the null hypothesis. In this work we first propose the application of the randomness and nonlinear independence test based on recurrence network measures to distinguish between the dynamics of focal and nonfocal EEG signals. Furthermore, we combine these tests with both iAAFT and truncated Fourier transform (TFT) surrogate methods, which also preserves the nonstationarity of the original data in the surrogates along with its linear structure. Our results indicate that focal EEG signals exhibit an increased degree of structural complexity and interdependency compared to nonfocal EEG signals. In general, we find higher rejections for randomness and nonlinear independence tests for focal EEG signals compared to nonfocal EEG signals. In particular, the univariate recurrence network measures, the average clustering coefficient C and assortativity R, and the bivariate recurrence network measure, the average cross-clustering coefficient C(cross), can successfully distinguish between the focal and nonfocal EEG signals, even when the analysis is restricted to nonstationary signals, irrespective of the type of surrogates used. On the other hand, we find that the univariate recurrence network measures, the average path length L, and the average betweenness centrality BC fail to distinguish between the focal and nonfocal EEG signals when iAAFT surrogates are used. However, these two measures can distinguish between focal and nonfocal EEG signals when TFT surrogates are used for nonstationary signals. We also report an improvement in the performance of nonlinear prediction error N and nonlinear interdependence measure L used by Andrezejak et al., when TFT surrogates are used for nonstationary EEG signals. We also find that the outcome of the nonlinear independence test based on the average cross-clustering coefficient C(cross) is independent of the outcome of the randomness test based on the average clustering coefficient C. Thus, the univariate and bivariate recurrence network measures provide independent information regarding the dynamics of the focal and nonfocal EEG signals. In conclusion, recurrence network analysis combined with nonstationary surrogates can be applied to derive reliable biomarkers to distinguish between epileptogenic and nonepileptogenic brain areas using EEG signals.
NASA Astrophysics Data System (ADS)
Subramaniyam, Narayan Puthanmadam; Hyttinen, Jari
2015-02-01
Recently Andrezejak et al. combined the randomness and nonlinear independence test with iterative amplitude adjusted Fourier transform (iAAFT) surrogates to distinguish between the dynamics of seizure-free intracranial electroencephalographic (EEG) signals recorded from epileptogenic (focal) and nonepileptogenic (nonfocal) brain areas of epileptic patients. However, stationarity is a part of the null hypothesis for iAAFT surrogates and thus nonstationarity can violate the null hypothesis. In this work we first propose the application of the randomness and nonlinear independence test based on recurrence network measures to distinguish between the dynamics of focal and nonfocal EEG signals. Furthermore, we combine these tests with both iAAFT and truncated Fourier transform (TFT) surrogate methods, which also preserves the nonstationarity of the original data in the surrogates along with its linear structure. Our results indicate that focal EEG signals exhibit an increased degree of structural complexity and interdependency compared to nonfocal EEG signals. In general, we find higher rejections for randomness and nonlinear independence tests for focal EEG signals compared to nonfocal EEG signals. In particular, the univariate recurrence network measures, the average clustering coefficient C and assortativity R , and the bivariate recurrence network measure, the average cross-clustering coefficient Ccross, can successfully distinguish between the focal and nonfocal EEG signals, even when the analysis is restricted to nonstationary signals, irrespective of the type of surrogates used. On the other hand, we find that the univariate recurrence network measures, the average path length L , and the average betweenness centrality BC fail to distinguish between the focal and nonfocal EEG signals when iAAFT surrogates are used. However, these two measures can distinguish between focal and nonfocal EEG signals when TFT surrogates are used for nonstationary signals. We also report an improvement in the performance of nonlinear prediction error N and nonlinear interdependence measure L used by Andrezejak et al., when TFT surrogates are used for nonstationary EEG signals. We also find that the outcome of the nonlinear independence test based on the average cross-clustering coefficient Ccross is independent of the outcome of the randomness test based on the average clustering coefficient C . Thus, the univariate and bivariate recurrence network measures provide independent information regarding the dynamics of the focal and nonfocal EEG signals. In conclusion, recurrence network analysis combined with nonstationary surrogates can be applied to derive reliable biomarkers to distinguish between epileptogenic and nonepileptogenic brain areas using EEG signals.
Stochastic field-line wandering in magnetic turbulence with shear. I. Quasi-linear theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalchi, A.; Negrea, M.; Petrisor, I.
2016-07-15
We investigate the random walk of magnetic field lines in magnetic turbulence with shear. In the first part of the series, we develop a quasi-linear theory in order to compute the diffusion coefficient of magnetic field lines. We derive general formulas for the diffusion coefficients in the different directions of space. We like to emphasize that we expect that quasi-linear theory is only valid if the so-called Kubo number is small. We consider two turbulence models as examples, namely, a noisy slab model as well as a Gaussian decorrelation model. For both models we compute the field line diffusion coefficientsmore » and we show how they depend on the aforementioned Kubo number as well as a shear parameter. It is demonstrated that the shear effect reduces all field line diffusion coefficients.« less
NASA Astrophysics Data System (ADS)
Jude Hemanth, Duraisamy; Umamaheswari, Subramaniyan; Popescu, Daniela Elena; Naaji, Antoanela
2016-01-01
Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT) and Finite Ridgelet Transform (FRIT) are used in combination with GA and PSO to improve the efficiency of the image steganography system.
Time-delayed feedback control of diffusion in random walkers.
Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U
2017-07-01
Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, Jin AU
1987-01-01
Earth terrain covers were modeled as random media characterized by different dielectric constants and correlation functions. In order to model sea ice with brine inclusions and vegetation with row structures, the random medium is assumed to be anisotropic. A three layer model is used to simulate a vegetation field or a snow covered ice field with the top layer being snow or leaves, the middle layer being ice or trunks, and the bottom layer being sea water or ground. The strong fluctuation theory with the distorted Born approximation is applied to the solution of the radar backscattering coefficients.
Race and Unemployment: Labor Market Experiences of Black and White Men, 1968-1988.
ERIC Educational Resources Information Center
Wilson, Franklin D.; And Others
1995-01-01
Estimation of multinomial logistic regression models on a sample of unemployed workers suggested that persistently higher black unemployment is due to differential access to employment opportunities by region, occupational placement, labor market segmentation, and discrimination. The racial gap in unemployment is greatest for college-educated…
Test Design Project: Studies in Test Adequacy. Annual Report.
ERIC Educational Resources Information Center
Wilcox, Rand R.
These studies in test adequacy focus on two problems: procedures for estimating reliability, and techniques for identifying ineffective distractors. Fourteen papers are presented on recent advances in measuring achievement (a response to Molenaar); "an extension of the Dirichlet-multinomial model that allows true score and guessing to be…
ERIC Educational Resources Information Center
Grinstead, Mary L.; Mauldin, Teresa; Sabia, Joseph J.; Koonce, Joan; Palmer, Lance
2011-01-01
Using microdata from the American Dream Demonstration, the current study examines factors associated with savings and savings goal achievement (indicated by a matched withdrawal) among participants of individual development account (IDA) programs. Multinomial logit results show that hours of participation in financial education programs, higher…
Predicting the Frequency of Senior Center Attendance.
ERIC Educational Resources Information Center
Miner, Sonia; And Others
1993-01-01
Used data from 1984 Supplement on Aging of the National Health Interview Survey to examine frequency of senior center attendance. Estimated multinomial logistic regression model to distinguish between persons who rarely, sometimes, and frequently attend. Found that more frequent users are older. Greater frequency was associated with lower income…
Support vector machines classifiers of physical activities in preschoolers
USDA-ARS?s Scientific Manuscript database
The goal of this study is to develop, test, and compare multinomial logistic regression (MLR) and support vector machines (SVM) in classifying preschool-aged children physical activity data acquired from an accelerometer. In this study, 69 children aged 3-5 years old were asked to participate in a s...
An Investigation of the Representativeness Heuristic: The Case of a Multiple Choice Exam
ERIC Educational Resources Information Center
Chernoff, Egan J.; Mamolo, Ami; Zazkis, Rina
2016-01-01
By focusing on a particular alteration of the comparative likelihood task, this study contributes to research on teachers' understanding of probability. Our novel task presented prospective teachers with multinomial, contextualized sequences and asked them to identify which was least likely. Results demonstrate that determinants of…
ERIC Educational Resources Information Center
Idsoe, Thormod; Dyregrov, Atle; Idsoe, Ella Cosmovici
2012-01-01
PTSD symptoms related to school bullying have rarely been investigated, and never in national samples. We used data from a national survey to investigate this among students from grades 8 and 9 (n = 963). The prevalence estimates of exposure to bullying were within the range of earlier research findings. Multinomial logistic regression showed that…
University-Industry Linkages in Developing Countries: Perceived Effect on Innovation
ERIC Educational Resources Information Center
Vaaland, Terje I.; Ishengoma, Esther
2016-01-01
Purpose: The purpose of this paper is to assess the perceptions of both universities and the resource-extractive companies on the influence of university-industry linkages (UILs) on innovation in a developing country. Design/Methodology/Approach: A total of 404 respondents were interviewed. Descriptive analysis and multinomial logistic regression…
Diversity and Educational Benefits: Moving Beyond Self-Reported Questionnaire Data
ERIC Educational Resources Information Center
Herzog, Serge
2007-01-01
Effects of ethnic/racial diversity among students and faculty on cognitive growth of undergraduate students are estimated via a series of hierarchical linear and multinomial logistic regression models. Using objective measures of compositional, curricular, and interactional diversity based on actuarial course enrollment records of over 6,000…
Poverty and Material Hardship in Grandparent-Headed Households
ERIC Educational Resources Information Center
Baker, Lindsey A.; Mutchler, Jan E.
2010-01-01
Using the 2001 Survey of Income and Program Participation, the current study examines poverty and material hardship among children living in 3-generation (n = 486), skipped-generation (n = 238), single-parent (n = 2,076), and 2-parent (n = 6,061) households. Multinomial and logistic regression models indicated that children living in…
Victimization and Health Risk Factors among Weapon-Carrying Youth
ERIC Educational Resources Information Center
Stayton, Catherine; McVeigh, Katharine H.; Olson, E. Carolyn; Perkins, Krystal; Kerker, Bonnie D.
2011-01-01
Objective: To compare health risks of 2 subgroups of weapon carriers: victimized and nonvictimized youth. Methods: 2003-2007 NYC Youth Risk Behavior Surveys were analyzed using bivariate analyses and multinomial logistic regression. Results: Among NYC teens, 7.5% reported weapon carrying without victimization; 6.9% reported it with victimization.…
In-State Tuition Policies for Undocumented Youth
ERIC Educational Resources Information Center
Vargas, Edward D.
2011-01-01
This article is an investigation into why U.S. states have enacted, banned, or continued with the status quo regarding in-state tuition policies for unauthorized youth. Using data from multiple government and nonprofit sources, a series of multinomial logistic regressions are estimated to explain the determinants of state behavior across the…
Michael, Yvonne L; Carlson, Nichole E
2009-07-30
Using data from the SHAPE trial, a randomized 6-month neighborhood-based intervention designed to increase walking activity among older adults, this study identified and analyzed social-ecological factors mediating and moderating changes in walking activity. Three potential mediators (social cohesion, walking efficacy, and perception of neighborhood problems) and minutes of brisk walking were assessed at baseline, 3-months, and 6-months. One moderator, neighborhood walkability, was assessed using an administrative GIS database. The mediating effect of change in process variables on change in brisk walking was tested using a product-of-coefficients test, and we evaluated the moderating effect of neighborhood walkability on change in brisk walking by testing the significance of the interaction between walkability and intervention status. Only one of the hypothesized mediators, walking efficacy, explained the intervention effect (product of the coefficients (95% CI) = 8.72 (2.53, 15.56). Contrary to hypotheses, perceived neighborhood problems appeared to suppress the intervention effects (product of the coefficients (95% CI = -2.48, -5.6, -0.22). Neighborhood walkability did not moderate the intervention effect. Walking efficacy may be an important mediator of lay-lead walking interventions for sedentary older adults. Social-ecologic theory-based analyses can support clinical interventions to elucidate the mediators and moderators responsible for producing intervention effects.
NASA Astrophysics Data System (ADS)
Akimoto, Takuma; Yamamoto, Eiji
2016-12-01
Local diffusion coefficients in disordered systems such as spin glass systems and living cells are highly heterogeneous and may change over time. Such a time-dependent and spatially heterogeneous environment results in irreproducibility of single-particle-tracking measurements. Irreproducibility of time-averaged observables has been theoretically studied in the context of weak ergodicity breaking in stochastic processes. Here, we provide rigorous descriptions of equilibrium and non-equilibrium diffusion processes for the annealed transit time model, which is a heterogeneous diffusion model in living cells. We give analytical solutions for the mean square displacement (MSD) and the relative standard deviation of the time-averaged MSD for equilibrium and non-equilibrium situations. We find that the time-averaged MSD grows linearly with time and that the time-averaged diffusion coefficients are intrinsically random (irreproducible) even in the long-time measurements in non-equilibrium situations. Furthermore, the distribution of the time-averaged diffusion coefficients converges to a universal distribution in the sense that it does not depend on initial conditions. Our findings pave the way for a theoretical understanding of distributional behavior of the time-averaged diffusion coefficients in disordered systems.
A simple method for finding the scattering coefficients of quantum graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottrell, Seth S.
2015-09-15
Quantum walks are roughly analogous to classical random walks, and similar to classical walks they have been used to find new (quantum) algorithms. When studying the behavior of large graphs or combinations of graphs, it is useful to find the response of a subgraph to signals of different frequencies. In doing so, we can replace an entire subgraph with a single vertex with variable scattering coefficients. In this paper, a simple technique for quickly finding the scattering coefficients of any discrete-time quantum graph will be presented. These scattering coefficients can be expressed entirely in terms of the characteristic polynomial ofmore » the graph’s time step operator. This is a marked improvement over previous techniques which have traditionally required finding eigenstates for a given eigenvalue, which is far more computationally costly. With the scattering coefficients we can easily derive the “impulse response” which is the key to predicting the response of a graph to any signal. This gives us a powerful set of tools for rapidly understanding the behavior of graphs or for reducing a large graph into its constituent subgraphs regardless of how they are connected.« less
NASA Astrophysics Data System (ADS)
Wang, D.; Cui, Y.
2015-12-01
The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model
NASA Astrophysics Data System (ADS)
Liu, Jian; Li, Baohe; Chen, Xiaosong
2018-02-01
The space-time coupled continuous time random walk model is a stochastic framework of anomalous diffusion with many applications in physics, geology and biology. In this manuscript the time averaged mean squared displacement and nonergodic property of a space-time coupled continuous time random walk model is studied, which is a prototype of the coupled continuous time random walk presented and researched intensively with various methods. The results in the present manuscript show that the time averaged mean squared displacements increase linearly with lag time which means ergodicity breaking occurs, besides, we find that the diffusion coefficient is intrinsically random which shows both aging and enhancement, the analysis indicates that the either aging or enhancement phenomena are determined by the competition between the correlation exponent γ and the waiting time's long-tailed index α.
Badve, Sunil V; Zhang, Lei; Coombes, Jeff S; Pascoe, Elaine M; Cass, Alan; Clarke, Philip; Ferrari, Paolo; McDonald, Stephen P; Morrish, Alicia T; Pedagogos, Eugenie; Perkovic, Vlado; Reidlinger, Donna; Scaria, Anish; Walker, Rowan; Vergara, Liza A; Hawley, Carmel M; Johnson, David W
2015-01-01
Erythropoiesis stimulating agent (ESA)-resistant anemia is common in chronic kidney disease (CKD). To evaluate the determinants of severity of ESA resistance in patients with CKD and primary ESA-resistance. Secondary analysis of a randomized controlled trial (the Handling Erythropoietin Resistance with Oxpentifylline, HERO). 53 adult patients with CKD stage 4 or 5 and primary ESA-resistant anemia (hemoglobin ≤120 g/L, ESA resistance index [ERI] ≥1.0 IU/kg/week/gHb for erythropoietin or ≥0.005 μg/kg/week/gHb for darbepoeitin, no cause for ESA-resistance identified). Iron studies, parathyroid hormone, albumin, liver enzymes, phosphate or markers of oxidative stress and inflammation. Participants were divided into tertiles of ERI. Multinomial logistic regression was used to analyse the determinants of ERI tertiles. All patients, except one, were receiving dialysis for end-stage kidney disease. The mean ± SD ERI values in the low (n = 18), medium (n = 18) and high (n = 17) ERI tertiles were 1.4 ± 0.3, 2.3 ± 0.2 and 3.5 ± 0.8 IU/kg/week/gHb, respectively (P < 0.001). There were no significant differences observed in age, gender, ethnicity, cause of kidney disease, diabetes, iron studies, parathyroid hormone, albumin, liver enzymes, phosphate or markers of oxidative stress and inflammation between the ERI tertiles. The median [inter-quartile range] serum alkaline phosphatase concentrations in the low, medium and high ERI tertiles were 89 [64,121], 99 [76,134 and 148 [87,175] U/L, respectively (P = 0.054). There was a weak but statistically significant association between ERI and serum alkaline phosphatase (R(2) = 0.06, P = 0.03). Using multinomial logistic regression, the risk of being in the high ERI tertile relative to the low ERI tertile increased with increasing serum alkaline phosphatase levels (P = 0.02). No other variables were significantly associated with ERI. Small sample size; bone-specific alkaline phosphatase, other markers of bone turnover and bone biopsies not evaluated. Serum alkaline phosphatase was associated with severity of ESA resistance in ESA-resistant patients with CKD. Large prospective studies are required to confirm this association. ( Australian New Zealand Clinical Trials Registry 12608000199314).
Sikder, Shegufta S; Labrique, Alain B; Craig, Ian M; Wakil, Mohammad Abdul; Shamim, Abu Ahmed; Ali, Hasmot; Mehra, Sucheta; Wu, Lee; Shaikh, Saijuddin; West, Keith P; Christian, Parul
2015-04-18
In communities with low rates of institutional delivery, little data exist on care-seeking behavior for potentially life-threatening obstetric complications. In this analysis, we sought to describe care-seeking patterns for self-reported complications and near misses in rural Bangladesh and to identify factors associated with care seeking for these conditions. Utilizing data from a community-randomized controlled trial enrolling 42,214 pregnant women between 2007 and 2011, we used multivariable multinomial logistic regression to explore the association of demographic and socioeconomic factors, perceived need, and service availability with care seeking for obstetric complications or near misses. We also used multivariable multinomial logistic regression to analyze the factors associated with care seeking by type of obstetric complication (eclampsia, sepsis, hemorrhage, and obstructed labor). Out of 9,576 women with data on care seeking for obstetric complications, 77% sought any care, with 29% (n = 2,150) visiting at least one formal provider and 70% (n = 5,149) visiting informal providers only. The proportion of women seeking at least one formal provider was highest among women reporting eclampsia (57%), followed by hemorrhage (28%), obstructed labor (22%), and sepsis (17%) (p < 0.001). In multivariable analyses, socioeconomic factors such as living in a household from the highest wealth quartile (Relative Risk Ratio of 1.49; 95% CI of [1.33-1.73]), women's literacy (RRR of 1.21; 95% CI of [1.05-1.42]), and women's employment (RRR of 1.10; 95% CI of [1.01-1.18]) were significantly associated with care seeking from formal providers. Service factors including living less than 10 kilometers from a health facility (RRR of 1.16; 95% CI of [1.05-1.28]) and facility availability of comprehensive obstetric services (RRR of 1.25; 95% CI of 1.04-1.36) were also significantly associated with seeking care from formal providers. While the majority of women reporting obstetric complications sought care, less than a third visited health facilities. Improvements in socioeconomic factors such as maternal literacy, coupled with improved geographic access and service availability, may increase care seeking from formal facilities. Enhancing community awareness on symptoms of hemorrhage, sepsis, and obstructed labor and their consequences may promote care seeking for obstetric complications in rural Bangladesh. NCT00860470 .
The development of response surface pathway design to reduce animal numbers in toxicity studies
2014-01-01
Background This study describes the development of Response Surface Pathway (RSP) design, assesses its performance and effectiveness in estimating LD50, and compares RSP with Up and Down Procedures (UDPs) and Random Walk (RW) design. Methods A basic 4-level RSP design was used on 36 male ICR mice given intraperitoneal doses of Yessotoxin. Simulations were performed to optimise the design. A k-adjustment factor was introduced to ensure coverage of the dose window and calculate the dose steps. Instead of using equal numbers of mice on all levels, the number of mice was increased at each design level. Additionally, the binomial outcome variable was changed to multinomial. The performance of the RSP designs and a comparison of UDPs and RW were assessed by simulations. The optimised 4-level RSP design was used on 24 female NMRI mice given Azaspiracid-1 intraperitoneally. Results The in vivo experiment with basic 4-level RSP design estimated the LD50 of Yessotoxin to be 463 μg/kgBW (95% CI: 383–535). By inclusion of the k-adjustment factor with equal or increasing numbers of mice on increasing dose levels, the estimate changed to 481 μg/kgBW (95% CI: 362–566) and 447 μg/kgBW (95% CI: 378–504 μg/kgBW), respectively. The optimised 4-level RSP estimated the LD50 to be 473 μg/kgBW (95% CI: 442–517). A similar increase in power was demonstrated using the optimised RSP design on real Azaspiracid-1 data. The simulations showed that the inclusion of the k-adjustment factor, reduction in sample size by increasing the number of mice on higher design levels and incorporation of a multinomial outcome gave estimates of the LD50 that were as good as those with the basic RSP design. Furthermore, optimised RSP design performed on just three levels reduced the number of animals from 36 to 15 without loss of information, when compared with the 4-level designs. Simulated comparison of the RSP design with UDPs and RW design demonstrated the superiority of RSP. Conclusion Optimised RSP design reduces the number of animals needed. The design converges rapidly on the area of interest and is at least as efficient as both the UDPs and RW design. PMID:24661560
A model for nematode locomotion in soil
Hunt, H. William; Wall, Diana H.; DeCrappeo, Nicole; Brenner, John S.
2001-01-01
Locomotion of nematodes in soil is important for both practical and theoretical reasons. We constructed a model for rate of locomotion. The first model component is a simple simulation of nematode movement among finite cells by both random and directed behaviours. Optimisation procedures were used to fit the simulation output to data from published experiments on movement along columns of soil or washed sand, and thus to estimate the values of the model's movement coefficients. The coefficients then provided an objective means to compare rates of locomotion among studies done under different experimental conditions. The second component of the model is an equation to predict the movement coefficients as a function of controlling factors that have been addressed experimentally: soil texture, bulk density, water potential, temperature, trophic group of nematode, presence of an attractant or physical gradient and the duration of the experiment. Parameters of the equation were estimated by optimisation to achieve a good fit to the estimated movement coefficients. Bulk density, which has been reported in a minority of published studies, is predicted to have an important effect on rate of locomotion, at least in fine-textured soils. Soil sieving, which appears to be a universal practice in laboratory studies of nematode movement, is predicted to negatively affect locomotion. Slower movement in finer textured soils would be expected to increase isolation among local populations, and thus to promote species richness. Future additions to the model that might improve its utility include representing heterogeneity within populations in rate of movement, development of gradients of chemical attractants, trade-offs between random and directed components of movement, species differences in optimal temperature and water potential, and interactions among factors controlling locomotion.
Davies, Simon J.C.; Mulsant, Benoit H.; Flint, Alastair J.; Rothschild, Anthony J.; Whyte, Ellen M.; Meyers, Barnett S.
2014-01-01
Background There are conflicting results on the impact of anxiety on depression outcomes. The impact of anxiety has not been studied in major depression with psychotic features (“psychotic depression”). Aims We assessed the impact of specific anxiety symptoms and disorders on the outcomes of psychotic depression. Methods We analyzed data from the Study of Pharmacotherapy for Psychotic Depression that randomized 259 younger and older participants to either olanzapine plus placebo or olanzapine plus sertraline. We assessed the impact of specific anxiety symptoms from the Brief Psychiatric Rating Scale (“tension”, “anxiety” and “somatic concerns” and a composite anxiety score) and diagnoses (panic disorder and GAD) on psychotic depression outcomes using linear or logistic regression. Age, gender, education and benzodiazepine use (at baseline and end) were included as covariates. Results Anxiety symptoms at baseline and anxiety disorder diagnoses differentially impacted outcomes. On adjusted linear regression there was an association between improvement in depressive symptoms and both baseline “tension” (coefficient = 0.784; 95% CI: 0.169–1.400; p = 0.013) and the composite anxiety score (regression coefficient = 0.348; 95% CI: 0.064–0.632; p = 0.017). There was an interaction between “tension” and treatment group, with better responses in those randomized to combination treatment if they had high baseline anxiety scores (coefficient = 1.309; 95% CI: 0.105–2.514; p = 0.033). In contrast, panic disorder was associated with worse clinical outcomes (coefficient = −3.858; 95% CI: –7.281 to −0.434; p = 0.027) regardless of treatment. Conclusions Our results suggest that analysis of the impact of anxiety on depression outcome needs to differentiate psychic and somatic symptoms. PMID:24656524
Evolution of the concentration PDF in random environments modeled by global random walk
NASA Astrophysics Data System (ADS)
Suciu, Nicolae; Vamos, Calin; Attinger, Sabine; Knabner, Peter
2013-04-01
The evolution of the probability density function (PDF) of concentrations of chemical species transported in random environments is often modeled by ensembles of notional particles. The particles move in physical space along stochastic-Lagrangian trajectories governed by Ito equations, with drift coefficients given by the local values of the resolved velocity field and diffusion coefficients obtained by stochastic or space-filtering upscaling procedures. A general model for the sub-grid mixing also can be formulated as a system of Ito equations solving for trajectories in the composition space. The PDF is finally estimated by the number of particles in space-concentration control volumes. In spite of their efficiency, Lagrangian approaches suffer from two severe limitations. Since the particle trajectories are constructed sequentially, the demanded computing resources increase linearly with the number of particles. Moreover, the need to gather particles at the center of computational cells to perform the mixing step and to estimate statistical parameters, as well as the interpolation of various terms to particle positions, inevitably produce numerical diffusion in either particle-mesh or grid-free particle methods. To overcome these limitations, we introduce a global random walk method to solve the system of Ito equations in physical and composition spaces, which models the evolution of the random concentration's PDF. The algorithm consists of a superposition on a regular lattice of many weak Euler schemes for the set of Ito equations. Since all particles starting from a site of the space-concentration lattice are spread in a single numerical procedure, one obtains PDF estimates at the lattice sites at computational costs comparable with those for solving the system of Ito equations associated to a single particle. The new method avoids the limitations concerning the number of particles in Lagrangian approaches, completely removes the numerical diffusion, and speeds up the computation by orders of magnitude. The approach is illustrated for the transport of passive scalars in heterogeneous aquifers, with hydraulic conductivity modeled as a random field.
Moerbeek, Mirjam; van Schie, Sander
2016-07-11
The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects. The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are investigated by means of a simulation study. The factors in this study are the degree of imbalance, the covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and measured at the cluster level; the outcome is continuous and measured at the individual level. The results show covariate imbalance results in negligible parameter bias and small standard error bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the required number of clusters to achieve a desired power level is smallest. The possibility of covariate imbalance should be taken into account while calculating the sample size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified, be actually measured and included in the statistical model to avoid severe levels of parameter and standard error bias and insufficient power levels.
Coherent Power Analysis in Multilevel Studies Using Parameters from Surveys
ERIC Educational Resources Information Center
Rhoads, Christopher
2017-01-01
Researchers designing multisite and cluster randomized trials of educational interventions will usually conduct a power analysis in the planning stage of the study. To conduct the power analysis, researchers often use estimates of intracluster correlation coefficients and effect sizes derived from an analysis of survey data. When there is…
NASA Astrophysics Data System (ADS)
Park, Jungmin; Choi, Yong-Sang
2018-04-01
Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.
NASA Astrophysics Data System (ADS)
Putov, A. V.; Kopichev, M. M.; Ignatiev, K. V.; Putov, V. V.; Stotckaia, A. D.
2017-01-01
In this paper it is considered a discussion of the technique that realizes a brand new method of runway friction coefficient measurement based upon the proposed principle of measuring wheel braking control for the imitation of antilock braking modes that are close to the real braking modes of the aircraft chassis while landing that are realized by the aircraft anti-skid systems. Also here is the description of the model of towed measuring device that realizes a new technique of runway friction coefficient measuring, based upon the measuring wheel braking control principle. For increasing the repeatability accuracy of electromechanical braking imitation system the sideslip (brake) adaptive control system is proposed. Based upon the Burkhard model and additive random processes several mathematical models were created that describes the friction coefficient arrangement along the airstrip with different qualitative adjectives. Computer models of friction coefficient measuring were designed and first in the world the research of correlation between the friction coefficient measuring results and shape variations, intensity and cycle frequency of the measuring wheel antilock braking modes. The sketch engineering documentation was designed and prototype of the latest generation measuring device is ready to use. The measuring device was tested on the autonomous electromechanical examination laboratory treadmill bench. The experiments approved effectiveness of method of imitation the antilock braking modes for solving the problem of correlation of the runway friction coefficient measuring.
NASA Technical Reports Server (NTRS)
Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong
2011-01-01
Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.
Analyzing crash frequency in freeway tunnels: A correlated random parameters approach.
Hou, Qinzhong; Tarko, Andrew P; Meng, Xianghai
2018-02-01
The majority of past road safety studies focused on open road segments while only a few focused on tunnels. Moreover, the past tunnel studies produced some inconsistent results about the safety effects of the traffic patterns, the tunnel design, and the pavement conditions. The effects of these conditions therefore remain unknown, especially for freeway tunnels in China. The study presented in this paper investigated the safety effects of these various factors utilizing a four-year period (2009-2012) of data as well as three models: 1) a random effects negative binomial model (RENB), 2) an uncorrelated random parameters negative binomial model (URPNB), and 3) a correlated random parameters negative binomial model (CRPNB). Of these three, the results showed that the CRPNB model provided better goodness-of-fit and offered more insights into the factors that contribute to tunnel safety. The CRPNB was not only able to allocate the part of the otherwise unobserved heterogeneity to the individual model parameters but also was able to estimate the cross-correlations between these parameters. Furthermore, the study results showed that traffic volume, tunnel length, proportion of heavy trucks, curvature, and pavement rutting were associated with higher frequencies of traffic crashes, while the distance to the tunnel wall, distance to the adjacent tunnel, distress ratio, International Roughness Index (IRI), and friction coefficient were associated with lower crash frequencies. In addition, the effects of the heterogeneity of the proportion of heavy trucks, the curvature, the rutting depth, and the friction coefficient were identified and their inter-correlations were analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shonnard, D R; Taylor, R T; Tompson, A; Knapp, R B
1992-01-01
A study of the random motility and chemotaxis of Methylosinus trichosporium OB3b was conducted by using Palleroni-chamber microcapillary assay procedures. Under the growth conditions employed, this methanotroph was observed qualitatively with a microscope to be either slightly motile or essentially nonmotile. However, the cells did not not respond in the microcapillary assays in the manner expected for nonmotile Brownian particles. As a consequence, several hydrodynamic effects on these Palleroni microcapillary assays were uncovered. In the random-motility microcapillary assay, nondiffusive cell accumulations occurred that were strongly dependent upon cell concentration. An apparent minimal random-motility coefficient (mu) for this bacterial cell of 1.0 x 10(-7) cm2/s was estimated from microcapillary assays. A simple alternative spectrophotometric assay, based upon gravitational settling, was developed and shown to be an improvement over the Palleroni microcapillary motility assay for M. trichosporium OB3b in that it yielded a more-accurate threefold-lower random-motility coefficient. In addition, it provided a calculation of the gravitational-settling velocity. In the chemotaxis microcapillary assay, the apparent chemotactic responses were strongest for the highest test-chemical concentrations in the microcapillaries, were correlated with microcapillary fluid density, and were strongly dependent upon the microcapillary volume. A simple method to establish the maximal concentration of a chemical that can be tested and to quantify any contributions of abiotic convection is described. Investigators should be aware of the potential problems due to density-driven convection when using these commonly employed microcapillary assays for studying cells which have low motilities. PMID:1444383
Study Design Rigor in Animal-Experimental Research Published in Anesthesia Journals.
Hoerauf, Janine M; Moss, Angela F; Fernandez-Bustamante, Ana; Bartels, Karsten
2018-01-01
Lack of reproducibility of preclinical studies has been identified as an impediment for translation of basic mechanistic research into effective clinical therapies. Indeed, the National Institutes of Health has revised its grant application process to require more rigorous study design, including sample size calculations, blinding procedures, and randomization steps. We hypothesized that the reporting of such metrics of study design rigor has increased over time for animal-experimental research published in anesthesia journals. PubMed was searched for animal-experimental studies published in 2005, 2010, and 2015 in primarily English-language anesthesia journals. A total of 1466 publications were graded on the performance of sample size estimation, randomization, and blinding. Cochran-Armitage test was used to assess linear trends over time for the primary outcome of whether or not a metric was reported. Interrater agreement for each of the 3 metrics (power, randomization, and blinding) was assessed using the weighted κ coefficient in a 10% random sample of articles rerated by a second investigator blinded to the ratings of the first investigator. A total of 1466 manuscripts were analyzed. Reporting for all 3 metrics of experimental design rigor increased over time (2005 to 2010 to 2015): for power analysis, from 5% (27/516), to 12% (59/485), to 17% (77/465); for randomization, from 41% (213/516), to 50% (243/485), to 54% (253/465); and for blinding, from 26% (135/516), to 38% (186/485), to 47% (217/465). The weighted κ coefficients and 98.3% confidence interval indicate almost perfect agreement between the 2 raters beyond that which occurs by chance alone (power, 0.93 [0.85, 1.0], randomization, 0.91 [0.85, 0.98], and blinding, 0.90 [0.84, 0.96]). Our hypothesis that reported metrics of rigor in animal-experimental studies in anesthesia journals have increased during the past decade was confirmed. More consistent reporting, or explicit justification for absence, of sample size calculations, blinding techniques, and randomization procedures could better enable readers to evaluate potential sources of bias in animal-experimental research manuscripts. Future studies should assess whether such steps lead to improved translation of animal-experimental anesthesia research into successful clinical trials.
Least-squares Minimization Approaches to Interpret Total Magnetic Anomalies Due to Spheres
NASA Astrophysics Data System (ADS)
Abdelrahman, E. M.; El-Araby, T. M.; Soliman, K. S.; Essa, K. S.; Abo-Ezz, E. R.
2007-05-01
We have developed three different least-squares approaches to determine successively: the depth, magnetic angle, and amplitude coefficient of a buried sphere from a total magnetic anomaly. By defining the anomaly value at the origin and the nearest zero-anomaly distance from the origin on the profile, the problem of depth determination is transformed into the problem of finding a solution of a nonlinear equation of the form f(z)=0. Knowing the depth and applying the least-squares method, the magnetic angle and amplitude coefficient are determined using two simple linear equations. In this way, the depth, magnetic angle, and amplitude coefficient are determined individually from all observed total magnetic data. The method is applied to synthetic examples with and without random errors and tested on a field example from Senegal, West Africa. In all cases, the depth solutions are in good agreement with the actual ones.
A Small and Slim Coaxial Probe for Single Rice Grain Moisture Sensing
You, Kok Yeow; Mun, Hou Kit; You, Li Ling; Salleh, Jamaliah; Abbas, Zulkifly
2013-01-01
A moisture detection of single rice grains using a slim and small open-ended coaxial probe is presented. The coaxial probe is suitable for the nondestructive measurement of moisture values in the rice grains ranging from from 9.5% to 26%. Empirical polynomial models are developed to predict the gravimetric moisture content of rice based on measured reflection coefficients using a vector network analyzer. The relationship between the reflection coefficient and relative permittivity were also created using a regression method and expressed in a polynomial model, whose model coefficients were obtained by fitting the data from Finite Element-based simulation. Besides, the designed single rice grain sample holder and experimental set-up were shown. The measurement of single rice grains in this study is more precise compared to the measurement in conventional bulk rice grains, as the random air gap present in the bulk rice grains is excluded. PMID:23493127
Fu, Yulong; Ma, Jing; Tan, Liying; Yu, Siyuan; Lu, Gaoyuan
2018-04-10
In this paper, new expressions of the channel-correlation coefficient and its components (the large- and small-scale channel-correlation coefficients) for a plane wave are derived for a horizontal link in moderate-to-strong non-Kolmogorov turbulence using a generalized effective atmospheric spectrum which includes finite-turbulence inner and outer scales and high-wave-number "bump". The closed-form expression of the average bit error rate (BER) of the coherent free-space optical communication system is derived using the derived channel-correlation coefficients and an α-μ distribution to approximate the sum of the square root of arbitrarily correlated Gamma-Gamma random variables. Analytical results are provided to investigate the channel correlation and evaluate the average BER performance. The validity of the proposed approximation is illustrated by Monte Carlo simulations. This work will help with further investigation of the fading correlation in spatial diversity systems.
Seroussi, Inbar; Grebenkov, Denis S.; Pasternak, Ofer; Sochen, Nir
2017-01-01
In order to bridge microscopic molecular motion with macroscopic diffusion MR signal in complex structures, we propose a general stochastic model for molecular motion in a magnetic field. The Fokker-Planck equation of this model governs the probability density function describing the diffusion-magnetization propagator. From the propagator we derive a generalized version of the Bloch-Torrey equation and the relation to the random phase approach. This derivation does not require assumptions such as a spatially constant diffusion coefficient, or ad-hoc selection of a propagator. In particular, the boundary conditions that implicitly incorporate the microstructure into the diffusion MR signal can now be included explicitly through a spatially varying diffusion coefficient. While our generalization is reduced to the conventional Bloch-Torrey equation for piecewise constant diffusion coefficients, it also predicts scenarios in which an additional term to the equation is required to fully describe the MR signal. PMID:28242566
The Delicate Analysis of Short-Term Load Forecasting
NASA Astrophysics Data System (ADS)
Song, Changwei; Zheng, Yuan
2017-05-01
This paper proposes a new method for short-term load forecasting based on the similar day method, correlation coefficient and Fast Fourier Transform (FFT) to achieve the precision analysis of load variation from three aspects (typical day, correlation coefficient, spectral analysis) and three dimensions (time dimension, industry dimensions, the main factors influencing the load characteristic such as national policies, regional economic, holidays, electricity and so on). First, the branch algorithm one-class-SVM is adopted to selection the typical day. Second, correlation coefficient method is used to obtain the direction and strength of the linear relationship between two random variables, which can reflect the influence caused by the customer macro policy and the scale of production to the electricity price. Third, Fourier transform residual error correction model is proposed to reflect the nature of load extracting from the residual error. Finally, simulation result indicates the validity and engineering practicability of the proposed method.
NASA Astrophysics Data System (ADS)
Bykov, Andrei M.; Toptygin, Igor'N.
1993-11-01
This review presents methods available for calculating transport coefficients for impurity particles in plasmas with strong long-wave MHD-type velocity and magnetic-field fluctuations, and random ensembles of strong shock fronts. The renormalization of the coefficients of the mean-field equation of turbulent dynamo theory is also considered. Particular attention is devoted to the renormalization method developed by the authors in which the renormalized transport coefficients are calculated from a nonlinear transcendental equation (or a set of such equations) and are expressed in the form of explicit functions of pair correlation tensors describing turbulence. Numerical calculations are reproduced for different turbulence spectra. Spatial transport in a magnetic field and particle acceleration by strong turbulence are investigated. The theory can be used in a wide range of practical problems in plasma physics, atmospheric physics, ocean physics, astrophysics, cosmic-ray physics, and so on.
ERIC Educational Resources Information Center
Morgan, Paul L.; Li, Hui; Cook, Michael; Farkas, George; Hillemeier, Marianne M.; Lin, Yu-chu
2016-01-01
We sought to identify which kindergarten children are simultaneously at risk of moderate or severe symptomatology in both attention-deficit/hyperactivity disorder (ADHD) and conduct disorder (CD) as adolescents. These risk factor estimates have not been previously available. We conducted multinomial logistic regression analyses of multiinformant…
A Simplified Conjoint Recognition Paradigm for the Measurement of Gist and Verbatim Memory
ERIC Educational Resources Information Center
Stahl, Christoph; Klauer, Karl Christoph
2008-01-01
The distinction between verbatim and gist memory traces has furthered the understanding of numerous phenomena in various fields, such as false memory research, research on reasoning and decision making, and cognitive development. To measure verbatim and gist memory empirically, an experimental paradigm and multinomial measurement model has been…
Foreign Diploma versus Immigrant Background: Determinants of Labour Market Success or Failure?
ERIC Educational Resources Information Center
Storen, Liv Anne; Wiers-Jenssen, Jannecke
2010-01-01
This article compares the labour market situation of graduates with different types of international background. The authors look at four groups of graduates: immigrants and ethnic Norwegians graduated in Norway and immigrants and ethnic Norwegians graduated abroad. By employing multinomial logistic regression analyses the authors find that ethnic…
Motivations and Benefits for Attaining HR Certifications
ERIC Educational Resources Information Center
Lester, Scott W.; Dwyer, Dale J.
2012-01-01
Purpose: The aim of this paper is to examine the motivations and benefits for pursuing or not pursuing the PHR and SPHR. Design/methodology/approach: Using a sample of 1,862 participants, the study used multinomial logistic and hierarchical linear regression to test six hypotheses. Findings: Participants pursuing SPHR were more likely to report…
Latent spatial models and sampling design for landscape genetics
Ephraim M. Hanks; Melvin B. Hooten; Steven T. Knick; Sara J. Oyler-McCance; Jennifer A. Fike; Todd B. Cross; Michael K. Schwartz
2016-01-01
We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial...
2012-11-01
use in this work the variational approximation algo- rithm implemented and distributed by Pr . Blei1. Each learned multinomial distribution φk is tra...4,111,240 newswire articles collected from four distinct international sources including the New York Times (Graff and Cieri, 2003). The New York Times
Early Family Formation among White, Black, and Mexican American Women
ERIC Educational Resources Information Center
Landale, Nancy S.; Schoen, Robert; Daniels, Kimberly
2010-01-01
Using data from Waves I and III of Add Health, this study examines early family formation among 6,144 White, Black, and Mexican American women. Drawing on cultural and structural perspectives, models of the first and second family transitions (cohabitation, marriage, or childbearing) are estimated using discrete-time multinomial logistic…
ERIC Educational Resources Information Center
Winfield, Evelyn B.; Whaley, Arthur L.
2005-01-01
The present study examined relationship status, psychological orientation toward sexual risk taking, and other characteristics as potential correlates of risky sexual behavior in a sample of 223 heterosexual African American college students. Risky sexual behavior was investigated as a multinomial variable (i.e., abstinence, consistent condom use,…
School Climate: The Controllable and the Uncontrollable
ERIC Educational Resources Information Center
Sulak, Tracey N.
2018-01-01
A positive school climate impacts students by promoting positive relations among students, staff and faculty of the school. The current study used latent class analysis and multinomial regression with R3STEP to analyse patterns of negative behaviours in schools and test the association of these patterns with structural variables like school size,…
Bayesian Network Meta-Analysis for Unordered Categorical Outcomes with Incomplete Data
ERIC Educational Resources Information Center
Schmid, Christopher H.; Trikalinos, Thomas A.; Olkin, Ingram
2014-01-01
We develop a Bayesian multinomial network meta-analysis model for unordered (nominal) categorical outcomes that allows for partially observed data in which exact event counts may not be known for each category. This model properly accounts for correlations of counts in mutually exclusive categories and enables proper comparison and ranking of…
Using Computational Text Classification for Qualitative Research and Evaluation in Extension
ERIC Educational Resources Information Center
Smith, Justin G.; Tissing, Reid
2018-01-01
This article introduces a process for computational text classification that can be used in a variety of qualitative research and evaluation settings. The process leverages supervised machine learning based on an implementation of a multinomial Bayesian classifier. Applied to a community of inquiry framework, the algorithm was used to identify…
An Analysis of Losses to the Southern Commercial Timberland Base
Ian A. Munn; David Cleaves
1998-01-01
Demographic and physical factors influencing the conversion of commercial timberland iu the south to non-forestry uses between the last two Forest Inventory Analysis (FIA) surveys were investigated. GIS techniques linked Census data and FIA plot level data. Multinomial logit regression identified factors associated with losses to the timberland base. Conversion to...
Racial Threat and White Opposition to Bilingual Education in Texas
ERIC Educational Resources Information Center
Hempel, Lynn M.; Dowling, Julie A.; Boardman, Jason D.; Ellison, Christopher G.
2013-01-01
This study examines local contextual conditions that influence opposition to bilingual education among non-Hispanic Whites, net of individual-level characteristics. Data from the Texas Poll (N = 615) are used in conjunction with U.S. Census data to test five competing hypotheses using binomial and multinomial logistic regression models. Our…
Application of a Multidimensional Nested Logit Model to Multiple-Choice Test Items
ERIC Educational Resources Information Center
Bolt, Daniel M.; Wollack, James A.; Suh, Youngsuk
2012-01-01
Nested logit models have been presented as an alternative to multinomial logistic models for multiple-choice test items (Suh and Bolt in "Psychometrika" 75:454-473, 2010) and possess a mathematical structure that naturally lends itself to evaluating the incremental information provided by attending to distractor selection in scoring. One potential…
Two-Phase Item Selection Procedure for Flexible Content Balancing in CAT
ERIC Educational Resources Information Center
Cheng, Ying; Chang, Hua-Hua; Yi, Qing
2007-01-01
Content balancing is an important issue in the design and implementation of computerized adaptive testing (CAT). Content-balancing techniques that have been applied in fixed content balancing, where the number of items from each content area is fixed, include constrained CAT (CCAT), the modified multinomial model (MMM), modified constrained CAT…
Caste, Class, and Urbanization: The Shaping of Religious Community in Contemporary India
ERIC Educational Resources Information Center
Stroope, Samuel
2012-01-01
Building on the implications of qualitative work from India and urbanism theories, I aim to understand whether religious bonding social capital in contemporary India increases with greater urbanization and whether such increases are moderated by caste or social class position. Results from multinomial logistic regression on 1,417 Hindu respondents…
American Youths' Access to Substance Abuse Treatment: Does Type of Treatment Facility Matter?
ERIC Educational Resources Information Center
Lo, Celia C.; Cheng, Tyrone C.
2013-01-01
Using data from the 2007 National Survey on Drug Use and Health, this study examines whether several social exclusion and psychological factors affect adolescents' receipt of substance abuse treatment. Multinomial logistic regression techniques were used to analyze data. The study asked how the specified factors provide pathways to receipt of…
Primary Factors Related to Multiple Placements for Children in Out-of-Home Care
ERIC Educational Resources Information Center
Eggertsen, Lars
2008-01-01
Using an ecological framework, this study identified which factors related to out-of-home placements significantly influenced multiple placements for children in Utah during 2000, 2001, and 2002. Multinomial logistic regression statistical procedures and a geographical information system (GIS) were used to analyze the data. The final model…
ERIC Educational Resources Information Center
Dube, Chad; Starns, Jeffrey J.; Rotello, Caren M.; Ratcliff, Roger
2012-01-01
A classic question in the recognition memory literature is whether retrieval is best described as a continuous-evidence process consistent with signal detection theory (SDT), or a threshold process consistent with many multinomial processing tree (MPT) models. Because receiver operating characteristics (ROCs) based on confidence ratings are…
Leavers, Movers, and Stayers: The Role of Workplace Conditions in Teacher Mobility Decisions
ERIC Educational Resources Information Center
Kukla-Acevedo, Sharon
2009-01-01
The author explored whether 3 workplace conditions were related to teacher mobility decisions. The modeling strategy incorporated a series of binomial and multinomial logistic models to estimate the effects of administrative support, classroom control, and behavioral climate on teachers' decisions to quit teaching or switch schools. The results…
Institutional Discharges and Subsequent Shelter Use among Unaccompanied Adults in New York City
ERIC Educational Resources Information Center
Metraux, Stephen; Byrne, Thomas; Culhane, Dennis P.
2010-01-01
This study empirically examines the link between homelessness and discharges from other institutions. An administrative record match was undertaken to determine rates of discharge from institutional care for 9,247 unaccompanied adult shelter users in New York City. Cluster analysis and multinomial logistic regression analysis was then used to…
ERIC Educational Resources Information Center
Street, Nathan Lee
2017-01-01
Teacher value-added measures (VAM) are designed to provide information regarding teachers' causal impact on the academic growth of students while controlling for exogenous variables. While some researchers contend VAMs successfully and authentically measure teacher causality on learning, others suggest VAMs cannot adequately control for exogenous…
Profiles of Supportive Alumni: Donors, Volunteers, and Those Who "Do It All"
ERIC Educational Resources Information Center
Weerts, David J.; Ronca, Justin M.
2007-01-01
In the competitive marketplace of higher education, college and university alumni are increasingly called on to support their institutions in multiple ways: political advocacy, volunteerism, and charitable giving. Drawing on alumni survey data gathered from a large research extensive university, we employ a multinomial logistic regression model to…
ERIC Educational Resources Information Center
Zwick, Rebecca; Lenaburg, Lubella
2009-01-01
In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…
John Hogland; Nedret Billor; Nathaniel Anderson
2013-01-01
Discriminant analysis, referred to as maximum likelihood classification within popular remote sensing software packages, is a common supervised technique used by analysts. Polytomous logistic regression (PLR), also referred to as multinomial logistic regression, is an alternative classification approach that is less restrictive, more flexible, and easy to interpret. To...
Impact of Perceived Risk and Friend Influence on Alcohol and Marijuana Use among Students
ERIC Educational Resources Information Center
Merianos, Ashley L.; Rosen, Brittany L.; Montgomery, LaTrice; Barry, Adam E.; Smith, Matthew Lee
2017-01-01
We performed a secondary analysis of Adolescent Health Risk Behavior Survey data (N=937), examining associations between lifetime alcohol and marijuana use with intrapersonal (i.e., risk perceptions) and interpersonal (e.g., peer approval and behavior) factors. Multinomial and binary logistic regression analyses contend students reporting lifetime…
ERIC Educational Resources Information Center
Saltonstall, Margot
2013-01-01
This study seeks to advance and expand research on college student success. Using multinomial logistic regression analysis, the study investigates the contribution of psychosocial variables above and beyond traditional achievement and demographic measures to predicting first-semester college grade point average (GPA). It also investigates if…
New machine-learning algorithms for prediction of Parkinson's disease
NASA Astrophysics Data System (ADS)
Mandal, Indrajit; Sairam, N.
2014-03-01
This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.
Profiles of internalizing and externalizing symptoms associated with bullying victimization.
Eastman, Meridith; Foshee, Vangie; Ennett, Susan; Sotres-Alvarez, Daniela; Reyes, H Luz McNaughton; Faris, Robert; North, Kari
2018-06-01
This study identified profiles of internalizing (anxiety and depression) and externalizing (delinquency and violence against peers) symptoms among bullying victims and examined associations between bullying victimization characteristics and profile membership. The sample consisted of 1196 bullying victims in grades 8-10 (M age = 14.4, SD = 1.01) who participated in The Context Study in three North Carolina counties in Fall 2003. Five profiles were identified using latent profile analysis: an asymptomatic profile and four profiles capturing combinations of internalizing and externalizing symptoms. Associations between bullying characteristics and membership in symptom profiles were tested using multinomial logistic regression. More frequent victimization increased odds of membership in the two high internalizing profiles compared to the asymptomatic profile. Across all multinomial logistic regression models, when the high internalizing, high externalizing profile was the reference category, adolescents who received any type of bullying (direct, indirect, or dual) were more likely to be in this category than any others. Copyright © 2018 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Rong, Hu; Nianhua, Xie; Jun, Xu; Lianguo, Ruan; Si, Wu; Sheng, Wei; Heng, Guo; Xia, Wang
2017-12-01
We aimed to explore the prevalence of and risk factors for depressive symptoms (DS) among people living with HIV/AIDS (PLWHA) receiving antiretroviral treatment (ART) in Wuhan, Hubei, China. A cross-sectional study evaluating adult PLWHA receiving ART in nine designated clinical hospitals was conducted from October to December 2015. The validated Beck Depression Inventory (BDI) was used to assess DS in eligible participants. Socio-demographical, epidemiological and clinical data were directly extracted from the case reporting database of the China HIV/AIDS Information Network. Multinomial regression analysis was used to explore the risk factors for DS. 394 participants were finally included in all analyses. 40.3% were found to have DS with 13.7% having mild DS and 26.6% having moderate to severe DS. The results of multinomial regression analysis suggested that being married or living with a partner, recent experience of ART-related side effects, and/or history of HCV infection were positively associated with mild DS, while increasing age was positively associated with moderate to severe DS.
A Multilevel Model for Comorbid Outcomes: Obesity and Diabetes in the US
Congdon, Peter
2010-01-01
Multilevel models are overwhelmingly applied to single health outcomes, but when two or more health conditions are closely related, it is important that contextual variation in their joint prevalence (e.g., variations over different geographic settings) is considered. A multinomial multilevel logit regression approach for analysing joint prevalence is proposed here that includes subject level risk factors (e.g., age, race, education) while also taking account of geographic context. Data from a US population health survey (the 2007 Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method, with a six category multinomial outcome defined by diabetic status and weight category (obese, overweight, normal). The influence of geographic context is partly represented by known geographic variables (e.g., county poverty), and partly by a model for latent area influences. In particular, a shared latent variable (common factor) approach is proposed to measure the impact of unobserved area influences on joint weight and diabetes status, with the latent variable being spatially structured to reflect geographic clustering in risk. PMID:20616977
Body mass index and employment status: A new look.
Kinge, Jonas Minet
2016-09-01
Earlier literature has usually modelled the impact of obesity on employment status as a binary choice (employed, yes/no). I provide new evidence on the impact of obesity on employment status by treating the dependent variable as a as a multinomial choice variable. Using data from a representative English survey, with measured height and weight on parents and children, I define employment status as one of four: working; looking for paid work; permanently not working due to disability; and, looking after home or family. I use a multinomial logit model controlling for a set of covariates. I also run instrumental variable models, instrumenting for Body Mass Index (BMI) based on genetic variation in weight. I find that BMI and obesity significantly increase the probability of "not working due to disability". The results for the other employment outcomes are less clear. My findings also indicate that BMI affects employment through its effect on health. Factors other than health may be less important in explaining the impact of BMI/obesity on employment. Copyright © 2016 Elsevier B.V. All rights reserved.
Sampaolo, Letizia; Tommaso, Giulia; Gherardi, Bianca; Carrozzi, Giuliano; Freni Sterrantino, Anna; Ottone, Marta; Goldoni, Carlo Alberto; Bertozzi, Nicoletta; Scaringi, Meri; Bolognesi, Lara; Masocco, Maria; Salmaso, Stefania; Lauriola, Paolo
2017-01-01
"OBJECTIVES: to identify groups of people in relation to the perception of environmental risk and to assess the main characteristics using data collected in the environmental module of the surveillance network Italian Behavioral Risk Factor Surveillance System (PASSI). perceptive profiles were identified using a latent class analysis; later they were included as outcome in multinomial logistic regression models to assess the association between environmental risk perception and demographic, health, socio-economic and behavioural variables. the latent class analysis allowed to split the sample in "worried", "indifferent", and "positive" people. The multinomial logistic regression model showed that the "worried" profile typically includes people of Italian nationality, living in highly urbanized areas, with a high level of education, and with economic difficulties; they pay special attention to their own health and fitness, but they have a negative perception of their own psychophysical state. the application of advanced statistical analysis enable to appraise PASSI data in order to characterize the perception of environmental risk, making the planning of interventions related to risk communication possible. ".
Mostafa, Kamal S M
2011-04-01
Malnutrition among under-five children is a chronic problem in developing countries. This study explores the socio-economic determinants of severe and moderate stunting among under-five children of rural Bangladesh. The study used data from the 2007 Bangladesh Demographic and Health Survey. Cross-sectional and multinomial logistic regression analyses were used to assess the effect of the socio-demographic variables on moderate and severe stunting over normal among the children. Findings revealed that over two-fifths of the children were stunted, of which 26.3% were moderately stunted and 15.1% were severely stunted. The multivariate multinomial logistic regression analysis yielded significantly increased risk of severe stunting (OR=2.53, 95% CI=1.34-4.79) and moderate stunting (OR=2.37, 95% CI=1.47-3.83) over normal among children with a thinner mother. Region, father's education, toilet facilities, child's age, birth order of children and wealth index were also important determinants of children's nutritional status. Development and poverty alleviation programmes should focus on the disadvantaged rural segments of people to improve their nutritional status.
NASA Astrophysics Data System (ADS)
Zhu, Wei; Timmermans, Harry
2011-06-01
Models of geographical choice behavior have been dominantly based on rational choice models, which assume that decision makers are utility-maximizers. Rational choice models may be less appropriate as behavioral models when modeling decisions in complex environments in which decision makers may simplify the decision problem using heuristics. Pedestrian behavior in shopping streets is an example. We therefore propose a modeling framework for pedestrian shopping behavior incorporating principles of bounded rationality. We extend three classical heuristic rules (conjunctive, disjunctive and lexicographic rule) by introducing threshold heterogeneity. The proposed models are implemented using data on pedestrian behavior in Wang Fujing Street, the city center of Beijing, China. The models are estimated and compared with multinomial logit models and mixed logit models. Results show that the heuristic models are the best for all the decisions that are modeled. Validation tests are carried out through multi-agent simulation by comparing simulated spatio-temporal agent behavior with the observed pedestrian behavior. The predictions of heuristic models are slightly better than those of the multinomial logit models.
A general equation to obtain multiple cut-off scores on a test from multinomial logistic regression.
Bersabé, Rosa; Rivas, Teresa
2010-05-01
The authors derive a general equation to compute multiple cut-offs on a total test score in order to classify individuals into more than two ordinal categories. The equation is derived from the multinomial logistic regression (MLR) model, which is an extension of the binary logistic regression (BLR) model to accommodate polytomous outcome variables. From this analytical procedure, cut-off scores are established at the test score (the predictor variable) at which an individual is as likely to be in category j as in category j+1 of an ordinal outcome variable. The application of the complete procedure is illustrated by an example with data from an actual study on eating disorders. In this example, two cut-off scores on the Eating Attitudes Test (EAT-26) scores are obtained in order to classify individuals into three ordinal categories: asymptomatic, symptomatic and eating disorder. Diagnoses were made from the responses to a self-report (Q-EDD) that operationalises DSM-IV criteria for eating disorders. Alternatives to the MLR model to set multiple cut-off scores are discussed.
A general class of multinomial mixture models for anuran calling survey data
Royle, J. Andrew; Link, W.A.
2005-01-01
We propose a general framework for modeling anuran abundance using data collected from commonly used calling surveys. The data generated from calling surveys are indices of calling intensity (vocalization of males) that do not have a precise link to actual population size and are sensitive to factors that influence anuran behavior. We formulate a model for calling-index data in terms of the maximum potential calling index that could be observed at a site (the 'latent abundance class'), given its underlying breeding population, and we focus attention on estimating the distribution of this latent abundance class. A critical consideration in estimating the latent structure is imperfect detection, which causes the observed abundance index to be less than or equal to the latent abundance class. We specify a multinomial sampling model for the observed abundance index that is conditional on the latent abundance class. Estimation of the latent abundance class distribution is based on the marginal likelihood of the index data, having integrated over the latent class distribution. We apply the proposed modeling framework to data collected as part of the North American Amphibian Monitoring Program (NAAMP).
Modeling health survey data with excessive zero and K responses.
Lin, Ting Hsiang; Tsai, Min-Hsiao
2013-04-30
Zero-inflated Poisson regression is a popular tool used to analyze data with excessive zeros. Although much work has already been performed to fit zero-inflated data, most models heavily depend on special features of the individual data. To be specific, this means that there is a sizable group of respondents who endorse the same answers making the data have peaks. In this paper, we propose a new model with the flexibility to model excessive counts other than zero, and the model is a mixture of multinomial logistic and Poisson regression, in which the multinomial logistic component models the occurrence of excessive counts, including zeros, K (where K is a positive integer) and all other values. The Poisson regression component models the counts that are assumed to follow a Poisson distribution. Two examples are provided to illustrate our models when the data have counts containing many ones and sixes. As a result, the zero-inflated and K-inflated models exhibit a better fit than the zero-inflated Poisson and standard Poisson regressions. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hadjiagapiou, Ioannis A.; Velonakis, Ioannis N.
2018-07-01
The Sherrington-Kirkpatrick Ising spin glass model, in the presence of a random magnetic field, is investigated within the framework of the one-step replica symmetry breaking. The two random variables (exchange integral interaction Jij and random magnetic field hi) are drawn from a joint Gaussian probability density function characterized by a correlation coefficient ρ, assuming positive and negative values. The thermodynamic properties, the three different phase diagrams and system's parameters are computed with respect to the natural parameters of the joint Gaussian probability density function at non-zero and zero temperatures. The low temperature negative entropy controversy, a result of the replica symmetry approach, has been partly remedied in the current study, leading to a less negative result. In addition, the present system possesses two successive spin glass phase transitions with characteristic temperatures.
Elliston, Katherine G; Ferguson, Stuart G; Schüz, Natalie; Schüz, Benjamin
2017-04-01
Individual eating behavior is a risk factor for obesity and highly dependent on internal and external cues. Many studies also suggest that the food environment (i.e., food outlets) influences eating behavior. This study therefore examines the momentary food environment (at the time of eating) and the role of cues simultaneously in predicting everyday eating behavior in adults with overweight and obesity. Intensive longitudinal study using ecological momentary assessment (EMA) over 14 days in 51 adults with overweight and obesity (average body mass index = 30.77; SD = 4.85) with a total of 745 participant days of data. Multiple daily assessments of eating (meals, high- or low-energy snacks) and randomly timed assessments. Cues and the momentary food environment were assessed during both assessment types. Random effects multinomial logistic regression shows that both internal (affect) and external (food availability, social situation, observing others eat) cues were associated with increased likelihood of eating. The momentary food environment predicted meals and snacking on top of cues, with a higher likelihood of high-energy snacks when fast food restaurants were close by (odds ratio [OR] = 1.89, 95% confidence interval [CI] = 1.22, 2.93) and a higher likelihood of low-energy snacks in proximity to supermarkets (OR = 2.29, 95% CI = 1.38, 3.82). Real-time eating behavior, both in terms of main meals and snacks, is associated with internal and external cues in adults with overweight and obesity. In addition, perceptions of the momentary food environment influence eating choices, emphasizing the importance of an integrated perspective on eating behavior and obesity prevention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Predictors of Start of Different Antidepressants in Patient Charts among Patients with Depression
Kim, Hyungjin Myra; Zivin, Kara; Choe, Hae Mi; Stano, Clare M.; Ganoczy, Dara; Walters, Heather; Valenstein, Marcia
2016-01-01
Background In usual psychiatric care, antidepressant treatments are selected based on physician and patient preferences rather than being randomly allocated, resulting in spurious associations between these treatments and outcome studies. Objectives To identify factors recorded in electronic medical chart progress notes predictive of antidepressant selection among patients who had received a depression diagnosis. Methods This retrospective study sample consisted of 556 randomly selected Veterans Health Administration (VHA) patients diagnosed with depression from April 1, 1999 to September 30, 2004, stratified by the antidepressant agent, geographic region, gender, and year of depression cohort entry. Predictors were obtained from administrative data, and additional variables were abstracted from electronic medical chart notes in the year prior to the start of the antidepressant in five categories: clinical symptoms and diagnoses, substance use, life stressors, behavioral/ideation measures (e.g., suicide attempts), and treatments received. Multinomial logistic regression analysis was used to assess the predictors associated with different antidepressant prescribing, and adjusted relative risk ratios (RRR) are reported. Results Of the administrative data-based variables, gender, age, illicit drug abuse or dependence, and number of psychiatric medications in prior year were significantly associated with antidepressant selection. After adjusting for administrative data-based variables, sleep problems (RRR = 2.47) or marital issues (RRR = 2.64) identified in the charts were significantly associated with prescribing mirtazapine rather than sertraline; however, no other chart-based variables showed a significant association or an association with a large magnitude. Conclusion Some chart data-based variables were predictive of antidepressant selection, but we neither found many nor found them highly predictive of antidepressant selection in patients treated for depression. PMID:25943003
NASA Astrophysics Data System (ADS)
Chen, X. W.; Zhao, C. Y.; Wang, B. X.
2018-05-01
Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.
NASA Astrophysics Data System (ADS)
Qamoshi, Khadijeh; Rasuli, Reza
2016-09-01
We study the sound absorption of the reinforced polyvinylpyrrolidone nanofibers with graphene oxide. It is shown that reinforced nanofibers can acquire impedance-matched surface to airborne sound at special frequencies. To obtain such surface, nanofibers were spun with polyvinylpyrrolidone polymer that was doped by graphene oxide with concentrations of 0, 6 and 12 wt%. It was found that fibers without graphene oxide were spun continuously and randomly, whereas by doping with graphene oxide, the mode of fibers is changed and some nodes form on the fibers coating. The sound absorption coefficient was measured by an impedance tube based on 105341-1 ISO standard. Measurements in the frequency range from 700 to 1600 Hz show that use of graphene oxide as a reinforcing phase increases sound absorption coefficient of the samples at a frequency ~1500 Hz up to ~40 %. Angular eigenfrequency and dissipation coefficient of the samples were obtained by impedance measurement for the prepared samples. Results show that doping the polymer with graphene oxide causes an increase in the angular eigenfrequency and the dissipation coefficient.
NASA Astrophysics Data System (ADS)
Crevillén-García, D.; Power, H.
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
NASA Astrophysics Data System (ADS)
Bekkouche, Toufik; Bouguezel, Saad
2018-03-01
We propose a real-to-real image encryption method. It is a double random amplitude encryption method based on the parametric discrete Fourier transform coupled with chaotic maps to perform the scrambling. The main idea behind this method is the introduction of a complex-to-real conversion by exploiting the inherent symmetry property of the transform in the case of real-valued sequences. This conversion allows the encrypted image to be real-valued instead of being a complex-valued image as in all existing double random phase encryption methods. The advantage is to store or transmit only one image instead of two images (real and imaginary parts). Computer simulation results and comparisons with the existing double random amplitude encryption methods are provided for peak signal-to-noise ratio, correlation coefficient, histogram analysis, and key sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Tartakovsky, Alexandre M.
This work presents a hierarchical model for solute transport in bounded layered porous media with random permeability. The model generalizes the Taylor-Aris dispersion theory to stochastic transport in random layered porous media with a known velocity covariance function. In the hierarchical model, we represent (random) concentration in terms of its cross-sectional average and a variation function. We derive a one-dimensional stochastic advection-dispersion-type equation for the average concentration and a stochastic Poisson equation for the variation function, as well as expressions for the effective velocity and dispersion coefficient. We observe that velocity fluctuations enhance dispersion in a non-monotonic fashion: the dispersionmore » initially increases with correlation length λ, reaches a maximum, and decreases to zero at infinity. Maximum enhancement can be obtained at the correlation length about 0.25 the size of the porous media perpendicular to flow.« less
Crevillén-García, D; Power, H
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Power, H.
2017-01-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen–Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error. PMID:28878974
Chen, Yu-Pei; Chen, Yong; Zhang, Wen-Na; Liang, Shao-Bo; Zong, Jing-Feng; Chen, Lei; Mao, Yan-Ping; Tang, Ling-Long; Li, Wen-Fei; Liu, Xu; Guo, Ying; Lin, Ai-Hua; Liu, Meng-Zhong; Sun, Ying; Ma, Jun
2015-01-01
The gold standard endpoint in trials of locoregionally advanced nasopharyngeal carcinoma (NPC) is overall survival (OS). Using data from a phase III randomized trial, we evaluated whether progression-free survival (PFS), failure-free survival (FFS), distant failure-free survival (D-FFS) or locoregional failure-free survival (LR-FFS) could be reliable surrogate endpoints for OS. Between July 2002 and September 2005, 316 eligible patients with stage III-IVB NPC were randomly assigned to receive either radiotherapy alone or chemoradiotherapy. 2- and 3-year PFS, FFS, D-FFS, and LR-FFS were tested as surrogate endpoints for 5-year OS using Prentice’s four criteria. The Spearman’s rank correlation coefficient was calculated to assess the strength of the associations. After a median follow-up time of 5.8 years, 2- and 3-year D-FFS and LR-FFS were not significantly different between treatment arms, in rejection of Prentice’s second criterion. Being consistent with all Prentice’s criteria, 2- and 3-year PFS and FFS were valid surrogate endpoints for 5-year OS; the rank correlation coefficient was highest (0.84) between 3-year PFS and 5-year OS. In conclusion, PFS and FFS at 2 and 3 years may be candidate surrogate endpoints for OS at 5 years; 3-year PFS may be more appropriate for early assessment of long-term survival. PMID:26219568
Chen, Yu-Pei; Chen, Yong; Zhang, Wen-Na; Liang, Shao-Bo; Zong, Jing-Feng; Chen, Lei; Mao, Yan-Ping; Tang, Ling-Long; Li, Wen-Fei; Liu, Xu; Guo, Ying; Lin, Ai-Hua; Liu, Meng-Zhong; Sun, Ying; Ma, Jun
2015-07-29
The gold standard endpoint in trials of locoregionally advanced nasopharyngeal carcinoma (NPC) is overall survival (OS). Using data from a phase III randomized trial, we evaluated whether progression-free survival (PFS), failure-free survival (FFS), distant failure-free survival (D-FFS) or locoregional failure-free survival (LR-FFS) could be reliable surrogate endpoints for OS. Between July 2002 and September 2005, 316 eligible patients with stage III-IVB NPC were randomly assigned to receive either radiotherapy alone or chemoradiotherapy. 2- and 3-year PFS, FFS, D-FFS, and LR-FFS were tested as surrogate endpoints for 5-year OS using Prentice's four criteria. The Spearman's rank correlation coefficient was calculated to assess the strength of the associations. After a median follow-up time of 5.8 years, 2- and 3-year D-FFS and LR-FFS were not significantly different between treatment arms, in rejection of Prentice's second criterion. Being consistent with all Prentice's criteria, 2- and 3-year PFS and FFS were valid surrogate endpoints for 5-year OS; the rank correlation coefficient was highest (0.84) between 3-year PFS and 5-year OS. In conclusion, PFS and FFS at 2 and 3 years may be candidate surrogate endpoints for OS at 5 years; 3-year PFS may be more appropriate for early assessment of long-term survival.
Rights, Jason D; Sterba, Sonya K
2016-11-01
Multilevel data structures are common in the social sciences. Often, such nested data are analysed with multilevel models (MLMs) in which heterogeneity between clusters is modelled by continuously distributed random intercepts and/or slopes. Alternatively, the non-parametric multilevel regression mixture model (NPMM) can accommodate the same nested data structures through discrete latent class variation. The purpose of this article is to delineate analytic relationships between NPMM and MLM parameters that are useful for understanding the indirect interpretation of the NPMM as a non-parametric approximation of the MLM, with relaxed distributional assumptions. We define how seven standard and non-standard MLM specifications can be indirectly approximated by particular NPMM specifications. We provide formulas showing how the NPMM can serve as an approximation of the MLM in terms of intraclass correlation, random coefficient means and (co)variances, heteroscedasticity of residuals at level 1, and heteroscedasticity of residuals at level 2. Further, we discuss how these relationships can be useful in practice. The specific relationships are illustrated with simulated graphical demonstrations, and direct and indirect interpretations of NPMM classes are contrasted. We provide an R function to aid in implementing and visualizing an indirect interpretation of NPMM classes. An empirical example is presented and future directions are discussed. © 2016 The British Psychological Society.