Sample records for random dot motion

  1. Does the noise matter? Effects of different kinematogram types on smooth pursuit eye movements and perception

    PubMed Central

    Schütz, Alexander C.; Braun, Doris I.; Movshon, J. Anthony; Gegenfurtner, Karl R.

    2011-01-01

    We investigated how the human visual system and the pursuit system react to visual motion noise. We presented three different types of random-dot kinematograms at five different coherence levels. For transparent motion, the signal and noise labels on each dot were preserved throughout each trial, and noise dots moved with the same speed as the signal dots but in fixed random directions. For white noise motion, every 20 ms the signal and noise labels were randomly assigned to each dot and noise dots appeared at random positions. For Brownian motion, signal and noise labels were also randomly assigned, but the noise dots moved at the signal speed in a direction that varied randomly from moment to moment. Neither pursuit latency nor early eye acceleration differed among the different types of kinematograms. Late acceleration, pursuit gain, and perceived speed all depended on kinematogram type, with good agreement between pursuit gain and perceived speed. For transparent motion, pursuit gain and perceived speed were independent of coherence level. For white and Brownian motions, pursuit gain and perceived speed increased with coherence but were higher for white than for Brownian motion. This suggests that under our conditions, the pursuit system integrates across all directions of motion but not across all speeds. PMID:21149307

  2. Anticipatory smooth eye movements with random-dot kinematograms

    PubMed Central

    Santos, Elio M.; Gnang, Edinah K.; Kowler, Eileen

    2012-01-01

    Anticipatory smooth eye movements were studied in response to expectations of motion of random-dot kinematograms (RDKs). Dot lifetime was limited (52–208 ms) to prevent selection and tracking of the motion of local elements and to disrupt the perception of an object moving across space. Anticipatory smooth eye movements were found in response to cues signaling the future direction of global RDK motion, either prior to the onset of the RDK or prior to a change in its direction of motion. Cues signaling the lifetime of the dots were not effective. These results show that anticipatory smooth eye movements can be produced by expectations of global motion and do not require a sustained representation of an object or set of objects moving across space. At the same time, certain properties of global motion (direction) were more sensitive to cues than others (dot lifetime), suggesting that the rules by which prediction operates to influence pursuit may go beyond simple associations between cues and the upcoming motion of targets. PMID:23027686

  3. The Influence of Contrast on Coherent Motion Processing in Dyslexia

    ERIC Educational Resources Information Center

    Conlon, Elizabeth G.; Lilleskaret, Gry; Wright, Craig M.; Power, Garry F.

    2012-01-01

    The aim of the experiments was to investigate how manipulating the contrast of the signal and noise dots in a random dot kinematogram (RDK), influenced on motion coherence thresholds in adults with dyslexia. In the first of two experiments, coherent motion thresholds were measured when the contrasts of the signal and noise dots in an RDK were…

  4. The upper spatial limit for perception of displacement is affected by preceding motion.

    PubMed

    Stefanova, Miroslava; Mateeff, Stefan; Hohnsbein, Joachim

    2009-03-01

    The upper spatial limit D(max) for perception of apparent motion of a random dot pattern may be strongly affected by another, collinear, motion that precedes it [Mateeff, S., Stefanova, M., &. Hohnsbein, J. (2007). Perceived global direction of a compound of real and apparent motion. Vision Research, 47, 1455-1463]. In the present study this phenomenon was studied with two-dimensional motion stimuli. A random dot pattern moved alternately in the vertical and oblique direction (zig-zag motion). The vertical motion was of 1.04 degrees length; it was produced by three discrete spatial steps of the dots. Thereafter the dots were displaced by a single spatial step in oblique direction. Each motion lasted for 57ms. The upper spatial limit for perception of the oblique motion was measured under two conditions: the vertical component of the oblique motion and the vertical motion were either in the same or in opposite directions. It was found that the perception of the oblique motion was strongly influenced by the relative direction of the vertical motion that preceded it; in the "same" condition the upper spatial limit was much shorter than in the "opposite" condition. Decreasing the speed of the vertical motion reversed this effect. Interpretations based on networks of motion detectors and on Gestalt theory are discussed.

  5. The Mechanism for Processing Random-Dot Motion at Various Speeds in Early Visual Cortices

    PubMed Central

    An, Xu; Gong, Hongliang; McLoughlin, Niall; Yang, Yupeng; Wang, Wei

    2014-01-01

    All moving objects generate sequential retinotopic activations representing a series of discrete locations in space and time (motion trajectory). How direction-selective neurons in mammalian early visual cortices process motion trajectory remains to be clarified. Using single-cell recording and optical imaging of intrinsic signals along with mathematical simulation, we studied response properties of cat visual areas 17 and 18 to random dots moving at various speeds. We found that, the motion trajectory at low speed was encoded primarily as a direction signal by groups of neurons preferring that motion direction. Above certain transition speeds, the motion trajectory is perceived as a spatial orientation representing the motion axis of the moving dots. In both areas studied, above these speeds, other groups of direction-selective neurons with perpendicular direction preferences were activated to encode the motion trajectory as motion-axis information. This applied to both simple and complex neurons. The average transition speed for switching between encoding motion direction and axis was about 31°/s in area 18 and 15°/s in area 17. A spatio-temporal energy model predicted the transition speeds accurately in both areas, but not the direction-selective indexes to random-dot stimuli in area 18. In addition, above transition speeds, the change of direction preferences of population responses recorded by optical imaging can be revealed using vector maximum but not vector summation method. Together, this combined processing of motion direction and axis by neurons with orthogonal direction preferences associated with speed may serve as a common principle of early visual motion processing. PMID:24682033

  6. Novel method of extracting motion from natural movies.

    PubMed

    Suzuki, Wataru; Ichinohe, Noritaka; Tani, Toshiki; Hayami, Taku; Miyakawa, Naohisa; Watanabe, Satoshi; Takeichi, Hiroshige

    2017-11-01

    The visual system in primates can be segregated into motion and shape pathways. Interaction occurs at multiple stages along these pathways. Processing of shape-from-motion and biological motion is considered to be a higher-order integration process involving motion and shape information. However, relatively limited types of stimuli have been used in previous studies on these integration processes. We propose a new algorithm to extract object motion information from natural movies and to move random dots in accordance with the information. The object motion information is extracted by estimating the dynamics of local normal vectors of the image intensity projected onto the x-y plane of the movie. An electrophysiological experiment on two adult common marmoset monkeys (Callithrix jacchus) showed that the natural and random dot movies generated with this new algorithm yielded comparable neural responses in the middle temporal visual area. In principle, this algorithm provided random dot motion stimuli containing shape information for arbitrary natural movies. This new method is expected to expand the neurophysiological and psychophysical experimental protocols to elucidate the integration processing of motion and shape information in biological systems. The novel algorithm proposed here was effective in extracting object motion information from natural movies and provided new motion stimuli to investigate higher-order motion information processing. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Action Video Games Improve Direction Discrimination of Parafoveal Translational Global Motion but Not Reaction Times.

    PubMed

    Pavan, Andrea; Boyce, Matthew; Ghin, Filippo

    2016-10-01

    Playing action video games enhances visual motion perception. However, there is psychophysical evidence that action video games do not improve motion sensitivity for translational global moving patterns presented in fovea. This study investigates global motion perception in action video game players and compares their performance to that of non-action video game players and non-video game players. Stimuli were random dot kinematograms presented in the parafovea. Observers discriminated the motion direction of a target random dot kinematogram presented in one of the four visual quadrants. Action video game players showed lower motion coherence thresholds than the other groups. However, when the task was performed at threshold, we did not find differences between groups in terms of distributions of reaction times. These results suggest that action video games improve visual motion sensitivity in the near periphery of the visual field, rather than speed response. © The Author(s) 2016.

  8. Directional Limits on Motion Transparency Assessed Through Colour-Motion Binding.

    PubMed

    Maloney, Ryan T; Clifford, Colin W G; Mareschal, Isabelle

    2018-03-01

    Motion-defined transparency is the perception of two or more distinct moving surfaces at the same retinal location. We explored the limits of motion transparency using superimposed surfaces of randomly positioned dots defined by differences in motion direction and colour. In one experiment, dots were red or green and we varied the proportion of dots of a single colour that moved in a single direction ('colour-motion coherence') and measured the threshold direction difference for discriminating between two directions. When colour-motion coherences were high (e.g., 90% of red dots moving in one direction), a smaller direction difference was required to correctly bind colour with direction than at low coherences. In another experiment, we varied the direction difference between the surfaces and measured the threshold colour-motion coherence required to discriminate between them. Generally, colour-motion coherence thresholds decreased with increasing direction differences, stabilising at direction differences around 45°. Different stimulus durations were compared, and thresholds were higher at the shortest (150 ms) compared with the longest (1,000 ms) duration. These results highlight different yet interrelated aspects of the task and the fundamental limits of the mechanisms involved: the resolution of narrowly separated directions in motion processing and the local sampling of dot colours from each surface.

  9. Capture of visual direction in dynamic vergence is reduced with flashed monocular lines.

    PubMed

    Jaschinski, Wolfgang; Jainta, Stephanie; Schürer, Michael

    2006-08-01

    The visual direction of a continuously presented monocular object is captured by the visual direction of a closely adjacent binocular object, which questions the reliability of nonius lines for measuring vergence. This was shown by Erkelens, C. J., and van Ee, R. (1997a,b) [Capture of the visual direction: An unexpected phenomenon in binocular vision. Vision Research, 37, 1193-1196; Capture of the visual direction of monocular objects by adjacent binocular objects. Vision Research, 37, 1735-1745] stimulating dynamic vergence by a counter phase oscillation of two square random-dot patterns (one to each eye) that contained a smaller central dot-free gap (of variable width) with a vertical monocular line oscillating in phase with the random-dot pattern of the respective eye; subjects adjusted the motion-amplitude of the line until it was perceived as (nearly) stationary. With a continuously presented monocular line, we replicated capture of visual direction provided the dot-free gap was narrow: the adjusted motion-amplitude of the line was similar as the motion-amplitude of the random-dot pattern, although large vergence errors occurred. However, when we flashed the line for 67 ms at the moments of maximal and minimal disparity of the vergence stimulus, we found that the adjusted motion-amplitude of the line was smaller; thus, the capture effect appeared to be reduced with flashed nonius lines. Accordingly, we found that the objectively measured vergence gain was significantly correlated (r=0.8) with the motion-amplitude of the flashed monocular line when the separation between the line and the fusion contour was at least 32 min arc. In conclusion, if one wishes to estimate the dynamic vergence response with psychophysical methods, effects of capture of visual direction can be reduced by using flashed nonius lines.

  10. Radio Frequency Signal Reception Via Distributed Wirelessly Networked Sensors Under Random Motion

    DTIC Science & Technology

    2009-09-01

    100. Agent position in Pythagoras modeling in first phase level showing individual unit member interaction where each dot is an individual agent...181 Figure 101. Detail position in Pythagoras modeling in second phase showing detail group interaction where each blue dot is a unit...Table 5. Estimated reset time values and associated change percentage from Pythagoras agent motion

  11. Electrophysiological Evidence for the Magnocellular-Dorsal Pathway Deficit in Dyslexia

    ERIC Educational Resources Information Center

    Jednorog, Katarzyna; Marchewka, Artur; Tacikowski, Pawel; Heim, Stefan; Grabowska, Anna

    2011-01-01

    In adults, the onset of coherent motion compared to random motion in a random dot kinematogram leads to a right hemispheric amplitude advantage of the N2 response. The source of this asymmetry is believed to lie in the motion selective MT+ cortex. Here, we tested whether the right tempo-parietal N2 component shows a similar regularity in children.…

  12. Why do adults with dyslexia have poor global motion sensitivity?

    PubMed

    Conlon, Elizabeth G; Lilleskaret, Gry; Wright, Craig M; Stuksrud, Anne

    2013-01-01

    Two experiments aimed to determine why adults with dyslexia have higher global motion thresholds than typically reading controls. In Experiment 1, the dot density and number of animation frames presented in the dot stimulus were manipulated because of findings that use of a high dot density can normalize coherence thresholds in individuals with dyslexia. Dot densities were 14.15 and 3.54 dots/deg(2). These were presented for five (84 ms) or eight (134 ms) frames. The dyslexia group had higher coherence thresholds in all conditions than controls. However, in the high dot density, long duration condition, both reader groups had the lowest thresholds indicating normal temporal recruitment. These results indicated that the dyslexia group could sample the additional signals dots over space and then integrate these with the same efficiency as controls. In Experiment 2, we determined whether briefly presenting a fully coherent prime moving in either the same or opposite direction of motion to a partially coherent test stimulus would systematically increase and decrease global motion thresholds in the reader groups. When the direction of motion in the prime and test was the same, global motion thresholds increased for both reader groups. The increase in coherence thresholds was significantly greater for the dyslexia group. When the motion of the prime and test were presented in opposite directions, coherence thresholds were reduced in both groups. No group threshold differences were found. We concluded that the global motion processing deficit found in adults with dyslexia can be explained by undersampling of the target motion signals. This might occur because of difficulties directing attention to the relevant motion signals in the random dot pattern, and not a specific difficulty integrating global motion signals. These effects are most likely to occur in the group with dyslexia when more complex computational processes are required to process global motion.

  13. Why do adults with dyslexia have poor global motion sensitivity?

    PubMed Central

    Conlon, Elizabeth G.; Lilleskaret, Gry; Wright, Craig M.; Stuksrud, Anne

    2013-01-01

    Two experiments aimed to determine why adults with dyslexia have higher global motion thresholds than typically reading controls. In Experiment 1, the dot density and number of animation frames presented in the dot stimulus were manipulated because of findings that use of a high dot density can normalize coherence thresholds in individuals with dyslexia. Dot densities were 14.15 and 3.54 dots/deg2. These were presented for five (84 ms) or eight (134 ms) frames. The dyslexia group had higher coherence thresholds in all conditions than controls. However, in the high dot density, long duration condition, both reader groups had the lowest thresholds indicating normal temporal recruitment. These results indicated that the dyslexia group could sample the additional signals dots over space and then integrate these with the same efficiency as controls. In Experiment 2, we determined whether briefly presenting a fully coherent prime moving in either the same or opposite direction of motion to a partially coherent test stimulus would systematically increase and decrease global motion thresholds in the reader groups. When the direction of motion in the prime and test was the same, global motion thresholds increased for both reader groups. The increase in coherence thresholds was significantly greater for the dyslexia group. When the motion of the prime and test were presented in opposite directions, coherence thresholds were reduced in both groups. No group threshold differences were found. We concluded that the global motion processing deficit found in adults with dyslexia can be explained by undersampling of the target motion signals. This might occur because of difficulties directing attention to the relevant motion signals in the random dot pattern, and not a specific difficulty integrating global motion signals. These effects are most likely to occur in the group with dyslexia when more complex computational processes are required to process global motion. PMID:24376414

  14. Limited transfer of long-term motion perceptual learning with double training.

    PubMed

    Liang, Ju; Zhou, Yifeng; Fahle, Manfred; Liu, Zili

    2015-01-01

    A significant recent development in visual perceptual learning research is the double training technique. With this technique, Xiao, Zhang, Wang, Klein, Levi, and Yu (2008) have found complete transfer in tasks that had previously been shown to be stimulus specific. The significance of this finding is that this technique has since been successful in all tasks tested, including motion direction discrimination. Here, we investigated whether or not this technique could generalize to longer-term learning, using the method of constant stimuli. Our task was learning to discriminate motion directions of random dots. The second leg of training was contrast discrimination along a new average direction of the same moving dots. We found that, although exposure of moving dots along a new direction facilitated motion direction discrimination, this partial transfer was far from complete. We conclude that, although perceptual learning is transferrable under certain conditions, stimulus specificity also remains an inherent characteristic of motion perceptual learning.

  15. Enhancing Motion-In-Depth Perception of Random-Dot Stereograms.

    PubMed

    Zhang, Di; Nourrit, Vincent; De Bougrenet de la Tocnaye, Jean-Louis

    2018-07-01

    Random-dot stereograms have been widely used to explore the neural mechanisms underlying binocular vision. Although they are a powerful tool to stimulate motion-in-depth (MID) perception, published results report some difficulties in the capacity to perceive MID generated by random-dot stereograms. The purpose of this study was to investigate whether the performance of MID perception could be improved using an appropriate stimulus design. Sixteen inexperienced observers participated in the experiment. A training session was carried out to improve the accuracy of MID detection before the experiment. Four aspects of stimulus design were investigated: presence of a static reference, background texture, relative disparity, and stimulus contrast. Participants' performance in MID direction discrimination was recorded and compared to evaluate whether varying these factors helped MID perception. Results showed that only the presence of background texture had a significant effect on MID direction perception. This study provides suggestions for the design of 3D stimuli in order to facilitate MID perception.

  16. Psychophysical estimation of the effects of aging on direction-of-heading judgments

    NASA Astrophysics Data System (ADS)

    Raghuram, Aparna; Lakshminarayanan, Vasudevan

    2011-11-01

    We conducted psychophysical experiments on direction-of-heading judgments using old and young subjects. Subjects estimated heading directions on a translation perpendicular to the vertical plane (frontoparallel); we found that heading judgments were affected by age. Increasing the random dot density in the stimulus from 24 to 400 dots did not improve threshold significantly. Older subjects started performing worse at the highest dots condition of 400. The speed of the radial motion was important, as heading judgments with slower radial motion were difficult to judge than faster radial motion, as the focus of expansion was easier to locate owing to the larger displacement of dots. Gender differences indicated that older women had a higher threshold than older men. This was only significant for the faster simulated radial speed. A general trend of women having a higher threshold than men was noticed.

  17. Influence of Correspondence Noise and Spatial Scaling on the Upper Limit for Spatial Displacement in Fully-Coherent Random-Dot Kinematogram Stimuli

    PubMed Central

    Tripathy, Srimant P.; Shafiullah, Syed N.; Cox, Michael J.

    2012-01-01

    Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms [1]. In the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest displacement that can be detected. PMID:23056172

  18. Influence of correspondence noise and spatial scaling on the upper limit for spatial displacement in fully-coherent random-dot kinematogram stimuli.

    PubMed

    Tripathy, Srimant P; Shafiullah, Syed N; Cox, Michael J

    2012-01-01

    Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms. In the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest displacement that can be detected.

  19. The relationship between stereoacuity and stereomotion thresholds.

    PubMed

    Cumming, B G

    1995-01-01

    There are in principle at least two binocular sources of information that could be used to determine the motion of an object towards or away from an observer; such motion produces changes in binocular disparities over time and also generates different image velocities in the two eyes. It has been argued in the past that stereomotion is detected by a mechanism that is independent of that which detects static disparities. More recently this conclusion has been questioned. If stereomotion detection in fact depends upon detecting disparities, there should be a clear correlation between static stereo-detection thresholds and stereomotion thresholds. If the systems are separate, there need be no such correlation. Four types of threshold measurement were performed by means of random-dot stereograms: (1) static stereo detection/discrimination; (2) stereomotion detection in random-dot stereograms (temporally uncorrelated); (3) stereomotion detection in temporally correlated random-dot stereograms; and (4) binocular detection of frontoparallel motion. Three normal subjects and five subjects with unusually high stereoacuities were studied. In addition, two manipulations were performed that altered stereomotion thresholds: changes in mean disparity, and image defocus produced by positive spectacle lenses. Across subjects and conditions, stereomotion thresholds were well correlated with stereo-discrimination thresholds. Stereomotion was poorly correlated with binocular frontoparallel-motion thresholds. These results suggest that stereomotion is detected by means of registering changes in the output of the same disparity detectors that are used to detect static disparities.

  20. Visual motion perception predicts driving hazard perception ability.

    PubMed

    Lacherez, Philippe; Au, Sandra; Wood, Joanne M

    2014-02-01

    To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  1. Sensitivity of neurons in the middle temporal area of marmoset monkeys to random dot motion.

    PubMed

    Chaplin, Tristan A; Allitt, Benjamin J; Hagan, Maureen A; Price, Nicholas S C; Rajan, Ramesh; Rosa, Marcello G P; Lui, Leo L

    2017-09-01

    Neurons in the middle temporal area (MT) of the primate cerebral cortex respond to moving visual stimuli. The sensitivity of MT neurons to motion signals can be characterized by using random-dot stimuli, in which the strength of the motion signal is manipulated by adding different levels of noise (elements that move in random directions). In macaques, this has allowed the calculation of "neurometric" thresholds. We characterized the responses of MT neurons in sufentanil/nitrous oxide-anesthetized marmoset monkeys, a species that has attracted considerable recent interest as an animal model for vision research. We found that MT neurons show a wide range of neurometric thresholds and that the responses of the most sensitive neurons could account for the behavioral performance of macaques and humans. We also investigated factors that contributed to the wide range of observed thresholds. The difference in firing rate between responses to motion in the preferred and null directions was the most effective predictor of neurometric threshold, whereas the direction tuning bandwidth had no correlation with the threshold. We also showed that it is possible to obtain reliable estimates of neurometric thresholds using stimuli that were not highly optimized for each neuron, as is often necessary when recording from large populations of neurons with different receptive field concurrently, as was the case in this study. These results demonstrate that marmoset MT shows an essential physiological similarity to macaque MT and suggest that its neurons are capable of representing motion signals that allow for comparable motion-in-noise judgments. NEW & NOTEWORTHY We report the activity of neurons in marmoset MT in response to random-dot motion stimuli of varying coherence. The information carried by individual MT neurons was comparable to that of the macaque, and the maximum firing rates were a strong predictor of sensitivity. Our study provides key information regarding the neural basis of motion perception in the marmoset, a small primate species that is becoming increasingly popular as an experimental model. Copyright © 2017 the American Physiological Society.

  2. What a Difference a Parameter Makes: a Psychophysical Comparison of Random Dot Motion Algorithms

    PubMed Central

    Pilly, Praveen K.; Seitz, Aaron R.

    2009-01-01

    Random dot motion (RDM) displays have emerged as one of the standard stimulus types employed in psychophysical and physiological studies of motion processing. RDMs are convenient because it is straightforward to manipulate the relative motion energy for a given motion direction in addition to stimulus parameters such as the speed, contrast, duration, density, aperture, etc. However, as widely as RDMs are employed so do they vary in their details of implementation. As a result, it is often difficult to make direct comparisons across studies employing different RDM algorithms and parameters. Here, we systematically measure the ability of human subjects to estimate motion direction for four commonly used RDM algorithms under a range of parameters in order to understand how these different algorithms compare in their perceptibility. We find that parametric and algorithmic differences can produce dramatically different performances. These effects, while surprising, can be understood in relationship to pertinent neurophysiological data regarding spatiotemporal displacement tuning properties of cells in area MT and how the tuning function changes with stimulus contrast and retinal eccentricity. These data help give a baseline by which different RDM algorithms can be compared, demonstrate a need for clearly reporting RDM details in the methods of papers, and also pose new constraints and challenges to models of motion direction processing. PMID:19336240

  3. Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1

    PubMed Central

    Chen, Ming; Wu, Si; Lu, Haidong D.; Roe, Anna W.

    2013-01-01

    Interpreting population responses in the primary visual cortex (V1) remains a challenge especially with the advent of techniques measuring activations of large cortical areas simultaneously with high precision. For successful interpretation, a quantitatively precise model prediction is of great importance. In this study, we investigate how accurate a spatiotemporal filter (STF) model predicts average response profiles to coherently drifting random dot motion obtained by optical imaging of intrinsic signals in V1 of anesthetized macaques. We establish that orientation difference maps, obtained by subtracting orthogonal axis-of-motion, invert with increasing drift speeds, consistent with the motion streak effect. Consistent with perception, the speed at which the map inverts (the critical speed) depends on cortical eccentricity and systematically increases from foveal to parafoveal. We report that critical speeds and response maps to drifting motion are excellently reproduced by the STF model. Our study thus suggests that the STF model is quantitatively accurate enough to be used as a first model of choice for interpreting responses obtained with intrinsic imaging methods in V1. We show further that this good quantitative correspondence opens the possibility to infer otherwise not easily accessible population receptive field properties from responses to complex stimuli, such as drifting random dot motions. PMID:23197457

  4. Space, color, and direction of movement: how do they affect attention?

    PubMed

    Verghese, Ashika; Anderson, Andrew J; Vidyasagar, Trichur R

    2013-07-19

    Paying attention improves performance, but is this improvement regardless of what we attend to? We explored the differences in performance between attending to a location and attending to a feature when perceiving global motion. Attention was first cued to one of four locations that had coherently moving dots, while the remaining three had randomly moving distracter dots. Participants then viewed a colored display, wherein the color of the coherently moving dots was cued instead of location. In the third task, participants identified the location that had a particular cued direction of motion. Most observers reported reductions of motion threshold in all three tasks compared to when no cue was provided. However, the attentional bias generated by location cues was significantly larger than the bias resulting from feature cues of direction or color. This effect is consistent with the idea that attention is largely controlled by a fronto-parietal network where spatial relations are preferentially processed. On the other hand, color could not be used as a cue to focus attention and integrate motion. This finding suggests that color relies heavily on processing by ventral temporal cortical areas, which may have little control over the global motion areas in the dorsal part of the brain.

  5. Interocular velocity difference contributes to stereomotion speed perception

    NASA Technical Reports Server (NTRS)

    Brooks, Kevin R.

    2002-01-01

    Two experiments are presented assessing the contributions of the rate of change of disparity (CD) and interocular velocity difference (IOVD) cues to stereomotion speed perception. Using a two-interval forced-choice paradigm, the perceived speed of directly approaching and receding stereomotion and of monocular lateral motion in random dot stereogram (RDS) targets was measured. Prior adaptation using dysjunctively moving random dot stimuli induced a velocity aftereffect (VAE). The degree of interocular correlation in the adapting images was manipulated to assess the effectiveness of each cue. While correlated adaptation involved a conventional RDS stimulus, containing both IOVD and CD cues, uncorrelated adaptation featured an independent dot array in each monocular half-image, and hence lacked a coherent disparity signal. Adaptation produced a larger VAE for stereomotion than for monocular lateral motion, implying effects at neural sites beyond that of binocular combination. For motion passing through the horopter, correlated and uncorrelated adaptation stimuli produced equivalent stereomotion VAEs. The possibility that these results were due to the adaptation of a CD mechanism through random matches in the uncorrelated stimulus was discounted in a control experiment. Here both simultaneous and sequential adaptation of left and right eyes produced similar stereomotion VAEs. Motion at uncrossed disparities was also affected by both correlated and uncorrelated adaptation stimuli, but showed a significantly greater VAE in response to the former. These results show that (1) there are two separate, specialised mechanisms for encoding stereomotion: one through IOVD, the other through CD; (2) the IOVD cue dominates the perception of stereomotion speed for stimuli passing through the horopter; and (3) at a disparity pedestal both the IOVD and the CD cues have a significant influence.

  6. Functional specialization and generalization for grouping of stimuli based on colour and motion

    PubMed Central

    Zeki, Semir; Stutters, Jonathan

    2013-01-01

    This study was undertaken to learn whether the principle of functional specialization that is evident at the level of the prestriate visual cortex extends to areas that are involved in grouping visual stimuli according to attribute, and specifically according to colour and motion. Subjects viewed, in an fMRI scanner, visual stimuli composed of moving dots, which could be either coloured or achromatic; in some stimuli the moving coloured dots were randomly distributed or moved in random directions; in others, some of the moving dots were grouped together according to colour or to direction of motion, with the number of groupings varying from 1 to 3. Increased activation was observed in area V4 in response to colour grouping and in V5 in response to motion grouping while both groupings led to activity in separate though contiguous compartments within the intraparietal cortex. The activity in all the above areas was parametrically related to the number of groupings, as was the prominent activity in Crus I of the cerebellum where the activity resulting from the two types of grouping overlapped. This suggests (a) that, the specialized visual areas of the prestriate cortex have functions beyond the processing of visual signals according to attribute, namely that of grouping signals according to colour (V4) or motion (V5); (b) that the functional separation evident in visual cortical areas devoted to motion and colour, respectively, is maintained at the level of parietal cortex, at least as far as grouping according to attribute is concerned; and (c) that, by contrast, this grouping-related functional segregation is not maintained at the level of the cerebellum. PMID:23415950

  7. Is it just motion that silences awareness of other visual changes?

    PubMed

    Peirce, Jonathan W

    2013-06-28

    When an array of visual elements is changing color, size, or shape incoherently, the changes are typically quite visible even when the overall color, size, or shape statistics of the field may not have changed. When the dots also move, however, the changes become much less apparent; awareness of them is "silenced" (Suchow & Alvarez, 2011). This finding might indicate that the perception of motion is of particular importance to the visual system, such that it is given priority in processing over other forms of visual change. Here we test whether that is the case by examining the converse: whether awareness of motion signals can be silenced by potent coherent changes in color or size. We find that they can, and with very similar effects, indicating that motion is not critical for silencing. Suchow and Alvarez's dots always moved in the same direction with the same speed, causing them to be grouped as a single entity. We also tested whether this coherence was a necessary component of the silencing effect. It is not; when the dot speeds are randomly selected, such that no coherent motion is present, the silencing effect remains. It is clear that neither motion nor grouping is directly responsible for the silencing effect. Silencing can be generated from any potent visual change.

  8. Behavioural evidence for distinct mechanisms related to global and biological motion perception.

    PubMed

    Miller, Louisa; Agnew, Hannah C; Pilz, Karin S

    2018-01-01

    The perception of human motion is a vital ability in our daily lives. Human movement recognition is often studied using point-light stimuli in which dots represent the joints of a moving person. Depending on task and stimulus, the local motion of the single dots, and the global form of the stimulus can be used to discriminate point-light stimuli. Previous studies often measured motion coherence for global motion perception and contrasted it with performance in biological motion perception to assess whether difficulties in biological motion processing are related to more general difficulties with motion processing. However, it is so far unknown as to how performance in global motion tasks relates to the ability to use local motion or global form to discriminate point-light stimuli. Here, we investigated this relationship in more detail. In Experiment 1, we measured participants' ability to discriminate the facing direction of point-light stimuli that contained primarily local motion, global form, or both. In Experiment 2, we embedded point-light stimuli in noise to assess whether previously found relationships in task performance are related to the ability to detect signal in noise. In both experiments, we also assessed motion coherence thresholds from random-dot kinematograms. We found relationships between performances for the different biological motion stimuli, but performance for global and biological motion perception was unrelated. These results are in accordance with previous neuroimaging studies that highlighted distinct areas for global and biological motion perception in the dorsal pathway, and indicate that results regarding the relationship between global motion perception and biological motion perception need to be interpreted with caution. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Stereomotion speed perception is contrast dependent

    NASA Technical Reports Server (NTRS)

    Brooks, K.

    2001-01-01

    The effect of contrast on the perception of stimulus speed for stereomotion and monocular lateral motion was investigated for successive matches in random-dot stimuli. The familiar 'Thompson effect'--that a reduction in contrast leads to a reduction in perceived speed--was found in similar proportions for both binocular images moving in depth, and for monocular images translating laterally. This result is consistent with the idea that the monocular motion system has a significant input to the stereomotion system, and dominates the speed percept for approaching motion.

  10. 3D surface perception from motion involves a temporal–parietal network

    PubMed Central

    Beer, Anton L.; Watanabe, Takeo; Ni, Rui; Sasaki, Yuka; Andersen, George J.

    2010-01-01

    Previous research has suggested that three-dimensional (3D) structure-from-motion (SFM) perception in humans involves several motion-sensitive occipital and parietal brain areas. By contrast, SFM perception in nonhuman primates seems to involve the temporal lobe including areas MT, MST and FST. The present functional magnetic resonance imaging study compared several motion-sensitive regions of interest including the superior temporal sulcus (STS) while human observers viewed horizontally moving dots that defined either a 3D corrugated surface or a 3D random volume. Low-level stimulus features such as dot density and velocity vectors as well as attention were tightly controlled. Consistent with previous research we found that 3D corrugated surfaces elicited stronger responses than random motion in occipital and parietal brain areas including area V3A, the ventral and dorsal intraparietal sulcus, the lateral occipital sulcus and the fusiform gyrus. Additionally, 3D corrugated surfaces elicited stronger activity in area MT and the STS but not in area MST. Brain activity in the STS but not in area MT correlated with interindividual differences in 3D surface perception. Our findings suggest that area MT is involved in the analysis of optic flow patterns such as speed gradients and that the STS in humans plays a greater role in the analysis of 3D SFM than previously thought. PMID:19674088

  11. Judder-Induced Edge Flicker at Zero Spatial Contrast

    NASA Technical Reports Server (NTRS)

    Larimer, James; Feng, Christine; Gille, Jennifer; Cheung, Victor

    2004-01-01

    Judder is a motion artifact that degrades the quality of video imagery. Smooth motion appears jerky and can appear to flicker along the leading and trailing edge of the moving object. In a previous paper, we demonstrated that the strength of the edge flicker signal depended upon the brightness of the scene and the contrast of the moving object relative to the background. Reducing the contrast between foreground and background reduced the flicker signal. In this report, we show that the contrast signal required for judder-induced edge flicker is due to temporal contrast and not simply to spatial contrast. Bars made of random dots of the same dot density as the background exhibit edge flicker when moved at sufficient rate.

  12. What visual information is used for stereoscopic depth displacement discrimination?

    PubMed

    Nefs, Harold T; Harris, Julie M

    2010-01-01

    There are two ways to detect a displacement in stereoscopic depth, namely by monitoring the change in disparity over time (CDOT) or by monitoring the interocular velocity difference (IOVD). Though previous studies have attempted to understand which cue is most significant for the visual system, none has designed stimuli that provide a comparison in terms of relative efficiency between them. Here we used two-frame motion and random-dot noise to deliver equivalent strengths of CDOT and IOVD information to the visual system. Using three kinds of random-dot stimuli, we were able to isolate CDOT or IOVD or deliver both simultaneously. The proportion of dots delivering CDOT or IOVD signals could be varied, and we defined the discrimination threshold as the proportion needed to detect the direction of displacement (towards or away). Thresholds were similar for stimuli containing CDOT only, and containing both CDOT and IOVD, but only one participant was able to consistently perceive the displacement for stimuli containing only IOVD. We also investigated the effect of disparity pedestals on discrimination. Performance was best when the displacement crossed the reference plane, but was not significantly different for stimuli containing CDOT only and those containing both CDOT and IOVD. When stimuli are specifically designed to provide equivalent two-frame motion or disparity-change, few participants can reliably detect displacement when IOVD is the only cue. This challenges the notion that IOVD is involved in the discrimination of direction of displacement in two-frame motion displays.

  13. Conjunctions between motion and disparity are encoded with the same spatial resolution as disparity alone.

    PubMed

    Allenmark, Fredrik; Read, Jenny C A

    2012-10-10

    Neurons in cortical area MT respond well to transparent streaming motion in distinct depth planes, such as caused by observer self-motion, but do not contain subregions excited by opposite directions of motion. We therefore predicted that spatial resolution for transparent motion/disparity conjunctions would be limited by the size of MT receptive fields, just as spatial resolution for disparity is limited by the much smaller receptive fields found in primary visual cortex, V1. We measured this using a novel "joint motion/disparity grating," on which human observers detected motion/disparity conjunctions in transparent random-dot patterns containing dots streaming in opposite directions on two depth planes. Surprisingly, observers showed the same spatial resolution for these as for pure disparity gratings. We estimate the limiting receptive field diameter at 11 arcmin, similar to V1 and much smaller than MT. Higher internal noise for detecting joint motion/disparity produces a slightly lower high-frequency cutoff of 2.5 cycles per degree (cpd) versus 3.3 cpd for disparity. This suggests that information on motion/disparity conjunctions is available in the population activity of V1 and that this information can be decoded for perception even when it is invisible to neurons in MT.

  14. Dividing attention between two transparent motion surfaces results in a failure of selective attention

    PubMed Central

    Ernst, Zachary Raymond; Palmer, John; Boynton, Geoffrey M.

    2012-01-01

    In object-based attention, it is easier to divide attention between features within a single object than between features across objects. In this study we test the prediction of several capacity models in order to best characterize the cost to dividing attention between objects. Here we studied behavioral performance on a divided attention task in which subjects attended to the motion and luminance of overlapping random dot kinemategrams, specifically red upward moving dots superimposed with green downward moving dots. Subjects were required to detect brief changes (transients) in the motion or luminance within the same surface or across different surfaces. There were two primary results. First, the dual-task deficit was large when attention was divided across two surfaces and near zero when attention was divided within a surface. This is consistent with limited-capacity processing across surfaces and unlimited-capacity processing within a surface—a pattern predicted by established theories of object-based attention. Second and unexpectedly, there was evidence of crosstalk between features: when cued to monitor transients on one surface, response rates were inflated by the presence of a transient on the other surface. Such crosstalk is a failure of selective attention between surfaces. PMID:23149301

  15. Illusory displacement of equiluminous kinetic edges.

    PubMed

    Ramachandran, V S; Anstis, S M

    1990-01-01

    A stationary window was cut out of a stationary random-dot pattern. When a field of dots was moved continuously behind the window (a) the window appeared to move in the same direction even though it was stationary, (b) the position of the 'kinetic edges' defining the window was also displaced along the direction of dot motion, and (c) the edges of the window tended to fade on steady fixation even though the dots were still clearly visible. The illusory displacement was enhanced considerably if the kinetic edge was equiluminous and if the 'window' region was seen as 'figure' rather than 'ground'. Since the extraction of kinetic edges probably involves the use of direction-selective cells, the illusion may provide insights into how the visual system uses the output of these cells to localize the kinetic edges.

  16. A slowly moving foreground can capture an observer's self-motion--a report of a new motion illusion: inverted vection.

    PubMed

    Nakamura, S; Shimojo, S

    2000-01-01

    We investigated interactions between foreground and background stimuli during visually induced perception of self-motion (vection) by using a stimulus composed of orthogonally moving random-dot patterns. The results indicated that, when the foreground moves with a slower speed, a self-motion sensation with a component in the same direction as the foreground is induced. We named this novel component of self-motion perception 'inverted vection'. The robustness of inverted vection was confirmed using various measures of self-motion sensation and under different stimulus conditions. The mechanism underlying inverted vection is discussed with regard to potentially relevant factors, such as relative motion between the foreground and background, and the interaction between the mis-registration of eye-movement information and self-motion perception.

  17. Motion versus position in the perception of head-centred movement.

    PubMed

    Freeman, Tom C A; Sumnall, Jane H

    2002-01-01

    Abstract. Observers can recover motion with respect to the head during an eye movement by comparing signals encoding retinal motion and the velocity of pursuit. Evidently there is a mismatch between these signals because perceived head-centred motion is not always veridical. One example is the Filehne illusion, in which a stationary object appears to move in the opposite direction to pursuit. Like the motion aftereffect, the phenomenal experience of the Filehne illusion is one in which the stimulus moves but does not seem to go anywhere. This raises problems when measuring the illusion by motion nulling because the more traditional technique confounds perceived motion with changes in perceived position. We devised a new nulling technique using global-motion stimuli that degraded familiar position cues but preserved cues to motion. Stimuli consisted of random-dot patterns comprising signal and noise dots that moved at the same retinal 'base' speed. Noise moved in random directions. In an eye-stationary speed-matching experiment we found noise slowed perceived retinal speed as 'coherence strength' (ie percentage of signal) was reduced. The effect occurred over the two-octave range of base speeds studied and well above direction threshold. When the same stimuli were combined with pursuit, observers were able to null the Filehne illusion by adjusting coherence. A power law relating coherence to retinal base speed fit the data well with a negative exponent. Eye-movement recordings showed that pursuit was quite accurate. We then tested the hypothesis that the stimuli found at the null-points appeared to move at the same retinal speed. Two observers supported the hypothesis, a third partially, and a fourth showed a small linear trend. In addition, the retinal speed found by the traditional Filehne technique was similar to the matches obtained with the global-motion stimuli. The results provide support for the idea that speed is the critical cue in head-centred motion perception.

  18. fMRI response during visual motion stimulation in patients with late whiplash syndrome.

    PubMed

    Freitag, P; Greenlee, M W; Wachter, K; Ettlin, T M; Radue, E W

    2001-01-01

    After whiplash trauma, up to one fourth of patients develop chronic symptoms including head and neck pain and cognitive disturbances. Resting perfusion single-photon-emission computed tomography (SPECT) found decreased temporoparietooccipital tracer uptake among these long-term symptomatic patients with late whiplash syndrome. As MT/MST (V5/V5a) are located in that area, this study addressed the question whether these patients show impairments in visual motion perception. We examined five symptomatic patients with late whiplash syndrome, five asymptomatic patients after whiplash trauma, and a control group of seven volunteers without the history of trauma. Tests for visual motion perception and functional magnetic resonance imaging (fMRI) measurements during visual motion stimulation were performed. Symptomatic patients showed a significant reduction in their ability to perceive coherent visual motion compared with controls, whereas the asymptomatic patients did not show this effect. fMRI activation was similar during random dot motion in all three groups, but was significantly decreased during coherent dot motion in the symptomatic patients compared with the other two groups. Reduced psychophysical motion performance and reduced fMRI responses in symptomatic patients with late whiplash syndrome both point to a functional impairment in cortical areas sensitive to coherent motion. Larger studies are needed to confirm these clinical and functional imaging results to provide a possible additional diagnostic criterion for the evaluation of patients with late whiplash syndrome.

  19. A simple integrative method for presenting head-contingent motion parallax and disparity cues on intel x86 processor-based machines.

    PubMed

    Szatmary, J; Hadani, I; Julesz, B

    1997-01-01

    Rogers and Graham (1979) developed a system to show that head-movement-contingent motion parallax produces monocular depth perception in random dot patterns. Their display system comprised an oscilloscope driven by function generators or a special graphics board that triggered the X and Y deflection of the raster scan signal. Replication of this system required costly hardware that is no longer on the market. In this paper the Rogers-Graham method is reproduced with an Intel processor based IBM PC compatible machine with no additional hardware cost. An adapted joystick sampled through the standard game-port can serve as a provisional head-movement sensor. Monitor resolution for displaying motion is effectively enhanced 16 times by the use of anti-aliasing, enabling the display of thousands of random dots in real-time with a refresh rate of 60 Hz or above. A color monitor enables the use of the anaglyph method, thus combining stereoscopic and monocular parallax on a single display without the loss of speed. The power of this system is demonstrated by a psychophysical measurement in which subjects nulled head-movement-contingent illusory parallax, evoked by a static stereogram, with real parallax. The amount of real parallax required to null the illusory stereoscopic parallax monotonically increased with disparity.

  20. Differential processing: towards a unified model of direction and speed perception.

    PubMed

    Farrell-Whelan, Max; Brooks, Kevin R

    2013-11-01

    In two experiments, we demonstrate a misperception of the velocity of a random-dot stimulus moving in the presence of a static line oriented obliquely to the direction of dot motion. As shown in previous studies, the perceived direction of the dots is shifted away from the orientation of the static line, with the size of the shift varying as a function of line orientation relative to dot direction (the statically-induced direction illusion, or 'SDI'). In addition, we report a novel effect - that perceived speed also varies as a function of relative line orientation, decreasing systematically as the angle is reduced from 90° to 0°. We propose that these illusions both stem from the differential processing of object-relative and non-object-relative component velocities, with the latter being perceptually underestimated with respect to the former by a constant ratio. Although previous proposals regarding the SDI have not allowed quantitative accounts, we present a unified formal model of perceived velocity (both direction and speed) with the magnitude of this ratio as the only free parameter. The model was successful in accounting for the angular repulsion of motion direction across line orientations, and in predicting the systematic decrease in perceived velocity as the line's angle was reduced. Although fitting for direction and speed produced different best-fit values of the ratio of underestimation of non-object-relative motion compared to object-relative motion (with the ratio for speed being larger than that for direction) this discrepancy may be due to differences in the psychophysical procedures for measuring direction and speed. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Age-related changes in perception of movement in driving scenes.

    PubMed

    Lacherez, Philippe; Turner, Laura; Lester, Robert; Burns, Zoe; Wood, Joanne M

    2014-07-01

    Age-related changes in motion sensitivity have been found to relate to reductions in various indices of driving performance and safety. The aim of this study was to investigate the basis of this relationship in terms of determining which aspects of motion perception are most relevant to driving. Participants included 61 regular drivers (age range 22-87 years). Visual performance was measured binocularly. Measures included visual acuity, contrast sensitivity and motion sensitivity assessed using four different approaches: (1) threshold minimum drift rate for a drifting Gabor patch, (2) Dmin from a random dot display, (3) threshold coherence from a random dot display, and (4) threshold drift rate for a second-order (contrast modulated) sinusoidal grating. Participants then completed the Hazard Perception Test (HPT) in which they were required to identify moving hazards in videos of real driving scenes, and also a Direction of Heading task (DOH) in which they identified deviations from normal lane keeping in brief videos of driving filmed from the interior of a vehicle. In bivariate correlation analyses, all motion sensitivity measures significantly declined with age. Motion coherence thresholds, and minimum drift rate threshold for the first-order stimulus (Gabor patch) both significantly predicted HPT performance even after controlling for age, visual acuity and contrast sensitivity. Bootstrap mediation analysis showed that individual differences in DOH accuracy partly explained these relationships, where those individuals with poorer motion sensitivity on the coherence and Gabor tests showed decreased ability to perceive deviations in motion in the driving videos, which related in turn to their ability to detect the moving hazards. The ability to detect subtle movements in the driving environment (as determined by the DOH task) may be an important contributor to effective hazard perception, and is associated with age, and an individuals' performance on tests of motion sensitivity. The locus of the processing deficits appears to lie in first-order, rather than second-order motion pathways. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  2. Time-varying behavior of motion vectors in vection-induced images in relation to autonomic regulation.

    PubMed

    Kiryu, Tohru; Yamada, Hiroshi; Jimbo, Masahiro; Bando, Takehiko

    2004-01-01

    Virtual reality (VR) is a promising technology in biomedical engineering, but at the same time enlarges another problem called cybersickness. Aiming at suppression of cybersicknes, we are investigating the influences of vection-induced images on the autonomic regulation quantitatively. We used the motion vectors to quantify image scenes and measured electrocardiogram, blood pressure, and respiration for evaluating the autonomic regulation. Using the estimated motion vectors, we further synthesized random-dot pattern images to survey which component of the global motion vectors seriously affected the autonomic regulation. The results showed that the zoom component with a specific frequency band (0.1-3.0 Hz) would induce sickness.

  3. Measurement of angular velocity in the perception of rotation.

    PubMed

    Barraza, José F; Grzywacz, Norberto M

    2002-09-01

    Humans are sensitive to the parameters of translational motion, namely, direction and speed. At the same time, people have special mechanisms to deal with more complex motions, such as rotations and expansions. One wonders whether people may also be sensitive to the parameters of these complex motions. Here, we report on a series of experiments that explore whether human subjects can use angular velocity to evaluate how fast a rotational motion is. In four experiments, subjects were required to perform a task of speed-of-rotation discrimination by comparing two annuli of different radii in a temporal 2AFC paradigm. Results showed that humans could rely on a sensitive measurement of angular velocity to perform this discrimination task. This was especially true when the quality of the rotational signal was high (given by the number of dots composing the annulus). When the signal quality decreased, a bias towards linear velocity of 5-80% appeared, suggesting the existence of separate mechanisms for angular and linear velocity. This bias was independent from the reference radius. Finally, we asked whether the measurement of angular velocity required a rigid rotation, that is, whether the visual system makes only one global estimate of angular velocity. For this purpose, a random-dot disk was built such that all the dots were rotating with the same tangential speed, irrespectively of radius. Results showed that subjects do not estimate a unique global angular velocity, but that they perceive a non-rigid disk, with angular velocity falling inversely proportionally with radius.

  4. Psilocybin impairs high-level but not low-level motion perception.

    PubMed

    Carter, Olivia L; Pettigrew, John D; Burr, David C; Alais, David; Hasler, Felix; Vollenweider, Franz X

    2004-08-26

    The hallucinogenic serotonin(1A&2A) agonist psilocybin is known for its ability to induce illusions of motion in otherwise stationary objects or textured surfaces. This study investigated the effect of psilocybin on local and global motion processing in nine human volunteers. Using a forced choice direction of motion discrimination task we show that psilocybin selectively impairs coherence sensitivity for random dot patterns, likely mediated by high-level global motion detectors, but not contrast sensitivity for drifting gratings, believed to be mediated by low-level detectors. These results are in line with those observed within schizophrenic populations and are discussed in respect to the proposition that psilocybin may provide a model to investigate clinical psychosis and the pharmacological underpinnings of visual perception in normal populations.

  5. People can understand descriptions of motion without activating visual motion brain regions

    PubMed Central

    Dravida, Swethasri; Saxe, Rebecca; Bedny, Marina

    2013-01-01

    What is the relationship between our perceptual and linguistic neural representations of the same event? We approached this question by asking whether visual perception of motion and understanding linguistic depictions of motion rely on the same neural architecture. The same group of participants took part in two language tasks and one visual task. In task 1, participants made semantic similarity judgments with high motion (e.g., “to bounce”) and low motion (e.g., “to look”) words. In task 2, participants made plausibility judgments for passages describing movement (“A centaur hurled a spear … ”) or cognitive events (“A gentleman loved cheese …”). Task 3 was a visual motion localizer in which participants viewed animations of point-light walkers, randomly moving dots, and stationary dots changing in luminance. Based on the visual motion localizer we identified classic visual motion areas of the temporal (MT/MST and STS) and parietal cortex (inferior and superior parietal lobules). We find that these visual cortical areas are largely distinct from neural responses to linguistic depictions of motion. Motion words did not activate any part of the visual motion system. Motion passages produced a small response in the right superior parietal lobule, but none of the temporal motion regions. These results suggest that (1) as compared to words, rich language stimuli such as passages are more likely to evoke mental imagery and more likely to affect perceptual circuits and (2) effects of language on the visual system are more likely in secondary perceptual areas as compared to early sensory areas. We conclude that language and visual perception constitute distinct but interacting systems. PMID:24009592

  6. Hierarchical motion organization in random dot configurations

    NASA Technical Reports Server (NTRS)

    Bertamini, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2000-01-01

    Motion organization has 2 aspects: the extraction of a (moving) frame of reference and the hierarchical organization of moving elements within the reference frame. Using a discrimination of relative motions task, the authors found large differences between different types of motion (translation, divergence, and rotation) in the degree to which each can serve as a moving frame of reference. Translation and divergence are superior to rotation. There are, however, situations in which rotation can serve as a reference frame. This is due to the presence of a second factor, structural invariants (SIs). SIs are spatial relationships persisting among the elements within a configuration such as a collinearity among points or one point coinciding with the center of rotation for another (invariant radius). The combined effect of these 2 factors--motion type and SIs-influences perceptual motion organization.

  7. Color- and motion-specific units in the tectum opticum of goldfish.

    PubMed

    Gruber, Morna; Behrend, Konstantin; Neumeyer, Christa

    2016-01-05

    Extracellular recordings were performed from 69 units at different depths between 50 and [Formula: see text]m below the surface of tectum opticum in goldfish. Using large field stimuli (86[Formula: see text] visual angle) of 21 colored HKS-papers we were able to record from 54 color-sensitive units. The colored papers were presented for 5[Formula: see text]s each. They were arranged in the sequence of the color circle in humans separated by gray of medium brightness. We found 22 units with best responses between orange, red and pink. About 12 of these red-sensitive units were of the opponent "red-ON/blue-green-OFF" type as found in retinal bipolar- and ganglion cells as well. Most of them were also activated or inhibited by black and/or white. Some units responded specifically to red either with activation or inhibition. 18 units were sensitive to blue and/or green, 10 of them to both colors and most of them to black as well. They were inhibited by red, and belonged to the opponent "blue-green-ON/red-OFF" type. Other units responded more selectively either to blue, to green or to purple. Two units were selectively sensitive to yellow. A total of 15 units were sensitive to motion, stimulated by an excentrically rotating black and white random dot pattern. Activity of these units was also large when a red-green random dot pattern of high L-cone contrast was used. Activity dropped to zero when the red-green pattern did not modulate the L-cones. Neither of these motion selective units responded to any color. The results directly show color-blindness of motion vision, and confirm the hypothesis of separate and parallel processing of "color" and "motion".

  8. 14 CFR 302.11 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... otherwise specifically provided for in this part shall be by motion. If an administrative law judge is... of the record to the DOT decisionmaker, all motions shall be addressed to the administrative law... heard on motions unless the DOT decisionmaker or the administrative law judge otherwise directs. Written...

  9. 14 CFR 302.11 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... otherwise specifically provided for in this part shall be by motion. If an administrative law judge is... of the record to the DOT decisionmaker, all motions shall be addressed to the administrative law... heard on motions unless the DOT decisionmaker or the administrative law judge otherwise directs. Written...

  10. 14 CFR 302.11 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... otherwise specifically provided for in this part shall be by motion. If an administrative law judge is... of the record to the DOT decisionmaker, all motions shall be addressed to the administrative law... heard on motions unless the DOT decisionmaker or the administrative law judge otherwise directs. Written...

  11. Criterion-free measurement of motion transparency perception at different speeds

    PubMed Central

    Rocchi, Francesca; Ledgeway, Timothy; Webb, Ben S.

    2018-01-01

    Transparency perception often occurs when objects within the visual scene partially occlude each other or move at the same time, at different velocities across the same spatial region. Although transparent motion perception has been extensively studied, we still do not understand how the distribution of velocities within a visual scene contribute to transparent perception. Here we use a novel psychophysical procedure to characterize the distribution of velocities in a scene that give rise to transparent motion perception. To prevent participants from adopting a subjective decision criterion when discriminating transparent motion, we used an “odd-one-out,” three-alternative forced-choice procedure. Two intervals contained the standard—a random-dot-kinematogram with dot speeds or directions sampled from a uniform distribution. The other interval contained the comparison—speeds or directions sampled from a distribution with the same range as the standard, but with a notch of different widths removed. Our results suggest that transparent motion perception is driven primarily by relatively slow speeds, and does not emerge when only very fast speeds are present within a visual scene. Transparent perception of moving surfaces is modulated by stimulus-based characteristics, such as the separation between the means of the overlapping distributions or the range of speeds presented within an image. Our work illustrates the utility of using objective, forced-choice methods to reveal the mechanisms underlying motion transparency perception. PMID:29614154

  12. Retrieval-Induced Inhibition in Short-Term Memory.

    PubMed

    Kang, Min-Suk; Choi, Joongrul

    2015-07-01

    We used a visual illusion called motion repulsion as a model system for investigating competition between two mental representations. Subjects were asked to remember two random-dot-motion displays presented in sequence and then to report the motion directions for each. Remembered motion directions were shifted away from the actual motion directions, an effect similar to the motion repulsion observed during perception. More important, the item retrieved second showed greater repulsion than the item retrieved first. This suggests that earlier retrieval exerted greater inhibition on the other item being held in short-term memory. This retrieval-induced motion repulsion could be explained neither by reduced cognitive resources for maintaining short-term memory nor by continued inhibition between short-term memory representations. These results indicate that retrieval of memory representations inhibits other representations in short-term memory. We discuss mechanisms of retrieval-induced inhibition and their implications for the structure of memory. © The Author(s) 2015.

  13. Audiovisual associations alter the perception of low-level visual motion

    PubMed Central

    Kafaligonul, Hulusi; Oluk, Can

    2015-01-01

    Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role. PMID:25873869

  14. Perceived spatial displacement of motion-defined contours in peripheral vision.

    PubMed

    Fan, Zhao; Harris, John

    2008-12-01

    The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging patterns, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern.

  15. Normalization of neuronal responses in cortical area MT across signal strengths and motion directions

    PubMed Central

    Xiao, Jianbo; Niu, Yu-Qiong; Wiesner, Steven

    2014-01-01

    Multiple visual stimuli are common in natural scenes, yet it remains unclear how multiple stimuli interact to influence neuronal responses. We investigated this question by manipulating relative signal strengths of two stimuli moving simultaneously within the receptive fields (RFs) of neurons in the extrastriate middle temporal (MT) cortex. Visual stimuli were overlapping random-dot patterns moving in two directions separated by 90°. We first varied the motion coherence of each random-dot pattern and characterized, across the direction tuning curve, the relationship between neuronal responses elicited by bidirectional stimuli and by the constituent motion components. The tuning curve for bidirectional stimuli showed response normalization and can be accounted for by a weighted sum of the responses to the motion components. Allowing nonlinear, multiplicative interaction between the two component responses significantly improved the data fit for some neurons, and the interaction mainly had a suppressive effect on the neuronal response. The weighting of the component responses was not fixed but dependent on relative signal strengths. When two stimulus components moved at different coherence levels, the response weight for the higher-coherence component was significantly greater than that for the lower-coherence component. We also varied relative luminance levels of two coherently moving stimuli and found that MT response weight for the higher-luminance component was also greater. These results suggest that competition between multiple stimuli within a neuron's RF depends on relative signal strengths of the stimuli and that multiplicative nonlinearity may play an important role in shaping the response tuning for multiple stimuli. PMID:24899674

  16. Precision of working memory for visual motion sequences and transparent motion surfaces

    PubMed Central

    Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud

    2012-01-01

    Recent studies investigating working memory for location, colour and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (Zhang & Luck (2008) vs. Bays et al (2009)). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence, rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features. PMID:22135378

  17. Differential Responses to a Visual Self-Motion Signal in Human Medial Cortical Regions Revealed by Wide-View Stimulation

    PubMed Central

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2016-01-01

    Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept. PMID:26973588

  18. Tailoring Quantum Dot Assemblies to Extend Exciton Coherence Times and Improve Exciton Transport

    NASA Astrophysics Data System (ADS)

    Seward, Kenton; Lin, Zhibin; Lusk, Mark

    2012-02-01

    The motion of excitons through nanostructured assemblies plays a central role in a wide range of physical phenomena including quantum computing, molecular electronics, photosynthetic processes, excitonic transistors and light emitting diodes. All of these technologies are severely handicapped, though, by quasi-particle lifetimes on the order of a nanosecond. The movement of excitons must therefore be as efficient as possible in order to move excitons meaningful distances. This is problematic for assemblies of small Si quantum dots (QDs), where excitons quickly localize and entangle with dot phonon modes. Ensuing exciton transport is then characterized by a classical random walk reduced to very short distances because of efficient recombination. We use a combination of master equation (Haken-Strobl) formalism and density functional theory to estimate the rate of decoherence in Si QD assemblies and its impact on exciton mobility. Exciton-phonon coupling and Coulomb interactions are calculated as a function of dot size, spacing and termination to minimize the rate of intra-dot phonon entanglement. This extends the time over which more efficient exciton transport, characterized by partial coherence, can be maintained.

  19. Effects of retinal eccentricity and acuity on global motion processing

    PubMed Central

    Bower, Jeffrey D.; Bian, Zheng; Andersen, George J.

    2012-01-01

    The present study assessed direction discrimination of moving random dot cinematograms (RDCs) at retinal eccentricities of 0, 8, 22 and 40 deg. In addition, Landolt C acuity was assessed at these eccentricities to determine whether changes in motion discrimination performance covaried with acuity in the retinal periphery. The results of the experiment indicated that discrimination thresholds increased with retinal eccentricity and directional variance (noise) independent of acuity. Psychophysical modeling indicated that the results of eccentricity and noise could be explained by an increase in channel bandwidth and an increase in internal multiplicative noise. PMID:22382583

  20. Rotating columns: Relating structure-from-motion, accretion/deletion, and figure/ground

    PubMed Central

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2013-01-01

    We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dark regions completing amodally into a single large surface moving in the background, or vice versa. Surprisingly, the regions that are perceived as figural are also perceived as 3-D volumes rotating in depth (like rotating columns)—despite the fact that dot motion is not consistent with 3-D rotation. In a series of experiments, we found we could manipulate which set of regions is perceived as rotating volumes simply by varying known geometric cues to figure ground, including convexity, parallelism, symmetry, and relative area. Subjects indicated which colored regions they perceived as rotating. For our displays we found convexity to be a stronger cue than either symmetry or parallelism. We furthermore found a smooth monotonic decay of the proportion by which subjects perceive symmetric regions as figural, as a function of their relative area. Our results reveal an intriguing new interaction between accretion-deletion, figure-ground, and 3-D motion that is not captured by existing models. They also provide an effective tool for measuring figure-ground perception. PMID:23946432

  1. Rotating columns: relating structure-from-motion, accretion/deletion, and figure/ground.

    PubMed

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2013-08-14

    We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dark regions completing amodally into a single large surface moving in the background, or vice versa. Surprisingly, the regions that are perceived as figural are also perceived as 3-D volumes rotating in depth (like rotating columns)-despite the fact that dot motion is not consistent with 3-D rotation. In a series of experiments, we found we could manipulate which set of regions is perceived as rotating volumes simply by varying known geometric cues to figure ground, including convexity, parallelism, symmetry, and relative area. Subjects indicated which colored regions they perceived as rotating. For our displays we found convexity to be a stronger cue than either symmetry or parallelism. We furthermore found a smooth monotonic decay of the proportion by which subjects perceive symmetric regions as figural, as a function of their relative area. Our results reveal an intriguing new interaction between accretion-deletion, figure-ground, and 3-D motion that is not captured by existing models. They also provide an effective tool for measuring figure-ground perception.

  2. Efficiency of extracting stereo-driven object motions

    PubMed Central

    Jain, Anshul; Zaidi, Qasim

    2013-01-01

    Most living things and many nonliving things deform as they move, requiring observers to separate object motions from object deformations. When the object is partially occluded, the task becomes more difficult because it is not possible to use two-dimensional (2-D) contour correlations (Cohen, Jain, & Zaidi, 2010). That leaves dynamic depth matching across the unoccluded views as the main possibility. We examined the role of stereo cues in extracting motion of partially occluded and deforming three-dimensional (3-D) objects, simulated by disk-shaped random-dot stereograms set at randomly assigned depths and placed uniformly around a circle. The stereo-disparities of the disks were temporally oscillated to simulate clockwise or counterclockwise rotation of the global shape. To dynamically deform the global shape, random disparity perturbation was added to each disk's depth on each stimulus frame. At low perturbation, observers reported rotation directions consistent with the global shape, even against local motion cues, but performance deteriorated at high perturbation. Using 3-D global shape correlations, we formulated an optimal Bayesian discriminator for rotation direction. Based on rotation discrimination thresholds, human observers were 75% as efficient as the optimal model, demonstrating that global shapes derived from stereo cues facilitate inferences of object motions. To complement reports of stereo and motion integration in extrastriate cortex, our results suggest the possibilities that disparity selectivity and feature tracking are linked, or that global motion selective neurons can be driven purely from disparity cues. PMID:23325345

  3. Anisotropic connectivity implements motion-based prediction in a spiking neural network.

    PubMed

    Kaplan, Bernhard A; Lansner, Anders; Masson, Guillaume S; Perrinet, Laurent U

    2013-01-01

    Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons inspired by the architecture of retinotopic cortical areas that assumes predictive coding is implemented through network connectivity, namely in the connection delays and in selectiveness for the tuning properties of source and target cells. We show that the applied connection pattern leads to motion-based prediction in an experiment tracking a moving dot. In contrast to our proposed model, a network with random or isotropic connectivity fails to predict the path when the moving dot disappears. Furthermore, we show that a simple linear decoding approach is sufficient to transform neuronal spiking activity into a probabilistic estimate for reading out the target trajectory.

  4. Moving from spatially segregated to transparent motion: a modelling approach

    PubMed Central

    Durant, Szonya; Donoso-Barrera, Alejandra; Tan, Sovira; Johnston, Alan

    2005-01-01

    Motion transparency, in which patterns of moving elements group together to give the impression of lacy overlapping surfaces, provides an important challenge to models of motion perception. It has been suggested that we perceive transparent motion when the shape of the velocity histogram of the stimulus is bimodal. To investigate this further, random-dot kinematogram motion sequences were created to simulate segregated (perceptually spatially separated) and transparent (perceptually overlapping) motion. The motion sequences were analysed using the multi-channel gradient model (McGM) to obtain the speed and direction at every pixel of each frame of the motion sequences. The velocity histograms obtained were found to be quantitatively similar and all were bimodal. However, the spatial and temporal properties of the velocity field differed between segregated and transparent stimuli. Transparent stimuli produced patches of rightward and leftward motion that varied in location over time. This demonstrates that we can successfully differentiate between these two types of motion on the basis of the time varying local velocity field. However, the percept of motion transparency cannot be based simply on the presence of a bimodal velocity histogram. PMID:17148338

  5. Brief report: altered horizontal binding of single dots to coherent motion in autism.

    PubMed

    David, Nicole; Rose, Michael; Schneider, Till R; Vogeley, Kai; Engel, Andreas K

    2010-12-01

    Individuals with autism often show a fragmented way of perceiving their environment, suggesting a disorder of information integration, possibly due to disrupted communication between brain areas. We investigated thirteen individuals with high-functioning autism (HFA) and thirteen healthy controls using the metastable motion quartet, a stimulus consisting of two dots alternately presented at four locations of a hypothetical square, thereby inducing an apparent motion percept. This percept is vertical or horizontal, the latter requiring binding of motion signals across cerebral hemispheres. Decreasing the horizontal distance between dots could facilitate horizontal percepts. We found evidence for altered horizontal binding in HFA: Individuals with HFA needed stronger facilitation to experience horizontal motion. These data are interpreted in light of reduced cross-hemispheric communication.

  6. Precision of working memory for visual motion sequences and transparent motion surfaces.

    PubMed

    Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud

    2011-12-01

    Recent studies investigating working memory for location, color, and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (W. Zhang & S. J. Luck, 2008 vs. P. M. Bays, R. F. G. Catalao, & M. Husain, 2009). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features.

  7. Brief Report: Coherent Motion Processing in Autism: Is Dot Lifetime an Important Parameter?

    ERIC Educational Resources Information Center

    Manning, Catherine; Charman, Tony; Pellicano, Elizabeth

    2015-01-01

    Contrasting reports of "reduced" and "intact" sensitivity to coherent motion in autistic individuals may be attributable to stimulus parameters. Here, we investigated whether dot lifetime contributes to elevated thresholds in children with autism. We presented a standard motion coherence task to 31 children with autism and 31…

  8. Motion streaks do not influence the perceived position of stationary flashed objects.

    PubMed

    Pavan, Andrea; Bellacosa Marotti, Rosilari

    2012-01-01

    In the present study, we investigated whether motion streaks, produced by fast moving dots Geisler 1999, distort the positional map of stationary flashed objects producing the well-known motion-induced position shift illusion (MIPS). The illusion relies on motion-processing mechanisms that induce local distortions in the positional map of the stimulus which is derived by shape-processing mechanisms. To measure the MIPS, two horizontally offset Gaussian blobs, placed above and below a central fixation point, were flashed over two fields of dots moving in opposite directions. Subjects judged the position of the top Gaussian blob relative to the bottom one. The results showed that neither fast (motion streaks) nor slow moving dots influenced the perceived spatial position of the stationary flashed objects, suggesting that background motion does not interact with the shape-processing mechanisms involved in MIPS.

  9. Reorganization of Retinotopic Maps After Occipital Lobe Infarction

    PubMed Central

    Vaina, Lucia M.; Soloviev, Sergei; Calabro, Finnegan J.; Buonanno, Ferdinando; Passingham, Richard; Cowey, Alan

    2015-01-01

    We studied patient JS who had a right occipital infarct that encroached on visual areas V1, V2v and VP. When tested psychophysically, he was very impaired at detecting the direction of motion in random dot displays where a variable proportion of dots moving in one direction (signal) were embedded in masking motion noise (noise dots). The impairment on this Motion Coherence task was especially marked when the display was presented to the upper left (affected) visual quadrant, contralateral to his lesion. However, with extensive training, by 11 months his threshold fell to the level of healthy subjects. Training on the Motion Coherence task generalized to another motion task, the Motion Discontinuity task, on which he had to detect the presence of an edge that was defined by the difference in the direction of the coherently moving dots (signal) within the display. He was much better at this task at 8 than 3 months, and this improvement was associated with an increase in the activation of the human MT complex (hMT+) and in the kinetic occipital region (KO) as shown by repeated fMRI scans. We also used fMRI to perform retinotopic mapping at 3, 8 and 11 months after the infarct. We quantified the retinotopy and areal shifts by measuring the distances between the center of mass of functionally defined areas, computed in spherical surface-based coordinates. The functionally defined retinotopic areas V1, V2v, V2d and VP were initially smaller in the lesioned right hemisphere, but they increased in size between 3 and 11 months. This change was not found in the normal, left hemisphere, of the patient or in either hemispheres of the healthy control subjects. We were interested in whether practice on the motion coherence task promoted the changes in the retinotopic maps. We compared the results for patient JS with those from another patient (PF) who had a comparable lesion but had not been given such practice. We found similar changes in the maps in the lesioned hemisphere of PF. However, PF was only scanned at 3 and 7 months, and the biggest shifts in patient JS were found between 8 and 11 months. Thus, it is important to carry out a prospective study with a trained and untrained group so as to determine whether the patterns of reorganization that we have observed can be further promoted by training. PMID:24345177

  10. A new framework for modeling decisions about changing information: The Piecewise Linear Ballistic Accumulator model

    PubMed Central

    Heathcote, Andrew

    2016-01-01

    In the real world, decision making processes must be able to integrate non-stationary information that changes systematically while the decision is in progress. Although theories of decision making have traditionally been applied to paradigms with stationary information, non-stationary stimuli are now of increasing theoretical interest. We use a random-dot motion paradigm along with cognitive modeling to investigate how the decision process is updated when a stimulus changes. Participants viewed a cloud of moving dots, where the motion switched directions midway through some trials, and were asked to determine the direction of motion. Behavioral results revealed a strong delay effect: after presentation of the initial motion direction there is a substantial time delay before the changed motion information is integrated into the decision process. To further investigate the underlying changes in the decision process, we developed a Piecewise Linear Ballistic Accumulator model (PLBA). The PLBA is efficient to simulate, enabling it to be fit to participant choice and response-time distribution data in a hierarchal modeling framework using a non-parametric approximate Bayesian algorithm. Consistent with behavioral results, PLBA fits confirmed the presence of a long delay between presentation and integration of new stimulus information, but did not support increased response caution in reaction to the change. We also found the decision process was not veridical, as symmetric stimulus change had an asymmetric effect on the rate of evidence accumulation. Thus, the perceptual decision process was slow to react to, and underestimated, new contrary motion information. PMID:26760448

  11. Mom's shadow: structure-from-motion in newly hatched chicks as revealed by an imprinting procedure.

    PubMed

    Mascalzoni, Elena; Regolin, Lucia; Vallortigara, Giorgio

    2009-03-01

    The ability to recognize three-dimensional objects from two-dimensional (2-D) displays was investigated in domestic chicks, focusing on the role of the object's motion. In Experiment 1 newly hatched chicks, imprinted on a three-dimensional (3-D) object, were allowed to choose between the shadows of the familiar object and of an object never seen before. In Experiments 2 and 3 random-dot displays were used to produce the perception of a solid shape only when set in motion. Overall, the results showed that domestic chicks were able to recognize familiar shapes from 2-D motion stimuli. It is likely that similar general mechanisms underlying the perception of structure-from-motion and the extraction of 3-D information are shared by humans and animals. The present data shows that they occur similarly in birds as known for mammals, two separate vertebrate classes; this possibly indicates a common phylogenetic origin of these processes.

  12. Matching cue size and task properties in exogenous attention.

    PubMed

    Burnett, Katherine E; d'Avossa, Giovanni; Sapir, Ayelet

    2013-01-01

    Exogenous attention is an involuntary, reflexive orienting response that results in enhanced processing at the attended location. The standard view is that this enhancement generalizes across visual properties of a stimulus. We test whether the size of an exogenous cue sets the attentional field and whether this leads to different effects on stimuli with different visual properties. In a dual task with a random-dot kinematogram (RDK) in each quadrant of the screen, participants discriminated the direction of moving dots in one RDK and localized one red dot. Precues were uninformative and consisted of either a large or a small luminance-change frame. The motion discrimination task showed attentional effects following both large and small exogenous cues. The red dot probe localization task showed attentional effects following a small cue, but not a large cue. Two additional experiments showed that the different effects on localization were not due to reduced spatial uncertainty or suppression of RDK dots in the surround. These results indicate that the effects of exogenous attention depend on the size of the cue and the properties of the task, suggesting the involvement of receptive fields with different sizes in different tasks. These attentional effects are likely to be driven by bottom-up mechanisms in early visual areas.

  13. Low-level sensory plasticity during task-irrelevant perceptual learning: Evidence from conventional and double training procedures

    PubMed Central

    Pilly, Praveen K.; Grossberg, Stephen; Seitz, Aaron R.

    2009-01-01

    Studies of perceptual learning have focused on aspects of learning that are related to early stages of sensory processing. However, conclusions that perceptual learning results in low-level sensory plasticity are controversial, since such learning may also be attributed to plasticity in later stages of sensory processing or in readout from sensory to decision stages, or to changes in high-level central processing. To address this controversy, we developed a novel random dot motion (RDM) stimulus to target motion cells selective to contrast polarity by ensuring the motion direction information arises only from signal dot onsets and not their offsets, and used these stimuli in the paradigm of task-irrelevant perceptual learning (TIPL). In TIPL, learning is achieved in response to a stimulus by subliminally pairing that stimulus with the targets of an unrelated training task. In this manner, we are able to probe learning for an aspect of motion processing thought to be a function of directional V1 simple cells with a learning procedure that dissociates the learned stimulus from the decision processes relevant to the training task. Our results show direction-selective learning for the designated contrast polarity that does not transfer to the opposite contrast polarity. This polarity specificity was replicated in a double training procedure in which subjects were additionally exposed to the opposite polarity. Taken together, these results suggest that TIPL for motion stimuli may occur at the stage of directional V1 simple cells. Finally, a theoretical explanation is provided to understand the data. PMID:19800358

  14. Enduring stereoscopic motion aftereffects induced by prolonged adaptation.

    PubMed

    Bowd, C; Rose, D; Phinney, R E; Patterson, R

    1996-11-01

    This study investigated the effects of prolonged adaptation on the recovery of the stereoscopic motion aftereffect (adaptation induced by moving binocular disparity information). The adapting and test stimuli were stereoscopic grating patterns created from disparity, embedded in dynamic random-dot stereograms. Motion aftereffects induced by luminance stimuli were included in the study for comparison. Adaptation duration was either 1, 2, 4, 8, 16, 32 or 64 min and the duration of the ensuing aftereffect was the variable of interest. The results showed that aftereffect duration was proportional to the square root of adaptation duration for both stereoscopic and luminance stimuli; on log-log axes, the relation between aftereffect duration and adaptation duration was a power law with the slope near 0.5 in both cases. For both kinds of stimuli, there was no sign of adaptation saturation even at the longest adaptation duration.

  15. Plasticity Beyond V1: Reinforcement of Motion Perception upon Binocular Central Retinal Lesions in Adulthood.

    PubMed

    Burnat, Kalina; Hu, Tjing-Tjing; Kossut, Małgorzata; Eysel, Ulf T; Arckens, Lutgarde

    2017-09-13

    Induction of a central retinal lesion in both eyes of adult mammals is a model for macular degeneration and leads to retinotopic map reorganization in the primary visual cortex (V1). Here we characterized the spatiotemporal dynamics of molecular activity levels in the central and peripheral representation of five higher-order visual areas, V2/18, V3/19, V4/21a,V5/PMLS, area 7, and V1/17, in adult cats with central 10° retinal lesions (both sexes), by means of real-time PCR for the neuronal activity reporter gene zif268. The lesions elicited a similar, permanent reduction in activity in the center of the lesion projection zone of area V1/17, V2/18, V3/19, and V4/21a, but not in the motion-driven V5/PMLS, which instead displayed an increase in molecular activity at 3 months postlesion, independent of visual field coordinates. Also area 7 only displayed decreased activity in its LPZ in the first weeks postlesion and increased activities in its periphery from 1 month onward. Therefore we examined the impact of central vision loss on motion perception using random dot kinematograms to test the capacity for form from motion detection based on direction and velocity cues. We revealed that the central retinal lesions either do not impair motion detection or even result in better performance, specifically when motion discrimination was based on velocity discrimination. In conclusion, we propose that central retinal damage leads to enhanced peripheral vision by sensitizing the visual system for motion processing relying on feedback from V5/PMLS and area 7. SIGNIFICANCE STATEMENT Central retinal lesions, a model for macular degeneration, result in functional reorganization of the primary visual cortex. Examining the level of cortical reactivation with the molecular activity marker zif268 revealed reorganization in visual areas outside V1. Retinotopic lesion projection zones typically display an initial depression in zif268 expression, followed by partial recovery with postlesion time. Only the motion-sensitive area V5/PMLS shows no decrease, and even a significant activity increase at 3 months post-retinal lesion. Behavioral tests of motion perception found no impairment and even better sensitivity to higher random dot stimulus velocities. We demonstrate that the loss of central vision induces functional mobilization of motion-sensitive visual cortex, resulting in enhanced perception of moving stimuli. Copyright © 2017 the authors 0270-6474/17/378989-11$15.00/0.

  16. Computer-animated stimuli to measure motion sensitivity: constraints on signal design in the Jacky dragon.

    PubMed

    Woo, Kevin L; Rieucau, Guillaume; Burke, Darren

    2017-02-01

    Identifying perceptual thresholds is critical for understanding the mechanisms that underlie signal evolution. Using computer-animated stimuli, we examined visual speed sensitivity in the Jacky dragon Amphibolurus muricatus , a species that makes extensive use of rapid motor patterns in social communication. First, focal lizards were tested in discrimination trials using random-dot kinematograms displaying combinations of speed, coherence, and direction. Second, we measured subject lizards' ability to predict the appearance of a secondary reinforcer (1 of 3 different computer-generated animations of invertebrates: cricket, spider, and mite) based on the direction of movement of a field of drifting dots by following a set of behavioural responses (e.g., orienting response, latency to respond) to our virtual stimuli. We found an effect of both speed and coherence, as well as an interaction between these 2 factors on the perception of moving stimuli. Overall, our results showed that Jacky dragons have acute sensitivity to high speeds. We then employed an optic flow analysis to match the performance to ecologically relevant motion. Our results suggest that the Jacky dragon visual system may have been shaped to detect fast motion. This pre-existing sensitivity may have constrained the evolution of conspecific displays. In contrast, Jacky dragons may have difficulty in detecting the movement of ambush predators, such as snakes and of some invertebrate prey. Our study also demonstrates the potential of the computer-animated stimuli technique for conducting nonintrusive tests to explore motion range and sensitivity in a visually mediated species.

  17. Self-motion perception in autism is compromised by visual noise but integrated optimally across multiple senses

    PubMed Central

    Zaidel, Adam; Goin-Kochel, Robin P.; Angelaki, Dora E.

    2015-01-01

    Perceptual processing in autism spectrum disorder (ASD) is marked by superior low-level task performance and inferior complex-task performance. This observation has led to theories of defective integration in ASD of local parts into a global percept. Despite mixed experimental results, this notion maintains widespread influence and has also motivated recent theories of defective multisensory integration in ASD. Impaired ASD performance in tasks involving classic random dot visual motion stimuli, corrupted by noise as a means to manipulate task difficulty, is frequently interpreted to support this notion of global integration deficits. By manipulating task difficulty independently of visual stimulus noise, here we test the hypothesis that heightened sensitivity to noise, rather than integration deficits, may characterize ASD. We found that although perception of visual motion through a cloud of dots was unimpaired without noise, the addition of stimulus noise significantly affected adolescents with ASD, more than controls. Strikingly, individuals with ASD demonstrated intact multisensory (visual–vestibular) integration, even in the presence of noise. Additionally, when vestibular motion was paired with pure visual noise, individuals with ASD demonstrated a different strategy than controls, marked by reduced flexibility. This result could be simulated by using attenuated (less reliable) and inflexible (not experience-dependent) Bayesian priors in ASD. These findings question widespread theories of impaired global and multisensory integration in ASD. Rather, they implicate increased sensitivity to sensory noise and less use of prior knowledge in ASD, suggesting increased reliance on incoming sensory information. PMID:25941373

  18. Brain networks involved in tactile speed classification of moving dot patterns: the effects of speed and dot periodicity

    PubMed Central

    Yang, Jiajia; Kitada, Ryo; Kochiyama, Takanori; Yu, Yinghua; Makita, Kai; Araki, Yuta; Wu, Jinglong; Sadato, Norihiro

    2017-01-01

    Humans are able to judge the speed of an object’s motion by touch. Research has suggested that tactile judgment of speed is influenced by physical properties of the moving object, though the neural mechanisms underlying this process remain poorly understood. In the present study, functional magnetic resonance imaging was used to investigate brain networks that may be involved in tactile speed classification and how such networks may be affected by an object’s texture. Participants were asked to classify the speed of 2-D raised dot patterns passing under their right middle finger. Activity in the parietal operculum, insula, and inferior and superior frontal gyri was positively related to the motion speed of dot patterns. Activity in the postcentral gyrus and superior parietal lobule was sensitive to dot periodicity. Psycho-physiological interaction (PPI) analysis revealed that dot periodicity modulated functional connectivity between the parietal operculum (related to speed) and postcentral gyrus (related to dot periodicity). These results suggest that texture-sensitive activity in the primary somatosensory cortex and superior parietal lobule influences brain networks associated with tactually-extracted motion speed. Such effects may be related to the influence of surface texture on tactile speed judgment. PMID:28145505

  19. Speed tuning of motion segmentation and discrimination

    NASA Technical Reports Server (NTRS)

    Masson, G. S.; Mestre, D. R.; Stone, L. S.

    1999-01-01

    Motion transparency requires that the visual system distinguish different motion vectors and selectively integrate similar motion vectors over space into the perception of multiple surfaces moving through or over each other. Using large-field (7 degrees x 7 degrees) displays containing two populations of random-dots moving in the same (horizontal) direction but at different speeds, we examined speed-based segmentation by measuring the speed difference above which observers can perceive two moving surfaces. We systematically investigated this 'speed-segmentation' threshold as a function of speed and stimulus duration, and found that it increases sharply for speeds above approximately 8 degrees/s. In addition, speed-segmentation thresholds decrease with stimulus duration out to approximately 200 ms. In contrast, under matched conditions, speed-discrimination thresholds stay low at least out to 16 degrees/s and decrease with increasing stimulus duration at a faster rate than for speed segmentation. Thus, motion segmentation and motion discrimination exhibit different speed selectivity and different temporal integration characteristics. Results are discussed in terms of the speed preferences of different neuronal populations within the primate visual cortex.

  20. Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach.

    PubMed

    Levy, Tal J; Rabani, Eran

    2013-04-28

    We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.

  1. Quantitative measurement of interocular suppression in children with amblyopia.

    PubMed

    Narasimhan, Sathyasri; Harrison, Emily R; Giaschi, Deborah E

    2012-08-01

    In this study we explored the possibility of using a dichoptic global motion technique to measure interocular suppression in children with amblyopia. We compared children (5-16 years old) with unilateral anisometropic and/or strabismic amblyopia to age-matched control children. Under dichoptic viewing conditions, contrast interference thresholds were determined with a global motion direction-discrimination task. Using virtual reality goggles, high contrast signal dots were presented to the amblyopic eye, while low contrast noise dots were presented to the non-amblyopic fellow eye. The contrast of the noise dots was increased until discrimination of the motion direction of the signal dots reached chance performance. Contrast interference thresholds were significantly lower in the strabismic group than in the anisometropic and control group. Our results suggest that interocular suppression is stronger in strabismic than in anisometropic amblyopia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Visual processing of rotary motion.

    PubMed

    Werkhoven, P; Koenderink, J J

    1991-01-01

    Local descriptions of velocity fields (e.g., rotation, divergence, and deformation) contain a wealth of information for form perception and ego motion. In spite of this, human psychophysical performance in estimating these entities has not yet been thoroughly examined. In this paper, we report on the visual discrimination of rotary motion. A sequence of image frames is used to elicit an apparent rotation of an annulus, composed of dots in the frontoparallel plane, around a fixation spot at the center of the annulus. Differential angular velocity thresholds are measured as a function of the angular velocity, the diameter of the annulus, the number of dots, the display time per frame, and the number of frames. The results show a U-shaped dependence of angular velocity discrimination on spatial scale, with minimal Weber fractions of 7%. Experiments with a scatter in the distance of the individual dots to the center of rotation demonstrate that angular velocity cannot be assessed directly; perceived angular velocity depends strongly on the distance of the dots relative to the center of rotation. We suggest that the estimation of rotary motion is mediated by local estimations of linear velocity.

  3. Feature-selective attention: evidence for a decline in old age.

    PubMed

    Quigley, Cliodhna; Andersen, Søren K; Schulze, Lars; Grunwald, Martin; Müller, Matthias M

    2010-04-19

    Although attention in older adults is an active research area, feature-selective aspects have not yet been explicitly studied. Here we report the results of an exploratory study involving directed changes in feature-selective attention. The stimuli used were two random dot kinematograms (RDKs) of different colours, superimposed and centrally presented. A colour cue with random onset after the beginning of each trial instructed young and older subjects to attend to one of the RDKs and detect short intervals of coherent motion while ignoring analogous motion events in the non-cued RDK. Behavioural data show that older adults could detect motion, but discriminated target from distracter motion less reliably than young adults. The method of frequency tagging allowed us to separate the EEG responses to the attended and ignored stimuli and directly compare steady-state visual evoked potential (SSVEP) amplitudes elicited by each stimulus before and after cue onset. We found that younger adults show a clear attentional enhancement of SSVEP amplitude in the post-cue interval, while older adults' SSVEP responses to attended and ignored stimuli do not differ. Thus, in situations where attentional selection cannot be spatially resolved, older adults show a deficit in selection that is not shared by young adults. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. A triple quantum dot based nano-electromechanical memory device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozner, R.; Lifshitz, E.; Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Consideringmore » realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.« less

  5. The urgency-gating model can explain the effects of early evidence.

    PubMed

    Carland, Matthew A; Thura, David; Cisek, Paul

    2015-12-01

    In a recent report, Winkel, Keuken, van Maanen, Wagenmakers & Forstmann (Psychonomics Bulletin and Review 21(3): 777-784, 2014) show that during a random-dot motion discrimination task, early differences in motion evidence can influence reaction times (RTs) and error rates in human subjects. They use this as an argument in favor of the drift-diffusion model and against the urgency-gating model. However, their implementation of the urgency-gating model is incomplete, as it lacks the low-pass filter that is necessary to deal with noisy input such as the motion signal used in their experimental task. Furthermore, by focusing analyses solely on comparison of mean RTs they overestimate how long early information influences individual trials. Here, we show that if the urgency-gating model is correctly implemented, including a low-pass filter with a 250 ms time constant, it can successfully reproduce the results of the Winkel et al. experiment.

  6. First- and second-order processing in transient stereopsis.

    PubMed

    Edwards, M; Pope, D R; Schor, C M

    2000-01-01

    Large-field stimuli were used to investigate the interaction of first- and second-order pathways in transient-stereo processing. Stimuli consisted of sinewave modulations in either the mean luminance (first-order stimulus) or the contrast (second-order stimulus) of a dynamic-random-dot field. The main results of the present study are that: (1) Depth could be extracted with both the first-order and second-order stimuli; (2) Depth could be extracted from dichoptically mixed first- and second-order stimuli, however, the same stimuli, when presented as a motion sequence, did not result in a motion percept. Based upon these findings we conclude that the transient-stereo system processes both first- and second-order signals, and that these two signals are pooled prior to the extraction of transient depth. This finding of interaction between first- and second-order stereoscopic processing is different from the independence that has been found with the motion system.

  7. The relationship of global form and motion detection to reading fluency.

    PubMed

    Englund, Julia A; Palomares, Melanie

    2012-08-15

    Visual motion processing in typical and atypical readers has suggested aspects of reading and motion processing share a common cortical network rooted in dorsal visual areas. Few studies have examined the relationship between reading performance and visual form processing, which is mediated by ventral cortical areas. We investigated whether reading fluency correlates with coherent motion detection thresholds in typically developing children using random dot kinematograms. As a comparison, we also evaluated the correlation between reading fluency and static form detection thresholds. Results show that both dorsal and ventral visual functions correlated with components of reading fluency, but that they have different developmental characteristics. Motion coherence thresholds correlated with reading rate and accuracy, which both improved with chronological age. Interestingly, when controlling for non-verbal abilities and age, reading accuracy significantly correlated with thresholds for coherent form detection but not coherent motion detection in typically developing children. Dorsal visual functions that mediate motion coherence seem to be related maturation of broad cognitive functions including non-verbal abilities and reading fluency. However, ventral visual functions that mediate form coherence seem to be specifically related to accurate reading in typically developing children. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Transformations of visual memory induced by implied motions of pattern elements.

    PubMed

    Finke, R A; Freyd, J J

    1985-10-01

    Four experiments measured distortions in short-term visual memory induced by displays depicting independent translations of the elements of a pattern. In each experiment, observers saw a sequence of 4 dot patterns and were instructed to remember the third pattern and to compare it with the fourth. The first three patterns depicted translations of the dots in consistent, but separate directions. Error rates and reaction times for rejecting the fourth pattern as different from the third were substantially higher when the dots in that pattern were displaced slightly forward, in the same directions as the implied motions, compared with when the dots were displaced in the opposite, backward directions. These effects showed little variation across interstimulus intervals ranging from 250 to 2,000 ms, and did not depend on whether the displays gave rise to visual apparent motion. However, they were eliminated when the dots in the fourth pattern were displaced by larger amounts in each direction, corresponding to the dot positions in the next and previous patterns in the same inducing sequence. These findings extend our initial report of the phenomenon of "representational momentum" (Freyd & Finke, 1984a), and help to rule out alternatives to the proposal that visual memories tend to undergo, at least to some extent, the transformations implied by a prior sequence of observed events.

  9. Computer-animated stimuli to measure motion sensitivity: constraints on signal design in the Jacky dragon

    PubMed Central

    Rieucau, Guillaume; Burke, Darren

    2017-01-01

    Abstract Identifying perceptual thresholds is critical for understanding the mechanisms that underlie signal evolution. Using computer-animated stimuli, we examined visual speed sensitivity in the Jacky dragon Amphibolurus muricatus, a species that makes extensive use of rapid motor patterns in social communication. First, focal lizards were tested in discrimination trials using random-dot kinematograms displaying combinations of speed, coherence, and direction. Second, we measured subject lizards’ ability to predict the appearance of a secondary reinforcer (1 of 3 different computer-generated animations of invertebrates: cricket, spider, and mite) based on the direction of movement of a field of drifting dots by following a set of behavioural responses (e.g., orienting response, latency to respond) to our virtual stimuli. We found an effect of both speed and coherence, as well as an interaction between these 2 factors on the perception of moving stimuli. Overall, our results showed that Jacky dragons have acute sensitivity to high speeds. We then employed an optic flow analysis to match the performance to ecologically relevant motion. Our results suggest that the Jacky dragon visual system may have been shaped to detect fast motion. This pre-existing sensitivity may have constrained the evolution of conspecific displays. In contrast, Jacky dragons may have difficulty in detecting the movement of ambush predators, such as snakes and of some invertebrate prey. Our study also demonstrates the potential of the computer-animated stimuli technique for conducting nonintrusive tests to explore motion range and sensitivity in a visually mediated species. PMID:29491965

  10. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way towardmore » the individual tracking of proteins of interest inside living yeast cells.« less

  11. Receptive fields for smooth pursuit eye movements and motion perception.

    PubMed

    Debono, Kurt; Schütz, Alexander C; Spering, Miriam; Gegenfurtner, Karl R

    2010-12-01

    Humans use smooth pursuit eye movements to track moving objects of interest. In order to track an object accurately, motion signals from the target have to be integrated and segmented from motion signals in the visual context. Most studies on pursuit eye movements used small visual targets against a featureless background, disregarding the requirements of our natural visual environment. Here, we tested the ability of the pursuit and the perceptual system to integrate motion signals across larger areas of the visual field. Stimuli were random-dot kinematograms containing a horizontal motion signal, which was perturbed by a spatially localized, peripheral motion signal. Perturbations appeared in a gaze-contingent coordinate system and had a different direction than the main motion including a vertical component. We measured pursuit and perceptual direction discrimination decisions and found that both steady-state pursuit and perception were influenced most by perturbation angles close to that of the main motion signal and only in regions close to the center of gaze. The narrow direction bandwidth (26 angular degrees full width at half height) and small spatial extent (8 degrees of visual angle standard deviation) correspond closely to tuning parameters of neurons in the middle temporal area (MT). Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Steering microtubule shuttle transport with dynamically controlled magnetic fields

    DOE PAGES

    Mahajan, K. D.; Ruan, G.; Dorcéna, C. J.; ...

    2016-03-23

    Nanoscale control of matter is critical to the design of integrated nanosystems. Here, we describe a method to dynamically control directionality of microtubule (MT) motion using programmable magnetic fields. MTs are combined with magnetic quantum dots (i.e., MagDots) that are manipulated by external magnetic fields provided by magnetic nanowires. MT shuttles thus undergo both ATP-driven and externally-directed motion with a fluorescence component that permits simultaneous visualization of shuttle motion. This technology is used to alter the trajectory of MTs in motion and to pin MT motion. Ultimately, such an approach could be used to evaluate the MT-kinesin transport system andmore » could serve as the basis for improved lab-on-a-chip technologies based on MT transport.« less

  13. The relation between disparity and velocity signals of rigidly moving objects constrains depth order perception.

    PubMed

    Di Luca, Massimiliano; Domini, Fulvio; Caudek, Corrado

    2007-05-01

    In two experiments, observers were asked to judge the relative depth of a probe and one or two flanker dots. In Experiment 1, we found that such judgments were influenced by the properties of adjacent image regions, that is, by the amount of angular rotation of a surrounding cloud of dots. In Experiment 2, we found that the properties of the adjacent image regions affected the precision of the observers' judgments. With only the probe and the flanker dots presented in isolation, the precision of observers' judgments was much lower than when probe and the flanker dots were surrounded by a rigidly-connected cloud of dots. Conversely, a non-rigid rotation of the surrounding dots was detrimental to the precision of visual performance. These data can be accounted for by the Intrinsic Constraint model [Domini, F., Caudek, C., & Tassinari, H. (2006). Stereo and motion information are not independently processed by the visual system. Vision Research, 46, 1707-1723], which incorporates the mutual constraints relating disparity and motion signals. The present investigation does not show that the rigidity constraint affects the visual interpretation of motion information alone. Rather, our results show that perceptual performance is affected by the linear relation between disparity and velocity signals, when both depth-cues are present and the distal object is, in fact, rigid.

  14. The effect of eccentricity and spatiotemporal energy on motion silencing.

    PubMed

    Choi, Lark Kwon; Bovik, Alan C; Cormack, Lawrence K

    2016-01-01

    The now well-known motion-silencing illusion has shown that salient changes among a group of objects' luminances, colors, shapes, or sizes may appear to cease when objects move rapidly (Suchow & Alvarez, 2011). It has been proposed that silencing derives from dot spacing that causes crowding, coherent changes in object color or size, and flicker frequencies combined with dot spacing (Choi, Bovik, & Cormack, 2014; Peirce, 2013; Turi & Burr, 2013). Motion silencing is a peripheral effect that does not occur near the point of fixation. To better understand the effect of eccentricity on motion silencing, we measured the amount of motion silencing as a function of eccentricity in human observers using traditional psychophysics. Fifteen observers reported whether dots in any of four concentric rings changed in luminance over a series of rotational velocities. The results in the human experiments showed that the threshold velocity for motion silencing almost linearly decreases as a function of log eccentricity. Further, we modeled the response of a population of simulated V1 neurons to our stimuli. We found strong matches between the threshold velocities on motion silencing observed in the human experiment and those seen in the energy model of Adelson and Bergen (1985). We suggest the plausible explanation that as eccentricity increases, the combined motion-flicker signal falls outside the narrow spatiotemporal frequency response regions of the modeled receptive fields, thereby reducing flicker visibility.

  15. Stereomotion speed perception: contributions from both changing disparity and interocular velocity difference over a range of relative disparities

    NASA Technical Reports Server (NTRS)

    Brooks, Kevin R.; Stone, Leland S.

    2004-01-01

    The role of two binocular cues to motion in depth-changing disparity (CD) and interocular velocity difference (IOVD)- was investigated by measuring stereomotion speed discrimination and static disparity discrimination performance (stereoacuity). Speed discrimination thresholds were assessed both for random dot stereograms (RDS), and for their temporally uncorrelated equivalents, dynamic random dot stereograms (DRDS), at relative disparity pedestals of -19, 0, and +19 arcmin. While RDS stimuli contain both CD and IOVD cues, DRDS stimuli carry only CD information. On average, thresholds were a factor of 1.7 higher for DRDS than for RDS stimuli with no clear effect of relative disparity pedestal. Results were similar for approaching and receding targets. Variations in stimulus duration had no significant effect on thresholds, and there was no observed correlation between stimulus displacement and perceived speed, confirming that subjects responded to stimulus speed in each condition. Stereoacuity was equally good for our RDS and DRDS stimuli, showing that the difference in stereomotion speed discrimination performance for these stimuli was not due to any difference in the precision of the disparity cue. In addition, when we altered stereomotion stimulus trajectory by independently manipulating the speeds and directions of its monocular half-images, perceived stereomotion speed remained accurate. This finding is inconsistent with response strategies based on properties of either monocular half-image motion, or any ad hoc combination of the monocular speeds. We conclude that although subjects are able to discriminate stereomotion speed reliably on the basis of CD information alone, IOVD provides a precise additional cue to stereomotion speed perception.

  16. Latent stereopsis for motion in depth in strabismic amblyopia.

    PubMed

    Hess, Robert F; Mansouri, Behzad; Thompson, Benjamin; Gheorghiu, Elena

    2009-10-01

    To investigate the residual stereo function of a group of 15 patients with strabismic amblyopia, by using motion-in-depth stimuli that allow discrimination of contributions from local disparity as opposed to those from local velocity mechanisms as a function of the rate of depth change. The stereo performance (percentage correct) was measured as a function of the rate of depth change for dynamic random dot stimuli that were either temporally correlated or uncorrelated. Residual stereoscopic function was demonstrated for motion in depth based on local disparity information in 2 of the 15 observers with strabismic amblyopia. The use of a neutral-density (ND) filter in front of the fixing eye enhanced motion-in-depth performance in four subjects randomly selected from the group that originally displayed only chance performance. This finding was true across temporal rate and for correlated and uncorrelated stimuli, suggesting that it was disparity based. The opposite occurred in a group of normal subjects. In a separate experiment, the hypothesis was that the beneficial effect of the ND filter is due to its contrast and/or mean luminance-reducing effects rather than any interocular time delay that it may introduce and that it is specific to motion-in-depth performance, as similar improvements were not found for static stereopsis. A small proportion of observers with strabismic amblyopia exhibit residual performance for motion in depth, and it is disparity based. Furthermore, some observers with strabismic amblyopia who do not display any significant stereo performance for motion in depth under normal binocular viewing may display above-chance stereo performance if the degree of interocular suppression is reduced. The authors term this phenomenon latent stereopsis.

  17. Agency alters perceptual decisions about action-outcomes.

    PubMed

    Desantis, Andrea; Waszak, Florian; Gorea, Andrei

    2016-10-01

    Humans experience themselves as agents, capable of controlling their actions and the outcomes they generate (i.e., the sense of agency). Inferences of agency are not infallible. Research shows that we often attribute outcomes to our agency even though they are caused by another agent. Moreover, agents report the sensory events they generate to be less intense compared to the events that are generated externally. These effects have been assessed using highly suprathreshold stimuli and subjective measurements. Consequently, it remains unclear whether experiencing oneself as an agent lead to a decision criterion change and/or a sensitivity change. Here, we investigate this issue. Participants were told that their key presses generated an upward dot motion but that on 30 % of the trials the computer would take over and display a downward motion. The upward/downward dot motion was presented at participant's discrimination threshold. Participants were asked to indicate whether they (upward motion) or the computer (downward motion) generated the motion. This group of participants was compared with a 'no-agency' group who performed the same task except that subjects did not execute any actions to generate the dot motion. We observed that the agency group reported seeing more frequently the motion they expected to generate (i.e., upward motion) than the no-agency group. This suggests that agency distorts our experience of (allegedly) caused events by altering perceptual decision processes, so that, in ambiguous contexts, externally generated events are experienced as the outcomes of one's actions.

  18. Visual feature-tolerance in the reading network.

    PubMed

    Rauschecker, Andreas M; Bowen, Reno F; Perry, Lee M; Kevan, Alison M; Dougherty, Robert F; Wandell, Brian A

    2011-09-08

    A century of neurology and neuroscience shows that seeing words depends on ventral occipital-temporal (VOT) circuitry. Typically, reading is learned using high-contrast line-contour words. We explored whether a specific VOT region, the visual word form area (VWFA), learns to see only these words or recognizes words independent of the specific shape-defining visual features. Word forms were created using atypical features (motion-dots, luminance-dots) whose statistical properties control word-visibility. We measured fMRI responses as word form visibility varied, and we used TMS to interfere with neural processing in specific cortical circuits, while subjects performed a lexical decision task. For all features, VWFA responses increased with word-visibility and correlated with performance. TMS applied to motion-specialized area hMT+ disrupted reading performance for motion-dots, but not line-contours or luminance-dots. A quantitative model describes feature-convergence in the VWFA and relates VWFA responses to behavioral performance. These findings suggest how visual feature-tolerance in the reading network arises through signal convergence from feature-specialized cortical areas. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Choice reaction time to movement of eccentric visual targets during concurrent rotary acceleration

    NASA Technical Reports Server (NTRS)

    Hamerman, J. A.

    1979-01-01

    This study investigates the influence of concurrent rotary acceleration on choice reaction time (RT) to a small, accelerating visual cursor on a cathode-ray tube. Subjects sat in an enclosed rotating device at the center of rotation and observed a 3-mm dot accelerating at different rates across a cathode-ray tube. The dot was viewed at various eccentricities under conditions of visual stimulation alone and with concurrent rotary acceleration. Subjects responded to both vertical and horizontal dot movements. There was a significant inverse relationship between choice RT and level of dot acceleration (p less than .001), and a significant direct relationship between choice RT and eccentricity (p less than .001). There was no significant difference between choice RT to vertical or horizontal dot motion (p greater than .25), and choice RT was not significantly affected by concurrent rotary acceleration (p greater than .10). The results are discussed in terms of the effects of vestibular stimulation on choice RT to visual motion.

  20. Visual motion direction is represented in population-level neural response as measured by magnetoencephalography.

    PubMed

    Kaneoke, Y; Urakawa, T; Kakigi, R

    2009-05-19

    We investigated whether direction information is represented in the population-level neural response evoked by the visual motion stimulus, as measured by magnetoencephalography. Coherent motions with varied speed, varied direction, and different coherence level were presented using random dot kinematography. Peak latency of responses to motion onset was inversely related to speed in all directions, as previously reported, but no significant effect of direction on latency changes was identified. Mutual information entropy (IE) calculated using four-direction response data increased significantly (>2.14) after motion onset in 41.3% of response data and maximum IE was distributed at approximately 20 ms after peak response latency. When response waveforms showing significant differences (by multivariate discriminant analysis) in distribution of the three waveform parameters (peak amplitude, peak latency, and 75% waveform width) with stimulus directions were analyzed, 87 waveform stimulus directions (80.6%) were correctly estimated using these parameters. Correct estimation rate was unaffected by stimulus speed, but was affected by coherence level, even though both speed and coherence affected response amplitude similarly. Our results indicate that speed and direction of stimulus motion are represented in the distinct properties of a response waveform, suggesting that the human brain processes speed and direction separately, at least in part.

  1. The Impact of Older Age and Sex on Motion Discrimination.

    PubMed

    Conlon, Elizabeth G; Power, Garry F; Hine, Trevor J; Rahaley, Nicole

    2017-01-01

    Background/Study Context: Reports of age-related differences on motion discrimination tasks have produced inconsistent findings concerning the influence of sex. Some studies have reported that older women have higher thresholds than older men, with others finding that women have higher motion thresholds regardless of age group. Reports of the age at which declines in motion discrimination first occur also differ, with some studies reporting declines only in groups aged over 70 years, with others reporting that age-related decline occurs at a younger age. The current study aimed to determine whether the sex differences found occur because relative to men, women have greater difficulty extracting motion signals from noise (Experiment 1) or have greater difficulty making use of the available motion cues (Experiment 2) in these complex moving stimuli. In addition, the influence of these manipulations on groups aged under and over 70 years was explored. Motion discrimination measures were obtained using 39 older adults aged between 60 and 85 years (21 women) and 40 younger adults aged between 20 and 45 years (20 women). In Experiment 1, coherent motion and relative motion displacement thresholds were obtained. In Experiment 2, coherent motion thresholds were obtained for stimuli containing either 150 or 600 dots. In Experiment 1, the older group had significantly higher thresholds on the relative motion displacement and coherent motion tasks than a younger group. No differences in motion sensitivity were found in the older groups aged under or over 70 years. Women regardless of age group had significantly higher thresholds than men on both tasks. In Experiment 2, the older group had higher coherence thresholds than the younger group, and the number of dots presented had no influence on thresholds, for the older group or older women specifically. In the younger group, women had higher coherence thresholds than men with presentation of 150 but not 600 dots. There were 51% of the older group who showed evidence of age-related decline on all the motion coherence tasks conducted, with half of these in each the group aged under and over 70 years. Difficulties with noise exclusion failed to explain the sex differences found. The increased number of motion cues present when a larger number of dots were included was sufficient to reduce coherence thresholds in younger women but not older men or women. In addition to age, developmental history and sex may provide further predictors in older individuals of decline on measures of motion discrimination.

  2. Non-conscious processing of motion coherence can boost conscious access.

    PubMed

    Kaunitz, Lisandro; Fracasso, Alessio; Lingnau, Angelika; Melcher, David

    2013-01-01

    Research on the scope and limits of non-conscious vision can advance our understanding of the functional and neural underpinnings of visual awareness. Here we investigated whether distributed local features can be bound, outside of awareness, into coherent patterns. We used continuous flash suppression (CFS) to create interocular suppression, and thus lack of awareness, for a moving dot stimulus that varied in terms of coherence with an overall pattern (radial flow). Our results demonstrate that for radial motion, coherence favors the detection of patterns of moving dots even under interocular suppression. Coherence caused dots to break through the masks more often: this indicates that the visual system was able to integrate low-level motion signals into a coherent pattern outside of visual awareness. In contrast, in an experiment using meaningful or scrambled biological motion we did not observe any increase in the sensitivity of detection for meaningful patterns. Overall, our results are in agreement with previous studies on face processing and with the hypothesis that certain features are spatiotemporally bound into coherent patterns even outside of attention or awareness.

  3. Apsidal motion in eccentric eclipsing binaries: TV Ceti and V451 Ophiuchi

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Diethelm, R.; Hornoch, K.

    2001-07-01

    Several new times of minimum light recorded with photoelectric means have been gathered for two bright eccentric eclipsing binaries TV Cet (P = 9fd1 , e = 0.055) and V451 Oph (P = 2fd2 , e = 0.013). Analysis of all available eclipse timings of TV Ceti has revealed a small motion of the line of apsides of dot ω = 0.000 30 +/- 0.000 08 deg cycle-1, corresponding to an apsidal period of U = 30 000 +/- 8 000 years. The contribution from the general relativity effects is dominant (dot ωrel/dot ω ~ 80 % ). In this system, the third body on an eccentric orbit with a period of 28.5 years is also predicted. The more precise values for the apsidal motion elements were computed for V451 Oph, where apsidal motion with a period of 170 +/- 5 years was confirmed. The corresponding internal structure constants log k2 were derived. Some of the observations reported in this paper were obtained at the South Africa Astronomical Observatory, Sutherland, South Africa.

  4. Human cerebral potentials evoked by moving dynamic random dot stereograms.

    PubMed

    Herpers, M J; Caberg, H B; Mol, J M

    1981-07-01

    In 11 normal healthy human subjects an evoked potential was elicited by moving dynamic random dot stereograms. The random dots were generated by a minicomputer. An average of each of 8 EEG channels of the subjects tested was made. The maximum of the cerebral evoked potentials thus found was localized in the central and parietal region. No response earlier than 130--150 msec after the stimulus could be proved. The influence of fixation, the number of dots provided, an interocular interstimulus interval in the presentation of the dots, and lense accommodation movements on the evoked stereoptic potentials was investigated and discussed. An interocular interstimulus interval (left eye leading) in the presentation of the dots caused an increase in latency of the response much longer than the imposed interstimulus interval itself. It was shown that no accommodation was needed to perceive the depth impression, and to evoke the cerebral response with random dot stereograms. There are indications of an asymmetry between the two hemispheres in the handling of depth perception after 250 msec. The potential distribution of the evoked potentials strongly suggests that they are not generated in the occipital region.

  5. The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns.

    PubMed

    Snowden, R J; Treue, S; Andersen, R A

    1992-01-01

    We studied the response of single units to moving random dot patterns in areas V1 and MT of the alert macaque monkey. Most cells could be driven by such patterns; however, many cells in V1 did not give a consistent response but fired at a particular point during stimulus presentation. Thus different dot patterns can produce a markedly different response at any particular time, though the time averaged response is similar. A comparison of the directionality of cells in both V1 and MT using random dot patterns shows the cells of MT to be far more directional. In addition our estimates of the percentage of directional cells in both areas are consistent with previous reports using other stimuli. However, we failed to find a bimodality of directionality in V1 which has been reported in some other studies. The variance associated with response was determined for individual cells. In both areas the variance was found to be approximately equal to the mean response, indicating little difference between extrastriate and striate cortex. These estimates are in broad agreement (though the variance appears a little lower) with those of V1 cells of the anesthetized cat. The response of MT cells was simulated on a computer from the estimates derived from the single unit recordings. While the direction tuning of MT cells is quite wide (mean half-width at half-height approximately 50 degrees) it is shown that the cells can reliably discriminate much smaller changes in direction, and the performance of the cells with the smallest discriminanda were comparable to thresholds measured with human subjects using the same stimuli (approximately 1.1 degrees). Minimum discriminanda for individual cells occurred not at the preferred direction, that is, the peak of their tuning curves, but rather on the steep flanks of their tuning curves. This result suggests that the cells which may mediate the discrimination of motion direction may not be the cells most sensitive to that direction.

  6. Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders

    NASA Astrophysics Data System (ADS)

    Sousa, Teresa; Amaral, Carlos; Andrade, João; Pires, Gabriel; Nunes, Urbano J.; Castelo-Branco, Miguel

    2017-08-01

    Objective. The achievement of multiple instances of control with the same type of mental strategy represents a way to improve flexibility of brain-computer interface (BCI) systems. Here we test the hypothesis that pure visual motion imagery of an external actuator can be used as a tool to achieve three classes of electroencephalographic (EEG) based control, which might be useful in attention disorders. Approach. We hypothesize that different numbers of imagined motion alternations lead to distinctive signals, as predicted by distinct motion patterns. Accordingly, a distinct number of alternating sensory/perceptual signals would lead to distinct neural responses as previously demonstrated using functional magnetic resonance imaging (fMRI). We anticipate that differential modulations should also be observed in the EEG domain. EEG recordings were obtained from twelve participants using three imagery tasks: imagery of a static dot, imagery of a dot with two opposing motions in the vertical axis (two motion directions) and imagery of a dot with four opposing motions in vertical or horizontal axes (four directions). The data were analysed offline. Main results. An increase of alpha-band power was found in frontal and central channels as a result of visual motion imagery tasks when compared with static dot imagery, in contrast with the expected posterior alpha decreases found during simple visual stimulation. The successful classification and discrimination between the three imagery tasks confirmed that three different classes of control based on visual motion imagery can be achieved. The classification approach was based on a support vector machine (SVM) and on the alpha-band relative spectral power of a small group of six frontal and central channels. Patterns of alpha activity, as captured by single-trial SVM closely reflected imagery properties, in particular the number of imagined motion alternations. Significance. We found a new mental task based on visual motion imagery with potential for the implementation of multiclass (3) BCIs. Our results are consistent with the notion that frontal alpha synchronization is related with high internal processing demands, changing with the number of alternation levels during imagery. Together, these findings suggest the feasibility of pure visual motion imagery tasks as a strategy to achieve multiclass control systems with potential for BCI and in particular, neurofeedback applications in non-motor (attentional) disorders.

  7. A Single Mechanism Can Account for Human Perception of Depth in Mixed Correlation Random Dot Stereograms

    PubMed Central

    Cumming, Bruce G.

    2016-01-01

    In order to extract retinal disparity from a visual scene, the brain must match corresponding points in the left and right retinae. This computationally demanding task is known as the stereo correspondence problem. The initial stage of the solution to the correspondence problem is generally thought to consist of a correlation-based computation. However, recent work by Doi et al suggests that human observers can see depth in a class of stimuli where the mean binocular correlation is 0 (half-matched random dot stereograms). Half-matched random dot stereograms are made up of an equal number of correlated and anticorrelated dots, and the binocular energy model—a well-known model of V1 binocular complex cells—fails to signal disparity here. This has led to the proposition that a second, match-based computation must be extracting disparity in these stimuli. Here we show that a straightforward modification to the binocular energy model—adding a point output nonlinearity—is by itself sufficient to produce cells that are disparity-tuned to half-matched random dot stereograms. We then show that a simple decision model using this single mechanism can reproduce psychometric functions generated by human observers, including reduced performance to large disparities and rapidly updating dot patterns. The model makes predictions about how performance should change with dot size in half-matched stereograms and temporal alternation in correlation, which we test in human observers. We conclude that a single correlation-based computation, based directly on already-known properties of V1 neurons, can account for the literature on mixed correlation random dot stereograms. PMID:27196696

  8. Spatial attention is attracted in a sustained fashion toward singular points in the optic flow.

    PubMed

    Wang, Shuo; Fukuchi, Masaki; Koch, Christof; Tsuchiya, Naotsugu

    2012-01-01

    While a single approaching object is known to attract spatial attention, it is unknown how attention is directed when the background looms towards the observer as s/he moves forward in a quasi-stationary environment. In Experiment 1, we used a cued speeded discrimination task to quantify where and how spatial attention is directed towards the target superimposed onto a cloud of moving dots. We found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The effects were less pronounced when the motion was contractive. The more ecologically valid the motion features became (e.g., temporal expansion of each dot, spatial depth structure implied by distribution of the size of the dots), the stronger the attentional effects. Further, the attentional effects were sustained over 1000 ms. Experiment 2 quantified these attentional effects using a change detection paradigm by zooming into or out of photographs of natural scenes. Spatial attention was attracted in a sustained manner such that change detection was facilitated or delayed depending on the location of the FOE only when the motion was expansive. Our results suggest that focal attention is strongly attracted towards singular points that signal the direction of forward ego-motion.

  9. Spatial Attention Is Attracted in a Sustained Fashion toward Singular Points in the Optic Flow

    PubMed Central

    Wang, Shuo; Fukuchi, Masaki; Koch, Christof; Tsuchiya, Naotsugu

    2012-01-01

    While a single approaching object is known to attract spatial attention, it is unknown how attention is directed when the background looms towards the observer as s/he moves forward in a quasi-stationary environment. In Experiment 1, we used a cued speeded discrimination task to quantify where and how spatial attention is directed towards the target superimposed onto a cloud of moving dots. We found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The effects were less pronounced when the motion was contractive. The more ecologically valid the motion features became (e.g., temporal expansion of each dot, spatial depth structure implied by distribution of the size of the dots), the stronger the attentional effects. Further, the attentional effects were sustained over 1000 ms. Experiment 2 quantified these attentional effects using a change detection paradigm by zooming into or out of photographs of natural scenes. Spatial attention was attracted in a sustained manner such that change detection was facilitated or delayed depending on the location of the FOE only when the motion was expansive. Our results suggest that focal attention is strongly attracted towards singular points that signal the direction of forward ego-motion. PMID:22905096

  10. Motion fading is driven by perceived, not actual angular velocity.

    PubMed

    Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U

    2010-06-01

    After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Independent, Synchronous Access to Color and Motion Features

    ERIC Educational Resources Information Center

    Holcombe, Alex O.; Cavanagh, Patrick

    2008-01-01

    We investigated the role of attention in pairing superimposed visual features. When moving dots alternate in color and in motion direction, reports of the perceived color and motion reveal an asynchrony: the most accurate reports occur when the motion change precedes the associated color change by approximately 100ms [Moutoussis, K., & Zeki,…

  12. A Role for Mouse Primary Visual Cortex in Motion Perception.

    PubMed

    Marques, Tiago; Summers, Mathew T; Fioreze, Gabriela; Fridman, Marina; Dias, Rodrigo F; Feller, Marla B; Petreanu, Leopoldo

    2018-06-04

    Visual motion is an ethologically important stimulus throughout the animal kingdom. In primates, motion perception relies on specific higher-order cortical regions. Although mouse primary visual cortex (V1) and higher-order visual areas show direction-selective (DS) responses, their role in motion perception remains unknown. Here, we tested whether V1 is involved in motion perception in mice. We developed a head-fixed discrimination task in which mice must report their perceived direction of motion from random dot kinematograms (RDKs). After training, mice made around 90% correct choices for stimuli with high coherence and performed significantly above chance for 16% coherent RDKs. Accuracy increased with both stimulus duration and visual field coverage of the stimulus, suggesting that mice in this task integrate motion information in time and space. Retinal recordings showed that thalamically projecting On-Off DS ganglion cells display DS responses when stimulated with RDKs. Two-photon calcium imaging revealed that neurons in layer (L) 2/3 of V1 display strong DS tuning in response to this stimulus. Thus, RDKs engage motion-sensitive retinal circuits as well as downstream visual cortical areas. Contralateral V1 activity played a key role in this motion direction discrimination task because its reversible inactivation with muscimol led to a significant reduction in performance. Neurometric-psychometric comparisons showed that an ideal observer could solve the task with the information encoded in DS L2/3 neurons. Motion discrimination of RDKs presents a powerful behavioral tool for dissecting the role of retino-forebrain circuits in motion processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Information Foraging for Perceptual Decisions

    PubMed Central

    2016-01-01

    We tested an information foraging framework to characterize the mechanisms that drive active (visual) sampling behavior in decision problems that involve multiple sources of information. Experiments 1 through 3 involved participants making an absolute judgment about the direction of motion of a single random dot motion pattern. In Experiment 4, participants made a relative comparison between 2 motion patterns that could only be sampled sequentially. Our results show that: (a) Information (about noisy motion information) grows to an asymptotic level that depends on the quality of the information source; (b) The limited growth is attributable to unequal weighting of the incoming sensory evidence, with early samples being weighted more heavily; (c) Little information is lost once a new source of information is being sampled; and (d) The point at which the observer switches from 1 source to another is governed by online monitoring of his or her degree of (un)certainty about the sampled source. These findings demonstrate that the sampling strategy in perceptual decision-making is under some direct control by ongoing cognitive processing. More specifically, participants are able to track a measure of (un)certainty and use this information to guide their sampling behavior. PMID:27819455

  14. Stimulus and response conflict processing during perceptual decision making.

    PubMed

    Wendelken, Carter; Ditterich, Jochen; Bunge, Silvia A; Carter, Cameron S

    2009-12-01

    Encoding and dealing with conflicting information is essential for successful decision making in a complex environment. In the present fMRI study, stimulus conflict and response conflict are contrasted in the context of a perceptual decision-making dot-motion discrimination task. Stimulus conflict was manipulated by varying dot-motion coherence along task-relevant and task-irrelevant dimensions. Response conflict was manipulated by varying whether or not competing stimulus dimensions provided evidence for the same or different responses. The right inferior frontal gyrus was involved specifically in the resolution of stimulus conflict, whereas the dorsal anterior cingulate cortex was shown to be sensitive to response conflict. Additionally, two regions that have been linked to perceptual decision making with dot-motion stimuli in monkey physiology studies were differentially engaged by stimulus conflict and response conflict. The middle temporal area, previously linked to processing of motion, was strongly affected by the presence of stimulus conflict. On the other hand, the superior parietal lobe, previously associated with accumulation of evidence for a response, was affected by the presence of response conflict. These results shed light on the neural mechanisms that support decision making in the presence of conflict, a cognitive operation fundamental to both basic survival and high-level cognition.

  15. 14 CFR 302.411 - Motions to dismiss and for summary judgment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Motions to dismiss and for summary judgment... Enforcement Proceedings § 302.411 Motions to dismiss and for summary judgment. (a) At any time after an answer has been filed, any party may file with the DOT decisionmaker or the administrative law judge a motion...

  16. 14 CFR 302.411 - Motions to dismiss and for summary judgment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Motions to dismiss and for summary judgment... Enforcement Proceedings § 302.411 Motions to dismiss and for summary judgment. (a) At any time after an answer has been filed, any party may file with the DOT decisionmaker or the administrative law judge a motion...

  17. 14 CFR 302.411 - Motions to dismiss and for summary judgment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Enforcement Proceedings § 302.411 Motions to dismiss and for summary judgment. (a) At any time after an answer has been filed, any party may file with the DOT decisionmaker or the administrative law judge a motion... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Motions to dismiss and for summary judgment...

  18. 14 CFR 302.411 - Motions to dismiss and for summary judgment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Enforcement Proceedings § 302.411 Motions to dismiss and for summary judgment. (a) At any time after an answer has been filed, any party may file with the DOT decisionmaker or the administrative law judge a motion... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Motions to dismiss and for summary judgment...

  19. Global Motion Perception in 2-Year-Old Children: A Method for Psychophysical Assessment and Relationships With Clinical Measures of Visual Function

    PubMed Central

    Yu, Tzu-Ying; Jacobs, Robert J.; Anstice, Nicola S.; Paudel, Nabin; Harding, Jane E.; Thompson, Benjamin

    2013-01-01

    Purpose. We developed and validated a technique for measuring global motion perception in 2-year-old children, and assessed the relationship between global motion perception and other measures of visual function. Methods. Random dot kinematogram (RDK) stimuli were used to measure motion coherence thresholds in 366 children at risk of neurodevelopmental problems at 24 ± 1 months of age. RDKs of variable coherence were presented and eye movements were analyzed offline to grade the direction of the optokinetic reflex (OKR) for each trial. Motion coherence thresholds were calculated by fitting psychometric functions to the resulting datasets. Test–retest reliability was assessed in 15 children, and motion coherence thresholds were measured in a group of 10 adults using OKR and behavioral responses. Standard age-appropriate optometric tests also were performed. Results. Motion coherence thresholds were measured successfully in 336 (91.8%) children using the OKR technique, but only 31 (8.5%) using behavioral responses. The mean threshold was 41.7 ± 13.5% for 2-year-old children and 3.3 ± 1.2% for adults. Within-assessor reliability and test–retest reliability were high in children. Children's motion coherence thresholds were significantly correlated with stereoacuity (LANG I & II test, ρ = 0.29, P < 0.001; Frisby, ρ = 0.17, P = 0.022), but not with binocular visual acuity (ρ = 0.11, P = 0.07). In adults OKR and behavioral motion coherence thresholds were highly correlated (intraclass correlation = 0.81, P = 0.001). Conclusions. Global motion perception can be measured in 2-year-old children using the OKR. This technique is reliable and data from adults suggest that motion coherence thresholds based on the OKR are related to motion perception. Global motion perception was related to stereoacuity in children. PMID:24282224

  20. Translation and Rotation Trade Off in Human Visual Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Perrone, John A.; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    We have previously shown that, during simulated curvilinear motion, humans can make reasonably accurate and precise heading judgments from optic flow without either oculomotor or static-depth cues about rotation. We now systematically investigate the effect of varying the parameters of self-motion. We visually simulated 400 ms of self-motion along curved paths (constant rotation and translation rates, fixed retinocentric heading) towards two planes of random dots at 10.3 m and 22.3 m at mid-trial. Retinocentric heading judgments of 4 observers (2 naive) were measured for 12 different combinations of translation (T between 4 and 16 m/s) and rotation (R either 8 or 16 deg/s). In the range tested, heading bias and uncertainty decrease quasilinearly with T/R, but the bias also appears to depend on R. If depth is held constant, the ratio T/R can account for much of the variation in the accuracy and precision of human visual heading estimation, although further experiments are needed to resolve whether absolute rotation rate, total flow rate, or some other factor can account for the observed -2 deg shift between the bias curves.

  1. Anisotropies in the perceived spatial displacement of motion-defined contours: opposite biases in the upper-left and lower-right visual quadrants.

    PubMed

    Fan, Zhao; Harris, John

    2010-10-12

    In a recent study (Fan, Z., & Harris, J. (2008). Perceived spatial displacement of motion-defined contours in peripheral vision. Vision Research, 48(28), 2793-2804), we demonstrated that virtual contours defined by two regions of dots moving in opposite directions were displaced perceptually in the direction of motion of the dots in the more eccentric region when the contours were viewed in the right visual field. Here, we show that the magnitude and/or direction of these displacements varies in different quadrants of the visual field. When contours were presented in the lower visual field, the direction of perceived contour displacement was consistent with that when both contours were presented in the right visual field. However, this illusory motion-induced spatial displacement disappeared when both contours were presented in the upper visual field. Also, perceived contour displacement in the direction of the more eccentric dots was larger in the right than in the left visual field, perhaps because of a hemispheric asymmetry in attentional allocation. Quadrant-based analyses suggest that the pattern of results arises from opposite directions of perceived contour displacement in the upper-left and lower-right visual quadrants, which depend on the relative strengths of two effects: a greater sensitivity to centripetal motion, and an asymmetry in the allocation of spatial attention. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Stereomotion is processed by the third-order motion system: reply to comment on Three-systems theory of human visual motion perception: review and update

    NASA Astrophysics Data System (ADS)

    Lu, Zhong-Lin; Sperling, George

    2002-10-01

    Two theories are considered to account for the perception of motion of depth-defined objects in random-dot stereograms (stereomotion). In the LuSperling three-motion-systems theory J. Opt. Soc. Am. A 18 , 2331 (2001), stereomotion is perceived by the third-order motion system, which detects the motion of areas defined as figure (versus ground) in a salience map. Alternatively, in his comment J. Opt. Soc. Am. A 19 , 2142 (2002), Patterson proposes a low-level motion-energy system dedicated to stereo depth. The critical difference between these theories is the preprocessing (figureground based on depth and other cues versus simply stereo depth) rather than the motion-detection algorithm itself (because the motion-extraction algorithm for third-order motion is undetermined). Furthermore, the ability of observers to perceive motion in alternating feature displays in which stereo depth alternates with other features such as texture orientation indicates that the third-order motion system can perceive stereomotion. This reduces the stereomotion question to Is it third-order alone or third-order plus dedicated depth-motion processing? Two new experiments intended to support the dedicated depth-motion processing theory are shown here to be perfectly accounted for by third-order motion, as are many older experiments that have previously been shown to be consistent with third-order motion. Cyclopean and rivalry images are shown to be a likely confound in stereomotion studies, rivalry motion being as strong as stereomotion. The phase dependence of superimposed same-direction stereomotion stimuli, rivalry stimuli, and isoluminant color stimuli indicates that these stimuli are processed in the same (third-order) motion system. The phase-dependence paradigm Lu and Sperling, Vision Res. 35 , 2697 (1995) ultimately can resolve the question of which types of signals share a single motion detector. All the evidence accumulated so far is consistent with the three-motion-systems theory. 2002 Optical Society of America

  3. Randomly distilling W-class states into general configurations of two-party entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, W.; Chitambar, E.; Lo, H. K.

    2011-11-15

    In this article we obtain results for the task of converting a single N-qubit W-class state (of the form {radical}(x{sub 0})|00...0>+{radical}(x{sub 1})|10...0>+{center_dot}{center_dot}{center_dot}+{radical}(x{sub N})|00...1>) into maximum entanglement shared between two random parties. Previous studies in random distillation have not considered how the particular choice of target pairs affects the transformation, and here we develop a strategy for distilling into general configurations of target pairs. We completely solve the problem of determining the optimal distillation probability for all three-qubit configurations and most four-qubit configurations when x{sub 0}=0. Our proof involves deriving new entanglement monotones defined on the set of four-qubit W-class states.more » As an additional application of our results, we present new upper bounds for converting a generic W-class state into the standard W state |W{sub N}>={radical}((1/N))(|10...0>+{center_dot}{center_dot}{center_dot}+|00...1>).« less

  4. Ocular tracking responses to background motion gated by feature-based attention.

    PubMed

    Souto, David; Kerzel, Dirk

    2014-09-01

    Involuntary ocular tracking responses to background motion offer a window on the dynamics of motion computations. In contrast to spatial attention, we know little about the role of feature-based attention in determining this ocular response. To probe feature-based effects of background motion on involuntary eye movements, we presented human observers with a balanced background perturbation. Two clouds of dots moved in opposite vertical directions while observers tracked a target moving in horizontal direction. Additionally, they had to discriminate a change in the direction of motion (±10° from vertical) of one of the clouds. A vertical ocular following response occurred in response to the motion of the attended cloud. When motion selection was based on motion direction and color of the dots, the peak velocity of the tracking response was 30% of the tracking response elicited in a single task with only one direction of background motion. In two other experiments, we tested the effect of the perturbation when motion selection was based on color, by having motion direction vary unpredictably, or on motion direction alone. Although the gain of pursuit in the horizontal direction was significantly reduced in all experiments, indicating a trade-off between perceptual and oculomotor tasks, ocular responses to perturbations were only observed when selection was based on both motion direction and color. It appears that selection by motion direction can only be effective for driving ocular tracking when the relevant elements can be segregated before motion onset. Copyright © 2014 the American Physiological Society.

  5. Effects of feature-based attention on the motion aftereffect at remote locations.

    PubMed

    Boynton, Geoffrey M; Ciaramitaro, Vivian M; Arman, A Cyrus

    2006-09-01

    Previous studies have shown that attention to a particular stimulus feature, such as direction of motion or color, enhances neuronal responses to unattended stimuli sharing that feature. We studied this effect psychophysically by measuring the strength of the motion aftereffect (MAE) induced by an unattended stimulus when attention was directed to one of two overlapping fields of moving dots in a different spatial location. When attention was directed to the same direction of motion as the unattended stimulus, the unattended stimulus induced a stronger MAE than when attention was directed to the opposite direction. Also, when the unattended location contained either uncorrelated motion or had no stimulus at all an MAE was induced in the opposite direction to the attended direction of motion. The strength of the MAE was similar regardless of whether subjects attended to the speed or luminance of the attended dots. These results provide further support for a global feature-based mechanism of attention, and show that the effect spreads across all features of an attended object, and to all locations of visual space.

  6. Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset

    PubMed Central

    Solomon, Selina S; Tailby, Chris; Gharaei, Saba; Camp, Aaron J; Bourne, James A; Solomon, Samuel G

    2011-01-01

    Abstract The middle temporal area (MT/V5) is an anatomically distinct region of primate visual cortex that is specialized for the processing of image motion. It is generally thought that some neurons in area MT are capable of signalling the motion of complex patterns, but this has only been established in the macaque monkey. We made extracellular recordings from single units in area MT of anaesthetized marmosets, a New World monkey. We show through quantitative analyses that some neurons (35 of 185; 19%) are capable of signalling pattern motion (‘pattern cells’). Across several dimensions, the visual response of pattern cells in marmosets is indistinguishable from that of pattern cells in macaques. Other neurons respond to the motion of oriented contours in a pattern (‘component cells’) or show intermediate properties. In addition, we encountered a subset of neurons (22 of 185; 12%) insensitive to sinusoidal gratings but very responsive to plaids and other two-dimensional patterns and otherwise indistinguishable from pattern cells. We compared the response of each cell class to drifting gratings and dot fields. In pattern cells, directional selectivity was similar for gratings and dot fields; in component cells, directional selectivity was weaker for dot fields than gratings. Pattern cells were more likely to have stronger suppressive surrounds, prefer lower spatial frequencies and prefer higher speeds than component cells. We conclude that pattern motion sensitivity is a feature of some neurons in area MT of both New and Old World monkeys, suggesting that this functional property is an important stage in motion analysis and is likely to be conserved in humans. PMID:21946851

  7. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhou, S; Williams, C; Ionascu, D

    2016-06-15

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived weremore » compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc, Palo Alto, CA.« less

  8. Create your own stimulus: Manipulating movements according to social categories

    PubMed Central

    Koppensteiner, Markus; Primes, Georg; Stephan, Pia

    2017-01-01

    People ascribe purposeful behaviour to the movements of artificial objects and social qualities to human body motion. We investigated how people associate simple motion cues with social categories. For a first rating-experiment we converted the body movements of speakers into stick-figure animations; for a second rating-experiment we used animations of one single dot. Rating-experiments were “reversed” because we asked participants to alter the movements (i.e., vertical amplitude, horizontal amplitude, and velocity) of the stimuli according to different instructions (e.g., create a stimulus of high dominance). Participants equipped stick figures and dot animations with expansive movements to represent high dominance. Expansive and fast movements (i.e., high velocity) were mainly associated with high aggressiveness. Fast movements were also associated with low friendliness, low trustworthiness, and low competence. Overall, patterns found for stick figure and dot animations were similar indicating that certain motion cues convey social information even when only a dot and no body form is visible. The “reverse approach” we propose here makes the impact of different components directly observable. The data generated by this method offers better insights into the interplay of these components and the ways in which they form meaningful patterns. The proposed method can be extended to other types of nonverbal cues and a variety of social categories. PMID:28339490

  9. Polarization control of quantum dot emission by chiral photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey V.; Weiss, Thomas; Gippius, Nikolay A.; Tikhodeev, Sergei G.; Kulakovskii, Vladimir D.; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized quantum dots normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed quantum dots, and can be close to 100% for some single quantum dots.

  10. Early Visual Cortex Dynamics during Top-Down Modulated Shifts of Feature-Selective Attention.

    PubMed

    Müller, Matthias M; Trautmann, Mireille; Keitel, Christian

    2016-04-01

    Shifting attention from one color to another color or from color to another feature dimension such as shape or orientation is imperative when searching for a certain object in a cluttered scene. Most attention models that emphasize feature-based selection implicitly assume that all shifts in feature-selective attention underlie identical temporal dynamics. Here, we recorded time courses of behavioral data and steady-state visual evoked potentials (SSVEPs), an objective electrophysiological measure of neural dynamics in early visual cortex to investigate temporal dynamics when participants shifted attention from color or orientation toward color or orientation, respectively. SSVEPs were elicited by four random dot kinematograms that flickered at different frequencies. Each random dot kinematogram was composed of dashes that uniquely combined two features from the dimensions color (red or blue) and orientation (slash or backslash). Participants were cued to attend to one feature (such as color or orientation) and respond to coherent motion targets of the to-be-attended feature. We found that shifts toward color occurred earlier after the shifting cue compared with shifts toward orientation, regardless of the original feature (i.e., color or orientation). This was paralleled in SSVEP amplitude modulations as well as in the time course of behavioral data. Overall, our results suggest different neural dynamics during shifts of attention from color and orientation and the respective shifting destinations, namely, either toward color or toward orientation.

  11. Early vision and focal attention

    NASA Astrophysics Data System (ADS)

    Julesz, Bela

    1991-07-01

    At the thirty-year anniversary of the introduction of the technique of computer-generated random-dot stereograms and random-dot cinematograms into psychology, the impact of the technique on brain research and on the study of artificial intelligence is reviewed. The main finding-that stereoscopic depth perception (stereopsis), motion perception, and preattentive texture discrimination are basically bottom-up processes, which occur without the help of the top-down processes of cognition and semantic memory-greatly simplifies the study of these processes of early vision and permits the linking of human perception with monkey neurophysiology. Particularly interesting are the unexpected findings that stereopsis (assumed to be local) is a global process, while texture discrimination (assumed to be a global process, governed by statistics) is local, based on some conspicuous local features (textons). It is shown that the top-down process of "shape (depth) from shading" does not affect stereopsis, and some of the models of machine vision are evaluated. The asymmetry effect of human texture discrimination is discussed, together with recent nonlinear spatial filter models and a novel extension of the texton theory that can cope with the asymmetry problem. This didactic review attempts to introduce the physicist to the field of psychobiology and its problems-including metascientific problems of brain research, problems of scientific creativity, the state of artificial intelligence research (including connectionist neural networks) aimed at modeling brain activity, and the fundamental role of focal attention in mental events.

  12. Statistical learning of movement.

    PubMed

    Ongchoco, Joan Danielle Khonghun; Uddenberg, Stefan; Chun, Marvin M

    2016-12-01

    The environment is dynamic, but objects move in predictable and characteristic ways, whether they are a dancer in motion, or a bee buzzing around in flight. Sequences of movement are comprised of simpler motion trajectory elements chained together. But how do we know where one trajectory element ends and another begins, much like we parse words from continuous streams of speech? As a novel test of statistical learning, we explored the ability to parse continuous movement sequences into simpler element trajectories. Across four experiments, we showed that people can robustly parse such sequences from a continuous stream of trajectories under increasingly stringent tests of segmentation ability and statistical learning. Observers viewed a single dot as it moved along simple sequences of paths, and were later able to discriminate these sequences from novel and partial ones shown at test. Observers demonstrated this ability when there were potentially helpful trajectory-segmentation cues such as a common origin for all movements (Experiment 1); when the dot's motions were entirely continuous and unconstrained (Experiment 2); when sequences were tested against partial sequences as a more stringent test of statistical learning (Experiment 3); and finally, even when the element trajectories were in fact pairs of trajectories, so that abrupt directional changes in the dot's motion could no longer signal inter-trajectory boundaries (Experiment 4). These results suggest that observers can automatically extract regularities in movement - an ability that may underpin our capacity to learn more complex biological motions, as in sport or dance.

  13. B-dot algorithm steady-state motion performance

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Roldugin, D. S.; Tkachev, S. S.; Penkov, V. I.

    2018-05-01

    Satellite attitude motion subject to the well-known B-dot magnetic control is considered. Unlike the majority of studies the present work focuses on the slowly rotating spacecraft. The attitude and the angular velocity acquired after detumbling the satellite is determined. This task is performed using two relatively simple geomagnetic field models. First the satellite is considered moving in the simplified dipole model. Asymptotically stable rotation around the axis of the maximum moment of inertia is found. This axis direction in the inertial space and the rotation rate are found. This result is then refined using the direct dipole geomagnetic field. Simple stable rotation transforms into the periodical motion, the rotation rate is also refined. Numerical analysis with the gravitational torque and the inclined dipole model verifies the analytical results.

  14. Sensitive period in stereopsis: random dot stereopsis after long-standing strabismus.

    PubMed

    Hatch, S W; Laudon, R

    1993-12-01

    Bifoveal fixation is a requirement for random dot stereopsis. It is believed that random dot stereopsis is not possible after treatment of long-standing strabismus because binocular cortical cells are permanently damaged when strabismus is present during the sensitive period. Although the sensitive period for amblyopia has been clearly documented, the sensitive period for stereopsis is uncertain. We present a case we have followed from age 22 months to 10 years. This patient had intermittent esotropia until approximately age 3 years 4 months; he then had constant esotropia from about age 3 years 4 months to age 9 years 7 months. After orthoptic treatment at age 9 years, the patient returned to intermittent esotropia. He subsequently developed bifoveal fixation as measured by 30 sec arc of contour stereopsis and 250 to 500 sec arc of random dot stereopsis. This patient demonstrates that bifoveal fixation can be obtained after long-standing strabismus. We suggest that the sensitive period for stereopsis development, for this patient, was from birth to age 3 years.

  15. Comparison of two Simon tasks: neuronal correlates of conflict resolution based on coherent motion perception.

    PubMed

    Wittfoth, Matthias; Buck, Daniela; Fahle, Manfred; Herrmann, Manfred

    2006-08-15

    The present study aimed at characterizing the neural correlates of conflict resolution in two variations of the Simon effect. We introduced two different Simon tasks where subjects had to identify shapes on the basis of form-from-motion perception (FFMo) within a randomly moving dot field, while (1) motion direction (motion-based Simon task) or (2) stimulus location (location-based Simon task) had to be ignored. Behavioral data revealed that both types of Simon tasks induced highly significant interference effects. Using event-related fMRI, we could demonstrate that both tasks share a common cluster of activated brain regions during conflict resolution (pre-supplementary motor area (pre-SMA), superior parietal lobule (SPL), and cuneus) but also show task-specific activation patterns (left superior temporal cortex in the motion-based, and the left fusiform gyrus in the location-based Simon task). Although motion-based and location-based Simon tasks are conceptually very similar (Type 3 stimulus-response ensembles according to the taxonomy of [Kornblum, S., Stevens, G. (2002). Sequential effects of dimensional overlap: findings and issues. In: Prinz, W., Hommel., B. (Eds.), Common mechanism in perception and action. Oxford University Press, Oxford, pp. 9-54]) conflict resolution in both tasks results in the activation of different task-specific regions probably related to the different sources of task-irrelevant information. Furthermore, the present data give evidence those task-specific regions are most likely to detect the relationship between task-relevant and task-irrelevant information.

  16. Decision making by urgency gating: theory and experimental support.

    PubMed

    Thura, David; Beauregard-Racine, Julie; Fradet, Charles-William; Cisek, Paul

    2012-12-01

    It is often suggested that decisions are made when accumulated sensory information reaches a fixed accuracy criterion. This is supported by many studies showing a gradual build up of neural activity to a threshold. However, the proposal that this build up is caused by sensory accumulation is challenged by findings that decisions are based on information from a time window much shorter than the build-up process. Here, we propose that in natural conditions where the environment can suddenly change, the policy that maximizes reward rate is to estimate evidence by accumulating only novel information and then compare the result to a decreasing accuracy criterion. We suggest that the brain approximates this policy by multiplying an estimate of sensory evidence with a motor-related urgency signal and that the latter is primarily responsible for neural activity build up. We support this hypothesis using human behavioral data from a modified random-dot motion task in which motion coherence changes during each trial.

  17. Knowledge about writing influences reading: Dynamic visual information about letter production facilitates letter identification.

    PubMed

    Schubert, Teresa; Reilhac, Caroline; McCloskey, Michael

    2018-06-01

    How are reading and writing related? In this study, we address the relationship between letter identification and letter production, uncovering a link in which production information can be used to identify letters presented dynamically. By testing an individual with a deficit in letter identification, we identified a benefit which would be masked by ceiling effects in unimpaired readers. In Experiment 1 we found that letter stimuli defined by the direction of dot motion (tiny dots within letter move leftward, background dots move rightward) provided no advantage over static letters. In Experiment 2, we tested dynamic stimuli in which the letter shapes emerged over time: drawn as they would be written, drawn in reverse, or with the letter shape filled in randomly. Improved identification was observed only for letters drawn as they are typically written. These results demonstrate that information about letter production can be integrated into letter identification, and point to bi-directional connections between stored letter production information (used for writing) and abstract letter identity representations (used in both reading and writing). The links from stored production information to abstract letter identities allow the former to activate the latter. We also consider the implications of our results for remediation of acquired letter identification deficits, including letter-drawing treatments and the underlying cause of their efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The Oregon DOT Slow-Speed Weigh-in-Motion (SWIM) Project : final report

    DOT National Transportation Integrated Search

    1998-12-01

    Weigh-in-motion (WIM) systems have been increasingly used to screen potentially overweight vehicles. However, under slow speed conditions (less than 10 mph), WIM scales appear to be capable of estimating static gross vehicle weight to within 110% wit...

  19. Figure-ground segregation modulates apparent motion.

    PubMed

    Ramachandran, V S; Anstis, S

    1986-01-01

    We explored the relationship between figure-ground segmentation and apparent motion. Results suggest that: static elements in the surround can eliminate apparent motion of a cluster of dots in the centre, but only if the cluster and surround have similar "grain" or texture; outlines that define occluding surfaces are taken into account by the motion mechanism; the brain uses a hierarchy of precedence rules in attributing motion to different segments of the visual scene. Being designated as "figure" confers a high rank in this scheme of priorities.

  20. Motion-form interactions beyond the motion integration level: evidence for interactions between orientation and optic flow signals.

    PubMed

    Pavan, Andrea; Marotti, Rosilari Bellacosa; Mather, George

    2013-05-31

    Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, Bellacosa, & Casco, 2012) has demonstrated that the strength of adaptation to two fields of transparently moving dots is modulated by simultaneously presented orientation signals, suggesting that the interaction occurs at the level of motion integrating receptive fields in the extrastriate cortex. In the present psychophysical study, we investigated whether motion-form interactions take place at a higher level of neural processing where optic flow components are extracted. In Experiment 1, we measured the duration of the motion aftereffect (MAE) generated by contracting or expanding dot fields in the presence of either radial (parallel) or concentric (orthogonal) counterphase pedestal gratings. To tap the stage at which optic flow is extracted, we measured the duration of the phantom MAE (Weisstein, Maguire, & Berbaum, 1977) in which we adapted and tested different parts of the visual field, with orientation signals presented either in the adapting (Experiment 2) or nonadapting (Experiments 3 and 4) sectors. Overall, the results showed that motion adaptation is suppressed most by orientation signals orthogonal to optic flow direction, suggesting that motion-form interactions also take place at the global motion level where optic flow is extracted.

  1. Three dimensional time-gated tracking of non-blinking quantum dots in live cells

    DOE PAGES

    DeVore, Matthew S.; Werner, James H.; Goodwin, Peter M.; ...

    2015-03-12

    Single particle tracking has provided a wealth of information about biophysical processes such as motor protein transport and diffusion in cell membranes. However, motion out of the plane of the microscope or blinking of the fluorescent probe used as a label generally limits observation times to several seconds. Here, we overcome these limitations by using novel non-blinking quantum dots as probes and employing a custom 3D tracking microscope to actively follow motion in three dimensions (3D) in live cells. As a result, signal-to-noise is improved in the cellular milieu through the use of pulsed excitation and time-gated detection.

  2. Hydrodynamic Characteristics and Strength Analysis of a Novel Dot-matrix Oscillating Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong

    2017-12-01

    The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.

  3. Rotary motion impairs attention to color change in 4-month-old infants.

    PubMed

    Kavšek, Michael

    2013-06-01

    Continuous color changes of an array of elements appear to stop changing if the array undergoes a coherent motion. This silencing illusion was demonstrated for adults by Suchow and Alvarez (Current Biology, 2011, vol. 21, pp. 140-143). The current forced-choice preferential looking study examined 4-month-old infants' sensitivity to the silencing illusion. Two experimental conditions were conducted. In the dynamic condition, infants were tested with two rotating rings of circular different-colored dots. In one of these rings the dots continuously changed color, whereas in the other ring the dots did not change color. In the static condition, the global rotary motion was eliminated from the targets. Infants preferred looking at the color-changing target in the static condition but not in the dynamic condition; they attended to the color changes in the static condition but failed to detect them in the dynamic condition. This differential looking pattern is consistent with the hypothesis that the silencing illusion can be established during early infancy. A control group of adults also responded to the silencing phenomenon. This substantiates that the stimuli generate a robust illusory effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Path perception during rotation: influence of instructions, depth range, and dot density

    NASA Technical Reports Server (NTRS)

    Li, Li; Warren, William H Jr

    2004-01-01

    How do observers perceive their direction of self-motion when traveling on a straight path while their eyes are rotating? Our previous findings suggest that information from retinal flow and extra-retinal information about eye movements are each sufficient to solve this problem for both perception and active control of self-motion [Vision Res. 40 (2000) 3873; Psych. Sci. 13 (2002) 485]. In this paper, using displays depicting translation with simulated eye rotation, we investigated how task variables such as instructions, depth range, and dot density influenced the visual system's reliance on retinal vs. extra-retinal information for path perception during rotation. We found that path errors were small when observers expected to travel on a straight path or with neutral instructions, but errors increased markedly when observers expected to travel on a curved path. Increasing depth range or dot density did not improve path judgments. We conclude that the expectation of the shape of an upcoming path can influence the interpretation of the ambiguous retinal flow. A large depth range and dense motion parallax are not essential for accurate path perception during rotation, but reference objects and a large field of view appear to improve path judgments.

  5. Open and closed cortico-subcortical loops: A neuro-computational account of access to consciousness in the distractor-induced blindness paradigm.

    PubMed

    Ebner, Christian; Schroll, Henning; Winther, Gesche; Niedeggen, Michael; Hamker, Fred H

    2015-09-01

    How the brain decides which information to process 'consciously' has been debated over for decades without a simple explanation at hand. While most experiments manipulate the perceptual energy of presented stimuli, the distractor-induced blindness task is a prototypical paradigm to investigate gating of information into consciousness without or with only minor visual manipulation. In this paradigm, subjects are asked to report intervals of coherent dot motion in a rapid serial visual presentation (RSVP) stream, whenever these are preceded by a particular color stimulus in a different RSVP stream. If distractors (i.e., intervals of coherent dot motion prior to the color stimulus) are shown, subjects' abilities to perceive and report intervals of target dot motion decrease, particularly with short delays between intervals of target color and target motion. We propose a biologically plausible neuro-computational model of how the brain controls access to consciousness to explain how distractor-induced blindness originates from information processing in the cortex and basal ganglia. The model suggests that conscious perception requires reverberation of activity in cortico-subcortical loops and that basal-ganglia pathways can either allow or inhibit this reverberation. In the distractor-induced blindness paradigm, inadequate distractor-induced response tendencies are suppressed by the inhibitory 'hyperdirect' pathway of the basal ganglia. If a target follows such a distractor closely, temporal aftereffects of distractor suppression prevent target identification. The model reproduces experimental data on how delays between target color and target motion affect the probability of target detection. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Perception of multi-stable dot lattices in the visual periphery: an effect of internal positional noise.

    PubMed

    Põder, Endel

    2011-02-16

    Dot lattices are very simple multi-stable images where the dots can be perceived as being grouped in different ways. The probabilities of grouping along different orientations as dependent on inter-dot distances along these orientations can be predicted by a simple quantitative model. L. Bleumers, P. De Graef, K. Verfaillie, and J. Wagemans (2008) found that for peripheral presentation, this model should be combined with random guesses on a proportion of trials. The present study shows that the probability of random responses decreases with decreasing ambiguity of lattices and is different for bi-stable and tri-stable lattices. With central presentation, similar effects can be produced by adding positional noise to the dots. The results suggest that different levels of internal positional noise might explain the differences between peripheral and central proximity grouping.

  7. Lighting up micromotors with quantum dots for smart chemical sensing.

    PubMed

    Jurado-Sánchez, B; Escarpa, A; Wang, J

    2015-09-25

    A new "on-the-fly" chemical optical detection strategy based on the incorporation of fluorescence CdTe quantum dots (QDs) on the surface of self-propelled tubular micromotors is presented. The motion-accelerated binding of trace Hg to the QDs selectively quenches the fluorescence emission and leads to an effective discrimination between different mercury species and other co-existing ions.

  8. Brief Report: Altered Horizontal Binding of Single Dots to Coherent Motion in Autism

    ERIC Educational Resources Information Center

    David, Nicole; Rose, Michael; Schneider, Till R.; Vogeley, Kai; Engel, Andreas K.

    2010-01-01

    Individuals with autism often show a fragmented way of perceiving their environment, suggesting a disorder of information integration, possibly due to disrupted communication between brain areas. We investigated thirteen individuals with high-functioning autism (HFA) and thirteen healthy controls using the metastable motion quartet, a stimulus…

  9. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brogi, Bharat Bhushan, E-mail: brogi-221179@yahoo.in; Ahluwalia, P. K.; Chand, Shyam

    2015-06-24

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockademore » regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.« less

  10. Valley Phase and Voltage Control of Coherent Manipulation in Si Quantum Dots.

    PubMed

    Zimmerman, Neil M; Huang, Peihao; Culcer, Dimitrie

    2017-07-12

    With any roughness at the interface of an indirect-bandgap semiconducting dot, the phase of the valley-orbit coupling can take on a random value. This random value, in double quantum dots, causes a large change in the exchange splitting. We demonstrate a simple analytical method to calculate the phase, and thus the exchange splitting and singlet-triplet qubit frequency, for an arbitrary interface. We then show that, with lateral control of the position of a quantum dot using a gate voltage, the valley-orbit phase can be controlled over a wide range, so that variations in the exchange splitting can be controlled for individual devices. Finally, we suggest experiments to measure the valley phase and the concomitant gate voltage control.

  11. Motion-form interactions beyond the motion integration level: Evidence for interactions between orientation and optic flow signals

    PubMed Central

    Pavan, Andrea; Marotti, Rosilari Bellacosa; Mather, George

    2013-01-01

    Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, Bellacosa, & Casco, 2012) has demonstrated that the strength of adaptation to two fields of transparently moving dots is modulated by simultaneously presented orientation signals, suggesting that the interaction occurs at the level of motion integrating receptive fields in the extrastriate cortex. In the present psychophysical study, we investigated whether motion-form interactions take place at a higher level of neural processing where optic flow components are extracted. In Experiment 1, we measured the duration of the motion aftereffect (MAE) generated by contracting or expanding dot fields in the presence of either radial (parallel) or concentric (orthogonal) counterphase pedestal gratings. To tap the stage at which optic flow is extracted, we measured the duration of the phantom MAE (Weisstein, Maguire, & Berbaum, 1977) in which we adapted and tested different parts of the visual field, with orientation signals presented either in the adapting (Experiment 2) or nonadapting (Experiments 3 and 4) sectors. Overall, the results showed that motion adaptation is suppressed most by orientation signals orthogonal to optic flow direction, suggesting that motion-form interactions also take place at the global motion level where optic flow is extracted. PMID:23729767

  12. Attention is required for maintenance of feature binding in visual working memory

    PubMed Central

    Heider, Maike; Husain, Masud

    2013-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory—but not necessarily other aspects of working memory. PMID:24266343

  13. Attention is required for maintenance of feature binding in visual working memory.

    PubMed

    Zokaei, Nahid; Heider, Maike; Husain, Masud

    2014-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory-but not necessarily other aspects of working memory.

  14. Coordinated Control of Three-Dimensional Components of Smooth Pursuit to Rotating and Translating Textures.

    PubMed

    Edinger, Janick; Pai, Dinesh K; Spering, Miriam

    2017-01-01

    The neural control of pursuit eye movements to visual textures that simultaneously translate and rotate has largely been neglected. Here we propose that pursuit of such targets-texture pursuit-is a fully three-dimensional task that utilizes all three degrees of freedom of the eye, including torsion. Head-fixed healthy human adults (n = 8) tracked a translating and rotating random dot pattern, shown on a computer monitor, with their eyes. Horizontal, vertical, and torsional eye positions were recorded with a head-mounted eye tracker. The torsional component of pursuit is a function of the rotation of the texture, aligned with its visual properties. We observed distinct behaviors between those trials in which stimulus rotation was in the same direction as that of a rolling ball ("natural") in comparison to those with the opposite rotation ("unnatural"): Natural rotation enhanced and unnatural rotation reversed torsional velocity during pursuit, as compared to torsion triggered by a nonrotating random dot pattern. Natural rotation also triggered pursuit with a higher horizontal velocity gain and fewer and smaller corrective saccades. Furthermore, we show that horizontal corrective saccades are synchronized with torsional corrective saccades, indicating temporal coupling of horizontal and torsional saccade control. Pursuit eye movements have a torsional component that depends on the visual stimulus. Horizontal and torsional eye movements are separated in the motor periphery. Our findings suggest that translational and rotational motion signals might be coordinated in descending pursuit pathways.

  15. “Global” visual training and extent of transfer in amblyopic macaque monkeys

    PubMed Central

    Kiorpes, Lynne; Mangal, Paul

    2015-01-01

    Perceptual learning is gaining acceptance as a potential treatment for amblyopia in adults and children beyond the critical period. Many perceptual learning paradigms result in very specific improvement that does not generalize beyond the training stimulus, closely related stimuli, or visual field location. To be of use in amblyopia, a less specific effect is needed. To address this problem, we designed a more general training paradigm intended to effect improvement in visual sensitivity across tasks and domains. We used a “global” visual stimulus, random dot motion direction discrimination with 6 training conditions, and tested for posttraining improvement on a motion detection task and 3 spatial domain tasks (contrast sensitivity, Vernier acuity, Glass pattern detection). Four amblyopic macaques practiced the motion discrimination with their amblyopic eye for at least 20,000 trials. All showed improvement, defined as a change of at least a factor of 2, on the trained task. In addition, all animals showed improvements in sensitivity on at least some of the transfer test conditions, mainly the motion detection task; transfer to the spatial domain was inconsistent but best at fine spatial scales. However, the improvement on the transfer tasks was largely not retained at long-term follow-up. Our generalized training approach is promising for amblyopia treatment, but sustaining improved performance may require additional intervention. PMID:26505868

  16. Decisions Made with Less Evidence Involve Higher Levels of Corticosubthalamic Nucleus Theta Band Synchrony.

    PubMed

    Zavala, Baltazar; Tan, Huiling; Little, Simon; Ashkan, Keyoumars; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Zrinzo, Ludvic; Zaghloul, Kareem; Brown, Peter

    2016-06-01

    The switch between automatic action selection and more controlled forms of decision-making is a dynamic process thought to involve both cortical and subcortical structures. During sensory conflict, medial pFC oscillations in the theta band (<8 Hz) drive those of the subthalamic nucleus (STN), and this is thought to increase the threshold of evidence needed for one competing response to be selected over another. Here, we were interested in testing whether STN activity is also altered by the rate at which evidence is presented during a congruent dot motion task absent of any explicit sensory conflict. By having a series of randomly moving dots gradually transform to congruent motion at three different rates (slow, medium, fast), we were able to show that a slower rate increased the time it took participants to make a response but did not alter the total amount of evidence that was integrated before the response. Notably, this resulted in a decision being made with a lower amount of instantaneous evidence during the slow and medium trials. Consistent with the idea that medial pFC-STN activity is involved in executing cognitive control, the higher levels of ambiguity during these trials were associated with increased theta band synchrony between the cortex and the STN, with the cortical oscillations Granger-causal to those of the STN. These results further confirm the involvement of the STN in decision-making and suggest that the disruption of this network may underlie some of the unwanted cognitive deficits associated with STN deep brain stimulation.

  17. Energy spectra of quantum rings.

    PubMed

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  18. 75 FR 59105 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs: Federal Drug Testing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... (the checkmark can pre-printed in the appropriate box on the CCF at Step 1-D). (h) Test reason, as appropriate: Pre-employment; Random; Reasonable Suspicion/Reasonable Cause; Post-Accident; Return-to-Duty; and... reason (e.g., random test, post-accident test) and DOT Agency (e.g., check DOT and FMCSA) as for the...

  19. Evaluation of the procedure 1A component of the 1980 US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Chapman, G. M. (Principal Investigator); Carnes, J. G.

    1981-01-01

    Several techniques which use clusters generated by a new clustering algorithm, CLASSY, are proposed as alternatives to random sampling to obtain greater precision in crop proportion estimation: (1) Proportional Allocation/relative count estimator (PA/RCE) uses proportional allocation of dots to clusters on the basis of cluster size and a relative count cluster level estimate; (2) Proportional Allocation/Bayes Estimator (PA/BE) uses proportional allocation of dots to clusters and a Bayesian cluster-level estimate; and (3) Bayes Sequential Allocation/Bayesian Estimator (BSA/BE) uses sequential allocation of dots to clusters and a Bayesian cluster level estimate. Clustering in an effective method in making proportion estimates. It is estimated that, to obtain the same precision with random sampling as obtained by the proportional sampling of 50 dots with an unbiased estimator, samples of 85 or 166 would need to be taken if dot sets with AI labels (integrated procedure) or ground truth labels, respectively were input. Dot reallocation provides dot sets that are unbiased. It is recommended that these proportion estimation techniques are maintained, particularly the PA/BE because it provides the greatest precision.

  20. Global motion perception is associated with motor function in 2-year-old children.

    PubMed

    Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E

    2017-09-29

    The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Translation and articulation in biological motion perception.

    PubMed

    Masselink, Jana; Lappe, Markus

    2015-08-01

    Recent models of biological motion processing focus on the articulational aspect of human walking investigated by point-light figures walking in place. However, in real human walking, the change in the position of the limbs relative to each other (referred to as articulation) results in a change of body location in space over time (referred to as translation). In order to examine the role of this translational component on the perception of biological motion we designed three psychophysical experiments of facing (leftward/rightward) and articulation discrimination (forward/backward and leftward/rightward) of a point-light walker viewed from the side, varying translation direction (relative to articulation direction), the amount of local image motion, and trial duration. In a further set of a forward/backward and a leftward/rightward articulation task, we additionally tested the influence of translational speed, including catch trials without articulation. We found a perceptual bias in translation direction in all three discrimination tasks. In the case of facing discrimination the bias was limited to short stimulus presentation. Our results suggest an interaction of articulation analysis with the processing of translational motion leading to best articulation discrimination when translational direction and speed match articulation. Moreover, we conclude that the global motion of the center-of-mass of the dot pattern is more relevant to processing of translation than the local motion of the dots. Our findings highlight that translation is a relevant cue that should be integrated in models of human motion detection.

  2. The Spatiotemporal Characteristics of Visual Motion Priming

    DTIC Science & Technology

    1994-07-01

    859. Barden, W. (1982, June). A general-purpose I/O board for the Color Computer. BYTE Magazine, pp. 260-281. B . ->,.. H . & Levick , W. (1965). The... B y ...... . ........ Distribution I Availability Codes Avail and i or Dist Special DTIC qU(A~ry niNPETEM 3 iii ABSTRACT THE...bistable diamond, apparent motion figure 52 (after Ramachandran & Anstis, 1983). ( b ) "Streaming" and "bouncing" percepts of apparent 52 motion dot

  3. Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow

    PubMed Central

    Fantoni, Carlo; Caudek, Corrado; Domini, Fulvio

    2012-01-01

    Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant. PMID:22479473

  4. Optic flow detection is not influenced by visual-vestibular congruency.

    PubMed

    Holten, Vivian; MacNeilage, Paul R

    2018-01-01

    Optic flow patterns generated by self-motion relative to the stationary environment result in congruent visual-vestibular self-motion signals. Incongruent signals can arise due to object motion, vestibular dysfunction, or artificial stimulation, which are less common. Hence, we are predominantly exposed to congruent rather than incongruent visual-vestibular stimulation. If the brain takes advantage of this probabilistic association, we expect observers to be more sensitive to visual optic flow that is congruent with ongoing vestibular stimulation. We tested this expectation by measuring the motion coherence threshold, which is the percentage of signal versus noise dots, necessary to detect an optic flow pattern. Observers seated on a hexapod motion platform in front of a screen experienced two sequential intervals. One interval contained optic flow with a given motion coherence and the other contained noise dots only. Observers had to indicate which interval contained the optic flow pattern. The motion coherence threshold was measured for detection of laminar and radial optic flow during leftward/rightward and fore/aft linear self-motion, respectively. We observed no dependence of coherence thresholds on vestibular congruency for either radial or laminar optic flow. Prior studies using similar methods reported both decreases and increases in coherence thresholds in response to congruent vestibular stimulation; our results do not confirm either of these prior reports. While methodological differences may explain the diversity of results, another possibility is that motion coherence thresholds are mediated by neural populations that are either not modulated by vestibular stimulation or that are modulated in a manner that does not depend on congruency.

  5. Gate-controlled electromechanical backaction induced by a quantum dot

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi

    2016-04-01

    Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.

  6. The neural basis of form and form-motion integration from static and dynamic translational Glass patterns: A rTMS investigation.

    PubMed

    Pavan, Andrea; Ghin, Filippo; Donato, Rita; Campana, Gianluca; Mather, George

    2017-08-15

    A long-held view of the visual system is that form and motion are independently analysed. However, there is physiological and psychophysical evidence of early interaction in the processing of form and motion. In this study, we used a combination of Glass patterns (GPs) and repetitive Transcranial Magnetic Stimulation (rTMS) to investigate in human observers the neural mechanisms underlying form-motion integration. GPs consist of randomly distributed dot pairs (dipoles) that induce the percept of an oriented stimulus. GPs can be either static or dynamic. Dynamic GPs have both a form component (i.e., orientation) and a non-directional motion component along the orientation axis. GPs were presented in two temporal intervals and observers were asked to discriminate the temporal interval containing the most coherent GP. rTMS was delivered over early visual area (V1/V2) and over area V5/MT shortly after the presentation of the GP in each interval. The results showed that rTMS applied over early visual areas affected the perception of static GPs, but the stimulation of area V5/MT did not affect observers' performance. On the other hand, rTMS was delivered over either V1/V2 or V5/MT strongly impaired the perception of dynamic GPs. These results suggest that early visual areas seem to be involved in the processing of the spatial structure of GPs, and interfering with the extraction of the global spatial structure also affects the extraction of the motion component, possibly interfering with early form-motion integration. However, visual area V5/MT is likely to be involved only in the processing of the motion component of dynamic GPs. These results suggest that motion and form cues may interact as early as V1/V2. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Total and Marginal Cost Analysis for a High School Based Bystander Intervention

    ERIC Educational Resources Information Center

    Bush, Joshua L.; Bush, Heather M.; Coker, Ann L.; Brancato, Candace J.; Clear, Emily R.; Recktenwald, Eileen A.

    2018-01-01

    Costs of providing the Green Dot bystander-based intervention, shown to be effective in the reduction of sexual violence among Kentucky high school students, were estimated based on data from a large cluster-randomized clinical trial. Rape Crisis Center Educators were trained to provide Green Dot curriculum to students. Implementing Green Dot in…

  8. Using Time-Varying Evidence to Test Models of Decision Dynamics: Bounded Diffusion vs. the Leaky Competing Accumulator Model

    PubMed Central

    Tsetsos, Konstantinos; Gao, Juan; McClelland, James L.; Usher, Marius

    2012-01-01

    When people make decisions, do they give equal weight to evidence arriving at different times? A recent study (Kiani et al., 2008) using brief motion pulses (superimposed on a random moving dot display) reported a primacy effect: pulses presented early in a motion observation period had a stronger impact than pulses presented later. This observation was interpreted as supporting the bounded diffusion (BD) model and ruling out models in which evidence accumulation is subject to leakage or decay of early-arriving information. We use motion pulses and other manipulations of the timing of the perceptual evidence in new experiments and simulations that support the leaky competing accumulator (LCA) model as an alternative to the BD model. While the LCA does include leakage, we show that it can exhibit primacy as a result of competition between alternatives (implemented via mutual inhibition), when the inhibition is strong relative to the leak. Our experiments replicate the primacy effect when participants must be prepared to respond quickly at the end of a motion observation period. With less time pressure, however, the primacy effect is much weaker. For 2 (out of 10) participants, a primacy bias observed in trials where the motion observation period is short becomes weaker or reverses (becoming a recency effect) as the observation period lengthens. Our simulation studies show that primacy is equally consistent with the LCA or with BD. The transition from primacy-to-recency can also be captured by the LCA but not by BD. Individual differences and relations between the LCA and other models are discussed. PMID:22701399

  9. Transcranial magnetic stimulation reveals the content of visual short-term memory in the visual cortex.

    PubMed

    Silvanto, Juha; Cattaneo, Zaira

    2010-05-01

    Cortical areas involved in sensory analysis are also believed to be involved in short-term storage of that sensory information. Here we investigated whether transcranial magnetic stimulation (TMS) can reveal the content of visual short-term memory (VSTM) by bringing this information to visual awareness. Subjects were presented with two random-dot displays (moving either to the left or to the right) and they were required to maintain one of these in VSTM. In Experiment 1, TMS was applied over the motion-selective area V5/MT+ above phosphene threshold during the maintenance phase. The reported phosphene contained motion features of the memory item, when the phosphene spatially overlapped with memory item. Specifically, phosphene motion was enhanced when the memory item moved in the same direction as the subjects' V5/MT+ baseline phosphene, whereas it was reduced when the motion direction of the memory item was incongruent with that of the baseline V5/MT+ phosphene. There was no effect on phosphene reports when there was no spatial overlap between the phosphene and the memory item. In Experiment 2, VSTM maintenance did not influence the appearance of phosphenes induced from the lateral occipital region. These interactions between VSTM maintenance and phosphene appearance demonstrate that activity in V5/MT+ reflects the motion qualities of items maintained in VSTM. Furthermore, these results also demonstrate that information in VSTM can modulate the pattern of visual activation reaching awareness, providing evidence for the view that overlapping neuronal populations are involved in conscious visual perception and VSTM. 2010. Published by Elsevier Inc.

  10. Modified Directly Observed Therapy to Facilitate Highly Active Antiretroviral Therapy Adherence in Beira, Mozambique

    PubMed Central

    Pearson, Cynthia R.; Micek, Mark; Simoni, Jane M.; Matediana, Eduardo; Martin, Diane P.; Gloyd, Stephen

    2016-01-01

    Summary As resource-limited countries expand access to highly active antiretroviral therapy (HAART) treatment, innovative programs are needed to support adherence in the context of significant health system barriers. Modified directly observed therapy (mDOT) is one such strategy, but little is known about the process of designing and implementing mDOT programs for HAART in resource-limited settings. In this descriptive study, we used a mixed-methods approach to describe the process of implementing mDOT for an ongoing randomized control trial (RCT) in Beira, Mozambique. Interviews with clinic staff, mDOT peers, and participants provided information on design elements, problems with implementation, satisfaction, and benefits. Acceptability and feasibility measures were obtained from the RCT. Most (81%, N = 350) eligible persons agreed to participate, and of those randomized to mDOT (n = 174), 95% reported that their time with peers was beneficial. On average, participants kept 93% of the 30 required daily mDOT visits. Key components of the intervention’s success included using peers who were well accepted by clinic staff, adequate training and retention of peers, adapting daily visit requirements to participants’ work schedules and physical conditions, and reimbursing costs of transportation. This study identified aspects of mDOT that are effective and can be adopted by other clinics treating HIV patients. PMID:17133197

  11. Micromagnetic Architectures for On-chip Microparticle Transport

    NASA Astrophysics Data System (ADS)

    Ouk, Minae; Beach, Geoffrey S. D.

    2015-03-01

    Superparamagnetic microbeads (SBs) are widely used to capture and manipulate biological entities in a fluid environment. Chip-based magnetic actuation provides a means to transport SBs in lab-on-a-chip devices. This is usually accomplished using the stray field from patterned magnetic microstructures, or domain walls in magnetic nanowires. Magnetic anti-dot arrays are particularly attractive due to the high-gradient stray fields from their partial domain wall structures. Here we use a self-assembly method to create magnetic anti-dot arrays in Co films, and describe the motion of SBs across the surface by a rotating field. We find a critical field-rotation frequency beyond which bead motion ceases and a critical threshold for both the in-plane and out-of-plane field components that must be exceeded for bead motion to occur. We show that these field thresholds are bead size dependent, and can thus be used to digitally separate magnetic beads in multi-bead populations. Hence these large-area structures can be used to combine long distance transport with novel functionalities.

  12. Rover Graphical Simulator

    NASA Technical Reports Server (NTRS)

    Bon, Bruce; Seraji, Homayoun

    2007-01-01

    Rover Graphical Simulator (RGS) is a package of software that generates images of the motion of a wheeled robotic exploratory vehicle (rover) across terrain that includes obstacles and regions of varying traversability. The simulated rover moves autonomously, utilizing reasoning and decision-making capabilities of a fuzzy-logic navigation strategy to choose its path from an initial to a final state. RGS provides a graphical user interface for control and monitoring of simulations. The numerically simulated motion is represented as discrete steps with a constant time interval between updates. At each simulation step, a dot is placed at the old rover position and a graphical symbol representing the rover is redrawn at the new, updated position. The effect is to leave a trail of dots depicting the path traversed by the rover, the distances between dots being proportional to the local speed. Obstacles and regions of low traversability are depicted as filled circles, with buffer zones around them indicated by enclosing circles. The simulated robot is equipped with onboard sensors that can detect regional terrain traversability and local obstacles out to specified ranges. RGS won the NASA Group Achievement Award in 2002.

  13. The development of global motion discrimination in school aged children

    PubMed Central

    Bogfjellmo, Lotte-Guri; Bex, Peter J.; Falkenberg, Helle K.

    2014-01-01

    Global motion perception matures during childhood and involves the detection of local directional signals that are integrated across space. We examine the maturation of local directional selectivity and global motion integration with an equivalent noise paradigm applied to direction discrimination. One hundred and three observers (6–17 years) identified the global direction of motion in a 2AFC task. The 8° central stimuli consisted of 100 dots of 10% Michelson contrast moving 2.8°/s or 9.8°/s. Local directional selectivity and global sampling efficiency were estimated from direction discrimination thresholds as a function of external directional noise, speed, and age. Direction discrimination thresholds improved gradually until the age of 14 years (linear regression, p < 0.05) for both speeds. This improvement was associated with a gradual increase in sampling efficiency (linear regression, p < 0.05), with no significant change in internal noise. Direction sensitivity was lower for dots moving at 2.8°/s than at 9.8°/s for all ages (paired t test, p < 0.05) and is mainly due to lower sampling efficiency. Global motion perception improves gradually during development and matures by age 14. There was no change in internal noise after the age of 6, suggesting that local direction selectivity is mature by that age. The improvement in global motion perception is underpinned by a steady increase in the efficiency with which direction signals are pooled, suggesting that global motion pooling processes mature for longer and later than local motion processing. PMID:24569985

  14. From Dot to Line to Plane: Constellating Unconscious Imagery in Art Therapy

    ERIC Educational Resources Information Center

    Steinhardt, Lenore

    2017-01-01

    In this article I describe an art-based procedure with a gradual sequence of drawing tasks that guides an art therapy client through graphic stages from point, to line, to plane. The client begins by making random dots, connecting them one to another with an unbroken line that reaches all the dots, perceiving abstract or figurative imagery in the…

  15. Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement.

    PubMed

    Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang

    2016-12-07

    Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.

  16. Exposure to Organic Solvents Used in Dry Cleaning Reduces Low and High Level Visual Function

    PubMed Central

    Jiménez Barbosa, Ingrid Astrid

    2015-01-01

    Purpose To investigate whether exposure to occupational levels of organic solvents in the dry cleaning industry is associated with neurotoxic symptoms and visual deficits in the perception of basic visual features such as luminance contrast and colour, higher level processing of global motion and form (Experiment 1), and cognitive function as measured in a visual search task (Experiment 2). Methods The Q16 neurotoxic questionnaire, a commonly used measure of neurotoxicity (by the World Health Organization), was administered to assess the neurotoxic status of a group of 33 dry cleaners exposed to occupational levels of organic solvents (OS) and 35 age-matched non dry-cleaners who had never worked in the dry cleaning industry. In Experiment 1, to assess visual function, contrast sensitivity, colour/hue discrimination (Munsell Hue 100 test), global motion and form thresholds were assessed using computerised psychophysical tests. Sensitivity to global motion or form structure was quantified by varying the pattern coherence of global dot motion (GDM) and Glass pattern (oriented dot pairs) respectively (i.e., the percentage of dots/dot pairs that contribute to the perception of global structure). In Experiment 2, a letter visual-search task was used to measure reaction times (as a function of the number of elements: 4, 8, 16, 32, 64 and 100) in both parallel and serial search conditions. Results Dry cleaners exposed to organic solvents had significantly higher scores on the Q16 compared to non dry-cleaners indicating that dry cleaners experienced more neurotoxic symptoms on average. The contrast sensitivity function for dry cleaners was significantly lower at all spatial frequencies relative to non dry-cleaners, which is consistent with previous studies. Poorer colour discrimination performance was also noted in dry cleaners than non dry-cleaners, particularly along the blue/yellow axis. In a new finding, we report that global form and motion thresholds for dry cleaners were also significantly higher and almost double than that obtained from non dry-cleaners. However, reaction time performance on both parallel and serial visual search was not different between dry cleaners and non dry-cleaners. Conclusions Exposure to occupational levels of organic solvents is associated with neurotoxicity which is in turn associated with both low level deficits (such as the perception of contrast and discrimination of colour) and high level visual deficits such as the perception of global form and motion, but not visual search performance. The latter finding indicates that the deficits in visual function are unlikely to be due to changes in general cognitive performance. PMID:25933026

  17. Creating stimuli for the study of biological-motion perception.

    PubMed

    Dekeyser, Mathias; Verfaillie, Karl; Vanrie, Jan

    2002-08-01

    In the perception of biological motion, the stimulus information is confined to a small number of lights attached to the major joints of a moving person. Despite this drastic degradation of the stimulus information, the human visual apparatus organizes the swarm of moving dots into a vivid percept of a moving biological creature. Several techniques have been proposed to create point-light stimuli: placing dots at strategic locations on photographs or films, video recording a person with markers attached to the body, computer animation based on artificial synthesis, and computer animation based on motion-capture data. A description is given of the technique we are currently using in our laboratory to produce animated point-light figures. The technique is based on a combination of motion capture and three-dimensional animation software (Character Studio, Autodesk, Inc., 1998). Some of the advantages of our approach are that the same actions can be shown from any viewpoint, that point-light versions, as well as versions with a full-fleshed character, can be created of the same actions, and that point lights can indicate the center of a joint (thereby eliminating several disadvantages associated with other techniques).

  18. Grouping by proximity and the visual impression of approximate number in random dot arrays.

    PubMed

    Im, Hee Yeon; Zhong, Sheng-Hua; Halberda, Justin

    2016-09-01

    We address the challenges of how to model human perceptual grouping in random dot arrays and how perceptual grouping affects human number estimation in these arrays. We introduce a modeling approach relying on a modified k-means clustering algorithm to formally describe human observers' grouping behavior. We found that a default grouping window size of approximately 4° of visual angle describes human grouping judgments across a range of random dot arrays (i.e., items within 4° are grouped together). This window size was highly consistent across observers and images, and was also stable across stimulus durations, suggesting that the k-means model captured a robust signature of perceptual grouping. Further, the k-means model outperformed other models (e.g., CODE) at describing human grouping behavior. Next, we found that the more the dots in a display are clustered together, the more human observers tend to underestimate the numerosity of the dots. We demonstrate that this effect is independent of density, and the modified k-means model can predict human observers' numerosity judgments and underestimation. Finally, we explored the robustness of the relationship between clustering and dot number underestimation and found that the effects of clustering remain, but are greatly reduced, when participants receive feedback on every trial. Together, this work suggests some promising avenues for formal models of human grouping behavior, and it highlights the importance of a 4° window of perceptual grouping. Lastly, it reveals a robust, somewhat plastic, relationship between perceptual grouping and number estimation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The 50s cliff: a decline in perceptuo-motor learning, not a deficit in visual motion perception.

    PubMed

    Ren, Jie; Huang, Shaochen; Zhang, Jiancheng; Zhu, Qin; Wilson, Andrew D; Snapp-Childs, Winona; Bingham, Geoffrey P

    2015-01-01

    Previously, we measured perceptuo-motor learning rates across the lifespan and found a sudden drop in learning rates between ages 50 and 60, called the "50s cliff." The task was a unimanual visual rhythmic coordination task in which participants used a joystick to oscillate one dot in a display in coordination with another dot oscillated by a computer. Participants learned to produce a coordination with a 90° relative phase relation between the dots. Learning rates for participants over 60 were half those of younger participants. Given existing evidence for visual motion perception deficits in people over 60 and the role of visual motion perception in the coordination task, it remained unclear whether the 50s cliff reflected onset of this deficit or a genuine decline in perceptuo-motor learning. The current work addressed this question. Two groups of 12 participants in each of four age ranges (20s, 50s, 60s, 70s) learned to perform a bimanual coordination of 90° relative phase. One group trained with only haptic information and the other group with both haptic and visual information about relative phase. Both groups were tested in both information conditions at baseline and post-test. If the 50s cliff was caused by an age dependent deficit in visual motion perception, then older participants in the visual group should have exhibited less learning than those in the haptic group, which should not exhibit the 50s cliff, and older participants in both groups should have performed less well when tested with visual information. Neither of these expectations was confirmed by the results, so we concluded that the 50s cliff reflects a genuine decline in perceptuo-motor learning with aging, not the onset of a deficit in visual motion perception.

  20. Violating instructed human agency: An fMRI study on ocular tracking of biological and nonbiological motion stimuli.

    PubMed

    Gertz, Hanna; Hilger, Maximilian; Hegele, Mathias; Fiehler, Katja

    2016-09-01

    Previous studies have shown that beliefs about the human origin of a stimulus are capable of modulating the coupling of perception and action. Such beliefs can be based on top-down recognition of the identity of an actor or bottom-up observation of the behavior of the stimulus. Instructed human agency has been shown to lead to superior tracking performance of a moving dot as compared to instructed computer agency, especially when the dot followed a biological velocity profile and thus matched the predicted movement, whereas a violation of instructed human agency by a nonbiological dot motion impaired oculomotor tracking (Zwickel et al., 2012). This suggests that the instructed agency biases the selection of predictive models on the movement trajectory of the dot motion. The aim of the present fMRI study was to examine the neural correlates of top-down and bottom-up modulations of perception-action couplings by manipulating the instructed agency (human action vs. computer-generated action) and the observable behavior of the stimulus (biological vs. nonbiological velocity profile). To this end, participants performed an oculomotor tracking task in an MRI environment. Oculomotor tracking activated areas of the eye movement network. A right-hemisphere occipito-temporal cluster comprising the motion-sensitive area V5 showed a preference for the biological as compared to the nonbiological velocity profile. Importantly, a mismatch between instructed human agency and a nonbiological velocity profile primarily activated medial-frontal areas comprising the frontal pole, the paracingulate gyrus, and the anterior cingulate gyrus, as well as the cerebellum and the supplementary eye field as part of the eye movement network. This mismatch effect was specific to the instructed human agency and did not occur in conditions with a mismatch between instructed computer agency and a biological velocity profile. Our results support the hypothesis that humans activate a specific predictive model for biological movements based on their own motor expertise. A violation of this predictive model causes costs as the movement needs to be corrected in accordance with incoming (nonbiological) sensory information. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Reducing inhomogeneity in the dynamic properties of quantum dots via self-aligned plasmonic cavities

    NASA Astrophysics Data System (ADS)

    Demory, Brandon; Hill, Tyler A.; Teng, Chu-Hsiang; Deng, Hui; Ku, P. C.

    2018-01-01

    A plasmonic cavity is shown to greatly reduce the inhomogeneity of dynamic optical properties such as quantum efficiency and radiative lifetime of InGaN quantum dots. By using an open-top plasmonic cavity structure, which exhibits a large Purcell factor and antenna quantum efficiency, the resulting quantum efficiency distribution for the quantum dots narrows and is no longer limited by the quantum dot inhomogeneity. The standard deviation of the quantum efficiency can be reduced to 2% while maintaining the overall quantum efficiency at 70%, making InGaN quantum dots a viable candidate for high-speed quantum cryptography and random number generation applications.

  2. Reducing inhomogeneity in the dynamic properties of quantum dots via self-aligned plasmonic cavities.

    PubMed

    Demory, Brandon; Hill, Tyler A; Teng, Chu-Hsiang; Deng, Hui; Ku, P C

    2018-01-05

    A plasmonic cavity is shown to greatly reduce the inhomogeneity of dynamic optical properties such as quantum efficiency and radiative lifetime of InGaN quantum dots. By using an open-top plasmonic cavity structure, which exhibits a large Purcell factor and antenna quantum efficiency, the resulting quantum efficiency distribution for the quantum dots narrows and is no longer limited by the quantum dot inhomogeneity. The standard deviation of the quantum efficiency can be reduced to 2% while maintaining the overall quantum efficiency at 70%, making InGaN quantum dots a viable candidate for high-speed quantum cryptography and random number generation applications.

  3. Cathodal transcranial direct current stimulation can stabilize perception of movement: Evidence from the two-thirds power law illusion.

    PubMed

    Scocchia, Lisa; Bolognini, Nadia; Convento, Silvia; Stucchi, Natale

    2015-11-16

    Human movements conform to specific kinematic laws of motion. One of such laws, the "two-thirds power law", describes the systematic co-variation between curvature and velocity of body movements. Noticeably, the same law also influences the perception of moving stimuli: the velocity of a dot moving along a curvilinear trajectory is perceived as uniform when the dot kinematics complies with the two-thirds power law. Instead, if the dot moves at constant speed, its velocity is perceived as highly non-uniform. This dynamic visual illusion points to a strong coupling between action and perception; however, how this coupling is implemented in the brain remains elusive. In this study, we tested whether the premotor cortex (PM) and the primary visual cortex (V1) play a role in the illusion by means of transcranial Direct Current Stimulation (tDCS). All participants underwent three tDCS sessions during which they received active or sham cathodal tDCS (1.5mA) over PM or V1 of the left hemisphere. During tDCS, participants were required to adjust the velocity of a dot moving along an elliptical trajectory until it looked uniform across the whole trajectory. Results show that occipital tDCS decreases the illusion variability both within and across participants, as compared to sham tDCS. This means that V1 stimulation increases individual sensitivity to the illusory motion and also increases coherence across different observers. Conversely, the illusion seems resistant to tDCS in terms of its magnitude, with cathodal stimulation of V1 or PM not affecting the amount of the illusory effect. Our results provide evidence for strong visuo-motor coupling in visual perception: the velocity of a dot moving along an elliptical trajectory is perceived as uniform only when its kinematics closely complies to the same law of motion that constrains human movement production. Occipital stimulation by cathodal tDCS can stabilize such illusory percept. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Morphological evolution of Ge/Si(001) quantum dot rings formed at the rim of wet-etched pits.

    PubMed

    Grydlik, Martyna; Brehm, Moritz; Schäffler, Friedrich

    2012-10-30

    We demonstrate the formation of Ge quantum dots in ring-like arrangements around predefined {111}-faceted pits in the Si(001) substrate. We report on the complex morphological evolution of the single quantum dots contributing to the rings by means of atomic force microscopy and demonstrate that by careful adjustment of the epitaxial growth parameters, such rings containing densely squeezed islands can be grown with large spatial distances of up to 5 μm without additional nucleation of randomly distributed quantum dots between the rings.

  5. Analysis of single quantum-dot mobility inside 1D nanochannel devices

    NASA Astrophysics Data System (ADS)

    Hoang, H. T.; Segers-Nolten, I. M.; Tas, N. R.; van Honschoten, J. W.; Subramaniam, V.; Elwenspoek, M. C.

    2011-07-01

    We visualized individual quantum dots using a combination of a confining nanochannel and an ultra-sensitive microscope system, equipped with a high numerical aperture lens and a highly sensitive camera. The diffusion coefficients of the confined quantum dots were determined from the experimentally recorded trajectories according to the classical diffusion theory for Brownian motion in two dimensions. The calculated diffusion coefficients were three times smaller than those in bulk solution. These observations confirm and extend the results of Eichmann et al (2008 Langmuir 24 714-21) to smaller particle diameters and more narrow confinement. A detailed analysis shows that the observed reduction in mobility cannot be explained by conventional hydrodynamic theory.

  6. Influence of damped propagation of dopant on the static and frequency-dependent third nonlinear polarizability of quantum dot

    NASA Astrophysics Data System (ADS)

    Pal, Suvajit; Ghosh, Manas

    2014-07-01

    We investigate the profiles of diagonal components of static and frequency-dependent third nonlinear (γxxxx and γyyyy) polarizability of repulsive impurity doped quantum dots. The dopant impurity potential takes a GAUSSIAN form. We have considered propagation of the dopant within an environment that damps the motion. The study focuses on role of damping strength on the diagonal components of both static and frequency-dependent third nonlinear polarizability of the doped system. The doped system is further exposed to an external electric field of given intensity. Damping subtly modulates the dot-impurity interaction and fabricates the polarizability components in a noticeable manner.

  7. Quasiperiodicity in time evolution of the Bloch vector under the thermal Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Azuma, Hiroo; Ban, Masashi

    2014-07-01

    We study a quasiperiodic structure in the time evolution of the Bloch vector, whose dynamics is governed by the thermal Jaynes-Cummings model (JCM). Putting the two-level atom into a certain pure state and the cavity field into a mixed state in thermal equilibrium at initial time, we let the whole system evolve according to the JCM Hamiltonian. During this time evolution, motion of the Bloch vector seems to be in disorder. Because of the thermal photon distribution, both a norm and a direction of the Bloch vector change hard at random. In this paper, taking a different viewpoint compared with ones that we have been used to, we investigate quasiperiodicity of the Bloch vector’s trajectories. Introducing the concept of the quasiperiodic motion, we can explain the confused behaviour of the system as an intermediate state between periodic and chaotic motions. More specifically, we discuss the following two facts: (1) If we adjust the time interval Δt properly, figures consisting of plotted dots at the constant time interval acquire scale invariance under replacement of Δt by sΔt, where s(>1) is an arbitrary real but not transcendental number. (2) We can compute values of the time variable t, which let |Sz(t)| (the absolute value of the z-component of the Bloch vector) be very small, with the Diophantine approximation (a rational approximation of an irrational number).

  8. Integration time for the perception of depth from motion parallax.

    PubMed

    Nawrot, Mark; Stroyan, Keith

    2012-04-15

    The perception of depth from relative motion is believed to be a slow process that "builds-up" over a period of observation. However, in the case of motion parallax, the potential accuracy of the depth estimate suffers as the observer translates during the viewing period. Our recent quantitative model for the perception of depth from motion parallax proposes that relative object depth (d) can be determined from retinal image motion (dθ/dt), pursuit eye movement (dα/dt), and fixation distance (f) by the formula: d/f≈dθ/dα. Given the model's dynamics, it is important to know the integration time required by the visual system to recover dα and dθ, and then estimate d. Knowing the minimum integration time reveals the incumbent error in this process. A depth-phase discrimination task was used to determine the time necessary to perceive depth-sign from motion parallax. Observers remained stationary and viewed a briefly translating random-dot motion parallax stimulus. Stimulus duration varied between trials. Fixation on the translating stimulus was monitored and enforced with an eye-tracker. The study found that relative depth discrimination can be performed with presentations as brief as 16.6 ms, with only two stimulus frames providing both retinal image motion and the stimulus window motion for pursuit (mean range=16.6-33.2 ms). This was found for conditions in which, prior to stimulus presentation, the eye was engaged in ongoing pursuit or the eye was stationary. A large high-contrast masking stimulus disrupted depth-discrimination for stimulus presentations less than 70-75 ms in both pursuit and stationary conditions. This interval might be linked to ocular-following response eye-movement latencies. We conclude that neural mechanisms serving depth from motion parallax generate a depth estimate much more quickly than previously believed. We propose that additional sluggishness might be due to the visual system's attempt to determine the maximum dθ/dα ratio for a selection of points on a complicated stimulus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Perceptual and categorical decision making: goal-relevant representation of two domains at different levels of abstraction.

    PubMed

    Shankar, Swetha; Kayser, Andrew S

    2017-06-01

    To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects' decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings. NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when decision information varies in multiple domains at different levels of abstraction. Behavioral and modeling results suggest that categorical (more abstract) information is weighted more strongly than perceptual (more concrete) information but that perceptual and categorical domains interact to influence decisions. Frontoparietal brain activity during categorization flexibly represents decision-relevant features and highlights significant dissociations in frontal and parietal activity during decision making. Copyright © 2017 the American Physiological Society.

  10. Perceptual and categorical decision making: goal-relevant representation of two domains at different levels of abstraction

    PubMed Central

    Kayser, Andrew S.

    2017-01-01

    To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects’ decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings. NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when decision information varies in multiple domains at different levels of abstraction. Behavioral and modeling results suggest that categorical (more abstract) information is weighted more strongly than perceptual (more concrete) information but that perceptual and categorical domains interact to influence decisions. Frontoparietal brain activity during categorization flexibly represents decision-relevant features and highlights significant dissociations in frontal and parietal activity during decision making. PMID:28250149

  11. Amblyopic deficits in detecting a dotted line in noise.

    PubMed

    Mussap, A J; Levi, D M

    2000-01-01

    We compared detectability of a dotted line masked by random-dot noise for the amblyopic versus non-amblyopic eye of two strabismic amblyopes. Small but consistent deficits in the amblyopic eye of these observers were found, and shown to be limited to dotted-line targets composed of greater than seven dots (with performance being normal for targets of less than seven dots). These deficits were unrelated to impaired visual acuity, impaired sensitivity to dot density, and differential positional uncertainty between the eyes of our observers. The deficits were also unlikely to be due to CSF losses due to abnormal low-spatial-frequency filters involved in detecting long chains of collinear dots. Instead, the results of simulations indicate that the inefficiency in utilising large numbers of dots is due to deficits of global, integrative processes in strabismic amblyopes. These simulations also show that while neither undersampling nor positional uncertainty of inputs into integrative processes can themselves account for the amblyopic deficits, if such abnormal inputs lead to the development of stunted integrative processes then impaired sensitivity to long chains of collinear dots is indeed predicted.

  12. The spread of attention across features of a surface

    PubMed Central

    Ernst, Zachary Raymond; Jazayeri, Mehrdad

    2013-01-01

    Contrasting theories of visual attention have emphasized selection by spatial location, individual features, and whole objects. We used functional magnetic resonance imaging to ask whether and how attention to one feature of an object spreads to other features of the same object. Subjects viewed two spatially superimposed surfaces of random dots that were segregated by distinct color-motion conjunctions. The color and direction of motion of each surface changed smoothly and in a cyclical fashion. Subjects were required to track one feature (e.g., color) of one of the two surfaces and detect brief moments when the attended feature diverged from its smooth trajectory. To tease apart the effect of attention to individual features on the hemodynamic response, we used a frequency-tagging scheme. In this scheme, the stimulus features (color and direction of motion) are modulated periodically at distinct frequencies so that the contribution of each feature to the hemodynamics can be inferred from the harmonic response at the corresponding frequency. We found that attention to one feature (e.g., color) of one surface increased the response modulation not only to the attended feature but also to the other feature (e.g., motion) of the same surface. This attentional modulation was evident in multiple visual areas and was present as early as V1. The spread of attention to the behaviorally irrelevant features of a surface suggests that attention may automatically select all features of a single object. Thus object-based attention may be supported by an enhancement of feature-specific sensory signals in the visual cortex. PMID:23883860

  13. Binocular disparity tuning and visual-vestibular congruency of multisensory neurons in macaque parietal cortex

    PubMed Central

    Yang, Yun; Liu, Sheng; Chowdhury, Syed A.; DeAngelis, Gregory C.; Angelaki, Dora E.

    2012-01-01

    Many neurons in the dorsal medial superior temporal (MSTd) and ventral intraparietal (VIP) areas of the macaque brain are multisensory, responding to both optic flow and vestibular cues to self-motion. The heading tuning of visual and vestibular responses can be either congruent or opposite, but only congruent cells have been implicated in cue integration for heading perception. Because of the geometric properties of motion parallax, however, both congruent and opposite cells could be involved in coding self-motion when observers fixate a world-fixed target during translation, if congruent cells prefer near disparities and opposite cells prefer far disparities. We characterized the binocular disparity selectivity and heading tuning of MSTd and VIP cells using random-dot stimuli. Most (70%) MSTd neurons were disparity-selective with monotonic tuning, and there was no consistent relationship between depth preference and congruency of visual and vestibular heading tuning. One-third of disparity-selective MSTd cells reversed their depth preference for opposite directions of motion (direction-dependent disparity tuning, DDD), but most of these cells were unisensory with no tuning for vestibular stimuli. Inconsistent with previous reports, the direction preferences of most DDD neurons do not reverse with disparity. By comparison to MSTd, VIP contains fewer disparity-selective neurons (41%) and very few DDD cells. On average, VIP neurons also preferred higher speeds and nearer disparities than MSTd cells. Our findings are inconsistent with the hypothesis that visual/vestibular congruency is linked to depth preference, and also suggest that DDD cells are not involved in multisensory integration for heading perception. PMID:22159105

  14. Alpha oscillations correlate with the successful inhibition of unattended stimuli.

    PubMed

    Händel, Barbara F; Haarmeier, Thomas; Jensen, Ole

    2011-09-01

    Because the human visual system is continually being bombarded with inputs, it is necessary to have effective mechanisms for filtering out irrelevant information. This is partly achieved by the allocation of attention, allowing the visual system to process relevant input while blocking out irrelevant input. What is the physiological substrate of attentional allocation? It has been proposed that alpha activity reflects functional inhibition. Here we asked if inhibition by alpha oscillations has behavioral consequences for suppressing the perception of unattended input. To this end, we investigated the influence of alpha activity on motion processing in two attentional conditions using magneto-encephalography. The visual stimuli used consisted of two random-dot kinematograms presented simultaneously to the left and right visual hemifields. Subjects were cued to covertly attend the left or right kinematogram. After 1.5 sec, a second cue tested whether subjects could report the direction of coherent motion in the attended (80%) or unattended hemifield (20%). Occipital alpha power was higher contralateral to the unattended side than to the attended side, thus suggesting inhibition of the unattended hemifield. Our key finding is that this alpha lateralization in the 20% invalidly cued trials did correlate with the perception of motion direction: Subjects with pronounced alpha lateralization were worse at detecting motion direction in the unattended hemifield. In contrast, lateralization did not correlate with visual discrimination in the attended visual hemifield. Our findings emphasize the suppressive nature of alpha oscillations and suggest that processing of inputs outside the field of attention is weakened by means of increased alpha activity.

  15. A randomized controlled trial testing an adherence-optimized Vitamin D regimen to mitigate bone change in adolescents being treated for acute lymphoblastic leukemia.

    PubMed

    Orgel, Etan; Mueske, Nicole M; Sposto, Richard; Gilsanz, Vicente; Wren, Tishya A L; Freyer, David R; Butturini, Anna M; Mittelman, Steven D

    2017-10-01

    Adolescents with acute lymphoblastic leukemia (ALL) develop osteopenia early in therapy, potentially exacerbated by high rates of concurrent Vitamin D deficiency. We conducted a randomized clinical trial testing a Vitamin D-based intervention to improve Vitamin D status and reduce bone density decline. Poor adherence to home supplementation necessitated a change to directly observed therapy (DOT) with intermittent, high-dose Vitamin D3 randomized versus standard of care (SOC). Compared to SOC, DOT Vitamin D3 successfully increased trough Vitamin 25(OH)D levels (p = .026) with no residual Vitamin D deficiency, 100% adherence to DOT Vitamin D3, and without associated toxicity. However, neither Vitamin D status nor supplementation impacted bone density. Thus, this adherence-optimized intervention is feasible and effective to correct Vitamin D deficiency in adolescents during ALL therapy. Repletion of Vitamin D and calcium alone did not mitigate osteopenia, however, and new, comprehensive approaches are needed to address treatment-associated osteopenia during ALL therapy.

  16. Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes

    NASA Astrophysics Data System (ADS)

    Cheng, YongXi; Li, ZhenHua; Wei, JianHua; Nie, YiHang; Yan, YiJing

    2018-04-01

    Based on the hierarchical equations of motion approach, we study the time-dependent transport properties of a strongly correlated quantum dot system in the Kondo regime (KR), mixed valence regime (MVR), and empty orbital regime (EOR). We find that the transient current in KR shows the strongest nonlinear response and the most distinct oscillation behaviors. Both behaviors become weaker in MVR and diminish in EOR. To understand the physical insight, we examine also the corresponding dot occupancies and the spectral functions, with their dependence on the Coulomb interaction, temperature, and applied step bias voltage. The above nonlinear and oscillation behaviors could be understood as the interplay between dynamical Kondo resonance and single electron resonant-tunneling.

  17. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.

    PubMed

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G

    2016-01-27

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.

  18. Real-time weigh-in-motion measurement using fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Palek, Leonard; Strommen, Robert; Worel, Ben; Chen, Genda

    2014-03-01

    Overloading truck loads have long been one of the key reasons for accelerating road damage, especially in rural regions where the design loads are expected to be small and in the cold regions where the wet-and-dry cycle places a significant role. To control the designed traffic loads and further guide the road design in future, periodical weight stations have been implemented for double check of the truck loads. The weight stations give chances for missing measurement of overloaded vehicles, slow down the traffic, and require additional labors. Infrastructure weight-in-motion sensors, on the other hand, keep consistent traffic flow and monitor all types of vehicles on roads. However, traditional electrical weight-in-motion sensors showed high electromagnetic interference (EMI), high dependence on environmental conditions such as moisture, and relatively short life cycle, which are unreliable for long-term weigh-inmotion measurements. Fiber Bragg grating (FBG) sensors, with unique advantages of compactness, immune to EMI and moisture, capability of quasi-distributed sensing, and long life cycle, will be a perfect candidate for long-term weigh-in-motion measurements. However, the FBG sensors also surfer from their frangible nature of glass materials for a good survive rate during sensor installation. In this study, the FBG based weight-in-motion sensors were packaged by fiber reinforced polymer (FRP) materials and further validated at MnROAD facility, Minnesota DOT (MnDOT). The design and layout of the FRP-FBG weight-in-motion sensors, their field test setup, data acquisition, and data analysis will be presented. Upon validation, the FRP-FBG sensors can be applied weigh-in-motion measurement to assistant road managements.

  19. A compact clinical instrument for quantifying suppression.

    PubMed

    Black, Joanne M; Thompson, Benjamin; Maehara, Goro; Hess, Robert F

    2011-02-01

    We describe a compact and convenient clinical apparatus for the measurement of suppression based on a previously reported laboratory-based approach. In addition, we report and validate a novel, rapid psychophysical method for measuring suppression using this apparatus, which makes the technique more applicable to clinical practice. By using a Z800 dual pro head-mounted display driven by a MAC laptop, we provide dichoptic stimulation. Global motion stimuli composed of arrays of moving dots are presented to each eye. One set of dots move in a coherent direction (termed signal) whereas another set of dots move in a random direction (termed noise). To quantify performance, we measure the signal/noise ratio corresponding to a direction-discrimination threshold. Suppression is quantified by assessing the extent to which it matters which eye sees the signal and which eye sees the noise. A space-saving, head-mounted display using current video technology offers an ideal solution for clinical practice. In addition, our optimized psychophysical method provided results that were in agreement with those produced using the original technique. We made measures of suppression on a group of nine adult amblyopic participants using this apparatus with both the original and new psychophysical paradigms. All participants had measurable suppression ranging from mild to severe. The two different psychophysical methods gave a strong correlation for the strength of suppression (rho = -0.83, p = 0.006). Combining the new apparatus and new psychophysical method creates a convenient and rapid technique for parametric measurement of interocular suppression. In addition, this apparatus constitutes the ideal platform for suppressors to combine information between their eyes in a similar way to binocularly normal people. This provides a convenient way for clinicians to implement the newly proposed binocular treatment of amblyopia that is based on antisuppression training.

  20. Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov–Bohm interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dong; Xu, RuiXue; Zheng, Xiao, E-mail: xz58@ustc.edu.cn

    2015-03-14

    Several recent advancements for the hierarchical equations of motion (HEOM) approach are reported. First, we propose an a priori estimate for the optimal number of basis functions for the reservoir memory decomposition. Second, we make use of the sparsity of auxiliary density operators (ADOs) and propose two ansatzs to screen out all the intrinsic zero ADO elements. Third, we propose a new truncation scheme by utilizing the time derivatives of higher-tier ADOs. These novel techniques greatly reduce the memory cost of the HEOM approach, and thus enhance its efficiency and applicability. The improved HEOM approach is applied to simulate themore » coherent dynamics of Aharonov–Bohm double quantum dot interferometers. Quantitatively accurate dynamics is obtained for both noninteracting and interacting quantum dots. The crucial role of the quantum phase for the magnitude of quantum coherence and quantum entanglement is revealed.« less

  1. New rules for visual selection: Isolating procedural attention.

    PubMed

    Ramamurthy, Mahalakshmi; Blaser, Erik

    2017-02-01

    High performance in well-practiced, everyday tasks-driving, sports, gaming-suggests a kind of procedural attention that can allocate processing resources to behaviorally relevant information in an unsupervised manner. Here we show that training can lead to a new, automatic attentional selection rule that operates in the absence of bottom-up, salience-driven triggers and willful top-down selection. Taking advantage of the fact that attention modulates motion aftereffects, observers were presented with a bivectorial display with overlapping, iso-salient red and green dot fields moving to the right and left, respectively, while distracted by a demanding auditory two-back memory task. Before training, since the motion vectors canceled each other out, no net motion aftereffect (MAE) was found. However, after 3 days (0.5 hr/day) of training, during which observers practiced selectively attending to the red, rightward field, a significant net MAE was observed-even when top-down selection was again distracted. Further experiments showed that these results were not due to perceptual learning, and that the new rule targeted the motion, and not the color of the target dot field, and global, not local, motion signals; thus, the new rule was: "select the rightward field." This study builds on recent work on selection history-driven and reward-driven biases, but uses a novel paradigm where the allocation of visual processing resources are measured passively, offline, and when the observer's ability to execute top-down selection is defeated.

  2. Conserved linear dynamics of single-molecule Brownian motion.

    PubMed

    Serag, Maged F; Habuchi, Satoshi

    2017-06-06

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  3. Conserved linear dynamics of single-molecule Brownian motion

    PubMed Central

    Serag, Maged F.; Habuchi, Satoshi

    2017-01-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance. PMID:28585925

  4. Conserved linear dynamics of single-molecule Brownian motion

    NASA Astrophysics Data System (ADS)

    Serag, Maged F.; Habuchi, Satoshi

    2017-06-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  5. Consistent latent position estimation and vertex classification for random dot product graphs.

    PubMed

    Sussman, Daniel L; Tang, Minh; Priebe, Carey E

    2014-01-01

    In this work, we show that using the eigen-decomposition of the adjacency matrix, we can consistently estimate latent positions for random dot product graphs provided the latent positions are i.i.d. from some distribution. If class labels are observed for a number of vertices tending to infinity, then we show that the remaining vertices can be classified with error converging to Bayes optimal using the $(k)$-nearest-neighbors classification rule. We evaluate the proposed methods on simulated data and a graph derived from Wikipedia.

  6. Analysis of the Yule-Nielsen effect with the multiple-path point spread function in a frequency-modulated halftone.

    PubMed

    Rogers, Geoffrey

    2018-06-01

    The Yule-Nielsen effect is an influence on halftone color caused by the diffusion of light within the paper upon which the halftone ink is printed. The diffusion can be characterized by a point spread function. In this paper, a point spread function for paper is derived using the multiple-path model of reflection. This model treats the interaction of light with turbid media as a random walk. Using the multiple-path point spread function, a general expression is derived for the average reflectance of light from a frequency-modulated halftone, in which dot size is constant and the number of dots is varied, with the arrangement of dots random. It is also shown that the line spread function derived from the multiple-path model has the form of a Lorentzian function.

  7. Determinants of motion response anisotropies in human early visual cortex: the role of configuration and eccentricity.

    PubMed

    Maloney, Ryan T; Watson, Tamara L; Clifford, Colin W G

    2014-10-15

    Anisotropies in the cortical representation of various stimulus parameters can reveal the fundamental mechanisms by which sensory properties are analysed and coded by the brain. One example is the preference for motion radial to the point of fixation (i.e. centripetal or centrifugal) exhibited in mammalian visual cortex. In two experiments, this study used functional magnetic resonance imaging (fMRI) to explore the determinants of these radial biases for motion in functionally-defined areas of human early visual cortex, and in particular their dependence upon eccentricity which has been indicated in recent reports. In one experiment, the cortical response to wide-field random dot kinematograms forming 16 different complex motion patterns (including centrifugal, centripetal, rotational and spiral motion) was measured. The response was analysed according to preferred eccentricity within four different eccentricity ranges. Response anisotropies were characterised by enhanced activity for centripetal or centrifugal patterns that changed systematically with eccentricity in visual areas V1-V3 and hV4 (but not V3A/B or V5/MT+). Responses evolved from a preference for centrifugal over centripetal patterns close to the fovea, to a preference for centripetal over centrifugal at the most peripheral region stimulated, in agreement with previous work. These effects were strongest in V2 and V3. In a second experiment, the stimuli were restricted to within narrow annuli either close to the fovea (0.75-1.88°) or further in the periphery (4.82-6.28°), in a way that preserved the local motion information available in the first experiment. In this configuration a preference for radial motion (centripetal or centrifugal) persisted but the dependence upon eccentricity disappeared. Again this was clearest in V2 and V3. A novel interpretation of the dependence upon eccentricity of motion anisotropies in early visual cortex is offered that takes into account the spatiotemporal "predictability" of the moving pattern. Such stimulus predictability, and its relationship to models of predictive coding, has found considerable support in recent years in accounting for a number of other perceptual and neural phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Modified Directly Observed Antiretroviral Therapy Compared with Self-Administered Therapy in Treatment-Naïve HIV-1 Infected Patients: A Randomized Trial

    PubMed Central

    Gross, Robert; Tierney, Camlin; Andrade, Adriana; Lalama, Christina; Rosenkranz, Susan; Eshleman, Susan H.; Flanigan, Timothy; Santana, Jorge; Salomon, Nadim; Reisler, Ronald; Wiggins, Ilene; Hogg, Evelyn; Flexner, Charles; Mildvan, Donna

    2009-01-01

    Context Success of antiretroviral therapy depends on high rates of adherence, but few interventions are effective. Objective Determine if modified directly observed therapy (mDOT) improves initial antiretroviral success. Design Open-label randomized trial comparing mDOT and self-administered therapy with lopinavir/ritonavir soft gel capsules 800 mg/200 mg, emtricitabine 200 mg, and either extended release stavudine 100 mg or tenofovir 300 mg, all once daily. Setting 23 U.S. AIDS Clinical Trials Group (ACTG) sites and one in South Africa between October 2002 and January 2006. Participants Plasma HIV RNA ≥2000 copies/ml and antiretroviral-naïve. 82 participants received mDOT and 161 self-administration. Participants were predominantly male (79%), median age 38 years, with 84 Latinos (35%), 74 non-Latino blacks (30%), and 79 non-Latino whites (33%). Intervention mDOT Monday through Friday for 24 weeks. Main Outcome Measure(s) Primary outcome was week 24 virologic success and secondary outcomes were week 48 virologic success, clinical progression, and adherence. Results mDOT had greater virologic success over 24 weeks [0.91 (95% CI: 0.81, 0.95)] than self-administered therapy [0.84 (95% CI: 0.77, 0.89)], but the difference [0.07 (lower bound 95% CI: −0.01)] did not reach the pre-specified threshold of 0.075. Over 48 weeks, virologic success was not significantly different between mDOT [0.72 (95% CI: 0.61, 0.81)] and self-administered therapy [0.78 (95% CI: 0.70, 0.84)], [−0.06 (95% CI: −0.18, 0.07); p=0.19)]. Conclusions The potential benefit of mDOT was marginal and not sustained after mDOT was discontinued. mDOT should not be incorporated routinely for care of treatment naïve HIV-1 infected patients. PMID:19597072

  9. Two-Dimensional Fluidization of Nanomaterials via Biomimetic Membranes towards Assisted Self Assembly

    NASA Astrophysics Data System (ADS)

    Kelly, Kathleen

    Materials that take advantage of the exceptional properties of nano-meter sized aggregates of atoms are poised to play an important role in future technologies. Prime examples for such nano-materials that have an extremely large surface to volume ratio and thus are physically determined by surface related effects are quantum dots (qdots) and carbon nanotubes (CNTs). The production of such manmade nano-objects has by now become routine and even commercialized. However, the controlled assembly of individual nano-sized building blocks into larger structures of higher geometric and functional complexity has proven to be much more challenging. Yet, this is exactly what is required for many applications that have transformative potential for new technologies. If the tedious procedure to sequentially position individual nano-objects is to be forgone, the assembly of such objects into larger structures needs to be implicitly encoded and many ways to bestow such self-assembly abilities onto nano objects are being developed. Yet, as overall size and complexity of such self-assembled structures increases, kinetic and geometric frustration begin to prevent the system to achieve the desired configuration. In nature, this problem is solved by relying on guided or forced variants of the self-assembly approach. To translate such concepts into the realm of man-made nano-technology, ways to dynamically manipulate nano-materials need to be devised. Thus, in the first part of this work, I provide a proof of concept that supported lipid bilayers (SLBs) that exhibit free lateral diffusion of their constituents can be utilized as a two-dimensional platform for active nano-material manipulation. We used streptavidin coated quantum dots (Q-dots) as a model nano-building-block. Q-dots are 0-dimensional nanomaterials engineered to be fluorescent based solely on their diameter making visualization convenient. Biotinylated lipids were used to tether Q-dots to a SLB and we observed that the 2-dimensional fluidity of the bilayer was translated to the quantum dots as they freely diffused. The quantum dots were visualized using wide-field fluorescent microscopy and single particle tracking techniques were employed to analyze their dynamic behavior. Next, an electric field was applied to the system to induce electroosmotic flow (EOF) which creates a bulk flow of the buffer solution. The quantum dots were again tracked and ballistic motion was observed in the particle tracks due to the electroosmosis in the system. This proved that SLBs could be used as a two-dimensional fluid platform for nanomaterials and electroosmosis can be used to manipulate the motion of the Q-dots once they are tethered to the membrane. Next, we set out to employ the same technique to carbon nanotubes (CNTs), which are known for their highly versatile mechanical and electrical properties. However, carbon nanotubes are extremely hydrophobic and tend to aggregate in aqueous solutions which negatively impacts the viability of tethering the CNTs to the bilayer, fluorescently staining and then imaging them. First, we had to solubilize the CNTs such that they were monodisperse and characterize the CNT-detergent solutions. We were able to create monodisperse solutions of CNTs such that the detergent levels were low enough that the integrity of the bilayer was intact. We were also able to fluorescently label the CNTs in order to visualize them, and tether them to a SLB using a peptide sequence. Future directions of this project would include employing EOF to mobilize the CNTs and use a more sophisticated single particle tracking software to track individual CNTs and analyze their motion.

  10. A new fundamental model of moving particle for reinterpreting Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umar, Muhamad Darwis

    2012-06-20

    The study of Schroedinger equation based on a hypothesis that every particle must move randomly in a quantum-sized volume has been done. In addition to random motion, every particle can do relative motion through the movement of its quantum-sized volume. On the other way these motions can coincide. In this proposed model, the random motion is one kind of intrinsic properties of the particle. The every change of both speed of randomly intrinsic motion and or the velocity of translational motion of a quantum-sized volume will represent a transition between two states, and the change of speed of randomly intrinsicmore » motion will generate diffusion process or Brownian motion perspectives. Diffusion process can take place in backward and forward processes and will represent a dissipative system. To derive Schroedinger equation from our hypothesis we use time operator introduced by Nelson. From a fundamental analysis, we find out that, naturally, we should view the means of Newton's Law F(vector sign) = ma(vector sign) as no an external force, but it is just to describe both the presence of intrinsic random motion and the change of the particle energy.« less

  11. Long-range spin coherence in a strongly coupled all-electronic dot-cavity system

    NASA Astrophysics Data System (ADS)

    Ferguson, Michael Sven; Oehri, David; Rössler, Clemens; Ihn, Thomas; Ensslin, Klaus; Blatter, Gianni; Zilberberg, Oded

    2017-12-01

    We present a theoretical analysis of spin-coherent electronic transport across a mesoscopic dot-cavity system. Such spin-coherent transport has been recently demonstrated in an experiment with a dot-cavity hybrid implemented in a high-mobility two-dimensional electron gas [C. Rössler et al., Phys. Rev. Lett. 115, 166603 (2015), 10.1103/PhysRevLett.115.166603] and its spectroscopic signatures have been interpreted in terms of a competition between Kondo-type dot-lead and molecular-type dot-cavity singlet formation. Our analysis brings forward all the transport features observed in the experiments and supports the claim that a spin-coherent molecular singlet forms across the full extent of the dot-cavity device. Our model analysis includes (i) a single-particle numerical investigation of the two-dimensional geometry, its quantum-coral-type eigenstates, and associated spectroscopic transport features, (ii) the derivation of an effective interacting model based on the observations of the numerical and experimental studies, and (iii) the prediction of transport characteristics through the device using a combination of a master-equation approach on top of exact eigenstates of the dot-cavity system, and an equation-of-motion analysis that includes Kondo physics. The latter provides additional temperature scaling predictions for the many-body phase transition between molecular- and Kondo-singlet formation and its associated transport signatures.

  12. Multiple-time-scale motion in molecularly linked nanoparticle arrays.

    PubMed

    George, Christopher; Szleifer, Igal; Ratner, Mark

    2013-01-22

    We explore the transport of electrons between electrodes that encase a two-dimensional array of metallic quantum dots linked by molecular bridges (such as α,ω alkaline dithiols). Because the molecules can move at finite temperatures, the entire transport structure comprising the quantum dots and the molecules is in dynamical motion while the charge is being transported. There are then several physical processes (physical excursions of molecules and quantum dots, electronic migration, ordinary vibrations), all of which influence electronic transport. Each can occur on a different time scale. It is therefore not appropriate to use standard approaches to this sort of electron transfer problem. Instead, we present a treatment in which three different theoretical approaches-kinetic Monte Carlo, classical molecular dynamics, and quantum transport-are all employed. In certain limits, some of the dynamical effects are unimportant. But in general, the transport seems to follow a sort of dynamic bond percolation picture, an approach originally introduced as formal models and later applied to polymer electrolytes. Different rate-determining steps occur in different limits. This approach offers a powerful scheme for dealing with multiple time scale transport problems, as will exist in many situations with several pathways through molecular arrays or even individual molecules that are dynamically disordered.

  13. Spin-orbit qubit in a semiconductor nanowire.

    PubMed

    Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P

    2010-12-23

    Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.

  14. Entanglement loss in molecular quantum-dot qubits due to interaction with the environment.

    PubMed

    Blair, Enrique P; Tóth, Géza; Lent, Craig S

    2018-05-16

    We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser-Horne-Shimony-Holt (CHSH) and Brukner-Paunković-Rudolph-Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.

  15. Approximating the Sachdev-Ye-Kitaev model with Majorana wires

    NASA Astrophysics Data System (ADS)

    Chew, Aaron; Essin, Andrew; Alicea, Jason

    The Sachdev-Ye-Kitaev (SYK) model describes a large collection of Majorana fermions coupled via random, `all-to-all' four-fermion interactions. This model enjoys broad interdisciplinary interest because it provides a solvable realization of holography in 0+1 dimensions, exhibits unusual spectral and thermodynamic properties, and shares deep connections to chaos and black holes. We propose a solid-state implementation of the SYK Hamiltonian that employs quantum dots coupled to arrays of topological superconductors hosting Majorana end-states. All-to-all four-Majorana couplings are mediated by interactions in the dot, while the randomness originates from disorder in the hoppings between the Majorana modes and dot levels. Using perturbation theory and explicit numerics, we study the properties of the dot-wire array system under various experimental conditions. Interestingly, our setup not only allows exploration of SYK physics, but also provides a controlled testbed for interaction effects on the topological classification of fermionic phases. Supported by the National Science Foundation (DMR-1341822), Institute for Quantum Information and Matter, and Walter Burke Institute at Caltech. AC gratefully acknowledges support from the Dominic Orr Fellowship.

  16. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    PubMed

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  17. Entanglement loss in molecular quantum-dot qubits due to interaction with the environment

    NASA Astrophysics Data System (ADS)

    Blair, Enrique P.; Tóth, Géza; Lent, Craig S.

    2018-05-01

    We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser–Horne–Shimony–Holt (CHSH) and Brukner–Paunković–Rudolph–Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.

  18. Analytical studies of NGC 1193

    NASA Astrophysics Data System (ADS)

    Tadross, A. L.

    2005-01-01

    The photometric data of Kalu\\dot{z}ny (1988) was used in conjunction with the proper motion measurements of USNO-B1.0 catalog (Monet et al. 2003) to refine and complete the main physical properties of the faint open cluster NGC 1193.

  19. Enhanced Capabilities of BullReporter and BullConverter : final report.

    DOT National Transportation Integrated Search

    2017-09-01

    Bull-Converter/Reporter is a software stack for Weigh-In-Motion (WIM) data analysis and reporting tools developed by the University of Minnesota Duluth for the Minnesota Department of Transportation (MnDOT) to resolve problems associated with deploym...

  20. Effects of overweight vehicles on New York State DOT infrastructure.

    DOT National Transportation Integrated Search

    2015-09-01

    This report develops a methodology for estimating the effects of different categories of overweight : trucks on NYSDOT pavements and bridges. A data mining algorithm is used to categorize truck : data collected at several Weigh-In-Motion stations aro...

  1. White Dots as a Novel Marker of Diabetic Retinopathy Severity in Ultrawide Field Imaging.

    PubMed

    Dodo, Yoko; Murakami, Tomoaki; Unoki, Noriyuki; Ogino, Ken; Uji, Akihito; Yoshitake, Shin; Yoshimura, Nagahisa

    2016-01-01

    To characterize white dots in diabetic retinopathy (DR) and their association with disease severity using ultra-wide-field scanning laser ophthalmoscopy. We randomly selected 125 eyes of 77 patients (25 eyes from individual categories of the international classification of DR severity) for which ultrawide field photographs were obtained. We characterized white dots, which were delineated by higher signal levels on green but not red laser images, and evaluated the relationship between the number of white dots and the international severity scale of DR. Most white dots were located in nonperfused areas, and the number of total white dots was significantly correlated to that of dots in nonperfused areas. White dots corresponded to microaneurysms around the boundary between nonperfused areas and perfused areas or unknown lesions in nonperfused areas. Eyes with DR had significantly more white dots than those with no apparent retinopathy. The numbers of white dots in moderate nonproliferative diabetic retinopathy (NPDR) or more severe grades were significantly higher than in mild NPDR. The area under the receiver operating characteristics curve (AROC) analyses demonstrated that the number of white dots had the significance in the diagnosis of DR (0.908-0.986) and moderate NPDR or more severe grades (0.888-0.974). These data suggest the clinical relevance of white dots seen on ultrawide field images in the diagnosis of the severity of DR.

  2. Effect of self assembled quantum dots on carrier mobility, with application to modeling the dark current in quantum dot infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Youssef, Sarah; El-Batawy, Yasser M.; Abouelsaood, Ahmed A.

    2016-09-01

    A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device [Ameen et al., J. Appl. Phys. 115, 063703 (2014)] in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.

  3. Printer model for dot-on-dot halftone screens

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Raja

    1995-04-01

    A printer model is described for dot-on-dot halftone screens. For a given input CMYK signal, the model predicts the resulting spectral reflectance of the printed patch. The model is derived in two steps. First, the C, M, Y, K dot growth functions are determined which relate the input digital value to the actual dot area coverages of the colorants. Next, the reflectance of a patch is predicted as a weighted combination of the reflectances of the four solid C, M, Y, K patches and their various overlays. This approach is analogous to the Neugebauer model, with the random mixing equations being replaced by dot-on-dot mixing equations. A Yule-Neilsen correction factor is incorporated to account for light scattering within the paper. The dot area functions and Yule-Neilsen parameter are chosen to optimize the fit to a set of training data. The model is also extended to a cellular framework, requiring additional measurements. The model is tested with a four color xerographic printer employing a line-on-line halftone screen. CIE L*a*b* errors are obtained between measurements and model predictions. The Yule-Neilsen factor significantly decreases the model error. Accuracy is also increased with the use of a cellular framework.

  4. Synthetic perspective optical flow: Influence on pilot control tasks

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.

    1989-01-01

    One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.

  5. Effects of Vertical Direction and Aperture Size on the Perception of Visual Acceleration.

    PubMed

    Mueller, Alexandra S; González, Esther G; McNorgan, Chris; Steinbach, Martin J; Timney, Brian

    2016-02-06

    It is not well understood whether the distance over which moving stimuli are visible affects our sensitivity to the presence of acceleration or our ability to track such stimuli. It is also uncertain whether our experience with gravity creates anisotropies in how we detect vertical acceleration and deceleration. To address these questions, we varied the vertical extent of the aperture through which we presented vertically accelerating and decelerating random dot arrays. We hypothesized that observers would better detect and pursue accelerating and decelerating stimuli that extend over larger than smaller distances. In Experiment 1, we tested the effects of vertical direction and aperture size on acceleration and deceleration detection accuracy. Results indicated that detection is better for downward motion and for large apertures, but there is no difference between vertical acceleration and deceleration detection. A control experiment revealed that our manipulation of vertical aperture size affects the ability to track vertical motion. Smooth pursuit is better (i.e., with higher peak velocities) for large apertures than for small apertures. Our findings suggest that the ability to detect vertical acceleration and deceleration varies as a function of the direction and vertical extent over which an observer can track the moving stimulus. © The Author(s) 2016.

  6. Reduction of influence of task difficulty on perceptual decision making by STN deep brain stimulation.

    PubMed

    Green, Nikos; Bogacz, Rafal; Huebl, Julius; Beyer, Ann-Kristin; Kühn, Andrea A; Heekeren, Hauke R

    2013-09-09

    Neurocomputational models of optimal decision making ascribe a crucial role-the computation of conflict between choice alternatives-to the subthalamic nucleus (STN). Specifically, these models predict that deep brain stimulation (DBS) of the STN will diminish the influence of decision conflict on decision making. In this work, patients with Parkinson's disease judged the direction of motion in random dot stimuli while ON and OFF DBS. To induce decision conflict, we varied the task difficulty (motion coherence), leading to increased reaction time (RT) in trials with greater task difficulty in healthy subjects. Results indicate that DBS significantly influences performance for perceptual decisions under high decision conflict. RT increased substantially OFF DBS as the task became more difficult, and a diffusion model best accounted for behavioral data. In contrast, ON DBS, the influence of task difficulty on RT was significantly reduced and a race model best accounted for the observed data. Individual data fits of evidence accumulation models demonstrate different information processing under distinct DBS states. Furthermore, ON DBS, speed-accuracy tradeoffs affected the magnitude of decision criterion adjustment significantly less compared to OFF DBS. Together, these findings suggest a crucial role for the STN in adjusting decision making during high-conflict trials in perceptual decision making. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. 49 CFR 40.23 - What actions do employers take after receiving verified test results?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...., random test, post-accident test) and DOT Agency (e.g., check DOT and FMCSA) as for the original... verified test results? 40.23 Section 40.23 Transportation Office of the Secretary of Transportation... What actions do employers take after receiving verified test results? (a) As an employer who receives a...

  8. 49 CFR 40.23 - What actions do employers take after receiving verified test results?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...., random test, post-accident test) and DOT Agency (e.g., check DOT and FMCSA) as for the original... verified test results? 40.23 Section 40.23 Transportation Office of the Secretary of Transportation... What actions do employers take after receiving verified test results? (a) As an employer who receives a...

  9. 49 CFR 40.23 - What actions do employers take after receiving verified test results?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...., random test, post-accident test) and DOT Agency (e.g., check DOT and FMCSA) as for the original... verified test results? 40.23 Section 40.23 Transportation Office of the Secretary of Transportation... What actions do employers take after receiving verified test results? (a) As an employer who receives a...

  10. 49 CFR 40.23 - What actions do employers take after receiving verified test results?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...., random test, post-accident test) and DOT Agency (e.g., check DOT and FMCSA) as for the original... an employer who receives a cancelled test result when a negative result is required (e.g., pre... verified test results? 40.23 Section 40.23 Transportation Office of the Secretary of Transportation...

  11. 49 CFR 40.23 - What actions do employers take after receiving verified test results?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...., random test, post-accident test) and DOT Agency (e.g., check DOT and FMCSA) as for the original... an employer who receives a cancelled test result when a negative result is required (e.g., pre... verified test results? 40.23 Section 40.23 Transportation Office of the Secretary of Transportation...

  12. The influence of Coulomb correlations on nonequilibrium quantum transport in quadruple quantum-dot structure

    NASA Astrophysics Data System (ADS)

    Kagan, M. Yu.; Aksenov, S. V.

    2018-04-01

    The description of quantum transport in a quadruple quantum-dot structure (QQD) is proposed taking into account the Coulomb correlations and nonzero bias voltages. To achieve this goal the combination of nonequilibrium Green's functions and equation-of-motion technique is used. It is shown that the anisotropy of kinetic processes in the QQD leads to negative differential conductance (NDC). The reason of the effect is an interplay of the Fano resonances which are induced by the interdot Coulomb correlations. Different ways to increase the peak-to-valley ratio related to the observed NDC are discussed.

  13. Magnetic properties of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Espinosa-Ortega, T.; Luk'yanchuk, I. A.; Rubo, Y. G.

    2013-05-01

    Using the tight-binding approximation we calculated the diamagnetic susceptibility of graphene quantum dots (GQDs) of different geometrical shapes and characteristic sizes of 2-10 nm, when the magnetic properties are governed by the electron edge states. Two types of edge states can be discerned: the zero-energy states (ZESs), located exactly at the zero-energy Dirac point, and the dispersed edge states (DESs), with the energy close but not exactly equal to zero. DESs are responsible for a temperature-independent diamagnetic response, while ZESs provide a temperature-dependent spin paramagnetism. Hexagonal, circular, and randomly shaped GQDs contain mainly DESs, and, as a result, they are diamagnetic. The edge states of the triangular GQDs are of ZES type. These dots reveal the crossover between spin paramagnetism, dominating for small dots and at low temperatures, and orbital diamagnetism, dominating for large dots and at high temperatures.

  14. Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current.

    PubMed

    Stadler, P; Belzig, W; Rastelli, G

    2014-07-25

    We study the nonequilibrium steady state of a mechanical resonator in the quantum regime realized by a suspended carbon nanotube quantum dot in contact with two ferromagnets. Because of the spin-orbit interaction and/or an external magnetic field gradient, the spin on the dot couples directly to the flexural eigenmodes. Accordingly, the nanomechanical motion induces inelastic spin flips of the tunneling electrons. A spin-polarized current at finite bias voltage causes either heating or active cooling of the mechanical modes. We show that maximal cooling is achieved at resonant transport when the energy splitting between two dot levels of opposite spin equals the vibrational frequency. Even for weak electron-resonator coupling and moderate polarizations we can achieve ground-state cooling with a temperature of the leads, for instance, of T = 10 ω.

  15. Low bias negative differential conductance and reversal of current in coupled quantum dots in different topological configurations

    NASA Astrophysics Data System (ADS)

    Devi, Sushila; Brogi, B. B.; Ahluwalia, P. K.; Chand, S.

    2018-06-01

    Electronic transport through asymmetric parallel coupled quantum dot system hybridized between normal leads has been investigated theoretically in the Coulomb blockade regime by using Non-Equilibrium Green Function formalism. A new decoupling scheme proposed by Rabani and his co-workers has been adopted to close the chain of higher order Green's functions appearing in the equations of motion. For resonant tunneling case; the calculations of current and differential conductance have been presented during transition of coupled quantum dot system from series to symmetric parallel configuration. It has been found that during this transition, increase in current and differential conductance of the system occurs. Furthermore, clear signatures of negative differential conductance and negative current appear in series case, both of which disappear when topology of system is tuned to asymmetric parallel configuration.

  16. Final research findings on traffic-load forecasting using weigh-in-motion data

    DOT National Transportation Integrated Search

    1998-09-01

    The overall objective of Project 7-987 was to develop a long-range pavement rehabilitation plan for a segment of US 59, a four-lane divided principal arterial highway in TxDOT's Lufkin District. To identify feasible pavement : structures, test sectio...

  17. Present-day Antarctic ice mass changes and crustal motion

    NASA Technical Reports Server (NTRS)

    James, Thomas S.; Ivins, Erik R.

    1995-01-01

    The peak vertical velocities predicted by three realistic, but contrasting, present-day scenarios of Antarctic ice sheet mass balance are found to be of the order of several mm/a. One scenario predicts local uplift rates in excess of 5 mm/a. These rates are small compared to the peak Antarctic vertical velocities of the ICE-3G glacial rebound model, which are in excess of 20 mm/a. If the Holocene Antarctic deglaciation history protrayed in ICE-3G is realistic, and if regional upper mantle viscosity is not an order of magnitude below 10(exp 21) Pa(dot)s, then a vast geographical region in West Antarctica is uplifting at a rate that could be detected by a future Global Positioning System (GPS) campaign. While present-day scenarios predict small vertical crustal velocities, their overall continent-ocean mass exchange is large enough to account for a substantial portion of the observed secular polar motion (omega m(arrow dot)) and time-varying zonal gravity field.

  18. Direct Observation of Treatment Provided by a Family Member as Compared to Non-Family Member among Children with New Tuberculosis: A Pragmatic, Non-Inferiority, Cluster-Randomized Trial in Gujarat, India.

    PubMed

    Dave, Paresh Vamanrao; Shah, Amar Niranjan; Nimavat, Pankaj B; Modi, Bhavesh B; Pujara, Kirit R; Patel, Pradip; Mehariya, Keshabhai; Rade, Kiran Vaman; Shekar, Soma; Sachdeva, Kuldeep S; Oeltmann, John E; Kumar, Ajay M V

    2016-01-01

    The World Health Organization recommends direct observation of treatment (DOT) to support patients with tuberculosis (TB) and to ensure treatment completion. As per national programme guidelines in India, a DOT provider can be anyone who is acceptable and accessible to the patient and accountable to the health system, except a family member. This poses challenges among children with TB who may be more comfortable receiving medicines from their parents or family members than from unfamiliar DOT providers. We conducted a non-inferiority trial to assess the effect of family DOT on treatment success rates among children with newly diagnosed TB registered for treatment during June-September 2012. We randomly assigned all districts (n = 30) in Gujarat to the intervention (n = 15) or usual-practice group (n = 15). Adult family members in the intervention districts were given the choice to become their child's DOT provider. DOT was provided by a non-family member in the usual-practice districts. Using routinely collected clinic-based TB treatment cards, we compared treatment success rates (cured and treatment completed) between the two groups and the non-inferiority limit was kept at 5%. Of 624 children with newly diagnosed TB, 359 (58%) were from intervention districts and 265 (42%) were from usual-practice districts. The two groups were similar with respect to baseline characteristics including age, sex, type of TB, and initial body weight. The treatment success rates were 344 (95.8%) and 247 (93.2%) (p = 0.11) among the intervention and usual-practice groups respectively. DOT provided by a family member is not inferior to DOT provided by a non-family member among new TB cases in children and can attain international targets for treatment success. Clinical Trials Registry-India, National Institute of Medical Statistics (Indian Council of Medical Research) CTRI/2015/09/006229.

  19. Direct Observation of Treatment Provided by a Family Member as Compared to Non-Family Member among Children with New Tuberculosis: A Pragmatic, Non-Inferiority, Cluster-Randomized Trial in Gujarat, India

    PubMed Central

    Modi, Bhavesh B.; Pujara, Kirit R.; Patel, Pradip; Mehariya, Keshabhai; Rade, Kiran Vaman; Shekar, Soma; Sachdeva, Kuldeep S.; Oeltmann, John E.; Kumar, Ajay M. V.

    2016-01-01

    Background The World Health Organization recommends direct observation of treatment (DOT) to support patients with tuberculosis (TB) and to ensure treatment completion. As per national programme guidelines in India, a DOT provider can be anyone who is acceptable and accessible to the patient and accountable to the health system, except a family member. This poses challenges among children with TB who may be more comfortable receiving medicines from their parents or family members than from unfamiliar DOT providers. We conducted a non-inferiority trial to assess the effect of family DOT on treatment success rates among children with newly diagnosed TB registered for treatment during June–September 2012. Methods We randomly assigned all districts (n = 30) in Gujarat to the intervention (n = 15) or usual-practice group (n = 15). Adult family members in the intervention districts were given the choice to become their child’s DOT provider. DOT was provided by a non-family member in the usual-practice districts. Using routinely collected clinic-based TB treatment cards, we compared treatment success rates (cured and treatment completed) between the two groups and the non-inferiority limit was kept at 5%. Results Of 624 children with newly diagnosed TB, 359 (58%) were from intervention districts and 265 (42%) were from usual-practice districts. The two groups were similar with respect to baseline characteristics including age, sex, type of TB, and initial body weight. The treatment success rates were 344 (95.8%) and 247 (93.2%) (p = 0.11) among the intervention and usual-practice groups respectively. Conclusion DOT provided by a family member is not inferior to DOT provided by a non-family member among new TB cases in children and can attain international targets for treatment success. Trial Registration Clinical Trials Registry–India, National Institute of Medical Statistics (Indian Council of Medical Research) CTRI/2015/09/006229 PMID:26849442

  20. White Dots as a Novel Marker of Diabetic Retinopathy Severity in Ultrawide Field Imaging

    PubMed Central

    Dodo, Yoko; Murakami, Tomoaki; Unoki, Noriyuki; Ogino, Ken; Uji, Akihito; Yoshitake, Shin; Yoshimura, Nagahisa

    2016-01-01

    Purpose To characterize white dots in diabetic retinopathy (DR) and their association with disease severity using ultra-wide-field scanning laser ophthalmoscopy. Methods We randomly selected 125 eyes of 77 patients (25 eyes from individual categories of the international classification of DR severity) for which ultrawide field photographs were obtained. We characterized white dots, which were delineated by higher signal levels on green but not red laser images, and evaluated the relationship between the number of white dots and the international severity scale of DR. Results Most white dots were located in nonperfused areas, and the number of total white dots was significantly correlated to that of dots in nonperfused areas. White dots corresponded to microaneurysms around the boundary between nonperfused areas and perfused areas or unknown lesions in nonperfused areas. Eyes with DR had significantly more white dots than those with no apparent retinopathy. The numbers of white dots in moderate nonproliferative diabetic retinopathy (NPDR) or more severe grades were significantly higher than in mild NPDR. The area under the receiver operating characteristics curve (AROC) analyses demonstrated that the number of white dots had the significance in the diagnosis of DR (0.908–0.986) and moderate NPDR or more severe grades (0.888–0.974). Conclusions These data suggest the clinical relevance of white dots seen on ultrawide field images in the diagnosis of the severity of DR. PMID:27812207

  1. Atomistic theory of excitonic fine structure in InAs/InP nanowire quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Świderski, M.; Zieliński, M.

    2017-03-01

    Nanowire quantum dots have peculiar electronic and optical properties. In this work we use atomistic tight binding to study excitonic spectra of artificial molecules formed by a double nanowire quantum dot. We demonstrate a key role of atomistic symmetry and nanowire substrate orientation rather than cylindrical shape symmetry of a nanowire and a molecule. In particular for [001 ] nanowire orientation we observe a nonvanishing bright exciton splitting for a quasimolecule formed by two cylindrical quantum dots of different heights. This effect is due to interdot coupling that effectively reduces the overall symmetry, whereas single uncoupled [001 ] quantum dots have zero fine structure splitting. We found that the same double quantum dot system grown on [111 ] nanowire reveals no excitonic fine structure for all considered quantum dot distances and individual quantum dot heights. Further we demonstrate a pronounced, by several orders of magnitude, increase of the dark exciton optical activity in a quantum dot molecule as compared to a single quantum dot. For [111 ] systems we also show spontaneous localization of single particle states in one of nominally identical quantum dots forming a molecule, which is mediated by strain and origins from the lack of the vertical inversion symmetry in [111 ] nanostructures of overall C3 v symmetry. Finally, we study lowering of symmetry due to alloy randomness that triggers nonzero excitonic fine structure and the dark exciton optical activity in realistic nanowire quantum dot molecules of intermixed composition.

  2. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    PubMed Central

    Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055

  3. A transfer hamiltonian model for devices based on quantum dot arrays.

    PubMed

    Illera, S; Prades, J D; Cirera, A; Cornet, A

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  4. Impaired Activation of Visual Attention Network for Motion Salience Is Accompanied by Reduced Functional Connectivity between Frontal Eye Fields and Visual Cortex in Strabismic Amblyopia

    PubMed Central

    Wang, Hao; Crewther, Sheila G.; Liang, Minglong; Laycock, Robin; Yu, Tao; Alexander, Bonnie; Crewther, David P.; Wang, Jian; Yin, Zhengqin

    2017-01-01

    Strabismic amblyopia is now acknowledged to be more than a simple loss of acuity and to involve alterations in visually driven attention, though whether this applies to both stimulus-driven and goal-directed attention has not been explored. Hence we investigated monocular threshold performance during a motion salience-driven attention task involving detection of a coherent dot motion target in one of four quadrants in adult controls and those with strabismic amblyopia. Psychophysical motion thresholds were impaired for the strabismic amblyopic eye, requiring longer inspection time and consequently slower target speed for detection compared to the fellow eye or control eyes. We compared fMRI activation and functional connectivity between four ROIs of the occipital-parieto-frontal visual attention network [primary visual cortex (V1), motion sensitive area V5, intraparietal sulcus (IPS) and frontal eye fields (FEF)], during a suprathreshold version of the motion-driven attention task, and also a simple goal-directed task, requiring voluntary saccades to targets randomly appearing along a horizontal line. Activation was compared when viewed monocularly by controls and the amblyopic and its fellow eye in strabismics. BOLD activation was weaker in IPS, FEF and V5 for both tasks when viewing through the amblyopic eye compared to viewing through the fellow eye or control participants' non-dominant eye. No difference in V1 activation was seen between the amblyopic and fellow eye, nor between the two eyes of control participants during the motion salience task, though V1 activation was significantly less through the amblyopic eye than through the fellow eye and control group non-dominant eye viewing during the voluntary saccade task. Functional correlations of ROIs within the attention network were impaired through the amblyopic eye during the motion salience task, whereas this was not the case during the voluntary saccade task. Specifically, FEF showed reduced functional connectivity with visual cortical nodes during the motion salience task through the amblyopic eye, despite suprathreshold detection performance. This suggests that the reduced ability of the amblyopic eye to activate the frontal components of the attention networks may help explain the aberrant control of visual attention and eye movements in amblyopes. PMID:28484381

  5. Effects of stimulant medication on the lateralisation of line bisection judgements of children with attention deficit hyperactivity disorder.

    PubMed

    Sheppard, D M; Bradshaw, J L; Mattingley, J B; Lee, P

    1999-01-01

    Deficits in the maintenance of attention may underlie problems in attention deficit hyperactivity disorder (ADHD). Children with ADHD also show asymmetric attention deficits in traditional lateralisation and visuospatial orienting tasks, suggesting right hemispheric (and left hemispace) attentional disturbance. This study aimed to examine the lateralisation of selective attention in ADHD; specifically, the effect of a moving, random dot background, and stimulant medication in the line bisection task. The performance of children with ADHD, on and off methylphenidate, was examined using a computerised horizontal line bisection task with moving and blank backgrounds. Twenty children with a DSM-IV diagnosis of ADHD participated with 20 controls, individually matched for age, sex, grade at school, and IQ. Twelve of the 20 children with ADHD were on stimulant medication at the time of testing. Horizontal lines of varying length were presented in the centre of a computer screen, with either a blank background, or a moving, random dot field. The random dots moved either leftward or rightward across the screen at either 40 mm/s or 80 mm/s. The children with ADHD off medication bisected lines significantly further to the right compared with controls, who showed a small leftward error. Methylphenidate normalised the performance of the children with ADHD for the task with the moving dots. These results support previous evidence for a right hemispheric hypoarousal theory of attentional dysfunction, and are consistent with the emerging picture of a lateralised dysfunction of frontostriatal circuitry in ADHD.

  6. Visual Processing of Object Velocity and Acceleration

    DTIC Science & Technology

    1994-02-04

    A failure of motion deblurring in the human visual system. Investigative Opthalmology and Visual Sciences (Suppl),34, 1230 Watamaniuk, S.N.J. and...McKee, S.P. Why is a trajectory more detectable in noise than correlated signal dots? Investigative Opthalmology and Visual Sciences (Suppl),34, 1364

  7. Semiclassical transport in nearly symmetric quantum dots. I. Symmetry breaking in the dot.

    PubMed

    Whitney, Robert S; Schomerus, Henning; Kopp, Marten

    2009-11-01

    We apply the semiclassical theory of transport to quantum dots with exact and approximate spatial symmetries; left-right mirror symmetry, up-down mirror symmetry, inversion symmetry, or fourfold symmetry. In this work-the first of a pair of articles-we consider (a) perfectly symmetric dots and (b) nearly symmetric dots in which the symmetry is broken by the dot's internal dynamics. The second article addresses symmetry-breaking by displacement of the leads. Using semiclassics, we identify the origin of the symmetry-induced interference effects that contribute to weak localization corrections and universal conductance fluctuations. For perfect spatial symmetry, we recover results previously found using the random-matrix theory conjecture. We then go on to show how the results are affected by asymmetries in the dot, magnetic fields, and decoherence. In particular, the symmetry-asymmetry crossover is found to be described by a universal dependence on an asymmetry parameter gamma_{asym} . However, the form of this parameter is very different depending on how the dot is deformed away from spatial symmetry. Symmetry-induced interference effects are completely destroyed when the dot's boundary is globally deformed by less than an electron wavelength. In contrast, these effects are only reduced by a finite amount when a part of the dot's boundary smaller than a lead-width is deformed an arbitrarily large distance.

  8. Generating random numbers by means of nonlinear dynamic systems

    NASA Astrophysics Data System (ADS)

    Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi

    2018-07-01

    To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the angular displacements of chaotic motion, random binary numerical arrays can be generated. To check the randomness of generated numerical arrays, the NIST Special Publication 800-20 method was adopted. As a result, it was found that all the random arrays which were generated by the chaotic motion could pass the validity criteria and some of them were even better than the quality of pseudo-random numbers generated by a computer. Through the experiments, it is demonstrated that chaotic pendulum can be used as an efficient mechanical facility in generating random numbers, and can be applied in teaching random motion to the students.

  9. Hierarchical Equation of Motion Investigation of Decoherence and Relaxation Dynamics in Nonequilibrium Transport through Interacting Quantum Dots

    NASA Astrophysics Data System (ADS)

    Hartle, Rainer; Cohen, Guy; Reichman, David R.; Millis, Andrew J.

    2014-03-01

    A recently developed hierarchical quantum master equation approach is used to investigate nonequilibrium electron transport through an interacting double quantum dot system in the regime where the inter-dot coupling is weaker than the coupling to the electrodes. The corresponding eigenstates provide tunneling paths that may interfere constructively or destructively, depending on the energy of the tunneling electrons. Electron-electron interactions are shown to quench these interference effects in bias-voltage dependent ways, leading, in particular, to negative differential resistance, population inversion and an enhanced broadening of resonances in the respective transport characteristics. Relaxation times are found to be very long, and to be correlated with very slow dynamics of the inter-dot coherences (off diagonal density matrix elements). The ability of the hierarchical quantum master equation approach to access very long time scales is crucial for the study of this physics. This work is supported by the National Science Foundation (NSF DMR-1006282 and NSF CHE-1213247), the Yad Hanadiv-Rothschild Foundation (via a Rothschild Fellowship for GC) and the Alexander von Humboldt Foundation (via a Feodor Lynen fellowship for RH).

  10. A probabilistic, distributed, recursive mechanism for decision-making in the brain

    PubMed Central

    Gurney, Kevin N.

    2018-01-01

    Decision formation recruits many brain regions, but the procedure they jointly execute is unknown. Here we characterize its essential composition, using as a framework a novel recursive Bayesian algorithm that makes decisions based on spike-trains with the statistics of those in sensory cortex (MT). Using it to simulate the random-dot-motion task, we demonstrate it quantitatively replicates the choice behaviour of monkeys, whilst predicting losses of otherwise usable information from MT. Its architecture maps to the recurrent cortico-basal-ganglia-thalamo-cortical loops, whose components are all implicated in decision-making. We show that the dynamics of its mapped computations match those of neural activity in the sensorimotor cortex and striatum during decisions, and forecast those of basal ganglia output and thalamus. This also predicts which aspects of neural dynamics are and are not part of inference. Our single-equation algorithm is probabilistic, distributed, recursive, and parallel. Its success at capturing anatomy, behaviour, and electrophysiology suggests that the mechanism implemented by the brain has these same characteristics. PMID:29614077

  11. Look before you leap: sensory memory improves decision making.

    PubMed

    Vlassova, Alexandra; Pearson, Joel

    2013-09-01

    Simple decisions require the processing and evaluation of perceptual and cognitive information, the formation of a decision, and often the execution of a motor response. This process involves the accumulation of evidence over time until a particular choice reaches a decision threshold. Using a random-dot-motion stimulus, we showed that simply delaying responses after the stimulus offset can almost double accuracy, even in the absence of new incoming visual information. However, under conditions in which the otherwise blank interval was filled with a sensory mask or concurrent working memory load was high, performance gains were lost. Further, memory and perception showed equivalent rates of evidence accumulation, suggesting a high-capacity memory store. We propose an account of continued evidence accumulation by sequential sampling from a simultaneously decaying memory trace. Memories typically decay with time, hence immediate inquiry trumps later recall from memory. However, the results we report here show the inverse: Inspecting a memory trumps viewing the actual object.

  12. Adaptive sampling of information in perceptual decision-making.

    PubMed

    Cassey, Thomas C; Evens, David R; Bogacz, Rafal; Marshall, James A R; Ludwig, Casimir J H

    2013-01-01

    In many perceptual and cognitive decision-making problems, humans sample multiple noisy information sources serially, and integrate the sampled information to make an overall decision. We derive the optimal decision procedure for two-alternative choice tasks in which the different options are sampled one at a time, sources vary in the quality of the information they provide, and the available time is fixed. To maximize accuracy, the optimal observer allocates time to sampling different information sources in proportion to their noise levels. We tested human observers in a corresponding perceptual decision-making task. Observers compared the direction of two random dot motion patterns that were triggered only when fixated. Observers allocated more time to the noisier pattern, in a manner that correlated with their sensory uncertainty about the direction of the patterns. There were several differences between the optimal observer predictions and human behaviour. These differences point to a number of other factors, beyond the quality of the currently available sources of information, that influences the sampling strategy.

  13. Blinking correlation in nanocrystal quantum dots probed with novel laser scanning confocal microscopy methods

    NASA Astrophysics Data System (ADS)

    Hefti, Ryan Alf

    Semiconductor quantum dots have a vast array of applications: as fluorescent labels in biological systems, as physical or chemical sensors, as components in photovoltaic technology, and in display devices. An attribute of nearly every quantum dot is its blinking, or fluorescence intermittency, which tends to be a disadvantage in most applications. Despite the fact that blinking has been a nearly universal phenomenon among all types of fluorescent constructs, it is more prevalent in quantum dots than in traditional fluorophores. Furthermore, no unanimously accepted model of quantum dot blinking yet exists. The work encompassed by this dissertation began with an in-depth study of molecular motor protein dynamics in a variety of environments using two specially developed techniques, both of which feature applicability to live cell systems. Parked-beam confocal microscopy was utilized to increase temporal resolution of molecular motor motion dynamics by an order of magnitude over other popular methods. The second technique, fast-scanning confocal microscopy (FSCM), was used for long range observation of motor proteins. While using FSCM on motor protein assays, we discovered an unusual phenomenon. Single quantum dots seemingly communicated with neighboring quantum dots, indicated by a distinct correlation in their blinking patterns. In order to explain this novel correlation phenomenon, the majority of blinking models developed thus far would suggest a dipole-dipole interaction or a Coulomb interaction between singly charged quantum dots. However, our results indicate that the interaction energy is higher than supported by current models, thereby prompting a renewed examination. We propose that the blinking correlation we observed is due to a Coulomb interaction on the order of 3-4 elementary charges per quantum dot and that multiple charging of individual quantum dots may be required to plunge them into a non-emissive state. As a result of charging, charge carriers are displaced into a wide distribution of trap sites in the surrounding matrix, resulting in the expected power-law probability distribution of off times ubiquitous in quantum dots. Our discovery also implies that quantum dot blinking can be controlled, advocating the creation of switchable nanoscale emitters.

  14. Color Charts, Esthetics, and Subjective Randomness

    ERIC Educational Resources Information Center

    Sanderson, Yasmine B.

    2012-01-01

    Color charts, or grids of evenly spaced multicolored dots or squares, appear in the work of modern artists and designers. Often the artist/designer distributes the many colors in a way that could be described as "random," that is, without an obvious pattern. We conduct a statistical analysis of 125 "random-looking" art and design color charts and…

  15. Semiconducting double-dot exchange-only qubit dynamics in the presence of magnetic and charge noises

    NASA Astrophysics Data System (ADS)

    Ferraro, E.; Fanciulli, M.; De Michielis, M.

    2018-06-01

    The effects of magnetic and charge noises on the dynamical evolution of the double-dot exchange-only qubit (DEOQ) is theoretically investigated. The DEOQ consisting of three electrons arranged in an electrostatically defined double quantum dot deserves special interest in quantum computation applications. Its advantages are in terms of fabrication, control and manipulation in view of implementation of fast single and two-qubit operations through only electrical tuning. The presence of the environmental noise due to nuclear spins and charge traps, in addition to fluctuations in the applied magnetic field and charge fluctuations on the electrostatic gates adopted to confine the electrons, is taken into account including random magnetic field and random coupling terms in the Hamiltonian. The behavior of the return probability as a function of time for initial conditions of interest is presented. Moreover, through an envelope-fitting procedure on the return probabilities, coherence times are extracted when model parameters take values achievable experimentally in semiconducting devices.

  16. Simulating intrafraction prostate motion with a random walk model.

    PubMed

    Pommer, Tobias; Oh, Jung Hun; Munck Af Rosenschöld, Per; Deasy, Joseph O

    2017-01-01

    Prostate motion during radiation therapy (ie, intrafraction motion) can cause unwanted loss of radiation dose to the prostate and increased dose to the surrounding organs at risk. A compact but general statistical description of this motion could be useful for simulation of radiation therapy delivery or margin calculations. We investigated whether prostate motion could be modeled with a random walk model. Prostate motion recorded during 548 radiation therapy fractions in 17 patients was analyzed and used for input in a random walk prostate motion model. The recorded motion was categorized on the basis of whether any transient excursions (ie, rapid prostate motion in the anterior and superior direction followed by a return) occurred in the trace and transient motion. This was separately modeled as a large step in the anterior/superior direction followed by a returning large step. Random walk simulations were conducted with and without added artificial transient motion using either motion data from all observed traces or only traces without transient excursions as model input, respectively. A general estimate of motion was derived with reasonable agreement between simulated and observed traces, especially during the first 5 minutes of the excursion-free simulations. Simulated and observed diffusion coefficients agreed within 0.03, 0.2 and 0.3 mm 2 /min in the left/right, superior/inferior, and anterior/posterior directions, respectively. A rapid increase in variance at the start of observed traces was difficult to reproduce and seemed to represent the patient's need to adjust before treatment. This could be estimated somewhat using artificial transient motion. Random walk modeling is feasible and recreated the characteristics of the observed prostate motion. Introducing artificial transient motion did not improve the overall agreement, although the first 30 seconds of the traces were better reproduced. The model provides a simple estimate of prostate motion during delivery of radiation therapy.

  17. Temperature measurement of a dust particle in a RF plasma GEC reference cell

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Qiao, Ke; Matthews, Lorin S.; Hyde, Truell W.

    2016-10-01

    The thermal motion of a dust particle levitated in a plasma chamber is similar to that described by Brownian motion in many ways. The primary difference between a dust particle in a plasma system and a free Brownian particle is that in addition to the random collisions between the dust particle and the neutral gas atoms, there are electric field fluctuations, dust charge fluctuations, and correlated motions from the unwanted continuous signals originating within the plasma system itself. This last contribution does not include random motion and is therefore separable from the random motion in a `normal' temperature measurement. In this paper, we discuss how to separate random and coherent motions of a dust particle confined in a glass box in a Gaseous Electronic Conference (GEC) radio-frequency (RF) reference cell employing experimentally determined dust particle fluctuation data analysed using the mean square displacement technique.

  18. Analysis of photogenerated random telegraph signal in single electron detector (photo-SET).

    PubMed

    Troudi, M; Sghaier, Na; Kalboussi, A; Souifi, A

    2010-01-04

    In this paper, we analyzed slow single traps, situated inside the tunnel oxide of small area single electron photo-detector (photo-SET or nanopixel). The relationship between excitation signal (photons) and random-telegraph-signal (RTS) was evidenced. We demonstrated that photoinduced RTS observed on a photo-detector is due to the interaction between single photogenerated charges that tunnel from dot to dot and current path. Based on RTS analysis for various temperatures, gate bias and optical power we determined the characteristics of these single photogenerated traps: the energy position within the silicon bandgap, capture cross section and the position within the Si/SiO(x = 1.5) interfaces.

  19. Depth perception not found in human observers for static or dynamic anti-correlated random dot stereograms.

    PubMed

    Hibbard, Paul B; Scott-Brown, Kenneth C; Haigh, Emma C; Adrain, Melanie

    2014-01-01

    One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon.

  20. Depth Perception Not Found in Human Observers for Static or Dynamic Anti-Correlated Random Dot Stereograms

    PubMed Central

    Hibbard, Paul B.; Scott-Brown, Kenneth C.; Haigh, Emma C.; Adrain, Melanie

    2014-01-01

    One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon. PMID:24416195

  1. The vertical structure and stability of accretion disks surrounding black holes and neutron stars

    NASA Technical Reports Server (NTRS)

    Milsom, J. A.; Chen, Xingming; Taam, Ronald E.

    1994-01-01

    The structure and stability of the inner regions of accretion disks surrounding neutron stars and black holes have been investigated. Within the framework of the alpha viscosity prescription for optically thick disks, we assume the viscous stress scales with gas pressure only, and the alpha parameter, which is less than or equal to unity, is formulated as alpha(sub 0)(h/r)(exp n), where h is the local scale height and n and alpha(sub 0) are constants. We neglect advective energy transport associated with radial motions and construct the vertical structure of the disks by assuming a Keplerian rotation law and local hydrostatic and thermal equilibrium. The vertical structures have been calculated with and without convective energy transport, and it has been demonstrated that convection is important especially for mass accretion rates, M-dot, greater than about 0.1 times the Eddington value, M-dot(sub Edd). Although the efficiency of convection is not high, convection significantly modifies the vertical structure of the disk (as compared with a purely radiative model) and leads to lower temperatures at a given M-dot. The results show that the disk can be locally unstable and that for n greater than or = 0.75, an S-shaped relation can exist between M-dot and the column density, sigma, at a given radius. While the lower stable branch (derivative of M-dot/derivative of sigma greater than 0) and middle unstable branch (derivative of M-dot/derivative of sigma less than 0) represent structures for which the gas and radiation pressure dominate respectively, the stable upper branch (derivative of M-dot/derivative of sigma greater than 0) is a consequence of the saturation of alpha. This saturation of alpha can occur for large alpha(sub 0) and at M-dot less than or = M-dot(sub Edd). The instability is found to occur at higher mass accretion rates for neutron stars than for black holes. In particular, the disk is locally unstable for M-dot greater than or = 0.5 M-dot(sub Edd) for neutron stars and for M-dot greater than or = M-dot(sub Edd) for black holes for a viscosity prescription characterized by n = 1 and alpha(sub 0) = 10.

  2. Quantum currents and pair correlation of electrons in a chain of localized dots

    NASA Astrophysics Data System (ADS)

    Morawetz, Klaus

    2017-03-01

    The quantum transport of electrons in a wire of localized dots by hopping, interaction and dissipation is calculated and a representation by an equivalent RCL circuit is found. The exact solution for the electric-field induced currents allows to discuss the role of virtual currents to decay initial correlations and Bloch oscillations. The dynamical response function in random phase approximation (RPA) is calculated analytically with the help of which the static structure function and pair correlation function are determined. The pair correlation function contains a form factor from the Brillouin zone and a structure factor caused by the localized dots in the wire.

  3. What causes the facing-the-viewer bias in biological motion?

    PubMed

    Weech, Séamas; McAdam, Matthew; Kenny, Sophie; Troje, Nikolaus F

    2014-10-13

    Orthographically projected biological motion point-light displays are generally ambiguous with respect to their orientation in depth, yet observers consistently prefer the facing-the-viewer interpretation. There has been discussion as to whether this bias can be attributed to the social relevance of biological motion stimuli or relates to local, low-level stimulus properties. In the present study we address this question. In Experiment 1, we compared the facing-the-viewer bias produced by a series of four stick figures and three human silhouettes that differed in posture, gender, and the presence versus absence of walking motion. Using a paradigm in which we asked observers to indicate the spinning direction of these figures, we found no bias when participants observed silhouettes, whereas a pronounced degree of bias was elicited by most stick figures. We hypothesized that the ambiguous surface normals on the lines and dots that comprise stick figures are prone to a visual bias that assumes surfaces to be convex. The local surface orientations of the occluding contours of silhouettes are unambiguous, and as such the convexity bias does not apply. In Experiment 2, we tested the role of local features in ambiguous surface perception by adding dots to the elbows and knees of silhouettes. We found biases consistent with the facing directions implied by a convex body surface. The results unify a number of findings regarding the facing-the-viewer bias. We conclude that the facing-the-viewer bias is established at the level of surface reconstruction from local image features rather than on a semantic level. © 2014 ARVO.

  4. Physiological responses and time-motion characteristics of 4-a-side small-sided game in young soccer players: the influence of different team formation methods.

    PubMed

    Köklü, Yusuf; Ersöz, Gülfem; Alemdaroğlu, Utku; Aşç, Alper; Ozkan, Ali

    2012-11-01

    The purpose of this study was to examine the influence of different team formation methods on the physiological responses to and time-motion characteristics of 4-a-side small-sided games (SSG4) in young soccer players. Thirty-two young soccer players (age 16.2 ± 0.7 years; height 172.9 ± 6.1 cm; body mass 64.1 ± 7.7 kg) voluntarily participated in this study. Anthropometric measurements, technical tests, and maximum oxygen uptake (V[Combining Dot Above]O2max) tests were carried out on the players. The SSG4 teams were then created using 4 different methods: according to the coaches' subjective evaluation (CE), technical scores (TS), V[Combining Dot Above]O2max (AP), and V[Combining Dot Above]O2max multiplied by TSs (CG). The teams thus created played 4 bouts of SSG4 at 2-day intervals. During the SSG4, heart rate (HR) responses, distance covered, and time spent in HRmax zones were recorded. In addition, rating of perceived exertion (RPE) and blood lactate level (La) were determined at the end of the last bout of each SSG4. Percent of HRmax (%HRmax), La, and RPE responses during SSG4 were significantly higher for teams chosen according to AP and CG compared with that according to CE and TS (p < 0.05). In addition, teams chosen by AP and CG spent significantly more time in zone 4 (>90% HRmax ) and covered a greater distance in the high-intensity running zone (>18 km·h) than did teams formed according to TS. Moreover, AP teams covered significantly greater total distance than TS teams did (p < 0.05). In conclusion, to spend more time in both the high-intensity HR zone and the high-intensity running zone, the teams in SSG4 should be formed according to the players' V[Combining Dot Above]O2max values or the values calculated using both the V[Combining Dot Above]O2max and technique scores.

  5. Coherent modulation of stimulus colour can affect visually induced self-motion perception.

    PubMed

    Nakamura, Shinji; Seno, Takeharu; Ito, Hiroyuki; Sunaga, Shoji

    2010-01-01

    The effects of dynamic colour modulation on vection were investigated to examine whether perceived variation of illumination affects self-motion perception. Participants observed expanding optic flow which simulated their forward self-motion. Onset latency, accumulated duration, and estimated magnitude of the self-motion were measured as indices of vection strength. Colour of the dots in the visual stimulus was modulated between white and red (experiment 1), white and grey (experiment 2), and grey and red (experiment 3). The results indicated that coherent colour oscillation in the visual stimulus significantly suppressed the strength of vection, whereas incoherent or static colour modulation did not affect vection. There was no effect of the types of the colour modulation; both achromatic and chromatic modulations turned out to be effective in inhibiting self-motion perception. Moreover, in a situation where the simulated direction of a spotlight was manipulated dynamically, vection strength was also suppressed (experiment 4). These results suggest that observer's perception of illumination is critical for self-motion perception, and rapid variation of perceived illumination would impair the reliabilities of visual information in determining self-motion.

  6. Electric transport through circular graphene quantum dots: Presence of disorder

    NASA Astrophysics Data System (ADS)

    Pal, G.; Apel, W.; Schweitzer, L.

    2011-08-01

    The electronic states of an electrostatically confined cylindrical graphene quantum dot and the electric transport through this device are studied theoretically within the continuum Dirac-equation approximation and compared with numerical results obtained from a tight-binding lattice description. A spectral gap, which may originate from strain effects, additional adsorbed atoms, or substrate-induced sublattice-symmetry breaking, allows for bound and scattering states. As long as the diameter of the dot is much larger than the lattice constant, the results of the continuum and the lattice model are in very good agreement. We also investigate the influence of a sloping dot-potential step, of on-site disorder along the sample edges, of uncorrelated short-range disorder potentials in the bulk, and of random magnetic fluxes that mimic ripple disorder. The quantum dot's spectral and transport properties depend crucially on the specific type of disorder. In general, the peaks in the density of bound states are broadened but remain sharp only in the case of edge disorder.

  7. Anticipatory Attentional Suppression of Visual Features Indexed by Oscillatory Alpha-Band Power Increases: A High-Density Electrical Mapping Study

    PubMed Central

    Snyder, Adam C.; Foxe, John J.

    2010-01-01

    Retinotopically specific increases in alpha-band (~10 Hz) oscillatory power have been strongly implicated in the suppression of processing for irrelevant parts of the visual field during the deployment of visuospatial attention. Here, we asked whether this alpha suppression mechanism also plays a role in the nonspatial anticipatory biasing of feature-based attention. Visual word cues informed subjects what the task-relevant feature of an upcoming visual stimulus (S2) was, while high-density electroencephalographic recordings were acquired. We examined anticipatory oscillatory activity in the Cue-to-S2 interval (~2 s). Subjects were cued on a trial-by-trial basis to attend to either the color or direction of motion of an upcoming dot field array, and to respond when they detected that a subset of the dots differed from the majority along the target feature dimension. We used the features of color and motion, expressly because they have well known, spatially separated cortical processing areas, to distinguish shifts in alpha power over areas processing each feature. Alpha power from dorsal regions increased when motion was the irrelevant feature (i.e., color was cued), and alpha power from ventral regions increased when color was irrelevant. Thus, alpha-suppression mechanisms appear to operate during feature-based selection in much the same manner as has been shown for space-based attention. PMID:20237273

  8. Isotopically enhanced triple-quantum-dot qubit

    PubMed Central

    Eng, Kevin; Ladd, Thaddeus D.; Smith, Aaron; Borselli, Matthew G.; Kiselev, Andrey A.; Fong, Bryan H.; Holabird, Kevin S.; Hazard, Thomas M.; Huang, Biqin; Deelman, Peter W.; Milosavljevic, Ivan; Schmitz, Adele E.; Ross, Richard S.; Gyure, Mark F.; Hunter, Andrew T.

    2015-01-01

    Like modern microprocessors today, future processors of quantum information may be implemented using all-electrical control of silicon-based devices. A semiconductor spin qubit may be controlled without the use of magnetic fields by using three electrons in three tunnel-coupled quantum dots. Triple dots have previously been implemented in GaAs, but this material suffers from intrinsic nuclear magnetic noise. Reduction of this noise is possible by fabricating devices using isotopically purified silicon. We demonstrate universal coherent control of a triple-quantum-dot qubit implemented in an isotopically enhanced Si/SiGe heterostructure. Composite pulses are used to implement spin-echo type sequences, and differential charge sensing enables single-shot state readout. These experiments demonstrate sufficient control with sufficiently low noise to enable the long pulse sequences required for exchange-only two-qubit logic and randomized benchmarking. PMID:26601186

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlovski, K.; Kolbas, V.; Southworth, J.

    We present a spectroscopic study of the eclipsing binary system AS Camelopardalis, the first such study based on phase-resolved CCD echelle spectra. Via a spectral disentangling analysis we measure the minimum masses of the stars to be M{sub A}sin {sup 3} i = 3.213 {+-} 0.032 M{sub sun} and M{sub B}sin {sup 3} i = 2.323 {+-} 0.032 M{sub sun}, their effective temperatures to be T{sub eff}(A) = 12, 840 {+-} 120 K and T{sub eff}(B) = 10, 580 {+-} 240 K, and their projected rotational velocities to be v{sub A}sin i{sub A} = 14.5 {+-} 0.1 km s{sup -1}more » and v{sub B}sin i{sub B} {<=} 4.6 {+-} 0.1 km s{sup -1}. These projected rotational velocities appear to be much lower than the synchronous values. We show that measurements of the apsidal motion of the system suffer from a degeneracy between orbital eccentricity and apsidal motion rate. We use our spectroscopically measured e = 0.164 {+-} 0.004 to break this degeneracy and measure {omega}-dot{sub obs} = 0{sup 0}.133{+-}0{sup 0}.010 yr{sup -1}. Subtracting the relativistic contribution of {omega}-dot{sub GR} = 0{sup 0}.0963{+-}0{sup 0}0002 yr{sup -1} yields the contribution due to tidal torques: {omega}-dot{sub cl} = 0{sup 0}.037{+-}0{sup 0}.010 yr{sup -1}. This value is much smaller than the rate predicted by stellar theory, 0.{sup 0}40-0.{sup 0}87 yr{sup -1}. We interpret this as a misalignment between the orbital axis of the close binary and the rotational axes of its component stars, which also explains their apparently low rotational velocities. The observed and predicted apsidal motion rates could be brought into agreement if the stars were rotating three times faster than synchronous about axes perpendicular to the orbital axis. Measurement of the Rossiter-McLaughlin effect can be used to confirm this interpretation.« less

  10. Gravitational microlensing - The effect of random motion of individual stars in the lensing galaxy

    NASA Technical Reports Server (NTRS)

    Kundic, Tomislav; Wambsganss, Joachim

    1993-01-01

    We investigate the influence of random motion of individual stars in the lensing galaxy on the light curve of a gravitationally lensed background quasar. We compare this with the effects of the transverse motion of the galaxy. We find that three-dimensional random motion of stars with a velocity dispersion sigma in each dimension is more effective in producing 'peaks' in a microlensed light curve by a factor a about 1.3 than motion of the galaxy with a transverse velocity v(t) = sigma. This effectiveness parameter a seems to depend only weakly on the surface mass density. With an assumed transverse velocity of v(t) = 600 km/s of the galaxy lensing the QSO 2237+0305 and a measured velocity dispersion of sigma = 215 km/s, the expected rate of maxima in the light curves calculated for bulk motion alone has to be increased by about 10 percent due to the random motion of stars. As a consequence, the average time interval Delta t between two high-magnification events is smaller than the time interval Delta(t) bulk, calculated for bulk motion alone, Delta t about 0.9 Delta(t) bulk.

  11. Attributing intentions to random motion engages the posterior superior temporal sulcus.

    PubMed

    Lee, Su Mei; Gao, Tao; McCarthy, Gregory

    2014-01-01

    The right posterior superior temporal sulcus (pSTS) is a neural region involved in assessing the goals and intentions underlying the motion of social agents. Recent research has identified visual cues, such as chasing, that trigger animacy detection and intention attribution. When readily available in a visual display, these cues reliably activate the pSTS. Here, using functional magnetic resonance imaging, we examined if attributing intentions to random motion would likewise engage the pSTS. Participants viewed displays of four moving circles and were instructed to search for chasing or mirror-correlated motion. On chasing trials, one circle chased another circle, invoking the percept of an intentional agent; while on correlated motion trials, one circle's motion was mirror reflected by another. On the remaining trials, all circles moved randomly. As expected, pSTS activation was greater when participants searched for chasing vs correlated motion when these cues were present in the displays. Of critical importance, pSTS activation was also greater when participants searched for chasing compared to mirror-correlated motion when the displays in both search conditions were statistically identical random motion. We conclude that pSTS activity associated with intention attribution can be invoked by top-down processes in the absence of reliable visual cues for intentionality.

  12. Temporal stability of visual search-driven biometrics

    NASA Astrophysics Data System (ADS)

    Yoon, Hong-Jun; Carmichael, Tandy R.; Tourassi, Georgia

    2015-03-01

    Previously, we have shown the potential of using an individual's visual search pattern as a possible biometric. That study focused on viewing images displaying dot-patterns with different spatial relationships to determine which pattern can be more effective in establishing the identity of an individual. In this follow-up study we investigated the temporal stability of this biometric. We performed an experiment with 16 individuals asked to search for a predetermined feature of a random-dot pattern as we tracked their eye movements. Each participant completed four testing sessions consisting of two dot patterns repeated twice. One dot pattern displayed concentric circles shifted to the left or right side of the screen overlaid with visual noise, and participants were asked which side the circles were centered on. The second dot-pattern displayed a number of circles (between 0 and 4) scattered on the screen overlaid with visual noise, and participants were asked how many circles they could identify. Each session contained 5 untracked tutorial questions and 50 tracked test questions (200 total tracked questions per participant). To create each participant's "fingerprint", we constructed a Hidden Markov Model (HMM) from the gaze data representing the underlying visual search and cognitive process. The accuracy of the derived HMM models was evaluated using cross-validation for various time-dependent train-test conditions. Subject identification accuracy ranged from 17.6% to 41.8% for all conditions, which is significantly higher than random guessing (1/16 = 6.25%). The results suggest that visual search pattern is a promising, temporally stable personalized fingerprint of perceptual organization.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hong-Jun; Carmichael, Tandy; Tourassi, Georgia

    Previously, we have shown the potential of using an individual s visual search pattern as a possible biometric. That study focused on viewing images displaying dot-patterns with different spatial relationships to determine which pattern can be more effective in establishing the identity of an individual. In this follow-up study we investigated the temporal stability of this biometric. We performed an experiment with 16 individuals asked to search for a predetermined feature of a random-dot pattern as we tracked their eye movements. Each participant completed four testing sessions consisting of two dot patterns repeated twice. One dot pattern displayed concentric circlesmore » shifted to the left or right side of the screen overlaid with visual noise, and participants were asked which side the circles were centered on. The second dot-pattern displayed a number of circles (between 0 and 4) scattered on the screen overlaid with visual noise, and participants were asked how many circles they could identify. Each session contained 5 untracked tutorial questions and 50 tracked test questions (200 total tracked questions per participant). To create each participant s "fingerprint", we constructed a Hidden Markov Model (HMM) from the gaze data representing the underlying visual search and cognitive process. The accuracy of the derived HMM models was evaluated using cross-validation for various time-dependent train-test conditions. Subject identification accuracy ranged from 17.6% to 41.8% for all conditions, which is significantly higher than random guessing (1/16 = 6.25%). The results suggest that visual search pattern is a promising, fairly stable personalized fingerprint of perceptual organization.« less

  14. Human comfort response to dominant random motions in longitudinal modes of aircraft motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1980-01-01

    The effects of random vertical and longitudinal accelerations and pitching velocity passenger ride comfort responses were examined on the NASA Langley Visual Motion Simulator. Effects of power spectral density shape were studied for motions where the peak was between 0 and 2 Hz. The subjective rating data and the physical motion data obtained are presented without interpretation or detailed analysis. There existed motions in all other degrees of freedom as well as the particular pair of longitudinal airplane motions studied. These unwanted motions, caused by the characteristics of the simulator may have introduced some interactive effects on passenger responses.

  15. The dance of molecules: new dynamical perspectives on highly excited molecular vibrations.

    PubMed

    Kellman, Michael E; Tyng, Vivian

    2007-04-01

    At low energies, molecular vibrational motion is described by the normal modes model. This model breaks down at higher energy, with strong coupling between normal modes and onset of chaotic dynamics. New anharmonic modes are born in bifurcations, or branchings of the normal modes. Knowledge of these new modes is obtained through the window of frequency-domain spectroscopy, using techniques of nonlinear classical dynamics. It may soon be possible to "watch" molecular rearrangement reactions spectroscopically. Connections are being made with reaction rate theories, condensed phase systems, and motions of electrons in quantum dots.

  16. Polarization control of quantum dot emission by chiral photonic crystal slabs.

    PubMed

    Lobanov, Sergey V; Weiss, Thomas; Gippius, Nikolay A; Tikhodeev, Sergei G; Kulakovskii, Vladimir D; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's (QDs) optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized QDs normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed QDs, and can be close to 100% for some single QDs.

  17. Modeling Local Interactions during the Motion of Cyanobacteria

    PubMed Central

    Galante, Amanda; Wisen, Susanne; Bhaya, Devaki; Levy, Doron

    2012-01-01

    Synechocystis sp., a common unicellular freshwater cyanobacterium, has been used as a model organism to study phototaxis, an ability to move in the direction of a light source. This microorganism displays a number of additional characteristics such as delayed motion, surface dependence, and a quasi-random motion, where cells move in a seemingly disordered fashion instead of in the direction of the light source, a global force on the system. These unexplained motions are thought to be modulated by local interactions between cells such as intercellular communication. In this paper, we consider only local interactions of these phototactic cells in order to mathematically model this quasi-random motion. We analyze an experimental data set to illustrate the presence of quasi-random motion and then derive a stochastic dynamic particle system modeling interacting phototactic cells. The simulations of our model are consistent with experimentally observed phototactic motion. PMID:22713858

  18. Elite Youth Soccer Players' Physiological Responses, Time-Motion Characteristics, and Game Performance in 4 vs. 4 Small-Sided Games: The Influence of Coach Feedback.

    PubMed

    Brandes, Mirko; Elvers, Sebastian

    2017-10-01

    The purpose of this study was to determine the impact of mild vs. strongly pushed coach feedback on the physiological response, ratio of perceived exertion (RPE), and time-motion characteristics in soccer training with small-sided games (SSGs). Sixteen elite youth soccer players (aged 17.2 ± 0.7 years, V[Combining Dot Above]O2max 62.1 ± 3.8 ml·kg·min) played two 4 vs. 4 small-sided games each. In random order, the coach provided a mild, unobtrusive, or a strongly pushed feedback throughout the game. Physiological measurements included heart rate expressed in mean values and intensity zones, blood lactate concentration, and RPE. The distance traveled, number of sprints, and work:rest ratio were captured by global positioning systems at 5 Hz. Game performance, such as volume of play and efficacy index, was estimated using the Team Sports Assessment Procedure. No differences were found for the physiological response and time-motion characteristics, but effect sizes demonstrated an increase in RPE (+0.4, p = 0.27) and a decrease in game performance (e.g., volume of play, -2.5, p = 0.08) under pushed feedback. Although a pushed feedback raises RPE, it negatively affected the players' game performance, without necessarily provoking higher physiological responses. These results should help coaches to understand that modifying the type of feedback provided during SSG does not impact the physiological response if SSG are already played with high intensity but that the feedback affects RPE and game performance. To keep a better game performance, soccer coaches are encouraged to provide smooth feedback during SSG.

  19. Model of human visual-motion sensing

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Ahumada, A. J., Jr.

    1985-01-01

    A model of how humans sense the velocity of moving images is proposed. The model exploits constraints provided by human psychophysics, notably that motion-sensing elements appear tuned for two-dimensional spatial frequency, and by the frequency spectrum of a moving image, namely, that its support lies in the plane in which the temporal frequency equals the dot product of the spatial frequency and the image velocity. The first stage of the model is a set of spatial-frequency-tuned, direction-selective linear sensors. The temporal frequency of the response of each sensor is shown to encode the component of the image velocity in the sensor direction. At the second stage, these components are resolved in order to measure the velocity of image motion at each of a number of spatial locations and spatial frequencies. The model has been applied to several illustrative examples, including apparent motion, coherent gratings, and natural image sequences. The model agrees qualitatively with human perception.

  20. Revealing energy level structure of individual quantum dots by tunneling rate measured by single-electron sensitive electrostatic force spectroscopy.

    PubMed

    Roy-Gobeil, Antoine; Miyahara, Yoichi; Grutter, Peter

    2015-04-08

    We present theoretical and experimental studies of the effect of the density of states of a quantum dot (QD) on the rate of single-electron tunneling that can be directly measured by electrostatic force microscopy (e-EFM) experiments. In e-EFM, the motion of a biased atomic force microscope cantilever tip modulates the charge state of a QD in the Coulomb blockade regime. The charge dynamics of the dot, which is detected through its back-action on the capacitavely coupled cantilever, depends on the tunneling rate of the QD to a back-electrode. The density of states of the QD can therefore be measured through its effect on the energy dependence of tunneling rate. We present experimental data on individual 5 nm colloidal gold nanoparticles that exhibit a near continuous density of state at 77 K. In contrast, our analysis of already published data on self-assembled InAs QDs at 4 K clearly reveals discrete degenerate energy levels.

  1. Time course of affective bias in visual attention: convergent evidence from steady-state visual evoked potentials and behavioral data.

    PubMed

    Hindi Attar, Catherine; Andersen, Søren K; Müller, Matthias M

    2010-12-01

    Selective attention to a primary task can be biased by the occurrence of emotional distractors that involuntary attract attention due to their intrinsic stimulus significance. What is largely unknown is the time course and magnitude of competitive interactions between a to-be-attended foreground task and emotional distractors. We used pleasant, unpleasant and neutral pictures from the International Affective Picture System (IAPS) that were either presented in intact or phase-scrambled form. Pictures were superimposed by a flickering display of moving random dots, which constituted the primary task and enabled us to record steady-state visual evoked potentials (SSVEPs) as a continuous measure of attentional resource allocation directed to the task. Subjects were required to attend to the dots and to detect short intervals of coherent motion while ignoring the background pictures. We found that pleasant and unpleasant relative to neutral pictures more strongly influenced task-related processing as reflected in a significant decrease in SSVEP amplitudes and target detection rates, both covering a time window of several hundred milliseconds. Strikingly, the effect of semantic relative to phase-scrambled pictures on task-related activity was much larger, emerged earlier and lasted longer in time compared to the specific effect of emotion. The observed differences in size and duration of time courses of semantic and emotional picture processing strengthen the assumption of separate functional mechanisms for both processes rather than a general boosting of neural activity in favor of emotional stimulus processing. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Perceptual asymmetry reveals neural substrates underlying stereoscopic transparency.

    PubMed

    Tsirlin, Inna; Allison, Robert S; Wilcox, Laurie M

    2012-02-01

    We describe a perceptual asymmetry found in stereoscopic perception of overlaid random-dot surfaces. Specifically, the minimum separation in depth needed to perceptually segregate two overlaid surfaces depended on the distribution of dots across the surfaces. With the total dot density fixed, significantly larger inter-plane disparities were required for perceptual segregation of the surfaces when the front surface had fewer dots than the back surface compared to when the back surface was the one with fewer dots. We propose that our results reflect an asymmetry in the signal strength of the front and back surfaces due to the assignment of the spaces between the dots to the back surface by disparity interpolation. This hypothesis was supported by the results of two experiments designed to reduce the imbalance in the neuronal response to the two surfaces. We modeled the psychophysical data with a network of inter-neural connections: excitatory within-disparity and inhibitory across disparity, where the spread of disparity was modulated according to figure-ground assignment. These psychophysical and computational findings suggest that stereoscopic transparency depends on both inter-neural interactions of disparity-tuned cells and higher-level processes governing figure ground segregation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A Quick and Parallel Analytical Method Based on Quantum Dots Labeling for ToRCH-Related Antibodies

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Guo, Qing; He, Rong; Li, Ding; Zhang, Xueqing; Bao, Chenchen; Hu, Hengyao; Cui, Daxiang

    2009-12-01

    Quantum dot is a special kind of nanomaterial composed of periodic groups of II-VI, III-V or IV-VI materials. Their high quantum yield, broad absorption with narrow photoluminescence spectra and high resistance to photobleaching, make them become a promising labeling substance in biological analysis. Here, we report a quick and parallel analytical method based on quantum dots for ToRCH-related antibodies including Toxoplasma gondii, Rubella virus, Cytomegalovirus and Herpes simplex virus type 1 (HSV1) and 2 (HSV2). Firstly, we fabricated the microarrays with the five kinds of ToRCH-related antigens and used CdTe quantum dots to label secondary antibody and then analyzed 100 specimens of randomly selected clinical sera from obstetric outpatients. The currently prevalent enzyme-linked immunosorbent assay (ELISA) kits were considered as “golden standard” for comparison. The results show that the quantum dots labeling-based ToRCH microarrays have comparable sensitivity and specificity with ELISA. Besides, the microarrays hold distinct advantages over ELISA test format in detection time, cost, operation and signal stability. Validated by the clinical assay, our quantum dots-based ToRCH microarrays have great potential in the detection of ToRCH-related pathogens.

  4. Semiclassical transport in nearly symmetric quantum dots. II. Symmetry breaking due to asymmetric leads.

    PubMed

    Whitney, Robert S; Schomerus, Henning; Kopp, Marten

    2009-11-01

    In this work-the second of a pair of articles-we consider transport through spatially symmetric quantum dots with leads whose widths or positions do not obey the spatial symmetry. We use the semiclassical theory of transport to find the symmetry-induced contributions to weak localization corrections and universal conductance fluctuations for dots with left-right, up-down, inversion, and fourfold symmetries. We show that all these contributions are suppressed by asymmetric leads; however, they remain finite whenever leads intersect with their images under the symmetry operation. For an up-down symmetric dot, this means that the contributions can be finite even if one of the leads is completely asymmetric. We find that the suppression of the contributions to universal conductance fluctuations is the square of the suppression of contributions to weak localization. Finally, we develop a random-matrix theory model which enables us to numerically confirm these results.

  5. Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences

    PubMed Central

    Peng, Zhen; Genewein, Tim; Braun, Daniel A.

    2014-01-01

    Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects' self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories. PMID:24744716

  6. Image Descriptors for Displays

    DTIC Science & Technology

    1977-02-01

    Information available for shape recognition in the dot field . What we do is to open up a nw dimension of the display, a dimension of color variation. The...line in a random location in the field of view (b); this is followed by a line mask and response choices (c). Accuracy feedback (d) follows response...dot field (c) and then gives a :4 /button response to indicate whether or not he thinks the triangle is present. Accuracy feedback (d) follows the

  7. How Many Objects are You Worth? Quantification of the Self-Motion Load on Multiple Object Tracking

    PubMed Central

    Thomas, Laura E.; Seiffert, Adriane E.

    2011-01-01

    Perhaps walking and chewing gum is effortless, but walking and tracking moving objects is not. Multiple object tracking is impaired by walking from one location to another, suggesting that updating location of the self puts demands on object tracking processes. Here, we quantified the cost of self-motion in terms of the tracking load. Participants in a virtual environment tracked a variable number of targets (1–5) among distractors while either staying in one place or moving along a path that was similar to the objects’ motion. At the end of each trial, participants decided whether a probed dot was a target or distractor. As in our previous work, self-motion significantly impaired performance in tracking multiple targets. Quantifying tracking capacity for each individual under move versus stay conditions further revealed that self-motion during tracking produced a cost to capacity of about 0.8 (±0.2) objects. Tracking your own motion is worth about one object, suggesting that updating the location of the self is similar, but perhaps slightly easier, than updating locations of objects. PMID:21991259

  8. Neural dynamics of motion processing and speed discrimination.

    PubMed

    Chey, J; Grossberg, S; Mingolla, E

    1998-09-01

    A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-turned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the V1-->MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.

  9. Visual Perception of Touchdown Point During Simulated Landing

    ERIC Educational Resources Information Center

    Palmisano, Stephen; Gillam, Barbara

    2005-01-01

    Experiments examined the accuracy of visual touchdown point perception during oblique descents (1.5?-15?) toward a ground plane consisting of (a) randomly positioned dots, (b) a runway outline, or (c) a grid. Participants judged whether the perceived touchdown point was above or below a probe that appeared at a random position following each…

  10. Human comfort response to random motions with a dominant pitching motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1980-01-01

    The effects of random pitching velocities on passenger ride comfort response were examined on the NASA Langley Visual Motion Simulator. The effects of power spectral density shape and frequency ranges from 0 to 2 Hz were studied. The subjective rating data and the physical motion data obtained are presented. No attempt at interpretation or detailed analysis of the data is made. Motions in all degrees of freedom existed as well as the intended pitching motion, because of the characteristics of the simulator. These unwanted motions may have introduced some interactive effects on passenger responses which should be considered in any analysis of the data.

  11. Biological Motion Primes the Animate/Inanimate Distinction in Infancy

    PubMed Central

    Poulin-Dubois, Diane; Crivello, Cristina; Wright, Kristyn

    2015-01-01

    Given that biological motion is both detected and preferred early in life, we tested the hypothesis that biological motion might be instrumental to infants’ differentiation of animate and inanimate categories. Infants were primed with either point-light displays of realistic biological motion, random motion, or schematic biological motion of an unfamiliar shape. After being habituated to these displays, 12-month-old infants categorized animals and vehicles as well as furniture and vehicles with the sequential touching task. The findings indicated that infants primed with point-light displays of realistic biological motion showed better categorization of animates than those exposed to random or schematic biological motion. These results suggest that human biological motion might be one of the motion cues that provide the building blocks for infants’ concept of animacy. PMID:25659077

  12. Accommodation and pupil responses to random-dot stereograms

    PubMed Central

    Suryakumar, Rajaraman; Allison, Robert

    2015-01-01

    We investigated the dynamics of accommodative and pupillary responses to random-dot stereograms presented in crossed and uncrossed disparity in six visually normal young adult subjects (mean age = 25.8 ± 3.1 years). Accommodation and pupil measures were monitored monocularly with a custom built photorefraction system while subjects fixated at the center of a random-dot stereogram. On each trial, the stereogram initially depicted a flat plane and then changed to depict a sinusoidal corrugation in depth while fixation remained constant. Increase in disparity specified depth resulted in pupil constriction during both crossed and uncrossed disparity presentations. The change in pupil size between crossed and uncrossed disparity conditions was not significantly different (p > 0.05). The change in pupil size was also accompanied by a small concomitant increase in accommodation. In addition, the dynamic properties of pupil responses varied as a function of their initial (starting) diameter. The finding that accommodation and pupil responses increased with disparity regardless of the sign of retinal disparity suggests that these responses were driven by apparent depth rather than shifts in mean simulated distance of the stimulus. Presumably the need for the increased depth of focus when viewing stimuli extended in depth results in pupil constriction which also results in a concomitant change in accommodation. Starting position effects in pupil response confirm the non-linearity in the operating range of the pupil. PMID:25891121

  13. The impact of numeracy on reactions to different graphic risk presentation formats: An experimental analogue study.

    PubMed

    Wright, Alison J; Whitwell, Sophia C L; Takeichi, Chika; Hankins, Matthew; Marteau, Theresa M

    2009-02-01

    Numeracy, the ability to process basic mathematical concepts, may affect responses to graphical displays of health risk information. Displays of probabilistic risk information using grouped dots are easier to understand than displays using dispersed dots. However, dispersed dots may better convey the randomness with which health threats occur, so increasing perceived susceptibility. We hypothesized that low numeracy participants would better understand risks presented using grouped dot displays, while high numeracy participants would have good understanding, regardless of display type. Moreover, we predicted that dispersed dot displays, in contrast to grouped dot displays, would increase risk perceptions and worry only for highly numerate individuals. One hundred and forty smokers read vignettes asking them to imagine being at risk of Crohn's disease, in a 2(display type: dispersed/grouped dots) x 3(risk magnitude: 3%/6%/50%) x 2(numeracy: high/low) design. They completed measures of risk comprehension, perceived susceptibility and worry. More numerate participants had better objective risk comprehension, but this effect was not moderated by display type. There was marginally significant support for the predicted numeracy x display type interaction for worry about Crohn's disease, but not for perceived susceptibility to the condition. Dispersed dot displays somewhat increase worry in highly numerate individuals, but only numeracy influenced objective risk comprehension. The most effective display type for communicating risk information will depend on the numeracy of the population and the goal(s) of the communication.

  14. Localized motion in random matrix decomposition of complex financial systems

    NASA Astrophysics Data System (ADS)

    Jiang, Xiong-Fei; Zheng, Bo; Ren, Fei; Qiu, Tian

    2017-04-01

    With the random matrix theory, we decompose the multi-dimensional time series of complex financial systems into a set of orthogonal eigenmode functions, which are classified into the market mode, sector mode, and random mode. In particular, the localized motion generated by the business sectors, plays an important role in financial systems. Both the business sectors and their impact on the stock market are identified from the localized motion. We clarify that the localized motion induces different characteristics of the time correlations for the stock-market index and individual stocks. With a variation of a two-factor model, we reproduce the return-volatility correlations of the eigenmodes.

  15. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.

    PubMed

    Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  16. Effect of intervention using a messaging app on compliance and duration of treatment in orthodontic patients.

    PubMed

    Li, Xue; Xu, Zhen-Rui; Tang, Na; Ye, Cui; Zhu, Xiao-Ling; Zhou, Ting; Zhao, Zhi-He

    2016-11-01

    This study aims to determine the effectiveness of a messaging app (WeChat) in improving patients' compliance and reducing the duration of orthodontic treatment (DOT). A randomized controlled trial was performed in a dental hospital and a clinic from August 2012 to May 2015. Orthodontic patients were included at the beginning of treatment. Patients with multiphase treatment or braceless technique were excluded. Participants were randomized to WeChat group (received regular reminders and educational messages) or control group (received conventional management) and were followed up until the treatment was completed. Primary outcome measure was DOT. Others were late and failed attendance, bracket bond failure, and oral hygiene condition. One hundred twelve patients in each group participated and completed the trial. DOT in WeChat group were 7.3 weeks shorter (P = 0.007). There were less failed attendance (3.1 vs. 10.9 %, P < 0.001), late attendance (20.1 vs. 29.9 %, P < 0.001), and bracket bond failure (11.8 vs. 16.1 %, P < 0.001) in WeChat group than control. There was no difference in orthodontic plaque index nor modified gingivitis index between the two groups before and after treatment. Number of failed attendances was identified as an independent factor affecting DOT (P = 0.004; HR = 0.89, 95 % CI 0.84 to 0.95). The intervention with WeChat is effective in reducing the treatment duration and bracket bond failure, and improving the attendance in orthodontic patients. DOT can be reduced by improving patient's compliance. The messaging app is useful for outpatient education and management.

  17. The cost-effectiveness of directly observed highly-active antiretroviral therapy in the third trimester in HIV-infected pregnant women.

    PubMed

    McCabe, Caitlin J; Goldie, Sue J; Fisman, David N

    2010-04-13

    In HIV-infected pregnant women, viral suppression prevents mother-to-child HIV transmission. Directly observed highly-active antiretroviral therapy (HAART) enhances virological suppression, and could prevent transmission. Our objective was to project the effectiveness and cost-effectiveness of directly observed administration of antiretroviral drugs in pregnancy. A mathematical model was created to simulate cohorts of one million asymptomatic HIV-infected pregnant women on HAART, with women randomly assigned self-administered or directly observed antiretroviral therapy (DOT), or no HAART, in a series of Monte Carlo simulations. Our primary outcome was the quality-adjusted life expectancy in years (QALY) of infants born to HIV-infected women, with the rates of Caesarean section and HIV-transmission after DOT use as intermediate outcomes. Both self-administered HAART and DOT were associated with decreased costs and increased life-expectancy relative to no HAART. The use of DOT was associated with a relative risk of HIV transmission of 0.39 relative to conventional HAART; was highly cost-effective in the cohort as a whole (cost-utility ratio $14,233 per QALY); and was cost-saving in women whose viral loads on self-administered HAART would have exceeded 1000 copies/ml. Results were stable in wide-ranging sensitivity analyses, with directly observed therapy cost-saving or highly cost-effective in almost all cases. Based on the best available data, programs that optimize adherence to HAART through direct observation in pregnancy have the potential to diminish mother-to-child HIV transmission in a highly cost-effective manner. Targeted use of DOT in pregnant women with high viral loads, who could otherwise receive self-administered HAART would be a cost-saving intervention. These projections should be tested with randomized clinical trials.

  18. Perceptual Decisions in the Presence of Relevant and Irrelevant Sensory Evidence

    PubMed Central

    Anders, Ursula M.; McLean, Charlotte S.; Ouyang, Bowen; Ditterich, Jochen

    2017-01-01

    Perceptual decisions in the presence of decision-irrelevant sensory information require a selection of decision-relevant sensory evidence. To characterize the mechanism that is responsible for separating decision-relevant from irrelevant sensory information we asked human subjects to make judgments about one of two simultaneously present motion components in a random dot stimulus. Subjects were able to ignore the decision-irrelevant component to a large degree, but their decisions were still influenced by the irrelevant sensory information. Computational modeling revealed that this influence was not simply the consequence of subjects forgetting at times which stimulus component they had been instructed to base their decision on. Instead, residual irrelevant information always seems to be leaking through, and the decision process is captured by a net sensory evidence signal being accumulated to a decision threshold. This net sensory evidence is a linear combination of decision-relevant and irrelevant sensory information. The selection process is therefore well-described by a strong linear gain modulation, which, in our experiment, resulted in the relevant sensory evidence having at least 10 times more impact on the decision than the irrelevant evidence. PMID:29176941

  19. Perceptual Decisions in the Presence of Relevant and Irrelevant Sensory Evidence.

    PubMed

    Anders, Ursula M; McLean, Charlotte S; Ouyang, Bowen; Ditterich, Jochen

    2017-01-01

    Perceptual decisions in the presence of decision-irrelevant sensory information require a selection of decision-relevant sensory evidence. To characterize the mechanism that is responsible for separating decision-relevant from irrelevant sensory information we asked human subjects to make judgments about one of two simultaneously present motion components in a random dot stimulus. Subjects were able to ignore the decision-irrelevant component to a large degree, but their decisions were still influenced by the irrelevant sensory information. Computational modeling revealed that this influence was not simply the consequence of subjects forgetting at times which stimulus component they had been instructed to base their decision on. Instead, residual irrelevant information always seems to be leaking through, and the decision process is captured by a net sensory evidence signal being accumulated to a decision threshold. This net sensory evidence is a linear combination of decision-relevant and irrelevant sensory information. The selection process is therefore well-described by a strong linear gain modulation, which, in our experiment, resulted in the relevant sensory evidence having at least 10 times more impact on the decision than the irrelevant evidence.

  20. Changes of mind in an attractor network of decision-making.

    PubMed

    Albantakis, Larissa; Deco, Gustavo

    2011-06-01

    Attractor networks successfully account for psychophysical and neurophysiological data in various decision-making tasks. Especially their ability to model persistent activity, a property of many neurons involved in decision-making, distinguishes them from other approaches. Stable decision attractors are, however, counterintuitive to changes of mind. Here we demonstrate that a biophysically-realistic attractor network with spiking neurons, in its itinerant transients towards the choice attractors, can replicate changes of mind observed recently during a two-alternative random-dot motion (RDM) task. Based on the assumption that the brain continues to evaluate available evidence after the initiation of a decision, the network predicts neural activity during changes of mind and accurately simulates reaction times, performance and percentage of changes dependent on difficulty. Moreover, the model suggests a low decision threshold and high incoming activity that drives the brain region involved in the decision-making process into a dynamical regime close to a bifurcation, which up to now lacked evidence for physiological relevance. Thereby, we further affirmed the general conformance of attractor networks with higher level neural processes and offer experimental predictions to distinguish nonlinear attractor from linear diffusion models.

  1. The Cost of Accumulating Evidence in Perceptual Decision Making

    PubMed Central

    Drugowitsch, Jan; Moreno-Bote, Rubén; Churchland, Anne K.; Shadlen, Michael N.; Pouget, Alexandre

    2012-01-01

    Decision making often involves the accumulation of information over time, but acquiring information typically comes at a cost. Little is known about the cost incurred by animals and humans for acquiring additional information from sensory variables, due, for instance, to attentional efforts. Through a novel integration of diffusion models and dynamic programming, we were able to estimate the cost of making additional observations per unit of time from two monkeys and six humans in a reaction time random dot motion discrimination task. Surprisingly, we find that, the cost is neither zero nor constant over time, but for the animals and humans features a brief period in which it is constant but increases thereafter. In addition, we show that our theory accurately matches the observed reaction time distributions for each stimulus condition, the time-dependent choice accuracy both conditional on stimulus strength and independent of it, and choice accuracy and mean reaction times as a function of stimulus strength. The theory also correctly predicts that urgency signals in the brain should be independent of the difficulty, or stimulus strength, at each trial. PMID:22423085

  2. Representation of Reserves Through a Brownian Motion Model

    NASA Astrophysics Data System (ADS)

    Andrade, M.; Ferreira, M. A. M.; Filipe, J. A.

    2012-11-01

    The Brownian Motion is commonly used as an approximation for some Random Walks and also for the Classic Risk Process. As the Random Walks and the Classic Risk Process are used frequently as stochastic models to represent reserves, it is natural to consider the Brownian Motion with the same purpose. In this study a model, based on the Brownian Motion, is presented to represent reserves. The Brownian Motion is used in this study to estimate the ruin probability of a fund. This kind of models is considered often in the study of pensions funds.

  3. Quantum Sensing of Mechanical Motion with a Single InAs Quantum Dot

    DTIC Science & Technology

    2017-03-01

    Washing nc., Columbia Research La Tech, Black y of California , We comp in or...of coupled QDs in similar structures. We anticipate that this research will enable a new class of precision sensors based on solid state...nuclear materials. This research also has the potential to revolutionize the growing field of coupling quantum systems to macroscopic systems for

  4. Feasibility study: Atmospheric general circulation experiment, volume 1

    NASA Technical Reports Server (NTRS)

    Homsey, R. J. (Editor)

    1981-01-01

    The atmospheric general circulation experiment (AGCE) uses a rotating fluid flow cell assembly. The key technical areas affecting the feasibility of the design and operation of the AGCE are investigated. The areas investigated include materials for the flow cell assembly, thermal design, high voltage power supply design, effective retrieval and handling of experiment data and apparatus configuration. Several materials, DMSO and m-tolunitrile, were selected as candidate fluids for the flow cell principally for their high dielectric constant which permits the high voltage power supply design to be held to 15 kV and still simulate terrestrial gravity. Achievement of a low dissipation factor in the fluid to minimize internal heating from the applied electrical field depends strongly on purification and handling procedures. The use of sapphire as the outer hemisphere for the flow cell provides excellent viewing conditions without a significant impact on attaining the desired thermal gradients. Birefringent effects from sapphire can be held to acceptably low limits. Visualization of flow fluid is achieved through the motion of a dot matrix formed by photochromic dyes. Two dyes found compatible with the candidate fluids are spiropyran and triarylmethane. The observation of the dot motion is accomplished using a flying spot scanner.

  5. The role of suppression in amblyopia.

    PubMed

    Li, Jingrong; Thompson, Benjamin; Lam, Carly S Y; Deng, Daming; Chan, Lily Y L; Maehara, Goro; Woo, George C; Yu, Minbin; Hess, Robert F

    2011-06-13

    This study had three main goals: to assess the degree of suppression in patients with strabismic, anisometropic, and mixed amblyopia; to establish the relationship between suppression and the degree of amblyopia; and to compare the degree of suppression across the clinical subgroups within the sample. Using both standard measures of suppression (Bagolini lenses and neutral density [ND] filters, Worth 4-Dot test) and a new approach involving the measurement of dichoptic motion thresholds under conditions of variable interocular contrast, the degree of suppression in 43 amblyopic patients with strabismus, anisometropia, or a combination of both was quantified. There was good agreement between the quantitative measures of suppression made with the new dichoptic motion threshold technique and measurements made with standard clinical techniques (Bagolini lenses and ND filters, Worth 4-Dot test). The degree of suppression was found to correlate directly with the degree of amblyopia within our clinical sample, whereby stronger suppression was associated with a greater difference in interocular acuity and poorer stereoacuity. Suppression was not related to the type or angle of strabismus when this was present or the previous treatment history. These results suggest that suppression may have a primary role in the amblyopia syndrome and therefore have implications for the treatment of amblyopia.

  6. 49 CFR 40.349 - What records may a service agent receive and maintain?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Roles and Responsibilities of Service Agents § 40.349... part, as a service agent you may receive and maintain all records concerning DOT drug and alcohol... needed for operating a drug/alcohol program (e.g., CCFs, ATFs, names of employees in random pools, random...

  7. Attention to multiple locations is limited by spatial working memory capacity.

    PubMed

    Close, Alex; Sapir, Ayelet; Burnett, Katherine; d'Avossa, Giovanni

    2014-08-21

    What limits the ability to attend several locations simultaneously? There are two possibilities: Either attention cannot be divided without incurring a cost, or spatial memory is limited and observers forget which locations to monitor. We compared motion discrimination when attention was directed to one or multiple locations by briefly presented central cues. The cues were matched for the amount of spatial information they provided. Several random dot kinematograms (RDKs) followed the spatial cues; one of them contained task-relevant, coherent motion. When four RDKs were presented, discrimination accuracy was identical when one and two locations were indicated by equally informative cues. However, when six RDKs were presented, discrimination accuracy was higher following one rather than multiple location cues. We examined whether memory of the cued locations was diminished under these conditions. Recall of the cued locations was tested when participants attended the cued locations and when they did not attend the cued locations. Recall was inaccurate only when the cued locations were attended. Finally, visually marking the cued locations, following one and multiple location cues, equalized discrimination performance, suggesting that participants could attend multiple locations when they did not have to remember which ones to attend. We conclude that endogenously dividing attention between multiple locations is limited by inaccurate recall of the attended locations and that attention poses separate demands on the same central processes used to remember spatial information, even when the locations attended and those held in memory are the same. © 2014 ARVO.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barack, Leor; Cutler, Curt; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

    Inspirals of stellar-mass compact objects (COs) into {approx}10{sup 6}M{sub {center_dot}} black holes are especially interesting sources of gravitational waves for the planned Laser Interferometer Space Antenna (LISA). The orbits of these extreme-mass-ratio inspirals (EMRIs) are highly relativistic, displaying extreme versions of both perihelion precession and Lense-Thirring precession of the orbital plane. We investigate the question of whether the emitted waveforms can be used to strongly constrain the geometry of the central massive object, and in essence check that it corresponds to a Kerr black hole (BH). For a Kerr BH, all multipole moments of the spacetime have a simple, uniquemore » relation to M and S, the BH mass, and spin; in particular, the spacetime's mass quadrupole moment Q is given by Q=-S{sup 2}/M. Here we treat Q as an additional parameter, independent of S and M, and ask how well observation can constrain its difference from the Kerr value. This was already estimated by Ryan, but for the simplified case of circular, equatorial orbits, and Ryan also neglected the signal modulations arising from the motion of the LISA satellites. We consider generic orbits and include the modulations due to the satellite motions. For this analysis, we use a family of approximate (basically post-Newtonian) waveforms, which represent the full parameter space of EMRI sources, and which exhibit the main qualitative features of true, general relativistic waveforms. We extend this parameter space to include (in an approximate manner) an arbitrary value of Q, and then construct the Fisher information matrix for the extended parameter space. By inverting the Fisher matrix, we estimate how accurately Q could be extracted from LISA observations of EMRIs. For 1 yr of coherent data from the inspiral of a 10M{sub {center_dot}} black hole into rotating black holes of masses 10{sup 5.5}M{sub {center_dot}}, 10{sup 6}M{sub {center_dot}}, or 10{sup 6.5}M{sub {center_dot}}, we find {delta}(Q/M{sup 3}){approx}10{sup -4}, 10{sup -3}, or 10{sup -2}, respectively (assuming total signal-to-noise ratio of 100, typical of the brightest detectable EMRIs). These results depend only weakly on the eccentricity of the inspiral orbit or the spin of the central object.« less

  9. Community-based directly observed treatment for TB patients to improve HIV services: a cross-sectional study in a South African province.

    PubMed

    Howell, Embry M; Kigozi, N Gladys; Heunis, J Christo

    2018-04-07

    There is uncertainty about how directly observed treatment (DOT) support for tuberculosis (TB) can be delivered most effectively and how DOT support can simultaneously be used to strengthen human immunodeficiency virus (HIV) prevention and control among TB patients. This study describes how DOT support by community health workers (CHWs) was used in four municipalities in the Free State province - a high TB/HIV burden, poorly-resourced setting - to provide HIV outreach, referrals, and health education for TB patients. The study was part of a larger cross-sectional study of HIV counselling and testing (HCT) among 1101 randomly-selected TB patients registered at 40 primary health care (PHC) facilities (clinics and community health centres) across small town/rural and large town/urban settings. Univariate analysis of percentages, chi-square tests and t-tests for difference in means were used to describe differences between the types of TB treatment support and patient characteristics, as well as the types of - and patient satisfaction with - HIV information and referrals received from various types of treatment supporters including home-based DOT supporters, clinic-based DOT supporters or support from family/friends/employers. Multivariate logistic regression was used to predict the likelihood of not having receiving home-based DOT and of never having received HIV counselling. The independent variables include poverty-related health and socio-economic risk factors for poor outcomes. Statistical significance is shown using a 95% confidence interval and a 0.05 p-value. Despite the fact that DOT support for all TB patients was the goal of South African health policy at the time (2012), most TB patients were not receiving formal DOT support. Only 155 (14.1%) were receiving home-based DOT, while 114 (10.4%) received clinic-based DOT. TB patients receiving home-based DOT reported higher rates of HIV counselling than other patients. Public health providers should train DOT supporters to provide HIV prevention and target DOT to those at greatest risk of HIV, particularly those at greatest socio-economic risk.

  10. Communicating infectious disease prevalence through graphics: Results from an international survey.

    PubMed

    Fagerlin, Angela; Valley, Thomas S; Scherer, Aaron M; Knaus, Megan; Das, Enny; Zikmund-Fisher, Brian J

    2017-07-13

    Graphics are increasingly used to represent the spread of infectious diseases (e.g., influenza, Zika, Ebola); however, the impact of using graphics to adequately inform the general population is unknown. To examine whether three ways of visually presenting data (heat map, dot map, or picto-trendline)-all depicting the same information regarding the spread of a hypothetical outbreak of influenza-influence intent to vaccinate, risk perception, and knowledge. Survey with participants randomized to receive a simulated news article accompanied by one of the three graphics that communicated prevalence of influenza and number of influenza-related deaths. International online survey. 16,510 adults living in 11 countries selected using stratified random sampling based on age and gender. After reading the article and viewing the presented graphic, participants completed a survey that measured interest in vaccination, perceived risk of contracting disease, knowledge gained, interest in additional information about the disease, and perception of the graphic. Heat maps and picto-trendlines were evaluated more positively than dot maps. Heat maps were more effective than picto-trendlines and no different from dot maps at increasing interest in vaccination, perceived risk of contracting disease, and interest in additional information about the disease. Heat maps and picto-trendlines were more successful at conveying knowledge than dot maps. Overall, heat maps were the only graphic to be superior in every outcome. Results are based on a hypothetical scenario. Heat maps are a viable option to promote interest in and concern about infectious diseases. Published by Elsevier Ltd.

  11. A Simplified Treatment of Brownian Motion and Stochastic Differential Equations Arising in Financial Mathematics

    ERIC Educational Resources Information Center

    Parlar, Mahmut

    2004-01-01

    Brownian motion is an important stochastic process used in modelling the random evolution of stock prices. In their 1973 seminal paper--which led to the awarding of the 1997 Nobel prize in Economic Sciences--Fischer Black and Myron Scholes assumed that the random stock price process is described (i.e., generated) by Brownian motion. Despite its…

  12. Stereopsis testing without polarized glasses: a comparison study on five new stereoacuity tests.

    PubMed

    Hatch, S W; Richman, J E

    1994-09-01

    Stereopsis testing is commonly used to assess the presence and level of binocular vision. A new series of stereopsis tests requiring no polarized goggles are available in the form of the Titmus Stereo Test, the Stereo Reindeer Test, the Random Dot Butterfly, the Random Dot Figures, and the Random E, Circle, Square. These polarized-free tests employ a special prismatic printing process creating a panagraphic presentation, i.e., a separate image is presented to each eye without the need for polarization. The purpose of this study was to compare the polarized-free stereo tests with their traditional polarized counterparts. Thirty four subjects, including several persons with strabismus, ages 10-35 years, were each tested with the polarized and polarized-free versions of the Titmus, Reindeer, Butterfly, and Figures. Twenty nine of these subjects were tested with the Random Dot E. Half the subjects were tested first with polarized-free and half were tested first with polarized tests. Tests were performed according to manufacturer instructions by the same examiner in clinical settings. The results (matched pair ranked correlation coefficients) indicate that the polarized-free tests were highly correlated (r = 0.997, r = 0.998, r = 0.997, r = 1.00, and r = 1.00 respectively) with the polarized comparison tests. No significant difference (Wilcoxon Ranked Sign) in the stereopsis level was obtained between the two versions of the tests. We conclude that these five polarized-free tests were just as valid in measuring the subjects' stereopsis as their traditional polarized version. The use of goggle-free testing has potential clinical advantages, e.g., testing of young children who will not wear the glasses or the improved observation of the ocular alignment during stereopsis testing.

  13. The influence of performance on action-effect integration in sense of agency.

    PubMed

    Wen, Wen; Yamashita, Atsushi; Asama, Hajime

    2017-08-01

    Sense of agency refers to the subjective feeling of being able to control an outcome through one's own actions or will. Prior studies have shown that both sensory processing (e.g., comparisons between sensory feedbacks and predictions basing on one's motor intentions) and high-level cognitive/constructive processes (e.g., inferences based on one's performance or the consequences of one's actions) contribute to judgments of sense of agency. However, it remains unclear how these two types of processes interact, which is important for clarifying the mechanisms underlying sense of agency. Thus, we examined whether performance-based inferences influence action-effect integration in sense of agency using a delay detection paradigm in two experiments. In both experiments, participants pressed left and right arrow keys to control the direction in which a moving dot was travelling. The dot's response delay was manipulated randomly on 7 levels (0-480ms) between the trials; for each trial, participants were asked to judge whether the dot response was delayed and to rate their level of agency over the dot. In Experiment 1, participants tried to direct the dot to reach a destination on the screen as quickly as possible. Furthermore, the computer assisted participants by ignoring erroneous commands for half of the trials (assisted condition), while in the other half, all of the participants' commands were executed (self-control condition). In Experiment 2, participants directed the dot as they pleased (without a specific goal), but, in half of the trials, the computer randomly ignored 32% of their commands (disturbed condition) rather than assisted them. The results from the two experiments showed that performance enhanced action-effect integration. Specifically, when task performance was improved through the computer's assistance in Experiment 1, delay detection was reduced in the 480-ms delay condition, despite the fact that 32% of participants' commands were ignored. Conversely, when no feedback on task performance was given (as in Experiment 2), the participants reported greater delay when some of their commands were randomly ignored. Furthermore, the results of a logistic regression analysis showed that the threshold of delay detection was greater in the assisted condition than in the self-control condition in Experiment 1, which suggests a wider time window for action-effect integration. A multivariate analysis also revealed that assistance was related to reduced delay detection via task performance, while reduced delay detection was directly correlated with a better sense of agency. These results indicate an association between the implicit and explicit aspects of sense of agency. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph.

    PubMed

    Warren, Kristen M; Harvey, Joshua R; Chon, Ki H; Mendelson, Yitzhak

    2016-03-07

    Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data.

  15. Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop

    NASA Astrophysics Data System (ADS)

    Wildeman, Sander

    2018-06-01

    A quantitative synthetic Schlieren imaging (SSI) method based on fast Fourier demodulation is presented. Instead of a random dot pattern (as usually employed in SSI), a 2D periodic pattern (such as a checkerboard) is used as a backdrop to the refractive object of interest. The range of validity and accuracy of this "Fast Checkerboard Demodulation" (FCD) method are assessed using both synthetic data and experimental recordings of patterns optically distorted by small waves on a water surface. It is found that the FCD method is at least as accurate as sophisticated, multi-stage, digital image correlation (DIC) or optical flow (OF) techniques used with random dot patterns, and it is significantly faster. Efficient, fully vectorized, implementations of both the FCD and DIC/OF schemes developed for this study are made available as open source Matlab scripts.

  16. Anthropometry: Basic Studies ad Applications. Volume 1. 1964-1975

    DTIC Science & Technology

    1977-09-01

    Human factors engineering. Cadavers, Moments of inertia, Mass, Aerospace medicine, Tables(Data), Responses IDENTIFIERS: DOT/5A, NTlSDOTHTS PB-241...muscles; head/neck response to low-level acceleration, voluntary isometric muscle force in the lateral direction; and three-dimensional range of motion...Prices: PC$7.50/MFS2.25 \\ 77 22 Whole Body Response Research Program Michigan Univ., Ann Arbor. Dept* of Biomechanics.*General Motors

  17. Preference for point-light human biological motion in newborns: contribution of translational displacement.

    PubMed

    Bidet-Ildei, Christel; Kitromilides, Elenitsa; Orliaguet, Jean-Pierre; Pavlova, Marina; Gentaz, Edouard

    2014-01-01

    In human newborns, spontaneous visual preference for biological motion is reported to occur at birth, but the factors underpinning this preference are still in debate. Using a standard visual preferential looking paradigm, 4 experiments were carried out in 3-day-old human newborns to assess the influence of translational displacement on perception of human locomotion. Experiment 1 shows that human newborns prefer a point-light walker display representing human locomotion as if on a treadmill over random motion. However, no preference for biological movement is observed in Experiment 2 when both biological and random motion displays are presented with translational displacement. Experiments 3 and 4 show that newborns exhibit preference for translated biological motion (Experiment 3) and random motion (Experiment 4) displays over the same configurations moving without translation. These findings reveal that human newborns have a preference for the translational component of movement independently of the presence of biological kinematics. The outcome suggests that translation constitutes the first step in development of visual preference for biological motion. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Effects of interdot hopping and Coulomb blockade on the thermoelectric properties of serially coupled quantum dots

    PubMed Central

    2012-01-01

    We have theoretically studied the thermoelectric properties of serially coupled quantum dots (SCQDs) embedded in an insulator connected to metallic electrodes. In the framework of Keldysh Green’s function technique, the Landauer formula of transmission factor is obtained using the equation of motion method. Based on such analytical expressions of charge and heat currents, we calculate the electrical conductance, Seebeck coefficient, electron thermal conductance, and figure of merit (ZT) of SCQDs in the linear response regime. The effects of interdot hopping and electron Coulomb interactions on ZT are analyzed. We demonstrate that ZT is not a monotonic increasing function of interdot electron hopping strength (tc). We also show that in the absence of phonon thermal conductance, SCQD can reach the Carnot efficiency as tcapproaches zero. PMID:22591807

  19. Shot Noise in a Quantum Dot with the Finite Coulomb Interaction

    NASA Astrophysics Data System (ADS)

    Cao, Xian-Sheng

    2011-09-01

    We study the shot noise in a quantum dot which coupled to metallic leads using the equation of motion of nonequilibrium Green's function technique at Kondo temperature T K . We compute the out of equilibrium density of states, the current and the shot noise. We find that the value of shot noise in the finite coulomb interaction case is smaller than one at Kondo temperature T K when variation of ɛ d values of the QD energy in the absence of the external magnetic field. We also find that the values of S(0)/ V are almost insusceptible to U when eV d under 2, while the values of S(0)/ V appear slightly branch off when the value of eV d approach to 6.

  20. Prospects for an Improved Measurement of Experimental Limit on G-dot

    NASA Technical Reports Server (NTRS)

    Sanders, Alvin J.

    2003-01-01

    The orbital motion of an ultra-drag-free satellite, such as the large test body of the SEE (Satellite Energy Exchange) satellite, known as the "Shepherd," may possibly provide the best test for time variation of the gravitational constant G at the level of parts in 10(exp 14). Scarcely anything could be more significant scientifically than the incontestable discovery that a fundamental "constant" of Nature is not constant. A finding of non-zero (G-dot)/G would clearly mark the boundaries where general relativity is valid, and specify the onset of new physics. The requirements for measuring G-dot at the level proposed by SEE will require great care in treating perturbation forces. In the present paper we concentrate on the methods for dealing with the gravitational field due to possible large manufacturing defects in the SEE observatory. We find that, with adequate modeling of the perturbation forces and cancellation methods, the effective time-averaged acceleration on the SEE Shepherd will be approx. 10(exp -18) g (10(exp -17) m/sq s).

  1. A randomized controlled study comparing community based with health facility based direct observation of treatment models on patients' satisfaction and TB treatment outcome in Nigeria.

    PubMed

    Adewole, Olanisun O; Oladele, T; Osunkoya, Arinola H; Erhabor, Greg E; Adewole, Temitayo O; Adeola, Oluwaseun; Obembe, Olufemi; Ota, Martin O C

    2015-12-01

    Directly observed treatment short-course (DOTS) strategy is an effective mode of treating TB. We aimed to study the cost effectiveness and patients' satisfaction with home based direct observation of treatment (DOT), an innovative approach to community-based DOT (CBDOT) and hospital based DOT (HBDOT). A randomized controlled trial involving 150 newly diagnosed pulmonary TB patients in four TB clinics in Ile Ife , Nigeria, was done. They were randomly assigned to receive treatment with anti TB drugs for the intensive phase administered at home by a TB worker (CBDOT) or at the hospital (HBDOT). Outcome measures were treatment completion/default rates, cost effectiveness and patients' satisfaction with care using a 13 item patients satisfaction questionnaire (PS-13) at 2 months. This trial was registered with pactr.org: number PACTR 201503001058381. At the end of intensive phase, 15/75 (20%) and 2/75 (3%) of patients in the HBDOT and CBDOT, respectively had defaulted from treatment, p= 0.01. Of those with pretreatment positive sputum smear, 97% (68/70) on CBDOT and 54/67 (81%) on HBDOT were sputum negative for AFB at the end of 2 months of treatment, p=0.01. The CBDOT method was associated with a higher patient satisfaction score compared with HBDOT (OR 3.1; 95% CI 1.25-7.70), p=0.001.The total cost for patients was higher in HBDOT (US$159.38) compared with the CBDOT (US$89.52). The incremental cost effectiveness ratio was US$410 per patient who completed the intensive phase treatment with CBDOT. CBDOT is a cost effective approach associated with better compliance to treatment and better patient satisfaction compared to HBDOT. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Fermionic entanglement via quantum walks in quantum dots

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexey A.; Fedichkin, Leonid E.

    2018-02-01

    Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.

  3. 3D Tracking of individual growth factor receptors on polarized cells

    NASA Astrophysics Data System (ADS)

    Werner, James; Stich, Dominik; Cleyrat, Cedric; Phipps, Mary; Wadinger-Ness, Angela; Wilson, Bridget

    We have been developing methods for following 3D motion of selected biomolecular species throughout mammalian cells. Our approach exploits a custom designed confocal microscope that uses a unique spatial filter geometry and active feedback 200 times/second to follow fast 3D motion. By exploiting new non-blinking quantum dots as fluorescence labels, individual molecular trajectories can be observed for several minutes. We also will discuss recent instrument upgrades, including the ability to perform spinning disk fluorescence microscopy on the whole mammalian cell performed simultaneously with 3D molecular tracking experiments. These instrument upgrades were used to quantify 3D heterogeneous transport of individual growth factor receptors (EGFR) on live human renal cortical epithelial cells.

  4. Binding of motion and colour is early and automatic.

    PubMed

    Blaser, Erik; Papathomas, Thomas; Vidnyánszky, Zoltán

    2005-04-01

    At what stages of the human visual hierarchy different features are bound together, and whether this binding requires attention, is still highly debated. We used a colour-contingent motion after-effect (CCMAE) to study the binding of colour and motion signals. The logic of our approach was as follows: if CCMAEs can be evoked by targeted adaptation of early motion processing stages, without allowing for feedback from higher motion integration stages, then this would support our hypothesis that colour and motion are bound automatically on the basis of spatiotemporally local information. Our results show for the first time that CCMAE's can be evoked by adaptation to a locally paired opposite-motion dot display, a stimulus that, importantly, is known to trigger direction-specific responses in the primary visual cortex yet results in strong inhibition of the directional responses in area MT of macaques as well as in area MT+ in humans and, indeed, is perceived only as motionless flicker. The magnitude of the CCMAE in the locally paired condition was not significantly different from control conditions where the different directions were spatiotemporally separated (i.e. not locally paired) and therefore perceived as two moving fields. These findings provide evidence that adaptation at an early, local motion stage, and only adaptation at this stage, underlies this CCMAE, which in turn implies that spatiotemporally coincident colour and motion signals are bound automatically, most probably as early as cortical area V1, even when the association between colour and motion is perceptually inaccessible.

  5. Orientation-dependent imaging of electronically excited quantum dots

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-01

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|

  6. Orientation-dependent imaging of electronically excited quantum dots.

    PubMed

    Nguyen, Duc; Goings, Joshua J; Nguyen, Huy A; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-14

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x 0 , y 0 ) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x 0 , y 0 ) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density φ i x 0 ,y 0 2 of the excited orbital in the tunneling region. Thus, the SMA-STM signal is approximated by an orbital density map (ODM) of the resonantly excited orbital at energy E i . The situation is more complex for correlated electron motion, but either way a slice through the excited electronic state structure in the tunneling region is imaged. We then show experimentally that we can nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.

  7. Diffusion in the presence of a local attracting factor: Theory and interdisciplinary applications.

    PubMed

    Veermäe, Hardi; Patriarca, Marco

    2017-06-01

    In many complex diffusion processes the drift of random walkers is not caused by an external force, as in the case of Brownian motion, but by local variations of fitness perceived by the random walkers. In this paper, a simple but general framework is presented that describes such a type of random motion and may be of relevance in different problems, such as opinion dynamics, cultural spreading, and animal movement. To this aim, we study the problem of a random walker in d dimensions moving in the presence of a local heterogeneous attracting factor expressed in terms of an assigned position-dependent "attractiveness function." At variance with standard Brownian motion, the attractiveness function introduced here regulates both the advection and diffusion of the random walker, thus providing testable predictions for a specific form of fluctuation-relations. We discuss the relation between the drift-diffusion equation based on the attractiveness function and that describing standard Brownian motion, and we provide some explicit examples illustrating its relevance in different fields, such as animal movement, chemotactic diffusion, and social dynamics.

  8. Diffusion in the presence of a local attracting factor: Theory and interdisciplinary applications

    NASA Astrophysics Data System (ADS)

    Veermäe, Hardi; Patriarca, Marco

    2017-06-01

    In many complex diffusion processes the drift of random walkers is not caused by an external force, as in the case of Brownian motion, but by local variations of fitness perceived by the random walkers. In this paper, a simple but general framework is presented that describes such a type of random motion and may be of relevance in different problems, such as opinion dynamics, cultural spreading, and animal movement. To this aim, we study the problem of a random walker in d dimensions moving in the presence of a local heterogeneous attracting factor expressed in terms of an assigned position-dependent "attractiveness function." At variance with standard Brownian motion, the attractiveness function introduced here regulates both the advection and diffusion of the random walker, thus providing testable predictions for a specific form of fluctuation-relations. We discuss the relation between the drift-diffusion equation based on the attractiveness function and that describing standard Brownian motion, and we provide some explicit examples illustrating its relevance in different fields, such as animal movement, chemotactic diffusion, and social dynamics.

  9. Treatment of tuberculosis in a rural area of Haiti: directly observed and non-observed regimens. The experience of H pital Albert Schweitzer.

    PubMed

    Ollé-Goig, J E; Alvarez, J

    2001-02-01

    Artibonite Valley, a rural area in Haiti. To evaluate a tuberculosis control program in rural Haiti and to compare two strategies for treatment implemented in two areas that were not chosen at random: treatment delivered at the patients' homes observed by former tuberculosis patients (DOT), and non observed treatment (non-DOT). Retrospective analysis of the clinical records of adult patients diagnosed with tuberculosis at H pital Albert Schweitzer in Deschapelles, Haiti, during 1994-1995. There were 143 patients in the non-DOT group and 138 patients in the DOT group. The results of treatment were significantly different: in the non-DOT group 29% defaulted, 12% died and 58% had a successful outcome; in the DOT group 7% defaulted (P < 0.01), 4% died (P = 0.01) and 87% had a successful outcome (P < 0.01). These differences are also significant when considering only human immunodeficiency virus (HIV) infected patients (defaulted P < 0.01; died P = 0.09; successful outcome P < 0.01). Delivering treatment in patients' homes with direct observation by former tuberculosis patients can achieve good results, even in an area of extreme poverty and high rates of HIV infection. In this population the number of patients who are able to complete their treatment without observed administration is far from optimal.

  10. Random walks with random velocities.

    PubMed

    Zaburdaev, Vasily; Schmiedeberg, Michael; Stark, Holger

    2008-07-01

    We consider a random walk model that takes into account the velocity distribution of random walkers. Random motion with alternating velocities is inherent to various physical and biological systems. Moreover, the velocity distribution is often the first characteristic that is experimentally accessible. Here, we derive transport equations describing the dispersal process in the model and solve them analytically. The asymptotic properties of solutions are presented in the form of a phase diagram that shows all possible scaling regimes, including superdiffusive, ballistic, and superballistic motion. The theoretical results of this work are in excellent agreement with accompanying numerical simulations.

  11. Radar Observation of Insects - Mosquitoes

    NASA Technical Reports Server (NTRS)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  12. Time perception of visual motion is tuned by the motor representation of human actions

    PubMed Central

    Gavazzi, Gioele; Bisio, Ambra; Pozzo, Thierry

    2013-01-01

    Several studies have shown that the observation of a rapidly moving stimulus dilates our perception of time. However, this effect appears to be at odds with the fact that our interactions both with environment and with each other are temporally accurate. This work exploits this paradox to investigate whether the temporal accuracy of visual motion uses motor representations of actions. To this aim, the stimuli were a dot moving with kinematics belonging or not to the human motor repertoire and displayed at different velocities. Participants had to replicate its duration with two tasks differing in the underlying motor plan. Results show that independently of the task's motor plan, the temporal accuracy and precision depend on the correspondence between the stimulus' kinematics and the observer's motor competencies. Our data suggest that the temporal mechanism of visual motion exploits a temporal visuomotor representation tuned by the motor knowledge of human actions. PMID:23378903

  13. Universal self-similarity of propagating populations

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Klafter, Joseph

    2010-07-01

    This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d -dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common—yet arbitrary—motion pattern; each particle has its own random propagation parameters—emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles’ displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles’ underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.

  14. Universal self-similarity of propagating populations.

    PubMed

    Eliazar, Iddo; Klafter, Joseph

    2010-07-01

    This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d-dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common--yet arbitrary--motion pattern; each particle has its own random propagation parameters--emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles' displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles' underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.

  15. A Novel Motion Compensation Method for Random Stepped Frequency Radar with M-sequence

    NASA Astrophysics Data System (ADS)

    Liao, Zhikun; Hu, Jiemin; Lu, Dawei; Zhang, Jun

    2018-01-01

    The random stepped frequency radar is a new kind of synthetic wideband radar. In the research, it has been found that it possesses a thumbtack-like ambiguity function which is considered to be the ideal one. This also means that only a precise motion compensation could result in the correct high resolution range profile. In this paper, we will introduce the random stepped frequency radar coded by M-sequence firstly and briefly analyse the effect of relative motion between target and radar on the distance imaging, which is called defocusing problem. Then, a novel motion compensation method, named complementary code cancellation, will be put forward to solve this problem. Finally, the simulated experiments will demonstrate its validity and the computational analysis will show up its efficiency.

  16. Nonlinear Equations of Motion for a Panel Subject to External Loads

    DTIC Science & Technology

    1993-11-01

    axay 4- ax) 4 , ay sin The x, y, and xy curvatures are extracted from this equation. The squared terms within the brackets are neglected because they...2B= +0 Solving for results in dOz dOt -B ± VB2 -AC dOz C and after substituting in the values of the coefficients from Equation (66)dO’ aO d = - zz±c

  17. Numerosity but not texture-density discrimination correlates with math ability in children.

    PubMed

    Anobile, Giovanni; Castaldi, Elisa; Turi, Marco; Tinelli, Francesca; Burr, David C

    2016-08-01

    Considerable recent work suggests that mathematical abilities in children correlate with the ability to estimate numerosity. Does math correlate only with numerosity estimation, or also with other similar tasks? We measured discrimination thresholds of school-age (6- to 12.5-years-old) children in 3 tasks: numerosity of patterns of relatively sparse, segregatable items (24 dots); numerosity of very dense textured patterns (250 dots); and discrimination of direction of motion. Thresholds in all tasks improved with age, but at different rates, implying the action of different mechanisms: In particular, in young children, thresholds were lower for sparse than textured patterns (the opposite of adults), suggesting earlier maturation of numerosity mechanisms. Importantly, numerosity thresholds for sparse stimuli correlated strongly with math skills, even after controlling for the influence of age, gender and nonverbal IQ. However, neither motion-direction discrimination nor numerosity discrimination of texture patterns showed a significant correlation with math abilities. These results provide further evidence that numerosity and texture-density are perceived by independent neural mechanisms, which develop at different rates; and importantly, only numerosity mechanisms are related to math. As developmental dyscalculia is characterized by a profound deficit in discriminating numerosity, it is fundamental to understand the mechanism behind the discrimination. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Communicating infectious disease prevalence through graphics: results from an international survey

    PubMed Central

    Fagerlin, Angela; Valley, Thomas S.; Scherer, Aaron M.; Knaus, Megan; Das, Enny; Zikmund-Fisher, Brian J.

    2017-01-01

    Background Graphics are increasingly used to represent the spread of infectious diseases (e.g., influenza, Zika, Ebola); however, the impact of using graphics to adequately inform the general population is unknown. Objective To examine whether three ways of visually presenting data (heat map, dot map, or picto-trendline)—all depicting the same information regarding the spread of a hypothetical outbreak of influenza—influence intent to vaccinate, risk perception, and knowledge. Design Survey with participants randomized to receive a simulated news article accompanied by one of the three graphics that communicated prevalence of influenza and number of influenza-related deaths. Setting International online survey Participants 16,510 adults living in 11 countries selected using stratified random sampling based on age and gender Measurements After reading the article and viewing the presented graphic, participants completed a survey that measured interest in vaccination, perceived risk of contracting disease, knowledge gained, interest in additional information about the disease, and perception of the graphic. Results Heat maps and picto-trendlines were evaluated more positively than dot maps. Heat maps were more effective than picto-trendlines and no different from dot maps at increasing interest in vaccination, perceived risk of contracting disease, and interest in additional information about the disease. Heat maps and picto-trendlines were more successful at conveying knowledge than dot maps. Overall, heat maps were the only graphic to be superior in every outcome. Limitations Results are based on a hypothetical scenario Conclusion Heat maps are a viable option to promote interest in and concern about infectious diseases. PMID:28647168

  19. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Manvir S.

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorptionmore » in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level transitions are seen to be forbidden. The spherical quantum dots have an edge over the strictly two-dimensional quantum dots in that the additional (magnetic) quantum number makes the physics richer (but complex). A deeper grasp of the Coulomb blockade, quantum coherence, and entanglement can lead to a better insight into promising applications involving lasers, detectors, storage devices, and quantum computing.« less

  20. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  1. Statistical characteristics of trajectories of diamagnetic unicellular organisms in a magnetic field.

    PubMed

    Gorobets, Yu I; Gorobets, O Yu

    2015-01-01

    The statistical model is proposed in this paper for description of orientation of trajectories of unicellular diamagnetic organisms in a magnetic field. The statistical parameter such as the effective energy is calculated on basis of this model. The resulting effective energy is the statistical characteristics of trajectories of diamagnetic microorganisms in a magnetic field connected with their metabolism. The statistical model is applicable for the case when the energy of the thermal motion of bacteria is negligible in comparison with their energy in a magnetic field and the bacteria manifest the significant "active random movement", i.e. there is the randomizing motion of the bacteria of non thermal nature, for example, movement of bacteria by means of flagellum. The energy of the randomizing active self-motion of bacteria is characterized by the new statistical parameter for biological objects. The parameter replaces the energy of the randomizing thermal motion in calculation of the statistical distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Locomotion of Mouse Fibroblasts in Tissue Culture

    PubMed Central

    Gail, Mitchell H.; Boone, Charles W.

    1970-01-01

    Time-lapse cinematography was used to investigate the motion of mouse fibroblasts in tissue culture. Observations over successive short time intervals revealed a tendency for the cells to persist in their direction of motion from one 2.5 hr time interval to the next. Over 5.0-hr time intervals, however, the direction of motion appeared random. This fact suggested that D, the diffusion constant of a random walk model, might serve to characterize cellular motility if suitably long observation times were used. We therefore investigated the effect of “persistence” on the pure random walk model, and we found theoretically and confirmed experimentally that the motility of a persisting cell could indeed be characterized by an augmented diffusion constant, D*. A method for determining confidence limits on D* was also developed. Thus a random walk model, modified to comprehend the persistence effect, was found to describe the motion of fibroblasts in tissue culture and to provide a numerical measure of cellular motility. PMID:5531614

  3. Interface induced spin-orbit interaction in silicon quantum dots and prospects of scalability

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Wai, Kok; Veldhorst, Menno; Hwang, Jason; Yang, Henry; Klimeck, Gerhard; Dzurak, Andrew; Rahman, Rajib

    A scalable quantum computing architecture requires reproducibility over key qubit properties, like resonance frequency, coherence time etc. Randomness in these properties would necessitate individual knowledge of each qubit in a quantum computer. Spin qubits hosted in Silicon (Si) quantum dots (QD) is promising as a potential building block for a large-scale quantum computer, because of their longer coherence times. The Stark shift of the electron g-factor in these QDs has been used to selectively address multiple qubits. From atomistic tight-binding studies we investigated the effect of interface non-ideality on the Stark shift of the g-factor in a Si QD. We find that based on the location of a monoatomic step at the interface with respect to the dot center both the sign and magnitude of the Stark shift change. Thus the presence of interface steps in these devices will cause variability in electron g-factor and its Stark shift based on the location of the qubit. This behavior will also cause varying sensitivity to charge noise from one qubit to another, which will randomize the dephasing times T2*. This predicted device-to-device variability is experimentally observed recently in three qubits fabricated at a Si/Si02 interface, which validates the issues discussed.

  4. Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.

    PubMed

    Vasseur, Romain; Moore, Joel E

    2014-04-11

    The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.

  5. Irreducible Green's functions method for a quantum dot coupled to metallic and superconducting leads

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Kucab, Krzysztof

    2017-05-01

    Using irreducible Green's functions (IGF) method we analyse the Coulomb interaction dependence of the spectral functions and the transport properties of a quantum dot coupled to isotropic superconductor and metallic leads (SC-QD-N). The irreducible Green's functions method is the modification of classical equation of motion technique. The IGF scheme is based on differentiation of double-time Green's functions, both over the primary and secondary times. The IGF method allows to obtain the spectral functions for equilibrium and non-equilibrium impurity Anderson model used for SC-QD-N system. By the numerical computations, we show the change of spectral and the anomalous densities under the influence of the Coulomb interactions. The observed sign change of the anomalous spectral density can be used as the criterion of the SC singlet-Kondo singlet transition.

  6. Online attention modification for social anxiety disorder: replication of a randomized controlled trial.

    PubMed

    Carleton, R Nicholas; Teale Sapach, Michelle J N; Oriet, Chris; LeBouthillier, Daniel M

    2017-01-01

    Social anxiety disorder (SAD) models posit vigilance for external social threat cues and exacerbated self-focused attention as key in disorder development and maintenance. Evidence indicates a modified dot-probe protocol may reduce symptoms of SAD; however, the efficacy when compared to a standard protocol and long-term maintenance of treatment gains remains unclear. Furthermore, the efficacy of such protocols on SAD-related constructs remains relatively unknown. The current investigation clarified these associations using a randomized control trial replicating and extending previous research. Participants with SAD (n = 113; 71% women) were randomized to complete a standard (i.e. control) or modified (i.e. active) dot-probe protocol consisting of 15-min sessions twice weekly for four weeks. Self-reported symptoms were measured at baseline, post-treatment, and 4-month and 8-month follow-ups. Hierarchical linear modeling indicated significant self-reported reductions in symptoms of social anxiety, fear of negative evaluation, trait anxiety, and depression, but no such reductions in fear of positive evaluation. Symptom changes did not differ based on condition and were maintained at 8-month follow-up. Attentional biases during the dot-probe task were not related to symptom change. Overall, our results replicate support for the efficacy of both protocols in reducing symptoms of SAD and specific related constructs, and suggest a role of exposure, expectancy, or practice effects, rather than attention modification, in effecting such reductions. The current results also support distinct relationships between fears of negative and positive evaluation and social anxiety. Further research focused on identifying the mechanisms of change in attention modification protocols appears warranted.

  7. Vection in patients with glaucoma.

    PubMed

    Tarita-Nistor, Luminita; Hadavi, Shahriar; Steinbach, Martin J; Markowitz, Samuel N; González, Esther G

    2014-05-01

    Large moving scenes can induce a sensation of self-motion in stationary observers. This illusion is called "vection." Glaucoma progressively affects the functioning of peripheral vision, which plays an important role in inducing vection. It is still not known whether vection can be induced in these patients and, if it can, whether the interaction between visual and vestibular inputs is solved appropriately. The aim of this study was to investigate vection responses in patients with mild to moderate open-angle glaucoma. Fifteen patients with mild to moderate glaucoma and 15 age-matched controls were exposed to a random-dot pattern at a short viewing distance and in a dark room. The pattern was projected on a large screen and rotated clockwise with an angular speed of 45 degrees per second to induce a sensation of self-rotation. Vection latency, vection duration, and objective and subjective measures of tilt were obtained in three viewing conditions (binocular, and monocular with each eye). Each condition lasted 2 minutes. Patients with glaucoma had longer vection latencies (p = 0.005) than, but the same vection duration as, age-matched controls. Viewing condition did not affect vection responses for either group. The control group estimated the tilt angle as being significantly larger than the actual maximum tilt angle measured with the tilt sensor (p = 0.038). There was no relationship between vection measures and visual field sensitivity for the glaucoma group. These findings suggest that, despite an altered visual input that delays vection, the neural responses involved in canceling the illusion of self-motion remain intact in patients with mild peripheral visual field loss.

  8. Decoding complex flow-field patterns in visual working memory.

    PubMed

    Christophel, Thomas B; Haynes, John-Dylan

    2014-05-01

    There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Catalytic micromotor generating self-propelled regular motion through random fluctuation.

    PubMed

    Yamamoto, Daigo; Mukai, Atsushi; Okita, Naoaki; Yoshikawa, Kenichi; Shioi, Akihisa

    2013-07-21

    Most of the current studies on nano∕microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation.

  10. Catalytic micromotor generating self-propelled regular motion through random fluctuation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Daigo; Mukai, Atsushi; Okita, Naoaki; Yoshikawa, Kenichi; Shioi, Akihisa

    2013-07-01

    Most of the current studies on nano/microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation.

  11. Optical Control of Fluorescence through plasmonic eigenmode extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui

    We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.

  12. Bistable resistive memory behavior in gelatin-CdTe quantum dot composite film

    NASA Astrophysics Data System (ADS)

    Vallabhapurapu, Sreedevi; Rohom, Ashwini; Chaure, N. B.; Du, Shengzhi; Srinivasan, Ananthakrishnan

    2018-05-01

    Bistable memory behavior has been observed for the first time in gelatin type A thin film dispersed with functionalized CdTe quantum dots. The two terminal device with the polymer nanocomposite layer sandwiched between an indium tin oxide coated glass plate and an aluminium top electrode performs as a bistable resistive random access memory module. Butterfly shaped (O-shaped with a hysteresis in forward and reverse sweeps) current-voltage response is observed in this device. The conduction mechanism leading to the bistable electrical switching has been deduced to be a combination of ohmic and electron hopping.

  13. Optical Control of Fluorescence through plasmonic eigenmode extinction

    DOE PAGES

    Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui; ...

    2015-04-30

    We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.

  14. Contextual effects on smooth-pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R

    2007-02-01

    Segregating a moving object from its visual context is particularly relevant for the control of smooth-pursuit eye movements. We examined the interaction between a moving object and a stationary or moving visual context to determine the role of the context motion signal in driving pursuit. Eye movements were recorded from human observers to a medium-contrast Gaussian dot that moved horizontally at constant velocity. A peripheral context consisted of two vertically oriented sinusoidal gratings, one above and one below the stimulus trajectory, that were either stationary or drifted into the same or opposite direction as that of the target at different velocities. We found that a stationary context impaired pursuit acceleration and velocity and prolonged pursuit latency. A drifting context enhanced pursuit performance, irrespective of its motion direction. This effect was modulated by context contrast and orientation. When a context was briefly perturbed to move faster or slower eye velocity changed accordingly, but only when the context was drifting along with the target. Perturbing a context into the direction orthogonal to target motion evoked a deviation of the eye opposite to the perturbation direction. We therefore provide evidence for the use of absolute and relative motion cues, or motion assimilation and motion contrast, for the control of smooth-pursuit eye movements.

  15. Threshold matrix for digital halftoning by genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero

    1998-10-01

    Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.

  16. Coherent random lasing controlled by Brownian motion of the active scatterer

    NASA Astrophysics Data System (ADS)

    Liang, Shuofeng; Yin, Leicheng; Zhang, ZhenZhen; Xia, Jiangying; Xie, Kang; Zou, Gang; Hu, Zhijia; Zhang, Qijin

    2018-05-01

    The stability of the scattering loop is fundamental for coherent random lasing in a dynamic scattering system. In this work, fluorescence of DPP (N, N-di [3-(isobutyl polyhedral oligomeric silsesquioxanes) propyl] perylene diimide) is scattered to produce RL and we realize the transition from incoherent RL to coherent RL by controlling the Brownian motion of the scatterers (dimer aggregates of DPP) and the stability of scattering loop. To produce coherent random lasers, the loop needs to maintain a stable state within the loop-stable time, which can be determined through controlled Brownian motion of scatterers in the scattering system. The result shows that the loop-stable time is within 5.83 × 10‑5 s to 1.61 × 10‑4 s based on the transition from coherent to incoherent random lasing. The time range could be tuned by finely controlling the viscosity of the solution. This work not only develops a method to predict the loop-stable time, but also develops the study between Brownian motion and random lasers, which opens the road to a variety of novel interdisciplinary investigations involving modern statistical mechanics and disordered photonics.

  17. Importance of perceptual representation in the visual control of action

    NASA Astrophysics Data System (ADS)

    Loomis, Jack M.; Beall, Andrew C.; Kelly, Jonathan W.; Macuga, Kristen L.

    2005-03-01

    In recent years, many experiments have demonstrated that optic flow is sufficient for visually controlled action, with the suggestion that perceptual representations of 3-D space are superfluous. In contrast, recent research in our lab indicates that some visually controlled actions, including some thought to be based on optic flow, are indeed mediated by perceptual representations. For example, we have demonstrated that people are able to perform complex spatial behaviors, like walking, driving, and object interception, in virtual environments which are rendered visible solely by cyclopean stimulation (random-dot cinematograms). In such situations, the absence of any retinal optic flow that is correlated with the objects and surfaces within the virtual environment means that people are using stereo-based perceptual representations to perform the behavior. The fact that people can perform such behaviors without training suggests that the perceptual representations are likely the same as those used when retinal optic flow is present. Other research indicates that optic flow, whether retinal or a more abstract property of the perceptual representation, is not the basis for postural control, because postural instability is related to perceived relative motion between self and the visual surroundings rather than to optic flow, even in the abstract sense.

  18. Predictive Coding or Evidence Accumulation? False Inference and Neuronal Fluctuations

    PubMed Central

    Friston, Karl J.; Kleinschmidt, Andreas

    2010-01-01

    Perceptual decisions can be made when sensory input affords an inference about what generated that input. Here, we report findings from two independent perceptual experiments conducted during functional magnetic resonance imaging (fMRI) with a sparse event-related design. The first experiment, in the visual modality, involved forced-choice discrimination of coherence in random dot kinematograms that contained either subliminal or periliminal motion coherence. The second experiment, in the auditory domain, involved free response detection of (non-semantic) near-threshold acoustic stimuli. We analysed fluctuations in ongoing neural activity, as indexed by fMRI, and found that neuronal activity in sensory areas (extrastriate visual and early auditory cortex) biases perceptual decisions towards correct inference and not towards a specific percept. Hits (detection of near-threshold stimuli) were preceded by significantly higher activity than both misses of identical stimuli or false alarms, in which percepts arise in the absence of appropriate sensory input. In accord with predictive coding models and the free-energy principle, this observation suggests that cortical activity in sensory brain areas reflects the precision of prediction errors and not just the sensory evidence or prediction errors per se. PMID:20369004

  19. The effect of weight-bearing exercise and non-weight-bearing exercise on gait in rats with sciatic nerve crush injury.

    PubMed

    Kim, Ki-Hyun; Hwangbo, Gak; Kim, Seong-Gil

    2015-04-01

    [Purpose] The purpose of this study was to access the effect of weight bearing exercise (treadmill exercise) and non-weight-bearing exercise (swimming exercise) on gait in the recovery process after a sciatic nerve crush injury. [Subjects and Methods] Rats were randomly divided into a swimming group (n=3) with non-weight-bearing exercise after a sciatic nerve crush and a treadmill group (n=3) with weight bearing exercise after a sciatic nerve crush. Dartfish is a program that can analyze and interpret motion through video images. The knee lateral epicondyle, lateral malleolus, and metatarsophalangeal joint of the fifth toe were marked by black dots before recording. [Results] There were significant differences in TOK (knee angle toe off) and ICK (knee angle at initial contact) in the swimming group and in TOK, ICA (ankle angle at initial contact), and ICK in the treadmill group. In comparison between groups, there were significant differences in TOA (ankle angle in toe off) and ICA at the 7th day. [Conclusion] There was no difference between weight bearing and non-weight-bearing exercise in sciatic nerve damage, and both exercises accelerated the recovery process in this study.

  20. Trial-by-trial fluctuations in CNV amplitude reflect anticipatory adjustment of response caution.

    PubMed

    Boehm, Udo; van Maanen, Leendert; Forstmann, Birte; van Rijn, Hedderik

    2014-08-01

    The contingent negative variation, a slow cortical potential, occurs when humans are warned by a stimulus about an upcoming task. The cognitive processes that give rise to this EEG potential are not yet well understood. To explain these processes, we adopt a recently developed theoretical framework from the area of perceptual decision-making. This framework assumes that the basal ganglia control the tradeoff between fast and accurate decision-making in the cortex. It suggests that an increase in cortical excitability serves to lower response caution, which results in faster but more error prone responding. We propose that the CNV reflects this increased cortical excitability. To test this hypothesis, we conducted an EEG experiment in which participants performed the random dot motion task either under speed or under accuracy stress. Our results show that trial-by-trial fluctuations in participants' response speed as well as model-based estimates of response caution correlated with single-trial CNV amplitude under conditions of speed but not accuracy stress. We conclude that the CNV might reflect adjustments of response caution, which serves to enhance quick decision-making. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Cue-recruitment for extrinsic signals after training with low information stimuli.

    PubMed

    Jain, Anshul; Fuller, Stuart; Backus, Benjamin T

    2014-01-01

    Cue-recruitment occurs when a previously ineffective signal comes to affect the perceptual appearance of a target object, in a manner similar to the trusted cues with which the signal was put into correlation during training. Jain, Fuller and Backus reported that extrinsic signals, those not carried by the target object itself, were not recruited even after extensive training. However, recent studies have shown that training using weakened trusted cues can facilitate recruitment of intrinsic signals. The current study was designed to examine whether extrinsic signals can be recruited by putting them in correlation with weakened trusted cues. Specifically, we tested whether an extrinsic visual signal, the rotary motion direction of an annulus of random dots, and an extrinsic auditory signal, direction of an auditory pitch glide, can be recruited as cues for the rotation direction of a Necker cube. We found learning, albeit weak, for visual but not for auditory signals. These results extend the generality of the cue-recruitment phenomenon to an extrinsic signal and provide further evidence that the visual system learns to use new signals most quickly when other, long-trusted cues are unavailable or unreliable.

  2. Effects of feature-selective and spatial attention at different stages of visual processing.

    PubMed

    Andersen, Søren K; Fuchs, Sandra; Müller, Matthias M

    2011-01-01

    We investigated mechanisms of concurrent attentional selection of location and color using electrophysiological measures in human subjects. Two completely overlapping random dot kinematograms (RDKs) of two different colors were presented on either side of a central fixation cross. On each trial, participants attended one of these four RDKs, defined by its specific combination of color and location, in order to detect coherent motion targets. Sustained attentional selection while monitoring for targets was measured by means of steady-state visual evoked potentials (SSVEPs) elicited by the frequency-tagged RDKs. Attentional selection of transient targets and distractors was assessed by behavioral responses and by recording event-related potentials to these stimuli. Spatial attention and attention to color had independent and largely additive effects on the amplitudes of SSVEPs elicited in early visual areas. In contrast, behavioral false alarms and feature-selective modulation of P3 amplitudes to targets and distractors were limited to the attended location. These results suggest that feature-selective attention produces an early, global facilitation of stimuli having the attended feature throughout the visual field, whereas the discrimination of target events takes place at a later stage of processing that is only applied to stimuli at the attended position.

  3. Oculomotor Reflexes as a Test of Visual Dysfunctions in Cognitively Impaired Observers

    DTIC Science & Technology

    2012-10-01

    visual nystagmus much more robust. Because the absolute gaze is not measured in our paradigm (this would require a gaze calibration, involving...the dots were also drifting to the right. Gaze horizontal position is plotted along the y-axis. The red bar indicates a visual nystagmus event...for automated 5 Reflex Stimulus Functions Visual Nystagmus luminance grating low-level motion equiluminant grating color vision contrast gratings at 3

  4. Extraction and Propagation of an Intense Rotating Electron Beam,

    DTIC Science & Technology

    1982-10-01

    radiochromic foils positioned at z = 25 cm. The equal transmission density contours are ranked in linear order of increasing exposure (increasing current...flux encircled by the cathode e = %rc2Bc. Linearizing the equation of motion around the equilibrium, we can find the wavelength of small radial...the beam rotation. The mask which precedes the scint- illator is a linear array of dots while the projection is made up of two disjoint linear arrays

  5. Aging and visual 3-D shape recognition from motion.

    PubMed

    Norman, J Farley; Adkins, Olivia C; Dowell, Catherine J; Hoyng, Stevie C; Shain, Lindsey M; Pedersen, Lauren E; Kinnard, Jonathan D; Higginbotham, Alexia J; Gilliam, Ashley N

    2017-11-01

    Two experiments were conducted to evaluate the ability of younger and older adults to recognize 3-D object shape from patterns of optical motion. In Experiment 1, participants were required to identify dotted surfaces that rotated in depth (i.e., surface structure portrayed using the kinetic depth effect). The task difficulty was manipulated by limiting the surface point lifetimes within the stimulus apparent motion sequences. In Experiment 2, the participants identified solid, naturally shaped objects (replicas of bell peppers, Capsicum annuum) that were defined by occlusion boundary contours, patterns of specular highlights, or combined optical patterns containing both boundary contours and specular highlights. Significant and adverse effects of increased age were found in both experiments. Despite the fact that previous research has found that increases in age do not reduce solid shape discrimination, our current results indicated that the same conclusion does not hold for shape identification. We demonstrated that aging results in a reduction in the ability to visually recognize 3-D shape independent of how the 3-D structure is defined (motions of isolated points, deformations of smooth optical fields containing specular highlights, etc.).

  6. Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots.

    PubMed

    Groß, Heiko; Heil, Hannah S; Ehrig, Jens; Schwarz, Friedrich W; Hecht, Bert; Diez, Stefan

    2018-04-30

    In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude 1,2 . Control of such near-field light-matter interaction is essential for applications in biosensing 3 , light harvesting 4 and quantum communication 5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates 7-11 . However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.

  7. Motion versus fixed distraction of the joint in the treatment of ankle osteoarthritis: a prospective randomized controlled trial.

    PubMed

    Saltzman, Charles L; Hillis, Stephen L; Stolley, Mary P; Anderson, Donald D; Amendola, Annunziato

    2012-06-06

    Initial reports have shown the efficacy of fixed distraction for the treatment of ankle osteoarthritis. We hypothesized that allowing ankle motion during distraction would result in significant improvements in outcomes compared with distraction without ankle motion. We conducted a prospective randomized controlled trial comparing the outcomes for patients with advanced ankle osteoarthritis who were managed with anterior osteophyte removal and either (1) fixed ankle distraction or (2) ankle distraction permitting joint motion. Thirty-six patients were randomized to treatment with either fixed distraction or distraction with motion. The patients were followed for twenty-four months after frame removal. The Ankle Osteoarthritis Scale (AOS) was the main outcome variable. Two years after frame removal, subjects in both groups showed significant improvement compared with the status before treatment (p < 0.02 for both groups). The motion-distraction group had significantly better AOS scores than the fixed-distraction group at twenty-six, fifty-two, and 104 weeks after frame removal (p < 0.01 at each time point). At 104 weeks, the motion-distraction group had an overall mean improvement of 56.6% in the AOS score, whereas the fixed-distraction group had a mean improvement of 22.9% (p < 0.01). Distraction improved the patient-reported outcomes of treatment of ankle osteoarthritis. Adding ankle motion to distraction showed an early and sustained beneficial effect on outcome.

  8. Human comfort response to random motions with a dominant vertical motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with vertical acceleration inputs with various power spectra shapes and magnitudes. The data obtained are presented.

  9. Feature-selective attention enhances color signals in early visual areas of the human brain.

    PubMed

    Müller, M M; Andersen, S; Trujillo, N J; Valdés-Sosa, P; Malinowski, P; Hillyard, S A

    2006-09-19

    We used an electrophysiological measure of selective stimulus processing (the steady-state visual evoked potential, SSVEP) to investigate feature-specific attention to color cues. Subjects viewed a display consisting of spatially intermingled red and blue dots that continually shifted their positions at random. The red and blue dots flickered at different frequencies and thereby elicited distinguishable SSVEP signals in the visual cortex. Paying attention selectively to either the red or blue dot population produced an enhanced amplitude of its frequency-tagged SSVEP, which was localized by source modeling to early levels of the visual cortex. A control experiment showed that this selection was based on color rather than flicker frequency cues. This signal amplification of attended color items provides an empirical basis for the rapid identification of feature conjunctions during visual search, as proposed by "guided search" models.

  10. Tailoring local density of optical states to control emission intensity and anisotropy of quantum dots in hybrid photonic-plasmonic templates

    NASA Astrophysics Data System (ADS)

    Indukuri, Chaitanya; Mukherjee, Arnab; Basu, J. K.

    2015-03-01

    We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators.

  11. Brownian motion properties of optoelectronic random bit generators based on laser chaos.

    PubMed

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Wang, Yuncai; Wang, Yongge

    2016-07-11

    The nondeterministic property of the optoelectronic random bit generator (RBG) based on laser chaos are experimentally analyzed from two aspects of the central limit theorem and law of iterated logarithm. The random bits are extracted from an optical feedback chaotic laser diode using a multi-bit extraction technique in the electrical domain. Our experimental results demonstrate that the generated random bits have no statistical distance from the Brownian motion, besides that they can pass the state-of-the-art industry-benchmark statistical test suite (NIST SP800-22). All of them give a mathematically provable evidence that the ultrafast random bit generator based on laser chaos can be used as a nondeterministic random bit source.

  12. Dipolar eddies in a decaying stratified turbulent flow

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Fernando, H. J. S.; Morrison, R.

    2008-02-01

    Laboratory experiments on the evolution of dipolar (momentum) eddies in a stratified fluid in the presence of random background motions are described. A turbulent jet puff was used to generate the momentum eddies, and a decaying field of ambient random vortical motions was generated by a towed grid. Data on vorticity/velocity fields of momentum eddies, those of background motions, and their interactions were collected in the presence and absence of the other, and the main characteristics thereof were parametrized. Similarity arguments predict that dipolar eddies in stratified fluids may preserve their identity in decaying grid-generated stratified turbulence, which was verified experimentally. Possible applications of the results include mushroomlike currents and other naturally/artificially generated large dipolar eddies in strongly stratified layers of the ocean, the longevity of which is expected to be determined by the characteristics of the eddies and random background motions.

  13. T-cell movement on the reticular network.

    PubMed

    Donovan, Graham M; Lythe, Grant

    2012-02-21

    The idea that the apparently random motion of T cells in lymph nodes is a result of movement on a reticular network (RN) has received support from dynamic imaging experiments and theoretical studies. We present a mathematical representation of the RN consisting of edges connecting vertices that are randomly distributed in three-dimensional space, and models of lymphocyte movement on such networks including constant speed motion along edges and Brownian motion, not in three-dimensions, but only along edges. The simplest model, in which a cell moves with a constant speed along edges, is consistent with mean-squared displacement proportional to time over intervals long enough to include several changes of direction. A non-random distribution of turning angles is one consequence of motion on a preformed network. Confining cell movement to a network does not, in itself, increase the frequency of cell-cell encounters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effects of Parkinson’s disease on optic flow perception for heading direction during navigation

    PubMed Central

    Wagenaar, Robert C.; Young, Daniel; Saltzman, Elliot L.; Ren, Xiaolin; Neargarder, Sandy; Cronin-Golomb, Alice

    2015-01-01

    Visuoperceptual disorders have been identified in individuals with Parkinson’s disease (PD) and may affect the perception of optic flow for heading direction during navigation. Studies in healthy subjects have confirmed that heading direction can be determined by equalizing the optic flow speed (OS) between visual fields. The present study investigated the effects of PD on the use of optic flow for heading direction, walking parameters, and interlimb coordination during navigation, examining the contributions of OS and spatial frequency (dot density). Twelve individuals with PD without dementia, 18 age-matched normal control adults (NC), and 23 young control adults (YC) walked through a virtual hallway at about 0.8 m/s. The hallway was created by random dots on side walls. Three levels of OS (0.8, 1.2, and 1.8 m/s) and dot density (1, 2, and 3 dots/m2) were presented on one wall while on the other wall, OS and dot density were fixed at 0.8 m/s and 3 dots/m2, respectively. Three-dimensional kinematic data were collected, and lateral drift, walking speed, stride frequency and length, and frequency, and phase relations between arms and legs were calculated. A significant linear effect was observed on lateral drift to the wall with lower OS for YC and NC, but not for PD. Compared to YC and NC, PD veered more to the left under OS and dot density conditions. The results suggest that healthy adults perceive optic flow for heading direction. Heading direction in PD may be more affected by the asymmetry of dopamine levels between the hemispheres and by motor lateralization as indexed by handedness. PMID:24510351

  15. Tactile detection of slip: surface microgeometry and peripheral neural codes.

    PubMed

    Srinivasan, M A; Whitehouse, J M; LaMotte, R H

    1990-06-01

    1. The role of the microgeometry of planar surfaces in the detection of sliding of the surfaces on human and monkey fingerpads was investigated. By the use of a servo-controlled tactile stimulator to press and stroke glass plates on passive fingerpads of human subjects, the ability of humans to discriminate the direction of skin stretch caused by friction and to detect the sliding motion (slip) of the plates with or without micrometer-sized surface features was determined. To identify the associated peripheral neural codes, evoked responses to the same stimuli were recorded from single, low-threshold mechanoreceptive afferent fibers innervating the fingerpads of anesthetized macaque monkeys. 2. Humans could not detect the slip of a smooth glass plate on the fingerpad. However, the direction of skin stretch was perceived based on the information conveyed by the slowly adapting afferents that respond differentially to the stretch directions. Whereas the direction of skin stretch signaled the direction of impending slip, the perception of relative motion between the plate and the finger required the existence of detectable surface features. 3. Barely detectable micrometer-sized protrusions on smooth surfaces led to the detection of slip of these surfaces, because of the exclusive activation of rapidly adapting fibers of either the Meissner (RA) or the Pacinian (PC) type to specific geometries of the microfeatures. The motion of a smooth plate with a very small single raised dot (4 microns high, 550 microns diam) caused the sequential activation of neighboring RAs along the dot path, thus providing a reliable spatiotemporal code. The stroking of the plate with a fine homogeneous texture composed of a matrix of dots (1 microns high, 50 microns diam, and spaced at 100 microns center-to-center) induced vibrations in the fingerpad that activated only the PCs and resulted in an intensive code. 4. The results show that surprisingly small features on smooth surfaces are detected by humans and lead to the detection of slip of these surfaces, with the geometry of the microfeatures governing the associated neural codes. When the surface features are of sizes greater than the response thresholds of all the receptors, redundant spatiotemporal and intensive information is available for the detection of slip.

  16. Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance.

    PubMed

    Chesi, Stefano; Yang, Li-Ping; Loss, Daniel

    2016-02-12

    We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.

  17. Molecular dynamics in an optical trap of glutamate receptors labeled with quantum-dots on living neurons

    NASA Astrophysics Data System (ADS)

    Kishimoto, Tatsunori; Maezawa, Yasuyo; Kudoh, Suguru N.; Taguchi, Takahisa; Hosokawa, Chie

    2017-04-01

    Molecular dynamics of glutamate receptor, which is major neurotransmitter receptor at excitatory synapse located on neuron, is essential for synaptic plasticity in the complex neuronal networks. Here we studied molecular dynamics in an optical trap of AMPA-type glutamate receptor (AMPAR) labeled with quantum-dot (QD) on living neuronal cells with fluorescence imaging and fluorescence correlation spectroscopy (FCS). When a 1064-nm laser beam for optical trapping was focused on QD-AMPARs located on neuronal cells, the fluorescence intensity of QD-AMPARs gradually increased at the focal spot. Using single-particle tracking of QD-AMPARs on neurons, the average diffusion coefficient decreased in an optical trap. Moreover, the decay time obtained from FCS analysis increased with the laser power and the initial assembling state of AMPARs depended on culturing day, suggesting that the motion of QD-AMPAR was constrained in an optical trap.

  18. Hot electron dynamics at semiconductor surfaces: Implications for quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Tisdale, William A., III

    Finding a viable supply of clean, renewable energy is one of the most daunting challenges facing the world today. Solar cells have had limited impact in meeting this challenge because of their high cost and low power conversion efficiencies. Semiconductor nanocrystals, or quantum dots, are promising materials for use in novel solar cells because they can be processed with potentially inexpensive solution-based techniques and because they are predicted to have novel optoelectronic properties that could enable the realization of ultra-efficient solar power converters. However, there is a lack of fundamental understanding regarding the behavior of highly-excited, or "hot," charge carriers near quantum-dot and semiconductor interfaces, which is of paramount importance to the rational design of high-efficiency devices. The elucidation of these ultrafast hot electron dynamics is the central aim of this Dissertation. I present a theoretical framework for treating the electronic interactions between quantum dots and bulk semiconductor surfaces and propose a novel experimental technique, time-resolved surface second harmonic generation (TR-SHG), for probing these interactions. I then describe a series of experimental investigations into hot electron dynamics in specific quantum-dot/semiconductor systems. A two-photon photoelectron spectroscopy (2PPE) study of the technologically-relevant ZnO(1010) surface reveals ultrafast (sub-30fs) cooling of hot electrons in the bulk conduction band, which is due to strong electron-phonon coupling in this highly polar material. The presence of a continuum of defect states near the conduction band edge results in Fermi-level pinning and upward (n-type) band-bending at the (1010) surface and provides an alternate route for electronic relaxation. In monolayer films of colloidal PbSe quantum dots, chemical treatment with either hydrazine or 1,2-ethanedithiol results in strong and tunable electronic coupling between neighboring quantum dots. A TR-SHG study of these electronically-coupled quantum-dot films reveals temperature-activated cooling of hot charge carriers and coherent excitation of a previously-unidentified surface optical phonon. Finally, I report the first experimental observation of ultrafast electron transfer from the higher excited states of a colloidal quantum dot (PbSe) to delocalized conduction band states of a widely-used electron acceptor (TiO2). The electric field resulting from ultrafast (<50fs) separation of charge carriers across the PbSe/TiO2(110) interface excites coherent vibration of the TiO2 surface atoms, whose collective motions can be followed in real time.

  19. Biomimetic propulsion under random heaving conditions, using active pitch control

    NASA Astrophysics Data System (ADS)

    Politis, Gerasimos; Politis, Konstantinos

    2014-05-01

    Marine mammals travel long distances by utilizing and transforming wave energy to thrust through proper control of their caudal fin. On the other hand, manmade ships traveling in a wavy sea store large amounts of wave energy in the form of kinetic energy for heaving, pitching, rolling and other ship motions. A natural way to extract this energy and transform it to useful propulsive thrust is by using a biomimetic wing. The aim of this paper is to show how an actively pitched biomimetic wing could achieve this goal when it performs a random heaving motion. More specifically, we consider a biomimetic wing traveling with a given translational velocity in an infinitely extended fluid and performing a random heaving motion with a given energy spectrum which corresponds to a given sea state. A formula is invented by which the instantaneous pitch angle of the wing is determined using the heaving data of the current and past time steps. Simulations are then performed for a biomimetic wing at different heave energy spectra, using an indirect Source-Doublet 3-D-BEM, together with a time stepping algorithm capable to track the random motion of the wing. A nonlinear pressure type Kutta condition is applied at the trailing edge of the wing. With a mollifier-based filtering technique, the 3-D unsteady rollup pattern created by the random motion of the wing is calculated without any simplifying assumptions regarding its geometry. Calculated unsteady forces, moments and useful power, show that the proposed active pitch control always results in thrust producing motions, with significant propulsive power production and considerable beneficial stabilizing action to ship motions. Calculation of the power required to set the pitch angle prove it to be a very small percentage of the useful power and thus making the practical application of the device very tractable.

  20. The one-dimensional asymmetric persistent random walk

    NASA Astrophysics Data System (ADS)

    Rossetto, Vincent

    2018-04-01

    Persistent random walks are intermediate transport processes between a uniform rectilinear motion and a Brownian motion. They are formed by successive steps of random finite lengths and directions travelled at a fixed speed. The isotropic and symmetric 1D persistent random walk is governed by the telegrapher’s equation, also called the hyperbolic heat conduction equation. These equations have been designed to resolve the paradox of the infinite speed in the heat and diffusion equations. The finiteness of both the speed and the correlation length leads to several classes of random walks: Persistent random walk in one dimension can display anomalies that cannot arise for Brownian motion such as anisotropy and asymmetries. In this work we focus on the case where the mean free path is anisotropic, the only anomaly leading to a physics that is different from the telegrapher’s case. We derive exact expression of its Green’s function, for its scattering statistics and distribution of first-passage time at the origin. The phenomenology of the latter shows a transition for quantities like the escape probability and the residence time.

  1. Impact of food intake on the pharmacokinetics of first-line antituberculosis drugs in Taiwanese tuberculosis patients.

    PubMed

    Lin, Hsien-Chun; Yu, Ming-Chih; Liu, Hsing-Jin; Bai, Kuan-Jen

    2014-05-01

    Under the directly observed treatment, short course (DOTS) program, antituberculosis (anti-TB) medications were possibly taken at random time, regardless of whether it was prior to or after meals. This study was to evaluate the impact of food intake on pharmacokinetic profiles of first-line TB drugs in Taiwanese TB patients, as well as the relationship between drug levels and pharmacogenetics. This open-label, randomized, cross-over study included newly diagnosed Taiwanese TB patients treated between January 2010 and February 2011 at Taipei Medical University-Wan Fang Hospital. Rifater [a fixed-dose combination formulation of isoniazid (INH), rifampicin (RIF), and pyrazinamide (PZA)] and ethambutol (EMB) were given according to national TB guidelines. Blood samples were collected prior to and 1 hour, 2 hours, 4 hours, 6 hours, and 10 hours after dosing under fasting or postprandial conditions. Pharmacokinetic parameters of the maximum serum concentration (Cmax), time to Cmax, and area under the serum concentration-time curve from the beginning to the 10(th) hour (AUC0-10) were calculated. Sixteen TB patients were included and received anti-TB treatment under the DOTS program after discharge. The overall effects showed that food intake reduced the mean Cmax (INH: 40.6%, RIF: 40.2%, EMB 34.4%, PZA: 24.4%) and AUC0-10 (INH: 21.3%, RIF: 26.4%, EMB: 12.2%, PZA: 12.0%). Meanwhile, food increased the time to Cmax (INH: 78.1%, RIF: 151.3%, EMB: 41.4%, PZA: 148.9%). Significantly lower serum drug concentrations were observed under postprandial conditions than fasting conditions for INH, RIF, and PZA. The impact of taking random anti-TB drugs under the DOTS program instead of taking drugs regularly prior to meals requires further study. Copyright © 2014. Published by Elsevier B.V.

  2. Intra-fraction motion of the prostate is a random walk

    NASA Astrophysics Data System (ADS)

    Ballhausen, H.; Li, M.; Hegemann, N.-S.; Ganswindt, U.; Belka, C.

    2015-01-01

    A random walk model for intra-fraction motion has been proposed, where at each step the prostate moves a small amount from its current position in a random direction. Online tracking data from perineal ultrasound is used to validate or reject this model against alternatives. Intra-fraction motion of a prostate was recorded by 4D ultrasound (Elekta Clarity system) during 84 fractions of external beam radiotherapy of six patients. In total, the center of the prostate was tracked for 8 h in intervals of 4 s. Maximum likelihood model parameters were fitted to the data. The null hypothesis of a random walk was tested with the Dickey-Fuller test. The null hypothesis of stationarity was tested by the Kwiatkowski-Phillips-Schmidt-Shin test. The increase of variance in prostate position over time and the variability in motility between fractions were analyzed. Intra-fraction motion of the prostate was best described as a stochastic process with an auto-correlation coefficient of ρ = 0.92  ±  0.13. The random walk hypothesis (ρ = 1) could not be rejected (p = 0.27). The static noise hypothesis (ρ = 0) was rejected (p < 0.001). The Dickey-Fuller test rejected the null hypothesis ρ = 1 in 25% to 32% of cases. On average, the Kwiatkowski-Phillips-Schmidt-Shin test rejected the null hypothesis ρ = 0 with a probability of 93% to 96%. The variance in prostate position increased linearly over time (r2 = 0.9  ±  0.1). Variance kept increasing and did not settle at a maximum as would be expected from a stationary process. There was substantial variability in motility between fractions and patients with maximum aberrations from isocenter ranging from 0.5 mm to over 10 mm in one patient alone. In conclusion, evidence strongly suggests that intra-fraction motion of the prostate is a random walk and neither static (like inter-fraction setup errors) nor stationary (like a cyclic motion such as breathing, for example). The prostate tends to drift away from the isocenter during a fraction, and this variance increases with time, such that shorter fractions are beneficial to the problem of intra-fraction motion. As a consequence, fixed safety margins (which would over-compensate at the beginning and under-compensate at the end of a fraction) cannot optimally account for intra-fraction motion. Instead, online tracking and position correction on-the-fly should be considered as the preferred approach to counter intra-fraction motion.

  3. Local and Global Correlations between Neurons in the Middle Temporal Area of Primate Visual Cortex.

    PubMed

    Solomon, Selina S; Chen, Spencer C; Morley, John W; Solomon, Samuel G

    2015-09-01

    In humans and other primates, the analysis of visual motion includes populations of neurons in the middle-temporal (MT) area of visual cortex. Motion analysis will be constrained by the structure of neural correlations in these populations. Here, we use multi-electrode arrays to measure correlations in anesthetized marmoset, a New World monkey where area MT lies exposed on the cortical surface. We measured correlations in the spike count between pairs of neurons and within populations of neurons, for moving dot fields and moving gratings. Correlations were weaker in area MT than in area V1. The magnitude of correlations in area MT diminished with distance between receptive fields, and difference in preferred direction. Correlations during presentation of moving gratings were stronger than those during presentation of moving dot fields, extended further across cortex, and were less dependent on the functional properties of neurons. Analysis of the timescales of correlation suggests presence of 2 mechanisms. A local mechanism, associated with near-synchronous spiking activity, is strongest in nearby neurons with similar direction preference and is independent of visual stimulus. A global mechanism, operating over larger spatial scales and longer timescales, is independent of direction preference and is modulated by the type of visual stimulus presented. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Atomic motion from the mean square displacement in a monatomic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Duane C.; De Lorenzi-Venneri, Giulia; Chisolm, Eric D.

    V-T theory is constructed in the many-body Hamiltonian formulation, and is being developed as a novel approach to liquid dynamics theory. In this theory the liquid atomic motion consists of two contributions, normal mode vibrations in a single representative potential energy valley, and transits, which carry the system across boundaries between valleys. The mean square displacement time correlation function (the MSD) is a direct measure of the atomic motion, and our goal is to determine if the V-T formalism can produce a physically sensible account of this motion. We employ molecular dynamics (MD) data for a system representing liquid Na,more » and find the motion evolves in three successive time intervals: on the first 'vibrational' interval, the vibrational motion alone gives a highly accurate account of the MD data; on the second 'crossover' interval, the vibrational MSD saturates to a constant while the transit motion builds up from zero; on the third 'random walk' interval, the transit motion produces a purely diffusive random walk of the vibrational equilibrium positions. Furthermore, this motional evolution agrees with, and adds refinement to, the MSD atomic motion as described by current liquid dynamics theories.« less

  5. Atomic motion from the mean square displacement in a monatomic liquid

    DOE PAGES

    Wallace, Duane C.; De Lorenzi-Venneri, Giulia; Chisolm, Eric D.

    2016-04-08

    V-T theory is constructed in the many-body Hamiltonian formulation, and is being developed as a novel approach to liquid dynamics theory. In this theory the liquid atomic motion consists of two contributions, normal mode vibrations in a single representative potential energy valley, and transits, which carry the system across boundaries between valleys. The mean square displacement time correlation function (the MSD) is a direct measure of the atomic motion, and our goal is to determine if the V-T formalism can produce a physically sensible account of this motion. We employ molecular dynamics (MD) data for a system representing liquid Na,more » and find the motion evolves in three successive time intervals: on the first 'vibrational' interval, the vibrational motion alone gives a highly accurate account of the MD data; on the second 'crossover' interval, the vibrational MSD saturates to a constant while the transit motion builds up from zero; on the third 'random walk' interval, the transit motion produces a purely diffusive random walk of the vibrational equilibrium positions. Furthermore, this motional evolution agrees with, and adds refinement to, the MSD atomic motion as described by current liquid dynamics theories.« less

  6. Random walk study of electron motion in helium in crossed electromagnetic fields

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1972-01-01

    Random walk theory, previously adapted to electron motion in the presence of an electric field, is extended to include a transverse magnetic field. In principle, the random walk approach avoids mathematical complexity and concomitant simplifying assumptions and permits determination of energy distributions and transport coefficients within the accuracy of available collisional cross section data. Application is made to a weakly ionized helium gas. Time of relaxation of electron energy distribution, determined by the random walk, is described by simple expressions based on energy exchange between the electron and an effective electric field. The restrictive effect of the magnetic field on electron motion, which increases the required number of collisions per walk to reach a terminal steady state condition, as well as the effect of the magnetic field on electron transport coefficients and mean energy can be quite adequately described by expressions involving only the Hall parameter.

  7. Short-term outcomes of local infiltration anaesthetic in total knee arthroplasty: a randomized controlled double-blinded controlled trial.

    PubMed

    Mulford, Jonathan S; Watson, Anna; Broe, David; Solomon, Michael; Loefler, Andreas; Harris, Ian

    2016-03-01

    The primary objective of the study was to determine if local infiltration anaesthetic (LIA) reduced total length of hospital stay in total knee arthroplasty (TKA) patients. The study also examined whether LIA improves early pain management, patient satisfaction and range of motion in TKA patients. We conducted a randomized controlled double-blinded study. Fifty patients undergoing TKA were randomized to receive either placebo or LIA at the time of surgery and on the first day post-operatively. Pain scores, level of satisfaction and range of motion were recorded preoperatively and post-operatively. There was no statistical difference between the groups for length of stay, post-operative pain scores, satisfaction scores or range of motion 6 weeks post-operatively. This randomized double-blinded trial did not demonstrate a decrease in pain or reduction of length of stay due to local infiltration analgesia. © 2015 Royal Australasian College of Surgeons.

  8. Effects of input device and motion type on a cursor-positioning task.

    PubMed

    Yau, Yi-Jan; Hwang, Sheue-Ling; Chao, Chin-Jung

    2008-02-01

    Many studies have investigated the performance of using nonkey-board input devices under static situations, but few have considered the effects of motion type on manipulating these input devices. In this study comparison of 12 mens' performance using four input devices (three trackballs: currently used, trackman wheel, and erectly held trackballs, as well as a touch screen) under five motion types of static, heave, roll, pitch, and random movements was conducted. The input device and motion type significantly affected movement speed and accuracy, and their interaction significantly affected the movement speed. The touch screen was the fastest but the least accurate input device. The erectly held trackball was the slowest, whereas the error rate of the currently used trackball was the lowest. Impairments of the random motion on movement time and error rate were larger than those of other motion types. Considering objective and subjective evaluations, the trackman wheel and currently used trackball were more efficient in operation than the erectly held trackball and touch screen under the motion environments.

  9. Shape-specific perceptual learning in a figure-ground segregation task.

    PubMed

    Yi, Do-Joon; Olson, Ingrid R; Chun, Marvin M

    2006-03-01

    What does perceptual experience contribute to figure-ground segregation? To study this question, we trained observers to search for symmetric dot patterns embedded in random dot backgrounds. Training improved shape segmentation, but learning did not completely transfer either to untrained locations or to untrained shapes. Such partial specificity persisted for a month after training. Interestingly, training on shapes in empty backgrounds did not help segmentation of the trained shapes in noisy backgrounds. Our results suggest that perceptual training increases the involvement of early sensory neurons in the segmentation of trained shapes, and that successful segmentation requires perceptual skills beyond shape recognition alone.

  10. From empower to Green Dot : successful strategies and lessons learned in developing comprehensive sexual violence primary prevention programming.

    PubMed

    Cook-Craig, Patricia G; Millspaugh, Phyllis H; Recktenwald, Eileen A; Kelly, Natalie C; Hegge, Lea M; Coker, Ann L; Pletcher, Tisha S

    2014-10-01

    This case study describes Kentucky's partnership with the Centers for Disease Control and Prevention (CDC) EMPOWER (Enhancing and Making Programs Work to End Rape) program to enhance the mission and services of existing rape crisis centers to include comprehensive primary prevention programming to reduce rates of sexual violence perpetration. The planning process and the successful implementation of a statewide, 5-year, randomized control trial study of a bystander prevention program (Green Dot), and its evaluation are described. Lessons learned in generating new questions, seeking funding, building relationships and capacity, and disseminating knowledge are presented. © The Author(s) 2014.

  11. Dominant role of many-body effects on the carrier distribution function of quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Peyvast, Negin; Zhou, Kejia; Hogg, Richard A.; Childs, David T. D.

    2016-03-01

    The effects of free-carrier-induced shift and broadening on the carrier distribution function are studied considering different extreme cases for carrier statistics (Fermi-Dirac and random carrier distributions) as well as quantum dot (QD) ensemble inhomogeneity and state separation using a Monte Carlo model. Using this model, we show that the dominant factor determining the carrier distribution function is the free carrier effects and not the choice of carrier statistics. By using empirical values of the free-carrier-induced shift and broadening, good agreement is obtained with experimental data of QD materials obtained under electrical injection for both extreme cases of carrier statistics.

  12. Vestibular Stimulation for ADHD: Randomized Controlled Trial of Comprehensive Motion Apparatus

    ERIC Educational Resources Information Center

    Clark, David L.; Arnold, L. Eugene; Crowl, Lindsay; Bozzolo, Hernan; Peruggia, Mario; Ramadan, Yaser; Bornstein, Robert; Hollway, Jill A.; Thompson, Susan; Malone, Krista; Hall, Kristy L.; Shelton, Sara B.; Bozzolo, Dawn R.; Cook, Amy

    2008-01-01

    Objective: This research evaluates effects of vestibular stimulation by Comprehensive Motion Apparatus (CMA) in ADHD. Method: Children ages 6 to 12 (48 boys, 5 girls) with ADHD were randomized to thrice-weekly 30-min treatments for 12 weeks with CMA, stimulating otoliths and semicircular canals, or a single-blind control of equal duration and…

  13. An Interactive Computer Model for Improved Student Understanding of Random Particle Motion and Osmosis

    ERIC Educational Resources Information Center

    Kottonau, Johannes

    2011-01-01

    Effectively teaching the concepts of osmosis to college-level students is a major obstacle in biological education. Therefore, a novel computer model is presented that allows students to observe the random nature of particle motion simultaneously with the seemingly directed net flow of water across a semipermeable membrane during osmotic…

  14. Open quantum random walks: Bistability on pure states and ballistically induced diffusion

    NASA Astrophysics Data System (ADS)

    Bauer, Michel; Bernard, Denis; Tilloy, Antoine

    2013-12-01

    Open quantum random walks (OQRWs) deal with quantum random motions on a line for systems with internal and orbital degrees of freedom. The internal system behaves as a quantum random gyroscope coding for the direction of the orbital moves. We reveal the existence of a transition, depending on OQRW moduli, in the internal system behaviors from simple oscillations to random flips between two unstable pure states. This induces a transition in the orbital motions from the usual diffusion to ballistically induced diffusion with a large mean free path and large effective diffusion constant at large times. We also show that mixed states of the internal system are converted into random pure states during the process. We touch upon possible experimental realizations.

  15. Energy mechanics of rock and snow avalanches and the role of fragmentation (invited)

    NASA Astrophysics Data System (ADS)

    Bartelt, Perry; Buser, Othmar; Glover, James

    2014-05-01

    The energy mechanics of rock and snow avalanches are traditionally described using a two-step transformation: potential energy is first converted into kinetic energy; kinetic energy is dissipated to heat by frictional processes. If the frictional processes are known, the energy fluxes of avalanches can be calculated completely. The break-up of the released mass, however, introduces several new energy fluxes into the avalanche problem. The first energy is associated with the fragmentation, which generates random particle motions. This is true kinetic energy. Inter-particle interactions (collisions, abrasion, fracture) cause the energy of the random particle motion to dissipate to heat. A constraint on the random motions is the basal boundary. It is at this interface that the dispersive pressure is created by vertical particle motions that are directed upwards into the flow. The integral of the upward particle motions can induce a change in avalanche flow volume and density, depending on the relationship between the weight of the flow and the dispersive pressure. Interestingly, normal pressures will only diverge from hydrostatic when there are changes in flow density. We are therefore confronted with the problem of calculating not only the vertical acceleration of the dispersive pressure, but also the change in vertical acceleration. In this contribution we discuss a method to calculate random particle motions, dispersive pressure and changes in avalanche flow density. These are dependent not only on the absolute mass, but also on the material properties of the disintegrating mass. This becomes particularly interesting when considering the motion of snow and rock avalanches as it allows the prediction of flow regime changes and therefore extreme avalanche run-out potential.

  16. Pattern-projected schlieren imaging method using a diffractive optics element

    NASA Astrophysics Data System (ADS)

    Min, Gihyeon; Lee, Byung-Tak; Kim, Nac Woo; Lee, Munseob

    2018-04-01

    We propose a novel schlieren imaging method by projecting a random dot pattern, which is generated in a light source module that includes a diffractive optical element. All apparatuses are located in the source side, which leads to one-body sensor applications. This pattern is distorted by the deflections of schlieren objects such that the displacement vectors of random dots in the pixels can be obtained using the particle image velocity algorithm. The air turbulences induced by a burning candle, boiling pot, heater, and gas torch were successfully imaged, and it was shown that imaging up to a size of 0.7 m  ×  0.57 m is possible. An algorithm to correct the non-uniform sensitivity according to the position of a schlieren object was analytically derived. This algorithm was applied to schlieren images of lenses. Comparing the corrected versions to the original schlieren images, we showed a corrected uniform sensitivity of 14.15 times on average.

  17. Tuberculosis treatment delivery in high burden settings: does patient choice of supervision matter?

    PubMed

    Kironde, S; Meintjies, M

    2002-07-01

    The Northern Cape Province, Republic of South Africa. To determine the effect of patient choice of treatment delivery option on the treatment outcomes of tuberculosis (TB) patients in a high burden setting under actual programme conditions. Cohort study involving 769 new and retreatment TB patients recruited from 45 randomly selected clinics. Patients were interviewed and subsequent follow-up was done through regular visits to the clinics to check progress through formal health records. There was a statistically significant difference (P < 0.001) between the treatment outcome of new patients (70% successful) and re-treatment patients (54% successful). Direct observation of treatment (DOT) was found to have no effect on the treatment outcome of new patients (P = 0.875), but re-treatment patients were found to fare better with than without DOT (OR 14.2, 95% CI 4.18-53.14, P < 0.001). The results obtained for new patients are similar to those of two recent randomised controlled trials on DOT. This study revealed that for new patients, undue emphasis on universal DOT might be unnecessary. It would perhaps be more beneficial to target supervision at those patients who are most likely to benefit from it (i.e., re-treatment patients). This is of particular relevance in high burden, resource-limited settings where universal DOT for all TB patients is generally unfeasible.

  18. Physiological responses to cold (10° C) in men after six months' practice of yoga exercises

    NASA Astrophysics Data System (ADS)

    Selvamurthy, W.; Ray, U. S.; Hegde, K. S.; Sharma, R. P.

    1988-09-01

    A study was conducted on 30 healthy soldiers (age: 40 46 years) to assess the effect of selected yogic exercises (asanas) on some physiological responses to cold exposure. They were randomly divided into two groups of 15 each. One group performed regular physical exercises of physical training (PT), while the other group practised yogic exercises. At the end of 6 months of training, both the groups were exposed together to cold stress at 10°C for 2 h, and the following parameters were periodically monitored during cold exposure: heart rate ( fH), blood pressure ( BP), cardiac output(dot Q_c ), oral temperature (Tor), skin temperature ( T sk), respiratory rate ( fR), minute ventilation(dot V_E ), oxygen consumption(dot V_{O_2 } ), and shivering response by integrated electromyogram (EMG). There were progressive increases in BP, fR,dot V_E ,dot V_{O_2 } , anddot Q_c and decreases in fH, T or and T sk during cold exposure in both the groups. However, the decrease in T or and the increases indot V_{O_2 } anddot V_E were relatively lower ( P<0.01) in the yoga group as compared to the PT group. The shivering response appeared much earlier and was more intense in the PT group. These findings suggest that practice of yoga exercises may improve cold tolerance.

  19. Effects of lightweight outdoor clothing on the prevention of hypothermia during low-intensity exercise in the cold.

    PubMed

    Burtscher, Martin; Kofler, Philipp; Gatterer, Hannes; Faulhaber, Martin; Philippe, Marc; Fischer, Kathrin; Walther, Rebekka; Herten, Anne

    2012-11-01

    To study protective effects of windbreaker jacket and pants during exercise in the cold. Randomized pilot study. Climate chamber. Nine well-trained (V[Combining Dot Above]O2max 61.7 ± 6.6 mL/min/kg) sport students (6 male and 3 female participants). Subjects started walking for 1 hour in a climate chamber (0°C ambient temperature and wind speed of 10 km/h) at 70% V[Combining Dot Above]O2max wearing gloves, a T-shirt, and shorts. Then, the walking speed was reduced to 30% V[Combining Dot Above]O2max for an additional 60 minutes or until core temperature dropped below 35.5°C. Subsequently, 3 groups of 3 participants continued walking without change of clothing or obtaining additionally a cap and a windbreaker jacket or windbreaker jacket and pants. Core and skin temperature, thermal comfort. The main findings of this study were that exercising at 70% V[Combining Dot Above]O2max in the cold was sufficient to prevent hypothermia and that during low-intensity exercise (30% V[Combining Dot Above]O2max), the combined use of a polyester cap, lightweight windbreaker jacket, and pants was necessary to increase a prehypothermic core temperature. We strongly recommend taking a cap, windbreaker jacket, and pants for the prevention of hypothermia during exhaustive walking or running in cold weather conditions.

  20. Visual preference for isochronic movement does not necessarily emerge from movement kinematics: a challenge for the motor simulation theory.

    PubMed

    Bidet-Ildei, Christel; Méary, David; Orliaguet, Jean-Pierre

    2008-01-17

    The aim of this experiment was to show that the visual preference for isochronic movements does not necessarily imply a motor simulation and therefore, does not depend on the kinematics of the perceived movement. To demonstrate this point, the participants' task was to adjust the velocity (the period) of a dot that depicted an elliptic motion with different perimeters (from 3 to 60 cm). The velocity profile of the movement conformed ("natural motions") or not ("unnatural motions") to the law of co-variation velocity-curvature (two-thirds power law), which is usually observed in the production of elliptic movements. For each condition, we evaluated the isochrony principle, i.e., the tendency to prefer constant durations of movement irrespective to changes in the trajectory perimeter. Our findings indicate that isochrony principle was observed whatever the kinematics of the movement (natural or unnatural). Therefore, they suggest that the perceptive preference for isochronic movements does not systematically imply a motor simulation.

  1. Quantitative analysis of random ameboid motion

    NASA Astrophysics Data System (ADS)

    Bödeker, H. U.; Beta, C.; Frank, T. D.; Bodenschatz, E.

    2010-04-01

    We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not.

  2. Travelling Randomly on the Poincaré Half-Plane with a Pythagorean Compass

    NASA Astrophysics Data System (ADS)

    Cammarota, V.; Orsingher, E.

    2008-02-01

    A random motion on the Poincaré half-plane is studied. A particle runs on the geodesic lines changing direction at Poisson-paced times. The hyperbolic distance is analyzed, also in the case where returns to the starting point are admitted. The main results concern the mean hyperbolic distance (and also the conditional mean distance) in all versions of the motion envisaged. Also an analogous motion on orthogonal circles of the sphere is examined and the evolution of the mean distance from the starting point is investigated.

  3. An improved P300 pattern in BCI to catch user’s attention

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej

    2017-06-01

    Objective. Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. Approach. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. Main results. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p  <  0.05) compared to the honeycomb-shaped stimulus without red dots. Significance. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.

  4. An improved P300 pattern in BCI to catch user's attention.

    PubMed

    Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej

    2017-06-01

    Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p  <  0.05) compared to the honeycomb-shaped stimulus without red dots. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.

  5. Phantom motion after effects--evidence of detectors for the analysis of optic flow.

    PubMed

    Snowden, R J; Milne, A B

    1997-10-01

    Electrophysiological recording from the extrastriate cortex of non-human primates has revealed neurons that have large receptive fields and are sensitive to various components of object or self movement, such as translations, rotations and expansion/contractions. If these mechanisms exist in human vision, they might be susceptible to adaptation that generates motion aftereffects (MAEs). Indeed, it might be possible to adapt the mechanism in one part of the visual field and reveal what we term a 'phantom MAE' in another part. The existence of phantom MAEs was probed by adapting to a pattern that contained motion in only two non-adjacent 'quarter' segments and then testing using patterns that had elements in only the other two segments. We also tested for the more conventional 'concrete' MAE by testing in the same two segments that had adapted. The strength of each MAE was quantified by measuring the percentage of dots that had to be moved in the opposite direction to the MAE in order to nullify it. Four experiments tested rotational motion, expansion/contraction motion, translational motion and a 'rotation' that consisted simply of the two segments that contained only translational motions of opposing direction. Compared to a baseline measurement where no adaptation took place, all subjects in all experiments exhibited both concrete and phantom MAEs, with the size of the latter approximately half that of the former. Adaptation to two segments that contained upward and downward motion induced the perception of leftward and rightward motion in another part of the visual field. This strongly suggests there are mechanisms in human vision that are sensitive to complex motions such as rotations.

  6. Forward to the past

    PubMed Central

    Carlini, Alessandro; Actis-Grosso, Rossana; Stucchi, Natale; Pozzo, Thierry

    2012-01-01

    Our daily experience shows that the CNS is a highly efficient machine to predict the effect of actions into the future; are we so efficient also in reconstructing the past of an action? Previous studies demonstrated we are more effective in extrapolating the final position of a stimulus moving according to biological kinematic laws. Here we address the complementary question: are we more effective in extrapolating the starting position (SP) of a motion following a biological velocity profile? We presented a dot moving upward and corresponding to vertical arm movements that were masked in the first part of the trajectory. The stimulus could either move according to biological or non-biological kinematic laws of motion. Results show a better efficacy in reconstructing the SP of a natural motion: participants demonstrate to reconstruct coherently only the SP of the biological condition. When the motion violates the biological kinematic law, responses are scattered and show a tendency toward larger errors. Instead, in a control experiment where the full motions were displayed, no-difference between biological and non-biological motions is found. Results are discussed in light of potential mechanisms involved in visual inference. We propose that as soon as the target appears the cortical motor area would generate an internal representation of reaching movement. When the visual input and the stored kinematic template match, the SP is traced back on the basis of this memory template, making more effective the SP reconstruction. PMID:22712012

  7. Random Walks in a One-Dimensional Lévy Random Environment

    NASA Astrophysics Data System (ADS)

    Bianchi, Alessandra; Cristadoro, Giampaolo; Lenci, Marco; Ligabò, Marilena

    2016-04-01

    We consider a generalization of a one-dimensional stochastic process known in the physical literature as Lévy-Lorentz gas. The process describes the motion of a particle on the real line in the presence of a random array of marked points, whose nearest-neighbor distances are i.i.d. and long-tailed (with finite mean but possibly infinite variance). The motion is a continuous-time, constant-speed interpolation of a symmetric random walk on the marked points. We first study the quenched random walk on the point process, proving the CLT and the convergence of all the accordingly rescaled moments. Then we derive the quenched and annealed CLTs for the continuous-time process.

  8. Orientation tuning of contrast masking caused by motion streaks.

    PubMed

    Apthorp, Deborah; Cass, John; Alais, David

    2010-08-01

    We investigated whether the oriented trails of blur left by fast-moving dots (i.e., "motion streaks") effectively mask grating targets. Using a classic overlay masking paradigm, we varied mask contrast and target orientation to reveal underlying tuning. Fast-moving Gaussian blob arrays elevated thresholds for detection of static gratings, both monoptically and dichoptically. Monoptic masking at high mask (i.e., streak) contrasts is tuned for orientation and exhibits a similar bandwidth to masking functions obtained with grating stimuli (∼30 degrees). Dichoptic masking fails to show reliable orientation-tuned masking, but dichoptic masks at very low contrast produce a narrowly tuned facilitation (∼17 degrees). For iso-oriented streak masks and grating targets, we also explored masking as a function of mask contrast. Interestingly, dichoptic masking shows a classic "dipper"-like TVC function, whereas monoptic masking shows no dip and a steeper "handle". There is a very strong unoriented component to the masking, which we attribute to transiently biased temporal frequency masking. Fourier analysis of "motion streak" images shows interesting differences between dichoptic and monoptic functions and the information in the stimulus. Our data add weight to the growing body of evidence that the oriented blur of motion streaks contributes to the processing of fast motion signals.

  9. Pitch body orientation influences the perception of self-motion direction induced by optic flow.

    PubMed

    Bourrelly, A; Vercher, J-L; Bringoux, L

    2010-10-04

    We studied the effect of static pitch body tilts on the perception of self-motion direction induced by a visual stimulus. Subjects were seated in front of a screen on which was projected a 3D cluster of moving dots visually simulating a forward motion of the observer with upward or downward directional biases (relative to a true earth horizontal direction). The subjects were tilted at various angles relative to gravity and were asked to estimate the direction of the perceived motion (nose-up, as during take-off or nose-down, as during landing). The data showed that body orientation proportionally affected the amount of error in the reported perceived direction (by 40% of body tilt magnitude in a range of +/-20 degrees) and these errors were systematically recorded in the direction of body tilt. As a consequence, a same visual stimulus was differently interpreted depending on body orientation. While the subjects were required to perform the task in a geocentric reference frame (i.e., relative to a gravity-related direction), they were obviously influenced by egocentric references. These results suggest that the perception of self-motion is not elaborated within an exclusive reference frame (either egocentric or geocentric) but rather results from the combined influence of both. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Coherent motion threshold measurements for M-cell deficit differ for above- and below-average readers.

    PubMed

    Solan, Harold A; Hansen, Peter C; Shelley-Tremblay, John; Ficarra, Anthony

    2003-11-01

    Research during the past 20 years has influenced the management of diagnosis and treatment of children identified as having learning-related vision problems. The intent of this study is to determine whether coherent motion threshold testing can distinguish better-than-average non-disabled (ND) readers from those who are moderately reading disabled (RD) among sixth-grade students. A sample of 23 better-than-average non-disabled readers (> or = 80th percentile) and 27 moderately disabled readers (< or = 32nd percentile) were identified using a standardized reading comprehension test. Each participant was tested for coherent motion threshold. Previous psychophysical and fMRI research with adults suggests that coherent motion threshold is a valid measure of magnocellular (M-cell) integrity. The average of two coherent motion threshold trials was significantly greater for moderately reading disabled subjects than for above-average readers (p < 0.01). The mean threshold percentage of dots required to observe lateral motion was 9.2% for moderately reading disabled readers and 4.6% for superior readers (p = 0.001). The outcome of this preliminary study provides an efficient procedure to identify sixth-grade students whose reading disability may be associated with an M-cell deficit. Our previous investigations involving visual processing, visual attention, and oculomotor therapy have resulted in significant improvements in reading comprehension, visual attention, and eye movements. It remains to be demonstrated whether vision therapy has an impact on the M-cell deficit, as measured with coherent motion threshold testing for moderately disabled readers.

  11. A Randomized Controlled Trial of Lorazepam to Reduce Liver Motion in Patients Receiving Upper Abdominal Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, Derek S.; Voncken, Francine E.M.; Tse, Regina V.

    2013-12-01

    Purpose: Reduction of respiratory motion is desirable to reduce the volume of normal tissues irradiated, to improve concordance of planned and delivered doses, and to improve image guided radiation therapy (IGRT). We hypothesized that pretreatment lorazepam would lead to a measurable reduction of liver motion. Methods and Materials: Thirty-three patients receiving upper abdominal IGRT were recruited to a double-blinded randomized controlled crossover trial. Patients were randomized to 1 of 2 study arms: arm 1 received lorazepam 2 mg by mouth on day 1, followed by placebo 4 to 8 days later; arm 2 received placebo on day 1, followed bymore » lorazepam 4 to 8 days later. After tablet ingestion and daily radiation therapy, amplitude of liver motion was measured on both study days. The primary outcomes were reduction in craniocaudal (CC) liver motion using 4-dimensional kV cone beam computed tomography (CBCT) and the proportion of patients with liver motion ≤5 mm. Secondary endpoints included motion measured with cine magnetic resonance imaging and kV fluoroscopy. Results: Mean relative and absolute reduction in CC amplitude with lorazepam was 21% and 2.5 mm respectively (95% confidence interval [CI] 1.1-3.9, P=.001), as assessed with CBCT. Reduction in CC amplitude to ≤5 mm residual liver motion was seen in 13% (95% CI 1%-25%) of patients receiving lorazepam (vs 10% receiving placebo, P=NS); 65% (95% CI 48%-81%) had reduction in residual CC liver motion to ≤10 mm (vs 52% with placebo, P=NS). Patients with large respiratory movement and patients who took lorazepam ≥60 minutes before imaging had greater reductions in liver CC motion. Mean reductions in liver CC amplitude on magnetic resonance imaging and fluoroscopy were nonsignificant. Conclusions: Lorazepam reduces liver motion in the CC direction; however, average magnitude of reduction is small, and most patients have residual motion >5 mm.« less

  12. Long-Term Safety of Repeated Blood-Brain Barrier Opening via Focused Ultrasound with Microbubbles in Non-Human Primates Performing a Cognitive Task.

    PubMed

    Downs, Matthew E; Buch, Amanda; Sierra, Carlos; Karakatsani, Maria Eleni; Teichert, Tobias; Chen, Shangshang; Konofagou, Elisa E; Ferrera, Vincent P

    2015-01-01

    Focused Ultrasound (FUS) coupled with intravenous administration of microbubbles (MB) is a non-invasive technique that has been shown to reliably open (increase the permeability of) the blood-brain barrier (BBB) in multiple in vivo models including non-human primates (NHP). This procedure has shown promise for clinical and basic science applications, yet the safety and potential neurological effects of long term application in NHP requires further investigation under parameters shown to be efficacious in that species (500 kHz, 200-400 kPa, 4-5 μm MB, 2 minute sonication). In this study, we repeatedly opened the BBB in the caudate and putamen regions of the basal ganglia of 4 NHP using FUS with systemically-administered MB over 4-20 months. We assessed the safety of the FUS with MB procedure using MRI to detect edema or hemorrhaging in the brain. Contrast enhanced T1-weighted MRI sequences showed a 98% success rate for openings in the targeted regions. T2-weighted and SWI sequences indicated a lack edema in the majority of the cases. We investigated potential neurological effects of the FUS with MB procedure through quantitative cognitive testing of' visual, cognitive, motivational, and motor function using a random dot motion task with reward magnitude bias presented on a touchpanel display. Reaction times during the task significantly increased on the day of the FUS with MB procedure. This increase returned to baseline within 4-5 days after the procedure. Visual motion discrimination thresholds were unaffected. Our results indicate FUS with MB can be a safe method for repeated opening of the BBB at the basal ganglia in NHP for up to 20 months without any long-term negative physiological or neurological effects with the parameters used.

  13. Accurate Visual Heading Estimation at High Rotation Rate Without Oculomotor or Static-Depth Cues

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Perrone, John A.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    It has been claimed that either oculomotor or static depth cues provide the signals about self-rotation necessary approx.-1 deg/s. We tested this hypothesis by simulating self-motion along a curved path with the eyes fixed in the head (plus or minus 16 deg/s of rotation). Curvilinear motion offers two advantages: 1) heading remains constant in retinotopic coordinates, and 2) there is no visual-oculomotor conflict (both actual and simulated eye position remain stationary). We simulated 400 ms of rotation combined with 16 m/s of translation at fixed angles with respect to gaze towards two vertical planes of random dots initially 12 and 24 m away, with a field of view of 45 degrees. Four subjects were asked to fixate a central cross and to respond whether they were translating to the left or right of straight-ahead gaze. From the psychometric curves, heading bias (mean) and precision (semi-interquartile) were derived. The mean bias over 2-5 runs was 3.0, 4.0, -2.0, -0.4 deg for the first author and three naive subjects, respectively (positive indicating towards the rotation direction). The mean precision was 2.0, 1.9, 3.1, 1.6 deg. respectively. The ability of observers to make relatively accurate and precise heading judgments, despite the large rotational flow component, refutes the view that extra-flow-field information is necessary for human visual heading estimation at high rotation rates. Our results support models that process combined translational/rotational flow to estimate heading, but should not be construed to suggest that other cues do not play an important role when they are available to the observer.

  14. Evidence accumulation in obsessive-compulsive disorder: the role of uncertainty and monetary reward on perceptual decision-making thresholds.

    PubMed

    Banca, Paula; Vestergaard, Martin D; Rankov, Vladan; Baek, Kwangyeol; Mitchell, Simon; Lapa, Tatyana; Castelo-Branco, Miguel; Voon, Valerie

    2015-03-13

    The compulsive behaviour underlying obsessive-compulsive disorder (OCD) may be related to abnormalities in decision-making. The inability to commit to ultimate decisions, for example, patients unable to decide whether their hands are sufficiently clean, may reflect failures in accumulating sufficient evidence before a decision. Here we investigate the process of evidence accumulation in OCD in perceptual discrimination, hypothesizing enhanced evidence accumulation relative to healthy volunteers. Twenty-eight OCD patients and thirty-five controls were tested with a low-level visual perceptual task (random-dot-motion task, RDMT) and two response conflict control tasks. Regression analysis across different motion coherence levels and Hierarchical Drift Diffusion Modelling (HDDM) were used to characterize response strategies between groups in the RDMT. Patients required more evidence under high uncertainty perceptual contexts, as indexed by longer response time and higher decision boundaries. HDDM, which defines a decision when accumulated noisy evidence reaches a decision boundary, further showed slower drift rate towards the decision boundary reflecting poorer quality of evidence entering the decision process in patients under low uncertainty. With monetary incentives emphasizing speed and penalty for slower responses, patients decreased the decision thresholds relative to controls, accumulating less evidence in low uncertainty. These findings were unrelated to visual perceptual deficits and response conflict. This study provides evidence for impaired decision-formation processes in OCD, with a differential influence of high and low uncertainty contexts on evidence accumulation (decision threshold) and on the quality of evidence gathered (drift rates). It further emphasizes that OCD patients are sensitive to monetary incentives heightening speed in the speed-accuracy tradeoff, improving evidence accumulation.

  15. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle.

    PubMed

    Hong, Feng; Brizendine, Richard K; Carter, Michael S; Alcala, Diego B; Brown, Avery E; Chattin, Amy M; Haldeman, Brian D; Walsh, Michael P; Facemyer, Kevin C; Baker, Josh E; Cremo, Christine R

    2015-10-01

    Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle. © 2015 Hong et al.

  16. Primordial random motions and angular momenta of galaxies and galaxy clusters.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Lea, S.

    1973-01-01

    We study the decay of primordial random motions of galaxies and galaxy clusters in an expanding universe by solving a kinetic equation for the relaxation of differential energy spectra N(E, t). Systematic dissipative energy losses are included, involving gravitational drag by, and accretion of, intergalactic matter, as well as the effect of collisions with other systems. Formal and numerical solutions are described for two distinct modes of galaxy formation in a turbulent medium, corresponding to formation at a distinct epoch and to continuous formation of galaxies. We show that any primordial random motions of galaxies at the present epoch can amount to at most a few km/sec, and that collisions at early epochs can lead to the acquisition of significant amounts of primordial angular momentum.

  17. Egocentric and Allocentric Localization During Induced Motion

    PubMed Central

    Post, Robert B.; Welch, Robert B.; Whitney, David

    2009-01-01

    This research examined motor measures of the apparent egocentric location and perceptual measures of the apparent allocentric location of a target that was being seen to undergo induced motion (IM). In Experiments 1 and 3, subjects fixated a stationary dot (IM target) while a rectangular surround stimulus (inducing stimulus) oscillated horizontally. The inducing stimulus motion caused the IM target to appear to move in the opposite direction. In Experiment 1, two dots (flashed targets) were flashed above and below the IM target when the surround had reached its leftmost or rightmost displacement from the subject’s midline. Subjects pointed open loop at either the apparent egocentric location of the IM target or at the bottom of the two flashed targets. On separate trials, subjects made judgments of the Vernier alignment of the IM target with the flashed targets at the endpoints of the surround’s oscillation. The pointing responses were displaced in the direction of the previously seen IM for the IM target and to a lesser degree for the bottom flashed target. However, the allocentric Vernier judgments demonstrated no perceptual displacement of the IM target relative to the flashed targets. Thus, IM results in a dissociation of egocentric location measures from allocentric location measures. In Experiment 2, pointing and Vernier measures were obtained with stationary horizontally displaced surrounds and there was no dissociation of egocentric location measures from allocentric location measures. These results indicate that the Roelofs effect did not produce the pattern of results in Experiment 1. In Experiment 3, pointing and Vernier measures were obtained when the surround was at the midpoint of an oscillation. In this case, egocentric pointing responses were displaced in the direction of surround motion (opposite IM) for the IM target and to a greater degree for the bottom flashed target. However, there was no apparent displacement of the IM target relative to the flashed targets in the allocentric Vernier judgments. Therefore, in Experiment 3 egocentric location measures were again dissociated from allocentric location measures. The results of this experiment also demonstrate that IM does not generate an allocentric displacement illusion analogous to the “flash-lag” effect. PMID:18751688

  18. Markov stochasticity coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliazar, Iddo, E-mail: iddo.eliazar@intel.com

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  19. Motion Among Random Obstacles on a Hyperbolic Space

    NASA Astrophysics Data System (ADS)

    Orsingher, Enzo; Ricciuti, Costantino; Sisti, Francesco

    2016-02-01

    We consider the motion of a particle along the geodesic lines of the Poincaré half-plane. The particle is specularly reflected when it hits randomly-distributed obstacles that are assumed to be motionless. This is the hyperbolic version of the well-known Lorentz Process studied in the Euclidean context. We analyse the limit in which the density of the obstacles increases to infinity and the size of each obstacle vanishes: under a suitable scaling, we prove that our process converges to a Markovian process, namely a random flight on the hyperbolic manifold.

  20. The effects of enhanced hexapod motion on airline pilot recurrent training and evaluation

    DOT National Transportation Integrated Search

    2003-08-13

    A quasi-transfer experiment tested the effect of : simulator motion on recurrent evaluation and training : of airline pilots. Two groups of twenty B747-400 pilots : were randomly assigned to a flight simulator with or : without platform motion. In th...

  1. Motion control of the rabbit ankle joint with a flat interface nerve electrode.

    PubMed

    Park, Hyun-Joo; Durand, Dominique M

    2015-12-01

    A flat interface nerve electrode (FINE) has been shown to improve fascicular and subfascicular selectivity. A recently developed novel control algorithm for FINE was applied to motion control of the rabbit ankle. A 14-contact FINE was placed on the rabbit sciatic nerve (n = 8), and ankle joint motion was controlled for sinusoidal trajectories and filtered random trajectories. To this end, a real-time controller was implemented with a multiple-channel current stimulus isolator. The performance test results showed good tracking performance of rabbit ankle joint motion for filtered random trajectories and sinusoidal trajectories (0.5 Hz and 1.0 Hz) with <10% average root-mean-square (RMS) tracking error, whereas the average range of ankle joint motion was between -20.0 ± 9.3° and 18.1 ± 8.8°. The proposed control algorithm enables the use of a multiple-contact nerve electrode for motion trajectory tracking control of musculoskeletal systems. © 2015 Wiley Periodicals, Inc.

  2. The effect of talocrural joint manipulation on range of motion at the ankle.

    PubMed

    Fryer, Gary A; Mudge, Jacob M; McLaughlin, Patrick A

    2002-01-01

    To determine whether a single high-velocity, low-amplitude thrust manipulation to the talocrural joint altered ankle range of motion. A randomized, controlled and blinded study. Asymptomatic male and female volunteers (N = 41). Subjects were randomly assigned into either an experimental group (n = 20) or a control group (n = 21). Both ankles of subjects in the experimental group were manipulated by using a single high-velocity, low-amplitude thrust to the talocrural joint. Pretest and posttest measurements of passive dorsiflexion range of motion were taken. No significant changes in dorsiflexion range of motion were detected between manipulated ankles and those of control subjects. A significantly greater pretest dorsiflexion range of motion existed in those ankles in which manipulation produced an audible cavitation. Manipulation of the ankle does not increase dorsiflexion range of motion in asymptomatic subjects. Ankles that displayed a greater pretest range of dorsiflexion were more likely to cavitate, raising the possibility that ligament laxity may be associated with the tendency for ankles to cavitate.

  3. Do motion controllers make action video games less sedentary? A randomized experiment.

    PubMed

    Lyons, Elizabeth J; Tate, Deborah F; Ward, Dianne S; Ribisl, Kurt M; Bowling, J Michael; Kalyanaraman, Sriram

    2012-01-01

    Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg(-1) · hr(-1)) produced 0.10 kcal · kg(-1) · hr(-1) (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg(-1) · hr(-1), P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior.

  4. Do Motion Controllers Make Action Video Games Less Sedentary? A Randomized Experiment

    PubMed Central

    Lyons, Elizabeth J.; Tate, Deborah F.; Ward, Dianne S.; Ribisl, Kurt M.; Bowling, J. Michael; Kalyanaraman, Sriram

    2012-01-01

    Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg−1 · hr−1) produced 0.10 kcal · kg−1 · hr−1 (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg−1 · hr−1, P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior. PMID:22028959

  5. Spatial filtering precedes motion detection.

    PubMed

    Morgan, M J

    1992-01-23

    When we perceive motion on a television or cinema screen, there must be some process that allows us to track moving objects over time: if not, the result would be a conflicting mass of motion signals in all directions. A possible mechanism, suggested by studies of motion displacement in spatially random patterns, is that low-level motion detectors have a limited spatial range, which ensures that they tend to be stimulated over time by the same object. This model predicts that the direction of displacement of random patterns cannot be detected reliably above a critical absolute displacement value (Dmax) that is independent of the size or density of elements in the display. It has been inferred that Dmax is a measure of the size of motion detectors in the visual pathway. Other studies, however, have shown that Dmax increases with element size, in which case the most likely interpretation is that Dmax depends on the probability of false matches between pattern elements following a displacement. These conflicting accounts are reconciled here by showing that Dmax is indeed determined by the spacing between the elements in the pattern, but only after fine detail has been removed by a physiological prefiltering stage: the filter required to explain the data has a similar size to the receptive field of neurons in the primate magnocellular pathway. The model explains why Dmax can be increased by removing high spatial frequencies from random patterns, and simplifies our view of early motion detection.

  6. Constraints on Decreases in Eta Carinae's Mass-loss from 3D Hydrodynamic Simulations of Its Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Madura, T. I.; Gull, T. R.; Okazaki, A. T.; Russell, C. M. P.; Owocki, S. P.; Groh, J. H.; Corcoran, M. F.; Hamaguchi, K.; Teodoro, M.

    2013-01-01

    Recent work suggests that the mass-loss rate of the primary star Eta-A in the massive colliding wind binary Eta Carinae dropped by a factor of 2-3 between 1999 and 2010. We present result from large- (+/- 1545 au) and small- (+/- 155 au) domain, 3D smoothed particle hydrodynamics (SPH) simulations of Eta Car's colliding winds for three Eta-A mass-loss rates ( (dot-M(sub Eta-A) = 2.4, 4.8 and 8.5 × 10(exp -4) M(solar)/ yr), investigating the effects on the dynamics of the binary wind-wind collision (WWC). These simulations include orbital motion, optically thin radiative cooling and radiative forces. We find that dot-M Eta-A greatly affects the time-dependent hydrodynamics at all spatial scales investigated. The simulations also show that the post-shock wind of the companion star Eta-B switches from the adiabatic to the radiative-cooling regime during periastron passage (Phi approx.= 0.985-1.02). This switchover starts later and ends earlier the lower the value of dot-M Eta-A and is caused by the encroachment of the wind of Eta-A into the acceleration zone of Eta-B's wind, plus radiative inhibition of Eta-B's wind by Eta-A. The SPH simulations together with 1D radiative transfer models of Eta-A's spectra reveal that a factor of 2 or more drop in dot-M EtaA should lead to substantial changes in numerous multiwavelength observables. Recent observations are not fully consistent with the model predictions, indicating that any drop in dot- M Eta-A was likely by a factor of approx. < 2 and occurred after 2004. We speculate that most of the recent observed changes in Eta Car are due to a small increase in the WWC opening angle that produces significant effects because our line of sight to the system lies close to the dense walls of the WWC zone. A modest decrease in dot-M Eta-A may be responsible, but changes in the wind/stellar parameter of Eta-B, while less likely, cannot yet be fully ruled out. We suggest observations during Eta-Car's next periastron in 2014 to further test for decreases in dot-M Eta-A. If dot-M Eta-A is declining and continues to do so, the 2014 X-ray minimum should be even shorter than that of 2009.

  7. Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet

    DOE PAGES

    Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale; ...

    2016-10-03

    The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less

  8. Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale

    The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less

  9. Processing Motion Signals in Complex Environments

    NASA Technical Reports Server (NTRS)

    Verghese, Preeti

    2000-01-01

    Motion information is critical for human locomotion and scene segmentation. Currently we have excellent neurophysiological models that are able to predict human detection and discrimination of local signals. Local motion signals are insufficient by themselves to guide human locomotion and to provide information about depth, object boundaries and surface structure. My research is aimed at understanding the mechanisms underlying the combination of motion signals across space and time. A target moving on an extended trajectory amidst noise dots in Brownian motion is much more detectable than the sum of signals generated by independent motion energy units responding to the trajectory segments. This result suggests that facilitation occurs between motion units tuned to similar directions, lying along the trajectory path. We investigated whether the interaction between local motion units along the motion direction is mediated by contrast. One possibility is that contrast-driven signals from motion units early in the trajectory sequence are added to signals in subsequent units. If this were the case, then units later in the sequence would have a larger signal than those earlier in the sequence. To test this possibility, we compared contrast discrimination thresholds for the first and third patches of a triplet of sequentially presented Gabor patches, aligned along the motion direction. According to this simple additive model, contrast increment thresholds for the third patch should be higher than thresholds for the first patch.The lack of a measurable effect on contrast thresholds for these various manipulations suggests that the pooling of signals along a trajectory is not mediated by contrast-driven signals. Instead, these results are consistent with models that propose that the facilitation of trajectory signals is achieved by a second-level network that chooses the strongest local motion signals and combines them if they occur in a spatio-temporal sequence consistent with a trajectory. These results parallel the lack of increased apparent contrast along a static contour made up of similarly oriented elements.

  10. Preliminary constraints on the location of the recently hypothesized new planet of the Solar System from planetary orbital dynamics

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2017-01-01

    It has been recently proposed that the observed grouping of either the perihelia and the orbital planes of some observed distant Kuiper Belt Objects (KBOs) can be explained by the shepherding influence of a remote (150 au≲ qX≲350 au), still unseen massive object PX having planetary size (5 m_{oplus} ≲ mX≲20 m_{oplus}) and moving along an ecliptically inclined (22 deg≲ IX≲ 40 deg), eccentric (380 au≲ aX ≲980 au) Heliocentric bound orbit located in space at 80 deg≲ΩX≲120 deg and which is anti-aligned (120 deg≲ω_{ X}≲160 deg) with those of the considered KBOs. The trajectory of Saturn is nowadays known at essentially the same accuracy level of the inner planets due to the telemetry of the Cassini spacecraft. Thus, the expected perturbations dot{π}, dot{Ω} due to PX on the Kronian apsidal and draconitic orbital motions are theoretically investigated to tentatively constrain the configuration space of PX itself. To this aim, we compare our predictions dot{π}_{theo}, dot{Ω}_{theo} to the currently available experimental intervals of values Δdot{Ω}_{obs}, Δdot{π}_{ obs} determined by astronomers in the recent past without explicitly modeling and solving for PX itself. As such, our results, despite being plausible and in agreement to a large extent with other constraints released in the literature, should be regarded as proof-of-principle investigations aimed to encourage more accurate analyses in future. It turns out that the admissible region in its configuration space is moderately narrow as far as its position along its orbit, reckoned by the true anomaly fX, is concerned, being concentrated around approximately 130 deg≲ f X≲240 deg. PX is certainly far from its perihelion (fX=0 deg), in agreement with other recent studies. The future analysis of the data from the ongoing New Horizons mission might be helpful in further constraining the scenario considered here for PX. Its impact on the spacecraft's range over a multi-year span is investigated with a preliminary sensitivity analysis.

  11. Superlattices: problems and new opportunities, nanosolids

    PubMed Central

    2011-01-01

    Superlattices were introduced 40 years ago as man-made solids to enrich the class of materials for electronic and optoelectronic applications. The field metamorphosed to quantum wells and quantum dots, with ever decreasing dimensions dictated by the technological advancements in nanometer regime. In recent years, the field has gone beyond semiconductors to metals and organic solids. Superlattice is simply a way of forming a uniform continuum for whatever purpose at hand. There are problems with doping, defect-induced random switching, and I/O involving quantum dots. However, new opportunities in component-based nanostructures may lead the field of endeavor to new heights. The all important translational symmetry of solids is relaxed and local symmetry is needed in nanosolids. PMID:21711653

  12. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy

    PubMed Central

    Guo, Ming; Ehrlicher, Allen J.; Jensen, Mikkel H.; Renz, Malte; Moore, Jeffrey R.; Goldman, Robert D.; Lippincott-Schwartz, Jennifer; Mackintosh, Frederick C.; Weitz, David A.

    2014-01-01

    SUMMARY Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, non-thermal motion. Here we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states. PMID:25126787

  13. Parallel search for conjunctions with stimuli in apparent motion.

    PubMed

    Casco, C; Ganis, G

    1999-01-01

    A series of experiments was conducted to determine whether apparent motion tends to follow the similarity rule (i.e. is attribute-specific) and to investigate the underlying mechanism. Stimulus duration thresholds were measured during a two-alternative forced-choice task in which observers detected either the location or the motion direction of target groups defined by the conjunction of size and orientation. Target element positions were randomly chosen within a nominally defined rectangular subregion of the display (target region). The target region was presented either statically (followed by a 250 ms duration mask) or dynamically, displaced by a small distance (18 min of arc) from frame to frame. In the motion display, the position of both target and background elements was changed randomly from frame to frame within the respective areas to abolish spatial correspondence over time. Stimulus duration thresholds were lower in the motion than in the static task, indicating that target detection in the dynamic condition does not rely on the explicit identification of target elements in each static frame. Increasing the distractor-to-target ratio was found to reduce detectability in the static, but not in the motion task. This indicates that the perceptual segregation of the target is effortless and parallel with motion but not with static displays. The pattern of results holds regardless of the task or search paradigm employed. The detectability in the motion condition can be improved by increasing the number of frames and/or by reducing the width of the target area. Furthermore, parallel search in the dynamic condition can be conducted with both short-range and long-range motion stimuli. Finally, apparent motion of conjunctions is insufficient on its own to support location decision and is disrupted by random visual noise. Overall, these findings show that (i) the mechanism underlying apparent motion is attribute-specific; (ii) the motion system mediates temporal integration of feature conjunctions before they are identified by the static system; and (iii) target detectability in these stimuli relies upon a nonattentive, cooperative, directionally selective motion mechanism that responds to high-level attributes (conjunction of size and orientation).

  14. Ventral and dorsal streams processing visual motion perception (FDG-PET study)

    PubMed Central

    2012-01-01

    Background Earlier functional imaging studies on visually induced self-motion perception (vection) disclosed a bilateral network of activations within primary and secondary visual cortex areas which was combined with signal decreases, i.e., deactivations, in multisensory vestibular cortex areas. This finding led to the concept of a reciprocal inhibitory interaction between the visual and vestibular systems. In order to define areas involved in special aspects of self-motion perception such as intensity and duration of the perceived circular vection (CV) or the amount of head tilt, correlation analyses of the regional cerebral glucose metabolism, rCGM (measured by fluorodeoxyglucose positron-emission tomography, FDG-PET) and these perceptual covariates were performed in 14 healthy volunteers. For analyses of the visual-vestibular interaction, the CV data were compared to a random dot motion stimulation condition (not inducing vection) and a control group at rest (no stimulation at all). Results Group subtraction analyses showed that the visual-vestibular interaction was modified during CV, i.e., the activations within the cerebellar vermis and parieto-occipital areas were enhanced. The correlation analysis between the rCGM and the intensity of visually induced vection, experienced as body tilt, showed a relationship for areas of the multisensory vestibular cortical network (inferior parietal lobule bilaterally, anterior cingulate gyrus), the medial parieto-occipital cortex, the frontal eye fields and the cerebellar vermis. The “earlier” multisensory vestibular areas like the parieto-insular vestibular cortex and the superior temporal gyrus did not appear in the latter analysis. The duration of perceived vection after stimulus stop was positively correlated with rCGM in medial temporal lobe areas bilaterally, which included the (para-)hippocampus, known to be involved in various aspects of memory processing. The amount of head tilt was found to be positively correlated with the rCGM of bilateral basal ganglia regions responsible for the control of motor function of the head. Conclusions Our data gave further insights into subfunctions within the complex cortical network involved in the processing of visual-vestibular interaction during CV. Specific areas of this cortical network could be attributed to the ventral stream (“what” pathway) responsible for the duration after stimulus stop and to the dorsal stream (“where/how” pathway) responsible for intensity aspects. PMID:22800430

  15. Time series analysis of collective motions in proteins

    NASA Astrophysics Data System (ADS)

    Alakent, Burak; Doruker, Pemra; ćamurdan, Mehmet C.

    2004-01-01

    The dynamics of α-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the Cα atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm-1 range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers.

  16. Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys

    PubMed Central

    Liu, Bing

    2017-01-01

    Despite the enduring interest in motion integration, a direct measure of the space–time filter that the brain imposes on a visual scene has been elusive. This is perhaps because of the challenge of estimating a 3D function from perceptual reports in psychophysical tasks. We take a different approach. We exploit the close connection between visual motion estimates and smooth pursuit eye movements to measure stimulus–response correlations across space and time, computing the linear space–time filter for global motion direction in humans and monkeys. Although derived from eye movements, we find that the filter predicts perceptual motion estimates quite well. To distinguish visual from motor contributions to the temporal duration of the pursuit motion filter, we recorded single-unit responses in the monkey middle temporal cortical area (MT). We find that pursuit response delays are consistent with the distribution of cortical neuron latencies and that temporal motion integration for pursuit is consistent with a short integration MT subpopulation. Remarkably, the visual system appears to preferentially weight motion signals across a narrow range of foveal eccentricities rather than uniformly over the whole visual field, with a transiently enhanced contribution from locations along the direction of motion. We find that the visual system is most sensitive to motion falling at approximately one-third the radius of the stimulus aperture. Hypothesizing that the visual drive for pursuit is related to the filtered motion energy in a motion stimulus, we compare measured and predicted eye acceleration across several other target forms. SIGNIFICANCE STATEMENT A compact model of the spatial and temporal processing underlying global motion perception has been elusive. We used visually driven smooth eye movements to find the 3D space–time function that best predicts both eye movements and perception of translating dot patterns. We found that the visual system does not appear to use all available motion signals uniformly, but rather weights motion preferentially in a narrow band at approximately one-third the radius of the stimulus. Although not universal, the filter predicts responses to other types of stimuli, demonstrating a remarkable degree of generalization that may lead to a deeper understanding of visual motion processing. PMID:28003348

  17. Cost of Behavioral Interventions Utilizing Electronic Drug Monitoring for Antiretroviral Therapy Adherence

    PubMed Central

    Rasu, Rafia S.; Malewski, David F.; Banderas, Julie W.; Thomson, Domonique Malomo; Goggin, Kathy

    2013-01-01

    Objective To provide data on the actual costs associated with behavioral ART adherence interventions and electronic drug monitoring used in a clinical trial to inform their implementation in future studies and real-world practice. Methods Direct and time costs were calculated from a multi-site three-arm randomized controlled ART adherence trial. HIV positive participants (n = 204) were randomized to standard care (SC), enhanced counseling (EC), or EC and modified directly observed therapy (mDOT) interventions. Electronic drug monitoring (EDM) was used. Costs were calculated for various components of the 24-week adherence intervention. This economic evaluation was conducted from the perspective of an agency that may wish to implement these strategies. Sensitivity analyses were conducted to examine costs and savings associated with different scenarios. Results Total direct costs were $126,068 ($618/patient). Initial time costs were $53,590 ($262/patient). Base cost of labor was $0.36/minute. EC costs for 134 patients were $18,427 ($137/patient) and mDOT for 64 patients cost $18,638 ($291/patient). Total per patient costs were: SC=$880, EC=$1,018, EC/mDOT=$1,309. Removing driving costs evidenced the most variable impact on savings between the three study arms. The tornado diagram (sensitivity analysis) showed a graphical representation of how each sensitivity assumption reduced costs compared to each other and the resulting comparative costs for each group. Conclusion This novel economic analysis provides valuable cost information to guide treatment implementation and research design decisions. PMID:23337364

  18. A Meta-Analysis of Self-Administered vs Directly Observed Therapy Effect on Microbiologic Failure, Relapse, and Acquired Drug Resistance in Tuberculosis Patients

    PubMed Central

    Pasipanodya, Jotam G.; Gumbo, Tawanda

    2013-01-01

    Background Preclinical studies and Monte Carlo simulations have suggested that there is a relatively limited role of adherence in acquired drug resistance (ADR) and that very high levels of nonadherence are needed for therapy failure. We evaluated the superiority of directly observed therapy (DOT) for tuberculosis patients vs self-administered therapy (SAT) in decreasing ADR, microbiologic failure, and relapse in meta-analyses. Methods Prospective studies performed between 1965 and 2012 in which adult patients with microbiologically proven pulmonary Mycobacterium tuberculosis were separately assigned to either DOT or SAT as part of short-course chemotherapy were chosen. Endpoints were microbiologic failure, relapse, and ADR in patients on either DOT or SAT. Results Ten studies, 5 randomized and 5 observational, met selection criteria: 8774 patients were allocated to DOT and 3708 were allocated to SAT. For DOT vs SAT, the pooled risk difference for microbiologic failure was .0 (95% confidence interval [CI], −.01 to .01), for relapse .01 (95% CI, −.03 to .06), and for ADR 0.0 (95% CI, −0.01 to 0.01). The incidence rates for DOT vs SAT were 1.5% (95% CI, 1.3%–1.8%) vs 1.7% (95% CI, 1.2%–2.2%) for microbiologic failure, 3.7% (95% CI, 0.7%–17.6%) vs 2.3% (95% CI, 0.7%–7.2%) for relapse, and 1.5% (95% CI, 0.2%–9.90%) vs 0.9% (95% CI, 0.4%–2.3%) for ADR, respectively. There was no evidence of publication bias. Conclusions DOT was not significantly better than SAT in preventing microbiologic failure, relapse, or ADR, in evidence-based medicine. Resources should be shifted to identify other causes of poor microbiologic outcomes. PMID:23487389

  19. Efficacy of early controlled motion of the ankle compared with no motion after non-operative treatment of an acute Achilles tendon rupture: study protocol for a randomized controlled trial.

    PubMed

    Barfod, Kristoffer Weisskirchner; Hansen, Maria Swennergren; Holmich, Per; Troelsen, Anders; Kristensen, Morten Tange

    2016-11-29

    Early controlled ankle motion is widely used in the non-operative treatment of acute Achilles tendon rupture, though its safety and efficacy have never been investigated in a randomized setup. The objectives of this study are to investigate if early controlled motion of the ankle affects functional and patient-reported outcomes. The study is performed as a blinded, randomized, controlled trial with patients allocated in a 1:1 ratio to one of two parallel groups. Patients aged from 18 to 70 years are eligible for inclusion. The intervention group performs early controlled motion of the ankle in weeks 3-8 after rupture. The control group is immobilized. In total, 130 patients will be included from one big orthopedic center over a period of 2½ years. The primary outcome is the patient-reported Achilles tendon Total Rupture Score evaluated at 12 months post-injury. Secondary outcome measures are the heel-rise work test, Achilles tendon elongation, and the rate of re-rupture. The primary analysis will be conducted as intention-to-treat analyses. This trial is the first to investigate the safety and efficacy of early controlled motion in the treatment of acute Achilles tendon rupture in a randomized setup. The study uses the patient-reported outcome measure, the Achilles tendon Total Rupture Score, as the primary endpoint, as it is believed to be the best surrogate measure for the tendon's actual capability to function in everyday life. ClinicalTrials.gov: NCT02015364 . Registered on 13 December 2013.

  20. Is improved contrast sensitivity a natural consequence of visual training?

    PubMed Central

    Levi, Aaron; Shaked, Danielle; Tadin, Duje; Huxlin, Krystel R.

    2015-01-01

    Many studies have shown that training and testing conditions modulate specificity of visual learning to trained stimuli and tasks. In visually impaired populations, generalizability of visual learning to untrained stimuli/tasks is almost always reported, with contrast sensitivity (CS) featuring prominently among these collaterally-improved functions. To understand factors underlying this difference, we measured CS for direction and orientation discrimination in the visual periphery of three groups of visually-intact subjects. Group 1 trained on an orientation discrimination task with static Gabors whose luminance contrast was decreased as performance improved. Group 2 trained on a global direction discrimination task using high-contrast random dot stimuli previously used to recover motion perception in cortically blind patients. Group 3 underwent no training. Both forms of training improved CS with some degree of specificity for basic attributes of the trained stimulus/task. Group 1's largest enhancement was in CS around the trained spatial/temporal frequencies; similarly, Group 2's largest improvements occurred in CS for discriminating moving and flickering stimuli. Group 3 saw no significant CS changes. These results indicate that CS improvements may be a natural consequence of multiple forms of visual training in visually intact humans, albeit with some specificity to the trained visual domain(s). PMID:26305736

  1. The neurophysiology of figure-ground segregation in primary visual cortex.

    PubMed

    Lamme, V A

    1995-02-01

    The activity of neurons in the primary visual cortex of the awake macaque monkey was recorded while the animals were viewing full screen arrays of either oriented line segments or moving random dots. A square patch of the screen was made to perceptually pop out as a circumscribed figure by virtue of differences between the orientation or the direction of motion of the texture elements within that patch and the surround. The animals were trained to identify the figure patches by making saccadic eye movements towards their positions. Almost every cell gave a significantly larger response to elements belonging to the figure than to similar elements belonging to the background. The figure-ground response enhancement was present along the entire extent of the patch and was absent as soon as the receptive field was outside the patch. The strength of the effect had no relation with classical receptive field properties like orientation or direction selectivity or receptive field size. The response enhancement had a latency of 30-40 msec relative to the onset of the neuronal response itself. The results show that context modulation within primary visual cortex has a highly sophisticated nature, putting the image features the cells are responding to into their fully evaluated perceptual context.

  2. Relativistic satellite orbits: central body with higher zonal harmonics

    NASA Astrophysics Data System (ADS)

    Schanner, Maximilian; Soffel, Michael

    2018-06-01

    Satellite orbits around a central body with arbitrary zonal harmonics are considered in a relativistic framework. Our starting point is the relativistic Celestial Mechanics based upon the first post-Newtonian approximation to Einstein's theory of gravity as it has been formulated by Damour et al. (Phys Rev D 43:3273-3307, 1991; 45:1017-1044, 1992; 47:3124-3135, 1993; 49:618-635, 1994). Since effects of order (GM/c^2R) × J_k with k ≥ 2 for the Earth are very small (of order 7 × 10^{-10} × J_k) we consider an axially symmetric body with arbitrary zonal harmonics and a static external gravitational field. In such a field the explicit J_k/c^2-terms (direct terms) in the equations of motion for the coordinate acceleration of a satellite are treated first with first-order perturbation theory. The derived perturbation theoretical results of first order have been checked by purely numerical integrations of the equations of motion. Additional terms of the same order result from the interaction of the Newtonian J_k-terms with the post-Newtonian Schwarzschild terms (relativistic terms related to the mass of the central body). These `mixed terms' are treated by means of second-order perturbation theory based on the Lie-series method (Hori-Deprit method). Here we concentrate on the secular drifts of the ascending node <{\\dot{Ω }}> and argument of the pericenter <{\\dot{ω }}>. Finally orders of magnitude are given and discussed.

  3. The Orbital Period of the SU Ursae Majoris Star EK Trianguli Australis and Evidence for Ring-Like Accretion Disks in Long-Supercycle Length SU Ursae Majoris Stars

    NASA Astrophysics Data System (ADS)

    Mennickent, Ronald E.; Arenas, Jose

    1998-06-01

    An orbital period of 0.06288(5) d has been found from a radial velocity study of the Hα emission line. In addition, we have detected an extra line emitting source located ~ 80(deg) apart from the vector joining the secondary--primary centers, as measured in the opposite sense to the binary rotational motion. This is not the expected location for the hotspot in dwarf novae. This anomaly could be removed by assuming a line emission lagging behind the white dwarf binary motion. In addition, we have estimated line emissivity (~ r(-alpha ) ) and disk radius (R equiv r_in/r_out) for 8 SU UMa stars. Most stars fit alpha = 1.8 +/- 0.1 but AK Cnc and WZ Sge strongly deviate from the mean; their emission line shapes can be explained assuming a post-outburst accretion disk mostly emitting close to the white dwarf (AK Cnc) and a ring-like disk (WZ Sge). In addition, we have found a tendency of long-supercycle length SU UMa stars to show very compact (large R; probably ring-like) accretion disks. If the supercycle length were basically controlled by the mass transfer rate (dot {M}), the inner disk radius would be a function of dot {M}. A white dwarf magnetic field ~ 5000 G is required to fit the truncation radius with the magnetosphere radius of SU UMa stars.

  4. The apsidal motion of the eccentric eclipsing binary DI Herculis - An apparent discrepancy with general relativity

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Maloney, F. P.

    1985-01-01

    The apsidal motion of the eccentric eclipsing binary DI Herculis (HD 175227) is determined from an analysis of the available observations and eclipse timings from 1959 to 1984. Least squares solutions to the primary and secondary minima extending over an 84-yr interval yielded a small advance of periastron omega dot of 0.65 deg/100 yr + or - 0.18/100 yr. The observed advance of the periastron is about one seventh of the theoretical value of 4.27 deg/100 yr that is expected from the combined relativistic and classical effects. The discrepancy is about -3.62 deg/100 yr, or a magnitude of about 20 sigma. Classical mechanisms which explain the discrepancy are discussed, together with the possibility that there may be problems with general relativity itself.

  5. Effects of Cycling vs. Running Training on Endurance Performance in Preparation for Inline Speed Skating.

    PubMed

    Stangier, Carolin; Abel, Thomas; Hesse, Clemens; Claen, Stephanie; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K

    2016-06-01

    Winter weather conditions restrict regular sport-specific endurance training in inline speed skating. As a result, this study was designed to compare the effects of cycling and running training programs on inline speed skaters' endurance performance. Sixteen (8 men, 8 women) high-level athletes (mean ± SD 24 ± 8 years) were randomly assigned to 1 of 2 groups (running and cycling). Both groups trained twice a week for 8 weeks, one group on a treadmill and the other on a cycle ergometer. Training intensity and duration was individually calculated (maximal fat oxidation: ∼52% of V[Combining Dot Above]O2peak: 500 kcal per session). Before and after the training intervention, all athletes performed an incremental specific (inline speed skating) and 1 nonspecific (cycling or running) step test according to the group affiliation. In addition to blood lactate concentration, oxygen uptake (V[Combining Dot Above]O2), ventilatory equivalent (VE/V[Combining Dot Above]O2), respiratory exchange ratio (RER), and heart rate were measured. The specific posttest revealed significantly increased absolute V[Combining Dot Above]O2peak values (2.9 ± 0.4, 3.4 ± 0.7, p = 0.01) and submaximal V[Combining Dot Above]O2 values (p ≤ 0.01). VE/V[Combining Dot Above]O2 and RER significantly decreased at maximal (46.6 ± 6.6, 38.5 ± 3.4, p = 0.005; 1.1 ± 0.03, 1.0 ± 0.04, p = 0.001) and submaximal intensities (p ≤ 0.04). None of the analysis revealed a significant group effect (p ≥ 0.15). The results indicate that both cycling vs. running exercise at ∼52% of V[Combining Dot Above]O2peak had a positive effect on the athletes' endurance performance. The increased submaximal V[Combining Dot Above]O2 values indicate a reduction in athletes' inline speed skating technique. Therefore, athletes would benefit from a focus on technique training in the subsequent period.

  6. Effect of a brief smoking cessation intervention on adult tobacco smokers with pulmonary tuberculosis: A cluster randomized controlled trial from North India.

    PubMed

    Goel, Sonu; Kathiresan, Jeyashree; Singh, Preeti; Singh, Rana J

    2017-09-01

    An association between smoking and poor tuberculosis (TB) treatment outcomes has been globally established. Various smoking cessation interventions (SCIs) have been proven worldwide to curb smoking behavior. There is a need for evidence to assess if SCI increases the chance of successful treatment outcome among TB patients. To assess the effectiveness of a brief SCI; The Ask, Brief, Cessation support (ABC) package, on treatment outcomes and smoking cessation in smear-positive adult pulmonary TB patients. A cluster, randomized controlled trial was conducted wherein 17 designated microscopic centers of Chandigarh, India were randomly assigned using a computer-generated randomization sequence to receive SCI within directly observed treatment, short (DOTS) services, or existing standard of care. Eligible and consenting smokers (15 + years) registered as smear-positive pulmonary TB for DOTS (n = 156) between January and June 2013 were enrolled. Smoking cessation (self-reported) was assessed at intervals till the end of treatment. End TB treatment outcomes were extracted from patient records. Treatment success was lower in intervention arm (83.6%) as compared control arm (88.2%), but the difference was statistically insignificant (P = 0.427). Smoking cessation was higher in intervention arm (80.2%) compared to comparison arm (57.5%) (adjusted incidence risk ratio = 1.56; 95% confidence interval = 1.24-1.93; P < 0.0001). SCI is effective in inducing smoking cessation among TB patients. No association of SCI with TB treatment outcomes could be detected.

  7. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  8. Random functions via Dyson Brownian Motion: progress and problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gaoyuan; Battefeld, Thorsten

    2016-09-05

    We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C{sup 2} locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also offer an ad hocmore » modification of DBM that suppresses this growth to some degree.« less

  9. Stochastic Modeling of the Persistence of HIV: Early Population Dynamics

    DTIC Science & Technology

    2013-05-10

    fluid, Brownian motion is named after the botanist Robert Brown. In the late nineteenth century, he observed that pollen floating in water appeared...to move about in a random manner. When he replaced the pollen with inorganic material, he noticed that the motion persisted. Upon plotting the motion

  10. Investigations of turbulent motions and particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Jakimiec, J.; Fludra, A.; Lemen, J. R.; Dennis, B. R.; Sylwester, J.

    1986-01-01

    Investigations of X-raya spectra of solar flares show that intense random (turbulent) motions are present in hot flare plasma. Here it is argued that the turbulent motions are of great importance for flare development. They can efficiently enhance flare energy release and accelerate particles to high energies.

  11. Treatment referral system for tuberculosis patients in Dhaka, Bangladesh

    PubMed Central

    Hirayama, T.; Islam, A.; Ishikawa, N.; Afsana, K.

    2015-01-01

    Objective: To evaluate the referral system in an urban DOTS-based programme in Dhaka, Bangladesh, including the peri-urban area, and to identify opportunities to strengthen the system. Design: This was a retrospective cohort study in which diagnosed tuberculosis (TB) patients and health providers from DOTS centres were interviewed. Research tools included pre-tested structured questionnaires and the TB patients' referral records. Results: Of 4974 TB patients who were referred to the different treatment centres, only 1756 (35%) of the counterfoils of the referral slips were returned. Of 250 patients randomly selected for interview, 165 reported to a DOTS centre, 69 did not and 16 could not be traced. Variations in educational qualification, residence and the identification of DOTS centres after counselling were statistically significant (P < 0.05). Lower monthly income (RR = 7.84, RR = 5.03), distance from the centre (RR = 36.21) and those receiving treatment from pharmacies (RR = 3) or non-governmental organisations (RR = 28.48) have more risk of irregular treatment. Conclusion: A high proportion of referred patients were registered and initiated treatment, but many did not report to the referral treatment centre. Proper counselling and taking into account the patients' preferences during referral are essential to address access barriers to treatment adherence and improved treatment outcome. PMID:26767176

  12. Ternary mixed crystal effects on interface optical phonon and electron-phonon coupling in zinc-blende GaN/AlxGa1-xN spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wen Deng; Chen, Guang De; Yuan, Zhao Lin; Yang, Chuang Hua; Ye, Hong Gang; Wu, Ye Long

    2016-02-01

    The theoretical investigations of the interface optical phonons, electron-phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron-phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1-xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron-phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1-xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron-phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron-phonon coupling strengths appear linear changes.

  13. RCT Testing Bystander Effectiveness to Reduce Violence.

    PubMed

    Coker, Ann L; Bush, Heather M; Cook-Craig, Patricia G; DeGue, Sarah A; Clear, Emily R; Brancato, Candace J; Fisher, Bonnie S; Recktenwald, Eileen A

    2017-05-01

    Bystander-based programs have shown promise to reduce interpersonal violence at colleges, yet limited rigorous evaluations have addressed bystander intervention effectiveness in high schools. This study evaluated the Green Dot bystander intervention to reduce sexual violence and related forms of interpersonal violence in 26 high schools over 5 years. A cluster RCT was conducted. Kentucky high schools were randomized to intervention or control (wait list) conditions. Green Dot-trained educators conducted schoolwide presentations and recruited student popular opinion leaders to receive bystander training in intervention schools beginning in Year 1. The primary outcome was sexual violence perpetration, and related forms of interpersonal violence victimization and perpetration were also measured using anonymous student surveys collected at baseline and annually from 2010 to 2014. Because the school was the unit of analysis, violence measures were aggregated by school and year and school-level counts were provided. A total of 89,707 students completed surveys. The primary, as randomized, analyses conducted in 2014-2016 included linear mixed models and generalized estimating equations to examine the condition-time interaction on violence outcomes. Slopes of school-level totals of sexual violence perpetration (condition-time, p<0.001) and victimization (condition-time, p<0.001) were different over time. During Years 3-4, when Green Dot was fully implemented, the mean number of sexual violent events prevented by the intervention was 120 in Intervention Year 3 and 88 in Year 4. For Year 3, prevalence rate ratios for sexual violence perpetration in the intervention relative to control schools were 0.83 (95% CI=0.70, 0.99) in Year 3 and 0.79 (95% CI=0.67, 0.94) in Year 4. Similar patterns were observed for sexual violence victimization, sexual harassment, stalking, and dating violence perpetration and victimization. Implementation of Green Dot in Kentucky high schools significantly decreased not only sexual violence perpetration but also other forms of interpersonal violence perpetration and victimization. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Contributions of Platform Motion to Simulator Training Effectiveness: Study II--Aerobatics. Interim Report for Period March 1976-November 1977.

    ERIC Educational Resources Information Center

    Martin, Elizabeth L.; Waag, Wayne L.

    A transfer-of-training design was used to evaluate the contributions of simulator training with synergistic six-degrees-of-freedom platform motion to aerobatic skills acquisition in the novice pilot. Thirty-six undergraduate pilot trainees were randomly assigned to one of three treatment groups: motion, no-motion, and control. Those in the control…

  15. Double-Windows-Based Motion Recognition in Multi-Floor Buildings Assisted by a Built-In Barometer.

    PubMed

    Liu, Maolin; Li, Huaiyu; Wang, Yuan; Li, Fei; Chen, Xiuwan

    2018-04-01

    Accelerometers, gyroscopes and magnetometers in smartphones are often used to recognize human motions. Since it is difficult to distinguish between vertical motions and horizontal motions in the data provided by these built-in sensors, the vertical motion recognition accuracy is relatively low. The emergence of a built-in barometer in smartphones improves the accuracy of motion recognition in the vertical direction. However, there is a lack of quantitative analysis and modelling of the barometer signals, which is the basis of barometer's application to motion recognition, and a problem of imbalanced data also exists. This work focuses on using the barometers inside smartphones for vertical motion recognition in multi-floor buildings through modelling and feature extraction of pressure signals. A novel double-windows pressure feature extraction method, which adopts two sliding time windows of different length, is proposed to balance recognition accuracy and response time. Then, a random forest classifier correlation rule is further designed to weaken the impact of imbalanced data on recognition accuracy. The results demonstrate that the recognition accuracy can reach 95.05% when pressure features and the improved random forest classifier are adopted. Specifically, the recognition accuracy of the stair and elevator motions is significantly improved with enhanced response time. The proposed approach proves effective and accurate, providing a robust strategy for increasing accuracy of vertical motions.

  16. Perceptual grouping across eccentricity.

    PubMed

    Tannazzo, Teresa; Kurylo, Daniel D; Bukhari, Farhan

    2014-10-01

    Across the visual field, progressive differences exist in neural processing as well as perceptual abilities. Expansion of stimulus scale across eccentricity compensates for some basic visual capacities, but not for high-order functions. It was hypothesized that as with many higher-order functions, perceptual grouping ability should decline across eccentricity. To test this prediction, psychophysical measurements of grouping were made across eccentricity. Participants indicated the dominant grouping of dot grids in which grouping was based upon luminance, motion, orientation, or proximity. Across trials, the organization of stimuli was systematically decreased until perceived grouping became ambiguous. For all stimulus features, grouping ability remained relatively stable until 40°, beyond which thresholds significantly elevated. The pattern of change across eccentricity varied across stimulus feature, in which stimulus scale, dot size, or stimulus size interacted with eccentricity effects. These results demonstrate that perceptual grouping of such stimuli is not reliant upon foveal viewing, and suggest that selection of dominant grouping patterns from ambiguous displays operates similarly across much of the visual field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. General theory of feedback control of a nuclear spin ensemble in quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Sham, L. J.

    2013-12-01

    We present a microscopic theory of the nonequilibrium nuclear spin dynamics driven by the electron and/or hole under continuous-wave pumping in a quantum dot. We show the correlated dynamics of the nuclear spin ensemble and the electron and/or hole under optical excitation as a quantum feedback loop and investigate the dynamics of the many nuclear spins as a nonlinear collective motion. This gives rise to three observable effects: (i) hysteresis, (ii) locking (avoidance) of the pump absorption strength to (from) the natural resonance, and (iii) suppression (amplification) of the fluctuation of weakly polarized nuclear spins, leading to prolonged (shortened) electron-spin coherence time. A single nonlinear feedback function is constructed which determines the different outcomes of the three effects listed above depending on the feedback being negative or positive. The general theory also helps to put in perspective the wide range of existing theories on the problem of a single electron spin in a nuclear spin bath.

  18. Development and clinical evaluation of a simple optical method to detect and measure patient external motion.

    PubMed

    Barbés, Benigno; Azcona, Juan Diego; Prieto, Elena; de Foronda, José Manuel; García, Marina; Burguete, Javier

    2015-09-08

    A simple and independent system to detect and measure the position of a number of points in space was devised and implemented. Its application aimed to detect patient motion during radiotherapy treatments, alert of out-of-tolerances motion, and record the trajectories for subsequent studies. The system obtains the 3D position of points in space, through its projections in 2D images recorded by two cameras. It tracks black dots on a white sticker placed on the surface of the moving object. The system was tested with linear displacements of a phantom, circular trajectories of a rotating disk, oscillations of an in-house phantom, and oscillations of a 4D phantom. It was also used to track 461 trajectories of points on the surface of patients during their radiotherapy treatments. Trajectories of several points were reproduced with accuracy better than 0.3 mm in the three spatial directions. The system was able to follow periodic motion with amplitudes lower than 0.5 mm, to follow trajectories of rotating points at speeds up to 11.5 cm/s, and to track accurately the motion of a respiratory phantom. The technique has been used to track the motion of patients during radiotherapy and to analyze that motion. The method is flexible. Its installation and calibration are simple and quick. It is easy to use and can be implemented at a very affordable price. Data collection does not involve any discomfort to the patient and does not delay the treatment, so the system can be used routinely in all treatments. It has an accuracy similar to that of other, more sophisticated, commercially available systems. It is suitable to implement a gating system or any other application requiring motion detection, such as 4D CT, MRI or PET.

  19. Three-dimensional mapping of microcircuit correlation structure

    PubMed Central

    Cotton, R. James; Froudarakis, Emmanouil; Storer, Patrick; Saggau, Peter; Tolias, Andreas S.

    2013-01-01

    Great progress has been made toward understanding the properties of single neurons, yet the principles underlying interactions between neurons remain poorly understood. Given that connectivity in the neocortex is locally dense through both horizontal and vertical connections, it is of particular importance to characterize the activity structure of local populations of neurons arranged in three dimensions. However, techniques for simultaneously measuring microcircuit activity are lacking. We developed an in vivo 3D high-speed, random-access two-photon microscope that is capable of simultaneous 3D motion tracking. This allows imaging from hundreds of neurons at several hundred Hz, while monitoring tissue movement. Given that motion will induce common artifacts across the population, accurate motion tracking is absolutely necessary for studying population activity with random-access based imaging methods. We demonstrate the potential of this imaging technique by measuring the correlation structure of large populations of nearby neurons in the mouse visual cortex, and find that the microcircuit correlation structure is stimulus-dependent. Three-dimensional random access multiphoton imaging with concurrent motion tracking provides a novel, powerful method to characterize the microcircuit activity in vivo. PMID:24133414

  20. 77 FR 72905 - Pipeline Safety: Random Drug Testing Rate; Contractor MIS Reporting; and Obtaining DAMIS Sign-In...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... Drug and Alcohol Management Information System (DAMIS) to operators, but will make the user name and... DAMIS Sign-In Information AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... testing information must be submitted for contractors performing or ready to perform covered functions...

  1. Asymmetrical Cortical Processing of Radial Expansioncontraction in Infants and Adults

    ERIC Educational Resources Information Center

    Shirai, Nobu; Birtles, Deirdre; Wattam-Bell, John; Yamaguchi, Masami K.; Kanazawa, So; Atkinson, Janette; Braddick, Oliver

    2009-01-01

    We report asymmetrical cortical responses (steady-state visual evoked potentials) to radial expansion and contraction in human infants and adults. Forty-four infants (22 3-month-olds and 22 4-month-olds) and nine adults viewed dynamic dot patterns which cyclically (2.1 Hz) alternate between radial expansion (or contraction) and random directional…

  2. Event-Related fMRI of Category Learning: Differences in Classification and Feedback Networks

    ERIC Educational Resources Information Center

    Little, Deborah M.; Shin, Silvia S.; Sisco, Shannon M.; Thulborn, Keith R.

    2006-01-01

    Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification…

  3. Connecting the Dots: Lessons from the Virginia Tech Shootings

    ERIC Educational Resources Information Center

    Davies, Gordon K.

    2008-01-01

    The shootings that took place last spring on the campus of Virginia Polytechnic Institute and State University, located in Blacksburg, Virginia, elicited a host of reactions, many deeply emotional. In groups of college and university presidents, the response was generally empathetic. Indeed, they were right to be put on alert by the random and…

  4. A stochastic convolution/superposition method with isocenter sampling to evaluate intrafraction motion effects in IMRT.

    PubMed

    Naqvi, Shahid A; D'Souza, Warren D

    2005-04-01

    Current methods to calculate dose distributions with organ motion can be broadly classified as "dose convolution" and "fluence convolution" methods. In the former, a static dose distribution is convolved with the probability distribution function (PDF) that characterizes the motion. However, artifacts are produced near the surface and around inhomogeneities because the method assumes shift invariance. Fluence convolution avoids these artifacts by convolving the PDF with the incident fluence instead of the patient dose. In this paper we present an alternative method that improves the accuracy, generality as well as the speed of dose calculation with organ motion. The algorithm starts by sampling an isocenter point from a parametrically defined space curve corresponding to the patient-specific motion trajectory. Then a photon is sampled in the linac head and propagated through the three-dimensional (3-D) collimator structure corresponding to a particular MLC segment chosen randomly from the planned IMRT leaf sequence. The photon is then made to interact at a point in the CT-based simulation phantom. Randomly sampled monoenergetic kernel rays issued from this point are then made to deposit energy in the voxels. Our method explicitly accounts for MLC-specific effects (spectral hardening, tongue-and-groove, head scatter) as well as changes in SSD with isocentric displacement, assuming that the body moves rigidly with the isocenter. Since the positions are randomly sampled from a continuum, there is no motion discretization, and the computation takes no more time than a static calculation. To validate our method, we obtained ten separate film measurements of an IMRT plan delivered on a phantom moving sinusoidally, with each fraction starting with a random phase. For 2 cm motion amplitude, we found that a ten-fraction average of the film measurements gave an agreement with the calculated infinite fraction average to within 2 mm in the isodose curves. The results also corroborate the existing notion that the interfraction dose variability due to the interplay between the MLC motion and breathing motion averages out over typical multifraction treatments. Simulation with motion waveforms more representative of real breathing indicate that the motion can produce penumbral spreading asymmetric about the static dose distributions. Such calculations can help a clinician decide to use, for example, a larger margin in the superior direction than in the inferior direction. In the paper we demonstrate that a 15 min run on a single CPU can readily illustrate the effect of a patient-specific breathing waveform, and can guide the physician in making informed decisions about margin expansion and dose escalation.

  5. fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.

    PubMed

    Kimmig, H; Ohlendorf, S; Speck, O; Sprenger, A; Rutschmann, R M; Haller, S; Greenlee, M W

    2008-01-01

    Smooth pursuit eye movements (SP) are driven by moving objects. The pursuit system processes the visual input signals and transforms this information into an oculomotor output signal. Despite the object's movement on the retina and the eyes' movement in the head, we are able to locate the object in space implying coordinate transformations from retinal to head and space coordinates. To test for the visual and oculomotor components of SP and the possible transformation sites, we investigated three experimental conditions: (I) fixation of a stationary target with a second target moving across the retina (visual), (II) pursuit of the moving target with the second target moving in phase (oculomotor), (III) pursuit of the moving target with the second target remaining stationary (visuo-oculomotor). Precise eye movement data were simultaneously measured with the fMRI data. Visual components of activation during SP were located in the motion-sensitive, temporo-parieto-occipital region MT+ and the right posterior parietal cortex (PPC). Motor components comprised more widespread activation in these regions and additional activations in the frontal and supplementary eye fields (FEF, SEF), the cingulate gyrus and precuneus. The combined visuo-oculomotor stimulus revealed additional activation in the putamen. Possible transformation sites were found in MT+ and PPC. The MT+ activation evoked by the motion of a single visual dot was very localized, while the activation of the same single dot motion driving the eye was rather extended across MT+. The eye movement information appeared to be dispersed across the visual map of MT+. This could be interpreted as a transfer of the one-dimensional eye movement information into the two-dimensional visual map. Potentially, the dispersed information could be used to remap MT+ to space coordinates rather than retinal coordinates and to provide the basis for a motor output control. A similar interpretation holds for our results in the PPC region.

  6. Direct evidence for attention-dependent influences of the frontal eye-fields on feature-responsive visual cortex.

    PubMed

    Heinen, Klaartje; Feredoes, Eva; Weiskopf, Nikolaus; Ruff, Christian C; Driver, Jon

    2014-11-01

    Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property. © The Author 2013. Published by Oxford University Press.

  7. Impact of Community-Based DOT on Tuberculosis Treatment Outcomes: A Systematic Review and Meta-Analysis

    PubMed Central

    Zhang, HaiYang; Ehiri, John; Yang, Huan; Tang, Shenglan; Li, Ying

    2016-01-01

    Background Poor adherence to tuberculosis (TB) treatment can lead to prolonged infectivity and poor treatment outcomes. Directly observed treatment (DOT) seeks to improve adherence to TB treatment by observing patients while they take their anti-TB medication. Although community-based DOT (CB-DOT) programs have been widely studied and promoted, their effectiveness has been inconsistent. The aim of this study was to critical appraise and summarize evidence of the effects of CB-DOT on TB treatment outcomes. Methods Studies published up to the end of February 2015 were identified from three major international literature databases: Medline/PubMed, EBSCO, and EMBASE. Unpublished data from the grey literature were identified through Google and Google Scholar searches. Results Seventeen studies involving 12,839 pulmonary TB patients (PTB) in eight randomized controlled trials (RCTs) and nine cohort studies from 12 countries met the criteria for inclusion in this review and 14 studies were included in meta-analysis. Compared with clinic-based DOT, pooled results of RCTs for all PTB cases (including smear-negative or -positive, new or retreated TB cases) and smear-positive PTB cases indicated that CB-DOT promoted successful treatment [pooled RRs (95%CIs): 1.11 (1.02–1.19) for all PTB cases and 1.11 (1.02–1.19) for smear-positive PTB cases], and completed treatment [pooled RRs (95%CIs): 1.74(1.05, 2.90) for all PTB cases and 2.22(1.16, 4.23) for smear-positive PTB cases], reduced death [pooled RRs (95%CIs): 0.44 (0.26–0.72) for all PTB cases and 0.39 (0.23–0.66) for smear-positive PTB cases], and transfer out [pooled RRs (95%CIs): 0.37 (0.23–0.61) for all PTB cases and 0.42 (0.25–0.70) for smear-positive PTB cases]. Pooled results of all studies (RCTs and cohort studies) with all PTB cases demonstrated that CB-DOT promoted successful treatment [pooled RR (95%CI): 1.13 (1.03–1.24)] and curative treatment [pooled RR (95%CI): 1.24 (1.04–1.48)] compared with self-administered treatment. Conclusions CB-DOT did improved TB treatment outcomes according to the pooled results of included studies in this review. Studies on strategies for implementation of patient-centered and community-centered CB-DOT deserve further attention. PMID:26849656

  8. Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation

    PubMed Central

    Volpe, Giorgio; Volpe, Giovanni; Gigan, Sylvain

    2014-01-01

    The motion of particles in random potentials occurs in several natural phenomena ranging from the mobility of organelles within a biological cell to the diffusion of stars within a galaxy. A Brownian particle moving in the random optical potential associated to a speckle pattern, i.e., a complex interference pattern generated by the scattering of coherent light by a random medium, provides an ideal model system to study such phenomena. Here, we derive a theory for the motion of a Brownian particle in a speckle field and, in particular, we identify its universal characteristic timescale. Based on this theoretical insight, we show how speckle light fields can be used to control the anomalous diffusion of a Brownian particle and to perform some basic optical manipulation tasks such as guiding and sorting. Our results might broaden the perspectives of optical manipulation for real-life applications. PMID:24496461

  9. Doppler Radar Vital Signs Detection Method Based on Higher Order Cyclostationary.

    PubMed

    Yu, Zhibin; Zhao, Duo; Zhang, Zhiqiang

    2017-12-26

    Due to the non-contact nature, using Doppler radar sensors to detect vital signs such as heart and respiration rates of a human subject is getting more and more attention. However, the related detection-method research meets lots of challenges due to electromagnetic interferences, clutter and random motion interferences. In this paper, a novel third-order cyclic cummulant (TOCC) detection method, which is insensitive to Gaussian interference and non-cyclic signals, is proposed to investigate the heart and respiration rate based on continuous wave Doppler radars. The k -th order cyclostationary properties of the radar signal with hidden periodicities and random motions are analyzed. The third-order cyclostationary detection theory of the heart and respiration rate is studied. Experimental results show that the third-order cyclostationary approach has better estimation accuracy for detecting the vital signs from the received radar signal under low SNR, strong clutter noise and random motion interferences.

  10. Human comfort response to random motions with a dominant transverse motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with transverse acceleration inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.

  11. Human comfort response to random motions with a dominant longitudinal motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with longitudinal acceleration inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.

  12. Tested Demonstrations. Brownian Motion: A Classroom Demonstration and Student Experiment.

    ERIC Educational Resources Information Center

    Kirksey, H. Graden; Jones, Richard F.

    1988-01-01

    Shows how video recordings of the Brownian motion of tiny particles may be made. Describes a classroom demonstration and cites a reported experiment designed to show the random nature of Brownian motion. Suggests a student experiment to discover the distance a tiny particle travels as a function of time. (MVL)

  13. Human confort response to random motions with a dominant rolling motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on a visual motion simulator with rolling velocity inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.

  14. Effect of E-Bike Versus Bike Commuting on Cardiorespiratory Fitness in Overweight Adults: A 4-Week Randomized Pilot Study.

    PubMed

    Höchsmann, Christoph; Meister, Steffen; Gehrig, Damiana; Gordon, Elisa; Li, Yanlei; Nussbaumer, Monique; Rossmeissl, Anja; Schäfer, Juliane; Hanssen, Henner; Schmidt-Trucksäss, Arno

    2018-05-01

    To assess if active commuting with an electrically assisted bicycle (e-bike) during a 4-week period can induce increases in cardiorespiratory fitness measured as peak oxygen uptake (V[Combining Dot Above]O2peak) in untrained, overweight individuals, and if these changes are comparable with those induced by a conventional bicycle. Four-week randomized pilot study. Controlled laboratory. Thirty-two volunteers (28 men) participated. Seventeen {median age 37 years [interquartile range (IQR) 34, 45], median body mass index [BMI] 29 kg/m [IQR 27, 31]} were randomized to the E-Bike group and 15 [median age 43 years (IQR 38, 45), median BMI 28 kg/m (IQR 26, 29)] to the Bike group. Participants in both groups were instructed to use the bicycle allocated to them (e-bike or conventional bicycle) for an active commute to work in the Basel (Switzerland) area at a self-chosen speed on at least 3 days per week during the 4-week intervention period. V[Combining Dot Above]O2peak was assessed before and after the intervention in an all-out exercise test on a bicycle ergometer. V[Combining Dot Above]O2peak increased by an average of 3.6 mL/(kg·min) [SD 3.6 mL/(kg·min)] in the E-Bike group and by 2.2 mL/(kg·min) [SD 3.5 mL/(kg·min)] in the Bike group, with an adjusted difference between the 2 groups of 1.4 mL/(kg·min) [95% confidence interval, -1.4-4.1; P = 0.327]. E-bikes may have the potential to improve cardiorespiratory fitness similar to conventional bicycles despite the available power assist, as they enable higher biking speeds and greater elevation gain.

  15. Vision screening with the RDE stereotest in pediatric populations.

    PubMed

    Schmidt, P P

    1994-04-01

    The usefulness of the Random Dot E (RDE) stereotest in screening the vision of school-aged children for vision problems has been established. As a single screening procedure, the effectivity (phi) of the RDE (phi = +0.52) is greater than the widely used Snellen acuity technique (phi = +0.36) and faster to complete. Very-low-birthweight (VLBW) children have a higher incidence of vision problems including strabismus, amblyopia, and refractive error than children born with normal-birthweights (NBW's). My purpose was to determine: (1) whether a group of young children at high risk for vision problems could perform random dot stereotesting and (2) an age appropriate pass/fail criterion for stereoacuity screening. Furthermore, categorization as pass or fail by each screening method studied [stereoacuity (RDE), visual acuity [Teller Acuity Cards (TAC) and Broken Wheel (BWA)] and refractive error] was compared for independent agreement with vision examination results. The subjects were a cohort of NBW and VLBW) (< 1500 g) children matched at birth for maternal age, ethnic origin, time of hospital birth, and parity. Results of a masked investigation of 30 children [VLBW (N = 10) and NBW (N = 20) children] tested at 3 years of age (mean age = 3.0 years, range 2.11 to 3.1 years) showed that (1) 86.7% were able to complete the 168 sec arc random dot stereoacuity task when a two-alternative forced-choice preferential-looking paradigm was used for testing, (2) the specificity and sensitivity were 88.2%, 76.9% (RDE); 81.2%, 64.3% (TAC); 52.9%, 92.3% (BWA); and 94.1%, 61.5% (refractive error), respectively, (3) the reliability the RDE stereoacuity screening was greater (k = +0.66) than any of the other procedures studied, and (4) there was 73.3% agreement on test-retest categorizations between observers.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. The effects of complex exercise on shoulder range of motion and pain for women with breast cancer-related lymphedema: a single-blind, randomized controlled trial.

    PubMed

    Park, Jin-Hyuck

    2017-07-01

    This study was to investigate the effects of complex exercise on shoulder range of motion and pain for women with breast cancer-related lymphedema. 69 women participated in this study and then they were randomly allocated to complex exercise group (n = 35) or the conventional decongestive therapy group (n = 34). All subjects received 8 sessions for 4 weeks. To identify the effects on shoulder range of motion and pain, goniometer and visual analog scale were used, respectively. The outcome measurements were performed before and after the 4 week intervention. After 4 weeks, complex exercise group had greater improvements in shoulder range of motion and pain compared with the conventional decongestive therapy group (p < 0.05). These results suggest that complex exercise is beneficial to improve shoulder range of motion as well as pain of the women with breast cancer-related lymphedema. Complex exercise would be useful to improve shoulder range of motion and pain of the women with breast cancer-related lymphedema.

  17. Statistical properties of exciton fine structure splitting and polarization angles in quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Gong, Ming; Hofer, B.; Zallo, E.; Trotta, R.; Luo, Jun-Wei; Schmidt, O. G.; Zhang, Chuanwei

    2014-05-01

    We develop an effective model to describe the statistical properties of exciton fine structure splitting (FSS) and polarization angle in quantum dot ensembles (QDEs) using only a few symmetry-related parameters. The connection between the effective model and the random matrix theory is established. Such effective model is verified both theoretically and experimentally using several rather different types of QDEs, each of which contains hundreds to thousands of QDs. The model naturally addresses three fundamental issues regarding the FSS and polarization angels of QDEs, which are frequently encountered in both theories and experiments. The answers to these fundamental questions yield an approach to characterize the optical properties of QDEs. Potential applications of the effective model are also discussed.

  18. Statistical modeling of interfractional tissue deformation and its application in radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Vile, Douglas J.

    In radiation therapy, interfraction organ motion introduces a level of geometric uncertainty into the planning process. Plans, which are typically based upon a single instance of anatomy, must be robust against daily anatomical variations. For this problem, a model of the magnitude, direction, and likelihood of deformation is useful. In this thesis, principal component analysis (PCA) is used to statistically model the 3D organ motion for 19 prostate cancer patients, each with 8-13 fractional computed tomography (CT) images. Deformable image registration and the resultant displacement vector fields (DVFs) are used to quantify the interfraction systematic and random motion. By applying the PCA technique to the random DVFs, principal modes of random tissue deformation were determined for each patient, and a method for sampling synthetic random DVFs was developed. The PCA model was then extended to describe the principal modes of systematic and random organ motion for the population of patients. A leave-one-out study tested both the systematic and random motion model's ability to represent PCA training set DVFs. The random and systematic DVF PCA models allowed the reconstruction of these data with absolute mean errors between 0.5-0.9 mm and 1-2 mm, respectively. To the best of the author's knowledge, this study is the first successful effort to build a fully 3D statistical PCA model of systematic tissue deformation in a population of patients. By sampling synthetic systematic and random errors, organ occupancy maps were created for bony and prostate-centroid patient setup processes. By thresholding these maps, PCA-based planning target volume (PTV) was created and tested against conventional margin recipes (van Herk for bony alignment and 5 mm fixed [3 mm posterior] margin for centroid alignment) in a virtual clinical trial for low-risk prostate cancer. Deformably accumulated delivered dose served as a surrogate for clinical outcome. For the bony landmark setup subtrial, the PCA PTV significantly (p<0.05) reduced D30, D20, and D5 to bladder and D50 to rectum, while increasing rectal D20 and D5. For the centroid-aligned setup, the PCA PTV significantly reduced all bladder DVH metrics and trended to lower rectal toxicity metrics. All PTVs covered the prostate with the prescription dose.

  19. Flying over decades

    NASA Astrophysics Data System (ADS)

    Hoeller, Judith; Issler, Mena; Imamoglu, Atac

    Levy flights haven been extensively used in the past three decades to describe non-Brownian motion of particles. In this presentation I give an overview on how Levy flights have been used across several disciplines, ranging from biology to finance to physics. In our publication we describe how a single electron spin 'flies' when captured in quantum dot using the central spin model. At last I motivate the use of Levy flights for the description of anomalous diffusion in modern experiments, concretely to describe the lifetimes of quasi-particles in Josephson junctions. Finished PhD at ETH in Spring 2015.

  20. A Double-Blind Placebo-Controlled Randomized Clinical Trial With Magnesium Oxide to Reduce Intrafraction Prostate Motion for Prostate Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lips, Irene M., E-mail: i.m.lips@umcutrecht.nl; Gils, Carla H. van; Kotte, Alexis N.T.J.

    2012-06-01

    Purpose: To investigate whether magnesium oxide during external-beam radiotherapy for prostate cancer reduces intrafraction prostate motion in a double-blind, placebo-controlled randomized trial. Methods and Materials: At the Department of Radiotherapy, prostate cancer patients scheduled for intensity-modulated radiotherapy (77 Gy in 35 fractions) using fiducial marker-based position verification were randomly assigned to receive magnesium oxide (500 mg twice a day) or placebo during radiotherapy. The primary outcome was the proportion of patients with clinically relevant intrafraction prostate motion, defined as the proportion of patients who demonstrated in {>=}50% of the fractions an intrafraction motion outside a range of 2 mm. Secondarymore » outcome measures included quality of life and acute toxicity. Results: In total, 46 patients per treatment arm were enrolled. The primary endpoint did not show a statistically significant difference between the treatment arms with a percentage of patients with clinically relevant intrafraction motion of 83% in the magnesium oxide arm as compared with 80% in the placebo arm (p = 1.00). Concerning the secondary endpoints, exploratory analyses demonstrated a trend towards worsened quality of life and slightly more toxicity in the magnesium oxide arm than in the placebo arm; however, these differences were not statistically significant. Conclusions: Magnesium oxide is not effective in reducing the intrafraction prostate motion during external-beam radiotherapy, and therefore there is no indication to use it in clinical practice for this purpose.« less

  1. X-Ray Measurement of the Spin-down of Calvera: A Radio- and Gamma-Ray-Quiet Pulsar

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V.

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is \\dot{P}=(3.19+/- \\,0.08)\\times 10^{-15}, which corresponds to spin-down luminosity \\dot{E}=6.1\\times 10^{35} erg s-1, characteristic age \\tau _c\\equiv P/2\\dot{P}=2.9\\times 10^5 yr, and surface dipole magnetic field strength Bs = 4.4 × 1011 G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 1032 erg s-1, which is less than that of any pulsar of comparable \\dot{E}. Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  2. A model for Entropy Production, Entropy Decrease and Action Minimization in Self-Organization

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi; Chatterjee, Atanu; Vu, Thanh; Iannacchione, Germano

    In self-organization energy gradients across complex systems lead to change in the structure of systems, decreasing their internal entropy to ensure the most efficient energy transport and therefore maximum entropy production in the surroundings. This approach stems from fundamental variational principles in physics, such as the principle of least action. It is coupled to the total energy flowing through a system, which leads to increase the action efficiency. We compare energy transport through a fluid cell which has random motion of its molecules, and a cell which can form convection cells. We examine the signs of change of entropy, and the action needed for the motion inside those systems. The system in which convective motion occurs, reduces the time for energy transmission, compared to random motion. For more complex systems, those convection cells form a network of transport channels, for the purpose of obeying the equations of motion in this geometry. Those transport networks are an essential feature of complex systems in biology, ecology, economy and society.

  3. Chaotic behavior in the locomotion of Amoeba proteus.

    PubMed

    Miyoshi, H; Kagawa, Y; Tsuchiya, Y

    2001-01-01

    The locomotion of Amoeba proteus has been investigated by algorithms evaluating correlation dimension and Lyapunov spectrum developed in the field of nonlinear science. It is presumed by these parameters whether the random behavior of the system is stochastic or deterministic. For the analysis of the nonlinear parameters, n-dimensional time-delayed vectors have been reconstructed from a time series of periphery and area of A. proteus images captured with a charge-coupled-device camera, which characterize its random motion. The correlation dimension analyzed has shown the random motion of A. proteus is subjected only to 3-4 macrovariables, though the system is a complex system composed of many degrees of freedom. Furthermore, the analysis of the Lyapunov spectrum has shown its largest exponent takes positive values. These results indicate the random behavior of A. proteus is chaotic and deterministic motion on an attractor with low dimension. It may be important for the elucidation of the cell locomotion to take account of nonlinear interactions among a small number of dynamics such as the sol-gel transformation, the cytoplasmic streaming, and the relating chemical reaction occurring in the cell.

  4. Study of human body: Kinematics and kinetics of a martial arts (Silat) performers using 3D-motion capture

    NASA Astrophysics Data System (ADS)

    Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi

    2015-04-01

    The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.

  5. Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2010-03-01

    because only certain collections (partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic ...rigidity of short oligos and the shape of the polar charge. Oligo movement was modeled by a Brownian motion 3 dimensional random walk. The one...temperature, kB is Boltz he viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three dimensional lattice and may

  6. The method of micro-motion cycle feature extraction based on confidence coefficient evaluation criteria

    NASA Astrophysics Data System (ADS)

    Tang, Chuanzi; Ren, Hongmei; Bo, Li; Jing, Huang

    2017-11-01

    In radar target recognition, the micro motion characteristics of target is one of the characteristics that researchers pay attention to at home and abroad, in which the characteristics of target precession cycle is one of the important characteristics of target movement characteristics. Periodic feature extraction methods have been studied for years, the complex shape of the target and the scattering center stack lead to random fluctuations of the RCS. These random fluctuations also exist certain periodicity, which has a great influence on the target recognition result. In order to solve the problem, this paper proposes a extraction method of micro-motion cycle feature based on confidence coefficient evaluation criteria.

  7. Size-dependent quantum diffusion of Gd atoms within Fe nano-corrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J.; Cao, R. X.; Miao, B. F.

    2013-12-01

    We systematically studied the size-dependent quantum diffusion of Gd atoms within Fe circular quantum corrals on Ag(111). By varying the size of the quantum corrals, different types of patterns are observed inside the corrals, including a single dot and circular orbits for the diffusion of Gd adatoms. In addition, the motion of the adatoms also forms circular-like orbits outside the corral. Via quantitative analysis, we confirm that the regions with adatoms' high visiting probability are consistent with the positions of the local electronic density-of-states maxima, both inside and outside the corrals within a < 0.2 nm offset. The results agreemore » well with kinetic Monte Carlo simulations that utilize the experimentally determined interaction between Gd and Fe circular corrals. These findings demonstrate that one can engineer adatom motion by controlling the size of the quantum corrals.« less

  8. DNA Motion Capture Reveals the Mechanical Properties of DNA at the Mesoscale

    PubMed Central

    Price, Allen C.; Pilkiewicz, Kevin R.; Graham, Thomas G.W.; Song, Dan; Eaves, Joel D.; Loparo, Joseph J.

    2015-01-01

    Single-molecule studies probing the end-to-end extension of long DNAs have established that the mechanical properties of DNA are well described by a wormlike chain force law, a polymer model where persistence length is the only adjustable parameter. We present a DNA motion-capture technique in which DNA molecules are labeled with fluorescent quantum dots at specific sites along the DNA contour and their positions are imaged. Tracking these positions in time allows us to characterize how segments within a long DNA are extended by flow and how fluctuations within the molecule are correlated. Utilizing a linear response theory of small fluctuations, we extract elastic forces for the different, ∼2-μm-long segments along the DNA backbone. We find that the average force-extension behavior of the segments can be well described by a wormlike chain force law with an anomalously small persistence length. PMID:25992731

  9. Weighting Mean and Variability during Confidence Judgments

    PubMed Central

    de Gardelle, Vincent; Mamassian, Pascal

    2015-01-01

    Humans can not only perform some visual tasks with great precision, they can also judge how good they are in these tasks. However, it remains unclear how observers produce such metacognitive evaluations, and how these evaluations might be dissociated from the performance in the visual task. Here, we hypothesized that some stimulus variables could affect confidence judgments above and beyond their impact on performance. In a motion categorization task on moving dots, we manipulated the mean and the variance of the motion directions, to obtain a low-mean low-variance condition and a high-mean high-variance condition with matched performances. Critically, in terms of confidence, observers were not indifferent between these two conditions. Observers exhibited marked preferences, which were heterogeneous across individuals, but stable within each observer when assessed one week later. Thus, confidence and performance are dissociable and observers’ confidence judgments put different weights on the stimulus variables that limit performance. PMID:25793275

  10. Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Luo, Meng; Jiang, Feng; Xu, Rui-Xue; Yan, YiJing

    2011-06-01

    Padé spectrum decomposition is an optimal sum-over-poles expansion scheme of Fermi function and Bose function [J. Hu, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 133, 101106 (2010)], 10.1063/1.3484491. In this work, we report two additional members to this family, from which the best among all sum-over-poles methods could be chosen for different cases of application. Methods are developed for determining these three Padé spectrum decomposition expansions at machine precision via simple algorithms. We exemplify the applications of present development with optimal construction of hierarchical equations-of-motion formulations for nonperturbative quantum dissipation and quantum transport dynamics. Numerical demonstrations are given for two systems. One is the transient transport current to an interacting quantum-dots system, together with the involved high-order co-tunneling dynamics. Another is the non-Markovian dynamics of a spin-boson system.

  11. The facing bias in biological motion perception: Effects of stimulus gender and observer sex.

    PubMed

    Schouten, Ben; Troje, Nikolaus F; Brooks, Anna; van der Zwan, Rick; Verfaillie, Karl

    2010-07-01

    Under orthographic projection, biological motion point-light walkers offer no cues to the order of the dots in depth: Views from the front and from the back result in the very same stimulus. Yet observers show a bias toward seeing a walker facing the viewer (Vanrie, Dekeyser, & Verfaillie, 2004). Recently, we reported that this facing bias strongly depends on the gender of the walker (Brooks et al., 2008). The goal of the present study was, first, to examine the robustness of the effect by testing a much larger subject sample and, second, to investigate whether the effect depends on observer sex. Despite the fact that we found a significant effect of figure gender, we clearly failed to replicate the strong effect observed in the original study. We did, however, observe a significant interaction between figure gender and observer sex.

  12. Conformal killing tensors and covariant Hamiltonian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cariglia, M., E-mail: marco@iceb.ufop.br; Gibbons, G. W., E-mail: G.W.Gibbons@damtp.cam.ac.uk; LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans

    2014-12-15

    A covariant algorithm for deriving the conserved quantities for natural Hamiltonian systems is combined with the non-relativistic framework of Eisenhart, and of Duval, in which the classical trajectories arise as geodesics in a higher dimensional space-time, realized by Brinkmann manifolds. Conserved quantities which are polynomial in the momenta can be built using time-dependent conformal Killing tensors with flux. The latter are associated with terms proportional to the Hamiltonian in the lower dimensional theory and with spectrum generating algebras for higher dimensional quantities of order 1 and 2 in the momenta. Illustrations of the general theory include the Runge-Lenz vector formore » planetary motion with a time-dependent gravitational constant G(t), motion in a time-dependent electromagnetic field of a certain form, quantum dots, the Hénon-Heiles and Holt systems, respectively, providing us with Killing tensors of rank that ranges from one to six.« less

  13. Brownian motion and its descendants according to Schrödinger

    NASA Astrophysics Data System (ADS)

    Garbaczewski, Piotr; Vigier, Jean-Pierre

    1992-08-01

    We revisit Schrödinger's original suggestion of the existence of a special class of random processes, which have their origin in the Einstein-Smoluchowski theory of Brownian motion. Our principal goal is to clarify the physical nature of links connecting the realistic Brownian motion with the abstract mathematical formalism of Nelson and Bernstein diffusions.

  14. Eye Movements during Multiple Object Tracking: Where Do Participants Look?

    ERIC Educational Resources Information Center

    Fehd, Hilda M.; Seiffert, Adriane E.

    2008-01-01

    Similar to the eye movements you might make when viewing a sports game, this experiment investigated where participants tend to look while keeping track of multiple objects. While eye movements were recorded, participants tracked either 1 or 3 of 8 red dots that moved randomly within a square box on a black background. Results indicated that…

  15. Analytical approach to calculation of response spectra from seismological models of ground motion

    USGS Publications Warehouse

    Safak, Erdal

    1988-01-01

    An analytical approach to calculate response spectra from seismological models of ground motion is presented. Seismological models have three major advantages over empirical models: (1) they help in an understanding of the physics of earthquake mechanisms, (2) they can be used to predict ground motions for future earthquakes and (3) they can be extrapolated to cases where there are no data available. As shown with this study, these models also present a convenient form for the calculation of response spectra, by using the methods of random vibration theory, for a given magnitude and site conditions. The first part of the paper reviews the past models for ground motion description, and introduces the available seismological models. Then, the random vibration equations for the spectral response are presented. The nonstationarity, spectral bandwidth and the correlation of the peaks are considered in the calculation of the peak response.

  16. Controlling the motion of multiple objects on a Chladni plate

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville

    2016-09-01

    The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts.

  17. A tunable digital ishihara plate for pre-school aged children.

    PubMed

    Gambino, Orazio; Minafo, Ester; Pirrone, Roberto; Ardizzone, Edoardo

    2016-08-01

    Colors play a fundamental role for children, both in the everyday life and in education. They recognize the surrounding world, and play games making a large use of colors. They learn letters and numbers by means of colors. As a consequence, early diagnosis of color blindness is an crucial to support an individual affected by this visual perception alteration at the initial phase of his/her life. The diagnosis of red-green color deficiencies (protanopia or deuteranopia) is commonly accomplished by means of the Ishihara test, which consists of plates showing dots with different sizes where some of them compose numbers within a gamut of colors while the ones composing the background have different colors. In this paper, a web application written in javascript is presented, that implements a digital Ishihara-like test for pre-school aged children. Instead numbers or letters, It can transform any binary image representing animal shapes, or any other child-friendly shape, into an Ishihara-like image. This digital plate is not static. The operator can increment the dot density to improve the quality of the shape contour and the entire plate can be redrawn with different dot sizes/colors chosen randomly according to the color pattern of the test. Separate controls for brightness and saturation are implemented to calibrate the chromatic aspect of the background and foreground dots.

  18. Taking a(c)count of eye movements: Multiple mechanisms underlie fixations during enumeration.

    PubMed

    Paul, Jacob M; Reeve, Robert A; Forte, Jason D

    2017-03-01

    We habitually move our eyes when we enumerate sets of objects. It remains unclear whether saccades are directed for numerosity processing as distinct from object-oriented visual processing (e.g., object saliency, scanning heuristics). Here we investigated the extent to which enumeration eye movements are contingent upon the location of objects in an array, and whether fixation patterns vary with enumeration demands. Twenty adults enumerated random dot arrays twice: first to report the set cardinality and second to judge the perceived number of subsets. We manipulated the spatial location of dots by presenting arrays at 0°, 90°, 180°, and 270° orientations. Participants required a similar time to enumerate the set or the perceived number of subsets in the same array. Fixation patterns were systematically shifted in the direction of array rotation, and distributed across similar locations when the same array was shown on multiple occasions. We modeled fixation patterns and dot saliency using a simple filtering model and show participants judged groups of dots in close proximity (2°-2.5° visual angle) as distinct subsets. Modeling results are consistent with the suggestion that enumeration involves visual grouping mechanisms based on object saliency, and specific enumeration demands affect spatial distribution of fixations. Our findings highlight the importance of set computation, rather than object processing per se, for models of numerosity processing.

  19. A fault-tolerant addressable spin qubit in a natural silicon quantum dot.

    PubMed

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-08-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot-based qubits. This result can inspire contributions to quantum computing from industrial communities.

  20. Optimal search strategies of space-time coupled random walkers with finite lifetimes

    NASA Astrophysics Data System (ADS)

    Campos, D.; Abad, E.; Méndez, V.; Yuste, S. B.; Lindenberg, K.

    2015-05-01

    We present a simple paradigm for detection of an immobile target by a space-time coupled random walker with a finite lifetime. The motion of the walker is characterized by linear displacements at a fixed speed and exponentially distributed duration, interrupted by random changes in the direction of motion and resumption of motion in the new direction with the same speed. We call these walkers "mortal creepers." A mortal creeper may die at any time during its motion according to an exponential decay law characterized by a finite mean death rate ωm. While still alive, the creeper has a finite mean frequency ω of change of the direction of motion. In particular, we consider the efficiency of the target search process, characterized by the probability that the creeper will eventually detect the target. Analytic results confirmed by numerical results show that there is an ωm-dependent optimal frequency ω =ωopt that maximizes the probability of eventual target detection. We work primarily in one-dimensional (d =1 ) domains and examine the role of initial conditions and of finite domain sizes. Numerical results in d =2 domains confirm the existence of an optimal frequency of change of direction, thereby suggesting that the observed effects are robust to changes in dimensionality. In the d =1 case, explicit expressions for the probability of target detection in the long time limit are given. In the case of an infinite domain, we compute the detection probability for arbitrary times and study its early- and late-time behavior. We further consider the survival probability of the target in the presence of many independent creepers beginning their motion at the same location and at the same time. We also consider a version of the standard "target problem" in which many creepers start at random locations at the same time.

Top