Sample records for random dot stereogram

  1. A Single Mechanism Can Account for Human Perception of Depth in Mixed Correlation Random Dot Stereograms

    PubMed Central

    Cumming, Bruce G.

    2016-01-01

    In order to extract retinal disparity from a visual scene, the brain must match corresponding points in the left and right retinae. This computationally demanding task is known as the stereo correspondence problem. The initial stage of the solution to the correspondence problem is generally thought to consist of a correlation-based computation. However, recent work by Doi et al suggests that human observers can see depth in a class of stimuli where the mean binocular correlation is 0 (half-matched random dot stereograms). Half-matched random dot stereograms are made up of an equal number of correlated and anticorrelated dots, and the binocular energy model—a well-known model of V1 binocular complex cells—fails to signal disparity here. This has led to the proposition that a second, match-based computation must be extracting disparity in these stimuli. Here we show that a straightforward modification to the binocular energy model—adding a point output nonlinearity—is by itself sufficient to produce cells that are disparity-tuned to half-matched random dot stereograms. We then show that a simple decision model using this single mechanism can reproduce psychometric functions generated by human observers, including reduced performance to large disparities and rapidly updating dot patterns. The model makes predictions about how performance should change with dot size in half-matched stereograms and temporal alternation in correlation, which we test in human observers. We conclude that a single correlation-based computation, based directly on already-known properties of V1 neurons, can account for the literature on mixed correlation random dot stereograms. PMID:27196696

  2. Human cerebral potentials evoked by moving dynamic random dot stereograms.

    PubMed

    Herpers, M J; Caberg, H B; Mol, J M

    1981-07-01

    In 11 normal healthy human subjects an evoked potential was elicited by moving dynamic random dot stereograms. The random dots were generated by a minicomputer. An average of each of 8 EEG channels of the subjects tested was made. The maximum of the cerebral evoked potentials thus found was localized in the central and parietal region. No response earlier than 130--150 msec after the stimulus could be proved. The influence of fixation, the number of dots provided, an interocular interstimulus interval in the presentation of the dots, and lense accommodation movements on the evoked stereoptic potentials was investigated and discussed. An interocular interstimulus interval (left eye leading) in the presentation of the dots caused an increase in latency of the response much longer than the imposed interstimulus interval itself. It was shown that no accommodation was needed to perceive the depth impression, and to evoke the cerebral response with random dot stereograms. There are indications of an asymmetry between the two hemispheres in the handling of depth perception after 250 msec. The potential distribution of the evoked potentials strongly suggests that they are not generated in the occipital region.

  3. Enhancing Motion-In-Depth Perception of Random-Dot Stereograms.

    PubMed

    Zhang, Di; Nourrit, Vincent; De Bougrenet de la Tocnaye, Jean-Louis

    2018-07-01

    Random-dot stereograms have been widely used to explore the neural mechanisms underlying binocular vision. Although they are a powerful tool to stimulate motion-in-depth (MID) perception, published results report some difficulties in the capacity to perceive MID generated by random-dot stereograms. The purpose of this study was to investigate whether the performance of MID perception could be improved using an appropriate stimulus design. Sixteen inexperienced observers participated in the experiment. A training session was carried out to improve the accuracy of MID detection before the experiment. Four aspects of stimulus design were investigated: presence of a static reference, background texture, relative disparity, and stimulus contrast. Participants' performance in MID direction discrimination was recorded and compared to evaluate whether varying these factors helped MID perception. Results showed that only the presence of background texture had a significant effect on MID direction perception. This study provides suggestions for the design of 3D stimuli in order to facilitate MID perception.

  4. Accommodation and pupil responses to random-dot stereograms

    PubMed Central

    Suryakumar, Rajaraman; Allison, Robert

    2015-01-01

    We investigated the dynamics of accommodative and pupillary responses to random-dot stereograms presented in crossed and uncrossed disparity in six visually normal young adult subjects (mean age = 25.8 ± 3.1 years). Accommodation and pupil measures were monitored monocularly with a custom built photorefraction system while subjects fixated at the center of a random-dot stereogram. On each trial, the stereogram initially depicted a flat plane and then changed to depict a sinusoidal corrugation in depth while fixation remained constant. Increase in disparity specified depth resulted in pupil constriction during both crossed and uncrossed disparity presentations. The change in pupil size between crossed and uncrossed disparity conditions was not significantly different (p > 0.05). The change in pupil size was also accompanied by a small concomitant increase in accommodation. In addition, the dynamic properties of pupil responses varied as a function of their initial (starting) diameter. The finding that accommodation and pupil responses increased with disparity regardless of the sign of retinal disparity suggests that these responses were driven by apparent depth rather than shifts in mean simulated distance of the stimulus. Presumably the need for the increased depth of focus when viewing stimuli extended in depth results in pupil constriction which also results in a concomitant change in accommodation. Starting position effects in pupil response confirm the non-linearity in the operating range of the pupil. PMID:25891121

  5. The relationship between stereoacuity and stereomotion thresholds.

    PubMed

    Cumming, B G

    1995-01-01

    There are in principle at least two binocular sources of information that could be used to determine the motion of an object towards or away from an observer; such motion produces changes in binocular disparities over time and also generates different image velocities in the two eyes. It has been argued in the past that stereomotion is detected by a mechanism that is independent of that which detects static disparities. More recently this conclusion has been questioned. If stereomotion detection in fact depends upon detecting disparities, there should be a clear correlation between static stereo-detection thresholds and stereomotion thresholds. If the systems are separate, there need be no such correlation. Four types of threshold measurement were performed by means of random-dot stereograms: (1) static stereo detection/discrimination; (2) stereomotion detection in random-dot stereograms (temporally uncorrelated); (3) stereomotion detection in temporally correlated random-dot stereograms; and (4) binocular detection of frontoparallel motion. Three normal subjects and five subjects with unusually high stereoacuities were studied. In addition, two manipulations were performed that altered stereomotion thresholds: changes in mean disparity, and image defocus produced by positive spectacle lenses. Across subjects and conditions, stereomotion thresholds were well correlated with stereo-discrimination thresholds. Stereomotion was poorly correlated with binocular frontoparallel-motion thresholds. These results suggest that stereomotion is detected by means of registering changes in the output of the same disparity detectors that are used to detect static disparities.

  6. Psychophysical estimation of 3D virtual depth of united, synthesized and mixed type stereograms by means of simultaneous observation

    NASA Astrophysics Data System (ADS)

    Iizuka, Masayuki; Ookuma, Yoshio; Nakashima, Yoshio; Takamatsu, Mamoru

    2007-02-01

    Recently, many types of computer-generated stereograms (CGSs), i.e. various works of art produced by using computer are published for hobby and entertainment. It is said that activation of brain, improvement of visual eye sight, decrease of mental stress, effect of healing, etc. are expected when properly appreciating a kind of CGS as the stereoscopic view. There is a lot of information on the internet web site concerning all aspects of stereogram history, science, social organization, various types of stereograms, and free software for generating CGS. Generally, the CGS is classified into nine types: (1) stereo pair type, (2) anaglyph type, (3) repeated pattern type, (4) embedded type, (5) random dot stereogram (RDS), (6) single image stereogram (SIS), (7) united stereogram, (8) synthesized stereogram, and (9) mixed or multiple type stereogram. Each stereogram has advantages and disadvantages when viewing directly the stereogram with two eyes by training with a little patience. In this study, the characteristics of united, synthesized and mixed type stereograms, the role and composition of depth map image (DMI) called hidden image or picture, and the effect of irregular shift of texture pattern image called wall paper are discussed from the viewpoint of psychophysical estimation of 3D virtual depth and visual quality of virtual image by means of simultaneous observation in the case of the parallel viewing method.

  7. Depth perception not found in human observers for static or dynamic anti-correlated random dot stereograms.

    PubMed

    Hibbard, Paul B; Scott-Brown, Kenneth C; Haigh, Emma C; Adrain, Melanie

    2014-01-01

    One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon.

  8. Depth Perception Not Found in Human Observers for Static or Dynamic Anti-Correlated Random Dot Stereograms

    PubMed Central

    Hibbard, Paul B.; Scott-Brown, Kenneth C.; Haigh, Emma C.; Adrain, Melanie

    2014-01-01

    One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon. PMID:24416195

  9. Robot Vision

    NASA Technical Reports Server (NTRS)

    Sutro, L. L.; Lerman, J. B.

    1973-01-01

    The operation of a system is described that is built both to model the vision of primate animals, including man, and serve as a pre-prototype of possible object recognition system. It was employed in a series of experiments to determine the practicability of matching left and right images of a scene to determine the range and form of objects. The experiments started with computer generated random-dot stereograms as inputs and progressed through random square stereograms to a real scene. The major problems were the elimination of spurious matches, between the left and right views, and the interpretation of ambiguous regions, on the left side of an object that can be viewed only by the left camera, and on the right side of an object that can be viewed only by the right camera.

  10. Texton Theory Of Two-Dimensional And Three-Dimensional Vision

    NASA Astrophysics Data System (ADS)

    Julesz, Bela

    1983-04-01

    Recently, after two decades of research in visual texture discrimination and in the discrimination of briefly presented patterns, a new structure of human vision has emerged. Accordingly, human vision is mediated by two separate visual systems: a preattentive and an attentive one. The parallel preattentive visual system cannot process complex forms, yet can, almost instantaneously, without effort or scrutiny, detect differences in a few local conspicuous features, regardless of the number of elements or where they occur. These "textons" (Julesz, 1981) are elongated blobs (e.g. rectangles, ellipses, or line segments) of specific color, angular orientation, width, length, binocular and movement disparity, and flicker rate. For line segments, their terminators (ends-of-lines) and crossings often behave as textons. The preattentive system can count only the number of textons and detect their locale, but cannot perceive the positional relations between them (Julesz, 1981, 1981a). However, the preattentive system can direct focal attention to the areas where differences in texton density occur in about 50 msec steps (four times faster than eye-movements). Only in this narrow aperture of focal attention (which can be as small as a few minutes of arc) can positional differences be perceived, permitting the prodigious feats of form recognition (Bergen and Julesz, 1981). Since disparity differences in random-dot stereograms can be perceived in a 50 msec presentation (followed by masking) provided the binocular disparity is beyond a critical limit, disparity is also a texton. It can be shown (for review, see Julesz and Schumer, 1981) that the largest disparity that can yield stereopsis in random-dot stereograms is a monotonic function of the cyclopean target area. Furthermore, the cyclopean modulation function (for corrugated sinusoidal depth gratings) is very "myopic" with a cit-off around 3 c/deg. Since stereopsis is important in quality inspection, an objective determination of stereoscopic abilities using evoked potential techniques to dynamic random-dot correlograms and stereograms is also discussed (Julesz, Kropfl and Petrig, 1980; Julesz and Kropfl, 1982). These techniques also permit the early diagnosis of stereo-blindness that afflicts 2% of the human population and might lead to its prevention.

  11. Stereopsis and positional acuity under dark adaptation.

    PubMed

    Livingstone, M S; Hubel, D H

    1994-03-01

    Though experience tells us we can perceive depth in dim light, it is not so obvious that one of the chief mechanisms for depth perception, stereopsis, is possible under scotopic conditions. The only studies on human stereopsis in the dark adapted state seem to be those of Nagel [(1902) Zeitschrift für Psychologie, 27, 264-266] and Mueller and Lloyd [(1948) Proceedings of the National Academy of Science, U.S.A., 34, 223-227], both of which used real objects or line stereograms. We tested stereopsis using both random-dot and line stereograms and, in agreement with these studies, found that stereopsis is indeed possible in dark adaptation. We also measured stereo acuity and positional acuity (both of which are examples of hyperacuity) and compared these with grating acuity at several levels of light and dark adaptation. At all illumination levels tested, acuities for stereopsis and relative line position were both higher than for grating acuity. As light levels decreased, positional and grating acuity declined in parallel fashion, whereas stereoacuity declined more steeply.

  12. A new computer program for mass screening of visual defects in preschool children.

    PubMed

    Briscoe, D; Lifshitz, T; Grotman, M; Kushelevsky, A; Vardi, H; Weizman, S; Biedner, B

    1998-04-01

    To test the effectiveness of a PC computer program for detecting vision disorders which could be used by non-trained personnel, and to determine the prevalence of visual impairment in a sample population of preschool children in the city of Beer-Sheba, Israel. 292 preschool children, aged 4-6 years, were examined in the kindergarten setting, using the computer system and "gold standard" tests. Visual acuity and stereopsis were tested and compared using Snellen type symbol charts and random dot stereograms respectively. The sensitivity, specificity, positive predictive value, negative predictive value, and kappa test were evaluated. A computer pseudo Worth four dot test was also performed but could not be compared with the standard Worth four dot test owing to the inability of many children to count. Agreement between computer and gold standard tests was 83% and 97.3% for visual acuity and stereopsis respectively. The sensitivity of the computer stereogram was only 50%, but it had a specificity of 98.9%, whereas the sensitivity and specificity of the visual acuity test were 81.5% and 83% respectively. The positive predictive value of both tests was about 63%. 27.7% of children tested had a visual acuity of 6/12 or less and stereopsis was absent in 28% using standard tests. Impairment of fusion was found in 5% of children using the computer pseudo Worth four dot test. The computer program was found to be stimulating, rapid, and easy to perform. The wide availability of computers in schools and at home allow it to be used as an additional screening tool by non-trained personnel, such as teachers and parents, but it is not a replacement for standard testing.

  13. Stereomotion speed perception: contributions from both changing disparity and interocular velocity difference over a range of relative disparities

    NASA Technical Reports Server (NTRS)

    Brooks, Kevin R.; Stone, Leland S.

    2004-01-01

    The role of two binocular cues to motion in depth-changing disparity (CD) and interocular velocity difference (IOVD)- was investigated by measuring stereomotion speed discrimination and static disparity discrimination performance (stereoacuity). Speed discrimination thresholds were assessed both for random dot stereograms (RDS), and for their temporally uncorrelated equivalents, dynamic random dot stereograms (DRDS), at relative disparity pedestals of -19, 0, and +19 arcmin. While RDS stimuli contain both CD and IOVD cues, DRDS stimuli carry only CD information. On average, thresholds were a factor of 1.7 higher for DRDS than for RDS stimuli with no clear effect of relative disparity pedestal. Results were similar for approaching and receding targets. Variations in stimulus duration had no significant effect on thresholds, and there was no observed correlation between stimulus displacement and perceived speed, confirming that subjects responded to stimulus speed in each condition. Stereoacuity was equally good for our RDS and DRDS stimuli, showing that the difference in stereomotion speed discrimination performance for these stimuli was not due to any difference in the precision of the disparity cue. In addition, when we altered stereomotion stimulus trajectory by independently manipulating the speeds and directions of its monocular half-images, perceived stereomotion speed remained accurate. This finding is inconsistent with response strategies based on properties of either monocular half-image motion, or any ad hoc combination of the monocular speeds. We conclude that although subjects are able to discriminate stereomotion speed reliably on the basis of CD information alone, IOVD provides a precise additional cue to stereomotion speed perception.

  14. Object recognition contributions to figure-ground organization: operations on outlines and subjective contours.

    PubMed

    Peterson, M A; Gibson, B S

    1994-11-01

    In previous research, replicated here, we found that some object recognition processes influence figure-ground organization. We have proposed that these object recognition processes operate on edges (or contours) detected early in visual processing, rather than on regions. Consistent with this proposal, influences from object recognition on figure-ground organization were previously observed in both pictures and stereograms depicting regions of different luminance, but not in random-dot stereograms, where edges arise late in processing (Peterson & Gibson, 1993). In the present experiments, we examined whether or not two other types of contours--outlines and subjective contours--enable object recognition influences on figure-ground organization. For both types of contours we observed a pattern of effects similar to that originally obtained with luminance edges. The results of these experiments are valuable for distinguishing between alternative views of the mechanisms mediating object recognition influences on figure-ground organization. In addition, in both Experiments 1 and 2, fixated regions were seen as figure longer than nonfixated regions, suggesting that fixation location must be included among the variables relevant to figure-ground organization.

  15. Matching and correlation computations in stereoscopic depth perception.

    PubMed

    Doi, Takahiro; Tanabe, Seiji; Fujita, Ichiro

    2011-03-02

    A fundamental task of the visual system is to infer depth by using binocular disparity. To encode binocular disparity, the visual cortex performs two distinct computations: one detects matched patterns in paired images (matching computation); the other constructs the cross-correlation between the images (correlation computation). How the two computations are used in stereoscopic perception is unclear. We dissociated their contributions in near/far discrimination by varying the magnitude of the disparity across separate sessions. For small disparity (0.03°), subjects performed at chance level to a binocularly opposite-contrast (anti-correlated) random-dot stereogram (RDS) but improved their performance with the proportion of contrast-matched (correlated) dots. For large disparity (0.48°), the direction of perceived depth reversed with an anti-correlated RDS relative to that for a correlated one. Neither reversed nor normal depth was perceived when anti-correlation was applied to half of the dots. We explain the decision process as a weighted average of the two computations, with the relative weight of the correlation computation increasing with the disparity magnitude. We conclude that matching computation dominates fine depth perception, while both computations contribute to coarser depth perception. Thus, stereoscopic depth perception recruits different computations depending on the disparity magnitude.

  16. A simple integrative method for presenting head-contingent motion parallax and disparity cues on intel x86 processor-based machines.

    PubMed

    Szatmary, J; Hadani, I; Julesz, B

    1997-01-01

    Rogers and Graham (1979) developed a system to show that head-movement-contingent motion parallax produces monocular depth perception in random dot patterns. Their display system comprised an oscilloscope driven by function generators or a special graphics board that triggered the X and Y deflection of the raster scan signal. Replication of this system required costly hardware that is no longer on the market. In this paper the Rogers-Graham method is reproduced with an Intel processor based IBM PC compatible machine with no additional hardware cost. An adapted joystick sampled through the standard game-port can serve as a provisional head-movement sensor. Monitor resolution for displaying motion is effectively enhanced 16 times by the use of anti-aliasing, enabling the display of thousands of random dots in real-time with a refresh rate of 60 Hz or above. A color monitor enables the use of the anaglyph method, thus combining stereoscopic and monocular parallax on a single display without the loss of speed. The power of this system is demonstrated by a psychophysical measurement in which subjects nulled head-movement-contingent illusory parallax, evoked by a static stereogram, with real parallax. The amount of real parallax required to null the illusory stereoscopic parallax monotonically increased with disparity.

  17. Enduring stereoscopic motion aftereffects induced by prolonged adaptation.

    PubMed

    Bowd, C; Rose, D; Phinney, R E; Patterson, R

    1996-11-01

    This study investigated the effects of prolonged adaptation on the recovery of the stereoscopic motion aftereffect (adaptation induced by moving binocular disparity information). The adapting and test stimuli were stereoscopic grating patterns created from disparity, embedded in dynamic random-dot stereograms. Motion aftereffects induced by luminance stimuli were included in the study for comparison. Adaptation duration was either 1, 2, 4, 8, 16, 32 or 64 min and the duration of the ensuing aftereffect was the variable of interest. The results showed that aftereffect duration was proportional to the square root of adaptation duration for both stereoscopic and luminance stimuli; on log-log axes, the relation between aftereffect duration and adaptation duration was a power law with the slope near 0.5 in both cases. For both kinds of stimuli, there was no sign of adaptation saturation even at the longest adaptation duration.

  18. Interocular velocity difference contributes to stereomotion speed perception

    NASA Technical Reports Server (NTRS)

    Brooks, Kevin R.

    2002-01-01

    Two experiments are presented assessing the contributions of the rate of change of disparity (CD) and interocular velocity difference (IOVD) cues to stereomotion speed perception. Using a two-interval forced-choice paradigm, the perceived speed of directly approaching and receding stereomotion and of monocular lateral motion in random dot stereogram (RDS) targets was measured. Prior adaptation using dysjunctively moving random dot stimuli induced a velocity aftereffect (VAE). The degree of interocular correlation in the adapting images was manipulated to assess the effectiveness of each cue. While correlated adaptation involved a conventional RDS stimulus, containing both IOVD and CD cues, uncorrelated adaptation featured an independent dot array in each monocular half-image, and hence lacked a coherent disparity signal. Adaptation produced a larger VAE for stereomotion than for monocular lateral motion, implying effects at neural sites beyond that of binocular combination. For motion passing through the horopter, correlated and uncorrelated adaptation stimuli produced equivalent stereomotion VAEs. The possibility that these results were due to the adaptation of a CD mechanism through random matches in the uncorrelated stimulus was discounted in a control experiment. Here both simultaneous and sequential adaptation of left and right eyes produced similar stereomotion VAEs. Motion at uncrossed disparities was also affected by both correlated and uncorrelated adaptation stimuli, but showed a significantly greater VAE in response to the former. These results show that (1) there are two separate, specialised mechanisms for encoding stereomotion: one through IOVD, the other through CD; (2) the IOVD cue dominates the perception of stereomotion speed for stimuli passing through the horopter; and (3) at a disparity pedestal both the IOVD and the CD cues have a significant influence.

  19. Early vision and focal attention

    NASA Astrophysics Data System (ADS)

    Julesz, Bela

    1991-07-01

    At the thirty-year anniversary of the introduction of the technique of computer-generated random-dot stereograms and random-dot cinematograms into psychology, the impact of the technique on brain research and on the study of artificial intelligence is reviewed. The main finding-that stereoscopic depth perception (stereopsis), motion perception, and preattentive texture discrimination are basically bottom-up processes, which occur without the help of the top-down processes of cognition and semantic memory-greatly simplifies the study of these processes of early vision and permits the linking of human perception with monkey neurophysiology. Particularly interesting are the unexpected findings that stereopsis (assumed to be local) is a global process, while texture discrimination (assumed to be a global process, governed by statistics) is local, based on some conspicuous local features (textons). It is shown that the top-down process of "shape (depth) from shading" does not affect stereopsis, and some of the models of machine vision are evaluated. The asymmetry effect of human texture discrimination is discussed, together with recent nonlinear spatial filter models and a novel extension of the texton theory that can cope with the asymmetry problem. This didactic review attempts to introduce the physicist to the field of psychobiology and its problems-including metascientific problems of brain research, problems of scientific creativity, the state of artificial intelligence research (including connectionist neural networks) aimed at modeling brain activity, and the fundamental role of focal attention in mental events.

  20. Stereoscopic depth perception varies with hues

    NASA Astrophysics Data System (ADS)

    Chen, Zaiqing; Shi, Junsheng; Tai, Yonghang; Yun, Lijun

    2012-09-01

    The contribution of color information to stereopsis is controversial, and whether the stereoscopic depth perception varies with chromaticity is ambiguous. This study examined the changes in depth perception caused by hue variations. Based on the fact that a greater disparity range indicates more efficient stereoscopic perception, the effect of hue variations on depth perception was evaluated through the disparity range with random-dot stereogram stimuli. The disparity range was obtained by constant-stimulus method for eight chromaticity points sampled from the CIE 1931 chromaticity diagram. Eight sample points include four main color hues: red, yellow, green, and blue at two levels of chroma. The results show that the disparity range for the yellow hue is greater than the red hue, the latter being greater than the blue hue and the disparity range for green hue is smallest. We conclude that the perceived depth is not the same for different hues for a given size of disparity. We suggest that the stereoscopic depth perception can vary with chromaticity.

  1. Alternation frequency thresholds for stereopsis as a technique for exploring stereoscopic difficulties

    PubMed Central

    Rychkova, Svetlana; Ninio, Jacques

    2011-01-01

    When stereoscopic images are presented alternately to the two eyes, stereopsis occurs at F ≥ 1 Hz full-cycle frequencies for very simple stimuli, and F ≥ 3 Hz full-cycle frequencies for random-dot stereograms (eg Ludwig I, Pieper W, Lachnit H, 2007 “Temporal integration of monocular images separated in time: stereopsis, stereoacuity, and binocular luster” Perception & Psychophysics 69 92–102). Using twenty different stereograms presented through liquid crystal shutters, we studied the transition to stereopsis with fifteen subjects. The onset of stereopsis was observed during a stepwise increase of the alternation frequency, and its disappearance was observed during a stepwise decrease in frequency. The lowest F values (around 2.5 Hz) were observed with stimuli involving two to four simple disjoint elements (circles, arcs, rectangles). Higher F values were needed for stimuli containing slanted elements or curved surfaces (about 1 Hz increment), overlapping elements at two different depths (about 2.5 Hz increment), or camouflaged overlapping surfaces (> 7 Hz increment). A textured cylindrical surface with a horizontal axis appeared easier to interpret (5.7 Hz) than a pair of slanted segments separated in depth but forming a cross in projection (8 Hz). Training effects were minimal, and F usually increased as disparities were reduced. The hierarchy of difficulties revealed in the study may shed light on various problems that the brain needs to solve during stereoscopic interpretation. During the construction of the three-dimensional percept, the loss of information due to natural decay of the stimuli traces must be compensated by refreshes of visual input. In the discussion an attempt is made to link our results with recent advances in the comprehension of visual scene memory. PMID:23145225

  2. Preliminary study of visual effect of multiplex hologram

    NASA Astrophysics Data System (ADS)

    Fu, Huaiping; Xiong, Bingheng; Yang, Hong; Zhang, Xueguo

    2004-06-01

    The process of any movement of real object can be recorded and displayed by a multiplex holographic stereogram. An embossing multiplex holographic stereogram and a multiplex rainbow holographic stereogram have been made by us, the multiplex rainbow holographic stereogram reconstructs the dynamic 2D line drawing of speech organs, the embossing multiplex holographic stereogram reconstructs the process of an old man drinking water. In this paper, we studied the visual result of an embossing multiplex holographic stereogram made with 80 films of 2-D pictures. Forty-eight persons of aged from 13 to 67 were asked to see the hologram and then to answer some questions about the feeling of viewing. The results indicate that this kind of holograms could be accepted by human visual sense organ without any problem. This paper also discusses visual effect of the multiplex holography stereograms base on visual perceptual psychology. It is open out that the planar multiplex holograms can be recorded and present the movement of real animal and object. Not only have the human visual perceptual constancy for shape, just as that size, color, etc... but also have visual perceptual constancy for binocular parallax.

  3. An evaluation of lithographed forest stereograms.

    Treesearch

    David A. Bernstein

    1961-01-01

    Aerial photo stereograms are valuable for showing neophyte photo interpreters the stereoscopic appearance of common objects and conditions. They are also useful for instruction in measuring heights, horizontal distances, and angles on photos. Collections of stereograms of known conditions are worthwhile reference material for interpretation work in unknown areas.

  4. AI And Early Vision - Part II

    NASA Astrophysics Data System (ADS)

    Julesz, Bela

    1989-08-01

    A quarter of a century ago I introduced two paradigms into psychology which in the intervening years have had a direct impact on the psychobiology of early vision and an indirect one on artificial intelligence (AI or machine vision). The first, the computer-generated random-dot stereogram (RDS) paradigm (Julesz, 1960) at its very inception posed a strategic question both for AI and neurophysiology. The finding that stereoscopic depth perception (stereopsis) is possible without the many enigmatic cues of monocular form recognition - as assumed previously - demonstrated that stereopsis with its basic problem of finding matches between corresponding random aggregates of dots in the left and right visual fields became ripe for modeling. Indeed, the binocular matching problem of stereopsis opened up an entire field of study, eventually leading to the computational models of David Marr (1982) and his coworkers. The fusion of RDS had an even greater impact on neurophysiologists - including Hubel and Wiesel (1962) - who realized that stereopsis must occur at an early stage, and can be studied easier than form perception. This insight recently culminated in the studies by Gian Poggio (1984) who found binocular-disparity - tuned neurons in the input stage to the visual cortex (layer IVB in V1) in the monkey that were selectively triggered by dynamic RDS. Thus the first paradigm led to a strategic insight: that with stereoscopic vision there is no camouflage, and as such was advantageous for our primate ancestors to evolve the cortical machinery of stereoscopic vision to capture camouflaged prey (insects) at a standstill. Amazingly, although stereopsis evolved relatively late in primates, it captured the very input stages of the visual cortex. (For a detailed review, see Julesz, 1986a)

  5. Cross-matching: a modified cross-correlation underlying threshold energy model and match-based depth perception

    PubMed Central

    Doi, Takahiro; Fujita, Ichiro

    2014-01-01

    Three-dimensional visual perception requires correct matching of images projected to the left and right eyes. The matching process is faced with an ambiguity: part of one eye's image can be matched to multiple parts of the other eye's image. This stereo correspondence problem is complicated for random-dot stereograms (RDSs), because dots with an identical appearance produce numerous potential matches. Despite such complexity, human subjects can perceive a coherent depth structure. A coherent solution to the correspondence problem does not exist for anticorrelated RDSs (aRDSs), in which luminance contrast is reversed in one eye. Neurons in the visual cortex reduce disparity selectivity for aRDSs progressively along the visual processing hierarchy. A disparity-energy model followed by threshold nonlinearity (threshold energy model) can account for this reduction, providing a possible mechanism for the neural matching process. However, the essential computation underlying the threshold energy model is not clear. Here, we propose that a nonlinear modification of cross-correlation, which we term “cross-matching,” represents the essence of the threshold energy model. We placed half-wave rectification within the cross-correlation of the left-eye and right-eye images. The disparity tuning derived from cross-matching was attenuated for aRDSs. We simulated a psychometric curve as a function of graded anticorrelation (graded mixture of aRDS and normal RDS); this simulated curve reproduced the match-based psychometric function observed in human near/far discrimination. The dot density was 25% for both simulation and observation. We predicted that as the dot density increased, the performance for aRDSs should decrease below chance (i.e., reversed depth), and the level of anticorrelation that nullifies depth perception should also decrease. We suggest that cross-matching serves as a simple computation underlying the match-based disparity signals in stereoscopic depth perception. PMID:25360107

  6. Efficiency of extracting stereo-driven object motions

    PubMed Central

    Jain, Anshul; Zaidi, Qasim

    2013-01-01

    Most living things and many nonliving things deform as they move, requiring observers to separate object motions from object deformations. When the object is partially occluded, the task becomes more difficult because it is not possible to use two-dimensional (2-D) contour correlations (Cohen, Jain, & Zaidi, 2010). That leaves dynamic depth matching across the unoccluded views as the main possibility. We examined the role of stereo cues in extracting motion of partially occluded and deforming three-dimensional (3-D) objects, simulated by disk-shaped random-dot stereograms set at randomly assigned depths and placed uniformly around a circle. The stereo-disparities of the disks were temporally oscillated to simulate clockwise or counterclockwise rotation of the global shape. To dynamically deform the global shape, random disparity perturbation was added to each disk's depth on each stimulus frame. At low perturbation, observers reported rotation directions consistent with the global shape, even against local motion cues, but performance deteriorated at high perturbation. Using 3-D global shape correlations, we formulated an optimal Bayesian discriminator for rotation direction. Based on rotation discrimination thresholds, human observers were 75% as efficient as the optimal model, demonstrating that global shapes derived from stereo cues facilitate inferences of object motions. To complement reports of stereo and motion integration in extrastriate cortex, our results suggest the possibilities that disparity selectivity and feature tracking are linked, or that global motion selective neurons can be driven purely from disparity cues. PMID:23325345

  7. Research on copying system of dynamic multiplex holographic stereograms

    NASA Astrophysics Data System (ADS)

    Fu, Huaiping; Yang, Hong; Zheng, Tong

    2003-05-01

    The most important advantage of holographic stereograms over conventional hologram is that they can produce 3D images at any desired scale with movement, holographers in many countries involved in the studies towards it. We began our works in the early 80's and accomplished two research projects automatic system for making synthetic holograms and multiplex synthetic rainbow holograms, Based on these works, a large scale holographic stereogram of an animated goldfish was made by us for practical advertisement. In order to meet the needs of the market, a copying system for making multiplex holographic stereograms, and a special kind of silver halide holographic film developed by us recently. The characteristic of the copying system and the property of the special silver-halide emulsion are introduced in this paper.

  8. Stereo-Based Region-Growing using String Matching

    NASA Technical Reports Server (NTRS)

    Mandelbaum, Robert; Mintz, Max

    1995-01-01

    We present a novel stereo algorithm based on a coarse texture segmentation preprocessing phase. Matching is performed using a string comparison. Matching sub-strings correspond to matching sequences of textures. Inter-scanline clustering of matching sub-strings yields regions of matching texture. The shape of these regions yield information concerning object's height, width and azimuthal position relative to the camera pair. Hence, rather than the standard dense depth map, the output of this algorithm is a segmentation of objects in the scene. Such a format is useful for the integration of stereo with other sensor modalities on a mobile robotic platform. It is also useful for localization; the height and width of a detected object may be used for landmark recognition, while depth and relative azimuthal location determine pose. The algorithm does not rely on the monotonicity of order of image primitives. Occlusions, exposures, and foreshortening effects are not problematic. The algorithm can deal with certain types of transparencies. It is computationally efficient, and very amenable to parallel implementation. Further, the epipolar constraints may be relaxed to some small but significant degree. A version of the algorithm has been implemented and tested on various types of images. It performs best on random dot stereograms, on images with easily filtered backgrounds (as in synthetic images), and on real scenes with uncontrived backgrounds.

  9. Learning spatially coherent properties of the visual world in connectionist networks

    NASA Astrophysics Data System (ADS)

    Becker, Suzanna; Hinton, Geoffrey E.

    1991-10-01

    In the unsupervised learning paradigm, a network of neuron-like units is presented with an ensemble of input patterns from a structured environment, such as the visual world, and learns to represent the regularities in that input. The major goal in developing unsupervised learning algorithms is to find objective functions that characterize the quality of the network's representation without explicitly specifying the desired outputs of any of the units. The sort of objective functions considered cause a unit to become tuned to spatially coherent features of visual images (such as texture, depth, shading, and surface orientation), by learning to predict the outputs of other units which have spatially adjacent receptive fields. Simulations show that using an information-theoretic algorithm called IMAX, a network can be trained to represent depth by observing random dot stereograms of surfaces with continuously varying disparities. Once a layer of depth-tuned units has developed, subsequent layers are trained to perform surface interpolation of curved surfaces, by learning to predict the depth of one image region based on depth measurements in surrounding regions. An extension of the basic model allows a population of competing neurons to learn a distributed code for disparity, which naturally gives rise to a representation of discontinuities.

  10. Depth of Monocular Elements in a Binocular Scene: The Conditions for da Vinci Stereopsis

    ERIC Educational Resources Information Center

    Cook, Michael; Gillam, Barbara

    2004-01-01

    Quantitative depth based on binocular resolution of visibility constraints is demonstrated in a novel stereogram representing an object, visible to 1 eye only, and seen through an aperture or camouflaged against a background. The monocular region in the display is attached to the binocular region, so that the stereogram represents an object which…

  11. Solving da Vinci stereopsis with depth-edge-selective V2 cells

    PubMed Central

    Assee, Andrew; Qian, Ning

    2007-01-01

    We propose a new model for da Vinci stereopsis based on a coarse-to-fine disparity-energy computation in V1 and disparity-boundary-selective units in V2. Unlike previous work, our model contains only binocular cells, relies on distributed representations of disparity, and has a simple V1-to-V2 feedforward structure. We demonstrate with random dot stereograms that the V2 stage of our model is able to determine the location and the eye-of-origin of monocularly occluded regions and improve disparity map computation. We also examine a few related issues. First, we argue that since monocular regions are binocularly defined, they cannot generally be detected by monocular cells. Second, we show that our coarse-to-fine V1 model for conventional stereopsis explains double matching in Panum’s limiting case. This provides computational support to the notion that the perceived depth of a monocular bar next to a binocular rectangle may not be da Vinci stereopsis per se (Gillam et al., 2003). Third, we demonstrate that some stimuli previously deemed invalid have simple, valid geometric interpretations. Our work suggests that studies of da Vinci stereopsis should focus on stimuli more general than the bar-and-rectangle type and that disparity-boundary-selective V2 cells may provide a simple physiological mechanism for da Vinci stereopsis. PMID:17698163

  12. Neural activity in cortical area V4 underlies fine disparity discrimination.

    PubMed

    Shiozaki, Hiroshi M; Tanabe, Seiji; Doi, Takahiro; Fujita, Ichiro

    2012-03-14

    Primates are capable of discriminating depth with remarkable precision using binocular disparity. Neurons in area V4 are selective for relative disparity, which is the crucial visual cue for discrimination of fine disparity. Here, we investigated the contribution of V4 neurons to fine disparity discrimination. Monkeys discriminated whether the center disk of a dynamic random-dot stereogram was in front of or behind its surrounding annulus. We first behaviorally tested the reference frame of the disparity representation used for performing this task. After learning the task with a set of surround disparities, the monkey generalized its responses to untrained surround disparities, indicating that the perceptual decisions were generated from a disparity representation in a relative frame of reference. We then recorded single-unit responses from V4 while the monkeys performed the task. On average, neuronal thresholds were higher than the behavioral thresholds. The most sensitive neurons reached thresholds as low as the psychophysical thresholds. For subthreshold disparities, the monkeys made frequent errors. The variable decisions were predictable from the fluctuation in the neuronal responses. The predictions were based on a decision model in which each V4 neuron transmits the evidence for the disparity it prefers. We finally altered the disparity representation artificially by means of microstimulation to V4. The decisions were systematically biased when microstimulation boosted the V4 responses. The bias was toward the direction predicted from the decision model. We suggest that disparity signals carried by V4 neurons underlie precise discrimination of fine stereoscopic depth.

  13. Invisible engineering of holographic illusion

    NASA Astrophysics Data System (ADS)

    Richardson, Martin J.

    1993-03-01

    Recent developments in production techniques of pulsed holograms and holographic stereograms have ameliorated to provide high quality three dimensional illusions that echo the apparently innate need of society to replicate itself through artificial means. A commercial platform has been found for these archetypical illusions through the mass production and distribution of embossed stereograms that depict popular celebrities from the music industry. As pulse recordings of the rich and famous become better known, and as former presidents queue to join the holographic hall of fame, the author asks `is it documentation or entertainment that is shaping the future of holography?'

  14. Effect of Interocular Delay on Disparity-Selective V1 Neurons: Relationship to Stereoacuity and the Pulfrich Effect

    PubMed Central

    Read, Jenny C. A.; Cumming, Bruce G.

    2006-01-01

    The temporal properties of disparity-sensitive neurons place important temporal constraints on stereo matching. We examined these constraints by measuring the responses of disparity-selective neurons in striate cortex of awake behaving monkeys to random-dot stereograms that contained interocular delays. Disparity selectivity was gradually abolished by increasing interocular delay (when the delay exceeds the integration time, the inputs from the 2 eyes become uncorrelated). The amplitude of the disparity-selective response was a Gaussian function of interocular delay, with a mean of 16 ms (±5 ms, SD). Psychophysical measures of stereoacuity, in both monkey and human observers, showed a closely similar dependency on time, suggesting that temporal integration in V1 neurons is what determines psychophysical matching constraints over time. There was a slight but consistent asymmetry in the neuronal responses, as if the optimum stimulus is one in which the right stimulus leads by about 4 ms. Because all recordings were made in the left hemisphere, this probably reflects nasotemporal differences in conduction times; psychophysical data are compatible with this interpretation. In only a few neurons (5/72), interocular delay caused a change in the preferred disparity. Such tilted disparity/delay profiles have been invoked previously to explain depth perception in the stroboscopic version of the Pulfrich effect (and other variants). However, the great majority of the neurons did not show tilted disparity/delay profiles. This suggests that either the activity of these neurons is ignored when viewing Pulfrich stimuli, or that current theories relating neuronal properties to perception in the Pulfrich effect need to be reevaluated. PMID:15788521

  15. Use of camera drive in stereoscopic display of learning contents of introductory physics

    NASA Astrophysics Data System (ADS)

    Matsuura, Shu

    2011-03-01

    Simple 3D physics simulations with stereoscopic display were created for a part of introductory physics e-Learning. First, cameras to see the 3D world can be made controllable by the user. This enabled to observe the system and motions of objects from any position in the 3D world. Second, cameras were made attachable to one of the moving object in the simulation so as to observe the relative motion of other objects. By this option, it was found that users perceive the velocity and acceleration more sensibly on stereoscopic display than on non-stereoscopic 3D display. Simulations were made using Adobe Flash ActionScript, and Papervison 3D library was used to render the 3D models in the flash web pages. To display the stereogram, two viewports from virtual cameras were displayed in parallel in the same web page. For observation of stereogram, the images of two viewports were superimposed by using 3D stereogram projection box (T&TS CO., LTD.), and projected on an 80-inch screen. The virtual cameras were controlled by keyboard and also by Nintendo Wii remote controller buttons. In conclusion, stereoscopic display offers learners more opportunities to play with the simulated models, and to perceive the characteristics of motion better.

  16. Internet-based support for the production of holographic stereograms

    NASA Astrophysics Data System (ADS)

    Gustafsson, Jonny

    1998-03-01

    Holographic hard-copy techniques suffers from a lack of availability for ordinary users of computer graphics. The production of holograms usually requires special skills as well as expensive equipment which means that the direct production cost will be high for an ordinary user with little or no knowledge in holography. Here it is shown how a system may be created in which the users of computer graphics can do all communication with a holography studio through a Java-based web browser. This system will facilitate for the user to understand the technique of holographic stereograms, make decisions about angles, views, lighting etc., previsualizing the end result, as well as automatically submit the 3D-data to the producer of the hologram. A prototype system has been built which uses internal scripting in VRML.

  17. Generalized pipeline for preview and rendering of synthetic holograms

    NASA Astrophysics Data System (ADS)

    Pappu, Ravikanth; Sparrell, Carlton J.; Underkoffler, John S.; Kropp, Adam B.; Chen, Benjie; Plesniak, Wendy J.

    1997-04-01

    We describe a general pipeline for the computation and display of either fully-computed holograms or holographic stereograms using the same 3D database. A rendering previewer on a Silicon Graphics Onyx allows a user to specify viewing geometry, database transformations, and scene lighting. The previewer then generates one of two descriptions of the object--a series of perspective views or a polygonal model--which is then used by a fringe rendering engine to compute fringes specific to hologram type. The images are viewed on the second generation MIT Holographic Video System. This allows a viewer to compare holographic stereograms with fully-computed holograms originating from the same database and comes closer to the goal of a single pipeline being able to display the same data in different formats.

  18. The schemes and methods for producing of the visual security features used in the color hologram stereography

    NASA Astrophysics Data System (ADS)

    Lushnikov, D. S.; Zherdev, A. Y.; Odinokov, S. B.; Markin, V. V.; Smirnov, A. V.

    2017-05-01

    Visual security elements used in color holographic stereograms - three-dimensional colored security holograms - and methods their production is describes in this article. These visual security elements include color micro text, color-hidden image, the horizontal and vertical flip - flop effects by change color and image. The article also presents variants of optical systems that allow record the visual security elements as part of the holographic stereograms. The methods for solving of the optical problems arising in the recording visual security elements are presented. Also noted perception features of visual security elements for verification of security holograms by using these elements. The work was partially funded under the Agreement with the RF Ministry of Education and Science № 14.577.21.0197, grant RFMEFI57715X0197.

  19. Does the noise matter? Effects of different kinematogram types on smooth pursuit eye movements and perception

    PubMed Central

    Schütz, Alexander C.; Braun, Doris I.; Movshon, J. Anthony; Gegenfurtner, Karl R.

    2011-01-01

    We investigated how the human visual system and the pursuit system react to visual motion noise. We presented three different types of random-dot kinematograms at five different coherence levels. For transparent motion, the signal and noise labels on each dot were preserved throughout each trial, and noise dots moved with the same speed as the signal dots but in fixed random directions. For white noise motion, every 20 ms the signal and noise labels were randomly assigned to each dot and noise dots appeared at random positions. For Brownian motion, signal and noise labels were also randomly assigned, but the noise dots moved at the signal speed in a direction that varied randomly from moment to moment. Neither pursuit latency nor early eye acceleration differed among the different types of kinematograms. Late acceleration, pursuit gain, and perceived speed all depended on kinematogram type, with good agreement between pursuit gain and perceived speed. For transparent motion, pursuit gain and perceived speed were independent of coherence level. For white and Brownian motions, pursuit gain and perceived speed increased with coherence but were higher for white than for Brownian motion. This suggests that under our conditions, the pursuit system integrates across all directions of motion but not across all speeds. PMID:21149307

  20. Stereomotion is processed by the third-order motion system: reply to comment on Three-systems theory of human visual motion perception: review and update

    NASA Astrophysics Data System (ADS)

    Lu, Zhong-Lin; Sperling, George

    2002-10-01

    Two theories are considered to account for the perception of motion of depth-defined objects in random-dot stereograms (stereomotion). In the LuSperling three-motion-systems theory J. Opt. Soc. Am. A 18 , 2331 (2001), stereomotion is perceived by the third-order motion system, which detects the motion of areas defined as figure (versus ground) in a salience map. Alternatively, in his comment J. Opt. Soc. Am. A 19 , 2142 (2002), Patterson proposes a low-level motion-energy system dedicated to stereo depth. The critical difference between these theories is the preprocessing (figureground based on depth and other cues versus simply stereo depth) rather than the motion-detection algorithm itself (because the motion-extraction algorithm for third-order motion is undetermined). Furthermore, the ability of observers to perceive motion in alternating feature displays in which stereo depth alternates with other features such as texture orientation indicates that the third-order motion system can perceive stereomotion. This reduces the stereomotion question to Is it third-order alone or third-order plus dedicated depth-motion processing? Two new experiments intended to support the dedicated depth-motion processing theory are shown here to be perfectly accounted for by third-order motion, as are many older experiments that have previously been shown to be consistent with third-order motion. Cyclopean and rivalry images are shown to be a likely confound in stereomotion studies, rivalry motion being as strong as stereomotion. The phase dependence of superimposed same-direction stereomotion stimuli, rivalry stimuli, and isoluminant color stimuli indicates that these stimuli are processed in the same (third-order) motion system. The phase-dependence paradigm Lu and Sperling, Vision Res. 35 , 2697 (1995) ultimately can resolve the question of which types of signals share a single motion detector. All the evidence accumulated so far is consistent with the three-motion-systems theory. 2002 Optical Society of America

  1. Randomly distilling W-class states into general configurations of two-party entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, W.; Chitambar, E.; Lo, H. K.

    2011-11-15

    In this article we obtain results for the task of converting a single N-qubit W-class state (of the form {radical}(x{sub 0})|00...0>+{radical}(x{sub 1})|10...0>+{center_dot}{center_dot}{center_dot}+{radical}(x{sub N})|00...1>) into maximum entanglement shared between two random parties. Previous studies in random distillation have not considered how the particular choice of target pairs affects the transformation, and here we develop a strategy for distilling into general configurations of target pairs. We completely solve the problem of determining the optimal distillation probability for all three-qubit configurations and most four-qubit configurations when x{sub 0}=0. Our proof involves deriving new entanglement monotones defined on the set of four-qubit W-class states.more » As an additional application of our results, we present new upper bounds for converting a generic W-class state into the standard W state |W{sub N}>={radical}((1/N))(|10...0>+{center_dot}{center_dot}{center_dot}+|00...1>).« less

  2. Polarization control of quantum dot emission by chiral photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey V.; Weiss, Thomas; Gippius, Nikolay A.; Tikhodeev, Sergei G.; Kulakovskii, Vladimir D.; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized quantum dots normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed quantum dots, and can be close to 100% for some single quantum dots.

  3. Sensitive period in stereopsis: random dot stereopsis after long-standing strabismus.

    PubMed

    Hatch, S W; Laudon, R

    1993-12-01

    Bifoveal fixation is a requirement for random dot stereopsis. It is believed that random dot stereopsis is not possible after treatment of long-standing strabismus because binocular cortical cells are permanently damaged when strabismus is present during the sensitive period. Although the sensitive period for amblyopia has been clearly documented, the sensitive period for stereopsis is uncertain. We present a case we have followed from age 22 months to 10 years. This patient had intermittent esotropia until approximately age 3 years 4 months; he then had constant esotropia from about age 3 years 4 months to age 9 years 7 months. After orthoptic treatment at age 9 years, the patient returned to intermittent esotropia. He subsequently developed bifoveal fixation as measured by 30 sec arc of contour stereopsis and 250 to 500 sec arc of random dot stereopsis. This patient demonstrates that bifoveal fixation can be obtained after long-standing strabismus. We suggest that the sensitive period for stereopsis development, for this patient, was from birth to age 3 years.

  4. Stereograms

    ERIC Educational Resources Information Center

    Kuchemann, Dietmar

    2007-01-01

    Perspective is a rich area for mathematical work, and one that should be accessible to many students, since it is based on the everyday experience of viewing the 3D world directly and through familiar 2D representations (drawings, photographs, images on a television or cinema screen, etc). A nice feature of perspective tasks is that they can be…

  5. Perception of multi-stable dot lattices in the visual periphery: an effect of internal positional noise.

    PubMed

    Põder, Endel

    2011-02-16

    Dot lattices are very simple multi-stable images where the dots can be perceived as being grouped in different ways. The probabilities of grouping along different orientations as dependent on inter-dot distances along these orientations can be predicted by a simple quantitative model. L. Bleumers, P. De Graef, K. Verfaillie, and J. Wagemans (2008) found that for peripheral presentation, this model should be combined with random guesses on a proportion of trials. The present study shows that the probability of random responses decreases with decreasing ambiguity of lattices and is different for bi-stable and tri-stable lattices. With central presentation, similar effects can be produced by adding positional noise to the dots. The results suggest that different levels of internal positional noise might explain the differences between peripheral and central proximity grouping.

  6. Valley Phase and Voltage Control of Coherent Manipulation in Si Quantum Dots.

    PubMed

    Zimmerman, Neil M; Huang, Peihao; Culcer, Dimitrie

    2017-07-12

    With any roughness at the interface of an indirect-bandgap semiconducting dot, the phase of the valley-orbit coupling can take on a random value. This random value, in double quantum dots, causes a large change in the exchange splitting. We demonstrate a simple analytical method to calculate the phase, and thus the exchange splitting and singlet-triplet qubit frequency, for an arbitrary interface. We then show that, with lateral control of the position of a quantum dot using a gate voltage, the valley-orbit phase can be controlled over a wide range, so that variations in the exchange splitting can be controlled for individual devices. Finally, we suggest experiments to measure the valley phase and the concomitant gate voltage control.

  7. 75 FR 59105 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs: Federal Drug Testing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... (the checkmark can pre-printed in the appropriate box on the CCF at Step 1-D). (h) Test reason, as appropriate: Pre-employment; Random; Reasonable Suspicion/Reasonable Cause; Post-Accident; Return-to-Duty; and... reason (e.g., random test, post-accident test) and DOT Agency (e.g., check DOT and FMCSA) as for the...

  8. Evaluation of the procedure 1A component of the 1980 US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Chapman, G. M. (Principal Investigator); Carnes, J. G.

    1981-01-01

    Several techniques which use clusters generated by a new clustering algorithm, CLASSY, are proposed as alternatives to random sampling to obtain greater precision in crop proportion estimation: (1) Proportional Allocation/relative count estimator (PA/RCE) uses proportional allocation of dots to clusters on the basis of cluster size and a relative count cluster level estimate; (2) Proportional Allocation/Bayes Estimator (PA/BE) uses proportional allocation of dots to clusters and a Bayesian cluster-level estimate; and (3) Bayes Sequential Allocation/Bayesian Estimator (BSA/BE) uses sequential allocation of dots to clusters and a Bayesian cluster level estimate. Clustering in an effective method in making proportion estimates. It is estimated that, to obtain the same precision with random sampling as obtained by the proportional sampling of 50 dots with an unbiased estimator, samples of 85 or 166 would need to be taken if dot sets with AI labels (integrated procedure) or ground truth labels, respectively were input. Dot reallocation provides dot sets that are unbiased. It is recommended that these proportion estimation techniques are maintained, particularly the PA/BE because it provides the greatest precision.

  9. Anticipatory smooth eye movements with random-dot kinematograms

    PubMed Central

    Santos, Elio M.; Gnang, Edinah K.; Kowler, Eileen

    2012-01-01

    Anticipatory smooth eye movements were studied in response to expectations of motion of random-dot kinematograms (RDKs). Dot lifetime was limited (52–208 ms) to prevent selection and tracking of the motion of local elements and to disrupt the perception of an object moving across space. Anticipatory smooth eye movements were found in response to cues signaling the future direction of global RDK motion, either prior to the onset of the RDK or prior to a change in its direction of motion. Cues signaling the lifetime of the dots were not effective. These results show that anticipatory smooth eye movements can be produced by expectations of global motion and do not require a sustained representation of an object or set of objects moving across space. At the same time, certain properties of global motion (direction) were more sensitive to cues than others (dot lifetime), suggesting that the rules by which prediction operates to influence pursuit may go beyond simple associations between cues and the upcoming motion of targets. PMID:23027686

  10. The Influence of Contrast on Coherent Motion Processing in Dyslexia

    ERIC Educational Resources Information Center

    Conlon, Elizabeth G.; Lilleskaret, Gry; Wright, Craig M.; Power, Garry F.

    2012-01-01

    The aim of the experiments was to investigate how manipulating the contrast of the signal and noise dots in a random dot kinematogram (RDK), influenced on motion coherence thresholds in adults with dyslexia. In the first of two experiments, coherent motion thresholds were measured when the contrasts of the signal and noise dots in an RDK were…

  11. Total and Marginal Cost Analysis for a High School Based Bystander Intervention

    ERIC Educational Resources Information Center

    Bush, Joshua L.; Bush, Heather M.; Coker, Ann L.; Brancato, Candace J.; Clear, Emily R.; Recktenwald, Eileen A.

    2018-01-01

    Costs of providing the Green Dot bystander-based intervention, shown to be effective in the reduction of sexual violence among Kentucky high school students, were estimated based on data from a large cluster-randomized clinical trial. Rape Crisis Center Educators were trained to provide Green Dot curriculum to students. Implementing Green Dot in…

  12. Modified Directly Observed Therapy to Facilitate Highly Active Antiretroviral Therapy Adherence in Beira, Mozambique

    PubMed Central

    Pearson, Cynthia R.; Micek, Mark; Simoni, Jane M.; Matediana, Eduardo; Martin, Diane P.; Gloyd, Stephen

    2016-01-01

    Summary As resource-limited countries expand access to highly active antiretroviral therapy (HAART) treatment, innovative programs are needed to support adherence in the context of significant health system barriers. Modified directly observed therapy (mDOT) is one such strategy, but little is known about the process of designing and implementing mDOT programs for HAART in resource-limited settings. In this descriptive study, we used a mixed-methods approach to describe the process of implementing mDOT for an ongoing randomized control trial (RCT) in Beira, Mozambique. Interviews with clinic staff, mDOT peers, and participants provided information on design elements, problems with implementation, satisfaction, and benefits. Acceptability and feasibility measures were obtained from the RCT. Most (81%, N = 350) eligible persons agreed to participate, and of those randomized to mDOT (n = 174), 95% reported that their time with peers was beneficial. On average, participants kept 93% of the 30 required daily mDOT visits. Key components of the intervention’s success included using peers who were well accepted by clinic staff, adequate training and retention of peers, adapting daily visit requirements to participants’ work schedules and physical conditions, and reimbursing costs of transportation. This study identified aspects of mDOT that are effective and can be adopted by other clinics treating HIV patients. PMID:17133197

  13. From Dot to Line to Plane: Constellating Unconscious Imagery in Art Therapy

    ERIC Educational Resources Information Center

    Steinhardt, Lenore

    2017-01-01

    In this article I describe an art-based procedure with a gradual sequence of drawing tasks that guides an art therapy client through graphic stages from point, to line, to plane. The client begins by making random dots, connecting them one to another with an unbroken line that reaches all the dots, perceiving abstract or figurative imagery in the…

  14. Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement.

    PubMed

    Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang

    2016-12-07

    Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.

  15. Three-dimensional image display system using stereogram and holographic optical memory techniques

    NASA Astrophysics Data System (ADS)

    Kim, Cheol S.; Kim, Jung G.; Shin, Chang-Mok; Kim, Soo-Joong

    2001-09-01

    In this paper, we implemented a three dimensional image display system using stereogram and holographic optical memory techniques which can store many images and reconstruct them automatically. In this system, to store and reconstruct stereo images, incident angle of reference beam must be controlled in real time, so we used BPH (binary phase hologram) and LCD (liquid crystal display) for controlling reference beam. And input images are represented on the LCD without polarizer/analyzer for maintaining uniform beam intensities regardless of the brightness of input images. The input images and BPHs are edited using application software with having the same recording scheduled time interval in storing. The reconstructed stereo images are acquired by capturing the output images with CCD camera at the behind of the analyzer which transforms phase information into brightness information of images. The reference beams are acquired by Fourier transform of BPH which designed with SA (simulated annealing) algorithm, and represented on the LCD with the 0.05 seconds time interval using application software for reconstructing the stereo images. In output plane, we used a LCD shutter that is synchronized to a monitor that displays alternate left and right eye images for depth perception. We demonstrated optical experiment which store and reconstruct four stereo images in BaTiO3 repeatedly using holographic optical memory techniques.

  16. Grouping by proximity and the visual impression of approximate number in random dot arrays.

    PubMed

    Im, Hee Yeon; Zhong, Sheng-Hua; Halberda, Justin

    2016-09-01

    We address the challenges of how to model human perceptual grouping in random dot arrays and how perceptual grouping affects human number estimation in these arrays. We introduce a modeling approach relying on a modified k-means clustering algorithm to formally describe human observers' grouping behavior. We found that a default grouping window size of approximately 4° of visual angle describes human grouping judgments across a range of random dot arrays (i.e., items within 4° are grouped together). This window size was highly consistent across observers and images, and was also stable across stimulus durations, suggesting that the k-means model captured a robust signature of perceptual grouping. Further, the k-means model outperformed other models (e.g., CODE) at describing human grouping behavior. Next, we found that the more the dots in a display are clustered together, the more human observers tend to underestimate the numerosity of the dots. We demonstrate that this effect is independent of density, and the modified k-means model can predict human observers' numerosity judgments and underestimation. Finally, we explored the robustness of the relationship between clustering and dot number underestimation and found that the effects of clustering remain, but are greatly reduced, when participants receive feedback on every trial. Together, this work suggests some promising avenues for formal models of human grouping behavior, and it highlights the importance of a 4° window of perceptual grouping. Lastly, it reveals a robust, somewhat plastic, relationship between perceptual grouping and number estimation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Reducing inhomogeneity in the dynamic properties of quantum dots via self-aligned plasmonic cavities

    NASA Astrophysics Data System (ADS)

    Demory, Brandon; Hill, Tyler A.; Teng, Chu-Hsiang; Deng, Hui; Ku, P. C.

    2018-01-01

    A plasmonic cavity is shown to greatly reduce the inhomogeneity of dynamic optical properties such as quantum efficiency and radiative lifetime of InGaN quantum dots. By using an open-top plasmonic cavity structure, which exhibits a large Purcell factor and antenna quantum efficiency, the resulting quantum efficiency distribution for the quantum dots narrows and is no longer limited by the quantum dot inhomogeneity. The standard deviation of the quantum efficiency can be reduced to 2% while maintaining the overall quantum efficiency at 70%, making InGaN quantum dots a viable candidate for high-speed quantum cryptography and random number generation applications.

  18. Reducing inhomogeneity in the dynamic properties of quantum dots via self-aligned plasmonic cavities.

    PubMed

    Demory, Brandon; Hill, Tyler A; Teng, Chu-Hsiang; Deng, Hui; Ku, P C

    2018-01-05

    A plasmonic cavity is shown to greatly reduce the inhomogeneity of dynamic optical properties such as quantum efficiency and radiative lifetime of InGaN quantum dots. By using an open-top plasmonic cavity structure, which exhibits a large Purcell factor and antenna quantum efficiency, the resulting quantum efficiency distribution for the quantum dots narrows and is no longer limited by the quantum dot inhomogeneity. The standard deviation of the quantum efficiency can be reduced to 2% while maintaining the overall quantum efficiency at 70%, making InGaN quantum dots a viable candidate for high-speed quantum cryptography and random number generation applications.

  19. Morphological evolution of Ge/Si(001) quantum dot rings formed at the rim of wet-etched pits.

    PubMed

    Grydlik, Martyna; Brehm, Moritz; Schäffler, Friedrich

    2012-10-30

    We demonstrate the formation of Ge quantum dots in ring-like arrangements around predefined {111}-faceted pits in the Si(001) substrate. We report on the complex morphological evolution of the single quantum dots contributing to the rings by means of atomic force microscopy and demonstrate that by careful adjustment of the epitaxial growth parameters, such rings containing densely squeezed islands can be grown with large spatial distances of up to 5 μm without additional nucleation of randomly distributed quantum dots between the rings.

  20. Recurrent connectivity can account for the dynamics of disparity processing in V1

    PubMed Central

    Samonds, Jason M.; Potetz, Brian R.; Tyler, Christopher W.; Lee, Tai Sing

    2013-01-01

    Disparity tuning measured in the primary visual cortex (V1) is described well by the disparity energy model, but not all aspects of disparity tuning are fully explained by the model. Such deviations from the disparity energy model provide us with insight into how network interactions may play a role in disparity processing and help to solve the stereo correspondence problem. Here, we propose a neuronal circuit model with recurrent connections that provides a simple account of the observed deviations. The model is based on recurrent connections inferred from neurophysiological observations on spike timing correlations, and is in good accord with existing data on disparity tuning dynamics. We further performed two additional experiments to test predictions of the model. First, we increased the size of stimuli to drive more neurons and provide a stronger recurrent input. Our model predicted sharper disparity tuning for larger stimuli. Second, we displayed anti-correlated stereograms, where dots of opposite luminance polarity are matched between the left- and right-eye images and result in inverted disparity tuning in the disparity energy model. In this case, our model predicted reduced sharpening and strength of inverted disparity tuning. For both experiments, the dynamics of disparity tuning observed from the neurophysiological recordings in macaque V1 matched model simulation predictions. Overall, the results of this study support the notion that, while the disparity energy model provides a primary account of disparity tuning in V1 neurons, neural disparity processing in V1 neurons is refined by recurrent interactions among elements in the neural circuit. PMID:23407952

  1. Amblyopic deficits in detecting a dotted line in noise.

    PubMed

    Mussap, A J; Levi, D M

    2000-01-01

    We compared detectability of a dotted line masked by random-dot noise for the amblyopic versus non-amblyopic eye of two strabismic amblyopes. Small but consistent deficits in the amblyopic eye of these observers were found, and shown to be limited to dotted-line targets composed of greater than seven dots (with performance being normal for targets of less than seven dots). These deficits were unrelated to impaired visual acuity, impaired sensitivity to dot density, and differential positional uncertainty between the eyes of our observers. The deficits were also unlikely to be due to CSF losses due to abnormal low-spatial-frequency filters involved in detecting long chains of collinear dots. Instead, the results of simulations indicate that the inefficiency in utilising large numbers of dots is due to deficits of global, integrative processes in strabismic amblyopes. These simulations also show that while neither undersampling nor positional uncertainty of inputs into integrative processes can themselves account for the amblyopic deficits, if such abnormal inputs lead to the development of stunted integrative processes then impaired sensitivity to long chains of collinear dots is indeed predicted.

  2. A randomized controlled trial testing an adherence-optimized Vitamin D regimen to mitigate bone change in adolescents being treated for acute lymphoblastic leukemia.

    PubMed

    Orgel, Etan; Mueske, Nicole M; Sposto, Richard; Gilsanz, Vicente; Wren, Tishya A L; Freyer, David R; Butturini, Anna M; Mittelman, Steven D

    2017-10-01

    Adolescents with acute lymphoblastic leukemia (ALL) develop osteopenia early in therapy, potentially exacerbated by high rates of concurrent Vitamin D deficiency. We conducted a randomized clinical trial testing a Vitamin D-based intervention to improve Vitamin D status and reduce bone density decline. Poor adherence to home supplementation necessitated a change to directly observed therapy (DOT) with intermittent, high-dose Vitamin D3 randomized versus standard of care (SOC). Compared to SOC, DOT Vitamin D3 successfully increased trough Vitamin 25(OH)D levels (p = .026) with no residual Vitamin D deficiency, 100% adherence to DOT Vitamin D3, and without associated toxicity. However, neither Vitamin D status nor supplementation impacted bone density. Thus, this adherence-optimized intervention is feasible and effective to correct Vitamin D deficiency in adolescents during ALL therapy. Repletion of Vitamin D and calcium alone did not mitigate osteopenia, however, and new, comprehensive approaches are needed to address treatment-associated osteopenia during ALL therapy.

  3. Optical slicing and 3-D characterization of hippocampal capillaries in the rat visualized by autometallographic silver enhancement of colloidal gold particles.

    PubMed

    Andreasen, A; Danscher, G

    1997-10-01

    In order to visualize the vascular system of the rat brain, 10 Wistar rats were perfused transcardially with glutaraldehyde and a 40 degrees C gold-gelatine solution. The brains were post-fixed with glutaraldehyde and vibratomized into 100-micron-thick slices, and the gold particles were developed by autometallography. In this way, the colloidal gold particles in the vessels became encased in silver and thereby made visible. The developed gold staining is stable and does not interfere with further dehydration and counterstaining. Images were frame grabbed during optical slicing, and classic stereograms and 'shadow' 3-D images were produced. We found a high variation of capillary density in the hippocampal region reflecting known subregional structures. The silver-enhanced vessels acted as natural markers and made it possible to study and measure aspects of the complexity of dehydration and staining artifacts. We found a non-linear shrinking of 13-17% in the x- and y-directions and a spatial shrinking up to 50% in some regions after the dehydration and staining process. This observation may be of interest not only in relation to tissue subjected to this fixation protocol but also to other fixation procedures. The gold-gelatine autometallographic technique and the present stereograms can release data for stereological use as well.

  4. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.

    PubMed

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G

    2016-01-27

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.

  5. Consistent latent position estimation and vertex classification for random dot product graphs.

    PubMed

    Sussman, Daniel L; Tang, Minh; Priebe, Carey E

    2014-01-01

    In this work, we show that using the eigen-decomposition of the adjacency matrix, we can consistently estimate latent positions for random dot product graphs provided the latent positions are i.i.d. from some distribution. If class labels are observed for a number of vertices tending to infinity, then we show that the remaining vertices can be classified with error converging to Bayes optimal using the $(k)$-nearest-neighbors classification rule. We evaluate the proposed methods on simulated data and a graph derived from Wikipedia.

  6. Analysis of the Yule-Nielsen effect with the multiple-path point spread function in a frequency-modulated halftone.

    PubMed

    Rogers, Geoffrey

    2018-06-01

    The Yule-Nielsen effect is an influence on halftone color caused by the diffusion of light within the paper upon which the halftone ink is printed. The diffusion can be characterized by a point spread function. In this paper, a point spread function for paper is derived using the multiple-path model of reflection. This model treats the interaction of light with turbid media as a random walk. Using the multiple-path point spread function, a general expression is derived for the average reflectance of light from a frequency-modulated halftone, in which dot size is constant and the number of dots is varied, with the arrangement of dots random. It is also shown that the line spread function derived from the multiple-path model has the form of a Lorentzian function.

  7. Modified Directly Observed Antiretroviral Therapy Compared with Self-Administered Therapy in Treatment-Naïve HIV-1 Infected Patients: A Randomized Trial

    PubMed Central

    Gross, Robert; Tierney, Camlin; Andrade, Adriana; Lalama, Christina; Rosenkranz, Susan; Eshleman, Susan H.; Flanigan, Timothy; Santana, Jorge; Salomon, Nadim; Reisler, Ronald; Wiggins, Ilene; Hogg, Evelyn; Flexner, Charles; Mildvan, Donna

    2009-01-01

    Context Success of antiretroviral therapy depends on high rates of adherence, but few interventions are effective. Objective Determine if modified directly observed therapy (mDOT) improves initial antiretroviral success. Design Open-label randomized trial comparing mDOT and self-administered therapy with lopinavir/ritonavir soft gel capsules 800 mg/200 mg, emtricitabine 200 mg, and either extended release stavudine 100 mg or tenofovir 300 mg, all once daily. Setting 23 U.S. AIDS Clinical Trials Group (ACTG) sites and one in South Africa between October 2002 and January 2006. Participants Plasma HIV RNA ≥2000 copies/ml and antiretroviral-naïve. 82 participants received mDOT and 161 self-administration. Participants were predominantly male (79%), median age 38 years, with 84 Latinos (35%), 74 non-Latino blacks (30%), and 79 non-Latino whites (33%). Intervention mDOT Monday through Friday for 24 weeks. Main Outcome Measure(s) Primary outcome was week 24 virologic success and secondary outcomes were week 48 virologic success, clinical progression, and adherence. Results mDOT had greater virologic success over 24 weeks [0.91 (95% CI: 0.81, 0.95)] than self-administered therapy [0.84 (95% CI: 0.77, 0.89)], but the difference [0.07 (lower bound 95% CI: −0.01)] did not reach the pre-specified threshold of 0.075. Over 48 weeks, virologic success was not significantly different between mDOT [0.72 (95% CI: 0.61, 0.81)] and self-administered therapy [0.78 (95% CI: 0.70, 0.84)], [−0.06 (95% CI: −0.18, 0.07); p=0.19)]. Conclusions The potential benefit of mDOT was marginal and not sustained after mDOT was discontinued. mDOT should not be incorporated routinely for care of treatment naïve HIV-1 infected patients. PMID:19597072

  8. Entanglement loss in molecular quantum-dot qubits due to interaction with the environment.

    PubMed

    Blair, Enrique P; Tóth, Géza; Lent, Craig S

    2018-05-16

    We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser-Horne-Shimony-Holt (CHSH) and Brukner-Paunković-Rudolph-Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.

  9. Approximating the Sachdev-Ye-Kitaev model with Majorana wires

    NASA Astrophysics Data System (ADS)

    Chew, Aaron; Essin, Andrew; Alicea, Jason

    The Sachdev-Ye-Kitaev (SYK) model describes a large collection of Majorana fermions coupled via random, `all-to-all' four-fermion interactions. This model enjoys broad interdisciplinary interest because it provides a solvable realization of holography in 0+1 dimensions, exhibits unusual spectral and thermodynamic properties, and shares deep connections to chaos and black holes. We propose a solid-state implementation of the SYK Hamiltonian that employs quantum dots coupled to arrays of topological superconductors hosting Majorana end-states. All-to-all four-Majorana couplings are mediated by interactions in the dot, while the randomness originates from disorder in the hoppings between the Majorana modes and dot levels. Using perturbation theory and explicit numerics, we study the properties of the dot-wire array system under various experimental conditions. Interestingly, our setup not only allows exploration of SYK physics, but also provides a controlled testbed for interaction effects on the topological classification of fermionic phases. Supported by the National Science Foundation (DMR-1341822), Institute for Quantum Information and Matter, and Walter Burke Institute at Caltech. AC gratefully acknowledges support from the Dominic Orr Fellowship.

  10. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    PubMed

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  11. Entanglement loss in molecular quantum-dot qubits due to interaction with the environment

    NASA Astrophysics Data System (ADS)

    Blair, Enrique P.; Tóth, Géza; Lent, Craig S.

    2018-05-01

    We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser–Horne–Shimony–Holt (CHSH) and Brukner–Paunković–Rudolph–Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.

  12. Influence of Correspondence Noise and Spatial Scaling on the Upper Limit for Spatial Displacement in Fully-Coherent Random-Dot Kinematogram Stimuli

    PubMed Central

    Tripathy, Srimant P.; Shafiullah, Syed N.; Cox, Michael J.

    2012-01-01

    Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms [1]. In the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest displacement that can be detected. PMID:23056172

  13. Influence of correspondence noise and spatial scaling on the upper limit for spatial displacement in fully-coherent random-dot kinematogram stimuli.

    PubMed

    Tripathy, Srimant P; Shafiullah, Syed N; Cox, Michael J

    2012-01-01

    Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms. In the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest displacement that can be detected.

  14. White Dots as a Novel Marker of Diabetic Retinopathy Severity in Ultrawide Field Imaging.

    PubMed

    Dodo, Yoko; Murakami, Tomoaki; Unoki, Noriyuki; Ogino, Ken; Uji, Akihito; Yoshitake, Shin; Yoshimura, Nagahisa

    2016-01-01

    To characterize white dots in diabetic retinopathy (DR) and their association with disease severity using ultra-wide-field scanning laser ophthalmoscopy. We randomly selected 125 eyes of 77 patients (25 eyes from individual categories of the international classification of DR severity) for which ultrawide field photographs were obtained. We characterized white dots, which were delineated by higher signal levels on green but not red laser images, and evaluated the relationship between the number of white dots and the international severity scale of DR. Most white dots were located in nonperfused areas, and the number of total white dots was significantly correlated to that of dots in nonperfused areas. White dots corresponded to microaneurysms around the boundary between nonperfused areas and perfused areas or unknown lesions in nonperfused areas. Eyes with DR had significantly more white dots than those with no apparent retinopathy. The numbers of white dots in moderate nonproliferative diabetic retinopathy (NPDR) or more severe grades were significantly higher than in mild NPDR. The area under the receiver operating characteristics curve (AROC) analyses demonstrated that the number of white dots had the significance in the diagnosis of DR (0.908-0.986) and moderate NPDR or more severe grades (0.888-0.974). These data suggest the clinical relevance of white dots seen on ultrawide field images in the diagnosis of the severity of DR.

  15. Effect of self assembled quantum dots on carrier mobility, with application to modeling the dark current in quantum dot infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Youssef, Sarah; El-Batawy, Yasser M.; Abouelsaood, Ahmed A.

    2016-09-01

    A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device [Ameen et al., J. Appl. Phys. 115, 063703 (2014)] in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.

  16. Printer model for dot-on-dot halftone screens

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Raja

    1995-04-01

    A printer model is described for dot-on-dot halftone screens. For a given input CMYK signal, the model predicts the resulting spectral reflectance of the printed patch. The model is derived in two steps. First, the C, M, Y, K dot growth functions are determined which relate the input digital value to the actual dot area coverages of the colorants. Next, the reflectance of a patch is predicted as a weighted combination of the reflectances of the four solid C, M, Y, K patches and their various overlays. This approach is analogous to the Neugebauer model, with the random mixing equations being replaced by dot-on-dot mixing equations. A Yule-Neilsen correction factor is incorporated to account for light scattering within the paper. The dot area functions and Yule-Neilsen parameter are chosen to optimize the fit to a set of training data. The model is also extended to a cellular framework, requiring additional measurements. The model is tested with a four color xerographic printer employing a line-on-line halftone screen. CIE L*a*b* errors are obtained between measurements and model predictions. The Yule-Neilsen factor significantly decreases the model error. Accuracy is also increased with the use of a cellular framework.

  17. Capture of visual direction in dynamic vergence is reduced with flashed monocular lines.

    PubMed

    Jaschinski, Wolfgang; Jainta, Stephanie; Schürer, Michael

    2006-08-01

    The visual direction of a continuously presented monocular object is captured by the visual direction of a closely adjacent binocular object, which questions the reliability of nonius lines for measuring vergence. This was shown by Erkelens, C. J., and van Ee, R. (1997a,b) [Capture of the visual direction: An unexpected phenomenon in binocular vision. Vision Research, 37, 1193-1196; Capture of the visual direction of monocular objects by adjacent binocular objects. Vision Research, 37, 1735-1745] stimulating dynamic vergence by a counter phase oscillation of two square random-dot patterns (one to each eye) that contained a smaller central dot-free gap (of variable width) with a vertical monocular line oscillating in phase with the random-dot pattern of the respective eye; subjects adjusted the motion-amplitude of the line until it was perceived as (nearly) stationary. With a continuously presented monocular line, we replicated capture of visual direction provided the dot-free gap was narrow: the adjusted motion-amplitude of the line was similar as the motion-amplitude of the random-dot pattern, although large vergence errors occurred. However, when we flashed the line for 67 ms at the moments of maximal and minimal disparity of the vergence stimulus, we found that the adjusted motion-amplitude of the line was smaller; thus, the capture effect appeared to be reduced with flashed nonius lines. Accordingly, we found that the objectively measured vergence gain was significantly correlated (r=0.8) with the motion-amplitude of the flashed monocular line when the separation between the line and the fusion contour was at least 32 min arc. In conclusion, if one wishes to estimate the dynamic vergence response with psychophysical methods, effects of capture of visual direction can be reduced by using flashed nonius lines.

  18. 49 CFR 40.23 - What actions do employers take after receiving verified test results?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...., random test, post-accident test) and DOT Agency (e.g., check DOT and FMCSA) as for the original... verified test results? 40.23 Section 40.23 Transportation Office of the Secretary of Transportation... What actions do employers take after receiving verified test results? (a) As an employer who receives a...

  19. 49 CFR 40.23 - What actions do employers take after receiving verified test results?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...., random test, post-accident test) and DOT Agency (e.g., check DOT and FMCSA) as for the original... verified test results? 40.23 Section 40.23 Transportation Office of the Secretary of Transportation... What actions do employers take after receiving verified test results? (a) As an employer who receives a...

  20. 49 CFR 40.23 - What actions do employers take after receiving verified test results?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...., random test, post-accident test) and DOT Agency (e.g., check DOT and FMCSA) as for the original... verified test results? 40.23 Section 40.23 Transportation Office of the Secretary of Transportation... What actions do employers take after receiving verified test results? (a) As an employer who receives a...

  1. 49 CFR 40.23 - What actions do employers take after receiving verified test results?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...., random test, post-accident test) and DOT Agency (e.g., check DOT and FMCSA) as for the original... an employer who receives a cancelled test result when a negative result is required (e.g., pre... verified test results? 40.23 Section 40.23 Transportation Office of the Secretary of Transportation...

  2. 49 CFR 40.23 - What actions do employers take after receiving verified test results?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...., random test, post-accident test) and DOT Agency (e.g., check DOT and FMCSA) as for the original... an employer who receives a cancelled test result when a negative result is required (e.g., pre... verified test results? 40.23 Section 40.23 Transportation Office of the Secretary of Transportation...

  3. Magnetic properties of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Espinosa-Ortega, T.; Luk'yanchuk, I. A.; Rubo, Y. G.

    2013-05-01

    Using the tight-binding approximation we calculated the diamagnetic susceptibility of graphene quantum dots (GQDs) of different geometrical shapes and characteristic sizes of 2-10 nm, when the magnetic properties are governed by the electron edge states. Two types of edge states can be discerned: the zero-energy states (ZESs), located exactly at the zero-energy Dirac point, and the dispersed edge states (DESs), with the energy close but not exactly equal to zero. DESs are responsible for a temperature-independent diamagnetic response, while ZESs provide a temperature-dependent spin paramagnetism. Hexagonal, circular, and randomly shaped GQDs contain mainly DESs, and, as a result, they are diamagnetic. The edge states of the triangular GQDs are of ZES type. These dots reveal the crossover between spin paramagnetism, dominating for small dots and at low temperatures, and orbital diamagnetism, dominating for large dots and at high temperatures.

  4. Direct Observation of Treatment Provided by a Family Member as Compared to Non-Family Member among Children with New Tuberculosis: A Pragmatic, Non-Inferiority, Cluster-Randomized Trial in Gujarat, India.

    PubMed

    Dave, Paresh Vamanrao; Shah, Amar Niranjan; Nimavat, Pankaj B; Modi, Bhavesh B; Pujara, Kirit R; Patel, Pradip; Mehariya, Keshabhai; Rade, Kiran Vaman; Shekar, Soma; Sachdeva, Kuldeep S; Oeltmann, John E; Kumar, Ajay M V

    2016-01-01

    The World Health Organization recommends direct observation of treatment (DOT) to support patients with tuberculosis (TB) and to ensure treatment completion. As per national programme guidelines in India, a DOT provider can be anyone who is acceptable and accessible to the patient and accountable to the health system, except a family member. This poses challenges among children with TB who may be more comfortable receiving medicines from their parents or family members than from unfamiliar DOT providers. We conducted a non-inferiority trial to assess the effect of family DOT on treatment success rates among children with newly diagnosed TB registered for treatment during June-September 2012. We randomly assigned all districts (n = 30) in Gujarat to the intervention (n = 15) or usual-practice group (n = 15). Adult family members in the intervention districts were given the choice to become their child's DOT provider. DOT was provided by a non-family member in the usual-practice districts. Using routinely collected clinic-based TB treatment cards, we compared treatment success rates (cured and treatment completed) between the two groups and the non-inferiority limit was kept at 5%. Of 624 children with newly diagnosed TB, 359 (58%) were from intervention districts and 265 (42%) were from usual-practice districts. The two groups were similar with respect to baseline characteristics including age, sex, type of TB, and initial body weight. The treatment success rates were 344 (95.8%) and 247 (93.2%) (p = 0.11) among the intervention and usual-practice groups respectively. DOT provided by a family member is not inferior to DOT provided by a non-family member among new TB cases in children and can attain international targets for treatment success. Clinical Trials Registry-India, National Institute of Medical Statistics (Indian Council of Medical Research) CTRI/2015/09/006229.

  5. Direct Observation of Treatment Provided by a Family Member as Compared to Non-Family Member among Children with New Tuberculosis: A Pragmatic, Non-Inferiority, Cluster-Randomized Trial in Gujarat, India

    PubMed Central

    Modi, Bhavesh B.; Pujara, Kirit R.; Patel, Pradip; Mehariya, Keshabhai; Rade, Kiran Vaman; Shekar, Soma; Sachdeva, Kuldeep S.; Oeltmann, John E.; Kumar, Ajay M. V.

    2016-01-01

    Background The World Health Organization recommends direct observation of treatment (DOT) to support patients with tuberculosis (TB) and to ensure treatment completion. As per national programme guidelines in India, a DOT provider can be anyone who is acceptable and accessible to the patient and accountable to the health system, except a family member. This poses challenges among children with TB who may be more comfortable receiving medicines from their parents or family members than from unfamiliar DOT providers. We conducted a non-inferiority trial to assess the effect of family DOT on treatment success rates among children with newly diagnosed TB registered for treatment during June–September 2012. Methods We randomly assigned all districts (n = 30) in Gujarat to the intervention (n = 15) or usual-practice group (n = 15). Adult family members in the intervention districts were given the choice to become their child’s DOT provider. DOT was provided by a non-family member in the usual-practice districts. Using routinely collected clinic-based TB treatment cards, we compared treatment success rates (cured and treatment completed) between the two groups and the non-inferiority limit was kept at 5%. Results Of 624 children with newly diagnosed TB, 359 (58%) were from intervention districts and 265 (42%) were from usual-practice districts. The two groups were similar with respect to baseline characteristics including age, sex, type of TB, and initial body weight. The treatment success rates were 344 (95.8%) and 247 (93.2%) (p = 0.11) among the intervention and usual-practice groups respectively. Conclusion DOT provided by a family member is not inferior to DOT provided by a non-family member among new TB cases in children and can attain international targets for treatment success. Trial Registration Clinical Trials Registry–India, National Institute of Medical Statistics (Indian Council of Medical Research) CTRI/2015/09/006229 PMID:26849442

  6. White Dots as a Novel Marker of Diabetic Retinopathy Severity in Ultrawide Field Imaging

    PubMed Central

    Dodo, Yoko; Murakami, Tomoaki; Unoki, Noriyuki; Ogino, Ken; Uji, Akihito; Yoshitake, Shin; Yoshimura, Nagahisa

    2016-01-01

    Purpose To characterize white dots in diabetic retinopathy (DR) and their association with disease severity using ultra-wide-field scanning laser ophthalmoscopy. Methods We randomly selected 125 eyes of 77 patients (25 eyes from individual categories of the international classification of DR severity) for which ultrawide field photographs were obtained. We characterized white dots, which were delineated by higher signal levels on green but not red laser images, and evaluated the relationship between the number of white dots and the international severity scale of DR. Results Most white dots were located in nonperfused areas, and the number of total white dots was significantly correlated to that of dots in nonperfused areas. White dots corresponded to microaneurysms around the boundary between nonperfused areas and perfused areas or unknown lesions in nonperfused areas. Eyes with DR had significantly more white dots than those with no apparent retinopathy. The numbers of white dots in moderate nonproliferative diabetic retinopathy (NPDR) or more severe grades were significantly higher than in mild NPDR. The area under the receiver operating characteristics curve (AROC) analyses demonstrated that the number of white dots had the significance in the diagnosis of DR (0.908–0.986) and moderate NPDR or more severe grades (0.888–0.974). Conclusions These data suggest the clinical relevance of white dots seen on ultrawide field images in the diagnosis of the severity of DR. PMID:27812207

  7. Atomistic theory of excitonic fine structure in InAs/InP nanowire quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Świderski, M.; Zieliński, M.

    2017-03-01

    Nanowire quantum dots have peculiar electronic and optical properties. In this work we use atomistic tight binding to study excitonic spectra of artificial molecules formed by a double nanowire quantum dot. We demonstrate a key role of atomistic symmetry and nanowire substrate orientation rather than cylindrical shape symmetry of a nanowire and a molecule. In particular for [001 ] nanowire orientation we observe a nonvanishing bright exciton splitting for a quasimolecule formed by two cylindrical quantum dots of different heights. This effect is due to interdot coupling that effectively reduces the overall symmetry, whereas single uncoupled [001 ] quantum dots have zero fine structure splitting. We found that the same double quantum dot system grown on [111 ] nanowire reveals no excitonic fine structure for all considered quantum dot distances and individual quantum dot heights. Further we demonstrate a pronounced, by several orders of magnitude, increase of the dark exciton optical activity in a quantum dot molecule as compared to a single quantum dot. For [111 ] systems we also show spontaneous localization of single particle states in one of nominally identical quantum dots forming a molecule, which is mediated by strain and origins from the lack of the vertical inversion symmetry in [111 ] nanostructures of overall C3 v symmetry. Finally, we study lowering of symmetry due to alloy randomness that triggers nonzero excitonic fine structure and the dark exciton optical activity in realistic nanowire quantum dot molecules of intermixed composition.

  8. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    PubMed Central

    Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055

  9. A transfer hamiltonian model for devices based on quantum dot arrays.

    PubMed

    Illera, S; Prades, J D; Cirera, A; Cornet, A

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  10. Effects of stimulant medication on the lateralisation of line bisection judgements of children with attention deficit hyperactivity disorder.

    PubMed

    Sheppard, D M; Bradshaw, J L; Mattingley, J B; Lee, P

    1999-01-01

    Deficits in the maintenance of attention may underlie problems in attention deficit hyperactivity disorder (ADHD). Children with ADHD also show asymmetric attention deficits in traditional lateralisation and visuospatial orienting tasks, suggesting right hemispheric (and left hemispace) attentional disturbance. This study aimed to examine the lateralisation of selective attention in ADHD; specifically, the effect of a moving, random dot background, and stimulant medication in the line bisection task. The performance of children with ADHD, on and off methylphenidate, was examined using a computerised horizontal line bisection task with moving and blank backgrounds. Twenty children with a DSM-IV diagnosis of ADHD participated with 20 controls, individually matched for age, sex, grade at school, and IQ. Twelve of the 20 children with ADHD were on stimulant medication at the time of testing. Horizontal lines of varying length were presented in the centre of a computer screen, with either a blank background, or a moving, random dot field. The random dots moved either leftward or rightward across the screen at either 40 mm/s or 80 mm/s. The children with ADHD off medication bisected lines significantly further to the right compared with controls, who showed a small leftward error. Methylphenidate normalised the performance of the children with ADHD for the task with the moving dots. These results support previous evidence for a right hemispheric hypoarousal theory of attentional dysfunction, and are consistent with the emerging picture of a lateralised dysfunction of frontostriatal circuitry in ADHD.

  11. Radio Frequency Signal Reception Via Distributed Wirelessly Networked Sensors Under Random Motion

    DTIC Science & Technology

    2009-09-01

    100. Agent position in Pythagoras modeling in first phase level showing individual unit member interaction where each dot is an individual agent...181 Figure 101. Detail position in Pythagoras modeling in second phase showing detail group interaction where each blue dot is a unit...Table 5. Estimated reset time values and associated change percentage from Pythagoras agent motion

  12. Semiclassical transport in nearly symmetric quantum dots. I. Symmetry breaking in the dot.

    PubMed

    Whitney, Robert S; Schomerus, Henning; Kopp, Marten

    2009-11-01

    We apply the semiclassical theory of transport to quantum dots with exact and approximate spatial symmetries; left-right mirror symmetry, up-down mirror symmetry, inversion symmetry, or fourfold symmetry. In this work-the first of a pair of articles-we consider (a) perfectly symmetric dots and (b) nearly symmetric dots in which the symmetry is broken by the dot's internal dynamics. The second article addresses symmetry-breaking by displacement of the leads. Using semiclassics, we identify the origin of the symmetry-induced interference effects that contribute to weak localization corrections and universal conductance fluctuations. For perfect spatial symmetry, we recover results previously found using the random-matrix theory conjecture. We then go on to show how the results are affected by asymmetries in the dot, magnetic fields, and decoherence. In particular, the symmetry-asymmetry crossover is found to be described by a universal dependence on an asymmetry parameter gamma_{asym} . However, the form of this parameter is very different depending on how the dot is deformed away from spatial symmetry. Symmetry-induced interference effects are completely destroyed when the dot's boundary is globally deformed by less than an electron wavelength. In contrast, these effects are only reduced by a finite amount when a part of the dot's boundary smaller than a lead-width is deformed an arbitrarily large distance.

  13. Color Charts, Esthetics, and Subjective Randomness

    ERIC Educational Resources Information Center

    Sanderson, Yasmine B.

    2012-01-01

    Color charts, or grids of evenly spaced multicolored dots or squares, appear in the work of modern artists and designers. Often the artist/designer distributes the many colors in a way that could be described as "random," that is, without an obvious pattern. We conduct a statistical analysis of 125 "random-looking" art and design color charts and…

  14. Semiconducting double-dot exchange-only qubit dynamics in the presence of magnetic and charge noises

    NASA Astrophysics Data System (ADS)

    Ferraro, E.; Fanciulli, M.; De Michielis, M.

    2018-06-01

    The effects of magnetic and charge noises on the dynamical evolution of the double-dot exchange-only qubit (DEOQ) is theoretically investigated. The DEOQ consisting of three electrons arranged in an electrostatically defined double quantum dot deserves special interest in quantum computation applications. Its advantages are in terms of fabrication, control and manipulation in view of implementation of fast single and two-qubit operations through only electrical tuning. The presence of the environmental noise due to nuclear spins and charge traps, in addition to fluctuations in the applied magnetic field and charge fluctuations on the electrostatic gates adopted to confine the electrons, is taken into account including random magnetic field and random coupling terms in the Hamiltonian. The behavior of the return probability as a function of time for initial conditions of interest is presented. Moreover, through an envelope-fitting procedure on the return probabilities, coherence times are extracted when model parameters take values achievable experimentally in semiconducting devices.

  15. Illusory displacement of equiluminous kinetic edges.

    PubMed

    Ramachandran, V S; Anstis, S M

    1990-01-01

    A stationary window was cut out of a stationary random-dot pattern. When a field of dots was moved continuously behind the window (a) the window appeared to move in the same direction even though it was stationary, (b) the position of the 'kinetic edges' defining the window was also displaced along the direction of dot motion, and (c) the edges of the window tended to fade on steady fixation even though the dots were still clearly visible. The illusory displacement was enhanced considerably if the kinetic edge was equiluminous and if the 'window' region was seen as 'figure' rather than 'ground'. Since the extraction of kinetic edges probably involves the use of direction-selective cells, the illusion may provide insights into how the visual system uses the output of these cells to localize the kinetic edges.

  16. Evaluation of usefulness of 3D views for clinical photography.

    PubMed

    Jinnin, Masatoshi; Fukushima, Satoshi; Masuguchi, Shinichi; Tanaka, Hiroki; Kawashita, Yoshio; Ishihara, Tsuyoshi; Ihn, Hironobu

    2011-01-01

    This is the first report investigating the usefulness of a 3D viewing technique (parallel viewing and cross-eyed viewing) for presenting clinical photography. Using the technique, we can grasp 3D structure of various lesions (e.g. tumors, wounds) or surgical procedures (e.g. lymph node dissection, flap) much more easily even without any cost and optical aids compared to 2D photos. Most recently 3D cameras started to be commercially available, but they may not be useful for presentation in scientific papers or poster sessions. To create a stereogram, two different pictures were taken from the right and left eye views using a digital camera. Then, the two pictures were placed next to one another. Using 9 stereograms, we performed a questionnaire-based survey. Our survey revealed 57.7% of the doctors/students had acquired the 3D viewing technique and an additional 15.4% could learn parallel viewing with 10 minutes training. Among the subjects capable of 3D views, 73.7% used the parallel view technique whereas only 26.3% chose the cross-eyed view. There was no significant difference in the results of the questionnaire about the efficiency and usefulness of 3D views between parallel view users and cross-eyed users. Almost all subjects (94.7%) answered that the technique is useful. Lesions with multiple undulations are a good application. 3D views, especially parallel viewing, are likely to be common and easy enough to consider for practical use in doctors/students. The wide use of the technique may revolutionize presentation of clinical pictures in meetings, educational lectures, or manuscripts.

  17. The Mechanism for Processing Random-Dot Motion at Various Speeds in Early Visual Cortices

    PubMed Central

    An, Xu; Gong, Hongliang; McLoughlin, Niall; Yang, Yupeng; Wang, Wei

    2014-01-01

    All moving objects generate sequential retinotopic activations representing a series of discrete locations in space and time (motion trajectory). How direction-selective neurons in mammalian early visual cortices process motion trajectory remains to be clarified. Using single-cell recording and optical imaging of intrinsic signals along with mathematical simulation, we studied response properties of cat visual areas 17 and 18 to random dots moving at various speeds. We found that, the motion trajectory at low speed was encoded primarily as a direction signal by groups of neurons preferring that motion direction. Above certain transition speeds, the motion trajectory is perceived as a spatial orientation representing the motion axis of the moving dots. In both areas studied, above these speeds, other groups of direction-selective neurons with perpendicular direction preferences were activated to encode the motion trajectory as motion-axis information. This applied to both simple and complex neurons. The average transition speed for switching between encoding motion direction and axis was about 31°/s in area 18 and 15°/s in area 17. A spatio-temporal energy model predicted the transition speeds accurately in both areas, but not the direction-selective indexes to random-dot stimuli in area 18. In addition, above transition speeds, the change of direction preferences of population responses recorded by optical imaging can be revealed using vector maximum but not vector summation method. Together, this combined processing of motion direction and axis by neurons with orthogonal direction preferences associated with speed may serve as a common principle of early visual motion processing. PMID:24682033

  18. Analysis of photogenerated random telegraph signal in single electron detector (photo-SET).

    PubMed

    Troudi, M; Sghaier, Na; Kalboussi, A; Souifi, A

    2010-01-04

    In this paper, we analyzed slow single traps, situated inside the tunnel oxide of small area single electron photo-detector (photo-SET or nanopixel). The relationship between excitation signal (photons) and random-telegraph-signal (RTS) was evidenced. We demonstrated that photoinduced RTS observed on a photo-detector is due to the interaction between single photogenerated charges that tunnel from dot to dot and current path. Based on RTS analysis for various temperatures, gate bias and optical power we determined the characteristics of these single photogenerated traps: the energy position within the silicon bandgap, capture cross section and the position within the Si/SiO(x = 1.5) interfaces.

  19. The upper spatial limit for perception of displacement is affected by preceding motion.

    PubMed

    Stefanova, Miroslava; Mateeff, Stefan; Hohnsbein, Joachim

    2009-03-01

    The upper spatial limit D(max) for perception of apparent motion of a random dot pattern may be strongly affected by another, collinear, motion that precedes it [Mateeff, S., Stefanova, M., &. Hohnsbein, J. (2007). Perceived global direction of a compound of real and apparent motion. Vision Research, 47, 1455-1463]. In the present study this phenomenon was studied with two-dimensional motion stimuli. A random dot pattern moved alternately in the vertical and oblique direction (zig-zag motion). The vertical motion was of 1.04 degrees length; it was produced by three discrete spatial steps of the dots. Thereafter the dots were displaced by a single spatial step in oblique direction. Each motion lasted for 57ms. The upper spatial limit for perception of the oblique motion was measured under two conditions: the vertical component of the oblique motion and the vertical motion were either in the same or in opposite directions. It was found that the perception of the oblique motion was strongly influenced by the relative direction of the vertical motion that preceded it; in the "same" condition the upper spatial limit was much shorter than in the "opposite" condition. Decreasing the speed of the vertical motion reversed this effect. Interpretations based on networks of motion detectors and on Gestalt theory are discussed.

  20. Quantum currents and pair correlation of electrons in a chain of localized dots

    NASA Astrophysics Data System (ADS)

    Morawetz, Klaus

    2017-03-01

    The quantum transport of electrons in a wire of localized dots by hopping, interaction and dissipation is calculated and a representation by an equivalent RCL circuit is found. The exact solution for the electric-field induced currents allows to discuss the role of virtual currents to decay initial correlations and Bloch oscillations. The dynamical response function in random phase approximation (RPA) is calculated analytically with the help of which the static structure function and pair correlation function are determined. The pair correlation function contains a form factor from the Brillouin zone and a structure factor caused by the localized dots in the wire.

  1. Electric transport through circular graphene quantum dots: Presence of disorder

    NASA Astrophysics Data System (ADS)

    Pal, G.; Apel, W.; Schweitzer, L.

    2011-08-01

    The electronic states of an electrostatically confined cylindrical graphene quantum dot and the electric transport through this device are studied theoretically within the continuum Dirac-equation approximation and compared with numerical results obtained from a tight-binding lattice description. A spectral gap, which may originate from strain effects, additional adsorbed atoms, or substrate-induced sublattice-symmetry breaking, allows for bound and scattering states. As long as the diameter of the dot is much larger than the lattice constant, the results of the continuum and the lattice model are in very good agreement. We also investigate the influence of a sloping dot-potential step, of on-site disorder along the sample edges, of uncorrelated short-range disorder potentials in the bulk, and of random magnetic fluxes that mimic ripple disorder. The quantum dot's spectral and transport properties depend crucially on the specific type of disorder. In general, the peaks in the density of bound states are broadened but remain sharp only in the case of edge disorder.

  2. New type of brittle deformations: two-axial turn structure of fractures in the Kovdor carbonatite intrusion (NW Russia)

    NASA Astrophysics Data System (ADS)

    Zhirov, Dmitry

    2017-04-01

    The Earth's crust is known for a few types of structural fissuring and faults organization. First of all, this is an orthogonal or some kind of non-orthogonal fissuring network with a various number of systems. The hierarchic model is also popular since it stipulates a regular arrangement and collateral subordination of several ranks of elements relative to each other, and a general fault and/or shear zone. An axis-symmetric fissuring structure is developed in the central (ring)-type massifs and some other geological bodies. It is formed due to the progressive turn of adjoining fissure planes around the massif symmetry axis (mostly vertical) at a discrete angle (within 5-15° on the average depending on the scale and internal structural features). The investigation of the fault tectonics in the Kovdor carbonatite intrusion (NW Russia) has resulted in the identification of a new brittle deformations type. It is formed due to the simultaneous turn of fissure planes at discrete angles around two orthogonal guiding lines (axes), where one is represented by a vertical massif symmetry axis (L1), and the other axis (L2) lies horizontally in the fracture plane. Nonetheless, the rotation along the both axes is codirectional, i.e., when moving counterclockwise around the L1 axis, the L2 rotation is also counterclockwise. If we very tentatively consider a fissure as an ellipse, and take into account the whole assemblage of long and short axes, the overall picture of their spatial distribution generates a screw conoid or ordinary helicoid type structure. It will be shown as an S-shaped plane poles chain in the stereogram. A sequence of large scale fissures (longer than 100 meters), which are 25 to 100 meters apart from each other and regularly vary in strike and dip angle, is mapped in the open pit of the Kovdor apatite-magnetite deposit. The accuracy of positioning for each fissure is a few centimeters in measurement spots, with a deviation from its actual surface due to the undulation induced by the generalized plane estimated at ±1 meter. The poles of the mapped planes are plotted in the stereogram and compared with model calculations while the planes themselves are visualized in a 3D model. The behavior of the fissure selection in the stereogram and in the 3D model fully corresponds to the laws of two-axial codirectional turn of fractures. This is a new type of brittle deformations, which is of significance for the interpretation of evolutional features and modern state of the stress field in the Kovdor central-type carbonatite intrusion.

  3. Isotopically enhanced triple-quantum-dot qubit

    PubMed Central

    Eng, Kevin; Ladd, Thaddeus D.; Smith, Aaron; Borselli, Matthew G.; Kiselev, Andrey A.; Fong, Bryan H.; Holabird, Kevin S.; Hazard, Thomas M.; Huang, Biqin; Deelman, Peter W.; Milosavljevic, Ivan; Schmitz, Adele E.; Ross, Richard S.; Gyure, Mark F.; Hunter, Andrew T.

    2015-01-01

    Like modern microprocessors today, future processors of quantum information may be implemented using all-electrical control of silicon-based devices. A semiconductor spin qubit may be controlled without the use of magnetic fields by using three electrons in three tunnel-coupled quantum dots. Triple dots have previously been implemented in GaAs, but this material suffers from intrinsic nuclear magnetic noise. Reduction of this noise is possible by fabricating devices using isotopically purified silicon. We demonstrate universal coherent control of a triple-quantum-dot qubit implemented in an isotopically enhanced Si/SiGe heterostructure. Composite pulses are used to implement spin-echo type sequences, and differential charge sensing enables single-shot state readout. These experiments demonstrate sufficient control with sufficiently low noise to enable the long pulse sequences required for exchange-only two-qubit logic and randomized benchmarking. PMID:26601186

  4. Temporal stability of visual search-driven biometrics

    NASA Astrophysics Data System (ADS)

    Yoon, Hong-Jun; Carmichael, Tandy R.; Tourassi, Georgia

    2015-03-01

    Previously, we have shown the potential of using an individual's visual search pattern as a possible biometric. That study focused on viewing images displaying dot-patterns with different spatial relationships to determine which pattern can be more effective in establishing the identity of an individual. In this follow-up study we investigated the temporal stability of this biometric. We performed an experiment with 16 individuals asked to search for a predetermined feature of a random-dot pattern as we tracked their eye movements. Each participant completed four testing sessions consisting of two dot patterns repeated twice. One dot pattern displayed concentric circles shifted to the left or right side of the screen overlaid with visual noise, and participants were asked which side the circles were centered on. The second dot-pattern displayed a number of circles (between 0 and 4) scattered on the screen overlaid with visual noise, and participants were asked how many circles they could identify. Each session contained 5 untracked tutorial questions and 50 tracked test questions (200 total tracked questions per participant). To create each participant's "fingerprint", we constructed a Hidden Markov Model (HMM) from the gaze data representing the underlying visual search and cognitive process. The accuracy of the derived HMM models was evaluated using cross-validation for various time-dependent train-test conditions. Subject identification accuracy ranged from 17.6% to 41.8% for all conditions, which is significantly higher than random guessing (1/16 = 6.25%). The results suggest that visual search pattern is a promising, temporally stable personalized fingerprint of perceptual organization.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hong-Jun; Carmichael, Tandy; Tourassi, Georgia

    Previously, we have shown the potential of using an individual s visual search pattern as a possible biometric. That study focused on viewing images displaying dot-patterns with different spatial relationships to determine which pattern can be more effective in establishing the identity of an individual. In this follow-up study we investigated the temporal stability of this biometric. We performed an experiment with 16 individuals asked to search for a predetermined feature of a random-dot pattern as we tracked their eye movements. Each participant completed four testing sessions consisting of two dot patterns repeated twice. One dot pattern displayed concentric circlesmore » shifted to the left or right side of the screen overlaid with visual noise, and participants were asked which side the circles were centered on. The second dot-pattern displayed a number of circles (between 0 and 4) scattered on the screen overlaid with visual noise, and participants were asked how many circles they could identify. Each session contained 5 untracked tutorial questions and 50 tracked test questions (200 total tracked questions per participant). To create each participant s "fingerprint", we constructed a Hidden Markov Model (HMM) from the gaze data representing the underlying visual search and cognitive process. The accuracy of the derived HMM models was evaluated using cross-validation for various time-dependent train-test conditions. Subject identification accuracy ranged from 17.6% to 41.8% for all conditions, which is significantly higher than random guessing (1/16 = 6.25%). The results suggest that visual search pattern is a promising, fairly stable personalized fingerprint of perceptual organization.« less

  6. Polarization control of quantum dot emission by chiral photonic crystal slabs.

    PubMed

    Lobanov, Sergey V; Weiss, Thomas; Gippius, Nikolay A; Tikhodeev, Sergei G; Kulakovskii, Vladimir D; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's (QDs) optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized QDs normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed QDs, and can be close to 100% for some single QDs.

  7. Perceptual asymmetry reveals neural substrates underlying stereoscopic transparency.

    PubMed

    Tsirlin, Inna; Allison, Robert S; Wilcox, Laurie M

    2012-02-01

    We describe a perceptual asymmetry found in stereoscopic perception of overlaid random-dot surfaces. Specifically, the minimum separation in depth needed to perceptually segregate two overlaid surfaces depended on the distribution of dots across the surfaces. With the total dot density fixed, significantly larger inter-plane disparities were required for perceptual segregation of the surfaces when the front surface had fewer dots than the back surface compared to when the back surface was the one with fewer dots. We propose that our results reflect an asymmetry in the signal strength of the front and back surfaces due to the assignment of the spaces between the dots to the back surface by disparity interpolation. This hypothesis was supported by the results of two experiments designed to reduce the imbalance in the neuronal response to the two surfaces. We modeled the psychophysical data with a network of inter-neural connections: excitatory within-disparity and inhibitory across disparity, where the spread of disparity was modulated according to figure-ground assignment. These psychophysical and computational findings suggest that stereoscopic transparency depends on both inter-neural interactions of disparity-tuned cells and higher-level processes governing figure ground segregation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. A Quick and Parallel Analytical Method Based on Quantum Dots Labeling for ToRCH-Related Antibodies

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Guo, Qing; He, Rong; Li, Ding; Zhang, Xueqing; Bao, Chenchen; Hu, Hengyao; Cui, Daxiang

    2009-12-01

    Quantum dot is a special kind of nanomaterial composed of periodic groups of II-VI, III-V or IV-VI materials. Their high quantum yield, broad absorption with narrow photoluminescence spectra and high resistance to photobleaching, make them become a promising labeling substance in biological analysis. Here, we report a quick and parallel analytical method based on quantum dots for ToRCH-related antibodies including Toxoplasma gondii, Rubella virus, Cytomegalovirus and Herpes simplex virus type 1 (HSV1) and 2 (HSV2). Firstly, we fabricated the microarrays with the five kinds of ToRCH-related antigens and used CdTe quantum dots to label secondary antibody and then analyzed 100 specimens of randomly selected clinical sera from obstetric outpatients. The currently prevalent enzyme-linked immunosorbent assay (ELISA) kits were considered as “golden standard” for comparison. The results show that the quantum dots labeling-based ToRCH microarrays have comparable sensitivity and specificity with ELISA. Besides, the microarrays hold distinct advantages over ELISA test format in detection time, cost, operation and signal stability. Validated by the clinical assay, our quantum dots-based ToRCH microarrays have great potential in the detection of ToRCH-related pathogens.

  9. Correlation between asthenopic symptoms and different measurements of convergence and reading comprehension and saccadic fixation eye movements.

    PubMed

    Cohen, Yuval; Segal, Ori; Barkana, Yaniv; Lederman, Robert; Zadok, David; Pras, Eran; Morad, Yair

    2010-01-01

    The aim of this study was to evaluate the relationship between asthenopic symptoms, convergence amplitude, reading comprehension, and saccadic eye movements in children 8 to 10 years of age. Sixty-six children age 8 to 10 years were examined. Convergence was evaluated using (1) nonaccommodative target at near and distance, (2) a near computerized stereogram, and (3) measurement of the near point of convergence (NPC). Reading ability was examined by (1) a reading comprehension test in which children had to answer questions regarding a paragraph they read and (2) the Developmental Eye Movement Test (DEM), which evaluates saccadic speed and accuracy. Asthenopic symptoms were scored by an Asthenopic Symptoms Questionnaire. Asthenopic symptoms score was correlated with the near point of convergence (r = -0.4; P = 0.003), convergence on a near stereogram (r = 0.38; P = 0.01) and distant light (r = 0.27; P = 0.04), but not with convergence on a near nonaccommodative target (r = 0.07; P = 0.6). The DEM ratio score was correlated with the asthenopic symptoms score (r = -0.32; P = 0.01), but the reading comprehension test score was not (r = 0.12; P = 0.4). There was correlation, however, between the time for completion of the reading comprehension test and the asthenopic symptoms score (r = 0.39; P = 0.006). Asthenopic symptoms score was correlated with convergence amplitude as measured, whereas accommodation is controlled and the ratio score calculated based upon DEM results. Further study is needed to evaluate the usefulness of the integration between symptom survey and objective reading examinations as screening tool for the diagnosis of convergence insufficiency.

  10. Psychophysical estimation of the effects of aging on direction-of-heading judgments

    NASA Astrophysics Data System (ADS)

    Raghuram, Aparna; Lakshminarayanan, Vasudevan

    2011-11-01

    We conducted psychophysical experiments on direction-of-heading judgments using old and young subjects. Subjects estimated heading directions on a translation perpendicular to the vertical plane (frontoparallel); we found that heading judgments were affected by age. Increasing the random dot density in the stimulus from 24 to 400 dots did not improve threshold significantly. Older subjects started performing worse at the highest dots condition of 400. The speed of the radial motion was important, as heading judgments with slower radial motion were difficult to judge than faster radial motion, as the focus of expansion was easier to locate owing to the larger displacement of dots. Gender differences indicated that older women had a higher threshold than older men. This was only significant for the faster simulated radial speed. A general trend of women having a higher threshold than men was noticed.

  11. Semiclassical transport in nearly symmetric quantum dots. II. Symmetry breaking due to asymmetric leads.

    PubMed

    Whitney, Robert S; Schomerus, Henning; Kopp, Marten

    2009-11-01

    In this work-the second of a pair of articles-we consider transport through spatially symmetric quantum dots with leads whose widths or positions do not obey the spatial symmetry. We use the semiclassical theory of transport to find the symmetry-induced contributions to weak localization corrections and universal conductance fluctuations for dots with left-right, up-down, inversion, and fourfold symmetries. We show that all these contributions are suppressed by asymmetric leads; however, they remain finite whenever leads intersect with their images under the symmetry operation. For an up-down symmetric dot, this means that the contributions can be finite even if one of the leads is completely asymmetric. We find that the suppression of the contributions to universal conductance fluctuations is the square of the suppression of contributions to weak localization. Finally, we develop a random-matrix theory model which enables us to numerically confirm these results.

  12. Image Descriptors for Displays

    DTIC Science & Technology

    1977-02-01

    Information available for shape recognition in the dot field . What we do is to open up a nw dimension of the display, a dimension of color variation. The...line in a random location in the field of view (b); this is followed by a line mask and response choices (c). Accuracy feedback (d) follows response...dot field (c) and then gives a :4 /button response to indicate whether or not he thinks the triangle is present. Accuracy feedback (d) follows the

  13. Visual Perception of Touchdown Point During Simulated Landing

    ERIC Educational Resources Information Center

    Palmisano, Stephen; Gillam, Barbara

    2005-01-01

    Experiments examined the accuracy of visual touchdown point perception during oblique descents (1.5?-15?) toward a ground plane consisting of (a) randomly positioned dots, (b) a runway outline, or (c) a grid. Participants judged whether the perceived touchdown point was above or below a probe that appeared at a random position following each…

  14. Novel method of extracting motion from natural movies.

    PubMed

    Suzuki, Wataru; Ichinohe, Noritaka; Tani, Toshiki; Hayami, Taku; Miyakawa, Naohisa; Watanabe, Satoshi; Takeichi, Hiroshige

    2017-11-01

    The visual system in primates can be segregated into motion and shape pathways. Interaction occurs at multiple stages along these pathways. Processing of shape-from-motion and biological motion is considered to be a higher-order integration process involving motion and shape information. However, relatively limited types of stimuli have been used in previous studies on these integration processes. We propose a new algorithm to extract object motion information from natural movies and to move random dots in accordance with the information. The object motion information is extracted by estimating the dynamics of local normal vectors of the image intensity projected onto the x-y plane of the movie. An electrophysiological experiment on two adult common marmoset monkeys (Callithrix jacchus) showed that the natural and random dot movies generated with this new algorithm yielded comparable neural responses in the middle temporal visual area. In principle, this algorithm provided random dot motion stimuli containing shape information for arbitrary natural movies. This new method is expected to expand the neurophysiological and psychophysical experimental protocols to elucidate the integration processing of motion and shape information in biological systems. The novel algorithm proposed here was effective in extracting object motion information from natural movies and provided new motion stimuli to investigate higher-order motion information processing. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. The impact of numeracy on reactions to different graphic risk presentation formats: An experimental analogue study.

    PubMed

    Wright, Alison J; Whitwell, Sophia C L; Takeichi, Chika; Hankins, Matthew; Marteau, Theresa M

    2009-02-01

    Numeracy, the ability to process basic mathematical concepts, may affect responses to graphical displays of health risk information. Displays of probabilistic risk information using grouped dots are easier to understand than displays using dispersed dots. However, dispersed dots may better convey the randomness with which health threats occur, so increasing perceived susceptibility. We hypothesized that low numeracy participants would better understand risks presented using grouped dot displays, while high numeracy participants would have good understanding, regardless of display type. Moreover, we predicted that dispersed dot displays, in contrast to grouped dot displays, would increase risk perceptions and worry only for highly numerate individuals. One hundred and forty smokers read vignettes asking them to imagine being at risk of Crohn's disease, in a 2(display type: dispersed/grouped dots) x 3(risk magnitude: 3%/6%/50%) x 2(numeracy: high/low) design. They completed measures of risk comprehension, perceived susceptibility and worry. More numerate participants had better objective risk comprehension, but this effect was not moderated by display type. There was marginally significant support for the predicted numeracy x display type interaction for worry about Crohn's disease, but not for perceived susceptibility to the condition. Dispersed dot displays somewhat increase worry in highly numerate individuals, but only numeracy influenced objective risk comprehension. The most effective display type for communicating risk information will depend on the numeracy of the population and the goal(s) of the communication.

  16. Tailoring Quantum Dot Assemblies to Extend Exciton Coherence Times and Improve Exciton Transport

    NASA Astrophysics Data System (ADS)

    Seward, Kenton; Lin, Zhibin; Lusk, Mark

    2012-02-01

    The motion of excitons through nanostructured assemblies plays a central role in a wide range of physical phenomena including quantum computing, molecular electronics, photosynthetic processes, excitonic transistors and light emitting diodes. All of these technologies are severely handicapped, though, by quasi-particle lifetimes on the order of a nanosecond. The movement of excitons must therefore be as efficient as possible in order to move excitons meaningful distances. This is problematic for assemblies of small Si quantum dots (QDs), where excitons quickly localize and entangle with dot phonon modes. Ensuing exciton transport is then characterized by a classical random walk reduced to very short distances because of efficient recombination. We use a combination of master equation (Haken-Strobl) formalism and density functional theory to estimate the rate of decoherence in Si QD assemblies and its impact on exciton mobility. Exciton-phonon coupling and Coulomb interactions are calculated as a function of dot size, spacing and termination to minimize the rate of intra-dot phonon entanglement. This extends the time over which more efficient exciton transport, characterized by partial coherence, can be maintained.

  17. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.

    PubMed

    Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  18. Effect of intervention using a messaging app on compliance and duration of treatment in orthodontic patients.

    PubMed

    Li, Xue; Xu, Zhen-Rui; Tang, Na; Ye, Cui; Zhu, Xiao-Ling; Zhou, Ting; Zhao, Zhi-He

    2016-11-01

    This study aims to determine the effectiveness of a messaging app (WeChat) in improving patients' compliance and reducing the duration of orthodontic treatment (DOT). A randomized controlled trial was performed in a dental hospital and a clinic from August 2012 to May 2015. Orthodontic patients were included at the beginning of treatment. Patients with multiphase treatment or braceless technique were excluded. Participants were randomized to WeChat group (received regular reminders and educational messages) or control group (received conventional management) and were followed up until the treatment was completed. Primary outcome measure was DOT. Others were late and failed attendance, bracket bond failure, and oral hygiene condition. One hundred twelve patients in each group participated and completed the trial. DOT in WeChat group were 7.3 weeks shorter (P = 0.007). There were less failed attendance (3.1 vs. 10.9 %, P < 0.001), late attendance (20.1 vs. 29.9 %, P < 0.001), and bracket bond failure (11.8 vs. 16.1 %, P < 0.001) in WeChat group than control. There was no difference in orthodontic plaque index nor modified gingivitis index between the two groups before and after treatment. Number of failed attendances was identified as an independent factor affecting DOT (P = 0.004; HR = 0.89, 95 % CI 0.84 to 0.95). The intervention with WeChat is effective in reducing the treatment duration and bracket bond failure, and improving the attendance in orthodontic patients. DOT can be reduced by improving patient's compliance. The messaging app is useful for outpatient education and management.

  19. The cost-effectiveness of directly observed highly-active antiretroviral therapy in the third trimester in HIV-infected pregnant women.

    PubMed

    McCabe, Caitlin J; Goldie, Sue J; Fisman, David N

    2010-04-13

    In HIV-infected pregnant women, viral suppression prevents mother-to-child HIV transmission. Directly observed highly-active antiretroviral therapy (HAART) enhances virological suppression, and could prevent transmission. Our objective was to project the effectiveness and cost-effectiveness of directly observed administration of antiretroviral drugs in pregnancy. A mathematical model was created to simulate cohorts of one million asymptomatic HIV-infected pregnant women on HAART, with women randomly assigned self-administered or directly observed antiretroviral therapy (DOT), or no HAART, in a series of Monte Carlo simulations. Our primary outcome was the quality-adjusted life expectancy in years (QALY) of infants born to HIV-infected women, with the rates of Caesarean section and HIV-transmission after DOT use as intermediate outcomes. Both self-administered HAART and DOT were associated with decreased costs and increased life-expectancy relative to no HAART. The use of DOT was associated with a relative risk of HIV transmission of 0.39 relative to conventional HAART; was highly cost-effective in the cohort as a whole (cost-utility ratio $14,233 per QALY); and was cost-saving in women whose viral loads on self-administered HAART would have exceeded 1000 copies/ml. Results were stable in wide-ranging sensitivity analyses, with directly observed therapy cost-saving or highly cost-effective in almost all cases. Based on the best available data, programs that optimize adherence to HAART through direct observation in pregnancy have the potential to diminish mother-to-child HIV transmission in a highly cost-effective manner. Targeted use of DOT in pregnant women with high viral loads, who could otherwise receive self-administered HAART would be a cost-saving intervention. These projections should be tested with randomized clinical trials.

  20. 49 CFR 40.349 - What records may a service agent receive and maintain?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Roles and Responsibilities of Service Agents § 40.349... part, as a service agent you may receive and maintain all records concerning DOT drug and alcohol... needed for operating a drug/alcohol program (e.g., CCFs, ATFs, names of employees in random pools, random...

  1. Community-based directly observed treatment for TB patients to improve HIV services: a cross-sectional study in a South African province.

    PubMed

    Howell, Embry M; Kigozi, N Gladys; Heunis, J Christo

    2018-04-07

    There is uncertainty about how directly observed treatment (DOT) support for tuberculosis (TB) can be delivered most effectively and how DOT support can simultaneously be used to strengthen human immunodeficiency virus (HIV) prevention and control among TB patients. This study describes how DOT support by community health workers (CHWs) was used in four municipalities in the Free State province - a high TB/HIV burden, poorly-resourced setting - to provide HIV outreach, referrals, and health education for TB patients. The study was part of a larger cross-sectional study of HIV counselling and testing (HCT) among 1101 randomly-selected TB patients registered at 40 primary health care (PHC) facilities (clinics and community health centres) across small town/rural and large town/urban settings. Univariate analysis of percentages, chi-square tests and t-tests for difference in means were used to describe differences between the types of TB treatment support and patient characteristics, as well as the types of - and patient satisfaction with - HIV information and referrals received from various types of treatment supporters including home-based DOT supporters, clinic-based DOT supporters or support from family/friends/employers. Multivariate logistic regression was used to predict the likelihood of not having receiving home-based DOT and of never having received HIV counselling. The independent variables include poverty-related health and socio-economic risk factors for poor outcomes. Statistical significance is shown using a 95% confidence interval and a 0.05 p-value. Despite the fact that DOT support for all TB patients was the goal of South African health policy at the time (2012), most TB patients were not receiving formal DOT support. Only 155 (14.1%) were receiving home-based DOT, while 114 (10.4%) received clinic-based DOT. TB patients receiving home-based DOT reported higher rates of HIV counselling than other patients. Public health providers should train DOT supporters to provide HIV prevention and target DOT to those at greatest risk of HIV, particularly those at greatest socio-economic risk.

  2. Communicating infectious disease prevalence through graphics: Results from an international survey.

    PubMed

    Fagerlin, Angela; Valley, Thomas S; Scherer, Aaron M; Knaus, Megan; Das, Enny; Zikmund-Fisher, Brian J

    2017-07-13

    Graphics are increasingly used to represent the spread of infectious diseases (e.g., influenza, Zika, Ebola); however, the impact of using graphics to adequately inform the general population is unknown. To examine whether three ways of visually presenting data (heat map, dot map, or picto-trendline)-all depicting the same information regarding the spread of a hypothetical outbreak of influenza-influence intent to vaccinate, risk perception, and knowledge. Survey with participants randomized to receive a simulated news article accompanied by one of the three graphics that communicated prevalence of influenza and number of influenza-related deaths. International online survey. 16,510 adults living in 11 countries selected using stratified random sampling based on age and gender. After reading the article and viewing the presented graphic, participants completed a survey that measured interest in vaccination, perceived risk of contracting disease, knowledge gained, interest in additional information about the disease, and perception of the graphic. Heat maps and picto-trendlines were evaluated more positively than dot maps. Heat maps were more effective than picto-trendlines and no different from dot maps at increasing interest in vaccination, perceived risk of contracting disease, and interest in additional information about the disease. Heat maps and picto-trendlines were more successful at conveying knowledge than dot maps. Overall, heat maps were the only graphic to be superior in every outcome. Results are based on a hypothetical scenario. Heat maps are a viable option to promote interest in and concern about infectious diseases. Published by Elsevier Ltd.

  3. Stereopsis testing without polarized glasses: a comparison study on five new stereoacuity tests.

    PubMed

    Hatch, S W; Richman, J E

    1994-09-01

    Stereopsis testing is commonly used to assess the presence and level of binocular vision. A new series of stereopsis tests requiring no polarized goggles are available in the form of the Titmus Stereo Test, the Stereo Reindeer Test, the Random Dot Butterfly, the Random Dot Figures, and the Random E, Circle, Square. These polarized-free tests employ a special prismatic printing process creating a panagraphic presentation, i.e., a separate image is presented to each eye without the need for polarization. The purpose of this study was to compare the polarized-free stereo tests with their traditional polarized counterparts. Thirty four subjects, including several persons with strabismus, ages 10-35 years, were each tested with the polarized and polarized-free versions of the Titmus, Reindeer, Butterfly, and Figures. Twenty nine of these subjects were tested with the Random Dot E. Half the subjects were tested first with polarized-free and half were tested first with polarized tests. Tests were performed according to manufacturer instructions by the same examiner in clinical settings. The results (matched pair ranked correlation coefficients) indicate that the polarized-free tests were highly correlated (r = 0.997, r = 0.998, r = 0.997, r = 1.00, and r = 1.00 respectively) with the polarized comparison tests. No significant difference (Wilcoxon Ranked Sign) in the stereopsis level was obtained between the two versions of the tests. We conclude that these five polarized-free tests were just as valid in measuring the subjects' stereopsis as their traditional polarized version. The use of goggle-free testing has potential clinical advantages, e.g., testing of young children who will not wear the glasses or the improved observation of the ocular alignment during stereopsis testing.

  4. The influence of performance on action-effect integration in sense of agency.

    PubMed

    Wen, Wen; Yamashita, Atsushi; Asama, Hajime

    2017-08-01

    Sense of agency refers to the subjective feeling of being able to control an outcome through one's own actions or will. Prior studies have shown that both sensory processing (e.g., comparisons between sensory feedbacks and predictions basing on one's motor intentions) and high-level cognitive/constructive processes (e.g., inferences based on one's performance or the consequences of one's actions) contribute to judgments of sense of agency. However, it remains unclear how these two types of processes interact, which is important for clarifying the mechanisms underlying sense of agency. Thus, we examined whether performance-based inferences influence action-effect integration in sense of agency using a delay detection paradigm in two experiments. In both experiments, participants pressed left and right arrow keys to control the direction in which a moving dot was travelling. The dot's response delay was manipulated randomly on 7 levels (0-480ms) between the trials; for each trial, participants were asked to judge whether the dot response was delayed and to rate their level of agency over the dot. In Experiment 1, participants tried to direct the dot to reach a destination on the screen as quickly as possible. Furthermore, the computer assisted participants by ignoring erroneous commands for half of the trials (assisted condition), while in the other half, all of the participants' commands were executed (self-control condition). In Experiment 2, participants directed the dot as they pleased (without a specific goal), but, in half of the trials, the computer randomly ignored 32% of their commands (disturbed condition) rather than assisted them. The results from the two experiments showed that performance enhanced action-effect integration. Specifically, when task performance was improved through the computer's assistance in Experiment 1, delay detection was reduced in the 480-ms delay condition, despite the fact that 32% of participants' commands were ignored. Conversely, when no feedback on task performance was given (as in Experiment 2), the participants reported greater delay when some of their commands were randomly ignored. Furthermore, the results of a logistic regression analysis showed that the threshold of delay detection was greater in the assisted condition than in the self-control condition in Experiment 1, which suggests a wider time window for action-effect integration. A multivariate analysis also revealed that assistance was related to reduced delay detection via task performance, while reduced delay detection was directly correlated with a better sense of agency. These results indicate an association between the implicit and explicit aspects of sense of agency. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop

    NASA Astrophysics Data System (ADS)

    Wildeman, Sander

    2018-06-01

    A quantitative synthetic Schlieren imaging (SSI) method based on fast Fourier demodulation is presented. Instead of a random dot pattern (as usually employed in SSI), a 2D periodic pattern (such as a checkerboard) is used as a backdrop to the refractive object of interest. The range of validity and accuracy of this "Fast Checkerboard Demodulation" (FCD) method are assessed using both synthetic data and experimental recordings of patterns optically distorted by small waves on a water surface. It is found that the FCD method is at least as accurate as sophisticated, multi-stage, digital image correlation (DIC) or optical flow (OF) techniques used with random dot patterns, and it is significantly faster. Efficient, fully vectorized, implementations of both the FCD and DIC/OF schemes developed for this study are made available as open source Matlab scripts.

  6. Electrophysiological Evidence for the Magnocellular-Dorsal Pathway Deficit in Dyslexia

    ERIC Educational Resources Information Center

    Jednorog, Katarzyna; Marchewka, Artur; Tacikowski, Pawel; Heim, Stefan; Grabowska, Anna

    2011-01-01

    In adults, the onset of coherent motion compared to random motion in a random dot kinematogram leads to a right hemispheric amplitude advantage of the N2 response. The source of this asymmetry is believed to lie in the motion selective MT+ cortex. Here, we tested whether the right tempo-parietal N2 component shows a similar regularity in children.…

  7. A randomized controlled study comparing community based with health facility based direct observation of treatment models on patients' satisfaction and TB treatment outcome in Nigeria.

    PubMed

    Adewole, Olanisun O; Oladele, T; Osunkoya, Arinola H; Erhabor, Greg E; Adewole, Temitayo O; Adeola, Oluwaseun; Obembe, Olufemi; Ota, Martin O C

    2015-12-01

    Directly observed treatment short-course (DOTS) strategy is an effective mode of treating TB. We aimed to study the cost effectiveness and patients' satisfaction with home based direct observation of treatment (DOT), an innovative approach to community-based DOT (CBDOT) and hospital based DOT (HBDOT). A randomized controlled trial involving 150 newly diagnosed pulmonary TB patients in four TB clinics in Ile Ife , Nigeria, was done. They were randomly assigned to receive treatment with anti TB drugs for the intensive phase administered at home by a TB worker (CBDOT) or at the hospital (HBDOT). Outcome measures were treatment completion/default rates, cost effectiveness and patients' satisfaction with care using a 13 item patients satisfaction questionnaire (PS-13) at 2 months. This trial was registered with pactr.org: number PACTR 201503001058381. At the end of intensive phase, 15/75 (20%) and 2/75 (3%) of patients in the HBDOT and CBDOT, respectively had defaulted from treatment, p= 0.01. Of those with pretreatment positive sputum smear, 97% (68/70) on CBDOT and 54/67 (81%) on HBDOT were sputum negative for AFB at the end of 2 months of treatment, p=0.01. The CBDOT method was associated with a higher patient satisfaction score compared with HBDOT (OR 3.1; 95% CI 1.25-7.70), p=0.001.The total cost for patients was higher in HBDOT (US$159.38) compared with the CBDOT (US$89.52). The incremental cost effectiveness ratio was US$410 per patient who completed the intensive phase treatment with CBDOT. CBDOT is a cost effective approach associated with better compliance to treatment and better patient satisfaction compared to HBDOT. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Fermionic entanglement via quantum walks in quantum dots

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexey A.; Fedichkin, Leonid E.

    2018-02-01

    Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.

  9. Treatment of tuberculosis in a rural area of Haiti: directly observed and non-observed regimens. The experience of H pital Albert Schweitzer.

    PubMed

    Ollé-Goig, J E; Alvarez, J

    2001-02-01

    Artibonite Valley, a rural area in Haiti. To evaluate a tuberculosis control program in rural Haiti and to compare two strategies for treatment implemented in two areas that were not chosen at random: treatment delivered at the patients' homes observed by former tuberculosis patients (DOT), and non observed treatment (non-DOT). Retrospective analysis of the clinical records of adult patients diagnosed with tuberculosis at H pital Albert Schweitzer in Deschapelles, Haiti, during 1994-1995. There were 143 patients in the non-DOT group and 138 patients in the DOT group. The results of treatment were significantly different: in the non-DOT group 29% defaulted, 12% died and 58% had a successful outcome; in the DOT group 7% defaulted (P < 0.01), 4% died (P = 0.01) and 87% had a successful outcome (P < 0.01). These differences are also significant when considering only human immunodeficiency virus (HIV) infected patients (defaulted P < 0.01; died P = 0.09; successful outcome P < 0.01). Delivering treatment in patients' homes with direct observation by former tuberculosis patients can achieve good results, even in an area of extreme poverty and high rates of HIV infection. In this population the number of patients who are able to complete their treatment without observed administration is far from optimal.

  10. Three-dimensional visualization and display technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 18-20, 1989

    NASA Technical Reports Server (NTRS)

    Robbins, Woodrow E. (Editor); Fisher, Scott S. (Editor)

    1989-01-01

    Special attention was given to problems of stereoscopic display devices, such as CAD for enhancement of the design process in visual arts, stereo-TV improvement of remote manipulator performance, a voice-controlled stereographic video camera system, and head-mounted displays and their low-cost design alternatives. Also discussed was a novel approach to chromostereoscopic microscopy, computer-generated barrier-strip autostereography and lenticular stereograms, and parallax barrier three-dimensional TV. Additional topics include processing and user interface isssues and visualization applications, including automated analysis and fliud flow topology, optical tomographic measusrements of mixing fluids, visualization of complex data, visualization environments, and visualization management systems.

  11. Interpreting Michigan forest cover types from color infrared aerial photographs

    NASA Technical Reports Server (NTRS)

    Hudson, W. D.

    1984-01-01

    The characteristics of 17 cover types (13 forest types or tree species and 4 nonforest cover types) in Michigan are discussed as well as their interpretation from medium scale color infrared photography. The occurrence of each type is described by region and site requirements. Those attributes of a tree or stand which are helpful when attempting to interpret the type from a vertical perspective are discussed as well as common crown types. The identification of the forest type or tree species by using image characteristics (size, shape, shadow, color, texture, pattern, or association) is discussed. Ground photographs and sketches of individual trees are included. Stereograms of typical stands are available.

  12. Frontiers for geological remote sensing from space; Geosat Workshop, 4th, Flagstaff, AZ, June 12-17, 1983, Report

    NASA Technical Reports Server (NTRS)

    Henderson, F. B. (Editor); Rock, B. N. (Editor)

    1983-01-01

    Consideration is given to: the applications of near-infrared spectroscopy to geological reconnaissance and exploration from space; imaging systems for identifying the spectral properties of geological materials in the visible and near-infrared; and Thematic Mapper (TM) data analysis. Consideration is also given to descriptions of individual geological remote sensing systems, including: GEO-SPAS; SPOT; the Thermal Infrared Multispectral Scanner (TIMS); and the Shuttle Imaging Radars A and B (SIR-A and SIR-B). Additional topics include: the importance of geobotany in geological remote sensing; achromatic holographic stereograms from Landsat MSS data; and the availability and applications of NOAA's non-Landsat satellite data archive.

  13. Three-dimensional imaging and remote sensing imaging; Proceedings of the Meeting, Los Angeles, CA, Jan. 14, 15, 1988

    NASA Astrophysics Data System (ADS)

    Robbins, Woodrow E.

    1988-01-01

    The present conference discusses topics in novel technologies and techniques of three-dimensional imaging, human factors-related issues in three-dimensional display system design, three-dimensional imaging applications, and image processing for remote sensing. Attention is given to a 19-inch parallactiscope, a chromostereoscopic CRT-based display, the 'SpaceGraph' true three-dimensional peripheral, advantages of three-dimensional displays, holographic stereograms generated with a liquid crystal spatial light modulator, algorithms and display techniques for four-dimensional Cartesian graphics, an image processing system for automatic retina diagnosis, the automatic frequency control of a pulsed CO2 laser, and a three-dimensional display of magnetic resonance imaging of the spine.

  14. Communicating infectious disease prevalence through graphics: results from an international survey

    PubMed Central

    Fagerlin, Angela; Valley, Thomas S.; Scherer, Aaron M.; Knaus, Megan; Das, Enny; Zikmund-Fisher, Brian J.

    2017-01-01

    Background Graphics are increasingly used to represent the spread of infectious diseases (e.g., influenza, Zika, Ebola); however, the impact of using graphics to adequately inform the general population is unknown. Objective To examine whether three ways of visually presenting data (heat map, dot map, or picto-trendline)—all depicting the same information regarding the spread of a hypothetical outbreak of influenza—influence intent to vaccinate, risk perception, and knowledge. Design Survey with participants randomized to receive a simulated news article accompanied by one of the three graphics that communicated prevalence of influenza and number of influenza-related deaths. Setting International online survey Participants 16,510 adults living in 11 countries selected using stratified random sampling based on age and gender Measurements After reading the article and viewing the presented graphic, participants completed a survey that measured interest in vaccination, perceived risk of contracting disease, knowledge gained, interest in additional information about the disease, and perception of the graphic. Results Heat maps and picto-trendlines were evaluated more positively than dot maps. Heat maps were more effective than picto-trendlines and no different from dot maps at increasing interest in vaccination, perceived risk of contracting disease, and interest in additional information about the disease. Heat maps and picto-trendlines were more successful at conveying knowledge than dot maps. Overall, heat maps were the only graphic to be superior in every outcome. Limitations Results are based on a hypothetical scenario Conclusion Heat maps are a viable option to promote interest in and concern about infectious diseases. PMID:28647168

  15. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Manvir S.

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorptionmore » in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level transitions are seen to be forbidden. The spherical quantum dots have an edge over the strictly two-dimensional quantum dots in that the additional (magnetic) quantum number makes the physics richer (but complex). A deeper grasp of the Coulomb blockade, quantum coherence, and entanglement can lead to a better insight into promising applications involving lasers, detectors, storage devices, and quantum computing.« less

  16. Action Video Games Improve Direction Discrimination of Parafoveal Translational Global Motion but Not Reaction Times.

    PubMed

    Pavan, Andrea; Boyce, Matthew; Ghin, Filippo

    2016-10-01

    Playing action video games enhances visual motion perception. However, there is psychophysical evidence that action video games do not improve motion sensitivity for translational global moving patterns presented in fovea. This study investigates global motion perception in action video game players and compares their performance to that of non-action video game players and non-video game players. Stimuli were random dot kinematograms presented in the parafovea. Observers discriminated the motion direction of a target random dot kinematogram presented in one of the four visual quadrants. Action video game players showed lower motion coherence thresholds than the other groups. However, when the task was performed at threshold, we did not find differences between groups in terms of distributions of reaction times. These results suggest that action video games improve visual motion sensitivity in the near periphery of the visual field, rather than speed response. © The Author(s) 2016.

  17. Interface induced spin-orbit interaction in silicon quantum dots and prospects of scalability

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Wai, Kok; Veldhorst, Menno; Hwang, Jason; Yang, Henry; Klimeck, Gerhard; Dzurak, Andrew; Rahman, Rajib

    A scalable quantum computing architecture requires reproducibility over key qubit properties, like resonance frequency, coherence time etc. Randomness in these properties would necessitate individual knowledge of each qubit in a quantum computer. Spin qubits hosted in Silicon (Si) quantum dots (QD) is promising as a potential building block for a large-scale quantum computer, because of their longer coherence times. The Stark shift of the electron g-factor in these QDs has been used to selectively address multiple qubits. From atomistic tight-binding studies we investigated the effect of interface non-ideality on the Stark shift of the g-factor in a Si QD. We find that based on the location of a monoatomic step at the interface with respect to the dot center both the sign and magnitude of the Stark shift change. Thus the presence of interface steps in these devices will cause variability in electron g-factor and its Stark shift based on the location of the qubit. This behavior will also cause varying sensitivity to charge noise from one qubit to another, which will randomize the dephasing times T2*. This predicted device-to-device variability is experimentally observed recently in three qubits fabricated at a Si/Si02 interface, which validates the issues discussed.

  18. Online attention modification for social anxiety disorder: replication of a randomized controlled trial.

    PubMed

    Carleton, R Nicholas; Teale Sapach, Michelle J N; Oriet, Chris; LeBouthillier, Daniel M

    2017-01-01

    Social anxiety disorder (SAD) models posit vigilance for external social threat cues and exacerbated self-focused attention as key in disorder development and maintenance. Evidence indicates a modified dot-probe protocol may reduce symptoms of SAD; however, the efficacy when compared to a standard protocol and long-term maintenance of treatment gains remains unclear. Furthermore, the efficacy of such protocols on SAD-related constructs remains relatively unknown. The current investigation clarified these associations using a randomized control trial replicating and extending previous research. Participants with SAD (n = 113; 71% women) were randomized to complete a standard (i.e. control) or modified (i.e. active) dot-probe protocol consisting of 15-min sessions twice weekly for four weeks. Self-reported symptoms were measured at baseline, post-treatment, and 4-month and 8-month follow-ups. Hierarchical linear modeling indicated significant self-reported reductions in symptoms of social anxiety, fear of negative evaluation, trait anxiety, and depression, but no such reductions in fear of positive evaluation. Symptom changes did not differ based on condition and were maintained at 8-month follow-up. Attentional biases during the dot-probe task were not related to symptom change. Overall, our results replicate support for the efficacy of both protocols in reducing symptoms of SAD and specific related constructs, and suggest a role of exposure, expectancy, or practice effects, rather than attention modification, in effecting such reductions. The current results also support distinct relationships between fears of negative and positive evaluation and social anxiety. Further research focused on identifying the mechanisms of change in attention modification protocols appears warranted.

  19. Facets : a Cloudcompare Plugin to Extract Geological Planes from Unstructured 3d Point Clouds

    NASA Astrophysics Data System (ADS)

    Dewez, T. J. B.; Girardeau-Montaut, D.; Allanic, C.; Rohmer, J.

    2016-06-01

    Geological planar facets (stratification, fault, joint…) are key features to unravel the tectonic history of rock outcrop or appreciate the stability of a hazardous rock cliff. Measuring their spatial attitude (dip and strike) is generally performed by hand with a compass/clinometer, which is time consuming, requires some degree of censoring (i.e. refusing to measure some features judged unimportant at the time), is not always possible for fractures higher up on the outcrop and is somewhat hazardous. 3D virtual geological outcrop hold the potential to alleviate these issues. Efficiently segmenting massive 3D point clouds into individual planar facets, inside a convenient software environment was lacking. FACETS is a dedicated plugin within CloudCompare v2.6.2 (http://cloudcompare.org/ ) implemented to perform planar facet extraction, calculate their dip and dip direction (i.e. azimuth of steepest decent) and report the extracted data in interactive stereograms. Two algorithms perform the segmentation: Kd-Tree and Fast Marching. Both divide the point cloud into sub-cells, then compute elementary planar objects and aggregate them progressively according to a planeity threshold into polygons. The boundaries of the polygons are adjusted around segmented points with a tension parameter, and the facet polygons can be exported as 3D polygon shapefiles towards third party GIS software or simply as ASCII comma separated files. One of the great features of FACETS is the capability to explore planar objects but also 3D points with normals with the stereogram tool. Poles can be readily displayed, queried and manually segmented interactively. The plugin blends seamlessly into CloudCompare to leverage all its other 3D point cloud manipulation features. A demonstration of the tool is presented to illustrate these different features. While designed for geological applications, FACETS could be more widely applied to any planar objects.

  20. Optical Control of Fluorescence through plasmonic eigenmode extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui

    We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.

  1. Bistable resistive memory behavior in gelatin-CdTe quantum dot composite film

    NASA Astrophysics Data System (ADS)

    Vallabhapurapu, Sreedevi; Rohom, Ashwini; Chaure, N. B.; Du, Shengzhi; Srinivasan, Ananthakrishnan

    2018-05-01

    Bistable memory behavior has been observed for the first time in gelatin type A thin film dispersed with functionalized CdTe quantum dots. The two terminal device with the polymer nanocomposite layer sandwiched between an indium tin oxide coated glass plate and an aluminium top electrode performs as a bistable resistive random access memory module. Butterfly shaped (O-shaped with a hysteresis in forward and reverse sweeps) current-voltage response is observed in this device. The conduction mechanism leading to the bistable electrical switching has been deduced to be a combination of ohmic and electron hopping.

  2. Optical Control of Fluorescence through plasmonic eigenmode extinction

    DOE PAGES

    Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui; ...

    2015-04-30

    We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.

  3. Directional Limits on Motion Transparency Assessed Through Colour-Motion Binding.

    PubMed

    Maloney, Ryan T; Clifford, Colin W G; Mareschal, Isabelle

    2018-03-01

    Motion-defined transparency is the perception of two or more distinct moving surfaces at the same retinal location. We explored the limits of motion transparency using superimposed surfaces of randomly positioned dots defined by differences in motion direction and colour. In one experiment, dots were red or green and we varied the proportion of dots of a single colour that moved in a single direction ('colour-motion coherence') and measured the threshold direction difference for discriminating between two directions. When colour-motion coherences were high (e.g., 90% of red dots moving in one direction), a smaller direction difference was required to correctly bind colour with direction than at low coherences. In another experiment, we varied the direction difference between the surfaces and measured the threshold colour-motion coherence required to discriminate between them. Generally, colour-motion coherence thresholds decreased with increasing direction differences, stabilising at direction differences around 45°. Different stimulus durations were compared, and thresholds were higher at the shortest (150 ms) compared with the longest (1,000 ms) duration. These results highlight different yet interrelated aspects of the task and the fundamental limits of the mechanisms involved: the resolution of narrowly separated directions in motion processing and the local sampling of dot colours from each surface.

  4. Matching cue size and task properties in exogenous attention.

    PubMed

    Burnett, Katherine E; d'Avossa, Giovanni; Sapir, Ayelet

    2013-01-01

    Exogenous attention is an involuntary, reflexive orienting response that results in enhanced processing at the attended location. The standard view is that this enhancement generalizes across visual properties of a stimulus. We test whether the size of an exogenous cue sets the attentional field and whether this leads to different effects on stimuli with different visual properties. In a dual task with a random-dot kinematogram (RDK) in each quadrant of the screen, participants discriminated the direction of moving dots in one RDK and localized one red dot. Precues were uninformative and consisted of either a large or a small luminance-change frame. The motion discrimination task showed attentional effects following both large and small exogenous cues. The red dot probe localization task showed attentional effects following a small cue, but not a large cue. Two additional experiments showed that the different effects on localization were not due to reduced spatial uncertainty or suppression of RDK dots in the surround. These results indicate that the effects of exogenous attention depend on the size of the cue and the properties of the task, suggesting the involvement of receptive fields with different sizes in different tasks. These attentional effects are likely to be driven by bottom-up mechanisms in early visual areas.

  5. Threshold matrix for digital halftoning by genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero

    1998-10-01

    Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.

  6. Limited transfer of long-term motion perceptual learning with double training.

    PubMed

    Liang, Ju; Zhou, Yifeng; Fahle, Manfred; Liu, Zili

    2015-01-01

    A significant recent development in visual perceptual learning research is the double training technique. With this technique, Xiao, Zhang, Wang, Klein, Levi, and Yu (2008) have found complete transfer in tasks that had previously been shown to be stimulus specific. The significance of this finding is that this technique has since been successful in all tasks tested, including motion direction discrimination. Here, we investigated whether or not this technique could generalize to longer-term learning, using the method of constant stimuli. Our task was learning to discriminate motion directions of random dots. The second leg of training was contrast discrimination along a new average direction of the same moving dots. We found that, although exposure of moving dots along a new direction facilitated motion direction discrimination, this partial transfer was far from complete. We conclude that, although perceptual learning is transferrable under certain conditions, stimulus specificity also remains an inherent characteristic of motion perceptual learning.

  7. Feature-selective attention enhances color signals in early visual areas of the human brain.

    PubMed

    Müller, M M; Andersen, S; Trujillo, N J; Valdés-Sosa, P; Malinowski, P; Hillyard, S A

    2006-09-19

    We used an electrophysiological measure of selective stimulus processing (the steady-state visual evoked potential, SSVEP) to investigate feature-specific attention to color cues. Subjects viewed a display consisting of spatially intermingled red and blue dots that continually shifted their positions at random. The red and blue dots flickered at different frequencies and thereby elicited distinguishable SSVEP signals in the visual cortex. Paying attention selectively to either the red or blue dot population produced an enhanced amplitude of its frequency-tagged SSVEP, which was localized by source modeling to early levels of the visual cortex. A control experiment showed that this selection was based on color rather than flicker frequency cues. This signal amplification of attended color items provides an empirical basis for the rapid identification of feature conjunctions during visual search, as proposed by "guided search" models.

  8. Tailoring local density of optical states to control emission intensity and anisotropy of quantum dots in hybrid photonic-plasmonic templates

    NASA Astrophysics Data System (ADS)

    Indukuri, Chaitanya; Mukherjee, Arnab; Basu, J. K.

    2015-03-01

    We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators.

  9. Effects of Parkinson’s disease on optic flow perception for heading direction during navigation

    PubMed Central

    Wagenaar, Robert C.; Young, Daniel; Saltzman, Elliot L.; Ren, Xiaolin; Neargarder, Sandy; Cronin-Golomb, Alice

    2015-01-01

    Visuoperceptual disorders have been identified in individuals with Parkinson’s disease (PD) and may affect the perception of optic flow for heading direction during navigation. Studies in healthy subjects have confirmed that heading direction can be determined by equalizing the optic flow speed (OS) between visual fields. The present study investigated the effects of PD on the use of optic flow for heading direction, walking parameters, and interlimb coordination during navigation, examining the contributions of OS and spatial frequency (dot density). Twelve individuals with PD without dementia, 18 age-matched normal control adults (NC), and 23 young control adults (YC) walked through a virtual hallway at about 0.8 m/s. The hallway was created by random dots on side walls. Three levels of OS (0.8, 1.2, and 1.8 m/s) and dot density (1, 2, and 3 dots/m2) were presented on one wall while on the other wall, OS and dot density were fixed at 0.8 m/s and 3 dots/m2, respectively. Three-dimensional kinematic data were collected, and lateral drift, walking speed, stride frequency and length, and frequency, and phase relations between arms and legs were calculated. A significant linear effect was observed on lateral drift to the wall with lower OS for YC and NC, but not for PD. Compared to YC and NC, PD veered more to the left under OS and dot density conditions. The results suggest that healthy adults perceive optic flow for heading direction. Heading direction in PD may be more affected by the asymmetry of dopamine levels between the hemispheres and by motor lateralization as indexed by handedness. PMID:24510351

  10. A spherical electron-channelling pattern map for use in quartz petrofabric analysis

    USGS Publications Warehouse

    Lloyd, G.E.; Ferguson, C.C.

    1986-01-01

    Electron channelling patterns (ECP's) are formed in the scanning electron microscope (SEM) by the interaction between the incident electrons and the lattice of crystalline specimens. The patterns are unique for a particular crystallographic orientation and are therefore of considerable potential in petrofabric studies provided they can be accurately indexed. Indexing requires an ECP-map of the crystallographic stereogram or unit triangle covering all possible orientations and hence ECP patterns. Due to the presence of long-range distortions in planar ECP-maps, it is more convenient to construct the maps over a spherical surface. This also facilitates the indexing of individual ECP's. A spherical ECP-map for quartz is presented together with an example of its use in petrofabric analysis. ?? 1986.

  11. Feasibility study consisting of a review of contour generation methods from stereograms

    NASA Technical Reports Server (NTRS)

    Kim, C. J.; Wyant, J. C.

    1980-01-01

    A review of techniques for obtaining contour information from stereo pairs is given. Photogrammetric principles including a description of stereoscopic vision are presented. The use of conventional contour generation methods, such as the photogrammetric plotting technique, electronic correlator, and digital correlator are described. Coherent optical techniques for contour generation are discussed and compared to the electronic correlator. The optical techniques are divided into two categories: (1) image plane operation and (2) frequency plane operation. The description of image plane correlators are further divided into three categories: (1) image to image correlator, (2) interferometric correlator, and (3) positive negative transparencies. The frequency plane correlators are divided into two categories: (1) correlation of Fourier transforms, and (2) filtering techniques.

  12. The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns.

    PubMed

    Snowden, R J; Treue, S; Andersen, R A

    1992-01-01

    We studied the response of single units to moving random dot patterns in areas V1 and MT of the alert macaque monkey. Most cells could be driven by such patterns; however, many cells in V1 did not give a consistent response but fired at a particular point during stimulus presentation. Thus different dot patterns can produce a markedly different response at any particular time, though the time averaged response is similar. A comparison of the directionality of cells in both V1 and MT using random dot patterns shows the cells of MT to be far more directional. In addition our estimates of the percentage of directional cells in both areas are consistent with previous reports using other stimuli. However, we failed to find a bimodality of directionality in V1 which has been reported in some other studies. The variance associated with response was determined for individual cells. In both areas the variance was found to be approximately equal to the mean response, indicating little difference between extrastriate and striate cortex. These estimates are in broad agreement (though the variance appears a little lower) with those of V1 cells of the anesthetized cat. The response of MT cells was simulated on a computer from the estimates derived from the single unit recordings. While the direction tuning of MT cells is quite wide (mean half-width at half-height approximately 50 degrees) it is shown that the cells can reliably discriminate much smaller changes in direction, and the performance of the cells with the smallest discriminanda were comparable to thresholds measured with human subjects using the same stimuli (approximately 1.1 degrees). Minimum discriminanda for individual cells occurred not at the preferred direction, that is, the peak of their tuning curves, but rather on the steep flanks of their tuning curves. This result suggests that the cells which may mediate the discrimination of motion direction may not be the cells most sensitive to that direction.

  13. Impact of food intake on the pharmacokinetics of first-line antituberculosis drugs in Taiwanese tuberculosis patients.

    PubMed

    Lin, Hsien-Chun; Yu, Ming-Chih; Liu, Hsing-Jin; Bai, Kuan-Jen

    2014-05-01

    Under the directly observed treatment, short course (DOTS) program, antituberculosis (anti-TB) medications were possibly taken at random time, regardless of whether it was prior to or after meals. This study was to evaluate the impact of food intake on pharmacokinetic profiles of first-line TB drugs in Taiwanese TB patients, as well as the relationship between drug levels and pharmacogenetics. This open-label, randomized, cross-over study included newly diagnosed Taiwanese TB patients treated between January 2010 and February 2011 at Taipei Medical University-Wan Fang Hospital. Rifater [a fixed-dose combination formulation of isoniazid (INH), rifampicin (RIF), and pyrazinamide (PZA)] and ethambutol (EMB) were given according to national TB guidelines. Blood samples were collected prior to and 1 hour, 2 hours, 4 hours, 6 hours, and 10 hours after dosing under fasting or postprandial conditions. Pharmacokinetic parameters of the maximum serum concentration (Cmax), time to Cmax, and area under the serum concentration-time curve from the beginning to the 10(th) hour (AUC0-10) were calculated. Sixteen TB patients were included and received anti-TB treatment under the DOTS program after discharge. The overall effects showed that food intake reduced the mean Cmax (INH: 40.6%, RIF: 40.2%, EMB 34.4%, PZA: 24.4%) and AUC0-10 (INH: 21.3%, RIF: 26.4%, EMB: 12.2%, PZA: 12.0%). Meanwhile, food increased the time to Cmax (INH: 78.1%, RIF: 151.3%, EMB: 41.4%, PZA: 148.9%). Significantly lower serum drug concentrations were observed under postprandial conditions than fasting conditions for INH, RIF, and PZA. The impact of taking random anti-TB drugs under the DOTS program instead of taking drugs regularly prior to meals requires further study. Copyright © 2014. Published by Elsevier B.V.

  14. Visual motion perception predicts driving hazard perception ability.

    PubMed

    Lacherez, Philippe; Au, Sandra; Wood, Joanne M

    2014-02-01

    To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  15. Why do adults with dyslexia have poor global motion sensitivity?

    PubMed

    Conlon, Elizabeth G; Lilleskaret, Gry; Wright, Craig M; Stuksrud, Anne

    2013-01-01

    Two experiments aimed to determine why adults with dyslexia have higher global motion thresholds than typically reading controls. In Experiment 1, the dot density and number of animation frames presented in the dot stimulus were manipulated because of findings that use of a high dot density can normalize coherence thresholds in individuals with dyslexia. Dot densities were 14.15 and 3.54 dots/deg(2). These were presented for five (84 ms) or eight (134 ms) frames. The dyslexia group had higher coherence thresholds in all conditions than controls. However, in the high dot density, long duration condition, both reader groups had the lowest thresholds indicating normal temporal recruitment. These results indicated that the dyslexia group could sample the additional signals dots over space and then integrate these with the same efficiency as controls. In Experiment 2, we determined whether briefly presenting a fully coherent prime moving in either the same or opposite direction of motion to a partially coherent test stimulus would systematically increase and decrease global motion thresholds in the reader groups. When the direction of motion in the prime and test was the same, global motion thresholds increased for both reader groups. The increase in coherence thresholds was significantly greater for the dyslexia group. When the motion of the prime and test were presented in opposite directions, coherence thresholds were reduced in both groups. No group threshold differences were found. We concluded that the global motion processing deficit found in adults with dyslexia can be explained by undersampling of the target motion signals. This might occur because of difficulties directing attention to the relevant motion signals in the random dot pattern, and not a specific difficulty integrating global motion signals. These effects are most likely to occur in the group with dyslexia when more complex computational processes are required to process global motion.

  16. Why do adults with dyslexia have poor global motion sensitivity?

    PubMed Central

    Conlon, Elizabeth G.; Lilleskaret, Gry; Wright, Craig M.; Stuksrud, Anne

    2013-01-01

    Two experiments aimed to determine why adults with dyslexia have higher global motion thresholds than typically reading controls. In Experiment 1, the dot density and number of animation frames presented in the dot stimulus were manipulated because of findings that use of a high dot density can normalize coherence thresholds in individuals with dyslexia. Dot densities were 14.15 and 3.54 dots/deg2. These were presented for five (84 ms) or eight (134 ms) frames. The dyslexia group had higher coherence thresholds in all conditions than controls. However, in the high dot density, long duration condition, both reader groups had the lowest thresholds indicating normal temporal recruitment. These results indicated that the dyslexia group could sample the additional signals dots over space and then integrate these with the same efficiency as controls. In Experiment 2, we determined whether briefly presenting a fully coherent prime moving in either the same or opposite direction of motion to a partially coherent test stimulus would systematically increase and decrease global motion thresholds in the reader groups. When the direction of motion in the prime and test was the same, global motion thresholds increased for both reader groups. The increase in coherence thresholds was significantly greater for the dyslexia group. When the motion of the prime and test were presented in opposite directions, coherence thresholds were reduced in both groups. No group threshold differences were found. We concluded that the global motion processing deficit found in adults with dyslexia can be explained by undersampling of the target motion signals. This might occur because of difficulties directing attention to the relevant motion signals in the random dot pattern, and not a specific difficulty integrating global motion signals. These effects are most likely to occur in the group with dyslexia when more complex computational processes are required to process global motion. PMID:24376414

  17. Shape-specific perceptual learning in a figure-ground segregation task.

    PubMed

    Yi, Do-Joon; Olson, Ingrid R; Chun, Marvin M

    2006-03-01

    What does perceptual experience contribute to figure-ground segregation? To study this question, we trained observers to search for symmetric dot patterns embedded in random dot backgrounds. Training improved shape segmentation, but learning did not completely transfer either to untrained locations or to untrained shapes. Such partial specificity persisted for a month after training. Interestingly, training on shapes in empty backgrounds did not help segmentation of the trained shapes in noisy backgrounds. Our results suggest that perceptual training increases the involvement of early sensory neurons in the segmentation of trained shapes, and that successful segmentation requires perceptual skills beyond shape recognition alone.

  18. From empower to Green Dot : successful strategies and lessons learned in developing comprehensive sexual violence primary prevention programming.

    PubMed

    Cook-Craig, Patricia G; Millspaugh, Phyllis H; Recktenwald, Eileen A; Kelly, Natalie C; Hegge, Lea M; Coker, Ann L; Pletcher, Tisha S

    2014-10-01

    This case study describes Kentucky's partnership with the Centers for Disease Control and Prevention (CDC) EMPOWER (Enhancing and Making Programs Work to End Rape) program to enhance the mission and services of existing rape crisis centers to include comprehensive primary prevention programming to reduce rates of sexual violence perpetration. The planning process and the successful implementation of a statewide, 5-year, randomized control trial study of a bystander prevention program (Green Dot), and its evaluation are described. Lessons learned in generating new questions, seeking funding, building relationships and capacity, and disseminating knowledge are presented. © The Author(s) 2014.

  19. Dominant role of many-body effects on the carrier distribution function of quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Peyvast, Negin; Zhou, Kejia; Hogg, Richard A.; Childs, David T. D.

    2016-03-01

    The effects of free-carrier-induced shift and broadening on the carrier distribution function are studied considering different extreme cases for carrier statistics (Fermi-Dirac and random carrier distributions) as well as quantum dot (QD) ensemble inhomogeneity and state separation using a Monte Carlo model. Using this model, we show that the dominant factor determining the carrier distribution function is the free carrier effects and not the choice of carrier statistics. By using empirical values of the free-carrier-induced shift and broadening, good agreement is obtained with experimental data of QD materials obtained under electrical injection for both extreme cases of carrier statistics.

  20. Pattern-projected schlieren imaging method using a diffractive optics element

    NASA Astrophysics Data System (ADS)

    Min, Gihyeon; Lee, Byung-Tak; Kim, Nac Woo; Lee, Munseob

    2018-04-01

    We propose a novel schlieren imaging method by projecting a random dot pattern, which is generated in a light source module that includes a diffractive optical element. All apparatuses are located in the source side, which leads to one-body sensor applications. This pattern is distorted by the deflections of schlieren objects such that the displacement vectors of random dots in the pixels can be obtained using the particle image velocity algorithm. The air turbulences induced by a burning candle, boiling pot, heater, and gas torch were successfully imaged, and it was shown that imaging up to a size of 0.7 m  ×  0.57 m is possible. An algorithm to correct the non-uniform sensitivity according to the position of a schlieren object was analytically derived. This algorithm was applied to schlieren images of lenses. Comparing the corrected versions to the original schlieren images, we showed a corrected uniform sensitivity of 14.15 times on average.

  1. Tuberculosis treatment delivery in high burden settings: does patient choice of supervision matter?

    PubMed

    Kironde, S; Meintjies, M

    2002-07-01

    The Northern Cape Province, Republic of South Africa. To determine the effect of patient choice of treatment delivery option on the treatment outcomes of tuberculosis (TB) patients in a high burden setting under actual programme conditions. Cohort study involving 769 new and retreatment TB patients recruited from 45 randomly selected clinics. Patients were interviewed and subsequent follow-up was done through regular visits to the clinics to check progress through formal health records. There was a statistically significant difference (P < 0.001) between the treatment outcome of new patients (70% successful) and re-treatment patients (54% successful). Direct observation of treatment (DOT) was found to have no effect on the treatment outcome of new patients (P = 0.875), but re-treatment patients were found to fare better with than without DOT (OR 14.2, 95% CI 4.18-53.14, P < 0.001). The results obtained for new patients are similar to those of two recent randomised controlled trials on DOT. This study revealed that for new patients, undue emphasis on universal DOT might be unnecessary. It would perhaps be more beneficial to target supervision at those patients who are most likely to benefit from it (i.e., re-treatment patients). This is of particular relevance in high burden, resource-limited settings where universal DOT for all TB patients is generally unfeasible.

  2. Physiological responses to cold (10° C) in men after six months' practice of yoga exercises

    NASA Astrophysics Data System (ADS)

    Selvamurthy, W.; Ray, U. S.; Hegde, K. S.; Sharma, R. P.

    1988-09-01

    A study was conducted on 30 healthy soldiers (age: 40 46 years) to assess the effect of selected yogic exercises (asanas) on some physiological responses to cold exposure. They were randomly divided into two groups of 15 each. One group performed regular physical exercises of physical training (PT), while the other group practised yogic exercises. At the end of 6 months of training, both the groups were exposed together to cold stress at 10°C for 2 h, and the following parameters were periodically monitored during cold exposure: heart rate ( fH), blood pressure ( BP), cardiac output(dot Q_c ), oral temperature (Tor), skin temperature ( T sk), respiratory rate ( fR), minute ventilation(dot V_E ), oxygen consumption(dot V_{O_2 } ), and shivering response by integrated electromyogram (EMG). There were progressive increases in BP, fR,dot V_E ,dot V_{O_2 } , anddot Q_c and decreases in fH, T or and T sk during cold exposure in both the groups. However, the decrease in T or and the increases indot V_{O_2 } anddot V_E were relatively lower ( P<0.01) in the yoga group as compared to the PT group. The shivering response appeared much earlier and was more intense in the PT group. These findings suggest that practice of yoga exercises may improve cold tolerance.

  3. Effects of lightweight outdoor clothing on the prevention of hypothermia during low-intensity exercise in the cold.

    PubMed

    Burtscher, Martin; Kofler, Philipp; Gatterer, Hannes; Faulhaber, Martin; Philippe, Marc; Fischer, Kathrin; Walther, Rebekka; Herten, Anne

    2012-11-01

    To study protective effects of windbreaker jacket and pants during exercise in the cold. Randomized pilot study. Climate chamber. Nine well-trained (V[Combining Dot Above]O2max 61.7 ± 6.6 mL/min/kg) sport students (6 male and 3 female participants). Subjects started walking for 1 hour in a climate chamber (0°C ambient temperature and wind speed of 10 km/h) at 70% V[Combining Dot Above]O2max wearing gloves, a T-shirt, and shorts. Then, the walking speed was reduced to 30% V[Combining Dot Above]O2max for an additional 60 minutes or until core temperature dropped below 35.5°C. Subsequently, 3 groups of 3 participants continued walking without change of clothing or obtaining additionally a cap and a windbreaker jacket or windbreaker jacket and pants. Core and skin temperature, thermal comfort. The main findings of this study were that exercising at 70% V[Combining Dot Above]O2max in the cold was sufficient to prevent hypothermia and that during low-intensity exercise (30% V[Combining Dot Above]O2max), the combined use of a polyester cap, lightweight windbreaker jacket, and pants was necessary to increase a prehypothermic core temperature. We strongly recommend taking a cap, windbreaker jacket, and pants for the prevention of hypothermia during exhaustive walking or running in cold weather conditions.

  4. An improved P300 pattern in BCI to catch user’s attention

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej

    2017-06-01

    Objective. Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. Approach. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. Main results. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p  <  0.05) compared to the honeycomb-shaped stimulus without red dots. Significance. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.

  5. An improved P300 pattern in BCI to catch user's attention.

    PubMed

    Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej

    2017-06-01

    Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p  <  0.05) compared to the honeycomb-shaped stimulus without red dots. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.

  6. Rapid figure-ground responses to stereograms reveal an advantage for a convex foreground.

    PubMed

    Bertamini, Marco; Lawson, Rebecca

    2008-01-01

    Convexity has long been recognised as a factor that affects figure - ground segmentation, even when pitted against other factors such as symmetry [Kanizsa and Gerbino, 1976 Art and Artefacts Ed.M Henle (New York: Springer) pp 25-32]. It is accepted in the literature that the difference between concave and convex contours is important for the visual system, and that there is a prior expectation favouring convexities as figure. We used bipartite stimuli and a simple task in which observers had to report whether the foreground was on the left or the right. We report objective evidence that supports the idea that convexity affects figure-ground assignment, even though our stimuli were not pictorial in that depth order was specified unambiguously by binocular disparity.

  7. Digital image transformation and rectification of spacecraft and radar images

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.

  8. Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet

    DOE PAGES

    Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale; ...

    2016-10-03

    The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less

  9. Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale

    The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less

  10. Superlattices: problems and new opportunities, nanosolids

    PubMed Central

    2011-01-01

    Superlattices were introduced 40 years ago as man-made solids to enrich the class of materials for electronic and optoelectronic applications. The field metamorphosed to quantum wells and quantum dots, with ever decreasing dimensions dictated by the technological advancements in nanometer regime. In recent years, the field has gone beyond semiconductors to metals and organic solids. Superlattice is simply a way of forming a uniform continuum for whatever purpose at hand. There are problems with doping, defect-induced random switching, and I/O involving quantum dots. However, new opportunities in component-based nanostructures may lead the field of endeavor to new heights. The all important translational symmetry of solids is relaxed and local symmetry is needed in nanosolids. PMID:21711653

  11. Cost of Behavioral Interventions Utilizing Electronic Drug Monitoring for Antiretroviral Therapy Adherence

    PubMed Central

    Rasu, Rafia S.; Malewski, David F.; Banderas, Julie W.; Thomson, Domonique Malomo; Goggin, Kathy

    2013-01-01

    Objective To provide data on the actual costs associated with behavioral ART adherence interventions and electronic drug monitoring used in a clinical trial to inform their implementation in future studies and real-world practice. Methods Direct and time costs were calculated from a multi-site three-arm randomized controlled ART adherence trial. HIV positive participants (n = 204) were randomized to standard care (SC), enhanced counseling (EC), or EC and modified directly observed therapy (mDOT) interventions. Electronic drug monitoring (EDM) was used. Costs were calculated for various components of the 24-week adherence intervention. This economic evaluation was conducted from the perspective of an agency that may wish to implement these strategies. Sensitivity analyses were conducted to examine costs and savings associated with different scenarios. Results Total direct costs were $126,068 ($618/patient). Initial time costs were $53,590 ($262/patient). Base cost of labor was $0.36/minute. EC costs for 134 patients were $18,427 ($137/patient) and mDOT for 64 patients cost $18,638 ($291/patient). Total per patient costs were: SC=$880, EC=$1,018, EC/mDOT=$1,309. Removing driving costs evidenced the most variable impact on savings between the three study arms. The tornado diagram (sensitivity analysis) showed a graphical representation of how each sensitivity assumption reduced costs compared to each other and the resulting comparative costs for each group. Conclusion This novel economic analysis provides valuable cost information to guide treatment implementation and research design decisions. PMID:23337364

  12. What visual information is used for stereoscopic depth displacement discrimination?

    PubMed

    Nefs, Harold T; Harris, Julie M

    2010-01-01

    There are two ways to detect a displacement in stereoscopic depth, namely by monitoring the change in disparity over time (CDOT) or by monitoring the interocular velocity difference (IOVD). Though previous studies have attempted to understand which cue is most significant for the visual system, none has designed stimuli that provide a comparison in terms of relative efficiency between them. Here we used two-frame motion and random-dot noise to deliver equivalent strengths of CDOT and IOVD information to the visual system. Using three kinds of random-dot stimuli, we were able to isolate CDOT or IOVD or deliver both simultaneously. The proportion of dots delivering CDOT or IOVD signals could be varied, and we defined the discrimination threshold as the proportion needed to detect the direction of displacement (towards or away). Thresholds were similar for stimuli containing CDOT only, and containing both CDOT and IOVD, but only one participant was able to consistently perceive the displacement for stimuli containing only IOVD. We also investigated the effect of disparity pedestals on discrimination. Performance was best when the displacement crossed the reference plane, but was not significantly different for stimuli containing CDOT only and those containing both CDOT and IOVD. When stimuli are specifically designed to provide equivalent two-frame motion or disparity-change, few participants can reliably detect displacement when IOVD is the only cue. This challenges the notion that IOVD is involved in the discrimination of direction of displacement in two-frame motion displays.

  13. A Meta-Analysis of Self-Administered vs Directly Observed Therapy Effect on Microbiologic Failure, Relapse, and Acquired Drug Resistance in Tuberculosis Patients

    PubMed Central

    Pasipanodya, Jotam G.; Gumbo, Tawanda

    2013-01-01

    Background Preclinical studies and Monte Carlo simulations have suggested that there is a relatively limited role of adherence in acquired drug resistance (ADR) and that very high levels of nonadherence are needed for therapy failure. We evaluated the superiority of directly observed therapy (DOT) for tuberculosis patients vs self-administered therapy (SAT) in decreasing ADR, microbiologic failure, and relapse in meta-analyses. Methods Prospective studies performed between 1965 and 2012 in which adult patients with microbiologically proven pulmonary Mycobacterium tuberculosis were separately assigned to either DOT or SAT as part of short-course chemotherapy were chosen. Endpoints were microbiologic failure, relapse, and ADR in patients on either DOT or SAT. Results Ten studies, 5 randomized and 5 observational, met selection criteria: 8774 patients were allocated to DOT and 3708 were allocated to SAT. For DOT vs SAT, the pooled risk difference for microbiologic failure was .0 (95% confidence interval [CI], −.01 to .01), for relapse .01 (95% CI, −.03 to .06), and for ADR 0.0 (95% CI, −0.01 to 0.01). The incidence rates for DOT vs SAT were 1.5% (95% CI, 1.3%–1.8%) vs 1.7% (95% CI, 1.2%–2.2%) for microbiologic failure, 3.7% (95% CI, 0.7%–17.6%) vs 2.3% (95% CI, 0.7%–7.2%) for relapse, and 1.5% (95% CI, 0.2%–9.90%) vs 0.9% (95% CI, 0.4%–2.3%) for ADR, respectively. There was no evidence of publication bias. Conclusions DOT was not significantly better than SAT in preventing microbiologic failure, relapse, or ADR, in evidence-based medicine. Resources should be shifted to identify other causes of poor microbiologic outcomes. PMID:23487389

  14. Sensitivity of neurons in the middle temporal area of marmoset monkeys to random dot motion.

    PubMed

    Chaplin, Tristan A; Allitt, Benjamin J; Hagan, Maureen A; Price, Nicholas S C; Rajan, Ramesh; Rosa, Marcello G P; Lui, Leo L

    2017-09-01

    Neurons in the middle temporal area (MT) of the primate cerebral cortex respond to moving visual stimuli. The sensitivity of MT neurons to motion signals can be characterized by using random-dot stimuli, in which the strength of the motion signal is manipulated by adding different levels of noise (elements that move in random directions). In macaques, this has allowed the calculation of "neurometric" thresholds. We characterized the responses of MT neurons in sufentanil/nitrous oxide-anesthetized marmoset monkeys, a species that has attracted considerable recent interest as an animal model for vision research. We found that MT neurons show a wide range of neurometric thresholds and that the responses of the most sensitive neurons could account for the behavioral performance of macaques and humans. We also investigated factors that contributed to the wide range of observed thresholds. The difference in firing rate between responses to motion in the preferred and null directions was the most effective predictor of neurometric threshold, whereas the direction tuning bandwidth had no correlation with the threshold. We also showed that it is possible to obtain reliable estimates of neurometric thresholds using stimuli that were not highly optimized for each neuron, as is often necessary when recording from large populations of neurons with different receptive field concurrently, as was the case in this study. These results demonstrate that marmoset MT shows an essential physiological similarity to macaque MT and suggest that its neurons are capable of representing motion signals that allow for comparable motion-in-noise judgments. NEW & NOTEWORTHY We report the activity of neurons in marmoset MT in response to random-dot motion stimuli of varying coherence. The information carried by individual MT neurons was comparable to that of the macaque, and the maximum firing rates were a strong predictor of sensitivity. Our study provides key information regarding the neural basis of motion perception in the marmoset, a small primate species that is becoming increasingly popular as an experimental model. Copyright © 2017 the American Physiological Society.

  15. Effects of Cycling vs. Running Training on Endurance Performance in Preparation for Inline Speed Skating.

    PubMed

    Stangier, Carolin; Abel, Thomas; Hesse, Clemens; Claen, Stephanie; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K

    2016-06-01

    Winter weather conditions restrict regular sport-specific endurance training in inline speed skating. As a result, this study was designed to compare the effects of cycling and running training programs on inline speed skaters' endurance performance. Sixteen (8 men, 8 women) high-level athletes (mean ± SD 24 ± 8 years) were randomly assigned to 1 of 2 groups (running and cycling). Both groups trained twice a week for 8 weeks, one group on a treadmill and the other on a cycle ergometer. Training intensity and duration was individually calculated (maximal fat oxidation: ∼52% of V[Combining Dot Above]O2peak: 500 kcal per session). Before and after the training intervention, all athletes performed an incremental specific (inline speed skating) and 1 nonspecific (cycling or running) step test according to the group affiliation. In addition to blood lactate concentration, oxygen uptake (V[Combining Dot Above]O2), ventilatory equivalent (VE/V[Combining Dot Above]O2), respiratory exchange ratio (RER), and heart rate were measured. The specific posttest revealed significantly increased absolute V[Combining Dot Above]O2peak values (2.9 ± 0.4, 3.4 ± 0.7, p = 0.01) and submaximal V[Combining Dot Above]O2 values (p ≤ 0.01). VE/V[Combining Dot Above]O2 and RER significantly decreased at maximal (46.6 ± 6.6, 38.5 ± 3.4, p = 0.005; 1.1 ± 0.03, 1.0 ± 0.04, p = 0.001) and submaximal intensities (p ≤ 0.04). None of the analysis revealed a significant group effect (p ≥ 0.15). The results indicate that both cycling vs. running exercise at ∼52% of V[Combining Dot Above]O2peak had a positive effect on the athletes' endurance performance. The increased submaximal V[Combining Dot Above]O2 values indicate a reduction in athletes' inline speed skating technique. Therefore, athletes would benefit from a focus on technique training in the subsequent period.

  16. Effect of a brief smoking cessation intervention on adult tobacco smokers with pulmonary tuberculosis: A cluster randomized controlled trial from North India.

    PubMed

    Goel, Sonu; Kathiresan, Jeyashree; Singh, Preeti; Singh, Rana J

    2017-09-01

    An association between smoking and poor tuberculosis (TB) treatment outcomes has been globally established. Various smoking cessation interventions (SCIs) have been proven worldwide to curb smoking behavior. There is a need for evidence to assess if SCI increases the chance of successful treatment outcome among TB patients. To assess the effectiveness of a brief SCI; The Ask, Brief, Cessation support (ABC) package, on treatment outcomes and smoking cessation in smear-positive adult pulmonary TB patients. A cluster, randomized controlled trial was conducted wherein 17 designated microscopic centers of Chandigarh, India were randomly assigned using a computer-generated randomization sequence to receive SCI within directly observed treatment, short (DOTS) services, or existing standard of care. Eligible and consenting smokers (15 + years) registered as smear-positive pulmonary TB for DOTS (n = 156) between January and June 2013 were enrolled. Smoking cessation (self-reported) was assessed at intervals till the end of treatment. End TB treatment outcomes were extracted from patient records. Treatment success was lower in intervention arm (83.6%) as compared control arm (88.2%), but the difference was statistically insignificant (P = 0.427). Smoking cessation was higher in intervention arm (80.2%) compared to comparison arm (57.5%) (adjusted incidence risk ratio = 1.56; 95% confidence interval = 1.24-1.93; P < 0.0001). SCI is effective in inducing smoking cessation among TB patients. No association of SCI with TB treatment outcomes could be detected.

  17. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  18. Treatment referral system for tuberculosis patients in Dhaka, Bangladesh

    PubMed Central

    Hirayama, T.; Islam, A.; Ishikawa, N.; Afsana, K.

    2015-01-01

    Objective: To evaluate the referral system in an urban DOTS-based programme in Dhaka, Bangladesh, including the peri-urban area, and to identify opportunities to strengthen the system. Design: This was a retrospective cohort study in which diagnosed tuberculosis (TB) patients and health providers from DOTS centres were interviewed. Research tools included pre-tested structured questionnaires and the TB patients' referral records. Results: Of 4974 TB patients who were referred to the different treatment centres, only 1756 (35%) of the counterfoils of the referral slips were returned. Of 250 patients randomly selected for interview, 165 reported to a DOTS centre, 69 did not and 16 could not be traced. Variations in educational qualification, residence and the identification of DOTS centres after counselling were statistically significant (P < 0.05). Lower monthly income (RR = 7.84, RR = 5.03), distance from the centre (RR = 36.21) and those receiving treatment from pharmacies (RR = 3) or non-governmental organisations (RR = 28.48) have more risk of irregular treatment. Conclusion: A high proportion of referred patients were registered and initiated treatment, but many did not report to the referral treatment centre. Proper counselling and taking into account the patients' preferences during referral are essential to address access barriers to treatment adherence and improved treatment outcome. PMID:26767176

  19. Ternary mixed crystal effects on interface optical phonon and electron-phonon coupling in zinc-blende GaN/AlxGa1-xN spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wen Deng; Chen, Guang De; Yuan, Zhao Lin; Yang, Chuang Hua; Ye, Hong Gang; Wu, Ye Long

    2016-02-01

    The theoretical investigations of the interface optical phonons, electron-phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron-phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1-xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron-phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1-xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron-phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron-phonon coupling strengths appear linear changes.

  20. RCT Testing Bystander Effectiveness to Reduce Violence.

    PubMed

    Coker, Ann L; Bush, Heather M; Cook-Craig, Patricia G; DeGue, Sarah A; Clear, Emily R; Brancato, Candace J; Fisher, Bonnie S; Recktenwald, Eileen A

    2017-05-01

    Bystander-based programs have shown promise to reduce interpersonal violence at colleges, yet limited rigorous evaluations have addressed bystander intervention effectiveness in high schools. This study evaluated the Green Dot bystander intervention to reduce sexual violence and related forms of interpersonal violence in 26 high schools over 5 years. A cluster RCT was conducted. Kentucky high schools were randomized to intervention or control (wait list) conditions. Green Dot-trained educators conducted schoolwide presentations and recruited student popular opinion leaders to receive bystander training in intervention schools beginning in Year 1. The primary outcome was sexual violence perpetration, and related forms of interpersonal violence victimization and perpetration were also measured using anonymous student surveys collected at baseline and annually from 2010 to 2014. Because the school was the unit of analysis, violence measures were aggregated by school and year and school-level counts were provided. A total of 89,707 students completed surveys. The primary, as randomized, analyses conducted in 2014-2016 included linear mixed models and generalized estimating equations to examine the condition-time interaction on violence outcomes. Slopes of school-level totals of sexual violence perpetration (condition-time, p<0.001) and victimization (condition-time, p<0.001) were different over time. During Years 3-4, when Green Dot was fully implemented, the mean number of sexual violent events prevented by the intervention was 120 in Intervention Year 3 and 88 in Year 4. For Year 3, prevalence rate ratios for sexual violence perpetration in the intervention relative to control schools were 0.83 (95% CI=0.70, 0.99) in Year 3 and 0.79 (95% CI=0.67, 0.94) in Year 4. Similar patterns were observed for sexual violence victimization, sexual harassment, stalking, and dating violence perpetration and victimization. Implementation of Green Dot in Kentucky high schools significantly decreased not only sexual violence perpetration but also other forms of interpersonal violence perpetration and victimization. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  1. 77 FR 72905 - Pipeline Safety: Random Drug Testing Rate; Contractor MIS Reporting; and Obtaining DAMIS Sign-In...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... Drug and Alcohol Management Information System (DAMIS) to operators, but will make the user name and... DAMIS Sign-In Information AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... testing information must be submitted for contractors performing or ready to perform covered functions...

  2. Asymmetrical Cortical Processing of Radial Expansioncontraction in Infants and Adults

    ERIC Educational Resources Information Center

    Shirai, Nobu; Birtles, Deirdre; Wattam-Bell, John; Yamaguchi, Masami K.; Kanazawa, So; Atkinson, Janette; Braddick, Oliver

    2009-01-01

    We report asymmetrical cortical responses (steady-state visual evoked potentials) to radial expansion and contraction in human infants and adults. Forty-four infants (22 3-month-olds and 22 4-month-olds) and nine adults viewed dynamic dot patterns which cyclically (2.1 Hz) alternate between radial expansion (or contraction) and random directional…

  3. Event-Related fMRI of Category Learning: Differences in Classification and Feedback Networks

    ERIC Educational Resources Information Center

    Little, Deborah M.; Shin, Silvia S.; Sisco, Shannon M.; Thulborn, Keith R.

    2006-01-01

    Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification…

  4. Connecting the Dots: Lessons from the Virginia Tech Shootings

    ERIC Educational Resources Information Center

    Davies, Gordon K.

    2008-01-01

    The shootings that took place last spring on the campus of Virginia Polytechnic Institute and State University, located in Blacksburg, Virginia, elicited a host of reactions, many deeply emotional. In groups of college and university presidents, the response was generally empathetic. Indeed, they were right to be put on alert by the random and…

  5. Impact of Community-Based DOT on Tuberculosis Treatment Outcomes: A Systematic Review and Meta-Analysis

    PubMed Central

    Zhang, HaiYang; Ehiri, John; Yang, Huan; Tang, Shenglan; Li, Ying

    2016-01-01

    Background Poor adherence to tuberculosis (TB) treatment can lead to prolonged infectivity and poor treatment outcomes. Directly observed treatment (DOT) seeks to improve adherence to TB treatment by observing patients while they take their anti-TB medication. Although community-based DOT (CB-DOT) programs have been widely studied and promoted, their effectiveness has been inconsistent. The aim of this study was to critical appraise and summarize evidence of the effects of CB-DOT on TB treatment outcomes. Methods Studies published up to the end of February 2015 were identified from three major international literature databases: Medline/PubMed, EBSCO, and EMBASE. Unpublished data from the grey literature were identified through Google and Google Scholar searches. Results Seventeen studies involving 12,839 pulmonary TB patients (PTB) in eight randomized controlled trials (RCTs) and nine cohort studies from 12 countries met the criteria for inclusion in this review and 14 studies were included in meta-analysis. Compared with clinic-based DOT, pooled results of RCTs for all PTB cases (including smear-negative or -positive, new or retreated TB cases) and smear-positive PTB cases indicated that CB-DOT promoted successful treatment [pooled RRs (95%CIs): 1.11 (1.02–1.19) for all PTB cases and 1.11 (1.02–1.19) for smear-positive PTB cases], and completed treatment [pooled RRs (95%CIs): 1.74(1.05, 2.90) for all PTB cases and 2.22(1.16, 4.23) for smear-positive PTB cases], reduced death [pooled RRs (95%CIs): 0.44 (0.26–0.72) for all PTB cases and 0.39 (0.23–0.66) for smear-positive PTB cases], and transfer out [pooled RRs (95%CIs): 0.37 (0.23–0.61) for all PTB cases and 0.42 (0.25–0.70) for smear-positive PTB cases]. Pooled results of all studies (RCTs and cohort studies) with all PTB cases demonstrated that CB-DOT promoted successful treatment [pooled RR (95%CI): 1.13 (1.03–1.24)] and curative treatment [pooled RR (95%CI): 1.24 (1.04–1.48)] compared with self-administered treatment. Conclusions CB-DOT did improved TB treatment outcomes according to the pooled results of included studies in this review. Studies on strategies for implementation of patient-centered and community-centered CB-DOT deserve further attention. PMID:26849656

  6. Effect of E-Bike Versus Bike Commuting on Cardiorespiratory Fitness in Overweight Adults: A 4-Week Randomized Pilot Study.

    PubMed

    Höchsmann, Christoph; Meister, Steffen; Gehrig, Damiana; Gordon, Elisa; Li, Yanlei; Nussbaumer, Monique; Rossmeissl, Anja; Schäfer, Juliane; Hanssen, Henner; Schmidt-Trucksäss, Arno

    2018-05-01

    To assess if active commuting with an electrically assisted bicycle (e-bike) during a 4-week period can induce increases in cardiorespiratory fitness measured as peak oxygen uptake (V[Combining Dot Above]O2peak) in untrained, overweight individuals, and if these changes are comparable with those induced by a conventional bicycle. Four-week randomized pilot study. Controlled laboratory. Thirty-two volunteers (28 men) participated. Seventeen {median age 37 years [interquartile range (IQR) 34, 45], median body mass index [BMI] 29 kg/m [IQR 27, 31]} were randomized to the E-Bike group and 15 [median age 43 years (IQR 38, 45), median BMI 28 kg/m (IQR 26, 29)] to the Bike group. Participants in both groups were instructed to use the bicycle allocated to them (e-bike or conventional bicycle) for an active commute to work in the Basel (Switzerland) area at a self-chosen speed on at least 3 days per week during the 4-week intervention period. V[Combining Dot Above]O2peak was assessed before and after the intervention in an all-out exercise test on a bicycle ergometer. V[Combining Dot Above]O2peak increased by an average of 3.6 mL/(kg·min) [SD 3.6 mL/(kg·min)] in the E-Bike group and by 2.2 mL/(kg·min) [SD 3.5 mL/(kg·min)] in the Bike group, with an adjusted difference between the 2 groups of 1.4 mL/(kg·min) [95% confidence interval, -1.4-4.1; P = 0.327]. E-bikes may have the potential to improve cardiorespiratory fitness similar to conventional bicycles despite the available power assist, as they enable higher biking speeds and greater elevation gain.

  7. Vision screening with the RDE stereotest in pediatric populations.

    PubMed

    Schmidt, P P

    1994-04-01

    The usefulness of the Random Dot E (RDE) stereotest in screening the vision of school-aged children for vision problems has been established. As a single screening procedure, the effectivity (phi) of the RDE (phi = +0.52) is greater than the widely used Snellen acuity technique (phi = +0.36) and faster to complete. Very-low-birthweight (VLBW) children have a higher incidence of vision problems including strabismus, amblyopia, and refractive error than children born with normal-birthweights (NBW's). My purpose was to determine: (1) whether a group of young children at high risk for vision problems could perform random dot stereotesting and (2) an age appropriate pass/fail criterion for stereoacuity screening. Furthermore, categorization as pass or fail by each screening method studied [stereoacuity (RDE), visual acuity [Teller Acuity Cards (TAC) and Broken Wheel (BWA)] and refractive error] was compared for independent agreement with vision examination results. The subjects were a cohort of NBW and VLBW) (< 1500 g) children matched at birth for maternal age, ethnic origin, time of hospital birth, and parity. Results of a masked investigation of 30 children [VLBW (N = 10) and NBW (N = 20) children] tested at 3 years of age (mean age = 3.0 years, range 2.11 to 3.1 years) showed that (1) 86.7% were able to complete the 168 sec arc random dot stereoacuity task when a two-alternative forced-choice preferential-looking paradigm was used for testing, (2) the specificity and sensitivity were 88.2%, 76.9% (RDE); 81.2%, 64.3% (TAC); 52.9%, 92.3% (BWA); and 94.1%, 61.5% (refractive error), respectively, (3) the reliability the RDE stereoacuity screening was greater (k = +0.66) than any of the other procedures studied, and (4) there was 73.3% agreement on test-retest categorizations between observers.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Statistical properties of exciton fine structure splitting and polarization angles in quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Gong, Ming; Hofer, B.; Zallo, E.; Trotta, R.; Luo, Jun-Wei; Schmidt, O. G.; Zhang, Chuanwei

    2014-05-01

    We develop an effective model to describe the statistical properties of exciton fine structure splitting (FSS) and polarization angle in quantum dot ensembles (QDEs) using only a few symmetry-related parameters. The connection between the effective model and the random matrix theory is established. Such effective model is verified both theoretically and experimentally using several rather different types of QDEs, each of which contains hundreds to thousands of QDs. The model naturally addresses three fundamental issues regarding the FSS and polarization angels of QDEs, which are frequently encountered in both theories and experiments. The answers to these fundamental questions yield an approach to characterize the optical properties of QDEs. Potential applications of the effective model are also discussed.

  9. Judder-Induced Edge Flicker at Zero Spatial Contrast

    NASA Technical Reports Server (NTRS)

    Larimer, James; Feng, Christine; Gille, Jennifer; Cheung, Victor

    2004-01-01

    Judder is a motion artifact that degrades the quality of video imagery. Smooth motion appears jerky and can appear to flicker along the leading and trailing edge of the moving object. In a previous paper, we demonstrated that the strength of the edge flicker signal depended upon the brightness of the scene and the contrast of the moving object relative to the background. Reducing the contrast between foreground and background reduced the flicker signal. In this report, we show that the contrast signal required for judder-induced edge flicker is due to temporal contrast and not simply to spatial contrast. Bars made of random dots of the same dot density as the background exhibit edge flicker when moved at sufficient rate.

  10. Aging and the perception of 3-D shape from dynamic patterns of binocular disparity.

    PubMed

    Norman, J Farley; Crabtree, Charles E; Herrmann, Molly; Thompson, Sarah R; Shular, Cassandra F; Clayton, Anna Marie

    2006-01-01

    In two experiments, we investigated the ability of younger and older observers to perceive and discriminate 3-D shape from static and dynamic patterns of binocular disparity. In both experiments, the younger observers' discrimination accuracies were 20% higher than those of the older observers. Despite this quantitative difference, in all other respects the older observers performed similarly to the younger observers. Both age groups were similarly affected by changes in the magnitude of binocular disparity, by reductions in binocular correspondence, and by increases in the speed of stereoscopic motion. In addition, observers in both age groups exhibited an advantage in performance for dynamic stereograms when the patterns of binocular disparity contained significant amounts of correspondence "noise." The process of aging does affect stereopsis, but the effects are quantitative rather than qualitative.

  11. Eye Movements during Multiple Object Tracking: Where Do Participants Look?

    ERIC Educational Resources Information Center

    Fehd, Hilda M.; Seiffert, Adriane E.

    2008-01-01

    Similar to the eye movements you might make when viewing a sports game, this experiment investigated where participants tend to look while keeping track of multiple objects. While eye movements were recorded, participants tracked either 1 or 3 of 8 red dots that moved randomly within a square box on a black background. Results indicated that…

  12. A tunable digital ishihara plate for pre-school aged children.

    PubMed

    Gambino, Orazio; Minafo, Ester; Pirrone, Roberto; Ardizzone, Edoardo

    2016-08-01

    Colors play a fundamental role for children, both in the everyday life and in education. They recognize the surrounding world, and play games making a large use of colors. They learn letters and numbers by means of colors. As a consequence, early diagnosis of color blindness is an crucial to support an individual affected by this visual perception alteration at the initial phase of his/her life. The diagnosis of red-green color deficiencies (protanopia or deuteranopia) is commonly accomplished by means of the Ishihara test, which consists of plates showing dots with different sizes where some of them compose numbers within a gamut of colors while the ones composing the background have different colors. In this paper, a web application written in javascript is presented, that implements a digital Ishihara-like test for pre-school aged children. Instead numbers or letters, It can transform any binary image representing animal shapes, or any other child-friendly shape, into an Ishihara-like image. This digital plate is not static. The operator can increment the dot density to improve the quality of the shape contour and the entire plate can be redrawn with different dot sizes/colors chosen randomly according to the color pattern of the test. Separate controls for brightness and saturation are implemented to calibrate the chromatic aspect of the background and foreground dots.

  13. Taking a(c)count of eye movements: Multiple mechanisms underlie fixations during enumeration.

    PubMed

    Paul, Jacob M; Reeve, Robert A; Forte, Jason D

    2017-03-01

    We habitually move our eyes when we enumerate sets of objects. It remains unclear whether saccades are directed for numerosity processing as distinct from object-oriented visual processing (e.g., object saliency, scanning heuristics). Here we investigated the extent to which enumeration eye movements are contingent upon the location of objects in an array, and whether fixation patterns vary with enumeration demands. Twenty adults enumerated random dot arrays twice: first to report the set cardinality and second to judge the perceived number of subsets. We manipulated the spatial location of dots by presenting arrays at 0°, 90°, 180°, and 270° orientations. Participants required a similar time to enumerate the set or the perceived number of subsets in the same array. Fixation patterns were systematically shifted in the direction of array rotation, and distributed across similar locations when the same array was shown on multiple occasions. We modeled fixation patterns and dot saliency using a simple filtering model and show participants judged groups of dots in close proximity (2°-2.5° visual angle) as distinct subsets. Modeling results are consistent with the suggestion that enumeration involves visual grouping mechanisms based on object saliency, and specific enumeration demands affect spatial distribution of fixations. Our findings highlight the importance of set computation, rather than object processing per se, for models of numerosity processing.

  14. A fault-tolerant addressable spin qubit in a natural silicon quantum dot.

    PubMed

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-08-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot-based qubits. This result can inspire contributions to quantum computing from industrial communities.

  15. In Situ Crystallization Synthesis of CsPbBr3 Perovskite Quantum Dot-Embedded Glasses with Improved Stability for Solid-State Lighting and Random Upconverted Lasing.

    PubMed

    Yuan, Shuo; Chen, Daqin; Li, Xinyue; Zhong, Jiasong; Xu, Xuhui

    2018-06-06

    All-inorganic cesium lead bromide CsPbBr 3 perovskite quantum dots (QDs) are emerging as potential candidates for their applications in optoelectronic devices but they suffer from poor long-term stability due to their high sensitivity to UV irradiation, heat, and especially to moisture. Although great advances in improving stability of perovskite QDs have been achieved by surface modification or encapsulation in polymer and silica, they are not sufficiently refrained from external environment due to nondense structures of these protective layers. In this work, in situ nanocrystallization strategy is developed to directly grow CsPbBr 3 QDs among a specially designed TeO 2 -based glass matrix. As a result, QD-embedded glass shows typical bright green emission assigned to exciton recombination radiation and significant improvement of photon/thermal stability and water resistance due to the effective protecting role of dense structural glass. Particularly, ∼90% of emission intensity is even remained after immersing QD-embedded glass in water up to 120 h, enabling them to find promising applications in white-light-emitting device with superior color stability and low-threshold random upconverted laser under ambient air condition.

  16. Aging and Visual Counting

    PubMed Central

    Li, Roger W.; MacKeben, Manfred; Chat, Sandy W.; Kumar, Maya; Ngo, Charlie; Levi, Dennis M.

    2010-01-01

    Background Much previous work on how normal aging affects visual enumeration has been focused on the response time required to enumerate, with unlimited stimulus duration. There is a fundamental question, not yet addressed, of how many visual items the aging visual system can enumerate in a “single glance”, without the confounding influence of eye movements. Methodology/Principal Findings We recruited 104 observers with normal vision across the age span (age 21–85). They were briefly (200 ms) presented with a number of well- separated black dots against a gray background on a monitor screen, and were asked to judge the number of dots. By limiting the stimulus presentation time, we can determine the maximum number of visual items an observer can correctly enumerate at a criterion level of performance (counting threshold, defined as the number of visual items at which ≈63% correct rate on a psychometric curve), without confounding by eye movements. Our findings reveal a 30% decrease in the mean counting threshold of the oldest group (age 61–85: ∼5 dots) when compared with the youngest groups (age 21–40: 7 dots). Surprisingly, despite decreased counting threshold, on average counting accuracy function (defined as the mean number of dots reported for each number tested) is largely unaffected by age, reflecting that the threshold loss can be primarily attributed to increased random errors. We further expanded this interesting finding to show that both young and old adults tend to over-count small numbers, but older observers over-count more. Conclusion/Significance Here we show that age reduces the ability to correctly enumerate in a glance, but the accuracy (veridicality), on average, remains unchanged with advancing age. Control experiments indicate that the degraded performance cannot be explained by optical, retinal or other perceptual factors, but is cortical in origin. PMID:20976149

  17. Effect of DOTS Treatment on Vitamin D Levels in Pulmonary Tuberculosis.

    PubMed

    Naik, Akshatha Lalesh; Rajan, Madan Gopal; Manjrekar, Poornima A; Shenoy, Mamatha T; Shreelata, Souparnika; Srikantiah, Rukmini Mysore; Hegde, Anupama

    2017-04-01

    Vitamin D (Vit D) modulates a variety of processes and regulatory systems including host defense, inflammation, immunity, and repair. Vit D Deficiency (VDD) is been implicated as a cause in diabetes, immune dysfunction and Tuberculosis (TB). Impaired metabolism of Vit D and an adverse outcome is associated with Pulmonary Tuberculosis (PTB). Directly Observed Treatment Short Course (DOTS) consist of drugs like rifampicin and isoniazid, which respectively cause accelerated loss of Vit D due to increased clearance and impairment of 25-hydroxylation causing diminished Vit D action. The aim of the present study was to estimate and compare serum Vit D status in newly diagnosed PTB patients before and after DOTS to validate the supplementation of Vit D in PTB patients. Forty four newly diagnosed PTB patients of both the sexes in the age group of 18 to 60 years before starting DOTS were recruited to participate in this non- randomized controlled trial with their voluntary consent. Vit D status in these patients and the effect of DOTS on Vit D were evaluated. Mean Vit D levels of the study population aged 43±13 years was 20.74 ng/ml (normal >30 ng/ml) at the time of diagnosis. After completion of six months of therapy mean Vit D reduced to 17.49 ng/ml (p-value=0.041). On individual observations, 70% of the participants showed a decrease in Vit D levels from their baseline, whereas 30% showed an increase. Comparison between the two groups indicated the possible role of younger age in the improved status. VDD was seen in PTB patients, which worsened in majority of the study population after treatment; hence it would be advisable to recommend Vit D supplementation in PTB patients for a better outcome.

  18. Three-dimensional imaging of cultural heritage artifacts with holographic printers

    NASA Astrophysics Data System (ADS)

    Kang, Hoonjong; Stoykova, Elena; Berberova, Nataliya; Park, Jiyong; Nazarova, Dimana; Park, Joo Sup; Kim, Youngmin; Hong, Sunghee; Ivanov, Branimir; Malinowski, Nikola

    2016-01-01

    Holography is defined as a two-steps process of capture and reconstruction of the light wavefront scattered from three-dimensional (3D) objects. Capture of the wavefront is possible due to encoding of both amplitude and phase in the hologram as a result of interference of the light beam coming from the object and mutually coherent reference beam. Three-dimensional imaging provided by holography motivates development of digital holographic imaging methods based on computer generation of holograms as a holographic display or a holographic printer. The holographic printing technique relies on combining digital 3D object representation and encoding of the holographic data with recording of analog white light viewable reflection holograms. The paper considers 3D contents generation for a holographic stereogram printer and a wavefront printer as a means of analogue recording of specific artifacts which are complicated objects with regards to conventional analog holography restrictions.

  19. Functional specialization and generalization for grouping of stimuli based on colour and motion

    PubMed Central

    Zeki, Semir; Stutters, Jonathan

    2013-01-01

    This study was undertaken to learn whether the principle of functional specialization that is evident at the level of the prestriate visual cortex extends to areas that are involved in grouping visual stimuli according to attribute, and specifically according to colour and motion. Subjects viewed, in an fMRI scanner, visual stimuli composed of moving dots, which could be either coloured or achromatic; in some stimuli the moving coloured dots were randomly distributed or moved in random directions; in others, some of the moving dots were grouped together according to colour or to direction of motion, with the number of groupings varying from 1 to 3. Increased activation was observed in area V4 in response to colour grouping and in V5 in response to motion grouping while both groupings led to activity in separate though contiguous compartments within the intraparietal cortex. The activity in all the above areas was parametrically related to the number of groupings, as was the prominent activity in Crus I of the cerebellum where the activity resulting from the two types of grouping overlapped. This suggests (a) that, the specialized visual areas of the prestriate cortex have functions beyond the processing of visual signals according to attribute, namely that of grouping signals according to colour (V4) or motion (V5); (b) that the functional separation evident in visual cortical areas devoted to motion and colour, respectively, is maintained at the level of parietal cortex, at least as far as grouping according to attribute is concerned; and (c) that, by contrast, this grouping-related functional segregation is not maintained at the level of the cerebellum. PMID:23415950

  20. Randomized Control Trial of Peer-Delivered, Modified Directly Observed Therapy for HAART in Mozambique

    PubMed Central

    Pearson, Cynthia R.; Micek, Mark A.; Simoni, Jane M.; Hoff, Peter D.; Matediana, Eduardo; Martin, Diane P.; Gloyd, Stephen S.

    2014-01-01

    Objective To assess the efficacy of a peer-delivered intervention to promote short-term (6-month) and long-term (12-month) adherence to HAART in a Mozambican clinic population. Design A 2-arm randomized controlled trial was conducted between October 2004 and June 2006. Participants Of 350 men and women (≥18 years) initiating HAART, 53.7% were female, and 97% were on 1 fixed-dose combination pill twice a day. Intervention Participants were randomly assigned to receive 6 weeks (Monday through Friday; 30 daily visits) of peer-delivered, modified directly observed therapy (mDOT) or standard care. Peers provided education about treatment and adherence and sought to identify and mitigate adherence barriers. Outcome Participants' self-reported medication adherence was assessed 6 months and 12 months after starting HAART. Adherence was defined as the proportion of prescribed doses taken over the previous 7 days. Statistical analyses were performed using intention-to-treat (missing = failure). Results Intervention participants, compared to those in standard care, showed significantly higher mean medication adherence at 6 months (92.7% vs. 84.9%, difference 7.8, 95% confidence interval [CI]: 0.0.02, 13.0) and 12 months (94.4% vs. 87.7%, difference 6.8, 95% CI: 0.9, 12.9). There were no between-arm differences in chart-abstracted CD4 counts. Conclusions A peer-delivered mDOT program may be an effective strategy to promote long-term adherence among persons initiating HAART in resource-poor settings. PMID:17693890

  1. Facial recognition using simulated prosthetic pixelized vision.

    PubMed

    Thompson, Robert W; Barnett, G David; Humayun, Mark S; Dagnelie, Gislin

    2003-11-01

    To evaluate a model of simulated pixelized prosthetic vision using noncontiguous circular phosphenes, to test the effects of phosphene and grid parameters on facial recognition. A video headset was used to view a reference set of four faces, followed by a partially averted image of one of those faces viewed through a square pixelizing grid that contained 10x10 to 32x32 dots separated by gaps. The grid size, dot size, gap width, dot dropout rate, and gray-scale resolution were varied separately about a standard test condition, for a total of 16 conditions. All tests were first performed at 99% contrast and then repeated at 12.5% contrast. Discrimination speed and performance were influenced by all stimulus parameters. The subjects achieved highly significant facial recognition accuracy for all high-contrast tests except for grids with 70% random dot dropout and two gray levels. In low-contrast tests, significant facial recognition accuracy was achieved for all but the most adverse grid parameters: total grid area less than 17% of the target image, 70% dropout, four or fewer gray levels, and a gap of 40.5 arcmin. For difficult test conditions, a pronounced learning effect was noticed during high-contrast trials, and a more subtle practice effect on timing was evident during subsequent low-contrast trials. These findings suggest that reliable face recognition with crude pixelized grids can be learned and may be possible, even with a crude visual prosthesis.

  2. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined stark shift, coherent coupling of electronic states in a quantum dot molecule etc.; (3) to assess the potential use of the quantum dots in real device implementation and to provide physical insight to the experimentalists. Full three dimensional strain and electronic structure simulations of quantum dot structures containing multi-million atoms are done using NEMO 3-D. Both single and vertically stacked quantum dot structures are analyzed in detail. The results show that the strain and the piezoelectricity significantly impact the electronic structure of these devices. This work shows that the InAs quantum dots when placed in the InGaAs quantum well red shifts the emission wavelength. Such InAs/GaAs-based optical devices can be used for optical-fiber based communication systems at longer wavelengths (1.3um -- 1.5um). Our atomistic simulations of InAs/InGaAs/GaAs quantum dots quantitatively match with the experiment and give the critical insight of the physics involved in these structures. A single quantum dot molecule is studied for coherent quantum coupling of electronic states under the influence of static electric field applied in the growth direction. Such nanostructures can be used in the implementation of quantum information technologies. A close quantitative match with the experimental optical measurements allowed us to get a physical insight into the complex physics of quantum tunnel couplings of electronic states as the device operation switches between atomic and molecular regimes. Another important aspect is to design the quantum dots for a desired isotropic polarization of the optical emissions. Both single and coupled quantum dots are studied for TE/TM ratio engineering. The atomistic study provides a detailed physical analysis of these computationally expensive large nanostructures and serves as a guide for the experimentalists for the design of the polarization independent devices for the optical communication systems.

  3. Space, color, and direction of movement: how do they affect attention?

    PubMed

    Verghese, Ashika; Anderson, Andrew J; Vidyasagar, Trichur R

    2013-07-19

    Paying attention improves performance, but is this improvement regardless of what we attend to? We explored the differences in performance between attending to a location and attending to a feature when perceiving global motion. Attention was first cued to one of four locations that had coherently moving dots, while the remaining three had randomly moving distracter dots. Participants then viewed a colored display, wherein the color of the coherently moving dots was cued instead of location. In the third task, participants identified the location that had a particular cued direction of motion. Most observers reported reductions of motion threshold in all three tasks compared to when no cue was provided. However, the attentional bias generated by location cues was significantly larger than the bias resulting from feature cues of direction or color. This effect is consistent with the idea that attention is largely controlled by a fronto-parietal network where spatial relations are preferentially processed. On the other hand, color could not be used as a cue to focus attention and integrate motion. This finding suggests that color relies heavily on processing by ventral temporal cortical areas, which may have little control over the global motion areas in the dorsal part of the brain.

  4. Dividing attention between two transparent motion surfaces results in a failure of selective attention

    PubMed Central

    Ernst, Zachary Raymond; Palmer, John; Boynton, Geoffrey M.

    2012-01-01

    In object-based attention, it is easier to divide attention between features within a single object than between features across objects. In this study we test the prediction of several capacity models in order to best characterize the cost to dividing attention between objects. Here we studied behavioral performance on a divided attention task in which subjects attended to the motion and luminance of overlapping random dot kinemategrams, specifically red upward moving dots superimposed with green downward moving dots. Subjects were required to detect brief changes (transients) in the motion or luminance within the same surface or across different surfaces. There were two primary results. First, the dual-task deficit was large when attention was divided across two surfaces and near zero when attention was divided within a surface. This is consistent with limited-capacity processing across surfaces and unlimited-capacity processing within a surface—a pattern predicted by established theories of object-based attention. Second and unexpectedly, there was evidence of crosstalk between features: when cued to monitor transients on one surface, response rates were inflated by the presence of a transient on the other surface. Such crosstalk is a failure of selective attention between surfaces. PMID:23149301

  5. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Khosroshahy, Milad Bagherian; Moaiyeri, Mohammad Hossein; Navi, Keivan; Bagherzadeh, Nader

    Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM) cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts.

  6. Two Mechanisms Determine Quantum Dot Blinking.

    PubMed

    Yuan, Gangcheng; Gómez, Daniel E; Kirkwood, Nicholas; Boldt, Klaus; Mulvaney, Paul

    2018-04-24

    Many potential applications of quantum dots (QDs) can only be realized once the luminescence from single nanocrystals (NCs) is understood. These applications include the development of quantum logic devices, single-photon sources, long-life LEDs, and single-molecule biolabels. At the single-nanocrystal level, random fluctuations in the QD photoluminescence occur, a phenomenon termed blinking. There are two competing models to explain this blinking: Auger recombination and surface trap induced recombination. Here we use lifetime scaling on core-shell chalcogenide NCs to demonstrate that both types of blinking occur in the same QDs. We prove that Auger-blinking can yield single-exponential on/off times in contrast to earlier work. The surface passivation strategy determines which blinking mechanism dominates. This study summarizes earlier studies on blinking mechanisms and provides some clues that stable single QDs can be engineered for optoelectronic applications.

  7. Stabilization of electrogenerated copper species on electrodes modified with quantum dots.

    PubMed

    Martín-Yerga, Daniel; Costa-García, Agustín

    2017-02-15

    Quantum dots (QDs) have special optical, surface, and electronic properties that make them useful for electrochemical applications. In this work, the electrochemical behavior of copper in ammonia medium is described using bare screen-printed carbon electrodes and the same modified with CdSe/ZnS QDs. At the bare electrodes, the electrogenerated Cu(i) and Cu(0) species are oxidized by dissolved oxygen in a fast coupled chemical reaction, while at the QDs-modified electrode, the re-oxidation of Cu(i) and Cu(0) species can be observed, which indicates that they are stabilized by the nanocrystals present on the electrode surface. A weak adsorption is proposed as the main cause for this stabilization. The electrodeposition on electrodes modified with QDs allows the generation of random nanostructures with copper nanoparticles, avoiding the preferential nucleation onto the most active electrode areas.

  8. Effects of dental magnification lenses on indirect vision: a pilot study.

    PubMed

    Hoerler, Sarah B; Branson, Bonnie G; High, Anne M; Mitchell, Tanya Villalpando

    2012-01-01

    The purpose of this pilot study was to evaluate the effect of magnification lenses on the indirect vision skills of dental hygiene students. This pilot study examined the accuracy and efficiency of dental hygiene students' indirect vision skills while using traditional safety lenses and magnification lenses. The sample was comprised of 14 students in their final semester of a dental hygiene program. A crossover study approach was utilized, with each participant randomly assigned to a specific order of eyewear. The study included evaluation of each participant taking part in 2 separate clinical sessions. During the first session, each participant completed a clinical exercise on a dental manikin marked with 15 dots throughout the oral cavity while wearing the randomly as signed eyewear, and then completed a similar exercise on a differently marked dental manikin while wearing the randomly assigned eyewear. This procedure was repeated at a second clinical session, however, the dental manikin and eyewear pairings were reversed. Accuracy was measured on the number of correctly identified dots and efficiency was measured by the time it took to identify the dots. Perceptions of the participants' use of magnification lenses and the participants' opinion of the use of magnification lenses in a dental hygiene curriculum were evaluated using a questionnaire. Comparing the mean of the efficiency scores, students are more efficient at identifying indirect vision points with the use of magnification lenses (3 minutes, 36 seconds) than with traditional safety lenses (3 minutes, 56 seconds). Comparing the measurement of accuracy, students are more accurate at identifying indirect vision points with traditional safety lenses (84%) as com pared to magnification lenses (79%). Overall, the students report ed an increased quality of dental hygiene treatment provided in the clinical setting and an improved clinical posture while treating patients with the use of magnification lenses. This study did not produce statistically significant data to support the use of magnification lenses to enhance indirect vision skills among dental hygiene students, however, students perceived that their indirect vision skills were enhanced by the use of magnification lenses.

  9. Scalar and vector Keldysh models in the time domain

    NASA Astrophysics Data System (ADS)

    Kiselev, M. N.; Kikoin, K. A.

    2009-04-01

    The exactly solvable Keldysh model of disordered electron system in a random scattering field with extremely long correlation length is converted to the time-dependent model with extremely long relaxation. The dynamical problem is solved for the ensemble of two-level systems (TLS) with fluctuating well depths having the discrete Z 2 symmetry. It is shown also that the symmetric TLS with fluctuating barrier transparency may be described in terms of the vector Keldysh model with dime-dependent random planar rotations in xy plane having continuous SO(2) symmetry. Application of this model to description of dynamic fluctuations in quantum dots and optical lattices is discussed.

  10. SMS reminders to improve the tuberculosis cure rate in developing countries (TB-SMS Cameroon): a protocol of a randomised control study

    PubMed Central

    2014-01-01

    Background Tuberculosis is a public health problem in Cameroon, just like in many other countries in the world. The National Tuberculosis Control Programme (PNLT) put in place by the state, aims to fight tuberculosis through the implementation of international directives (Directly Observed Treatment Short, DOTS). Despite the deployment of this strategy across the world, its implementation is difficult in the context of low-resource countries. Some expected results are not achieved. In Cameroon, the cure rate for patients with sputum positive pulmonary tuberculosis (TPM+) after 6 months is only about 65%, 20% below the target. This is mainly due to poor patient adherence to treatment. By relying on the potential of mobile Health, the objective of this study is to evaluate the effect of SMS reminders on the cure rate of TPM + patients, measured using 6-month bacilloscopy. Methods/design This is a blinded, randomised controlled multicentre study carried out in Cameroon. The research hypothesis is that sending daily SMS messages to remind patients to take their prescribed tuberculosis medication, together with the standard DOTS strategy, will increase the cure rate from 65% (control group: DOTS, no SMS intervention) to 85% (intervention group: DOTS, with SMS intervention) in a group of new TPM + patients. In accordance with each treatment centre, the participants will be randomly allocated into the two groups using a computer program: the intervention group and the control group. A member of the research team will send daily SMS messages. Study data will be collected by health professionals involved in the care of patients. Data analysis will be done by the intention-to-treat method. Discussion The achieving of expected outcomes by the PNLT through implementation of DOTS requires several challenges. Although it has been demonstrated that the DOTS strategy is effective in the fight against tuberculosis, its application remains difficult in developing countries. This study explores the potential of mHealth to support DOTS strategy. It will gather new evidence on the effectiveness of mHealth-based interventions and SMS reminders in the improvement of treatment adherence and the cure rate of tuberculosis patients, especially in a low-resource country such as Cameroon. Trial registration The trial is registered on the Pan-African Clinical Trials Registry (http://www.pactr.org) under unique identification number: PACTR201307000583416. PMID:24460827

  11. The Detection of Nonplanar Surfaces in Visual Space.

    DTIC Science & Technology

    1984-03-01

    involve quasi -dotted stimuli. For example, applications may be found in fields such as air traffic control ; geophysical surveys (e.g., to distinguish a...line microcomputers. The control program was initially loaded by the experimenter from the computer’s disk O memory into its randomly addressable... experimenter and the computer carried out certain initialization segments of the control program. Next, the observer signed on at the computer terminal with a

  12. What a Difference a Parameter Makes: a Psychophysical Comparison of Random Dot Motion Algorithms

    PubMed Central

    Pilly, Praveen K.; Seitz, Aaron R.

    2009-01-01

    Random dot motion (RDM) displays have emerged as one of the standard stimulus types employed in psychophysical and physiological studies of motion processing. RDMs are convenient because it is straightforward to manipulate the relative motion energy for a given motion direction in addition to stimulus parameters such as the speed, contrast, duration, density, aperture, etc. However, as widely as RDMs are employed so do they vary in their details of implementation. As a result, it is often difficult to make direct comparisons across studies employing different RDM algorithms and parameters. Here, we systematically measure the ability of human subjects to estimate motion direction for four commonly used RDM algorithms under a range of parameters in order to understand how these different algorithms compare in their perceptibility. We find that parametric and algorithmic differences can produce dramatically different performances. These effects, while surprising, can be understood in relationship to pertinent neurophysiological data regarding spatiotemporal displacement tuning properties of cells in area MT and how the tuning function changes with stimulus contrast and retinal eccentricity. These data help give a baseline by which different RDM algorithms can be compared, demonstrate a need for clearly reporting RDM details in the methods of papers, and also pose new constraints and challenges to models of motion direction processing. PMID:19336240

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, Allen M.

    The goal of this program was to study new physical phenomena that might be relevant to the performance of conductive devices and circuits of the smallest realizable feature sizes possible using physical rather than biological techniques. Although the initial scientific work supported involved the use of scanning tunneling microscopy and spectroscopy to ascertain the statistics of the energy level distribution of randomly sized and randomly shaped quantum dots, or nano-crystals, the main focus was on the investigation of selected properties, including superconductivity, of conducting and superconducting nanowires prepared using electron-beam-lithography. We discovered a magnetic-field-restoration of superconductivity in out-of-equilibrium nanowires drivenmore » resistive by current. This phenomenon was explained by the existence of a state in which dissipation coexisted with nonvanishing superconducting order. We also produced ultra-small superconducting loops to study a predicted anomalous fluxoid quantization, but instead, found a magnetic-field-dependent, high-resistance state, rather than superconductivity. Finally, we developed a simple and controllable nanowire in an induced charged layer near the surface of a masked single-crystal insulator, SrTiO 3. The layer was induced using an electric double layer transistor employing an ionic liquid (IL). The transport properties of the induced nanowire resembled those of collective electronic transport through an array of quantum dots.« less

  14. Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1

    PubMed Central

    Chen, Ming; Wu, Si; Lu, Haidong D.; Roe, Anna W.

    2013-01-01

    Interpreting population responses in the primary visual cortex (V1) remains a challenge especially with the advent of techniques measuring activations of large cortical areas simultaneously with high precision. For successful interpretation, a quantitatively precise model prediction is of great importance. In this study, we investigate how accurate a spatiotemporal filter (STF) model predicts average response profiles to coherently drifting random dot motion obtained by optical imaging of intrinsic signals in V1 of anesthetized macaques. We establish that orientation difference maps, obtained by subtracting orthogonal axis-of-motion, invert with increasing drift speeds, consistent with the motion streak effect. Consistent with perception, the speed at which the map inverts (the critical speed) depends on cortical eccentricity and systematically increases from foveal to parafoveal. We report that critical speeds and response maps to drifting motion are excellently reproduced by the STF model. Our study thus suggests that the STF model is quantitatively accurate enough to be used as a first model of choice for interpreting responses obtained with intrinsic imaging methods in V1. We show further that this good quantitative correspondence opens the possibility to infer otherwise not easily accessible population receptive field properties from responses to complex stimuli, such as drifting random dot motions. PMID:23197457

  15. Selection of DNA aptamers against Human Cardiac Troponin I for colorimetric sensor based dot blot application.

    PubMed

    Dorraj, Ghamar Soltan; Rassaee, Mohammad Javad; Latifi, Ali Mohammad; Pishgoo, Bahram; Tavallaei, Mahmood

    2015-08-20

    Troponin T and I are ideal markers which are highly sensitive and specific for myocardial injury and have shown better efficacy than earlier markers. Since aptamers are ssDNA or RNA that bind to a wide variety of target molecules, the purpose of this research was to select an aptamer from a 79bp single-stranded DNA (ssDNA) random library that was used to bind the Human Cardiac Troponin I from a synthetic nucleic acids library by systematic evolution of ligands exponential enrichment (Selex) based on several selection and amplification steps. Human Cardiac Troponin I protein was coated onto the surface of streptavidin magnetic beads to extract specific aptamer from a large and diverse random ssDNA initial oligonucleotide library. As a result, several aptamers were selected and further examined for binding affinity and specificity. Finally TnIApt 23 showed beast affinity in nanomolar range (2.69nM) toward the target protein. A simple and rapid colorimetric detection assay for Human Cardiac Troponin I using the novel and specific aptamer-AuNPs conjugates based on dot blot assay was developed. The detection limit for this protein using aptamer-AuNPs-based assay was found to be 5ng/ml. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Emission Properties from ZnO Quantum Dots Dispersed in SiO2 Matrix

    NASA Astrophysics Data System (ADS)

    Panigrahi, Shrabani; Basak, Durga

    2011-07-01

    Dispersion of ZnO quantum dots in SiO2 matrix has been achieved in two techniques based on StÖber method to form ZnO QDs-SiO2 nanocomposites. Sample A is formed with random dispersion by adding tetraethyl orthosilicate (TEOS) to an ethanolic solution of ZnO nanoparticles and sample B is formed with a chain-like ordered dispersion by adding ZnO nanoparticles to an already hydrolyzed ethanolic TEOS solution. The photoluminescence spectra of the as-grown nanocomposites show strong emission in the ultraviolet region. When annealed at higher temperature, depending on the sample type, these show strong red or white emission. Interestingly, when the excitation is removed, the orderly dispersed ZnO QDs-SiO2 composite shows a very bright blue fluorescence visible by naked eyes for few seconds indicating their promise for display applications.

  17. Continual training of attentional bias in social anxiety.

    PubMed

    Li, Songwei; Tan, Jieqing; Qian, Mingyi; Liu, Xinghua

    2008-08-01

    Using the dot-probe paradigm, it has been shown that high social anxiety is associated with an attentional bias toward negative information. In the present study, individuals with high social anxiety were divided into two groups randomly. One group was the attentional bias training group (Group T), and the other was the control group (Group C). For Group T, 7 days' continuous training of attentional bias was conducted using the dot-probe paradigm to make socially anxious individuals focus more on positive face pictures. The results showed that the training was effective in changing attentional bias in Group T. Scores of the Social Interaction Anxiety Scale (SIAS) in Group T were reduced compared to Group C, while the scores of Social Phobia Scale (SPS) and scores of Negative Evaluation Scale (FNE) showed no difference between the two groups, which suggested a limited reduction of social anxiety.

  18. Subdiffusive exciton transport in quantum dot solids.

    PubMed

    Akselrod, Gleb M; Prins, Ferry; Poulikakos, Lisa V; Lee, Elizabeth M Y; Weidman, Mark C; Mork, A Jolene; Willard, Adam P; Bulović, Vladimir; Tisdale, William A

    2014-06-11

    Colloidal quantum dots (QDs) are promising materials for use in solar cells, light-emitting diodes, lasers, and photodetectors, but the mechanism and length of exciton transport in QD materials is not well understood. We use time-resolved optical microscopy to spatially visualize exciton transport in CdSe/ZnCdS core/shell QD assemblies. We find that the exciton diffusion length, which exceeds 30 nm in some cases, can be tuned by adjusting the inorganic shell thickness and organic ligand length, offering a powerful strategy for controlling exciton movement. Moreover, we show experimentally and through kinetic Monte Carlo simulations that exciton diffusion in QD solids does not occur by a random-walk process; instead, energetic disorder within the inhomogeneously broadened ensemble causes the exciton diffusivity to decrease over time. These findings reveal new insights into exciton dynamics in disordered systems and demonstrate the flexibility of QD materials for photonic and optoelectronic applications.

  19. Blocking-state influence on shot noise and conductance in quantum dots

    NASA Astrophysics Data System (ADS)

    Harabula, M.-C.; Ranjan, V.; Haller, R.; Fülöp, G.; Schönenberger, C.

    2018-03-01

    Quantum dots (QDs) investigated through electron transport measurements often exhibit varying, state-dependent tunnel couplings to the leads. Under specific conditions, weakly coupled states can result in a strong suppression of the electrical current, and they are correspondingly called blocking states. Using the combination of conductance and shot noise measurements, we investigate blocking states in carbon nanotube (CNT) QDs. We report negative differential conductance and super-Poissonian noise. The enhanced noise is the signature of electron bunching, which originates from random switches between the strongly and weakly conducting states of the QD. Negative differential conductance appears here when the blocking state is an excited state. In this case, at the threshold voltage where the blocking state becomes populated, the current is reduced. Using a master equation approach, we provide numerical simulations reproducing both the conductance and the shot noise pattern observed in our measurements.

  20. Engineering Technology Of Fish Farming Floating Nets Cages On Polka Dot Grouper (Cromileptes Altivelis) Used Artificial Feed Enriched Phytase Enzyme

    NASA Astrophysics Data System (ADS)

    Samidjan, Istiyanto; Rachmawati, Diana

    2018-02-01

    One solution is to utilize engineering technology cultivation floating cage net polka dot grouper (ducker grouper), which is given artificial feed enriched with phytase enzymes. The objectives of this study was to examine the use of technology engineering floating net on ducker grouper on artificial feed that is enriched with different dose phytase enzymes to accelerate growth and survival. The research method used ducker grouper fish size 15,5 ± 0,5 cm in the net cages unit (1 m x 1 m x 1 m), 250 fish per cage, using 12 cages. Each net-cages was made of polyethylens netting, mesh size 12.5 mm. with complete randomized design (CRD) 4 treatment and 3 replication were feed Artificial enriched of phytase enzyme with the doses of A (0 FTU · kg-1 diet), B (200 FTU · kg-1 diet), C (500 FTU · kg-1 diet), and D (800 FTU · kg-1 diet) phytase enzyme. Feed was given 2 times a day in the morning and afternoon with 5% biomass per day. Data includes the growth of absolute weight polka dot grouper, FCR, and survival rate analyzed variety and Test Tukey.The result of the research showed that the difference of artificial feeding enriched phytase enzyme significantly (P <0,05) to growth, food conversion ratio (FCR), survival rete of polka dot grouper. The best treatment at C (500 mg / kg of feed) increase growth of absolute weight of 128.75 g, 1.75 (FCR), and a survival rate of 93.5%.

  1. New algorithms to represent complex pseudoknotted RNA structures in dot-bracket notation.

    PubMed

    Antczak, Maciej; Popenda, Mariusz; Zok, Tomasz; Zurkowski, Michal; Adamiak, Ryszard W; Szachniuk, Marta

    2018-04-15

    Understanding the formation, architecture and roles of pseudoknots in RNA structures are one of the most difficult challenges in RNA computational biology and structural bioinformatics. Methods predicting pseudoknots typically perform this with poor accuracy, often despite experimental data incorporation. Existing bioinformatic approaches differ in terms of pseudoknots' recognition and revealing their nature. A few ways of pseudoknot classification exist, most common ones refer to a genus or order. Following the latter one, we propose new algorithms that identify pseudoknots in RNA structure provided in BPSEQ format, determine their order and encode in dot-bracket-letter notation. The proposed encoding aims to illustrate the hierarchy of RNA folding. New algorithms are based on dynamic programming and hybrid (combining exhaustive search and random walk) approaches. They evolved from elementary algorithm implemented within the workflow of RNA FRABASE 1.0, our database of RNA structure fragments. They use different scoring functions to rank dissimilar dot-bracket representations of RNA structure. Computational experiments show an advantage of new methods over the others, especially for large RNA structures. Presented algorithms have been implemented as new functionality of RNApdbee webserver and are ready to use at http://rnapdbee.cs.put.poznan.pl. mszachniuk@cs.put.poznan.pl. Supplementary data are available at Bioinformatics online.

  2. Is it just motion that silences awareness of other visual changes?

    PubMed

    Peirce, Jonathan W

    2013-06-28

    When an array of visual elements is changing color, size, or shape incoherently, the changes are typically quite visible even when the overall color, size, or shape statistics of the field may not have changed. When the dots also move, however, the changes become much less apparent; awareness of them is "silenced" (Suchow & Alvarez, 2011). This finding might indicate that the perception of motion is of particular importance to the visual system, such that it is given priority in processing over other forms of visual change. Here we test whether that is the case by examining the converse: whether awareness of motion signals can be silenced by potent coherent changes in color or size. We find that they can, and with very similar effects, indicating that motion is not critical for silencing. Suchow and Alvarez's dots always moved in the same direction with the same speed, causing them to be grouped as a single entity. We also tested whether this coherence was a necessary component of the silencing effect. It is not; when the dot speeds are randomly selected, such that no coherent motion is present, the silencing effect remains. It is clear that neither motion nor grouping is directly responsible for the silencing effect. Silencing can be generated from any potent visual change.

  3. Involvement of the TonB System in Tolerance to Solvents and Drugs in Pseudomonas putida DOT-T1E

    PubMed Central

    Godoy, Patricia; Ramos-González, María Isabel; Ramos, Juan L.

    2001-01-01

    Pseudomonas putida DOT-T1E is able to grow with glucose as the carbon source in liquid medium with 1% (vol/vol) toluene or 17 g of (123 mM) p-hydroxybenzoate (4HBA) per liter. After random mini-Tn5′phoA-Km mutagenesis, we isolated the mutant DOT-T1E-PhoA5, which was more sensitive than the wild type to 4HBA (growth was prevented at 6 g/liter) and toluene (the mutant did not withstand sudden toluene shock). Susceptibility to toluene and 4HBA resulted from the reduced efflux of these compounds from the cell, as revealed by accumulation assays with 14C-labeled substrates. The mutant was also more susceptible to a number of antibiotics, and its growth in iron-deficient minimal medium was inhibited in the presence of ethylenediamine-di(o-hydroxyphenylacetic acid (EDDHA). Cloning the mutation in the PhoA5 strain and sequencing the region adjacent showed that the mini-Tn5 transposor interrupted the exbD gene, which forms part of the exbBD tonB operon. Complementation by the exbBD and tonB genes cloned in pJB3-Tc restored the wild-type characteristics to the PhoA5 strain. PMID:11514511

  4. Involvement of the TonB system in tolerance to solvents and drugs in Pseudomonas putida DOT-T1E.

    PubMed

    Godoy, P; Ramos-González, M I; Ramos, J L

    2001-09-01

    Pseudomonas putida DOT-T1E is able to grow with glucose as the carbon source in liquid medium with 1% (vol/vol) toluene or 17 g of (123 mM) p-hydroxybenzoate (4HBA) per liter. After random mini-Tn5'phoA-Km mutagenesis, we isolated the mutant DOT-T1E-PhoA5, which was more sensitive than the wild type to 4HBA (growth was prevented at 6 g/liter) and toluene (the mutant did not withstand sudden toluene shock). Susceptibility to toluene and 4HBA resulted from the reduced efflux of these compounds from the cell, as revealed by accumulation assays with (14)C-labeled substrates. The mutant was also more susceptible to a number of antibiotics, and its growth in iron-deficient minimal medium was inhibited in the presence of ethylenediamine-di(o-hydroxyphenylacetic acid (EDDHA). Cloning the mutation in the PhoA5 strain and sequencing the region adjacent showed that the mini-Tn5 transposor interrupted the exbD gene, which forms part of the exbBD tonB operon. Complementation by the exbBD and tonB genes cloned in pJB3-Tc restored the wild-type characteristics to the PhoA5 strain.

  5. 49 CFR 173.304a - Additional requirements for shipment of liquefied compressed gases in specification cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., carbon bisulfide (disulfide), ethyl chloride, ethylene oxide, nickel carbonyl, spirits of nitroglycerin...; DOT-3B400; DOT-4AA480; DOT-4B400; DOT-4BA400; DOT-4BW400; DOT-3E1800; DOT-39; DOT-3AL400. Carbon...; DOT-3T1800; DOT-3HT2000; DOT-39; DOT-3AL1800. Carbon dioxide, refrigerated liquid (see paragraph (e...

  6. 49 CFR 173.304a - Additional requirements for shipment of liquefied compressed gases in specification cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., carbon bisulfide (disulfide), ethyl chloride, ethylene oxide, nickel carbonyl, spirits of nitroglycerin...; DOT-3B400; DOT-4AA480; DOT-4B400; DOT-4BA400; DOT-4BW400; DOT-3E1800; DOT-39; DOT-3AL400. Carbon...; DOT-3T1800; DOT-3HT2000; DOT-39; DOT-3AL1800. Carbon dioxide, refrigerated liquid (see paragraph (e...

  7. RCT Testing Bystander Effectiveness to Reduce Violence

    PubMed Central

    Coker, Ann L.; Bush, Heather M.; Cook-Craig, Patricia G.; DeGue, Sarah A.; Clear, Emily R.; Brancato, Candace J.; Fisher, Bonnie S.; Recktenwald, Eileen A.

    2017-01-01

    Introduction Bystander-based programs have shown promise to reduce interpersonal violence at colleges, yet limited rigorous evaluations have addressed bystander intervention effectiveness in high schools. This study evaluated the Green Dot bystander intervention to reduce sexual violence and related forms of interpersonal violence in 26 high schools over 5 years. Design A cluster RCT was conducted. Setting/participants Kentucky high schools were randomized to intervention or control (wait list) conditions. Intervention Green Dot–trained educators conducted schoolwide presentations and recruited student popular opinion leaders to receive bystander training in intervention schools beginning in Year 1. Main outcome measures The primary outcome was sexual violence perpetration, and related forms of interpersonal violence victimization and perpetration were also measured using anonymous student surveys collected at baseline and annually from 2010 to 2014. Because the school was the unit of analysis, violence measures were aggregated by school and year and school-level counts were provided. Results A total of 89,707 students completed surveys. The primary, as randomized, analyses conducted in 2014–2016 included linear mixed models and generalized estimating equations to examine the condition–time interaction on violence outcomes. Slopes of school-level totals of sexual violence perpetration (condition–time, p<0.001) and victimization (condition time, p<0.001) were different over time. During Years 3–4, when Green Dot was fully implemented, the mean number of sexual violent events prevented by the intervention was 120 in Intervention Year 3 and 88 in Year 4. For Year 3, prevalence rate ratios for sexual violence perpetration in the intervention relative to control schools were 0.83 (95% CI=0.70, 0.99) in Year 3 and 0.79 (95% CI=0.67, 0.94) in Year 4. Similar patterns were observed for sexual violence victimization, sexual harassment, stalking, and dating violence perpetration and victimization. Conclusions Implementation of Green Dot in Kentucky high schools significantly decreased not only sexual violence perpetration but also other forms of interpersonal violence perpetration and victimization. PMID:28279546

  8. The influence of graphic display format on the interpretations of quantitative risk information among adults with lower education and literacy: a randomized experimental study.

    PubMed

    McCaffery, Kirsten J; Dixon, Ann; Hayen, Andrew; Jansen, Jesse; Smith, Sian; Simpson, Judy M

    2012-01-01

    To test optimal graphic risk communication formats for presenting small probabilities using graphics with a denominator of 1000 to adults with lower education and literacy. A randomized experimental study, which took place in adult basic education classes in Sydney, Australia. The participants were 120 adults with lower education and literacy. An experimental computer-based manipulation compared 1) pictographs in 2 forms, shaded "blocks" and unshaded "dots"; and 2) bar charts across different orientations (horizontal/vertical) and numerator size (small <100, medium 100-499, large 500-999). Accuracy (size of error) and ease of processing (reaction time) were assessed on a gist task (estimating the larger chance of survival) and a verbatim task (estimating the size of difference). Preferences for different graph types were also assessed. Accuracy on the gist task was very high across all conditions (>95%) and not tested further. For the verbatim task, optimal graph type depended on the numerator size. For small numerators, pictographs resulted in fewer errors than bar charts (blocks: odds ratio [OR] = 0.047, 95% confidence interval [CI] = 0.023-0.098; dots: OR = 0.049, 95% CI = 0.024-0.099). For medium and large numerators, bar charts were more accurate (e.g., medium dots: OR = 4.29, 95% CI = 2.9-6.35). Pictographs were generally processed faster for small numerators (e.g., blocks: 14.9 seconds v. bars: 16.2 seconds) and bar charts for medium or large numerators (e.g., large blocks: 41.6 seconds v. 26.7 seconds). Vertical formats were processed slightly faster than horizontal graphs with no difference in accuracy. Most participants preferred bar charts (64%); however, there was no relationship with performance. For adults with low education and literacy, pictographs are likely to be the best format to use when displaying small numerators (<100/1000) and bar charts for larger numerators (>100/1000).

  9. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    PubMed

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  10. Depth from Edge and Intensity Based Stereo.

    DTIC Science & Technology

    1982-09-01

    a Mars Viking vehicle, and a random dotted coffee jar. Assessment of the algorithm is a bit difficult: it uses a fairly simple control structure with...correspondences. This use of an evaluation function estimator allowed the introduction of the extensive pruning of a branch and bound algorithm. Even with it...Figure 3-6). This is the edge reversal constraint, and was integral to the pruning . As it happens, this same constraint is the key to the use of the

  11. Early Visual Cortex Dynamics during Top-Down Modulated Shifts of Feature-Selective Attention.

    PubMed

    Müller, Matthias M; Trautmann, Mireille; Keitel, Christian

    2016-04-01

    Shifting attention from one color to another color or from color to another feature dimension such as shape or orientation is imperative when searching for a certain object in a cluttered scene. Most attention models that emphasize feature-based selection implicitly assume that all shifts in feature-selective attention underlie identical temporal dynamics. Here, we recorded time courses of behavioral data and steady-state visual evoked potentials (SSVEPs), an objective electrophysiological measure of neural dynamics in early visual cortex to investigate temporal dynamics when participants shifted attention from color or orientation toward color or orientation, respectively. SSVEPs were elicited by four random dot kinematograms that flickered at different frequencies. Each random dot kinematogram was composed of dashes that uniquely combined two features from the dimensions color (red or blue) and orientation (slash or backslash). Participants were cued to attend to one feature (such as color or orientation) and respond to coherent motion targets of the to-be-attended feature. We found that shifts toward color occurred earlier after the shifting cue compared with shifts toward orientation, regardless of the original feature (i.e., color or orientation). This was paralleled in SSVEP amplitude modulations as well as in the time course of behavioral data. Overall, our results suggest different neural dynamics during shifts of attention from color and orientation and the respective shifting destinations, namely, either toward color or toward orientation.

  12. 3D surface perception from motion involves a temporal–parietal network

    PubMed Central

    Beer, Anton L.; Watanabe, Takeo; Ni, Rui; Sasaki, Yuka; Andersen, George J.

    2010-01-01

    Previous research has suggested that three-dimensional (3D) structure-from-motion (SFM) perception in humans involves several motion-sensitive occipital and parietal brain areas. By contrast, SFM perception in nonhuman primates seems to involve the temporal lobe including areas MT, MST and FST. The present functional magnetic resonance imaging study compared several motion-sensitive regions of interest including the superior temporal sulcus (STS) while human observers viewed horizontally moving dots that defined either a 3D corrugated surface or a 3D random volume. Low-level stimulus features such as dot density and velocity vectors as well as attention were tightly controlled. Consistent with previous research we found that 3D corrugated surfaces elicited stronger responses than random motion in occipital and parietal brain areas including area V3A, the ventral and dorsal intraparietal sulcus, the lateral occipital sulcus and the fusiform gyrus. Additionally, 3D corrugated surfaces elicited stronger activity in area MT and the STS but not in area MST. Brain activity in the STS but not in area MT correlated with interindividual differences in 3D surface perception. Our findings suggest that area MT is involved in the analysis of optic flow patterns such as speed gradients and that the STS in humans plays a greater role in the analysis of 3D SFM than previously thought. PMID:19674088

  13. Chromostereopsis in "virtual reality" adapters with electrically tuneable liquid lens oculars

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Muizniece, Kristine; Berzinsh, Janis

    2016-10-01

    Chromostereopsis can be sight and feel in "Virtual Reality" adapters, that induces the appearance of color dependant depth sense and, finally, combines this sense with the source conceived depth scenario. Present studies are devoted to investigation the induced chromastereopsis when using adapted "Virtual Reality" frame together with mobile devices as smartphones. We did observation of composite visual stimuli presented on the high spatial resolution screen of the mobile phone placed inside a portable "Virtual Reality" adapter. Separated for the left and right eyes stimuli consisted of two areas: a) identical for both eyes color chromostereopsis part, and b) additional conventional color neutral random-dot stereopsis part with a stereodisparity based on the horizontal shift of a random-dot segment in images for the left and right eyes, correspondingly. The observer task was to equalize the depth sense for neutral and colored stimuli areas. Such scheme allows to determine actual observed chromostereopsis disparity value versus eye stimuli color difference. At standard observation conditions for adapter with +2D ocular lenses for mobile red-blue stimuli, the perceptual chromostereopsis depth sensitivity on color difference was linearly approximated with a slope SChS ≈ 2.1[arcmin/(Labcolor difference)] for red-blue pairs. Additional to standard application in adapter the tuneable "Varioptic" liquid lens oculars were incorporated, that allowed stimuli eye magnification, vergence and disparity values control electrically.

  14. Differential processing: towards a unified model of direction and speed perception.

    PubMed

    Farrell-Whelan, Max; Brooks, Kevin R

    2013-11-01

    In two experiments, we demonstrate a misperception of the velocity of a random-dot stimulus moving in the presence of a static line oriented obliquely to the direction of dot motion. As shown in previous studies, the perceived direction of the dots is shifted away from the orientation of the static line, with the size of the shift varying as a function of line orientation relative to dot direction (the statically-induced direction illusion, or 'SDI'). In addition, we report a novel effect - that perceived speed also varies as a function of relative line orientation, decreasing systematically as the angle is reduced from 90° to 0°. We propose that these illusions both stem from the differential processing of object-relative and non-object-relative component velocities, with the latter being perceptually underestimated with respect to the former by a constant ratio. Although previous proposals regarding the SDI have not allowed quantitative accounts, we present a unified formal model of perceived velocity (both direction and speed) with the magnitude of this ratio as the only free parameter. The model was successful in accounting for the angular repulsion of motion direction across line orientations, and in predicting the systematic decrease in perceived velocity as the line's angle was reduced. Although fitting for direction and speed produced different best-fit values of the ratio of underestimation of non-object-relative motion compared to object-relative motion (with the ratio for speed being larger than that for direction) this discrepancy may be due to differences in the psychophysical procedures for measuring direction and speed. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. 49 CFR 173.304a - Additional requirements for shipment of liquefied compressed gases in specification cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-3E1800. Chlorodifluroethane or 1-Chloro-1, 1-difluoroethane (R-142b) 100 DOT-3A150; DOT-3AA150; DOT-3B150...; DOT-3AL225. Dichlorodifluoromethane and difluoroethane mixture (constant boiling mixture) (R-500) (see...; DOT-4BW240; DOT-4E240; DOT-39. 1,1-Difluoroethane (R-152a) (see note 8) 79 DOT-3A150; DOT-3AA150; DOT...

  16. 49 CFR 173.304a - Additional requirements for shipment of liquefied compressed gases in specification cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-3E1800. Chlorodifluroethane or 1-Chloro-1, 1-difluoroethane (R-142b) 100 DOT-3A150; DOT-3AA150; DOT-3B150...; DOT-3AL225. Dichlorodifluoromethane and difluoroethane mixture (constant boiling mixture) (R-500) (see...; DOT-4BW240; DOT-4E240; DOT-39. 1,1-Difluoroethane (R-152a) (see note 8) 79 DOT-3A150; DOT-3AA150; DOT...

  17. Knowledge about writing influences reading: Dynamic visual information about letter production facilitates letter identification.

    PubMed

    Schubert, Teresa; Reilhac, Caroline; McCloskey, Michael

    2018-06-01

    How are reading and writing related? In this study, we address the relationship between letter identification and letter production, uncovering a link in which production information can be used to identify letters presented dynamically. By testing an individual with a deficit in letter identification, we identified a benefit which would be masked by ceiling effects in unimpaired readers. In Experiment 1 we found that letter stimuli defined by the direction of dot motion (tiny dots within letter move leftward, background dots move rightward) provided no advantage over static letters. In Experiment 2, we tested dynamic stimuli in which the letter shapes emerged over time: drawn as they would be written, drawn in reverse, or with the letter shape filled in randomly. Improved identification was observed only for letters drawn as they are typically written. These results demonstrate that information about letter production can be integrated into letter identification, and point to bi-directional connections between stored letter production information (used for writing) and abstract letter identity representations (used in both reading and writing). The links from stored production information to abstract letter identities allow the former to activate the latter. We also consider the implications of our results for remediation of acquired letter identification deficits, including letter-drawing treatments and the underlying cause of their efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. An addressable quantum dot qubit with fault-tolerant control-fidelity.

    PubMed

    Veldhorst, M; Hwang, J C C; Yang, C H; Leenstra, A W; de Ronde, B; Dehollain, J P; Muhonen, J T; Hudson, F E; Itoh, K M; Morello, A; Dzurak, A S

    2014-12-01

    Exciting progress towards spin-based quantum computing has recently been made with qubits realized using nitrogen-vacancy centres in diamond and phosphorus atoms in silicon. For example, long coherence times were made possible by the presence of spin-free isotopes of carbon and silicon. However, despite promising single-atom nanotechnologies, there remain substantial challenges in coupling such qubits and addressing them individually. Conversely, lithographically defined quantum dots have an exchange coupling that can be precisely engineered, but strong coupling to noise has severely limited their dephasing times and control fidelities. Here, we combine the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, obtained via Clifford-based randomized benchmarking and consistent with that required for fault-tolerant quantum computing. This qubit has dephasing time T2* = 120 μs and coherence time T2 = 28 ms, both orders of magnitude larger than in other types of semiconductor qubit. By gate-voltage-tuning the electron g*-factor we can Stark shift the electron spin resonance frequency by more than 3,000 times the 2.4 kHz electron spin resonance linewidth, providing a direct route to large-scale arrays of addressable high-fidelity qubits that are compatible with existing manufacturing technologies.

  19. A fault-tolerant addressable spin qubit in a natural silicon quantum dot

    PubMed Central

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-01-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot–based qubits. This result can inspire contributions to quantum computing from industrial communities. PMID:27536725

  20. Significant decline in the tuberculosis burden in the Philippines ten years after initiating DOTS.

    PubMed

    Tupasi, T E; Radhakrishna, S; Chua, J A; Mangubat, N V; Guilatco, R; Galipot, M; Ramos, G; Quelapio, M I D; Beltran, G; Legaspi, J; Vianzon, R G; Lagahid, J

    2009-10-01

    The Philippines ranks ninth among the 22 high-burden countries for tuberculosis (TB). To measure the burden of pulmonary tuberculosis (PTB) in the Philippines and determine the impact of the DOTS strategy. The 2007 nationwide TB prevalence survey covered 50 clusters selected by multi-stage stratified random sampling from Metro Manila and other urban and rural areas. Subjects aged >or=10 years were screened radiographically for PTB to identify subjects for sputum examination and determine the prevalence of bacteriologically confirmed PTB, i.e., smear- and/or culture-positive PTB. In subjects aged >or=10 years, the 2007 prevalence of radiographic PTB was 6.3% (95%CI 5.5-7.1), bacteriologically confirmed PTB was 6.6 per 1000 (95%CI 5.1-8.1) and sputum smear-positive PTB was 2.6/1000 (95%CI 1.7-3.6). For the total population, the corresponding estimates were respectively 4.7%, 4.9/1000 and 2.0/1000. Between 1997 and 2007, there was a 31% reduction in bacteriologically confirmed PTB (P < 0.02) and a 27% reduction in smear-positive PTB (P = 0.18). This decline occurred despite the increasing poverty in the population. The survey demonstrated a significant decline in the TB burden 10 years after the implementation of DOTS, facilitated by a strategic public-private partnership.

  1. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission

    PubMed Central

    Sapienza, Luca; Davanço, Marcelo; Badolato, Antonio; Srinivasan, Kartik

    2015-01-01

    Self-assembled, epitaxially grown InAs/GaAs quantum dots (QDs) are promising semiconductor quantum emitters that can be integrated on a chip for a variety of photonic quantum information science applications. However, self-assembled growth results in an essentially random in-plane spatial distribution of QDs, presenting a challenge in creating devices that exploit the strong interaction of single QDs with highly confined optical modes. Here, we present a photoluminescence imaging approach for locating single QDs with respect to alignment features with an average position uncertainty <30 nm (<10 nm when using a solid-immersion lens), which represents an enabling technology for the creation of optimized single QD devices. To that end, we create QD single-photon sources, based on a circular Bragg grating geometry, that simultaneously exhibit high collection efficiency (48%±5% into a 0.4 numerical aperture lens, close to the theoretically predicted value of 50%), low multiphoton probability (g(2)(0) <1%), and a significant Purcell enhancement factor (≈3). PMID:26211442

  2. Exploiting data representation for fault tolerance

    DOE PAGES

    Hoemmen, Mark Frederick; Elliott, J.; Sandia National Lab.; ...

    2015-01-06

    Incorrect computer hardware behavior may corrupt intermediate computations in numerical algorithms, possibly resulting in incorrect answers. Prior work models misbehaving hardware by randomly flipping bits in memory. We start by accepting this premise, and present an analytic model for the error introduced by a bit flip in an IEEE 754 floating-point number. We then relate this finding to the linear algebra concepts of normalization and matrix equilibration. In particular, we present a case study illustrating that normalizing both vector inputs of a dot product minimizes the probability of a single bit flip causing a large error in the dot product'smore » result. Moreover, the absolute error is either less than one or very large, which allows detection of large errors. Then, we apply this to the GMRES iterative solver. We count all possible errors that can be introduced through faults in arithmetic in the computationally intensive orthogonalization phase of GMRES, and show that when the matrix is equilibrated, the absolute error is bounded above by one.« less

  3. Anisotropic connectivity implements motion-based prediction in a spiking neural network.

    PubMed

    Kaplan, Bernhard A; Lansner, Anders; Masson, Guillaume S; Perrinet, Laurent U

    2013-01-01

    Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons inspired by the architecture of retinotopic cortical areas that assumes predictive coding is implemented through network connectivity, namely in the connection delays and in selectiveness for the tuning properties of source and target cells. We show that the applied connection pattern leads to motion-based prediction in an experiment tracking a moving dot. In contrast to our proposed model, a network with random or isotropic connectivity fails to predict the path when the moving dot disappears. Furthermore, we show that a simple linear decoding approach is sufficient to transform neuronal spiking activity into a probabilistic estimate for reading out the target trajectory.

  4. Transport spectroscopy of coupled donors in silicon nano-transistors

    PubMed Central

    Moraru, Daniel; Samanta, Arup; Anh, Le The; Mizuno, Takeshi; Mizuta, Hiroshi; Tabe, Michiharu

    2014-01-01

    The impact of dopant atoms in transistor functionality has significantly changed over the past few decades. In downscaled transistors, discrete dopants with uncontrolled positions and number induce fluctuations in device operation. On the other hand, by gaining access to tunneling through individual dopants, a new type of devices is developed: dopant-atom-based transistors. So far, most studies report transport through dopants randomly located in the channel. However, for practical applications, it is critical to control the location of the donors with simple techniques. Here, we fabricate silicon transistors with selectively nanoscale-doped channels using nano-lithography and thermal-diffusion doping processes. Coupled phosphorus donors form a quantum dot with the ground state split into a number of levels practically equal to the number of coupled donors, when the number of donors is small. Tunneling-transport spectroscopy reveals fine features which can be correlated with the different numbers of donors inside the quantum dot, as also suggested by first-principles simulation results. PMID:25164032

  5. One Small Randomly Blinking Dot in an Otherwise Dark Environment: Effects on Visual Cortical Neurons of Kittens.

    DTIC Science & Technology

    1982-06-23

    back onto the tangent screen. A one centimeter oblong craniotomy was drilled, revealing the medial banks of both hemispheres, -2 mm posterior to A-P...zero. A one cm high plastic chamber was cemented to the skull around the craniotomy . After tungsten hooks were used to tear the dura over the medial...stimulus continuously for several weeks. If the kittens were awake for 10 hr per day average then each accumulated about 500 hr opportunity to view the

  6. Stereomotion speed perception is contrast dependent

    NASA Technical Reports Server (NTRS)

    Brooks, K.

    2001-01-01

    The effect of contrast on the perception of stimulus speed for stereomotion and monocular lateral motion was investigated for successive matches in random-dot stimuli. The familiar 'Thompson effect'--that a reduction in contrast leads to a reduction in perceived speed--was found in similar proportions for both binocular images moving in depth, and for monocular images translating laterally. This result is consistent with the idea that the monocular motion system has a significant input to the stereomotion system, and dominates the speed percept for approaching motion.

  7. Horizontal optokinetic reflex in the opossum Didelphis marsupialis aurita.

    PubMed

    Nasi, J P; Bernardes, R F; Volchan, E; Rocha-Miranda, C E; Tecles, M

    1989-01-01

    Electro-oculographic recordings were performed in 10 opossums. The optokinetic reflex was elicited by projecting a random dot stimulus on a cylindrical screen moving horizontally from left to right or right to left at various constant speeds. Binocular stimulation yielded the same response as the temporal to nasal monocular condition. The nasal to temporal monocular response was always less than that to the opposite direction: 50% at 3 degrees/s and 15% at 18 degrees/s. These results are discussed in a comparative context.

  8. Detection of CdSe quantum dot photoluminescence for security label on paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Sugiarto, Iyon Titok; Bilqis, Ratu

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program tomore » reveal quantum dot pattern stamp having the word ’RAHASIA’. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.« less

  9. Costs and cost-effectiveness of different DOT strategies for the treatment of tuberculosis in Pakistan. Directly Observed Treatment.

    PubMed

    Khan, M A; Walley, J D; Witter, S N; Imran, A; Safdar, N

    2002-06-01

    An economic study was conducted alongside a clinical trial at three sites in Pakistan to establish the costs and effectiveness of different strategies for implementing directly observed treatment (DOT) for tuberculosis. Patients were randomly allocated to one of three arms: DOTS with direct observation by health workers (at health centres or by community health workers); DOTS with direct observation by family members; and DOTS without direct observation. The clinical trial found no statistically significant difference in cure rate for the different arms. The economic study collected data on the full range of health service costs and patient costs of the different treatment arms. Data were also disaggregated by gender, rural and urban patients, by treatment site and by economic categories, to investigate the costs of the different strategies, their cost-effectiveness and the impact that they might have on patient compliance with treatment. The study found that direct observation by health centre-based health workers was the least cost-effective of the strategies tested (US dollars 310 per case cured). This is an interesting result, as this is the model recommended by the World Health Organization and International Union against Tuberculosis and Lung Disease. Attending health centres daily during the first 2 months generated high patient costs (direct and in terms of time lost), yet cure rates for this group fell below those of the non-observed group (58%, compared with 62%). One factor suggested by this study is that the high costs of attending may be deterring patients, and in particular, economically active patients who have most to lose from the time taken by direct observation. Without stronger evidence of benefits, it is hard to justify the costs to health services and patients that this type of direct observation imposes. The self-administered group came out as most cost-effective (164 dollars per case cured). The community health worker sub-group achieved the highest cure rates (67%), with a cost per case only slightly higher than the self-administered group (172 dollars per case cured). This approach should be investigated further, along with other approaches to improving patient compliance.

  10. Impact of connecting tuberculosis directly observed therapy short-course with smoking cessation on health-related quality of life

    PubMed Central

    2012-01-01

    Background With evolving evidence of association between tuberculosis (TB) and tobacco smoking, recommendations for the inclusion of tobacco cessation interventions in TB care are becoming increasingly important and more widely disseminated. Connecting TB and tobacco cessation interventions has been strongly advocated as this may yield better outcomes. However, no study has documented the impact of such connection on health-related quality of life (HRQoL). The objective of this study was to document the impact of an integrated TB directly observed therapy short-course (DOTS) plus smoking cessation intervention (SCI) on HRQoL. Methods This was a multi-centered non-randomized controlled study involving 120 TB patients who were current smokers at the time of TB diagnosis in Malaysia. Patients were assigned to either of two groups: the usual TB-DOTS plus SCI (SCIDOTS group) or the usual TB-DOTS only (DOTS group). The effect of the novel strategy on HRQoL was measured using EQ-5D questionnaire. Two-way repeated measure ANOVA was used to examine the effects. Results When compared, participants who received the integrated intervention had a better HRQoL than those who received the usual TB care. The SCIDOTS group had a significantly greater increase in EQ-5D utility score than the DOTS group during 6 months follow-up (mean ± SD = 0.98 ± 0.08 vs. 0.91 ± 0.14, p = 0.006). Similarly, the mean scores for EQ-VAS showed a consistently similar trend as the EQ-5D indices, with the scores increasing over the course of TB treatment. Furthermore, for the EQ-VAS, there were significant main effects for group [F (1, 84) = 4.91, p = 0.029, η2 = 0.06], time [F (2, 168) = 139.50, p = < 0.001, η2 = 0.62] and group x time interaction [F (2, 168) = 13.89, p = < 0.001, η2 = 0.14]. Conclusions This study supports the evidence that an integrated TB-tobacco treatment strategy could potentially improve overall quality of life outcomes among TB patients who are smokers. PMID:22373470

  11. Impact of DOTS compared with DOTS-plus on multidrug resistant tuberculosis and tuberculosis deaths: decision analysis.

    PubMed

    Sterling, Timothy R; Lehmann, Harold P; Frieden, Thomas R

    2003-03-15

    This study sought to determine the impact of the World Health Organization's directly observed treatment strategy (DOTS) compared with that of DOTS-plus on tuberculosis deaths, mainly in the developing world. Decision analysis with Monte Carlo simulation of a Markov decision tree. People with smear positive pulmonary tuberculosis. Analyses modelled different levels of programme effectiveness of DOTS and DOTS-plus, and high (10%) and intermediate (3%) proportions of primary multidrug resistant tuberculosis, while accounting for exogenous reinfection. The cumulative number of tuberculosis deaths per 100 000 population over 10 years. The model predicted that under DOTS, 276 people would die from tuberculosis (24 multidrug resistant and 252 not multidrug resistant) over 10 years under optimal implementation in an area with 3% primary multidrug resistant tuberculosis. Optimal implementation of DOTS-plus would result in four (1.5%) fewer deaths. If implementation of DOTS-plus were to result in a decrease of just 5% in the effectiveness of DOTS, 16% more people would die with tuberculosis than under DOTS alone. In an area with 10% primary multidrug resistant tuberculosis, 10% fewer deaths would occur under optimal DOTS-plus than under optimal DOTS, but 16% more deaths would occur if implementation of DOTS-plus were to result in a 5% decrease in the effectiveness of DOTS CONCLUSIONS: Under optimal implementation, fewer tuberculosis deaths would occur under DOTS-plus than under DOTS. If, however, implementation of DOTS-plus were associated with even minimal decreases in the effectiveness of treatment, substantially more patients would die than under DOTS.

  12. USLCSG Task Force

    Science.gov Websites

    Unites States Linear Collider Steering Group dot dot dot dot What's New! June 2003 Meeting Welcome to the USLCSG Task Force at the Stanford Linear Accelerator Center [Enter] dot dot SLAC Page Owners

  13. 49 CFR 22.57 - Loan reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....dot.gov/financial/docs/Loan_Activation_DOT_F_2303-1.pdf. The Participating Lender must also provide....osdbu.dot.gov/financial/docs/Loan_Close-Out_DOT_F_2304-1.pdf. To fulfill this requirement, the....dot.gov/financial/docs/Pending_Loan_DOT_F_2306-1.xls and http://www.osdbu.dot.gov/financial/docs...

  14. 49 CFR 22.57 - Loan reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....dot.gov/financial/docs/Loan_Activation_DOT_F_2303-1.pdf. The Participating Lender must also provide....osdbu.dot.gov/financial/docs/Loan_Close-Out_DOT_F_2304-1.pdf. To fulfill this requirement, the....dot.gov/financial/docs/Pending_Loan_DOT_F_2306-1.xls and http://www.osdbu.dot.gov/financial/docs...

  15. 49 CFR 22.57 - Loan reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....dot.gov/financial/docs/Loan_Activation_DOT_F_2303-1.pdf. The Participating Lender must also provide....osdbu.dot.gov/financial/docs/Loan_Close-Out_DOT_F_2304-1.pdf. To fulfill this requirement, the....dot.gov/financial/docs/Pending_Loan_DOT_F_2306-1.xls and http://www.osdbu.dot.gov/financial/docs...

  16. Charging effects in single InP/GaInP baby dots

    NASA Astrophysics Data System (ADS)

    Persson, Jonas

    2001-03-01

    It has recently been demonstrated that the matrix material plays a major role for the physical behavior of self-assembled InP/GaInP quantum dots. As the "intrinsically" n-type GaInP matrix fills the quantum dot with electrons the spectral behavior of the dot dramatically changes. For the larger, fully developed dots, the charging gives rise to several broad lines. With an external bias it is possible to reduce the electron population of the dot. For smaller dots, baby dots, we show the possibility of dramatically changing the appearance of the dot spectrum by a precise tuning of the size of the quantum dot. When the dot is small enough it is uncharged and the spectrum is very similar to other material systems, whereas a slightly larger dot is charged and the number of lines is dramatically increased. We present high spectral resolution photoluminescence measurements of individual InP/GaInP baby-dots and k\\cdotp calculations including direct and exchange interactions.

  17. Business models for implementing geospatial technologies in transportation decision-making

    DOT National Transportation Integrated Search

    2007-03-31

    This report describes six State DOTs business models for implementing geospatial technologies. It provides a comparison of the organizational factors influencing how Arizona DOT, Delaware DOT, Georgia DOT, Montana DOT, North Carolina DOT, and Okla...

  18. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by Lithographic Techniques: III-V Semiconductors and Carbon: 15. Electrically controlling single spin coherence in semiconductor nanostructures Y. Dovzhenko, K. Wang, M. D. Schroer and J. R. Petta; 16. Theory of electron and nuclear spins in III-V semiconductor and carbon-based dots H. Ribeiro and G. Burkard; 17. Graphene quantum dots: transport experiments and local imaging S. Schnez, J. Guettinger, F. Molitor, C. Stampfer, M. Huefner, T. Ihn and K. Ensslin; Part VI. Single Dots for Future Telecommunications Applications: 18. Electrically operated entangled light sources based on quantum dots R. M. Stevenson, A. J. Bennett and A. J. Shields; 19. Deterministic single quantum dot cavities at telecommunication wavelengths D. Dalacu, K. Mnaymneh, J. Lapointe, G. C. Aers, P. J. Poole, R. L. Williams and S. Hughes; Index.

  19. Coordinated Control of Three-Dimensional Components of Smooth Pursuit to Rotating and Translating Textures.

    PubMed

    Edinger, Janick; Pai, Dinesh K; Spering, Miriam

    2017-01-01

    The neural control of pursuit eye movements to visual textures that simultaneously translate and rotate has largely been neglected. Here we propose that pursuit of such targets-texture pursuit-is a fully three-dimensional task that utilizes all three degrees of freedom of the eye, including torsion. Head-fixed healthy human adults (n = 8) tracked a translating and rotating random dot pattern, shown on a computer monitor, with their eyes. Horizontal, vertical, and torsional eye positions were recorded with a head-mounted eye tracker. The torsional component of pursuit is a function of the rotation of the texture, aligned with its visual properties. We observed distinct behaviors between those trials in which stimulus rotation was in the same direction as that of a rolling ball ("natural") in comparison to those with the opposite rotation ("unnatural"): Natural rotation enhanced and unnatural rotation reversed torsional velocity during pursuit, as compared to torsion triggered by a nonrotating random dot pattern. Natural rotation also triggered pursuit with a higher horizontal velocity gain and fewer and smaller corrective saccades. Furthermore, we show that horizontal corrective saccades are synchronized with torsional corrective saccades, indicating temporal coupling of horizontal and torsional saccade control. Pursuit eye movements have a torsional component that depends on the visual stimulus. Horizontal and torsional eye movements are separated in the motor periphery. Our findings suggest that translational and rotational motion signals might be coordinated in descending pursuit pathways.

  20. Photon-assisted tunneling in an asymmetrically coupled triple quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bao-Chuan; Cao, Gang, E-mail: gcao@ustc.edu.cn; Chen, Bao-Bao

    The gate-defined quantum dot is regarded as one of the basic structures required for scalable semiconductor quantum processors. Here, we demonstrate a structure that contains three quantum dots scaled in series. The electron number of each dot and the tunnel coupling between them can be tuned conveniently using splitting gates. We tune the quantum dot array asymmetrically such that the tunnel coupling between the right dot and the central dot is much larger than that between the left dot and the central dot. When driven by microwaves, the sidebands of the photon-assisted tunneling process appear not only in the left-to-centralmore » dot transition region but also in the left-to-right dot transition region. These sidebands are both attributed to the left-to-central transition for asymmetric coupling. Our result shows that there is a region of a triple quantum dot structure that remains indistinct when studied with a normal two-dimensional charge stability diagram; this will be helpful in future studies of the scalability of quantum dot systems.« less

  1. Native structure of a type IV secretion system core complex essential for Legionella pathogenesis.

    PubMed

    Kubori, Tomoko; Koike, Masafumi; Bui, Xuan Thanh; Higaki, Saori; Aizawa, Shin-Ichi; Nagai, Hiroki

    2014-08-12

    Bacterial type IV secretion systems are evolutionarily related to conjugation systems and play a pivotal role in infection by delivering numerous virulence factors into host cells. Using transmission electron microscopy, we report the native molecular structure of the core complex of the Dot/Icm type IV secretion system encoded by Legionella pneumophila, an intracellular human pathogen. The biochemically isolated core complex, composed of at least five proteins--DotC, DotD, DotF, DotG, and DotH--has a ring-shaped structure. Intriguingly, morphologically distinct premature complexes are formed in the absence of DotG or DotF. Our data suggest that DotG forms a central channel spanning inner and outer membranes. DotF, a component dispensable for type IV secretion, plays a role in efficient embedment of DotG into the functional core complex. These results highlight a common scheme for the biogenesis of transport machinery.

  2. Understanding the Capsanthin Tails in Regulating the Hydrophilic-Lipophilic Balance of Carbon Dots for a Rapid Crossing Cell Membrane.

    PubMed

    Chen, Jing; Zhang, Xiang; Zhang, Ye; Wang, Wei; Li, Shuya; Wang, Yucai; Hu, Mengyue; Liu, Li; Bi, Hong

    2017-10-03

    Here we use natural Chinese paprika to prepare a new kind of amphiphilic carbon dot (A-Dot) that exhibits bright, multicolored fluorescence and contains hydrophilic groups as well as lipophilic capsanthin tails on the surface. It is found that the capsanthin tails in a phospholipid-like structure can promote cell internalization of the A-Dots via crossing cell membranes rapidly in an energy-independent fashion. Compared to highly hydrophilic carbon dots (H-Dots), a control sample prepared from the microwave thermolysis of citric acid and ethylenediamine, our synthesized A-Dots can be taken up by CHO, HeLa, and HFF cells more easily. More importantly, we develop a method to calibrate the hydrophilic-lipophilic balance (HLB) values of various kinds of carbon dots (C-Dots). HLB values of A-Dots and H-Dots are determined to be 6.4 and 18.4, respectively. Moreover, we discover that the cellular uptake efficiency of C-Dots is closely related to their HLBs, and the C-Dots with an HLB value of around 6.4 cross the cell membrane easier and faster. As we regulate the HLB value of the A-Dots from 6.4 to 15.3 by removing the capsanthin tails from their surfaces via alkali refluxing, it is found that the refluxed A-Dots can hardly cross HeLa cell membranes. Our work is an essential step toward understanding the importance of regulating the HLB values as well as the surface polarity of the C-Dots for their practical use in bioimaging and also provides a simple but effective way to judge whether the C-Dots in hand are appropriate for cell imaging.

  3. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barettin, Daniele, E-mail: Daniele.Barettin@uniroma2.it; Auf der Maur, Matthias; De Angelis, Roberta

    2015-03-07

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateralmore » quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.« less

  4. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    NASA Astrophysics Data System (ADS)

    Barettin, Daniele; Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-01

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In0.48Ga0.52P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k →.p → bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  5. Hierarchical colorant-based direct binary search halftoning.

    PubMed

    He, Zhen

    2010-07-01

    Colorant-based direct binary search (CB-DBS) halftoning proposed in provides an image quality benchmark for dispersed-dot halftoning algorithms. The objective of this paper is to further push the image quality limit. An algorithm called hierarchical colorant-based direct binary search (HCB-DBS) is developed in this paper. By appropriately integrating yellow colorant into dot-overlapping and dot-positioning controls, it is demonstrated that HCB-DBS can achieve better halftone texture of both individual and joint dot-color planes, without compromising the dot distribution of more visible halftone of cyan and magenta colorants. The input color specification is first converted from colorant space to dot-color space with minimum brightness variation principle for full dot-overlapping control. The dot-colors are then split into groups based upon dot visibility. Hierarchical monochrome DBS halftoning is applied to make dot-positioning decision for each group, constrained on the already generated halftone of the groups with higher priority. And dot-coloring is decided recursively with joint monochrome DBS halftoning constrained on the related total dot distribution. Experiments show HCB-DBS improves halftone texture for both individual and joint dot-color planes. And it reduces the halftone graininess and free of color mottle artifacts, comparing to CB-DBS.

  6. A modified gradient approach for the growth of low-density InAs quantum dot molecules by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sharma, Nandlal; Reuter, Dirk

    2017-11-01

    Two vertically stacked quantum dots that are electronically coupled, so called quantum dot molecules, are of great interest for the realization of solid state building blocks for quantum communication networks. We present a modified gradient approach to realize InAs quantum dot molecules with a low areal density so that single quantum dot molecules can be optically addressed. The individual quantum dot layers were prepared by solid source molecular beam epitaxy depositing InAs on GaAs(100). The bottom quantum dot layer has been grown without substrate rotation resulting in an In-gradient across the surface, which translated into a density gradient with low quantum dot density in a certain region of the wafer. For the top quantum dot layer, separated from the bottom quantum dot layer by a 6 nm thick GaAs barrier, various InAs amounts were deposited without an In-gradient. In spite of the absence of an In-gradient, a pronounced density gradient is observed for the top quantum dots. Even for an In-amount slightly below the critical thickness for a single dot layer, a density gradient in the top quantum dot layer, which seems to reproduce the density gradient in the bottom layer, is observed. For more or less In, respectively, deviations from this behavior occur. We suggest that the obvious influence of the bottom quantum dot layer on the growth of the top quantum dots is due to the strain field induced by the buried dots.

  7. Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation

    PubMed Central

    Jo, Stephanie Y.; Granowicz, Eric M.; Maillard, Ivan; Thomas, Dafydd

    2011-01-01

    Disruptor of telomeric silencing 1-like (Dot1l) is a histone 3 lysine 79 methyltransferase. Studies of constitutive Dot1l knockout mice show that Dot1l is essential for embryonic development and prenatal hematopoiesis. DOT1L also interacts with translocation partners of Mixed Lineage Leukemia (MLL) gene, which is commonly translocated in human leukemia. However, the requirement of Dot1l in postnatal hematopoiesis and leukemogenesis of MLL translocation proteins has not been conclusively shown. With a conditional Dot1l knockout mouse model, we examined the consequences of Dot1l loss in postnatal hematopoiesis and MLL translocation leukemia. Deletion of Dot1l led to pancytopenia and failure of hematopoietic homeostasis, and Dot1l-deficient cells minimally reconstituted recipient bone marrow in competitive transplantation experiments. In addition, MLL-AF9 cells required Dot1l for oncogenic transformation, whereas cells with other leukemic oncogenes, such as Hoxa9/Meis1 and E2A-HLF, did not. These findings illustrate a crucial role of Dot1l in normal hematopoiesis and leukemogenesis of specific oncogenes. PMID:21398221

  8. Midline Frontal Cortex Low-Frequency Activity Drives Subthalamic Nucleus Oscillations during Conflict

    PubMed Central

    Zavala, Baltazar A.; Tan, Huiling; Little, Simon; Ashkan, Keyoumars; Hariz, Marwan; Foltynie, Thomas; Zrinzo, Ludvic; Zaghloul, Kareem A.

    2014-01-01

    Making the right decision from conflicting information takes time. Recent computational, electrophysiological, and clinical studies have implicated two brain areas as being crucial in assuring sufficient time is taken for decision-making under conditions of conflict: the medial prefrontal cortex and the subthalamic nucleus (STN). Both structures exhibit an elevation of activity at low frequencies (<10 Hz) during conflict that correlates with the amount of time taken to respond. This suggests that the two sites could become functionally coupled during conflict. To establish the nature of this interaction we recorded from deep-brain stimulation electrodes implanted bilaterally in the STN of 13 Parkinson's disease patients while they performed a sensory integration task involving randomly moving dots. By gradually increasing the number of dots moving coherently in one direction, we were able to determine changes in the STN associated with response execution. Furthermore, by occasionally having 10% of the dots move in the opposite direction as the majority, we were able to identify an independent increase in STN theta-delta activity triggered by conflict. Crucially, simultaneous midline frontal electroencephalographic recordings revealed an increase in the theta-delta band coherence between the two structures that was specific to high-conflict trials. Activity over the midline frontal cortex was Granger causal to that in STN. These results establish the cortico-subcortical circuit enabling successful choices to be made under conditions of conflict and provide support for the hypothesis that the brain uses frequency-specific channels of communication to convey behaviorally relevant information. PMID:24849364

  9. Acute Effects of 30 Minutes Resistance and Aerobic Exercise on Cognition in a High School Sample.

    PubMed

    Harveson, Andrew T; Hannon, James C; Brusseau, Timothy A; Podlog, Leslie; Papadopoulos, Charilaos; Durrant, Lynne H; Hall, Morgan S; Kang, Kyoung-Doo

    2016-06-01

    The purpose of this study was to determine differences in cognition between acute bouts of resistance exercise, aerobic exercise, and a nonexercise control in an untrained youth sample. Ninety-four participants performed 30 min of aerobic exercise, resistance exercise, or nonexercise separated by 7 days each in a randomized crossover design. After each exercise intervention, participants were assessed using 2 cognitive tests. The Dot, Word, and Color elements of the Stroop Test (Victoria version) and Parts A and B of the Trail-Making Test were used to measure cognition. Acute resistance and aerobic exercise resulted in similar improvements over nonexercise in all forms of the Stroop Test. Acute aerobic exercise led to improved performance over nonexercise and resistance exercise in Part B of the Trail-Making Test. Neither exercise intervention showed significant changes in time to complete Part A of the Trail-Making Test. Boys outperformed girls on the Stroop Dot and Color Test following acute aerobic exercise, in the Stroop Dot, Word, and Color Test following acute resistance exercise, and in the Stroop Color Test and Trail-Making Test Part B following nonexercise. Both acute resistance and aerobic exercise increased measures of cognition over a nonexercise control in untrained high school youth. These findings suggest the merits of acute resistance exercise as an alternative or complement to aerobic activity for educators aiming to increase youth physical activity and cognitive function concurrently.

  10. Measurement of angular velocity in the perception of rotation.

    PubMed

    Barraza, José F; Grzywacz, Norberto M

    2002-09-01

    Humans are sensitive to the parameters of translational motion, namely, direction and speed. At the same time, people have special mechanisms to deal with more complex motions, such as rotations and expansions. One wonders whether people may also be sensitive to the parameters of these complex motions. Here, we report on a series of experiments that explore whether human subjects can use angular velocity to evaluate how fast a rotational motion is. In four experiments, subjects were required to perform a task of speed-of-rotation discrimination by comparing two annuli of different radii in a temporal 2AFC paradigm. Results showed that humans could rely on a sensitive measurement of angular velocity to perform this discrimination task. This was especially true when the quality of the rotational signal was high (given by the number of dots composing the annulus). When the signal quality decreased, a bias towards linear velocity of 5-80% appeared, suggesting the existence of separate mechanisms for angular and linear velocity. This bias was independent from the reference radius. Finally, we asked whether the measurement of angular velocity required a rigid rotation, that is, whether the visual system makes only one global estimate of angular velocity. For this purpose, a random-dot disk was built such that all the dots were rotating with the same tangential speed, irrespectively of radius. Results showed that subjects do not estimate a unique global angular velocity, but that they perceive a non-rigid disk, with angular velocity falling inversely proportionally with radius.

  11. Monolayer semiconductor nanocavity lasers with ultralow thresholds.

    PubMed

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong

    2015-04-02

    Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  12. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    NASA Astrophysics Data System (ADS)

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G.; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong

    2015-04-01

    Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  13. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    NASA Astrophysics Data System (ADS)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  14. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    NASA Astrophysics Data System (ADS)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  15. A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.

    PubMed

    Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin

    2014-06-01

    The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.

  16. Warm-up for Sprint Swimming: Race-Pace or Aerobic Stimulation? A Randomized Study.

    PubMed

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Viana, João L; Teixeira, Ana M; Marinho, Daniel A

    2017-09-01

    Neiva, HP, Marques, MC, Barbosa, TM, Izquierdo, M, Viana, JL, Teixeira, AM, and Marinho, DA. Warm-up for sprint swimming: race-pace or aerobic stimulation? A randomized study. J Strength Cond Res 31(9): 2423-2431, 2017-The aim of this study was to compare the effects of 2 different warm-up intensities on 100-m swimming performance in a randomized controlled trial. Thirteen competitive swimmers performed two 100-m freestyle time-trials on separate days after either control or experimental warm-up in a randomized design. The control warm-up included a typical race-pace set (4 × 25 m), whereas the experimental warm-up included an aerobic set (8 × 50 m at 98-102% of critical velocity). Cortisol, testosterone, blood lactate ([La]), oxygen uptake (V[Combining Dot Above]O2), heart rate, core (Tcore and Tcorenet) and tympanic temperatures, and rating of perceived exertion (RPE) were monitored. Stroke length (SL), stroke frequency (SF), stroke index (SI), and propelling efficiency (ηp) were assessed for each 50-m lap. We found that V[Combining Dot Above]O2, heart rate, and Tcorenet were higher after experimental warm-up (d > 0.73), but only the positive effect for Tcorenet was maintained until the trial. Performance was not different between conditions (d = 0.07). Experimental warm-up was found to slow SF (mean change ±90% CL = 2.06 ± 1.48%) and increase SL (1.65 ± 1.40%) and ηp (1.87 ± 1.33%) in the first lap. After the time-trials, this warm-up had a positive effect on Tcorenet (d = 0.69) and a negative effect on [La] (d = 0.56). Although the warm-ups had similar outcomes in the 100-m freestyle, performance was achieved through different biomechanical strategies. Stroke length and efficiency were higher in the first lap after the experimental warm-up, whereas SF was higher after control warm-up. Physiological adaptations were observed mainly through an increased Tcore after experimental warm-up. In this condition, the lower [La] after the trial suggests lower dependency on anaerobic metabolism.

  17. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    PubMed

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-03

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Short communication; Formula for the calculation of ground temperature at 1 M depth in Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tezcan, A.K.

    1992-06-01

    This paper reports that the formula has been found by using the yearly averages of the temperatures at 1 m depth measured in 193 meteorological stations, distributed all over Turkey. It has thus become possible to determine the regional temperature value at 1 m depth at any point in Turkey, if the latitude, longitude and elevation are known. The values, calculated by the formula, can contribute to geothermal exploration in Turkey by providing values that can be compared with the observed ones, and, by becoming second values for the calculation of geothermal gradients where only single downhole temperatures are available.more » The formula has been evolved by expressing the temperatures as the linear function of latitude (La), longitude (Lo) and elevation (H): T = a + b [center dot] La + c [center dot] Lo + d [center dot] H. The derived four least square equations are a [center dot] n + b [center dot] [Sigma](La) + c [center dot] [Sigma](lo) + d [center dot] [Sigma]H = [Sigma]T a [center dot] [Sigma](La) + b [center dot] [Sigma](La)[sup 2] + c [center dot] [Sigma](La)(Lo) + d [center dot] [Sigma]H(La) =[Sigma]T(La) a [center dot] [Sigma](Lo) + b [center dot] [Sigma](La)(Lo) + c [center dot] [Sigma](Lo)[sup 2] + d [center dot] [Sigma]H(Lo) = [Sigma]T(Lo) a[center dot] [Sigma]H + b [center dot] [Sigma]H(La) + c [center dot] [Sigma](Lo) + d [center dot] [Sigma]H[sup 2] = [Sigma]TH where n is the number of data sets. The calculation of sigma values and the solution of the set of equations have been performed by means of a personal computer. The resulting formula is: T = 57.487 [minus] 1.078 La + 0.102 Lo [minus] 0.00488H where latitude and longitude are expressed in degrees, and elevation in meters. The regional value at Ankara (latitude 39.9[degrees], longitude 32.9[degrees], elevation 894 m) is calculated as 13.5[degrees]C (the measured value at 1 m depth is 14.6[degrees]C) and at Adana.« less

  19. Advancing Patient-Centered Care in Tuberculosis Management: A Mixed-Methods Appraisal of Video Directly Observed Therapy

    PubMed Central

    Holzman, Samuel B; Zenilman, Avi; Shah, Maunank

    2018-01-01

    Abstract Background Directly observed therapy (DOT) remains an integral component of treatment support and adherence monitoring in tuberculosis care. In-person DOT is resource intensive and often burdensome for patients. Video DOT (vDOT) has been proposed as an alternative to increase treatment flexibility and better meet patient-specific needs. Methods We conducted a pragmatic, prospective pilot implementation of vDOT at 3 TB clinics in Maryland. A mixed-methods approach was implemented to assess (1) effectiveness, (2) acceptability, and (3) cost. Medication adherence on vDOT was compared with that of in-person DOT. Interviews and surveys were conducted with patients and providers before and after implementation, with framework analysis utilized to extract salient themes. Last, a cost analysis assessed the economic impacts of vDOT implementation across heterogeneous clinic structures. Results Medication adherence on vDOT was comparable to that of in-person DOT (94% vs 98%, P = .17), with a higher percentage of total treatment doses (inclusive of weekend/holiday self-administration) ultimately observed during the vDOT period (72% vs 66%, P = .03). Video DOT was well received by staff and patients alike, who cited increased treatment flexibility, convenience, and patient privacy. Our cost analysis estimated a savings with vDOT of $1391 per patient for a standard 6-month treatment course. Conclusions Video DOT is an acceptable and important option for measurement of TB treatment adherence and may allow a higher proportion of prescribed treatment doses to be observed, compared with in-person DOT. Video DOT may be cost-saving and should be considered as a component of individualized, patient-centered case management plans. PMID:29732378

  20. Advancing Patient-Centered Care in Tuberculosis Management: A Mixed-Methods Appraisal of Video Directly Observed Therapy.

    PubMed

    Holzman, Samuel B; Zenilman, Avi; Shah, Maunank

    2018-04-01

    Directly observed therapy (DOT) remains an integral component of treatment support and adherence monitoring in tuberculosis care. In-person DOT is resource intensive and often burdensome for patients. Video DOT (vDOT) has been proposed as an alternative to increase treatment flexibility and better meet patient-specific needs. We conducted a pragmatic, prospective pilot implementation of vDOT at 3 TB clinics in Maryland. A mixed-methods approach was implemented to assess (1) effectiveness, (2) acceptability, and (3) cost. Medication adherence on vDOT was compared with that of in-person DOT. Interviews and surveys were conducted with patients and providers before and after implementation, with framework analysis utilized to extract salient themes. Last, a cost analysis assessed the economic impacts of vDOT implementation across heterogeneous clinic structures. Medication adherence on vDOT was comparable to that of in-person DOT (94% vs 98%, P = .17), with a higher percentage of total treatment doses (inclusive of weekend/holiday self-administration) ultimately observed during the vDOT period (72% vs 66%, P = .03). Video DOT was well received by staff and patients alike, who cited increased treatment flexibility, convenience, and patient privacy. Our cost analysis estimated a savings with vDOT of $1391 per patient for a standard 6-month treatment course. Video DOT is an acceptable and important option for measurement of TB treatment adherence and may allow a higher proportion of prescribed treatment doses to be observed, compared with in-person DOT. Video DOT may be cost-saving and should be considered as a component of individualized, patient-centered case management plans.

  1. Congruency effects in dot comparison tasks: convex hull is more important than dot area.

    PubMed

    Gilmore, Camilla; Cragg, Lucy; Hogan, Grace; Inglis, Matthew

    2016-11-16

    The dot comparison task, in which participants select the more numerous of two dot arrays, has become the predominant method of assessing Approximate Number System (ANS) acuity. Creation of the dot arrays requires the manipulation of visual characteristics, such as dot size and convex hull. For the task to provide a valid measure of ANS acuity, participants must ignore these characteristics and respond on the basis of number. Here, we report two experiments that explore the influence of dot area and convex hull on participants' accuracy on dot comparison tasks. We found that individuals' ability to ignore dot area information increases with age and display time. However, the influence of convex hull information remains stable across development and with additional time. This suggests that convex hull information is more difficult to inhibit when making judgements about numerosity and therefore it is crucial to control this when creating dot comparison tasks.

  2. Refractive-Index Tuning of Highly Fluorescent Carbon Dots.

    PubMed

    Kumar, Vijay Bhooshan; Sahu, Amit Kumar; Mohsin, Abu S M; Li, Xiangping; Gedanken, Aharon

    2017-08-30

    In this manuscript, we report the refractive-index (RI) modulation of various concentrations of nitrogen-doped carbon dots (N@C-dots) embedded in poly(vinyl alcohol) (PVA) polymer. The dispersion and size distribution of N@C-dots embedded within PVA have been investigated using electron microscopy. The RI of PVA-N@C-dots can be enhanced by increasing the doping concentration of highly fluorescent C-dots (quantum yield 44%). This is demonstrated using ultraviolet-visible (UV-visible), photoluminscence, Raman, and Fourier transform infrared (FTIR) spectroscopy measurements. The Mie scattering of light on N@C-dots was applied for developing the relationship between RI tuning and absorption cross section of N@C-dots. The extinction cross section of N@C-dot thin films can be rapidly enhanced by either tuning the RI or increasing the concentration of N@C-dots. The developed method can be used as effective RI contrast for various applications such as holography creation and bioimaging.

  3. Mutations in Genes Involved in the Flagellar Export Apparatus of the Solvent-Tolerant Pseudomonas putida DOT-T1E Strain Impair Motility and Lead to Hypersensitivity to Toluene Shocks

    PubMed Central

    Segura, Ana; Duque, Estrella; Hurtado, Ana; Ramos, Juan L.

    2001-01-01

    Pseudomonas putida DOT-T1E is a solvent-tolerant strain able to grow in the presence of 1% (vol/vol) toluene in the culture medium. Random mutagenesis with mini-Tn5-′phoA-Km allowed us to isolate a mutant strain (DOT-T1E-42) that formed blue colonies on Luria-Bertani medium supplemented with 5-bromo-4-chloro-3-indolylphosphate and that, in contrast to the wild-type strain, was unable to tolerate toluene shocks (0.3%, vol/vol). The mutant strain exhibited patterns of tolerance or sensitivity to a number of antibiotics, detergents, and chelating agents similar to those of the wild-type strain. The mutation in this strain therefore seemed to specifically affect toluene tolerance. Cloning and sequencing of the mutation revealed that the mini-Tn5-′phoA-Km was inserted within the fliP gene, which is part of the fliLMNOPQRflhBA cluster, a set of genes that encode flagellar structure components. FliP is involved in the export of flagellar proteins, and in fact, the P. putida fliP mutant was nonmotile. The finding that, after replacing the mutant allele with the wild-type one, the strain recovered the wild-type pattern of toluene tolerance and motility unequivocally assigned FliP a function in solvent resistance. An flhB knockout mutant, another gene component of the flagellar export apparatus, was also nonmotile and hypersensitive to toluene. In contrast, a nonpolar mutation at the fliL gene, which encodes a cytoplasmic membrane protein associated with the flagellar basal body, yielded a nonmotile yet toluene-resistant strain. The results are discussed regarding a possible role of the flagellar export apparatus in the transport of one or more proteins necessary for toluene tolerance in P. putida DOT-T1E to the periplasm. PMID:11418551

  4. Theory and modelling of light-matter interactions in photonic crystal cavity systems coupled to quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Cartar, William K.

    Photonic crystal microcavity quantum dot lasers show promise as high quality-factor, low threshold lasers, that can be integrated on-chip, with tunable room temperature opera- tions. However, such semiconductor microcavity lasers are notoriously difficult to model in a self-consistent way and are primarily modelled by simplified rate equation approxima- tions, typically fit to experimental data, which limits investigations of their optimization and fundamental light-matter interaction processes. Moreover, simple cavity mode optical theory and rate equations have recently been shown to fail in explaining lasing threshold trends in triangular lattice photonic crystal cavities as a function of cavity size, and the potential impact of fabrication disorder is not well understood. In this thesis, we develop a simple but powerful numerical scheme for modelling the quantum dot active layer used for lasing in these photonic crystal cavity structures, as an ensemble of randomly posi- tioned artificial two-level atoms. Each two-level atom is defined by optical Bloch equations solved by a quantum master equation that includes phenomenological pure dephasing and an incoherent pump rate that effectively models a multi-level gain system. Light-matter in- teractions of both passive and lasing structures are analyzed using simulation defined tools and post-simulation Green function techniques. We implement an active layer ensemble of up to 24,000 statistically unique quantum dots in photonic crystal cavity simulations, using a self-consistent finite-difference time-domain method. This method has the distinct advantage of capturing effects such as dipole-dipole coupling and radiative decay, without the need for any phenomenological terms, since the time-domain solution self-consistently captures these effects. Our analysis demonstrates a powerful ability to connect with recent experimental trends, while remaining completely general in its set-up; for example, we do not invoke common approximations such as the rotating-wave or slowly-varying envelope approximations, and solve dynamics with zero a priori knowledge.

  5. Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures.

    PubMed

    Fillipov, Stanislav; Puttisong, Yuttapoom; Huang, Yuqing; Buyanova, Irina A; Suraprapapich, Suwaree; Tu, Charles W; Chen, Weimin M

    2015-06-23

    Fine-structure splitting (FSS) of excitons in semiconductor nanostructures is a key parameter that has significant implications in photon entanglement and polarization conversion between electron spins and photons, relevant to quantum information technology and spintronics. Here, we investigate exciton FSS in self-organized lateral InAs/GaAs quantum-dot molecular structures (QMSs) including laterally aligned double quantum dots (DQDs), quantum-dot clusters (QCs), and quantum rings (QRs), by employing polarization-resolved microphotoluminescence (μPL) spectroscopy. We find a clear trend in FSS between the studied QMSs depending on their geometric arrangements, from a large FSS in the DQDs to a smaller FSS in the QCs and QRs. This trend is accompanied by a corresponding difference in the optical polarization directions of the excitons between these QMSs, namely, the bright-exciton lines are linearly polarized preferably along or perpendicular to the [11̅0] crystallographic axis in the DQDs that also defines the alignment direction of the two constituting QDs, whereas in the QCs and QRs, the polarization directions are randomly oriented. We attribute the observed trend in the FSS to a significant reduction of the asymmetry in the lateral confinement potential of the excitons in the QRs and QCs as compared with the DQDs, as a result of a compensation between the effects of lateral shape anisotropy and piezoelectric field. Our work demonstrates that FSS strongly depends on the geometric arrangements of the QMSs, which effectively tune the degree of the compensation effects and are capable of reducing FSS even in a strained QD system to a limit similar to strain-free QDs. This approach provides a pathway in obtaining high-symmetry quantum emitters desirable for realizing photon entanglement and spintronic devices based on such nanostructures, utilizing an uninterrupted epitaxial growth procedure without special requirements for lattice-matched materials combinations, specific substrate orientations, and nanolithography.

  6. Structural Characterization of the Binding of Myosin*ADP*Pi to Actin in Permeabilized Rabbit Psoas Muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu,S.; Gu, J.; Belknap, B.

    2006-01-01

    When myosin is attached to actin in a muscle cell, various structures in the filaments are formed. The two strongly bound states (A{center_dot}M{center_dot}ADP and A{center_dot}M) and the weakly bound A{center_dot}M{center_dot}ATP states are reasonably well understood. The orientation of the strongly bound myosin heads is uniform ('stereospecific' attachment), and the attached heads exhibit little spatial fluctuation. In the prehydrolysis weakly bound A{center_dot}M{center_dot}ATP state, the orientations of the attached myosin heads assume a wide range of azimuthal and axial angles, indicating considerable flexibility in the myosin head. The structure of the other weakly bound state, A{center_dot}M{center_dot}ADP{center_dot}P{sub i}, however, is poorly understood. Thismore » state is thought to be the critical pre-power-stroke state, poised to make the transition to the strongly binding, force-generating states, and hence it is of particular interest for understanding the mechanism of contraction. However, because of the low affinity between myosin and actin in the A{center_dot}M{center_dot}ADP{center_dot}P{sub i} state, the structure of this state has eluded determination both in isolated form and in muscle cells. With the knowledge recently gained in the structures of the weakly binding M{center_dot}ATP, M{center_dot}ADP{center_dot}P{sub i} states and the weakly attached A{center_dot}M{center_dot}ATP state in muscle fibers, it is now feasible to delineate the in vivo structure of the attached state of A{center_dot}M{center_dot}ADP{center_dot}P{sub i}. The series of experiments presented in this article were carried out under relaxing conditions at 25{sup o}C, where {approx}95% of the myosin heads in the skinned rabbit psoas muscle contain the hydrolysis products. The affinity for actin is enhanced by adding polyethylene glycol (PEG) or by lowering the ionic strength in the bathing solution. Solution kinetics and binding constants were determined in the presence and in the absence of PEG. When the binding between actin and myosin was increased, both the myosin layer lines and the actin layer lines increased in intensity, but the intensity profiles did not change. The configuration (mode) of attachment in the A{center_dot}M{center_dot}ADP{center_dot}P{sub i} state is thus unique among the intermediate attached states of the cross-bridge ATP hydrolysis cycle. One of the simplest explanations is that both myosin filaments and actin filaments are stabilized (e.g., undergo reduced spatial fluctuations) by the attachment. The alignment of the myosin heads in the thick filaments and the alignment of the actin monomers in the thin filaments are improved as a result. The compact atomic structure of M{center_dot}ADP{center_dot}P{sub i} with strongly coupled domains may contribute to the unique attachment configuration: the 'primed' myosin heads may function as 'transient struts' when attached to the thin filaments.« less

  7. Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging.

    PubMed

    Jiang, Chengkun; Wu, Hao; Song, Xiaojie; Ma, Xiaojun; Wang, Jihui; Tan, Mingqian

    2014-09-01

    The presence of the carbon dots (C-dots) in food is a hotly debated topic and our knowledge about the presence and the use of carbon dots (C-dots) in food is still in its infancy. We report the finding of the presence of photoluminescent (PL) C-dots in commercial Nescafe instant coffee. TEM analysis reveals that the extracted C-dots have an average size of 4.4 nm. They were well-dispersed in water and strongly photoluminescent under the excitation of ultra-violet light with a quantum yield (QY) about 5.5%, which were also found to possess clear upconversion PL properties. X-ray photoelectron spectroscopy characterization demonstrates that the C-dots contain C, O and N three elements with the relative contents ca. 30.1, 62.2 and 7.8%. The X-ray diffraction (XRD) analysis indicates that the C-dots are amorphous. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The C-dots show a pH independent behavior by varying the pH value from 2 to 11. The cytotoxicity study revealed that the C-dots did not cause any toxicity to cells at a concentration as high as 20 mg/mL. The C-dots have been directly applied in cells and fish imaging, which suggested that the C-dots present in commercial coffee may have more potential biological applications. Copyright © 2014. Published by Elsevier B.V.

  8. [Oxidative damage effects induced by CdTe quantum dots in mice].

    PubMed

    Xie, G Y; Chen, W; Wang, Q K; Cheng, X R; Xu, J N; Huang, P L

    2017-07-20

    Objective: To investigate Oxidative damage effects induced by CdTe Quantum Dots (QDs) in mice. Methods: 40 ICR mice were randomly divided into 5 groups: one control group (normal saline) ; four CdTe QDs (exposed by intravenous injection of 0.2 ml of CdTe QDs at the concentration of 0、0.5、5.0、50.0 and 500.0 nmol/ml respectively) . After 24 h, the mice were decapitated and the blood was collected for serum biochemically indexes、hematology indexes, the activities of SOD、GSH-Px and the concentration of MDA were all detected. Results: The results showed in the four CdTe QDs exposure groups, the level of CRE、PLT and the concentration of MDA were all significantly lower than those of the control group ( P <0.05 or P <0.01) ; the activities GSH - Px in 50.0 and 500.0 nmol/ml CdTe QDs group were significantly higher than those of control group ( P <0.01) . Conclusion: It was suggested that CdTe QDs at 0.5 nmol/ml could induce Oxidative damage effects in mice.

  9. Enhancing the gate fidelity of silicon-based singlet-triplet qubits under symmetric exchange control using optimized pulse sequences

    NASA Astrophysics Data System (ADS)

    Zhang, Chengxian; Throckmorton, Robert; Yang, Xu-Chen; Wang, Xin; Barnes, Edwin

    We perform Randomized Benchmarking of a family of recently introduced control scheme for singlet-triplet qubits in semiconductor double quantum dots, which is optimized to have substantially shorter gate times. We study their performances under the recently introduced symmetric control scheme of changing the exchange interaction by raising and lowering the barrier between the two dots (barrier control) and compare these results to those under the traditional tilt control method in which the exchange interaction is varied by detuning. It has been suggested that the barrier control method encounters a much smaller charge noise. We found that for the cases where the charge noise is dominant, corresponding to the device made on isotopically enriched silicon, the optimized sequences offer much longer coherence time under barrier control compared to the tilt control method of the strength of the exchange interaction. This work was supported by the Research Grants Council of Hong Kong SAR (No. CityU 21300116) and the National Natural Science Foundation of China (No. 11604277), and by LPS-MPO-CMTC.

  10. 49 CFR 40.227 - May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., either by mistake, or as the only means to conduct a test under difficult circumstances (e.g., post... 49 Transportation 1 2014-10-01 2014-10-01 false May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests? 40.227 Section 40.227 Transportation Office of the Secretary of...

  11. 49 CFR 40.227 - May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., either by mistake, or as the only means to conduct a test under difficult circumstances (e.g., post... 49 Transportation 1 2011-10-01 2011-10-01 false May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests? 40.227 Section 40.227 Transportation Office of the Secretary of...

  12. 49 CFR 40.227 - May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., either by mistake, or as the only means to conduct a test under difficult circumstances (e.g., post... 49 Transportation 1 2012-10-01 2012-10-01 false May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests? 40.227 Section 40.227 Transportation Office of the Secretary of...

  13. 49 CFR 40.227 - May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., either by mistake, or as the only means to conduct a test under difficult circumstances (e.g., post... 49 Transportation 1 2010-10-01 2010-10-01 false May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests? 40.227 Section 40.227 Transportation Office of the Secretary of...

  14. 49 CFR 40.227 - May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., either by mistake, or as the only means to conduct a test under difficult circumstances (e.g., post... 49 Transportation 1 2013-10-01 2013-10-01 false May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests? 40.227 Section 40.227 Transportation Office of the Secretary of...

  15. Spectroscopic characteristics of carbon dots (C-dots) derived from carbon fibers and conversion to sulfur-bridged C-dots nanosheets.

    PubMed

    Vinci, John C; Ferrer, Ivonne M; Guterry, Nathan W; Colón, Verónica M; Destino, Joel F; Bright, Frank V; Colón, Luis A

    2015-09-01

    We synthesized sub-10 nm carbon nanoparticles (CNPs) consistent with photoluminescent carbon dots (C-dots) from carbon fiber starting material. The production of different C-dots fractions was monitored over seven days. During the course of the reaction, one fraction of C-dots species with relatively high photoluminescence was short-lived, emerging during the first hour of reaction but disappearing after one day of reaction. Isolation of this species during the first hour of the reaction was crucial to obtaining higher-luminescent C-dots species. When the reaction proceeded for one week, the appearance of larger nanostructures was observed over time, with lateral dimensions approaching 200 nm. The experimental evidence suggests that these larger species are formed from small C-dot nanoparticles bridged together by sulfur-based moieties between the C-dot edge groups, as if the C-dots polymerized by cross-linking the edge groups through sulfur bridges. Their size can be tailored by controlling the reaction time. Our results highlight the variety of CNP products, from sub-10 nm C-dots to ~200 nm sulfur-containing carbon nanostructures, that can be produced over time during the oxidation reaction of the graphenic starting material. Our work provides a clear understanding of when to stop the oxidation reaction during the top-down production of C-dots to obtain highly photoluminescent species or a target average particle size.

  16. Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method

    NASA Astrophysics Data System (ADS)

    Aji, Mahardika Prasetya; Susanto; Wiguna, Pradita Ajeng; Sulhadi

    2017-06-01

    Carbon dots (C-Dots) from mangosteen peel has been synthesized by pyrolysis method. Synthesis of C-Dots is done using precursor solution which is prepared from extract of mangosteen peel as carbon source and urea as passivation agent. C-Dots is successfully formed with absorbance spectra at wavelength 350-550 nm. Urea affects to the formed C-Dots, while the absorbance and the luminescent spectra are independent toward urea. C-Dots from extract of mangosteen peel has size in range 2-15 nm. The absorbance peaks of C-Dots shows significant wavelength shift at visible region as the increasing of synthesized temperature. Shift of wavelength absorbance indicates the change of electronic transition of C-Dots. Meanwhile, the luminescent of C-Dots can be controlled by synthesized temperature as well. C-Dots luminescent were increasing as higher synthesized temperature. It was shown by the shift of wavelength emission into shorter wavelength, 465 nm at 200 °C, 450 nm at 250 °C, and 423 nm at 300 °C. Synthesized temperature also affects size of C-Dots. It has size 10-15 nm at 200 °C, 7-11 nm at 250 °C and 2-4 nm at 300 °C. In addition, temperature corresponds to the structure of carbon chains and C-N configuration of formed C-Dots from mangosteen peel extract.

  17. Simplified models of circumstellar morphologies for interpreting high-resolution data. Analytical approach to the equatorial density enhancement

    NASA Astrophysics Data System (ADS)

    Homan, W.; Boulangier, J.; Decin, L.; de Koter, A.

    2016-12-01

    Context. Equatorial density enhancements (EDEs) are a very common astronomical phenomenon. Studies of the circumstellar environments (CSE) of young stellar objects and of evolved stars have shown that these objects often possess these features. These are believed to originate from different mechanisms, ranging from binary interactions to the gravitational collapse of interstellar material. Quantifying the effect of the presence of this type of EDE on the observables is essential for a correct interpretation of high-resolution data. Aims: We seek to investigate the manifestation in the observables of a circumstellar EDE, to assess which properties can be constrained, and to provide an intuitive bedrock on which to compare and interpret upcoming high-resolution data (e.g. ALMA data) using 3D models. Methods: We develop a simplified analytical parametrised description of a 3D EDE, with possible substructure such as warps, gaps, and spiral instabilities. In addition, different velocity fields (Keplerian, radial, super-Keplerian, sub-Keplerian and rigid rotation) are considered. The effect of a bipolar outflow is also investigated. The geometrical models are fed into the 3D radiative transfer code LIME, that produces 3D intensity maps throughout velocity space. We investigate the spectral signature of the J = 3-2 up to J = 7-6 rotational transitions of CO in the models, as well as the spatial aspect of this emission by means of channel maps, wide-slit position-velocity (PV) diagrams, stereograms, and spectral lines. Additionally, we discuss methods of constraining the geometry of the EDE, the inclination, the mass-contrast between the EDE and the bipolar outflow, and the global velocity field. Finally, we simulated ALMA observations to explore the effects of interferometric noise and artefacts on the emission signatures. Results: The effects of the different velocity fields are most evident in the PV diagrams. These diagrams also enable us to constrain the EDE height and inclination. A level of degeneracy may occur in the shapes of individual PV diagrams for different global velocity fields. The orthogonal PV diagrams may completely eliminate this ambiguity. Information on the EDE substructure is evident in the channel maps, but cannot be recovered from the PV diagrams, nor from the spectral lines. However, stereograms enable the detection of warping. For most inclinations the spectral lines are relatively broad, making it difficult to distinguish from an eventual superposed bipolar outflow component. Only under low inclination angles can one distinguish between these structures. Simulations of synthetic ALMA observations show how emission is affected when the largest angular scale of an antenna configuration is exceeded. For a rotating EDE, the emission around zero velocity will first fade because of destructive interference.

  18. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot

    NASA Astrophysics Data System (ADS)

    Kawakami, Erika

    2015-03-01

    Electron spins in Si/SiGe quantum dots are one of the most promising candidates for a quantum bit for their potential to scale up and their long dephasing time. We realized coherent control of single electron spin in a single quantum dot (QD) defined in a Si/SiGe 2D electron gas. Spin rotations are achieved by applying microwave excitation to one of the gates, which oscillates the electron wave function back and forth in the gradient field produced by cobalt micromagnets fabricated near the dot. The electron spin is read out in single-shot mode via spin-to-charge conversion and a QD charge sensor. In earlier work, both the fidelity of single-spin rotations and the spin echo decay time were limited by a small splitting of the lowest two valleys. By changing the direction and magnitude of the external magnetic field as well as the gate voltages that define the dot potential, we were able to increase the valley splitting and also the difference in Zeeman splittings associated with these two valleys. This has resulted in considerable improvements in the gate fidelity and spin echo decay times. Thanks to the long intrinsic dephasing time T2* = 900 ns and Rabi frequency of 1.4 MHz, we now obtain an average single qubit gate fidelity of an electron spin in a Si/SiGe quantum dot of 99 percent, measured via randomized benchmarking. The dephasing time is extended to 70 us for the Hahn echo and up to 400 us with CPMG80. From the dynamical decoupling data, we extract the noise spectral density in the range of 30 kHz-3 MHz. We will discuss the mechanism that induces this noise and is responsible for decoherence. In parallel, we also realized electron spin resonance and coherent single-spin control by second harmonic generation, which means we can drive an electron spin at half the Larmor frequency. Finally, we observe not only single-spin transitions but also transitions whereby both the spin and the valley state are flipped. Altogether, these measurements have significantly increased our understanding and raised the prospects of spin qubits in Si/SiGe quantum dots. This work has been done in collaboration with T.M. J. Jullien, P. Scarlino, V.V. Dobrovitski, D.R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen. This work was supported in part by the Army Research Office (ARO) (W911NF-12-0607), the Foundation for Fundamental Research on Matter (FOM) and the European Research Council (ERC). Development and maintenance of the growth facilities used for fabricating samples was supported by the Department of Energy (DOE) (DE-FG02-03ER46028). E.K. was supported by a fellowship from the Nakajima Foundation. This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.

  19. The Legionella pneumophila PilT Homologue DotB Exhibits ATPase Activity That Is Critical for Intracellular Growth

    PubMed Central

    Sexton, Jessica A.; Pinkner, Jerome S.; Roth, Robyn; Heuser, John E.; Hultgren, Scott J.; Vogel, Joseph P.

    2004-01-01

    The ability of Legionella pneumophila to grow and cause disease in the host is completely dependent on a type IV secretion system known as the Dot/Icm complex. This membrane-spanning apparatus translocates effector molecules into host cells in a process that is poorly understood but that is known to require the putative ATPase DotB. One possible role for DotB is suggested by its similarity to the PilT family of proteins, which mediate pilus retraction. To better understand the molecular behavior of DotB, we have purified the protein and shown that it forms stable homohexameric rings and hydrolyzes ATP with a specific activity of 6.4 nmol of ATP/min/mg of protein. ATPase activity is critical to the function of DotB, as alteration of the conserved Walker box lysine residue resulted in a mutant protein, DotB K162Q, which failed to bind or hydrolyze ATP and which could not complement a ΔdotB strain for intracellular growth in macrophages. Consistent with the ability of DotB to interact with itself, the dotBK162Q allele exhibited transdominance over wild-type dotB, providing the first example of such a mutation in L. pneumophila. Finally, the DotB K162Q mutant protein had a significantly enhanced membrane localization in L. pneumophila compared to wild-type DotB, suggesting a relationship between nucleotide binding and membrane association. These results are consistent with a model in which DotB cycles between the cytoplasm and the Dot/Icm complex at the membrane, where it hydrolyzes nucleotides to provide energy to the complex. PMID:14996796

  20. Six months versus nine months anti-tuberculous therapy for female genital tuberculosis: a randomized controlled trial.

    PubMed

    Sharma, Jai B; Singh, Neeta; Dharmendra, Sona; Singh, Urvashi B; P, Vanamail; Kumar, Sunesh; Roy, K K; Hari, Smriti; Iyer, V; Sharma, S K

    2016-08-01

    To compare six months versus nine months anti-tuberculous therapy in patients of female genital tuberculosis. It was a randomized controlled trial in a tertiary referral center teaching institute on 175 women presenting with infertility and found to have female genital tuberculosis on clinical examination and investigations. Group I women (86 women) were given 9 months of intermitted anti-tuberculous therapy under directly observed treatment short course (DOTS) strategy while Group II (89 women) were given 6 months of anti-tuberculous therapy under DOTS. Patients were evaluated for primary end points (complete cure, partial response, no response) and secondary end points (recurrence rate, pregnancy rate) during treatment. All patients were followed up further for one year after completion of therapy to assess recurrence of disease and further pregnancies. Baseline characteristics were similar between two randomized groups. There was no difference in the complete clinical response rate (95.3% vs 97.7%, p=0.441) between 9-months and 6-months groups. Four patients in 9-months group and two patients in 6-months group had recurrence of disease and required category II anti tuberculous therapy (p=0.441). Pregnancy rate during treatment and up to one year follow up was also similar in the two groups (23.2% vs 21.3%, p=0.762). Side effects occurred in 27(31.4%) and 29(32.6%) in 9-months and 6-months of therapy and were similar (p=0.866). There was no difference in complete cure rate, recurrent rate and pregnancy rate for either 6-months or 9-months of intermittent directly observed treatment short course anti-tuberculous therapy in female genital tuberculosis. The trial was registered in clinicaltrials.gov with registration no: CTRI/2009/091/001088. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Effect of supervised, periodized exercise training vs. self-directed training on lean body mass and other fitness variables in health club members.

    PubMed

    Storer, Thomas W; Dolezal, Brett A; Berenc, Matthew N; Timmins, John E; Cooper, Christopher B

    2014-07-01

    Conventional wisdom suggests that exercise training with a personal trainer (PTr) is more beneficial for improving health-related fitness than training alone. However, there are no published data that confirm whether fitness club members who exercise with a PTr in the fitness club setting obtain superior results compared with self-directed training. We hypothesized that club members randomized to receive an evidence-based training program would accrue greater improvements in lean body mass (LBM) and other fitness measures than members randomized to self-training. Men, aged 30-44 years, who were members of a single Southern California fitness club were randomized to exercise with a PTr administering a nonlinear periodized training program (TRAINED, N = 17) or to self-directed training (SELF, N = 17); both groups trained 3 days per week for 12 weeks. Lean body mass was determined by dual-energy x-ray absorptiometry. Secondary outcomes included muscle strength 1 repetition maximum (1RM), leg power (vertical jump), and aerobic capacity (V[Combining Dot Above]O2max). TRAINED individuals increased LBM by 1.3 (0.4) kg, mean (SEM) vs. no change in SELF, p = 0.029. Similarly, significantly greater improvements were seen for TRAINED vs. SELF in chest press strength (42 vs. 19%; p = 0.003), peak leg power (6 vs. 0.6%; p < 0.0001), and V[Combining Dot Above]O2max (7 vs. -0.3%; p = 0.01). Leg press strength improved 38 and 25% in TRAINED and SELF, respectively (p = 0.14). We have demonstrated for the first time in a fitness club setting that members whose training is directed by well-qualified PTrs administering evidence-based training regimens achieve significantly greater improvements in LBM and other dimensions of fitness than members who direct their own training.

  2. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    PubMed Central

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  3. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  4. Fabrication of (In,Ga)As quantum-dot chains on GaAs(100)

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Holmes, K.; Mazur, Yu. I.; Salamo, G. J.

    2004-03-01

    Nanostructure evolution during the growth of multilayers of In0.5Ga0.5As/GaAs (100) by molecular-beam epitaxy is investigated to control the formation of lines of quantum dots called quantum-dot chains. It is found that the dot chains can be substantially increased in length by the introduction of growth interruptions during the initial stages of growth of the GaAs spacer layer. Quantum-dot chains that are longer than 5 μm are obtained by adjusting the In0.5Ga0.5As coverage and growth interruptions. The growth procedure is also used to create a template to form InAs dots into chains with a predictable dot density. The resulting dot chains offer the possibility to engineer carrier interaction among dots for novel physical phenomena and potential devices.

  5. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-01

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  6. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    DOEpatents

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  7. Thermal effect of Zn quantum dots grown on Si(111): competition between relaxation and reconstraint

    NASA Astrophysics Data System (ADS)

    Kao, Li-Chi; Huang, Bo-Jia; Zheng, Yu-En; Tu, Kai-Teng; Chiu, Shang-Jui; Ku, Ching-Shun; Lo, Kuang Yao

    2018-01-01

    Zn dots are potential solutions for metal contacts in future nanodevices. The metastable states that exist at the interface between Zn quantum dots and oxide-free Si(111) surfaces can suppress the development of the complete relaxation and increase the size of Zn dots. In this work, the actual heat consumption of the structural evolution of Zn dots resulting from extrinsic thermal effect was analyzed. Zn dots were coherently grown on oxide-free Si(111) through magnetron RF sputtering. A compensative optical method combined with reflective second harmonic generation and synchrotron x-ray diffraction (XRD) was developed to statistically analyze the thermal effect on the Zn dot system. Pattern matching (3 m) between the Zn and oxide-free Si(111) surface enabled Si(111) to constrain Zn dots from a liquid to solid phase. Annealing under vacuum induced smaller, loose Zn dots to be reconstrained by Si(111). When the size of the Zn dots was in the margin of complete relaxation, the Zn dot was partially constrained by potential barriers (metastable states) between Zn(111) and one of the six in-planes of Si〈110〉. The thermal disturbance exerted by annealing would enable partially constrained ZnO/Zn dots to overcome the potential barrier and be completely relaxed, which is obvious on the transition between Zn(111) and Zn(002) peak in synchrotron XRD. Considering the actual irradiated surface area of dots array in a wide-size distribution, the competition between reconstrained and relaxed Zn dots on Si(111) during annealing was statistically analyzed.

  8. 49 CFR 22.21 - Participation criteria.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... certification form is available at http://www.osdbu.dot.gov/financial/docs/Cert_Debarment_DOT_F_2309-1.pdf. (j... available at http://www.osdbu.dot.gov/financial/docs/Cert_Drug-Free_DOT_F_2307-1.pdf.; and (k) It must.../financial/docs/Cert_Lobbying_DOT_F_2308-1.pdf. ...

  9. Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Uhl, D.

    2002-01-01

    InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.

  10. Single-electron population and depopulation of an isolated quantum dot using a surface-acoustic-wave pulse.

    PubMed

    Kataoka, M; Schneble, R J; Thorn, A L; Barnes, C H W; Ford, C J B; Anderson, D; Jones, G A C; Farrer, I; Ritchie, D A; Pepper, M

    2007-01-26

    We use a pulse of surface acoustic waves (SAWs) to control the electron population and depopulation of a quantum dot. The barriers between the dot and reservoirs are set high to isolate the dot. Within a time scale of approximately 100 s the dot can be set to a nonequilibrium charge state, where an empty (occupied) level stays below (above) the Fermi energy. A pulse containing a fixed number of SAW periods is sent through the dot, controllably changing the potential, and hence the tunneling probability, to add (remove) an electron to (from) the dot.

  11. Artful and multifaceted applications of carbon dot in biomedicine.

    PubMed

    Jaleel, Jumana Abdul; Pramod, K

    2018-01-10

    Carbon dots (C-dots) are luminescent carbon nanomaterial having good biocompatibility and low toxicity. The characteristic fluorescence emission property of C-dots establishes their role in optical imaging. C-dots which are superior to fluorescent dyes and semiconductor quantum dots act as a safer in vivo imaging probe. Apart from their bioimaging application, other applications in biomedicine such as drug delivery, cancer therapy, and gene delivery were studied. In this review, we present multifaceted applications of C-dots along with their synthesis, surface passivation, doping, and toxicity profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Improved Low Temperature Performance of Supercapacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe

    2013-01-01

    Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary

  13. Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix

    DOEpatents

    Forrest, Stephen R.

    2008-08-19

    A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.

  14. Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique

    NASA Astrophysics Data System (ADS)

    Isnaeni; Rahmawati, I.; Intan, R.; Zakaria, M.

    2018-03-01

    Carbon dots are new type of fluorescent nanoparticle that can be synthesis easily from natural sources. We have synthesized carbon dots from ginger and galangal herbs using microwave technique and studied their optical properties. We synthesized colloidal carbon dots in water solvent by varying microwave processing time. UV-Vis absorbance, photoluminescence, time-resolved photoluminescence, and transmission electron microscope were utilized to study properties of carbon dots. We found that microwave processing time significantly affect optical properties of synthesized carbon dots. UV-Vis absorbance spectra and time-resolved photoluminescence results show that luminescent of carbon dots is dominated by recombination process from n-π* surface energy level. With further development, these carbon dots are potential for several applications.

  15. Manipulating surface diffusion and elastic interactions to obtain quantum dot multilayer arrangements over different length scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placidi, E., E-mail: ernesto.placidi@ism.cnr.it; Arciprete, F.; Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome

    2014-09-15

    An innovative multilayer growth of InAs quantum dots on GaAs(100) is demonstrated to lead to self-aggregation of correlated quantum dot chains over mesoscopic distances. The fundamental idea is that at critical growth conditions is possible to drive the dot nucleation only at precise locations corresponding to the local minima of the Indium chemical potential. Differently from the known dot multilayers, where nucleation of new dots on top of the buried ones is driven by the surface strain originating from the dots below, here the spatial correlations and nucleation of additional dots are mostly dictated by a self-engineering of the surfacemore » occurring during the growth, close to the critical conditions for dot formation under the fixed oblique direction of the incoming As flux, that drives the In surface diffusion.« less

  16. The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jiang, E-mail: jiang.wu@ucl.ac.uk; Passmore, Brandon; Manasreh, M. O.

    2015-08-28

    InAs/GaAs quantum dot infrared photodetectors with different doping levels were investigated to understand the effect of quantum dot filling on both intraband and interband optical transitions. The electron filling of self-assembled InAs quantum dots was varied by direct doping of quantum dots with different concentrations. Photoresponse in the near infrared and middle wavelength infrared spectral region was observed from samples with low quantum dot filling. Although undoped quantum dots were favored for interband transitions with the absence of a second optical excitation in the near infrared region, doped quantum dots were preferred to improve intraband transitions in the middle wavelengthmore » infrared region. As a result, partial filling of quantum dot was required, to the extent of maintaining a low dark current, to enhance the dual-band photoresponse through the confined electron states.« less

  17. Origins and optimization of entanglement in plasmonically coupled quantum dots

    DOE PAGES

    Otten, Matthew; Larson, Jeffrey; Min, Misun; ...

    2016-08-11

    In this paper, a system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines formore » maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.« less

  18. Energy structure and radiative lifetimes of InxGa1-xN /AlN quantum dots

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Ivan A.; Zhuravlev, Konstantin S.

    2018-01-01

    We report calculations of the ground state transition energies and the radiative lifetimes in InxGa1-xN /AlN quantum dots with different size and indium content. The ground state transition energy and the radiative lifetime of the InxGa1-xN /AlN quantum dots can be varied over a wide range by changing the height of the quantum dot and the indium content. The sizes and compositions for quantum dots emitting in the wavelength range for fiber-optic telecommunications have been found. The radiative lifetime of the InxGa1-xN /AlN quantum dots increases with increase in quantum dot height at a constant indium content, and increases with increase in indium content at constant quantum dot height. For quantum dots with constant ground state transition energy the radiative lifetime decreases with increase in indium content.

  19. Quantum dot-polymer conjugates for stable luminescent displays.

    PubMed

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  20. Formation of uniform high-density and small-size Ge/Si quantum dots by scanning pulsed laser annealing of pre-deposited Ge/Si film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qayyum, Hamza; Chen, Szu-yuan, E-mail: sychen@ltl.iams.sinica.edu.tw; Department of Physics, National Central University, Zhongli, Taoyuan 320, Taiwan

    2016-05-15

    The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×10{sup 10} cm{sup −2} could be formed over an area larger than 4 mm{sup 2}. The average size ofmore » the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.« less

  1. Quantum Phase Transitions in Cavity Coupled Dot systems

    NASA Astrophysics Data System (ADS)

    Kasisomayajula, Vijay; Russo, Onofrio

    2011-03-01

    We investigate a Quantum Dot System, in which the transconductance, in part, is due to spin coupling, with each dot subjected to a biasing voltage. When this system is housed in a QED cavity, the cavity dot coupling alters the spin coupling of the coupled dots significantly via the Purcell Effect. In this paper we show the extent to which one can control the various coupling parameters: the inter dot coupling, the individual dots coupling with the cavity and the coupled dots coupling with the cavity as a single entity. We show that the dots coupled to each other and to the cavity, the spin transport can be controlled selectively. We derive the conditions for such control explicitly. Further, we discuss the Quantum phase transition effects due to the charge and spin transport through the dots. The electron transport through the dots, electron-electron spin interaction and the electron-photon interaction are treated using the Non-equilibrium Green's Function Formalism. http://publish.aps.org/search/field/author/Trif_Mircea (Trif Mircea), http://publish.aps.org/search/field/author/Golovach_Vitaly_N (Vitaly N. Golovach), and http://publish.aps.org/search/field/author/Loss_Daniel (Daniel Loss), Phys. Rev. B 75, 085307 (2007)

  2. Aneuploidy and asynchronous replication in non-alcholic fatty liver disease and cryptogenic cirrhosis.

    PubMed

    Laish, Ido; Mannasse-Green, Batya; Hadary, Ruth; Konikoff, Fred M; Amiel, Aliza; Kitay-Cohen, Yona

    2016-11-15

    Non-alcoholic fatty liver disease (NAFLD) and cryptogenic cirrhosis (CC), which is largely a late sequela of NAFLD, are considered pre-neoplastic conditions that might progress to hepatocellular carcinoma. Aneuploidy, telomere aggregates and synchronization of replication were evaluated as markers of genetic instability in these patients. Peripheral blood lymphocytes from 22 patients with NAFLD, 20 patients with CC and 20 age-matched healthy controls were analyzed. To determine random aneuploidy, we used the fluorescence in situ hybridization (FISH) with probes for chromosomes 9 and 18. The rate of aneuploidy was inferred from the fraction of cells revealing one, three or more hybridization signals per cell. Aggregate size was divided into three fusion groups of 2-5, 6-10 and 11-15 telomeres, relative to the size of a single telomere. The replication pattern was determined by FISH in two pairs of alleles, 15qter and 13qter. Asynchrony was determined by the presence of one single and one set of double dots in the same cell. Significantly higher random aneuploidy rate was found in the CC patients than in the control group, and to a lesser degree in NAFLD patients. Telomere aggregates were insignificantly higher in both groups. Only patients with CC showed significantly higher rate of asynchronous replication with proportionately more cells with two single dots among the normal cells (p<0.001). These results likely reflect changes in gene replication and cell cycle progression in these conditions, possibly correlating with their malignant potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Normalization of neuronal responses in cortical area MT across signal strengths and motion directions

    PubMed Central

    Xiao, Jianbo; Niu, Yu-Qiong; Wiesner, Steven

    2014-01-01

    Multiple visual stimuli are common in natural scenes, yet it remains unclear how multiple stimuli interact to influence neuronal responses. We investigated this question by manipulating relative signal strengths of two stimuli moving simultaneously within the receptive fields (RFs) of neurons in the extrastriate middle temporal (MT) cortex. Visual stimuli were overlapping random-dot patterns moving in two directions separated by 90°. We first varied the motion coherence of each random-dot pattern and characterized, across the direction tuning curve, the relationship between neuronal responses elicited by bidirectional stimuli and by the constituent motion components. The tuning curve for bidirectional stimuli showed response normalization and can be accounted for by a weighted sum of the responses to the motion components. Allowing nonlinear, multiplicative interaction between the two component responses significantly improved the data fit for some neurons, and the interaction mainly had a suppressive effect on the neuronal response. The weighting of the component responses was not fixed but dependent on relative signal strengths. When two stimulus components moved at different coherence levels, the response weight for the higher-coherence component was significantly greater than that for the lower-coherence component. We also varied relative luminance levels of two coherently moving stimuli and found that MT response weight for the higher-luminance component was also greater. These results suggest that competition between multiple stimuli within a neuron's RF depends on relative signal strengths of the stimuli and that multiplicative nonlinearity may play an important role in shaping the response tuning for multiple stimuli. PMID:24899674

  4. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.

    PubMed

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-08-12

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  5. [Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].

    PubMed

    Jin, Min; Huang, Yu-hua; Luo, Ji-xiang

    2015-02-01

    The authors measured the absorption and the fluorescence spectra of the quantum dots CdSe/ZnS with 4 nm in size at different concentration with the use of the UV-Vis absorption spectroscopy and fluorescence spectrometer. The effect of quantum dots CdSe/ZnS's concentration on its fluorescence was especially studied and its physical mechanism was analyzed. It was observed that the optimal concentration of the quantum dots CdSe/ZnS for fluorescence is 2 micromole x L(-1). When the quantum dot's concentration is over 2 micromol x L(-1), the fluorescence is decreased with the increase in the concentration. While the quantum dot's concentration is less than 2 micromol x L(-1), the fluorescence is decreased with the decrease in the concentration. There are two main reasons: (1) fluorescence quenching and 2) the competition between absorption and fluorescence. When the quantum dot's concentration is over 2 micromol x L(-1), the distance between quantum dots is so close that the fluorescence quenching is induced. The closer the distance between quantum dots is, the more serious the fluorescence quenching is induced. Also, in this case, the absorption is so large that some of the quantum dots can not be excited because the incident light can not pass through the whole sample. As a result, the fluorescence is decreased with the increase in the quantum dot's concentration. As the quantum dot's concentration is below 2 micromol x L(-1), the distance between quantum dots is far enough that no more fluorescence quenching is induced. In this case, the fluorescence is determined by the particle number per unit volume. More particle number per unit volume produces more fluorescence. Therefore, the fluorescence is decreased with the decrease in the quantum dot's concentration.

  6. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source.

    PubMed

    Tan, Mingqian; Zhang, Lingxin; Tang, Rong; Song, Xiaojie; Li, Yimin; Wu, Hao; Wang, Yanfang; Lv, Guojun; Liu, Wanfa; Ma, Xiaojun

    2013-10-15

    Carbon dots (C-dots) are a class of novel fluorescent nanomaterials, which have drawn great attention for their potential applications in bio-nanotechnology. Multicolor C-dots have been synthesized by chemical nitric acid oxidation using the reproducible plant soot as raw material. TEM analysis reveals that the prepared C-dots have an average size of 3.1 nm. The C-dots are well dispersed in aqueous solution and are strongly fluorescent under the irradiation of ultra-violet light. X-ray photoelectron spectroscopy characterization demonstrates that the O/C atomic ratio for C-dots change to from 0.207 to 0.436 due to the chemical oxidation process. The photo bleaching experiment reveals that the C-dots show excellent photostability as compared with the conventional organic dyes, fluorescein and rhodamine B. The fluorescence intensity of the C-dots did not change significantly in the pH range of 3-10. To further enhance the fluorescence quantum yield, the C-dots were surface modified with four types of passivation ligands, 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), poly-L-lysine (PLL), cysteine and chitosan and the fluorescence quantum yields of the TTDDA, PLL, cysteine and chitosan passivated C-dots were improved 1.53-, 5.94-, 2.00- and 3.68-fold, respectively. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The bio-application of the C-dots as fluorescent bio-probes was evaluated in cell imaging and ex vivo fish imaging, which suggests that the C-dots may have potential applications in biolabeling and bioimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Welfare Reform: DOT Has Made Progress in Implementing the Job Access Program but Has Not Evaluated the Impact. Testimony before the Committee on Transportation and Infrastructure, Subcommittee on Highways and Transit, U.S. House of Representatives.

    ERIC Educational Resources Information Center

    Hecker, JayEtta Z.

    A series of reviews of the Department of Transportation's (DOT's) Job Access and Reverse Commute (Job Access) Program explored DOT's and grantees' challenges in implementing the Job Access program and the status of DOT's program evaluation efforts. DOT and grantees faced significant challenges in implementing the Job Access program. DOT's process…

  8. Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita

    2015-01-14

    Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The highermore » the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.« less

  9. Blood-derived small Dot cells reduce scar in wound healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Wuyi; Li Shaowei; Longaker, Michael T.

    2008-04-15

    Wounds in fetal skin heal without scar, however the mechanism is unknown. We identified a novel group of E-cadherin positive cells in the blood of fetal and adult mice and named them 'Dot cells'. The percentage of Dot cells in E16.5 fetal mice blood is more than twenty times higher compared to adult blood. Dot cells also express integrin {beta}1, CD184, CD34, CD13{sup low} and Sca1{sup low}, but not CD45, CD44, and CD117. Dot cells have a tiny dot shape between 1 and 7 {mu}m diameters with fast proliferation in vitro. Most of the Dot cells remain positive for E-cadherinmore » and integrin {beta}1 after one month in culture. Transplantation of Dot cells to adult mice heals skin wounds with less scar due to reduced smooth muscle actin and collagen expression in the repair tissue. Tracking GFP-positive Dot cells demonstrates that Dot cells migrate to wounds and differentiate into dermal cells, which also express strongly to FGF-2, and later lose their GFP expression. Our results indicate that Dot cells are a group of previously unidentified cells that have strong wound healing effect. The mechanism of scarless wound healing in fetal skin is due to the presence of a large number of Dot cells.« less

  10. Center for Adaptive Optics | People

    Science.gov Websites

    Astronomy Professor of Earth & Planetary Science imke at berkeley dot edu (510) 642.1947 Stanley Klein UC Irvine Aaron Barth Associate Professor Physics and Astronomy barth at uci dot edu (949) 824.3013 dot edu (310) 206.7853 Andrea Ghez Professor of Astronomy ghez at astro dot ucla dot edu (310

  11. 49 CFR 41.110 - New DOT owned buildings and additions to buildings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false New DOT owned buildings and additions to buildings....110 New DOT owned buildings and additions to buildings. (a) DOT Operating Administrations responsible for the design and construction of new DOT Federally owned buildings will ensure that each building is...

  12. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers

    NASA Astrophysics Data System (ADS)

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-01

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm2 was demonstrated.

  13. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

    PubMed

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-21

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.

  14. Emission switching in carbon dots coated CdTe quantum dots driving by pH dependent hetero-interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Xiao; Wang, Hao; Yi, Qinghua

    2015-11-16

    Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefitsmore » the future development of optoelectronic nanodevices with new functionalities.« less

  15. Nonlinear Dot Plots.

    PubMed

    Rodrigues, Nils; Weiskopf, Daniel

    2018-01-01

    Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.

  16. Effect of organic materials used in the synthesis on the emission from CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Won; Yang, Ho-Soon; Hong, K. S.; Kim, S. M.

    2013-12-01

    Quantum-dot nanocrystals have particular optical properties due to the quantum confinement effect and the surface effect. This study focuses on the effect of surface conditions on the emission from quantum dots. The quantum dots prepared with 1-hexadecylamine (HDA) in the synthesis show strong emission while the quantum dots prepared without HDA show weak emission, as well as emission from surface energy traps. The comparison of the X-ray patterns of these two sets of quantum dots reveals that HDA forms a layer on the surface of quantum dot during the synthesis. This surface passivation with a layer of HDA reduces surface energy traps, therefore the emission from surface trap levels is suppressed in the quantum dots synthesized with HDA.

  17. The Legionella IcmSW Complex Directly Interacts with DotL to Mediate Translocation of Adaptor-Dependent Substrates

    PubMed Central

    Sutherland, Molly C.; Nguyen, Thuy Linh; Tseng, Victor; Vogel, Joseph P.

    2012-01-01

    Legionella pneumophila is a Gram-negative bacterium that replicates within human alveolar macrophages by evasion of the host endocytic pathway through the formation of a replicative vacuole. Generation of this vacuole is dependent upon the secretion of over 275 effector proteins into the host cell via the Dot/Icm type IVB secretion system (T4SS). The type IV coupling protein (T4CP) subcomplex, consisting of DotL, DotM, DotN, IcmS and IcmW, was recently defined. DotL is proposed to be the T4CP of the L. pneumophila T4SS based on its homology to known T4CPs, which function as inner-membrane receptors for substrates. As a result, DotL is hypothesized to play an integral role(s) in the L. pneumophila T4SS for the engagement and translocation of substrates. To elucidate this role, a genetic approach was taken to screen for dotL mutants that were unable to survive inside host cells. One mutant, dotLY725Stop, did not interact with the type IV adaptor proteins IcmS/IcmW (IcmSW) leading to the identification of an IcmSW-binding domain on DotL. Interestingly, the dotLY725Stop mutant was competent for export of one class of secreted effectors, the IcmSW-independent substrates, but exhibited a specific defect in secretion of IcmSW-dependent substrates. This differential secretion illustrates that DotL requires a direct interaction with the type IV adaptor proteins for the secretion of a major class of substrates. Thus, by identifying a new target for IcmSW, we have discovered that the type IV adaptors perform an additional role in the export of substrates by the L. pneumophila Dot/Icm T4SS. PMID:23028312

  18. Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells.

    PubMed

    Yang, Xudong; Yang, Xue; Li, Zhenyu; Li, Shouying; Han, Yexuan; Chen, Yang; Bu, Xinyuan; Su, Chunyan; Xu, Hong; Jiang, Yingnan; Lin, Quan

    2015-10-15

    In this work, a simple, low-cost and one-step microwave approach has been demonstrated for the synthesis of water-soluble carbon dots (C-dots). The average size of the resulting C-dots is about 4 nm. From the photoluminescence (PL) measurements, the C-dots exhibit excellent biocompatibility and intense PL with the high quantum yield (QY) at Ca. 25%. Significantly, the C-dots have excellent biocompatibility and the capacity to specifically target the cells overexpressing the folate receptor (FR). These exciting results indicate the as-prepared C-dots are promising biocompatible probe for cancer diagnosis and treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Electron Spin Dephasing and Decoherence by Interaction with Nuclear Spins in Self-Assembled Quantum Dots

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta

    2004-01-01

    Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.

  20. Has the DOTS Strategy Improved Case Finding or Treatment Success? An Empirical Assessment

    PubMed Central

    Obermeyer, Ziad; Abbott-Klafter, Jesse; Murray, Christopher J. L.

    2008-01-01

    Background Nearly fifteen years after the start of WHO's DOTS strategy, tuberculosis remains a major global health problem. Given the lack of empirical evidence that DOTS reduces tuberculosis burden, considerable debate has arisen about its place in the future of global tuberculosis control efforts. An independent evaluation of DOTS, one of the most widely-implemented and longest-running interventions in global health, is a prerequisite for meaningful improvements to tuberculosis control efforts, including WHO's new Stop TB Strategy. We investigate the impact of the expansion of the DOTS strategy on tuberculosis case finding and treatment success, using only empirical data. Methods and Findings We study the effect of DOTS using time-series cross-sectional methods. We first estimate the impact of DOTS expansion on case detection, using reported case notification data and controlling for other determinants of change in notifications, including HIV prevalence, GDP, and country-specific effects. We then estimate the effect of DOTS expansion on treatment success. DOTS programme variables had no statistically significant impact on case detection in a wide range of models and specifications. DOTS population coverage had a significant effect on overall treatment success rates, such that countries with full DOTS coverage benefit from at least an 18% increase in treatment success (95% CI: 5–31%). Conclusions The DOTS technical package improved overall treatment success. By contrast, DOTS expansion had no effect on case detection. This finding is less optimistic than previous analyses. Better epidemiological and programme data would facilitate future monitoring and evaluation efforts. PMID:18320042

  1. Histone methyltransferase Dot1L plays a role in postembryonic development in Xenopus tropicalis

    PubMed Central

    Wen, Luan; Fu, Liezhen; Guo, Xiaogang; Chen, Yonglong; Shi, Yun-Bo

    2015-01-01

    Histone methylations have been implicated to play important roles in diverse cellular processes. Of particular interest is the methylation of histone H3K79, which is catalyzed by an evolutionarily conserved methyltransferase, disruptor of telomeric silencing (Dot1)-like (Dot1L). To investigate the role of Dot1L during vertebrate development, we have generated a Dot1L-specific transcription activator-like effector nuclease (TALEN) nuclease to knockdown endogenous Dot1L in Xenopus tropicalis, a diploid species highly related to the well-known developmental model Xenopus laevis, a pseudotetraploid amphibian. We show that the TALEN was extremely efficient in mutating Dot1L when expressed in fertilized eggs, creating essentially Dot1L knockout embryos with little H3K79 methylation. Importantly, we observed that Dot1L knockdown had no apparent effect on embryogenesis because normally feeding tadpoles were formed, consistent with the lack of maternal Dot1L expression. On the other hand, Dot1L knockdown severely retarded the growth of the tadpoles and led to tadpole lethality prior to metamorphosis. These findings suggest that Dot1L and H3K79 methylation play an important role for tadpole growth and development prior to metamorphosis into a frog. Our findings further reveal interesting similarities and differences between Xenopus and mouse development and suggest the existence of 2 separate phases of vertebrate development with distinct requirements for epigenetic modifications.—Wen, L., Fu, L., Guo, X., Chen, Y., Shi, Y.-B. Histone methyltransferase Dot1L plays a role in postembryonic development in Xenopus tropicalis. PMID:25366346

  2. Computation of energy states of hydrogenic quantum dot with two-electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakar, Y., E-mail: yuyakar@yahoo.com; Özmen, A., E-mail: aozmen@selcuk.edu.tr; Çakır, B., E-mail: bcakir@selcuk.edu.tr

    2016-03-25

    In this study we have investigated the electronic structure of the hydrogenic quantum dot with two electrons inside an impenetrable potential surface. The energy eigenvalues and wavefunctions of the ground and excited states of spherical quantum dot have been calculated by using the Quantum Genetic Algorithm (QGA) and Hartree-Fock Roothaan (HFR) method, and the energies are investigated as a function of dot radius. The results show that as dot radius increases, the energy of quantum dot decreases.

  3. Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices.

    PubMed

    Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik

    2017-07-24

    We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.

  4. Midline frontal cortex low-frequency activity drives subthalamic nucleus oscillations during conflict.

    PubMed

    Zavala, Baltazar A; Tan, Huiling; Little, Simon; Ashkan, Keyoumars; Hariz, Marwan; Foltynie, Thomas; Zrinzo, Ludvic; Zaghloul, Kareem A; Brown, Peter

    2014-05-21

    Making the right decision from conflicting information takes time. Recent computational, electrophysiological, and clinical studies have implicated two brain areas as being crucial in assuring sufficient time is taken for decision-making under conditions of conflict: the medial prefrontal cortex and the subthalamic nucleus (STN). Both structures exhibit an elevation of activity at low frequencies (<10 Hz) during conflict that correlates with the amount of time taken to respond. This suggests that the two sites could become functionally coupled during conflict. To establish the nature of this interaction we recorded from deep-brain stimulation electrodes implanted bilaterally in the STN of 13 Parkinson's disease patients while they performed a sensory integration task involving randomly moving dots. By gradually increasing the number of dots moving coherently in one direction, we were able to determine changes in the STN associated with response execution. Furthermore, by occasionally having 10% of the dots move in the opposite direction as the majority, we were able to identify an independent increase in STN theta-delta activity triggered by conflict. Crucially, simultaneous midline frontal electroencephalographic recordings revealed an increase in the theta-delta band coherence between the two structures that was specific to high-conflict trials. Activity over the midline frontal cortex was Granger causal to that in STN. These results establish the cortico-subcortical circuit enabling successful choices to be made under conditions of conflict and provide support for the hypothesis that the brain uses frequency-specific channels of communication to convey behaviorally relevant information. Copyright © 2014 Zavala et al.

  5. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    DOE PAGES

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; ...

    2015-03-16

    Engineering the electromagnetic environment of a nanoscale light emitter by a photonic cavity can significantly enhance its spontaneous emission rate through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter 1–5, providing the ultimate low-threshold laser system with small footprint, low power consumption and ultrafast modulation. A state-of-the-art ultra-low threshold nanolaser has been successfully developed though embedding quantum dots into photonic crystal cavity (PhCC) 6–8. However, several core challenges impede the practical applications of this architecture, including the random positions and compositional fluctuations of the dots 7, extreme difficulty in currentmore » injection8, and lack of compatibility with electronic circuits 7,8. Here, we report a new strategy to lase, where atomically thin crystalline semiconductor, i.e., a tungsten-diselenide (WSe 2) monolayer, is nondestructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PhCC. A new type of continuous-wave nanolaser operating in the visible regime is achieved with an optical pumping threshold as low as 27 nW at 130 K, similar to the value achieved in quantum dot PhCC lasers 7. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within 1 nm of the PhCC surface. The surface-gain geometry allows unprecedented accessibilities to multi-functionalize the gain, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.« less

  6. A multifunctional ribonuclease A-conjugated carbon dot cluster nanosystem for synchronous cancer imaging and therapy

    PubMed Central

    2014-01-01

    Carbon dots exhibit great potential in applications such as molecular imaging and in vivo molecular tracking. However, how to enhance fluorescence intensity of carbon dots has become a great challenge. Herein, we report for the first time a new strategy to synthesize fluorescent carbon dots (C-dots) with high quantum yields by using ribonuclease A (RNase A) as a biomolecular templating agent under microwave irradiation. The synthesized RNase A-conjugated carbon dots (RNase A@C-dots) exhibited quantum yields of 24.20%. The fluorescent color of the RNase A@C-dots can easily be adjusted by varying the microwave reaction time and microwave power. Moreover, the emission wavelength and intensity of RNase A@C-dots displayed a marked excitation wavelength-dependent character. As the excitation wavelength alters from 300 to 500 nm, the photoluminescence (PL) peak exhibits gradually redshifts from 450 to 550 nm, and the intensity reaches its maximum at an excitation wavelength of 380 nm. Its Stokes shift is about 80 nm. Notably, the PL intensity is gradually decreasing as the pH increases, almost linearly dependent, and it reaches the maximum at a pH = 2 condition; the emission peaks also show clearly a redshift, which may be caused by the high activity and perfective dispersion of RNase A in a lower pH solution. In high pH solution, RNase A tends to form RNase A warped carbon dot nanoclusters. Cell imaging confirmed that the RNase A@C-dots could enter into the cytoplasm through cell endocytosis. 3D confocal imaging and transmission electron microscopy observation confirmed partial RNase A@C-dots located inside the nucleus. MTT and real-time cell electronic sensing (RT-CES) analysis showed that the RNase A@C-dots could effectively inhibit the growth of MGC-803 cells. Intra-tumor injection test of RNase A@C-dots showed that RNase A@C-dots could be used for imaging in vivo gastric cancer cells. In conclusion, the as-prepared RNase A@C-dots are suitable for simultaneous therapy and in vivo fluorescence imaging of nude mice loaded with gastric cancer or other tumors. PMID:25177217

  7. A multifunctional ribonuclease A-conjugated carbon dot cluster nanosystem for synchronous cancer imaging and therapy

    NASA Astrophysics Data System (ADS)

    Liu, Huiyang; Wang, Qin; Shen, Guangxia; Zhang, Chunlei; Li, Chao; Ji, Weihang; Wang, Chun; Cui, Daxiang

    2014-08-01

    Carbon dots exhibit great potential in applications such as molecular imaging and in vivo molecular tracking. However, how to enhance fluorescence intensity of carbon dots has become a great challenge. Herein, we report for the first time a new strategy to synthesize fluorescent carbon dots (C-dots) with high quantum yields by using ribonuclease A (RNase A) as a biomolecular templating agent under microwave irradiation. The synthesized RNase A-conjugated carbon dots (RNase A@C-dots) exhibited quantum yields of 24.20%. The fluorescent color of the RNase A@C-dots can easily be adjusted by varying the microwave reaction time and microwave power. Moreover, the emission wavelength and intensity of RNase A@C-dots displayed a marked excitation wavelength-dependent character. As the excitation wavelength alters from 300 to 500 nm, the photoluminescence (PL) peak exhibits gradually redshifts from 450 to 550 nm, and the intensity reaches its maximum at an excitation wavelength of 380 nm. Its Stokes shift is about 80 nm. Notably, the PL intensity is gradually decreasing as the pH increases, almost linearly dependent, and it reaches the maximum at a pH = 2 condition; the emission peaks also show clearly a redshift, which may be caused by the high activity and perfective dispersion of RNase A in a lower pH solution. In high pH solution, RNase A tends to form RNase A warped carbon dot nanoclusters. Cell imaging confirmed that the RNase A@C-dots could enter into the cytoplasm through cell endocytosis. 3D confocal imaging and transmission electron microscopy observation confirmed partial RNase A@C-dots located inside the nucleus. MTT and real-time cell electronic sensing (RT-CES) analysis showed that the RNase A@C-dots could effectively inhibit the growth of MGC-803 cells. Intra-tumor injection test of RNase A@C-dots showed that RNase A@C-dots could be used for imaging in vivo gastric cancer cells. In conclusion, the as-prepared RNase A@C-dots are suitable for simultaneous therapy and in vivo fluorescence imaging of nude mice loaded with gastric cancer or other tumors.

  8. Andreev molecules in semiconductor nanowire double quantum dots.

    PubMed

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  9. Single-electron-occupation metal-oxide-semiconductor quantum dots formed from efficient poly-silicon gate layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Malcolm S.; rochette, sophie; Rudolph, Martin

    We introduce a silicon metal-oxide-semiconductor quantum dot structure that achieves dot-reservoir tunnel coupling control without a dedicated barrier gate. The elementary structure consists of two accumulation gates separated spatially by a gap, one gate accumulating a reservoir and the other a quantum dot. Control of the tunnel rate between the dot and the reservoir across the gap is demonstrated in the single electron regime by varying the reservoir accumulation gate voltage while compensating with the dot accumulation gate voltage. The method is then applied to a quantum dot connected in series to source and drain reservoirs, enabling transport down tomore » the single electron regime. Finally, tuning of the valley splitting with the dot accumulation gate voltage is observed. This split accumulation gate structure creates silicon quantum dots of similar characteristics to other realizations but with less electrodes, in a single gate stack subtractive fabrication process that is fully compatible with silicon foundry manufacturing.« less

  10. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging.

    PubMed

    Ding, Changqin; Zhu, Anwei; Tian, Yang

    2014-01-21

    Nanoparticles are promising scaffolds for applications such as imaging, chemical sensors and biosensors, diagnostics, drug delivery, catalysis, energy, photonics, medicine, and more. Surface functionalization of nanoparticles introduces an additional dimension in controlling nanoparticle interfacial properties and provides an effective bridge to connect nanoparticles to biological systems. With fascinating photoluminescence properties, carbon dots (C-dots), carbon-containing nanoparticles that are attracting considerable attention as a new type of quantum dot, are becoming both an important class of imaging probes and a versatile platform for engineering multifunctional nanosensors. In order to transfer C-dots from proof-of-concept studies toward real world applications such as in vivo bioimaging and biosensing, careful design and engineering of C-dot probes is becoming increasingly important. A comprehensive knowledge of how C-dot surfaces with various properties behave is essential for engineering C-dots with useful imaging properties such as high quantum yield, stability, and low toxicity, and with desirable biosensing properties such as high selectivity, sensitivity, and accuracy. Several reviews in recent years have reported preparation methods and properties of C-dots and described their application in biosensors, catalysis, photovoltatic cells, and more. However, no one has yet systematically summarized the surface engineering of C-dots, nor the use of C-dots as fluorescent nanosensors or probes for in vivo imaging in cells, tissues, and living organisms. In this Account, we discuss the major design principles and criteria for engineering the surface functionality of C-dots for biological applications. These criteria include brightness, long-term stability, and good biocompatibility. We review recent developments in designing C-dot surfaces with various functionalities for use as nanosensors or as fluorescent probes with fascinating analytical performance, and we emphasize applications in bioimaging and biosensing in live cells, tissues, and animals. In addition, we highlight our work on the design and synthesis of a C-dot ratiometric biosensor for intracellular Cu(2+) detection, and a twophoton fluorescent probe for pH measurement in live cells and tissues. We conclude this Account by outlining future directions in engineering the functional surface of C-dots for a variety of in vivo imaging applications, including dots with combined targeting, imaging and therapeutic-delivery capabilities, or high-resolution multiplexed vascular imaging. With each application C-dots should open new horizons of multiplexed quantitative detection, high-resolution fluorescence imaging, and long-term, real-time monitoring of their target.

  11. Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection

    PubMed Central

    Damalakiene, Leona; Karabanovas, Vitalijus; Bagdonas, Saulius; Valius, Mindaugas; Rotomskis, Ricardas

    2013-01-01

    Background: The purpose of this study was to elucidate the mechanism of natural uptake of nonfunctionalized quantum dots in comparison with microinjected quantum dots by focusing on their time-dependent accumulation and intracellular localization in different cell lines. Methods: The accumulation dynamics of nontargeted CdSe/ZnS carboxyl-coated quantum dots (emission peak 625 nm) was analyzed in NIH3T3, MCF-7, and HepG2 cells by applying the methods of confocal and steady-state fluorescence spectroscopy. Intracellular colocalization of the quantum dots was investigated by staining with Lysotracker®. Results: The uptake of quantum dots into cells was dramatically reduced at a low temperature (4°C), indicating that the process is energy-dependent. The uptake kinetics and imaging of intracellular localization of quantum dots revealed three accumulation stages of carboxyl-coated quantum dots at 37°C, ie, a plateau stage, growth stage, and a saturation stage, which comprised four morphological phases: adherence to the cell membrane; formation of granulated clusters spread throughout the cytoplasm; localization of granulated clusters in the perinuclear region; and formation of multivesicular body-like structures and their redistribution in the cytoplasm. Diverse quantum dots containing intracellular vesicles in the range of approximately 0.5–8 μm in diameter were observed in the cytoplasm, but none were found in the nucleus. Vesicles containing quantum dots formed multivesicular body-like structures in NIH3T3 cells after 24 hours of incubation, which were Lysotracker-negative in serum-free medium and Lysotracker-positive in complete medium. The microinjected quantum dots remained uniformly distributed in the cytosol for at least 24 hours. Conclusion: Natural uptake of quantum dots in cells occurs through three accumulation stages via a mechanism requiring energy. The sharp contrast of the intracellular distribution after microinjection of quantum dots in comparison with incubation as well as the limited transfer of quantum dots from vesicles into the cytosol and vice versa support the endocytotic origin of the natural uptake of quantum dots. Quantum dots with proteins adsorbed from the culture medium had a different fate in the final stage of accumulation from that of the protein-free quantum dots, implying different internalization pathways. PMID:23429995

  12. Antiresonance and decoupling in electronic transport through parallel-coupled quantum-dot structures with laterally-coupled Majorana zero modes

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Jing; Zhang, Lian-Lian; Jiang, Cui; Gong, Wei-Jiang

    2018-02-01

    We theoretically investigate the electronic transport through a parallel-coupled multi-quantum-dot system, in which the terminal dots of a one-dimensional quantum-dot chain are embodied in the two arms of an Aharonov-Bohm interferometer. It is found that in the structures of odd(even) dots, all their even(odd) molecular states have opportunities to decouple from the leads, and in this process antiresonance occurs which are accordant with the odd(even)-numbered eigenenergies of the sub-molecule without terminal dots. Next when Majorana zero modes are introduced to couple laterally to the terminal dots, the antiresonance and decoupling phenomena still co-exist in the quantum transport process. Such a result can be helpful in understanding the special influence of Majorana zero mode on the electronic transport through quantum-dot systems.

  13. Ga@C-dots as an antibacterial agent for the eradication of Pseudomonas aeruginosa

    PubMed Central

    Kumar, Vijay Bhooshan; Natan, Michal; Jacobi, Gila; Porat, Ze’ev; Banin, Ehud; Gedanken, Aharon

    2017-01-01

    The opportunistic pathogen Pseudomonas aeruginosa causes infections that are difficult to treat by antibiotic therapy. This research article reports on the synthesis of gallium (Ga) doped in carbon (C)-dots (Ga@C-dots) and their antimicrobial activity against free-living P. aeruginosa bacteria. The synthesis of Ga@C-dots was carried out by sonicating molten Ga (for 2.5 h) in polyethylene glycol-400, which acts as both a medium and carbon source. The resultant Ga@C-dots, having an average diameter of 9±2 nm, showed remarkably enhanced antibacterial activity compared with undoped C-dots. This was reflected by the much lower concentration of Ga doped within Ga@C-dots which was required for full inhibition of the bacterial growth. These results highlight the possibility of using Ga@C-dots as potential antimicrobial agents. PMID:28176980

  14. Chemical nature and structure of organic coating of quantum dots is crucial for their application in imaging diagnostics

    PubMed Central

    Bakalova, Rumiana; Zhelev, Zhivko; Kokuryo, Daisuke; Spasov, Lubomir; Aoki, Ichio; Saga, Tsuneo

    2011-01-01

    Background: One of the most attractive properties of quantum dots is their potential to extend the opportunities for fluorescent and multimodal imaging in vivo. The aim of the present study was to clarify whether the composition and structure of organic coating of nanoparticles are crucial for their application in vivo. Methods: We compared quantum dots coated with non-crosslinked amino-functionalized polyamidoamine (PAMAM) dendrimers, quantum dots encapsulated in crosslinked carboxyl-functionalized PAMAM dendrimers, and silica-shelled amino-functionalized quantum dots. A multimodal fluorescent and paramagnetic quantum dot probe was also developed and analyzed. The probes were applied intravenously in anesthetized animals for visualization of brain vasculature using two-photon excited fluorescent microscopy and visualization of tumors using fluorescent IVIS® imaging (Caliper Life Sciences, Hopkinton, MA) and magnetic resonance imaging. Results: Quantum dots coated with non-crosslinked dendrimers were cytotoxic. They induced side effects in vivo, including vasodilatation with a decrease in mean arterial blood pressure and heart rate. The quantum dots penetrated the vessels, which caused the quality of fluorescent imaging to deteriorate. Quantum dots encapsulated in crosslinked dendrimers had low cytotoxicity and were biocompatible. In concentrations <0.3 nmol quantum dots/kg bodyweight, these nanoparticles did not affect blood pressure and heart rate, and did not induce vasodilatation or vasoconstriction. PEGylation (PEG [polyethylene glycol]) was an indispensable step in development of a quantum dot probe for in vivo imaging, based on silica-shelled quantum dots. The non-PEGylated silica-shelled quantum dots possessed low colloidal stability in high-salt physiological fluids, accompanied by rapid aggregation in vivo. The conjugation of silica-shelled quantum dots with PEG1100 increased their stability and half-life in the circulation without significant enhancement of their size. In concentrations <2.5 nmol/kg bodyweight, these quantum dots did not affect the main physiological variables. It was possible to visualize capillaries, which makes this quantum dot probe appropriate for investigation of mediators of vasoconstriction, vasodilatation, and brain circulation in intact animals in vivo. The multimodal silica-shelled quantum dots allowed visualization of tumor tissue in an early stage of its development, using magnetic resonance imaging. Conclusion: The present study shows that the type and structure of organic/bioorganic shells of quantum dots determine their biocompatibility and are crucial for their application in imaging in vivo, due to the effects of the shell on the following properties: colloidal stability, solubility in physiological fluids, influence of the basic physiological parameters, and cytotoxicity. PMID:21980235

  15. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    PubMed

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  16. A reconfigurable gate architecture for Si/SiGe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zajac, D. M.; Hazard, T. M.; Mi, X.

    2015-06-01

    We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots, and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35–70 μeV. By energizing two additional gates, we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.

  17. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  18. Convective and Diffusive O2 Transport Components of Peak Oxygen Uptake Following Long-duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Ade, Carl J.; Moore, A. D.

    2014-01-01

    Spaceflight reduces aerobic capacity and may be linked with maladaptations in the O2 transport pathway. The aim was to 1) evaluate the cardiorespiratory adaptations following 6 months aboard the International Space Station and 2) model the contributions of convective (Q (raised dot) O2) and peripheral diffusive (DO2) components of O2 transport to changes in peak O2 uptake (V (raised dot) O2PEAK). To date, 1 male astronaut (XX yrs) completed an incremental exercise test to measure V (raised dot) O2PEAK prior to and 2 days post-flight. Cardiac output (Q (raised dot) ) was measured at three submaximal work rates via carbon dioxide rebreathing. The Q (raised dot) :V (raised dot) O2 relationship was extrapolated to V (raised dot) O2PEAK to determine Q (raised dot) PEAK. Hemoglobin concentration was measured at rest via a venous blood sample. These measurements were used to model the changes in Q (raised dot) O2 and DO2 using Fick's principle of mass conservation and Law of Diffusion as established by Wagner and colleagues (Annu. Rev. Physiol 58: 21-50, 1996 and J. Appl. Physiol. 73: 1067-1076, 1992). V (raised dot) O2PEAK decreased postflight from 3.72 to 3.45 l min-1, but Q (raised dot) PEAK increased from 24.5 to 27.7 l min-1. The decrease in V (raised dot) O2PEAK post-flight was associated with a 21.2% decrease in DO2, an 18.6% decrease in O2 extraction, but a 3.4% increase in Q (raised dot) O2. These preliminary data suggest that long-duration spaceflight reduces peripheral diffusing capacity and that it largely contributes to the post-flight decrease in aerobic capacity.

  19. Hot spots enriched plasmonic nanostructure-induced random lasing of quantum dots thin film

    NASA Astrophysics Data System (ADS)

    Shan, Feng; Zhang, Xiao-Yang; Wu, Jing-Yuan; Zhang, Tong

    2018-04-01

    Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0205800), the National Natural Science Foundation of China (Grant Nos. 11734005, 61307066, and 61450110442), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130630), the Doctoral Fund of Ministry of Education of China (Grant No. 20130092120024), the Innovation Fund of School of Electronic Science and Engineering, Southeast University, China (Grant No. 2242015KD006), and the Scientific Research Foundation of Graduate School of Southeast University, China (Grant Nos. YBJJ1513 and YBJJ1613).

  20. Effects of retinal eccentricity and acuity on global motion processing

    PubMed Central

    Bower, Jeffrey D.; Bian, Zheng; Andersen, George J.

    2012-01-01

    The present study assessed direction discrimination of moving random dot cinematograms (RDCs) at retinal eccentricities of 0, 8, 22 and 40 deg. In addition, Landolt C acuity was assessed at these eccentricities to determine whether changes in motion discrimination performance covaried with acuity in the retinal periphery. The results of the experiment indicated that discrimination thresholds increased with retinal eccentricity and directional variance (noise) independent of acuity. Psychophysical modeling indicated that the results of eccentricity and noise could be explained by an increase in channel bandwidth and an increase in internal multiplicative noise. PMID:22382583

  1. Photoluminescent carbon dots based on a rare 3D inorganic-organic hybrid cadmium borate crystal.

    PubMed

    Zhou, Kang; Zhang, Wen-Jin; Luo, Yuan-Zhang; Pan, Chun-Yang

    2018-05-17

    A 3D inorganic-organic hybridized skeleton cadmium borate [Cden][B5O8(OH)] (1) (en = ethylenediamine) has been solvothermally synthesized. By calcining it, specific shape carbon dots (C-dots) with abundant free radicals were observed. In addition, C-dots in the ethanol phase exhibited variable photoluminescence and showed rare turn on or off effects to Cr3+ ions and CdSe/ZnS quantum dots, but only a turn on effect to Cs+ ions and a turn off effect to CsPbBr3 quantum dots.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baart, T. A.; Vandersypen, L. M. K.; Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  3. Laser-Induced-Fluorescence Photogrammetry and Videogrammetry

    NASA Technical Reports Server (NTRS)

    Danehy, Paul; Jones, Tom; Connell, John; Belvin, Keith; Watson, Kent

    2004-01-01

    An improved method of dot-projection photogrammetry and an extension of the method to encompass dot-projection videogrammetry overcome some deficiencies of dot-projection photogrammetry as previously practiced. The improved method makes it possible to perform dot-projection photogrammetry or videogrammetry on targets that have previously not been amenable to dot-projection photogrammetry because they do not scatter enough light. Such targets include ones that are transparent, specularly reflective, or dark. In standard dot-projection photogrammetry, multiple beams of white light are projected onto the surface of an object of interest (denoted the target) to form a known pattern of bright dots. The illuminated surface is imaged in one or more cameras oriented at a nonzero angle or angles with respect to a central axis of the illuminating beams. The locations of the dots in the image(s) contain stereoscopic information on the locations of the dots, and, hence, on the location, shape, and orientation of the illuminated surface of the target. The images are digitized and processed to extract this information. Hardware and software to implement standard dot-projection photogrammetry are commercially available. Success in dot-projection photogrammetry depends on achieving sufficient signal-to-noise ratios: that is, it depends on scattering of enough light by the target so that the dots as imaged in the camera(s) stand out clearly against the ambient-illumination component of the image of the target. In one technique used previously to increase the signal-to-noise ratio, the target is illuminated by intense, pulsed laser light and the light entering the camera(s) is band-pass filtered at the laser wavelength. Unfortunately, speckle caused by the coherence of the laser light engenders apparent movement in the projected dots, thereby giving rise to errors in the measurement of the centroids of the dots and corresponding errors in the computed shape and location of the surface of the target. The improved method is denoted laser-induced-fluorescence photogrammetry.

  4. Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition

    PubMed Central

    Gallo, Juan; Cerqueira, María de Fátima; Menéndez-Miranda, Mario; Costa-Fernández, José Manuel; Diéguez, Lorena; Espiña, Begoña

    2018-01-01

    Carbon dots have demonstrated great potential as luminescent nanoparticles in bioapplications. Although such nanoparticles appear to exhibit low toxicity compared to other metal luminescent nanomaterials, today we know that the toxicity of carbon dots (C-dots) strongly depends on the protocol of fabrication. In this work, aqueous fluorescent C-dots have been synthesized from cinnamon, red chilli, turmeric and black pepper, by a one-pot green hydrothermal method. The synthesized C-dots were firstly characterized by means of UV–vis, fluorescence, Fourier transform infrared and Raman spectroscopy, dynamic light scattering and transmission electron microscopy. The optical performance showed an outstanding ability for imaging purposes, with quantum yields up to 43.6%. Thus, the cytotoxicity of the above mentioned spice-derived C-dots was evaluated in vitro in human glioblastoma cells (LN-229 cancer cell line) and in human kidney cells (HK-2 non-cancerous cell line). Bioimaging and viability studies were performed with different C-dot concentrations from 0.1 to 2 mg·mL−1, exhibiting a higher uptake of C-dots in the cancer cultures compared to the non-cancerous cells. Results showed that the spice-derived C-dots inhibited cell viability dose-dependently after a 24 h incubation period, displaying a higher toxicity in LN-229, than in HK-2 cells. As a control, C-dots synthesized from citric acid did not show any significant toxicity in either cancerous or non-cancerous cells, implying that the tumour cell growth inhibition properties observed in the spice-derived C-dots can be attributed to the starting material employed for their fabrication. These results evidence that functional groups in the surface of the C-dots might be responsible for the selective cytotoxicity, as suggested by the presence of piperine in the surface of black pepper C-dots analysed by ESI-QTOF-MS. PMID:29527430

  5. Identification of the DotL Coupling Protein Subcomplex of the Legionella Dot/Icm Type IV Secretion System

    PubMed Central

    Vincent, Carr D.; Friedman, Jonathan R.; Jeong, Kwang Cheol; Sutherland, Molly C.; Vogel, Joseph P.

    2012-01-01

    Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella T4SS substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex. PMID:22694730

  6. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiupei, E-mail: xiupeiyang@163.com; College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000; Lin, Jia

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination.more » The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.« less

  7. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    NASA Astrophysics Data System (ADS)

    Isnaeni, Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-03-01

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  8. Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots.

    PubMed

    Wageh, S; Maize, Mai; Donia, A M; Al-Ghamdi, Ahmed A; Umar, Ahmad

    2015-12-01

    This paper reports the facile synthesis and detailed characterization of mercaptoacetic acid capped cadmium sulphide (CdS) quantum dots using various cadmium precursors. The mercaptoacetic acid capped CdS quantum dots were prepared by facile and simple wet chemical method and characterized by several techniques such as energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV-vis. spectroscopy, photoluminescence spectroscopy, high-resolution transmission microscopy (HRTEM) and thremogravimetric analysis. The EDS studies revealed that the prepared quantum dots possess higher atomic percentage of sulfur compared to cadmium due to the coordination of thiolate to the quantum dots surfaces. The X-ray and absorption analyses exhibited that the size of quantum dots prepared by cadmium acetate is larger than the quantum dots prepared by cadmium chloride and cadmium nitrate. The increase in size can be attributed to the low stability constant of cadmium acetate in comparison with cadmium chloride and cadmium nitrate. The FTIR and thermogravimetric analysis showed that the nature of capping molecule on the surface of quantum dots are different depending on the cadmium precursors which affect the emission from CdS quantum dots. Photoemission spectroscopy revealed that the emission of quantum dots prepared by cadmium acetate has high intensity band edge emission along with low intensity trapping state emission. However the CdS quantum dots prepared by cadmium chloride and cadmium nitrate produced only trapping state emissions.

  9. Quantum dot impregnated-chitosan film for heavy metal ion sensing and removal.

    PubMed

    Jaiswal, Amit; Ghsoh, Siddhartha Sankar; Chattopadhyay, Arun

    2012-11-06

    We report the use of biopolymer-stabilized ZnS quantum dots (Q-dots) for cation exchange reaction-based easy sensing and removal of heavy metal ions such as Hg(2+), Ag(+), and Pb(2+) in water. Chitosan-stabilized ZnS Q-dots were synthesized in aqueous medium and were observed to have been converted to HgS, Ag(2)S, and PbS Q-dots in the presence of corresponding ions. The transformed Q-dots showed characteristic color development, with Hg(2+) being exceptionally identifiable due to the visible bright yellow color formation, while brown coloration was observed in other metal ions. The cation exchange was driven by the difference in the solubility product of the reactant and the product Q-dots. The cation exchanged Q-dots preserved the morphology of the reactant Q-dots and displayed volume increase based on the bulk crystal lattice parameters. The band gap of the transformed Q-dots showed a major increase from the corresponding bulk band gap of the material, demonstrating the role of quantum confinement. Next, we fabricated ZnS Q-dot impregnated chitosan film which was used to remove heavy metal ions from contaminated water as measured using atomic absorption spectroscopy (AAS). The present system could suitably be used as a simple dipstick for elimination of heavy metal ion contamination in water.

  10. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Yulianto, Nursidik; Suliyanti, Maria Margaretha

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantummore » dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.« less

  11. 77 FR 72905 - Notice of Request for Information Collection Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... Counselor Checklist (DTO F 1050-1); ONE DOT Sharing Neutrals Program Mediation Intake (DOT F 1050-2); Agreement to Mediate (DOT F 1050-3); Exit Survey for Mediation Participants (DOT F 1050-4); Agreement to...

  12. DOT's CAFE rulemaking analysis.

    DOT National Transportation Integrated Search

    2013-02-13

    Presentation discusses what DOT needs to consider in setting CAFE standards. How DOT's use of the CAFE Compliance and Effects Modeling System helps to analyze potential CAFE Standards. How DOT might approach the next round of CAFE standards for model...

  13. Today's DOT and the quest for more accountable organizational structures.

    DOT National Transportation Integrated Search

    2005-12-01

    This study investigates the impact of DOT organizational structures on effective transportation planning and performance. A review of the 50 state DOT authorizing statutes and DOT organizational charts found minimal differences in organizational stru...

  14. Photovoltaic Performance of Inverted Polymer Solar Cells Using Hybrid Carbon Quantum Dots and Absorption Polymer Materials

    NASA Astrophysics Data System (ADS)

    Lim, Hwain; Lee, Kyu Seung; Liu, Yang; Kim, Hak Yong; Son, Dong Ick

    2018-05-01

    We report the synthesis and characterization of the carbon quantum dots (C-dots) easily obtained from citric acid and ethanediamine, and also investigated structural, optical and electrical properties. The C-dots have extraordinary optical and electrical features such as absorption of ultraviolet range and effective interface for charge separation and transport in active layer, which make them attractive materials for applications in photovoltaic devices (PV). The C-dots play important roles in charge extraction in the PV structures, they can be synthesized by a simple method and used to insert in active layer of polymer solar cells. In this study, we demonstrate that improve charge transport properties of inverted polymer solar cells (iPSCs) with C-dots and structural, optical and electrical properties of C-dots. As a result, iPSCs with C-dots showed enhancement of more than 30% compared with that of the contrast device in power conversion efficiency.

  15. Suppression of low-frequency charge noise in gates-defined GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Jie; Li, Hai-Ou, E-mail: haiouli@ustc.edu.cn, E-mail: gpguo@ustc.edu.cn; Wang, Ke

    To reduce the charge noise of a modulation-doped GaAs/AlGaAs quantum dot, we have fabricated shallow-etched GaAs/AlGaAs quantum dots using the wet-etching method to study the effects of two-dimensional electron gas (2DEG) underneath the metallic gates. The low-frequency 1/f noise in the Coulomb blockade region of the shallow-etched quantum dot is compared with a non-etched quantum dot on the same wafer. The average values of the gate noise are approximately 0.5 μeV in the shallow-etched quantum dot and 3 μeV in the regular quantum dot. Our results show the quantum dot low-frequency charge noise can be suppressed by the removal ofmore » the 2DEG underneath the metallic gates, which provides an architecture for noise reduction.« less

  16. Negative exchange interactions in coupled few-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Kuangyin; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin

    2018-06-01

    It has been experimentally shown that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin tripletlike rather than singletlike ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both tripletlike and singletlike ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that tripletlike ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.

  17. [Imaging of surface cell antigens on the tumor sections of lymph nodes using fluorescence quantum dots].

    PubMed

    Rafalovskaia-Orlovskaia, E P; Gorgidze, L A; Gladkikh, A A; Tauger, S M; Vorob'ev, I A

    2012-01-01

    The usefulness of quantum dots for the immunofluorescent detection of surface antigens on the lymphoid cells has been studied. To optimize quantum dots detection we have upgraded fluorescent microscope that allows obtaining multiple images from different quantum dots from one section. Specimens stained with quantum dots remained stable over two weeks and practically did not bleach under mercury lamp illumination during tens of minutes. Direct conjugates of primary mouse monoclonal antibodies with quantum dots demonstrated high specificity and sufficient sensitivity in the case of double staining on the frozen sections. Because of the high stability of quantum dots' fluorescence, this method allows to analyze antigen coexpression on the lymphoid tissue sections for diagnostic purposes. The spillover of fluorescent signals from quantum dots into adjacent fluorescent channels, with maxima differing by 40 nm, did not exceed 8%, which makes the spectral compensation is practically unnecessary.

  18. 49 CFR 40.41 - Where does a urine collection for a DOT drug test take place?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Where does a urine collection for a DOT drug test... in DOT Urine Collections § 40.41 Where does a urine collection for a DOT drug test take place? (a) A urine collection for a DOT drug test must take place in a collection site meeting the requirements of...

  19. 49 CFR 40.41 - Where does a urine collection for a DOT drug test take place?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Where does a urine collection for a DOT drug test... in DOT Urine Collections § 40.41 Where does a urine collection for a DOT drug test take place? (a) A urine collection for a DOT drug test must take place in a collection site meeting the requirements of...

  20. 49 CFR 40.41 - Where does a urine collection for a DOT drug test take place?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Where does a urine collection for a DOT drug test... in DOT Urine Collections § 40.41 Where does a urine collection for a DOT drug test take place? (a) A urine collection for a DOT drug test must take place in a collection site meeting the requirements of...

  1. 49 CFR 40.41 - Where does a urine collection for a DOT drug test take place?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Where does a urine collection for a DOT drug test... in DOT Urine Collections § 40.41 Where does a urine collection for a DOT drug test take place? (a) A urine collection for a DOT drug test must take place in a collection site meeting the requirements of...

  2. The Story of Kyle

    ERIC Educational Resources Information Center

    Dyson, Nancy I.; Jordan, Nancy C.; Hassinger-Das, Brenna L.

    2015-01-01

    Kyle, a kindergartner from a low-income family, is shown a set of three black dots on a white mat. His teacher then hides the dots with a small box lid and lays down an additional set of two dots. She pushes the two dots under the cover, one at a time. Kyle must now choose the number of dots "hiding" under the box from a set of four…

  3. 49 CFR 178.345 - General design and construction requirements applicable to Specification DOT 406 (§ 178.346), DOT...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false General design and construction requirements applicable to Specification DOT 406 (§ 178.346), DOT 407 (§ 178.347), and DOT 412 (§ 178.348) cargo tank motor vehicles. 178.345 Section 178.345 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS...

  4. 49 CFR 178.345 - General design and construction requirements applicable to Specification DOT 406 (§ 178.346), DOT...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false General design and construction requirements applicable to Specification DOT 406 (§ 178.346), DOT 407 (§ 178.347), and DOT 412 (§ 178.348) cargo tank motor vehicles. 178.345 Section 178.345 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS...

  5. 49 CFR 178.345 - General design and construction requirements applicable to Specification DOT 406 (§ 178.346), DOT...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false General design and construction requirements applicable to Specification DOT 406 (§ 178.346), DOT 407 (§ 178.347), and DOT 412 (§ 178.348) cargo tank motor vehicles. 178.345 Section 178.345 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS...

  6. Coping with tuberculosis and directly observed treatment: a qualitative study among patients from South India.

    PubMed

    Yellappa, Vijayashree; Lefèvre, Pierre; Battaglioli, Tullia; Narayanan, Devadasan; Van der Stuyft, Patrick

    2016-07-19

    In India, the Revised National TB control programme (RNTCP) offers free diagnosis and treatment for tuberculosis (TB), based on the Directly Observed Treatment Short course (DOTS) strategy. We conducted a qualitative study to explore the experience and consequences of having TB on patients enrolled in DOTS and their caretakers in Tumkur district, located in a southern state of India, Karnataka. We conducted 33 in-depth interviews on a purposive sample of TB patients from three groups: (1) patients who reached RNTCP directly on their own and took DOTS at RNTCP; (2) patients who were referred by private practitioners (PPs) to RNTCP and took DOTS at RNTCP; and (3) patients diagnosed by RNTCP and took DOTS from PPs. Data was analyzed using a thematic approach with the support of NVivo9. The study revealed that TB and DOTS have a large impact on patient's lives, which is often extended to the family and caretakers. The most vulnerable patients faced the most difficulty in accessing and completing DOTS. The family was the main source of support during patient's recovery. Patients residing in rural areas and, taking DOTS from the government facilities had to overcome many barriers to adhere to the DOTS therapy, such as long travelling distance to DOTS centers, inconvenient timings and unfavorable attitude of the RNTCP staff, when compared to patients who took DOTS from PPs. Advantages of taking DOTS from PPs cited by the patients were privacy, flexibility in timings, proximity and more immediate access to care. Patients and their family had to cope with stigmatization and fear and financial hardships that surfaced from TB and DOTS. Young patients living in urban areas were more worried about stigmatisation, than elderly patients living in rural areas. Patients who were referred by PPs experienced more financial problems compared to those who reached RNTCP services directly. Our study provided useful information about patient's needs and expectations while taking DOTS. The development of mechanisms within RNTCP towards patient centered care is needed to enable patients and caretakers cope with disease condition and adhere to DOTS.

  7. Highly biocompatible yogurt-derived carbon dots as multipurpose sensors for detection of formic acid vapor and metal ions

    NASA Astrophysics Data System (ADS)

    Moonrinta, Sasaluck; Kwon, Binhee; In, Insik; Kladsomboon, Sumana; Sajomsang, Warayuth; Paoprasert, Peerasak

    2018-07-01

    Carbon dots are fascinating nanomaterials given their straightforward synthesis, unique optical properties, sensing capabilities, and biocompatibility. In this work, biocompatible carbon dots were prepared from yogurt using a two-step pyrolysis/hydrothermal method. The dots were spherical in shape with an average size of 4.7 nm. They showed blue emission under UV illumination with a quantum yield of 1.5%. Their photoluminescence was stable over three months and in both strong buffer solutions and highly concentrated salt solutions. The optical absorption and photoluminescence properties of the dots were employed for vapor and metal ion sensing, respectively. For the first time, the carbon dots were integrated into an optical electronic nose, and used for the detection of formic acid vapor at room temperature. Sensing was based on monitoring the optical transmission through a carbon dot film upon exposure to vapor, and the results were confirmed by UV-visible spectroscopy. The carbon dot-integrated electronic nose was able to distinguish vapor from formic acid/water solutions at different concentrations, with a detection limit of 7.3% v/v. The sensitivity of the dots to metal ions was tested by measuring the photoluminescence emission intensity at different excitation wavelengths. Principal component analysis was used to differentiate between the ions. The results suggested that interactions between carbon dots and metals ions occurred at a range of binding sites. The biocompability of the dots was demonstrated to be excellent. The study identified carbon dots produced from yogurt as multipurpose fluorescent nanomaterials with potential sensing and biomedical applications.

  8. Charge reconfiguration in arrays of quantum dots

    NASA Astrophysics Data System (ADS)

    Bayer, Johannes C.; Wagner, Timo; Rugeramigabo, Eddy P.; Haug, Rolf J.

    2017-12-01

    Semiconductor quantum dots are potential building blocks for scalable qubit architectures. Efficient control over the exchange interaction and the possibility of coherently manipulating electron states are essential ingredients towards this goal. We studied experimentally the shuttling of electrons trapped in serial quantum dot arrays isolated from the reservoirs. The isolation hereby enables a high degree of control over the tunnel couplings between the quantum dots, while electrons can be transferred through the array by gate voltage variations. Model calculations are compared with our experimental results for double, triple, and quadruple quantum dot arrays. We are able to identify all transitions observed in our experiments, including cotunneling transitions between distant quantum dots. The shuttling of individual electrons between quantum dots along chosen paths is demonstrated.

  9. Templated self-assembly of quantum dots from aqueous solution using protein scaffolds

    NASA Astrophysics Data System (ADS)

    Szuchmacher Blum, Amy; Soto, Carissa M.; Wilson, Charmaine D.; Whitley, Jessica L.; Moore, Martin H.; Sapsford, Kim E.; Lin, Tianwei; Chatterji, Anju; Johnson, John E.; Ratna, Banahalli R.

    2006-10-01

    Short, histidine-containing peptides can be conjugated to lysine-containing protein scaffolds to controllably attach quantum dots (QDs) to the scaffold, allowing for generic attachment of quantum dots to any protein without the use of specially engineered domains. This technique was used to bind quantum dots from aqueous solution to both chicken IgG and cowpea mosaic virus (CPMV), a 30 nm viral particle. These quantum dot protein assemblies were studied in detail. The IgG QD complexes were shown to retain binding specificity to their antigen after modification. The CPMV QD complexes have a local concentration of quantum dots greater than 3000 nmol ml-1, and show a 15% increase in fluorescence quantum yield over free quantum dots in solution.

  10. Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T., E-mail: t.kobayashi@unsw.edu.au; Heijden, J. van der; House, M. G.

    We report on electronic transport measurements through a silicon double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO{sub 2} interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160 and 240 μeV with an electric field dependence 1.2 ± 0.2 meV/(MV/m). A large valley splitting is an essential requirement for implementing a physical electron spin qubit in a silicon quantum dot.

  11. Dicke states in multiple quantum dots

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Manolescu, Andrei

    2013-10-01

    We present a theoretical study of the collective optical effects which can occur in groups of three and four quantum dots. We define conditions for stable subradiant (dark) states, rapidly decaying super-radiant states, and spontaneous trapping of excitation. Each quantum dot is treated like a two-level system. The quantum dots are, however, realistic, meaning that they may have different transition energies and dipole moments. The dots interact via a short-range coupling which allows excitation transfer across the dots, but conserves the total population of the system. We calculate the time evolution of single-exciton and biexciton states using the Lindblad equation. In the steady state the individual populations of each dot may have permanent oscillations with frequencies given by the energy separation between the subradiant eigenstates.

  12. TxDOT can help pave the way for distribution centers.

    DOT National Transportation Integrated Search

    2010-05-01

    TxDOT supports economic development in Texas. : Working through its district offices, TxDOT can help : developers avoid common transportation-related : problems associated with selected center sites. TxDOT : may also be able to help distribution cent...

  13. Synthesis and optical properties of core-multi-shell CdSe/CdS/ZnS quantum dots: Surface modifications

    NASA Astrophysics Data System (ADS)

    Ratnesh, R. K.; Mehata, Mohan Singh

    2017-02-01

    We report two port synthesis of CdSe/CdS/ZnS core-multi-shell quantum dots (Q-dots) and their structural properties. The multi-shell structures of Q-dots were developed by using successive ionic layer adsorption and reaction (SILAR) technique. The obtained Q-dots show high crystallinity with the step-wise adjustment of lattice parameters in the radial direction. The size of the core and core-shell Q-dots estimated by transmission electron microscopy images and absorption spectra is about 3.4 and 5.3 nm, respectively. The water soluble Q-dots (scheme-1) were prepared by using ligand exchange method, and the effect of pH was discussed regarding the variation of quantum yield (QY). The decrease of a lifetime of core-multi-shell Q-dots with respect to core CdSe indicates that the shell growth may be tuned by the lifetimes. Thus, the study clearly demonstrates that the core-shell approach can be used to substantially improve the optical properties of Q-dots desired for various applications.

  14. Sandwich-dot enzyme-linked immunosorbent assay for the detection of canine distemper virus

    PubMed Central

    Li, Zhi; Zhang, Yanlong; Wang, Huiguo; Jin, Jinhua; Li, Wenzhe

    2013-01-01

    A sandwich-dot enzyme-linked immunosorbent assay (dot ELISA) was developed for the detection of canine distemper virus (CDV). In 56 dogs suspected to have CD the rates of detection of CDV antigen in samples of blood lymphocytes and palpebral conjunctiva by dot ELISA and ELISA were, respectively, 91% (49/54) and 81% (44/54) for the lymphocyte samples and 88% (28/32) and 75% (24/32) for the conjunctival samples. The CDV detection limits were 10 ng/50 μL for dot ELISA and 40 ng/50 μL for ELISA. The reliability of dot ELISA relative to electron microscopy was 96% with 22 samples: all 21 samples in which CDV particles were observed by electron microscopy yielded positive results with dot ELISA; the single sample in which particles were not observed yielded false-positive results with dot ELISA. The results indicate that the dot ELISA developed can serve as a reliable rapid diagnostic test in suspected cases of CD and also be useful for epidemiologic surveillance of the disease. PMID:24124274

  15. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effective tuning of electron charge and spin distribution in a dot-ring nanostructure at the ZnO interface

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2018-05-01

    Electronic states and the Aharonov-Bohm effect in ZnO quantum dot-ring nanostructures containing few interacting electrons reveal several unique features. We have shown here that in contrast to the dot-rings made of conventional semiconductors, such as InAs or GaAs, the dot-rings in ZnO heterojunctions demonstrate several unique characteristics due to the unusual properties of quantum dots and rings in ZnO. In particular the energy spectra of the ZnO dot-ring and the Aharnov-Bohm oscillations are strongly dependant on the electron number in the dot or in the ring. Therefore even small changes of the confinement potential, sizes of the dot-ring or the magnetic field can drastically change the energy spectra and the behavior of Aharonov-Bohm oscillations in the system. Due to this interesting phenomena it is possible to effectively control with high accuracy the electron charge and spin distribution inside the dot-ring structure. This controlling can be achieved either by changing the magnetic field or the confinement potentials.

  17. Investigation of Quantum Dot Lasers

    DTIC Science & Technology

    2004-08-09

    Accomplishments: • Introduction Since the first demonstration of room-temperature operation of self-assembled quantum-dot (QD) lasers about a...regions (JGaAs), wetting layer (JWL), and Auger recombination in the dots ( JAug ). for the present 1.3µm dots, the temperature invariant measured

  18. TxDOT uses of real-time commercial traffic data : opportunity matrix.

    DOT National Transportation Integrated Search

    2012-01-01

    Based on a TxDOT survey, a review of other state DOTs, and researcher understanding of Intelligent Transportation System (ITS) needs, the Texas Transportation Institute (TTI) team developed a comprehensive list of opportunities for TxDOT to consider ...

  19. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    NASA Astrophysics Data System (ADS)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  20. Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption.

    PubMed

    Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming

    2016-12-01

    Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.

  1. Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling.

    PubMed

    Zholobak, Nadezhda M; Popov, Anton L; Shcherbakov, Alexander B; Popova, Nelly R; Guzyk, Mykhailo M; Antonovich, Valeriy P; Yegorova, Alla V; Scrypynets, Yuliya V; Leonenko, Inna I; Baranchikov, Alexander Ye; Ivanov, Vladimir K

    2016-01-01

    Luminescent organic dots (O-dots) were synthesized via a one-pot, solvent-free thermolysis of citric acid in urea melt. The influence of the ratio of the precursors and the duration of the process on the properties of the O-dots was established and a mechanism of their formation was hypothesized. The multicolour luminescence tunability and toxicity of synthesized O-dots were extensively studied. The possible applications of O-dots for alive/fixed cell staining and labelling of layer-by-layer polyelectrolyte microcapsules were evaluated.

  2. Study of CdTe quantum dots grown using a two-step annealing method

    NASA Astrophysics Data System (ADS)

    Sharma, Kriti; Pandey, Praveen K.; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.

    2006-02-01

    High size dispersion, large average radius of quantum dot and low-volume ratio has been a major hurdle in the development of quantum dot based devices. In the present paper, we have grown CdTe quantum dots in a borosilicate glass matrix using a two-step annealing method. Results of optical characterization and the theoretical model of absorption spectra have shown that quantum dots grown using two-step annealing have lower average radius, lesser size dispersion, higher volume ratio and higher decrease in bulk free energy as compared to quantum dots grown conventionally.

  3. Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling

    PubMed Central

    Zholobak, Nadezhda M; Popov, Anton L; Shcherbakov, Alexander B; Popova, Nelly R; Guzyk, Mykhailo M; Antonovich, Valeriy P; Yegorova, Alla V; Scrypynets, Yuliya V; Leonenko, Inna I; Baranchikov, Alexander Ye

    2016-01-01

    Luminescent organic dots (O-dots) were synthesized via a one-pot, solvent-free thermolysis of citric acid in urea melt. The influence of the ratio of the precursors and the duration of the process on the properties of the O-dots was established and a mechanism of their formation was hypothesized. The multicolour luminescence tunability and toxicity of synthesized O-dots were extensively studied. The possible applications of O-dots for alive/fixed cell staining and labelling of layer-by-layer polyelectrolyte microcapsules were evaluated. PMID:28144539

  4. Red Dot Basal Cell Carcinoma: An Unusual Variant of a Common Malignancy.

    PubMed

    Loh, Tiffany Y; Cohen, Philip R

    2016-05-01

    Red dot basal cell carcinoma is a distinct but rare subtype of basal cell carcinoma (BCC). It presents as a red macule or papule; therefore, in most cases, it may easily be mistaken for a benign vascular lesion, such as a telangiectasia or angioma.
    A red dot BCC in an older woman is described. Clinical and histological differences between red dot BCCs and telangiectasias are described.
    A 72-year-old woman initially presented with a painless red macule on her nose. Biopsy of the lesion established the diagnosis of a red dot BCC. Pubmed was searched for the following terms: angioma, basal cell carcinoma, dermoscope, diascopy, red dot, non-melanoma skin cancer, telangiectasia, and vascular. The papers were reviewed for cases of red dot basal cell carcinoma. Clinical and histological characteristics of red dot basal cell carcinoma and telangiectasias were compared.
    Red dot BCC is an extremely rare variant of BCC that may be confused with benign vascular lesions. Although BCCs rarely metastasize and are associated with low mortality, they have the potential to become locally invasive and destructive if left untreated. Thus, a high index of suspicion for red dot BCC is necessary.

    J Drugs Dermatol. 2016;15(5):645-647.

  5. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system.

    PubMed

    Vincent, Carr D; Friedman, Jonathan R; Jeong, Kwang Cheol; Sutherland, Molly C; Vogel, Joseph P

    2012-07-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella type IV secretion system substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex. © 2012 Blackwell Publishing Ltd.

  6. Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids.

    PubMed

    Gilmore, Rachel H; Lee, Elizabeth M Y; Weidman, Mark C; Willard, Adam P; Tisdale, William A

    2017-02-08

    Energetic disorder in quantum dot solids adversely impacts charge carrier transport in quantum dot solar cells and electronic devices. Here, we use ultrafast transient absorption spectroscopy to show that homogeneously broadened PbS quantum dot arrays (σ hom 2 :σ inh 2 > 19:1, σ inh /k B T < 0.4) can be realized if quantum dot batches are sufficiently monodisperse (δ ≲ 3.3%). The homogeneous line width is found to be an inverse function of quantum dot size, monotonically increasing from ∼25 meV for the largest quantum dots (5.8 nm diameter/0.92 eV energy) to ∼55 meV for the smallest (4.1 nm/1.3 eV energy). Furthermore, we show that intrinsic charge carrier hopping rates are faster for smaller quantum dots. This finding is the opposite of the mobility trend commonly observed in device measurements but is consistent with theoretical predictions. Fitting our data to a kinetic Monte Carlo model, we extract charge carrier hopping times ranging from 80 ps for the smallest quantum dots to over 1 ns for the largest, with the same ethanethiol ligand treatment. Additionally, we make the surprising observation that, in slightly polydisperse (δ ≲ 4%) quantum dot solids, structural disorder has a greater impact than energetic disorder in inhibiting charge carrier transport. These findings emphasize how small improvements in batch size dispersity can have a dramatic impact on intrinsic charge carrier hopping behavior and will stimulate further improvements in quantum dot device performance.

  7. Studies of silicon quantum dots prepared at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  8. Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska

    NASA Technical Reports Server (NTRS)

    Pilkuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.

    2005-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTRl, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0(raised dot)6-0(raised dot)7 x 0(raised dot)9-1(raised dot)5 microns. Growth occurred within the pH range 6(raised dot)5-9(raised dot)5 with optimum growth at pH 7(raised dot)3-7(raised dot)5. The temperature range for growth of the novel isolate was 0-28 C and optimum growth occurred at 24 C. The novel isolate does not require NaCl; growth was observed between 0 and 5% NaCl with optimum growth at 0(raised dot)5% (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTRl was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16s rRNA gene sequence analysis showed 99(raised dot)8% similarity between strain FTR1 and Carnobacterium alterfunditum, but DNA-DNA hybridization between them demonstrated 39 plus or minus 1(raised dot)5% relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTRl (= ATCC BAA-754T= JCM 12174T=CIP 108033) be assigned to the novel species Carnobacterium pleistocenium sp. nov.

  9. Nano-scale engineering using lead chalcogenide nanocrystals for opto-electronic applications

    NASA Astrophysics Data System (ADS)

    Xu, Fan

    Colloidal quantum dots (QDs) or nanocrystals of inorganic semiconductors exhibit exceptional optoelectronic properties such as tunable band-gap, high absorption cross-section and narrow emission spectra. This thesis discusses the characterizations and physical properties of lead-chalcogenide nanocrystals, their assembly into more complex nanostructures and applications in solar cells and near-infrared light-emitting devices. In the first part of this work, we demonstrate that the band edge emission of PbS quantum dots can be tuned from the visible to the mid-infrared region through size control, while the self-attachment of PbS nanocrystals can lead to the formation of 1-D nanowires, 2-D quantum dot monolayers and 3-D quantum dot solids. In particular, the assembly of closely-packed quantum dot solids has attracted enormous attention. A series of distinctive optoelectronic properties has been observed, such as superb multiple exciton generation efficiencies, efficient hot-electron transfer and cold-exciton recycling. Since the surfactant determines the quantum dot surface passivation and inter dot electronic coupling, we examine the influence of different cross-linking surfactants on the optoelectronic properties of the quantum dot solids. Then, we discuss the ability to tune the quantum dot band-gap combined with the controllable assembly of lead-chalcogenide quantum dots, which opens new possibilities to engineer the properties of quantum dot solids. The PbS and PbSe quantum dot cascade structures and PbS/PbSe quantum dot heterojunctions are assembled using the layer-by-layer deposition method. We show that exciton funnelling and trap state-bound exciton recycling in the quantum dot cascade structure dramatically enhances the quantum dots photoluminescence. Moreover, we show that both type-I and type-II PbS/PbSe quantum dot heterojunctions can be assembled by carefully choosing the quantum dot sizes. In type-I heterojunctions, the excited electron-hole pairs tend to localize in narrower band-gap quantum dots, leading to significant photoluminescence enhancement. In contrast, the staggered energy bands in type-II heterojunctions lead to rapid exciton separation at the junctions that considerably quenches the photoluminescence. As such, this strategy can be fruitfully employed to enhance performances in nanocrystal-based photovoltaic devices. Using this approach, we achieve efficient PbS nanocrystal-based solar cells using an ITO/ TiO2/ PbS QDs/Au architecture, where a porous TiO2 nanowire network is employed as electron transporting layer. Our best heterojunction solar cells exhibit a decent short circuit current of 2.5 mA/cm2, a large open circuit voltage of 0.6 V and a power converting efficiency of 5.4 % under 8.5 mW/cm2 low-light illumination. On the other hand, nanocrystal-based near infrared LED devices are fabricated using a simple ITO-PbS QDs-Al device structure. There, the active quantum dot layer serves as both the electron- and hole-transporting layer. With appropriate surface chemistry treatment on quantum dots, a high-brightness near-infrared LED device is achieved.

  10. Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their performance in Fe3+ detection

    NASA Astrophysics Data System (ADS)

    Aslandaş, Ayşe Merve; Balcı, Neslihan; Arık, Mustafa; Şakiroğlu, Halis; Onganer, Yavuz; Meral, Kadem

    2015-11-01

    Fluorescent carbon dots (C-dots) were synthesized by a facile method containing liquid N2 treatment and centrifuge processes. The photophysical properties of the C-dots in an aqueous solution were examined at various conditions such as concentration, temperature, pH and excitation wavelength by using UV-vis absorption, fluorescence and time-resolved fluorescence spectroscopies. The C-dots emitted a broad fluorescence between approximately 350-550 nm and their fluorescence was tuned by changing excitation wavelength. The as-prepared C-dots were applied to Fe3+ detection from aqueous solution. Spectroscopic data revealed that the as-prepared C-dots were used to detect Fe3+ in the range of 12.5 μM to 100 μM as a fluorescence sensor.

  11. Single quantum dot emission by nanoscale selective growth of InAs on GaAs: A bottom-up approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, F.; Arciprete, F.; Placidi, E.

    2008-12-08

    We report on single dot microphotoluminescence ({mu}PL) emission at low temperature and low power from InAs dots grown by molecular beam epitaxy in nanoscale holes of a SiO{sub 2} mask deposited on GaAs(001). By comparing atomic force microscopy measurements with {mu}PL data, we show that the dot sizes inside the nanoholes are smaller than those of the dots nucleated on the extended GaAs surface. PL of dots spans a wide energy range depending on their size and on the thickness and composition of the InGaAs capping layer. Time-resolved PL experiments demonstrate a negligible loss of radiative recombination efficiency, proving highlymore » effective in the site-controlled dot nucleation.« less

  12. Design and Simulation Test of an Open D-Dot Voltage Sensor

    PubMed Central

    Bai, Yunjie; Wang, Jingang; Wei, Gang; Yang, Yongming

    2015-01-01

    Nowadays, sensor development focuses on miniaturization and non-contact measurement. According to the D-dot principle, a D-dot voltage sensor with a new structure was designed based on the differential D-dot sensor with a symmetrical structure, called an asymmetric open D-dot voltage sensor. It is easier to install. The electric field distribution of the sensor was analyzed through Ansoft Maxwell and an open D-dot voltage sensor was designed. This open D-voltage sensor is characteristic of accessible insulating strength and small electric field distortion. The steady and transient performance test under 10 kV-voltage reported satisfying performances of the designed open D-dot voltage sensor. It conforms to requirements for a smart grid measuring sensor in intelligence, miniaturization and facilitation. PMID:26393590

  13. Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes.

    PubMed

    Khakbaz, Faeze; Mahani, Mohamad

    2017-04-15

    Carbon quantum dots have been proposed as an effective platform for miRNA detection. Carbon dots were synthesized by citric acid. The synthesized dots were characterized by dynamic light scattering, UV-Vis spectrophotometry, spectrofluorimetry, transmission electron microscopy and FT-IR spectrophotometry. The fluorescence quantum yield of the synthesized dots was determined using quinine sulfate as the standard. The FAM-labeled single stranded DNA, as sensing element, was adsorbed on dots by π-π interaction. The quenching of the dots fluorescence due to fluorescence resonance energy transfer (FRET) was used for mir 9-1 detection. In the presence of the complementary miRNA, the FRET did not take place and the fluorescence was recovered. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Green, Rapid, and Universal Preparation Approach of Graphene Quantum Dots under Ultraviolet Irradiation.

    PubMed

    Zhu, Jinli; Tang, Yanfeng; Wang, Gang; Mao, Jiarong; Liu, Zhiduo; Sun, Tongming; Wang, Miao; Chen, Da; Yang, Yucheng; Li, Jipeng; Deng, Yuan; Yang, Siwei

    2017-04-26

    It is of great significance and importance to explore a mild, clean, and highly efficient universal approach for the synthesis of graphene quantum dots. Herein, we introduced a new green, rapid, and universal preparation approach for graphene quantum dots via the free-radical polymerization of oxygen-containing aromatic compounds under ultraviolet irradiation. This approach had a high yield (86%), and the byproducts are only H 2 O and CO 2 . The obtained graphene quantum dots were well-crystallized and showed remarkable optical and biological properties. The colorful, different-sized graphene quantum dots can be used in fluorescent bioimaging in vitro and in vivo. This approach is suitable not only for the preparation of graphene quantum dots but also for heteroatom-doped graphene quantum dots.

  15. Line-driven disc wind model for ultrafast outflows in active galactic nuclei - scaling with luminosity

    NASA Astrophysics Data System (ADS)

    Nomura, M.; Ohsuga, K.

    2017-03-01

    In order to reveal the origin of the ultrafast outflows (UFOs) that are frequently observed in active galactic nuclei (AGNs), we perform two-dimensional radiation hydrodynamics simulations of the line-driven disc winds, which are accelerated by the radiation force due to the spectral lines. The line-driven winds are successfully launched for the range of MBH = 106-9 M⊙ and ε = 0.1-0.5, and the resulting mass outflow rate (dot{M_w}), momentum flux (dot{p_w}), and kinetic luminosity (dot{E_w}) are in the region containing 90 per cent of the posterior probability distribution in the dot{M}_w-Lbol plane, dot{p}_w-Lbol plane, and dot{E}_w-Lbol plane shown in Gofford et al., where MBH is the black hole mass, ε is the Eddington ratio, and Lbol is the bolometric luminosity. The best-fitting relations in Gofford et al., d log dot{M_w}/d log {L_bol}˜ 0.9, d log dot{p_w}/d log {L_bol}˜ 1.2, and d log dot{E_w}/d log {L_bol}˜ 1.5, are roughly consistent with our results, d log dot{M_w}/d log {L_bol}˜ 9/8, d log dot{p_w}/d log {L_bol}˜ 10/8, and d log dot{E_w}/d log {L_bol}˜ 11/8. In addition, our model predicts that no UFO features are detected for the AGNs with ε ≲ 0.01, since the winds do not appear. Also, only AGNs with MBH ≲ 108 M⊙ exhibit the UFOs when ε ∼ 0.025. These predictions nicely agree with the X-ray observations. These results support that the line-driven disc wind is the origin of the UFOs.

  16. Chemiluminescence of nitrogen-rich quantum dots in diperiodatoargentate(III) solution and its application in ferulic acid analysis.

    PubMed

    Fu, Zhaofu; Li, Gongke; Hu, Yufei

    2016-12-01

    A novel chemiluminescence (CL) system based on the reaction of fluorescent water-soluble nitrogen-rich quantum dots (N-dots) and diperiodatoargentate(III) (DPA) was developed. The prepared N-dots have a small size (≤10 nm) and high percentage of nitrogen (39.9 %), which exceeds the content of carbon in the same N-dots. The N-dots exhibit characteristic blue fluorescence under UV light and up-conversion luminescence. The relatively intense CL emission is based on the direct oxidation of N-dots by DPA. The CL emission may be attributed to the high nitrogen content and the special structure of the N-dots. The CL mechanism of N-dots and DPA was investigated by using CL, UV-Vis absorption, IR, fluorescence, and radical scavenging experiments. This investigation provides a way to study the optical properties of N-dots. The analytical applicability of the N-dots and DPA CL system in the determination of ferulic acid (FA) was explored. The CL intensity was linearly proportional to the concentration of ferulic acid from 3.0 × 10 -7 to 1.0 × 10 -5 g mL -1 with a detection limit of 8.0 × 10 -8 g mL -1 (3σ); the relative standard deviation was 2.4 % for 4.0 × 10 -7 g mL -1 FA (n = 9). The proposed method was successfully applied to the determination of ferulic acid in Angelica sinensis. The study provides valuable insight into the role of nitrogen-rich quantum dots in CL.

  17. Mobile phone text messaging for promoting adherence to anti-tuberculosis treatment: a systematic review

    PubMed Central

    2013-01-01

    Background Mobile phone text messaging (SMS) has the potential to promote adherence to tuberculosis treatment. This systematic review aims to synthesize current evidence on the effectiveness of SMS interventions in improving patients’ adherence to tuberculosis treatment. Methods We searched electronic databases (PubMed, EMBASE, Science Citation Index), reference lists of relevant articles, conference proceedings, and selected websites for eligible studies available by 15 February 2013; regardless of language or publication status. Two authors independently screened selected eligible studies, and assessed risk of bias in included studies; resolving discrepancies by discussion and consensus. Results We identified four studies that compared the outcomes of the SMS intervention group with controls. Only one of the four studies was a randomized controlled trial. This was conducted in Argentina and the SMS intervention did not significantly improve adherence to tuberculosis treatment compared to self-administration of tuberculosis treatment (risk ratio [RR] 1.49, 95% confidence intervals [CI] 0.90 to 2.42). One of the non-randomized studies, conducted in South Africa, which compared SMS reminders to directly observed therapy short course (DOTS) reported similar rates of tuberculosis cure (62.35% vs. 66.4%) and treatment success (72.94% vs. 69.4%). A second study from South Africa, utilized SMS reminders when patients delayed in opening their pill bottles and reported increased tuberculosis cure (RR 2.32, 95% CI 1.60 to 3.36) and smear conversion (RR 1.62, 95% CI 1.09 to 2.42) rates compared to DOTS. In the third non-randomized study, conducted in Kenya, use of SMS reminders increased rates of clinic attendance on scheduled days compared to standard care (RR 1.56, 95% CI 1.06 to 2.29). Using the GRADE approach, we rate the quality of the evidence as low, mainly because of the high risk of bias and heterogeneity of effects across studies. Conclusions This systematic review indicates that there is a paucity of high-quality data on the effectiveness of SMS interventions for improving patients’ adherence to tuberculosis treatment. The low quality of the current evidence implies that further studies (in particular randomized trials) on the subject are needed. In the interim, if the intervention is implemented outside research settings an impact evaluation is warranted. PMID:24295439

  18. Attention Training and the Threat Bias: An ERP Study

    PubMed Central

    O’Toole, Laura; Dennis, Tracy A.

    2011-01-01

    Anxiety is characterized by exaggerated attention to threat. Several studies suggest that this threat bias plays a causal role in the development and maintenance of anxiety disorders. Furthermore, although the threat bias can be reduced in anxious individuals and induced in non-anxious individual, the attentional mechanisms underlying these changes remain unclear. To address this issue, 49 non-anxious adults were randomly assigned to either attentional training toward or training away from threat using a modified version of the dot probe task. Behavioral measures of attentional biases were also generated pre- and post-training using the dot probe task. Event-related potentials (ERPs) were generated to threat and non-threat face pairs and probes during pre- and post-training assessments. Effects of training on behavioral measures of the threat bias were significant, but only for those participants showing pre-training biases. Attention training also influenced early spatial attention, as measured by post-training P1 amplitudes to cues. Results illustrate the importance of taking pre-training attention biases in non-anxious individuals into account when evaluating the effects of attention training and tracking physiological changes in attention following training. PMID:22083026

  19. Carbon quantum dots and a method of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.

    The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.

  20. The visual system prioritizes locations near corners of surfaces (not just locations near a corner).

    PubMed

    Bertamini, Marco; Helmy, Mai; Bates, Daniel

    2013-11-01

    When a new visual object appears, attention is directed toward it. However, some locations along the outline of the new object may receive more resources, perhaps as a consequence of their relative importance in describing its shape. Evidence suggests that corners receive enhanced processing, relative to the straight edges of an outline (corner enhancement effect). Using a technique similar to that in an original study in which observers had to respond to a probe presented near a contour (Cole et al. in Journal of Experimental Psychology: Human Perception and Performance 27:1356-1368, 2001), we confirmed this effect. When figure-ground relations were manipulated using shaded surfaces (Exps. 1 and 2) and stereograms (Exps. 3 and 4), two novel aspects of the phenomenon emerged: We found no difference between corners perceived as being convex or concave, and we found that the enhancement was stronger when the probe was perceived as being a feature of the surface that the corner belonged to. Therefore, the enhancement is not based on spatial aspects of the regions in the image, but critically depends on figure-ground stratification, supporting the link between the prioritization of corners and the representation of surface layout.

  1. Light-field and holographic three-dimensional displays [Invited].

    PubMed

    Yamaguchi, Masahiro

    2016-12-01

    A perfect three-dimensional (3D) display that satisfies all depth cues in human vision is possible if a light field can be reproduced exactly as it appeared when it emerged from a real object. The light field can be generated based on either light ray or wavefront reconstruction, with the latter known as holography. This paper first provides an overview of the advances of ray-based and wavefront-based 3D display technologies, including integral photography and holography, and the integration of those technologies with digital information systems. Hardcopy displays have already been used in some applications, whereas the electronic display of a light field is under active investigation. Next, a fundamental question in this technology field is addressed: what is the difference between ray-based and wavefront-based methods for light-field 3D displays? In considering this question, it is of particular interest to look at the technology of holographic stereograms. The phase information in holography contributes to the resolution of a reconstructed image, especially for deep 3D images. Moreover, issues facing the electronic display system of light fields are discussed, including the resolution of the spatial light modulator, the computational techniques of holography, and the speckle in holographic images.

  2. Crystal structures of Boro-AFm and sBoro-AFt phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Champenois, Jean-Baptiste; Mesbah, Adel; Clermont Universite, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand

    2012-10-15

    Crystal structures of boron-containing AFm (B-AFm) and AFt (B-AFt) phases have been solved ab-initio and refined from X-ray powder diffraction. {sup 11}B NMR and Raman spectroscopies confirm the boron local environment in both compounds: three-fold coordinated in B-AFm corresponding to HBO{sub 3}{sup 2-} species, and four-fold coordinated in B-AFt corresponding to B (OH){sub 4}{sup -} species. B-AFm crystallizes in the rhombohedral R3{sup Macron }c space group and has the 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}CaHBO{sub 3}{center_dot}12H{sub 2}O (4CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}1/2B{sub 2}O{sub 3}{center_dot}12.5H{sub 2}O, C{sub 4}AB{sub 1/2}H{sub 12.5}) general formulae with planar trigonal HBO{sub 3}{sup 2-} anions weakly bonded at the centre of themore » interlayer region. One HBO{sub 3}{sup 2-} anion is statistically distributed with two weakly bonded water molecules on the same crystallographic site. B-AFt crystallizes in the trigonal P3cl space group and has the 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}Ca(OH){sub 2}{center_dot}2Ca(B (OH){sub 4}){sub 2}{center_dot}24H{sub 2}O (6CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}2B{sub 2}O{sub 3}{center_dot}33H{sub 2}O, C{sub 6}AB{sub 2}H{sub 33}) general formulae with tetrahedral B (OH){sub 4}{sup -} anions located in the channel region of the structure. All tetrahedral anions are oriented in a unique direction, leading to a hexagonal c lattice parameter about half that of ettringite.« less

  3. Aqp5 Is a New Transcriptional Target of Dot1a and a Regulator of Aqp2

    PubMed Central

    Zhang, Xi; Zhou, Qiaoling; Li, Ju-Mei; Berger, Stefan; Borok, Zea; Zhou, Beiyun; Xiao, Zhou; Yin, Hongling; Liu, Mingyao; Wang, Ying; Jin, Jianping; Blackburn, Michael R.; Xia, Yang; Zhang, Wenzheng

    2013-01-01

    Dot1l encodes histone H3 K79 methyltransferase Dot1a. Mice with Dot1l deficiency in renal Aqp2-expressing cells (Dot1lAC) develop polyuria by unknown mechanisms. Here, we report that Aqp5 links Dot1l deletion to polyuria through Aqp2. cDNA array analysis revealed and real-time RT-qPCR validated Aqp5 as the most upregulated gene in Dot1lAC vs. control mice. Aqp5 protein is barely detectable in controls, but robustly expressed in the Dot1lAC kidneys, where it colocalizes with Aqp2. The upregulation of Aqp5 is coupled with reduced association of Dot1a and H3 dimethyl K79 with specific subregions in Aqp5 5′ flanking region in Dot1lAC vs. control mice. In vitro studies in IMCD3, MLE-15 and 293Tcells using multiple approaches including real-time RT-qPCR, luciferase reporter assay, cell surface biotinylation assay, colocalization, and co-immunoprecipitation uncovered that Dot1a represses Aqp5. Human AQP5 interacts with AQP2 and impairs its cell surface localization. The AQP5/AQP2 complex partially resides in the ER/Golgi. Consistently, AQP5 is expressed in none of 15 normal controls, but in all of 17 kidney biopsies from patients with diabetic nephropathy. In the patients with diabetic nephropathy, AQP5 colocalizes with AQP2 in the perinuclear region and AQP5 expression is associated with impaired cellular H3 dimethyl K79. Taken together, these data for the first time identify Aqp5 as a Dot1a potential transcriptional target, and an Aqp2 binding partner and regulator, and suggest that the upregulated Aqp5 may contribute to polyuria, possibly by impairing Aqp2 membrane localization, in Dot1lAC mice and in patients with diabetic nephropathy. PMID:23326416

  4. Entanglement of Electron Spins in Two Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Chen, Yuanzhen; Webb, Richard

    2004-03-01

    We study the entanglement of electron spins in a coupled quantum dots system at 70 mK. Two quantum dots are fabricated in a GaAs/AlGaAs heterostructure containing a high mobility 2-D electron gas. The two dots can be tuned independently and the electron spins in the dots are coupled through an exchange interaction between them. An exchange gate is used to vary the height and width of a potential barrier between the two dots, thus controlling the strength of the exchange interaction. Electrons are injected to the coupled dots by two independent DC currents and the output of the dots is incident on a beam splitter, which introduces quantum interferences. Cross-correlations of the shot noise of currents from the two output channels are measured and compared with theory (1). *Work supported by LPS and ARDA under MDA90401C0903 and NSF under DMR 0103223. (1) Burkard, Loss, & Sukhorukov, Phys. Rev. B61, R16303 (2000).

  5. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  6. Effect of Shot Noise on Simultaneous Sensing in Frequency Division Multiplexed Diffuse Optical Tomographic Imaging Process.

    PubMed

    Jang, Hansol; Lim, Gukbin; Hong, Keum-Shik; Cho, Jaedu; Gulsen, Gultekin; Kim, Chang-Seok

    2017-11-28

    Diffuse optical tomography (DOT) has been studied for use in the detection of breast cancer, cerebral oxygenation, and cognitive brain signals. As optical imaging studies have increased significantly, acquiring imaging data in real time has become increasingly important. We have developed frequency-division multiplexing (FDM) DOT systems to analyze their performance with respect to acquisition time and imaging quality, in comparison with the conventional time-division multiplexing (TDM) DOT. A large tomographic area of a cylindrical phantom 60 mm in diameter could be successfully reconstructed using both TDM DOT and FDM DOT systems. In our experiment with 6 source-detector (S-D) pairs, the TDM DOT and FDM DOT systems required 6.18 and 1 s, respectively, to obtain a single tomographic data set. While the absorption coefficient of the reconstruction image was underestimated in the case of the FDM DOT, we experimentally confirmed that the abnormal region can be clearly distinguished from the background phantom using both methods.

  7. Enhancement-mode two-channel triple quantum dot from an undoped Si/Si 0.8Ge 0.2 quantum well hetero-structure

    DOE PAGES

    Studenikin, S. A.; Gaudreau, L.; Kataoka, K.; ...

    2018-06-04

    Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regionsmore » in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.« less

  8. Enhancement-mode two-channel triple quantum dot from an undoped Si/Si 0.8Ge 0.2 quantum well hetero-structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenikin, S. A.; Gaudreau, L.; Kataoka, K.

    Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regionsmore » in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.« less

  9. Size dependence in tunneling spectra of PbSe quantum-dot arrays.

    PubMed

    Ou, Y C; Cheng, S F; Jian, W B

    2009-07-15

    Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.

  10. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.

    PubMed

    Grigel, Valeriia; Dupont, Dorian; De Nolf, Kim; Hens, Zeger; Tessier, Mickael D

    2016-10-05

    Despite their various potential applications, InAs colloidal quantum dots have attracted considerably less attention than more classical II-VI materials because of their complex syntheses that require hazardous precursors. Recently, amino-phosphine has been introduced as a cheap, easy-to-use and efficient phosphorus precursor to synthesize InP quantum dots. Here, we use aminopnictogen precursors to implement a similar approach for synthesizing InAs quantum dots. We develop a two-step method based on the combination of aminoarsine as the arsenic precursor and aminophosphine as the reducing agent. This results in state-of-the-art InAs quantum dots with respect to the size dispersion and band-gap range. Moreover, we present shell coating procedures that lead to the formation of InAs/ZnS(e) core/shell quantum dots that emit in the infrared region. This innovative synthesis approach can greatly facilitate the research on InAs quantum dots and may lead to synthesis protocols for a wide range of III-V quantum dots.

  11. Color- and motion-specific units in the tectum opticum of goldfish.

    PubMed

    Gruber, Morna; Behrend, Konstantin; Neumeyer, Christa

    2016-01-05

    Extracellular recordings were performed from 69 units at different depths between 50 and [Formula: see text]m below the surface of tectum opticum in goldfish. Using large field stimuli (86[Formula: see text] visual angle) of 21 colored HKS-papers we were able to record from 54 color-sensitive units. The colored papers were presented for 5[Formula: see text]s each. They were arranged in the sequence of the color circle in humans separated by gray of medium brightness. We found 22 units with best responses between orange, red and pink. About 12 of these red-sensitive units were of the opponent "red-ON/blue-green-OFF" type as found in retinal bipolar- and ganglion cells as well. Most of them were also activated or inhibited by black and/or white. Some units responded specifically to red either with activation or inhibition. 18 units were sensitive to blue and/or green, 10 of them to both colors and most of them to black as well. They were inhibited by red, and belonged to the opponent "blue-green-ON/red-OFF" type. Other units responded more selectively either to blue, to green or to purple. Two units were selectively sensitive to yellow. A total of 15 units were sensitive to motion, stimulated by an excentrically rotating black and white random dot pattern. Activity of these units was also large when a red-green random dot pattern of high L-cone contrast was used. Activity dropped to zero when the red-green pattern did not modulate the L-cones. Neither of these motion selective units responded to any color. The results directly show color-blindness of motion vision, and confirm the hypothesis of separate and parallel processing of "color" and "motion".

  12. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals

    NASA Astrophysics Data System (ADS)

    Chikashige, T.; Iwasaka, M.

    2018-05-01

    In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth's gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ˜20-μm-long plates with respect to the Earth's gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (0 1 ¯ 2 ¯ ) and (0 1 ¯ 2 )). In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.

  13. Increased InAs quantum dot size and density using bismuth as a surfactant

    NASA Astrophysics Data System (ADS)

    Dasika, Vaishno D.; Krivoy, E. M.; Nair, H. P.; Maddox, S. J.; Park, K. W.; Jung, D.; Lee, M. L.; Yu, E. T.; Bank, S. R.

    2014-12-01

    We have investigated the growth of self-assembled InAs quantum dots using bismuth as a surfactant to control the dot size and density. We find that the bismuth surfactant increases the quantum dot density, size, and uniformity, enabling the extension of the emission wavelength with increasing InAs deposition without a concomitant reduction in dot density. We show that these effects are due to bismuth acting as a reactive surfactant to kinetically suppress the surface adatom mobility. This mechanism for controlling quantum dot density and size has the potential to extend the operating wavelength and enhance the performance of various optoelectronic devices.

  14. Lateral excitonic switching in vertically stacked quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarzynka, Jarosław R.; McDonald, Peter G.; Galbraith, Ian

    2016-06-14

    We show that the application of a vertical electric field to the Coulomb interacting system in stacked quantum dots leads to a 90° in-plane switching of charge probability distribution in contrast to a single dot, where no such switching exists. Results are obtained using path integral quantum Monte Carlo with realistic dot geometry, alloy composition, and piezo-electric potential profiles. The origin of the switching lies in the strain interactions between the stacked dots hence the need for more than one layer of dots. The lateral polarization and electric field dependence of the radiative lifetimes of the excitonic switch are alsomore » discussed.« less

  15. Zinc sulfide quantum dots for photocatalytic and sensing applications

    NASA Astrophysics Data System (ADS)

    Sergeev, Alexander A.; Leonov, Andrei A.; Zhuikova, Elena I.; Postnova, Irina V.; Voznesenskiy, Sergey S.

    2017-09-01

    Herein, we report the photocatalytic and sensing applications of pure and Mn-doped ZnS quantum dots. The quantum dots were prepared by a chemical precipitation in an aqueous solution in the presence of glutathione as a stabilizing agent. The synthesized quantum dots were used as effective photocatalyst for the degradation of methylene blue dye. Interestingly, fully degradation of methylene blue dye was achieved in 5 min using pure ZnS quantum dots. Further, the synthesized quantum dots were used as efficient sensing element for methane fluorescent sensor. Interfering studies confirmed that the developed sensor possesses very good sensitivity and selectivity towards methane.

  16. The photosensitivity of carbon quantum dots/CuAlO2 films composites.

    PubMed

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-31

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.

  17. The photosensitivity of carbon quantum dots/CuAlO2 films composites

    NASA Astrophysics Data System (ADS)

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-01

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.

  18. Laser location and manipulation of a single quantum tunneling channel in an InAs quantum dot.

    PubMed

    Makarovsky, O; Vdovin, E E; Patané, A; Eaves, L; Makhonin, M N; Tartakovskii, A I; Hopkinson, M

    2012-03-16

    We use a femtowatt focused laser beam to locate and manipulate a single quantum tunneling channel associated with an individual InAs quantum dot within an ensemble of dots. The intensity of the directed laser beam tunes the tunneling current through the targeted dot with an effective optical gain of 10(7) and modifies the curvature of the dot's confining potential and the spatial extent of its ground state electron eigenfunction. These observations are explained by the effect of photocreated hole charges which become bound close to the targeted dot, thus acting as an optically induced gate electrode.

  19. Formation of Size- and Position-Controlled Nanometer Size Pt Dots on GaAs and InP Substrates by Pulsed Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Sato, Taketomo; Kaneshiro, Chinami; HiroshiOkada, HiroshiOkada; Hasegawa, Hideki

    1999-04-01

    Attempts were made to form regular arrays of size- andposition-controlled Pt-dots on GaAs and InP by combining an insitu electrochemical process with the electron beam (EB)lithography. This utilizes the precipitation of Pt nano-particles atthe initial stage of electrodeposition. First, electrochemicalconditions were optimized in the mode of self-assembled dot arrayformation on unpatterned substrates. Minimum in-plane dot diameters of22 nm and 26 nm on GaAs and InP, respectively, were obtained underthe optimal pulsed mode. Then, Pt dots were selectively formed onpatterned substrates with open circular windows formed by EBlithography, thereby realizing dot-position control. The Pt dot wasfound to have been deposited at the center of each open window, andthe in-plane diameter of the dot could be controlled by the number,width and period of the pulse-waveform applied to substrates. Aminimum diameter of 20 nm was realized in windows with a diameter of100 nm, using a single pulse. Current-voltage (I-V)measurements using an atomic force microscopy (AFM) system with aconductive probe indicated that each Pt dot/n-GaAs contact possessed ahigh Schottky barrier height of about 1 eV.

  20. Photofragment slice imaging studies of pyrrole and the Xe{center_dot}{center_dot}{center_dot}pyrrole cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio-Lago, L.; Zaouris, D.; Sakellariou, Y.

    The photolysis of pyrrole has been studied in a molecular beam at wavelengths of 250, 240, and 193.3 nm, using two different carrier gases, He and Xe. A broad bimodal distribution of H-atom fragment velocities has been observed at all wavelengths. Near threshold at both 240 and 250 nm, sharp features have been observed in the fast part of the H-atom distribution. Under appropriate molecular beam conditions, the entire H-atom loss signal from the photolysis of pyrrole at both 240 and 250 nm (including the sharp features) disappear when using Xe as opposed to He as the carrier gas. Wemore » attribute this phenomenon to cluster formation between Xe and pyrrole, and this assumption is supported by the observation of resonance enhanced multiphoton ionization spectra for the (Xe{center_dot}{center_dot}{center_dot}pyrrole) cluster followed by photofragmentation of the nascent cation cluster. Ab initio calculations are presented for the ground states of the neutral and cationic (Xe{center_dot}{center_dot}{center_dot}pyrrole) clusters as a means of understanding their structural and energetic properties.« less

  1. Investigation of trypsin-CdSe quantum dot interactions via spectroscopic methods and effects on enzymatic activity.

    PubMed

    Kaur, Gurvir; Tripathi, S K

    2015-01-05

    The paper presents the interactions between trypsin and water soluble cadmium selenide (CdSe) quantum dots investigated by spectrophotometric methods. CdSe quantum dots have strong ability to quench the intrinsic fluorescence of trypsin by a static quenching mechanism. The quenching has been studied at three different temperatures where the results revealed that electrostatic interactions exist between CdSe quantum dots and trypsin and are responsible to stabilize the complex. The Scatchard plot from quenching revealed 1 binding site for quantum dots by trypsin, the same has been confirmed by making isothermal titrations of quantum dots against trypsin. The distance between donor and acceptor for trypsin-CdSe quantum dot complexes is calculated to be 2.8 nm by energy transfer mechanisms. The intrinsic fluorescence of CdSe quantum dots has also been enhanced by the trypsin, and is linear for concentration of trypsin ranging 1-80 μl. All the observations evidence the formation of trypsin-CdSe quantum dot conjugates, where trypsin retains the enzymatic activity which in turn is temperature and pH dependent. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Site-Control of InAs/GaAs Quantum Dots with Indium-Assisted Deoxidation

    PubMed Central

    Hussain, Sajid; Pozzato, Alessandro; Tormen, Massimo; Zannier, Valentina; Biasiol, Giorgio

    2016-01-01

    Site-controlled epitaxial growth of InAs quantum dots on GaAs substrates patterned with periodic nanohole arrays relies on the deterministic nucleation of dots into the holes. In the ideal situation, each hole should be occupied exactly by one single dot, with no nucleation onto planar areas. However, the single-dot occupancy per hole is often made difficult by the fact that lithographically-defined holes are generally much larger than the dots, thus providing several nucleation sites per hole. In addition, deposition of a thin GaAs buffer before the dots tends to further widen the holes in the [110] direction. We have explored a method of native surface oxide removal by using indium beams, which effectively prevents hole elongation along [110] and greatly helps single-dot occupancy per hole. Furthermore, as compared to Ga-assisted deoxidation, In-assisted deoxidation is efficient in completely removing surface contaminants, and any excess In can be easily re-desorbed thermally, thus leaving a clean, smooth GaAs surface. Low temperature photoluminescence showed that inhomogeneous broadening is substantially reduced for QDs grown on In-deoxidized patterns, with respect to planar self-assembled dots. PMID:28773333

  3. A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.

    2018-04-01

    The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems makes them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2 × 2 quantum dots defined electrostatically in an AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties of the array using nearby quantum dots operated as charge sensors. We show that we can deterministically and dynamically control the charge occupation in each quantum dot in the single- to few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel couplings over a range of 0-40 μeV. Finally, we demonstrate fast (˜1 μs) single-shot readout of the spin state of electrons in the dots through spin-to-charge conversion via Pauli spin blockade. These advances pave the way for analog quantum simulations in two dimensions, not previously accessible in quantum dot systems.

  4. Using granular film to suppress charge leakage in a single-electron latch.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlov, A. O.; Luo, X.; Yadavalli, K. K.

    2008-01-01

    A single-electron latch is a device that can be used as a building block for quantum-dot cellular automata circuits. It consists of three nanoscale metal 'dots' connected in series by tunnel junctions; charging of the dots is controlled by three electrostatic gates. One very important feature of a single-electron latch is its ability to store ('latch') information represented by the location of a single electron within the three dots. To obtain latching, the undesirable leakage of charge during the retention time must be suppressed. Previously, to achieve this goal, multiple tunnel junctions were used to connect the three dots. However,more » this method of charge leakage suppression requires an additional compensation of the background charges affecting each parasitic dot in the array of junctions. We report a single-electron latch where a granular metal film is used to fabricate the middle dot in the latch which concurrently acts as a charge leakage suppressor. This latch has no parasitic dots, therefore the background charge compensation procedure is greatly simplified. We discuss the origins of charge leakage suppression and possible applications of granular metal dots for various single-electron circuits.« less

  5. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field.

    PubMed

    Kushwaha, Manvir S

    2011-09-28

    We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The resultant quantum wire is characterized by a two-dimensional harmonic confining potential in the x-y plane and a periodic (Kronig-Penney) potential along the z (or the growth) direction within the tight-binding approximation. Since the wells and barriers are formed from two different materials, we employ the Bastard's boundary conditions in order to determine the eigenfunctions along the z direction. These wave functions are then used to generate the Wannier functions, which, in turn, constitute the legitimate Bloch functions that govern the electron dynamics along the direction of periodicity. Thus, the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus, developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices and in the quantum computation, it is quite interesting and important to explore the electronic, optical, and transport phenomena in such systems. © 2011 American Institute of Physics

  6. Effects of Sprint Interval Training With Active Recovery vs. Endurance Training on Aerobic and Anaerobic Power, Muscular Strength, and Sprint Ability.

    PubMed

    Sökmen, Bülent; Witchey, Ronald L; Adams, Gene M; Beam, William C

    2018-03-01

    Sökmen, B, Witchey, RL, Adams, GM, and Beam, WC. Effects of sprint interval training with active recovery vs. endurance training on aerobic and anaerobic power, muscular strength, and sprint ability. J Strength Cond Res 32(3): 624-631, 2018-This study compared sprint interval training with active recovery (SITAR) to moderate-intensity endurance training (ET) in aerobic and anaerobic power, muscular strength, and sprint time results. Forty-two recreationally active adults were randomly assigned to a SITAR or ET group. Both groups trained 3× per week for 10 weeks at 75% of V[Combining Dot Above]O2max for 30 minutes weeks 1-4, with duration increasing to 35 minutes weeks 5-7 and 40 minutes weeks 8-10. While ET ran on a 400-m track without rest for the full training session, SITAR sprinted until the 200-m mark and recovered with fast walking or light jogging the second 200 m to the finish line in 3× original sprint time. Maximal oxygen consumption (V[Combining Dot Above]O2max), anaerobic treadmill run to exhaustion at 12.5 km·h at 20% incline, isokinetic leg extension and flexion strength at 60 and 300°·s, and 50 m sprint time were determined before and after training. Results showed a significant improvement (p ≤ 0.05) in absolute and relative V[Combining Dot Above]O2max, anaerobic treadmill run, and sprint time in both groups. Only SITAR showed significant improvements in isokinetic leg extension and flexion at 300°·s and decreases in body mass (p ≤ 0.05). SITAR also showed significantly greater improvement (p ≤ 0.05) over ET in anaerobic treadmill run and 50 m sprint time. These data suggest that SITAR is a time-efficient strategy to induce rapid adaptations in V[Combining Dot Above]O2max comparable to ET with added improvements in anaerobic power, isokinetic strength, and sprint time not observed with ET.

  7. Draft project management update to the Iowa DOT Project Development Manual : tech transfer summary.

    DOT National Transportation Integrated Search

    2016-08-01

    The Iowa DOT applied and was selected to receive User Incentive : funding from the U.S. DOT Federal Highway Administration (FHWA) : for the SHRP 2 R10 Implementation Assistance Program. Through the : program, the Iowa DOT plans to utilize the results...

  8. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms. PMID:28903308

  9. DOT1L regulates dystrophin expression and is critical for cardiac function

    PubMed Central

    Nguyen, Anh T.; Xiao, Bin; Neppl, Ronald L.; Kallin, Eric M.; Li, Juan; Chen, Taiping; Wang, Da-Zhi; Xiao, Xiao; Zhang, Yi

    2011-01-01

    Histone methylation plays an important role in regulating gene expression. One such methylation occurs at Lys 79 of histone H3 (H3K79) and is catalyzed by the yeast DOT1 (disruptor of telomeric silencing) and its mammalian homolog, DOT1L. Previous studies have demonstrated that germline disruption of Dot1L in mice resulted in embryonic lethality. Here we report that cardiac-specific knockout of Dot1L results in increased mortality rate with chamber dilation, increased cardiomyocyte cell death, systolic dysfunction, and conduction abnormalities. These phenotypes mimic those exhibited in patients with dilated cardiomyopathy (DCM). Mechanistic studies reveal that DOT1L performs its function in cardiomyocytes through regulating Dystrophin (Dmd) transcription and, consequently, stability of the Dystrophin–glycoprotein complex important for cardiomyocyte viability. Importantly, expression of a miniDmd can largely rescue the DCM phenotypes, indicating that Dmd is a major target mediating DOT1L function in cardiomyocytes. Interestingly, analysis of available gene expression data sets indicates that DOT1L is down-regulated in idiopathic DCM patient samples compared with normal controls. Therefore, our study not only establishes a critical role for DOT1L-mediated H3K79 methylation in cardiomyocyte function, but also reveals the mechanism underlying the role of DOT1L in DCM. In addition, our study may open new avenues for the diagnosis and treatment of human heart disease. PMID:21289070

  10. Growth of InAs Quantum Dots on GaAs (511)A Substrates: The Competition between Thermal Dynamics and Kinetics.

    PubMed

    Wen, Lei; Gao, Fangliang; Zhang, Shuguang; Li, Guoqiang

    2016-08-01

    The growth process of InAs quantum dots grown on GaAs (511)A substrates has been studied by atomic force microscopy. According to the atomic force microscopy studies for quantum dots grown with varying InAs coverage, a noncoherent nucleation of quantum dots is observed. Moreover, due to the long migration length of In atoms, the Ostwald ripening process is aggravated, resulting in the bad uniformity of InAs quantum dots on GaAs (511)A. In order to improve the uniformity of nucleation, the growth rate is increased. By studying the effects of increased growth rates on the growth of InAs quantum dots, it is found that the uniformity of InAs quantum dots is greatly improved as the growth rates increase to 0.14 ML s(-1) . However, as the growth rates increase further, the uniformity of InAs quantum dots becomes dual-mode, which can be attributed to the competition between Ostwald ripening and strain relaxation processes. The results in this work provide insights regarding the competition between thermal dynamical barriers and the growth kinetics in the growth of InAs quantum dots, and give guidance to improve the size uniformity of InAs quantum dots on (N11)A substrates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Using of Quantum Dots in Biology and Medicine.

    PubMed

    Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina

    2018-01-01

    Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.

  12. Quantum Dots and Their Multimodal Applications: A Review

    PubMed Central

    Bera, Debasis; Qian, Lei; Tseng, Teng-Kuan; Holloway, Paul H.

    2010-01-01

    Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence) or electric field (electroluminescence). In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  13. Polydiacetylene-enclosed near-infrared fluorescent semiconducting polymer dots for bioimaging and sensing.

    PubMed

    Wu, Pei-Jing; Kuo, Shih-Yu; Huang, Ya-Chi; Chen, Chuan-Pin; Chan, Yang-Hsiang

    2014-05-20

    Semiconducting polymer dots (P-dots) recently have emerged as a new type of ultrabright fluorescent probe with promising applications in biological imaging and detection. With the increasing desire for near-infrared (NIR) fluorescing probes for in vivo biological measurements, the currently available NIR-emitting P-dots are very limited and the leaching of the encapsulated dyes/polymers has usually been a concern. To address this challenge, we first embedded the NIR dyes into the matrix of poly[(9,9-dioctylfluorene)-co-2,1,3-benzothiadiazole-co-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole] (PF-BT-DBT) polymer and then enclosed the doped P-dots with polydiacetylenes (PDAs) to avoid potential leakage of the entrapped NIR dyes from the P-dot matrix. These PDA-enclosed NIR-emitting P-dots not only emitted much stronger NIR fluorescence than conventional organic molecules but also exhibited enhanced photostability over CdTe quantum dots, free NIR dyes, and gold nanoclusters. We next conjugated biomolecules onto the surface of the resulting P-dots and demonstrated their capability for specific cellular labeling without any noticeable nonspecific binding. To employ this new class of material as a facile sensing platform, an easy-to-prepare test paper, obtained by soaking the paper into the PDA-enclosed NIR-emitting P-dot solution, was used to sense external stimuli such as ions, temperature, or pH, depending on the surface functionalization of PDAs. We believe these PDA-coated NIR-fluorescing P-dots will be very useful in a variety of bioimaging and analytical applications.

  14. 76 FR 79114 - Privacy Act of 1974: Implementation of Exemptions; DOT/ALL 23-Information Sharing Environment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ...] Privacy Act of 1974: Implementation of Exemptions; DOT/ALL 23-- Information Sharing Environment (ISE... titled, ``DOT/ALL 23--Information Sharing Environment (ISE) Suspicious Activity Reporting (SAR... exempts portions of the ``DOT/ALL 23--Information Sharing Environment (ISE) Suspicious Activity Reporting...

  15. The SCIDOTS Project: Evidence of benefits of an integrated tobacco cessation intervention in tuberculosis care on treatment outcomes

    PubMed Central

    2011-01-01

    Background There is substantial evidence to support the association between tuberculosis (TB) and tobacco smoking and that the smoking-related immunological abnormalities in TB are reversible within six weeks of cessation. Therefore, connecting TB and tobacco cessation interventions may produce significant benefits and positively impact TB treatment outcomes. However, no study has extensively documented the evidence of benefits of such integration. SCIDOTS Project is a study from the context of a developing nation aimed to determine this. Methods An integrated TB-tobacco intervention was provided by trained TB directly observed therapy short-course (DOTS) providers at five chest clinics in Malaysia. The study was a prospective non-randomized controlled intervention using quasi-experimental design. Using Transtheoretical Model approach, 120 eligible participants who were current smokers at the time of TB diagnosis were assigned to either of two treatment groups: conventional TB DOTS plus smoking cessation intervention (integrated intervention or SCIDOTS group) or conventional TB DOTS alone (comparison or DOTS group). At baseline, newly diagnosed TB patients considering quitting smoking within the next 30 days were placed in the integrated intervention group, while those who were contemplating quitting were assigned to the comparison group. Eleven sessions of individualized cognitive behavioral therapy with or without nicotine replacement therapy were provided to each participant in the integrated intervention group. The impacts of the novel approach on biochemically validated smoking cessation and TB treatment outcomes were measured periodically as appropriate. Results A linear effect on both 7-day point prevalence abstinence and continuous abstinence was observed over time in the intervention group. At the end of 6 months, patients who received the integrated intervention had significantly higher rate of success in quitting smoking when compared with those who received the conventional TB treatment alone (77.5% vs. 8.7%; p < 0.001). Furthermore, at the end of TB treatment (6 months or later), there were significantly higher rates of treatment default (15.2% vs. 2.5%; p = 0.019) and treatment failure (6.5% vs. 0%; p = 0.019) in the DOTS group than in the SCIDOTS group. Conclusion This study provides evidence that connecting TB-tobacco treatment strategy is significant among TB patients who are smokers. The findings suggest that the integrated approach may be beneficial and confer advantages on short-term outcomes and possibly on future lung health of TB patients who quit smoking. This study may have important implications on health policy and clinical practice related to TB management among tobacco users. PMID:21943384

  16. Whole-Body High-Intensity Interval Training Induce Similar Cardiorespiratory Adaptations Compared With Traditional High-Intensity Interval Training and Moderate-Intensity Continuous Training in Healthy Men.

    PubMed

    Schaun, Gustavo Z; Pinto, Stephanie S; Silva, Mariana R; Dolinski, Davi B; Alberton, Cristine L

    2018-05-07

    Schaun, GZ, Pinto, SS, Silva, MR, Dolinski, DB, and Alberton, CL. Sixteen weeks of whole-body high-intensity interval training induce similar cardiorespiratory responses compared with traditional high-intensity interval training and moderate-intensity continuous training in healthy men. J Strength Cond Res XX(X): 000-000, 2018-Low-volume high-intensity interval training (HIIT) protocols that use the body weight as resistance could be an interesting and inexpensive alternative to traditional ergometer-based high-intensity interval training (HIIT-T) and moderate-intensity continuous training (MICT). Therefore, our aim was to compare the effects of 16 weeks of whole-body HIIT (HIIT-WB), HIIT-T, and MICT on maximal oxygen uptake (V[Combining Dot Above]O2max), second ventilatory threshold (VT2), and running economy (RE) outcomes. Fifty-five healthy men (23.7 ± 0.7 years, 1.79 ± 0.01 m, 78.5 ± 1.7 kg) were randomized into 3 training groups (HIIT-T = 17; HIIT-WB = 19; MICT = 19) for 16 weeks (3× per week). The HIIT-T group performed eight 20-second bouts at 130% of the velocity associated to V[Combining Dot Above]O2max (vV[Combining Dot Above]O2max) interspersed by 10-second passive recovery on a treadmill, whereas HIIT-WB group performed the same protocol but used calisthenics exercises at an all-out intensity instead of treadmill running. Finally, MICT group exercised for 30 minutes at 90-95% of the heart rate (HR) associated to VT2. After the intervention, all groups improved V[Combining Dot Above]O2max, vV[Combining Dot Above]O2max, time to exhaustion (Tmax), VT2, velocity associated with VT2 (vVT2), and time to reach VT2 (tVT2) significantly (p < 0.05). Moreover, Tmax, vVT2, and tVT2 were greater after HIIT-T compared with HIIT-WB (p < 0.05), whereas oxygen uptake increased and HR decreased during the RE test in all groups (p < 0.05). Our results demonstrate that HIIT-WB can be as effective as traditional HIIT while also being time-efficient compared with MICT to improve health-related outcomes after 16 weeks of training. However, HIIT-T and MICT seem preferable to enhance performance-related outcomes compared with HIIT-WB.

  17. A compact clinical instrument for quantifying suppression.

    PubMed

    Black, Joanne M; Thompson, Benjamin; Maehara, Goro; Hess, Robert F

    2011-02-01

    We describe a compact and convenient clinical apparatus for the measurement of suppression based on a previously reported laboratory-based approach. In addition, we report and validate a novel, rapid psychophysical method for measuring suppression using this apparatus, which makes the technique more applicable to clinical practice. By using a Z800 dual pro head-mounted display driven by a MAC laptop, we provide dichoptic stimulation. Global motion stimuli composed of arrays of moving dots are presented to each eye. One set of dots move in a coherent direction (termed signal) whereas another set of dots move in a random direction (termed noise). To quantify performance, we measure the signal/noise ratio corresponding to a direction-discrimination threshold. Suppression is quantified by assessing the extent to which it matters which eye sees the signal and which eye sees the noise. A space-saving, head-mounted display using current video technology offers an ideal solution for clinical practice. In addition, our optimized psychophysical method provided results that were in agreement with those produced using the original technique. We made measures of suppression on a group of nine adult amblyopic participants using this apparatus with both the original and new psychophysical paradigms. All participants had measurable suppression ranging from mild to severe. The two different psychophysical methods gave a strong correlation for the strength of suppression (rho = -0.83, p = 0.006). Combining the new apparatus and new psychophysical method creates a convenient and rapid technique for parametric measurement of interocular suppression. In addition, this apparatus constitutes the ideal platform for suppressors to combine information between their eyes in a similar way to binocularly normal people. This provides a convenient way for clinicians to implement the newly proposed binocular treatment of amblyopia that is based on antisuppression training.

  18. Behavioural evidence for distinct mechanisms related to global and biological motion perception.

    PubMed

    Miller, Louisa; Agnew, Hannah C; Pilz, Karin S

    2018-01-01

    The perception of human motion is a vital ability in our daily lives. Human movement recognition is often studied using point-light stimuli in which dots represent the joints of a moving person. Depending on task and stimulus, the local motion of the single dots, and the global form of the stimulus can be used to discriminate point-light stimuli. Previous studies often measured motion coherence for global motion perception and contrasted it with performance in biological motion perception to assess whether difficulties in biological motion processing are related to more general difficulties with motion processing. However, it is so far unknown as to how performance in global motion tasks relates to the ability to use local motion or global form to discriminate point-light stimuli. Here, we investigated this relationship in more detail. In Experiment 1, we measured participants' ability to discriminate the facing direction of point-light stimuli that contained primarily local motion, global form, or both. In Experiment 2, we embedded point-light stimuli in noise to assess whether previously found relationships in task performance are related to the ability to detect signal in noise. In both experiments, we also assessed motion coherence thresholds from random-dot kinematograms. We found relationships between performances for the different biological motion stimuli, but performance for global and biological motion perception was unrelated. These results are in accordance with previous neuroimaging studies that highlighted distinct areas for global and biological motion perception in the dorsal pathway, and indicate that results regarding the relationship between global motion perception and biological motion perception need to be interpreted with caution. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Risk factors associated with default among retreatment tuberculosis patients on DOTS in Paschim Medinipur district (West Bengal).

    PubMed

    Sarangi, S S; Dutt, D

    2014-07-01

    In India in 2010, 14.1% of retreatment of TB patients' treatment outcome was 'default'. Since 2002, in Paschim Midnapur District (West Bengal), it has been around 15-20%. To determine the timing, characteristics and risk factors associated with default among retreatment TB patients on DOTS. It was a case control study, conducted in six TB units (TU) of Paschim Midnapur District, which were selected by simple random sampling. Data was collected from treatment records of TUs/DTC. Data was also collected through interviews of the patients using the same pre-tested semi-structured questionnaire from 87 defaulters and 86 consecutively registered non-defaulters registered in first quarter, 2009 to second quarter, 2010. Median duration of treatment taken before default was 121 days (inter-quartile range of 64-176 days). Median number of doses of treatment taken before default was 36 (inter -quartile range of 26-63 doses). No retrieval action was documented in 57.5% cases. Retrieval was done between 0-7 days of missed doses in 29.9% cases. Multiple logistic regression analysis indicated the following important risk factors for default at 95% confidence interval: male-sex limit: [aOR 3.957 (1.162-13.469)], alcoholic inebriation[ aOR6.076 (2.088-17.675)], distance from DOT centre [aOR 4.066 (1.675-9.872)], number of missed doses during treatment [aOR 1.849 (1.282-2.669)] and no initial home visit [aOR 10.607 (2.286 -49.221)]. In Paschim Midnapur district, default of retreatment TB occurs mostly after a few doses in continuation phase. Initial home visit, patient provider meeting, retrieval action, community-based treatment as per RNTCP guidelines are required to uplift the programme.

  20. Directly observed therapy of sofosbuvir/ribavirin +/- peginterferon with minimal monitoring for the treatment of chronic hepatitis C in people with a history of drug use in Chennai, India (C-DOT).

    PubMed

    Solomon, S S; Sulkowski, M S; Amrose, P; Srikrishnan, A K; McFall, A M; Ramasamy, B; Kumar, M S; Anand, S; Thomas, D L; Mehta, S H

    2018-01-01

    We assessed the feasibility of field-based directly observed therapy (DOT) with minimal monitoring to deliver HCV treatment to people with a history of drug use in Chennai, India. Fifty participants were randomized 1:1 to sofosbuvir+peginterferon alfa 2a+ribavirin (SOF+PR) for 12 weeks (Arm 1) vs sofosbuvir+ribavirin (SOF+R) for 24 weeks (Arm 2). SOF+R was delivered daily at participant chosen venues and weekly peginterferon injections at the study clinic. HCV RNA testing was performed to confirm active HCV infection and sustained virologic response 12 weeks after treatment completion (SVR12). No baseline genotyping or on-treatment viral loads were performed. Median age was 46 years. All were male and 20% had significant fibrosis/cirrhosis. All self-reported history of injection drug use, 18% recent noninjection drug use and 38% alcohol dependence. Six discontinued treatment (88% completed treatment in each arm). Of 22 who completed SOF+PR, all achieved SVR12 (22/25=88%); 15 of 22 who completed SOF+R achieved SVR12 (15/25=60%; P=.05). Among those completing SOF+R, SVR12 was significantly less common in participants reporting ongoing substance use (36% vs 100%) and missed doses. Active substance use and missed doses did not impact SVR with SOF+PR. Field-based DOT of HCV therapy without real-time HCV RNA monitoring was feasible; however, achieving 100% adherence was challenging. SOF+PR appeared superior to SOF+R in achieving SVR12, even when doses were missed with no discontinuations due to side effects. Further exploration of short duration treatment with peginterferon plus direct-acting antivirals is warranted. © 2017 John Wiley & Sons Ltd.

  1. Thermoelectric energy harvesting with quantum dots

    NASA Astrophysics Data System (ADS)

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N.

    2015-01-01

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.

  2. Photoluminescence kinetics slowdown in an ensemble of GaN/AlN quantum dots upon tunneling interaction with defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, I. A., E-mail: Aleksandrov@isp.nsc.ru; Mansurov, V. G.; Zhuravlev, K. S.

    2016-08-15

    The carrier recombination dynamics in an ensemble of GaN/AlN quantum dots is studied. The model proposed for describing this dynamics takes into account the transition of carriers between quantum dots and defects in a matrix. Comparison of the experimental and calculated photoluminescence decay curves shows that the interaction between quantum dots and defects slows down photoluminescence decay in the ensemble of GaN/AlN quantum dots.

  3. Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2

    DTIC Science & Technology

    2015-12-15

    quantum dots (SAQD) in Schottky diodes . Based on spins in these dots, a scalable architecture has been proposed [Adv. in Physics, 59, 703 (2010)] by us...housed in two coupled quantum dots with tunneling between them, as described above, may not be scalable but can serve as a node in a quantum network. The... tunneling -coupled two-electron spin ground states in the vertically coupled quantum dots for “universal computation” two spin qubits within the universe of

  4. Effect of temperature on the single-particle ground-state energy of a polar quantum dot with Gaussian confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahan, Luhluh K., E-mail: luhluhjahan@gmail.com; Chatterjee, Ashok

    2016-05-23

    The temperature and size dependence of the ground-state energy of a polaron in a Gaussian quantum dot have been investigated by using a variational technique. It is found that the ground-state energy increases with increasing temperature and decreases with the size of the quantum dot. Also, it is found that the ground-state energy is larger for a three-dimensional quantum dot as compared to a two-dimensional dot.

  5. Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Saito, Hideaki; Nishi, Kenichi; Ogura, Ichiro; Sugou, Shigeo; Sugimoto, Yoshimasa

    1996-11-01

    Self-assembled growth of quantum dots by molecular-beam epitaxy is used to form the active region of a vertical-cavity surface-emitting laser (VCSEL). Ten layers of InGaAs quantum dots are stacked in order to increase the gain. This quantum-dot VCSEL has a continuous-wave operating current of 32 mA at room temperature. Emission spectra at various current injections demonstrate that the lasing action is associated with a higher-order transition in the quantum dots.

  6. Carbon dots: emerging theranostic nanoarchitectures.

    PubMed

    Mishra, Vijay; Patil, Akshay; Thakur, Sourav; Kesharwani, Prashant

    2018-06-01

    Nanotechnology has gained significant interest from biomedical and analytical researchers in recent years. Carbon dots (C-dots), a new member of the carbon nanomaterial family, are spherical, nontoxic, biocompatible, and discrete particles less than 10nm in diameter. Research interest has focused on C-dots because of their ultra-compact nanosize, favorable biocompatibility, outstanding photoluminescence, superior electron transfer ability, and versatile surface engineering properties. C-dots show significant potential for use in cellular imaging, biosensing, targeted drug delivery, and other biomedical applications. Here we discuss C-dots, in terms of their physicochemical properties, fabrication techniques, toxicity issues, surface engineering and biomedical potential in drug delivery, targeting as well as bioimaging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Synthesis of fluorescent carbon dots by a microwave heating process: structural characterization and cell imaging applications

    NASA Astrophysics Data System (ADS)

    Stefanakis, Dimitrios; Philippidis, Aggelos; Sygellou, Labrini; Filippidis, George; Ghanotakis, Demetrios; Anglos, Demetrios

    2014-10-01

    Two types of highly fluorescent carbon dots (C-dots) were prepared by a single-step procedure based on microwave heating citric acid and 6-aminocaproic acid or citric acid and urea in an aqueous solution. The small size of the isolated carbon dots along with their strong absorption in the UV and their excitation wavelength-dependent fluorescence render them ideal nanomaterials for biomedical applications (imaging and sensing). The structure and properties of the two types of C-dot materials were studied using a series of spectroscopic techniques. The ability of the C-dots to be internalized by HeLa cells was demonstrated via 3-photon fluorescence microscopy imaging.

  8. Quantum-dot cellular automata: Review and recent experiments (invited)

    NASA Astrophysics Data System (ADS)

    Snider, G. L.; Orlov, A. O.; Amlani, I.; Zuo, X.; Bernstein, G. H.; Lent, C. S.; Merz, J. L.; Porod, W.

    1999-04-01

    An introduction to the operation of quantum-dot cellular automata is presented, along with recent experimental results. Quantum-dot cellular automata (QCA) is a transistorless computation paradigm that addresses the issues of device density and interconnection. The basic building blocks of the QCA architecture, such as AND, OR, and NOT are presented. The experimental device is a four-dot QCA cell with two electrometers. The dots are metal islands, which are coupled by capacitors and tunnel junctions. An improved design of the cell is presented in which all four dots of the cell are coupled by tunnel junctions. The operation of this basic cell is confirmed by the externally controlled polarization change of the cell.

  9. Nanoscale patterning of colloidal quantum dots on transparent and metallic planar surfaces.

    PubMed

    Park, Yeonsang; Roh, Young-Geun; Kim, Un Jeong; Chung, Dae-Young; Suh, Hwansoo; Kim, Jineun; Cheon, Sangmo; Lee, Jaesoong; Kim, Tae-Ho; Cho, Kyung-Sang; Lee, Chang-Won

    2012-09-07

    The patterning of colloidal quantum dots with nanometer resolution is essential for their application in photonics and plasmonics. Several patterning approaches, such as the use of polymer composites, molecular lock-and-key methods, inkjet printing and microcontact printing of quantum dots have been recently developed. Herein, we present a simple method of patterning colloidal quantum dots for photonic nanostructures such as straight lines, rings and dot patterns either on transparent or metallic substrates. Sub-10 nm width of the patterned line could be achieved with a well-defined sidewall profile. Using this method, we demonstrate a surface plasmon launcher from a quantum dot cluster in the visible spectrum.

  10. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants.

    PubMed

    Chakravarty, Disha; Erande, Manisha B; Late, Dattatray J

    2015-10-01

    We report investigations on the use of graphene quantum dots for growth enhancement in coriander (Coriandrum sativam L.) and garlic (Allium sativum) plants. The as-received seeds of coriander and garlic were treated with 0.2 mg mL(-1) of graphene quantum dots for 3 h before planting. Graphene quantum dots enhanced the growth rate in coriander and garlic plants, including leaves, roots, shoots, flowers and fruits, when the seeds were treated with graphene quantum dots. Our investigations open up the opportunity to use graphene quantum dots as plant growth regulators that can be used in a variety of other food plants for high yield. © 2015 Society of Chemical Industry.

  11. Biocompatible Quantum Dots for Biological Applications

    PubMed Central

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  12. Purification non-aqueous solution of quantum dots CdSe- CdS-ZnS from excess organic substance-stabilizer by use PE- HD membrane

    NASA Astrophysics Data System (ADS)

    Kosolapova, K.; Al-Alwani, A.; Gorbachev, I.; Glukhovskoy, E.

    2015-11-01

    Recently, a new simple method for the purification of CdSe-CdS-ZnS quantum dots by using membrane filtration, the filtration process, successfully separated the oleic acid from quantum dots through membranes purification after synthesis; purification of quantum dots is a very significant part of post synthetical treatment that determines the properties of the material. We explore the possibilities of the Langmuir-Blodgett technique to make such layers, using quantum dots as a model system. The Langmuir monolayer of quantum dots were then investigated the surface pressure-area isotherm. From isotherm, we found the surface pressure monolayer changed with time.

  13. Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots.

    PubMed

    Seo, Min-Kyo; Park, Hong-Gyu; Yang, Jin-Kyu; Kim, Ju-Young; Kim, Se-Heon; Lee, Yong-Hee

    2008-06-23

    We propose and demonstrate a scheme that enables spectral tuning of a photonic crystal high-quality resonant mode, in steps finer than 0.2 nm, via electron beam induced deposition of carbonaceous nano-dots. The position and size of a nano-dot with a diameter of <100 nm are controlled to an accuracy on the order of nanometers. The possibility of selective modal tuning is also demonstrated by placing nano-dots at locations pre-determined by theoretical computation. The lasing threshold of a photonic crystal mode tends to increase when a nano-dot is grown at the point of strong electric field, showing the absorptive nature of the nano-dot.

  14. Phosphine-free synthesis and characterization of type-II ZnSe/CdS core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Ghasemzadeh, Roghayyeh; Armanmehr, Mohammad Hasan; Abedi, Mohammad; Fateh, Davood Sadeghi; Bahreini, Zaker

    2018-01-01

    A phosphine-free route for synthesis of type-II ZnSe/CdS core-shell quantum dots, using green, low cost and environmentally friendly reagents and phosphine-free solvents such as 1-octadecene (ODE) and liquid paraffin has been reported. Hot-injection technique has been used for the synthesis of ZnSe core quantum dots. The CdS shell quantum dots prepared by reaction of CdO precursor and S powder in 1-octadecene (ODE). The ZnSe/CdS core-shell quantum dots were synthesized via successive ion layer adsorption and reaction (SILAR) technique. The characterization of produced quantum dots were performed by absorption and fluorescence spectroscopy, X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results showed the formation of type-II ZnSe/CdS core-shell quantum dots with FWHM 32 nm and uniform size distribution.

  15. Hole Transfer from Low Band Gap Quantum Dots to Conjugated Polymers in Organic/Inorganic Hybrid Photovoltaics.

    PubMed

    Colbert, Adam E; Janke, Eric M; Hsieh, Stephen T; Subramaniyan, Selvam; Schlenker, Cody W; Jenekhe, Samson A; Ginger, David S

    2013-01-17

    We use photoinduced absorption (PIA) spectroscopy to investigate pathways for photocurrent generation in hybrid organic/inorganic quantum dot bulk heterojunction solar cells. We study blends of the conjugated polymer poly(2,3-bis(2-(hexyldecyl)quinoxaline-5,8-diyl-alt-N-(2-hexyldecyl)dithieno[3,2-b:2',3'-d]pyrrole) (PDTPQx-HD) with PbS quantum dots and find that positively charged polarons are formed on the conjugated polymer following selective photoexcitation of the PbS quantum dots. This result provides a direct spectroscopic fingerprint demonstrating that photoinduced hole transfer occurs from the photoexcited quantum dots to the host polymer. We compute the relative yields of long-lived holes following photoexcitation of both the polymer and quantum dot phases and estimate that more long-lived polarons are produced per photon absorbed by the polymer phase than by the quantum dot phase.

  16. L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.

    PubMed

    Singh, Avinash; Kunwar, Amit; Rath, M C

    2018-05-01

    L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.

  17. Undoped Si/SiGe Depletion-Mode Few-Electron Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Borselli, Matthew; Huang, Biqin; Ross, Richard; Croke, Edward; Holabird, Kevin; Hazard, Thomas; Watson, Christopher; Kiselev, Andrey; Deelman, Peter; Alvarado-Rodriguez, Ivan; Schmitz, Adele; Sokolich, Marko; Gyure, Mark; Hunter, Andrew

    2011-03-01

    We have successfully formed a double quantum dot in the sSi/SiGe material system without need for intentional dopants. In our design, a two-dimensional electron gas is formed in a strained silicon well by forward biasing a global gate. Lateral definition of quantum dots is established with reverse-biased gates with ~ 40 nm critical dimensions. Low-temperature capacitance and Hall measurements confirm electrons are confined in the Si-well with mobilities > 10 4 cm 2 / V - s . Further characterization identifies practical gate bias limits for this design and will be compared to simulation. Several double dot devices have been brought into the few-electron Coulomb blockade regime as measured by through-dot transport. Honeycomb diagrams and nonlinear through-dot transport measurements are used to quantify dot capacitances and addition energies of several meV. Sponsored by United States Department of Defense. Approved for Public Release, Distribution Unlimited.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haw; Hsia, Chih-Hao

    Novel Mn.sup.2+-doped quantum dots are provided. These Mn.sup.2+-doped quantum dots exhibit excellent temperature sensitivity in both organic solvents and water-based solutions. Methods of preparing the Mn.sup.2+-doped quantum dots are provided. The Mn.sup.2+-doped quantum dots may be prepared via a stepwise procedure using air-stable and inexpensive chemicals. The use of air-stable chemicals can significantly reduce the cost of synthesis, chemical storage, and the risk associated with handling flammable chemicals. Methods of temperature sensing using Mn.sup.2+-doped quantum dots are provided. The stepwise procedure provides the ability to tune the temperature-sensing properties to satisfy specific needs for temperature sensing applications. Water solubility maymore » be achieved by passivating the Mn.sup.2+-doped quantum dots, allowing the Mn.sup.2+-doped quantum dots to probe the fluctuations of local temperature in biological environments.« less

  19. Biocompatible yogurt carbon dots: evaluation of utilization for medical applications

    NASA Astrophysics Data System (ADS)

    Dinç, Saliha; Kara, Meryem; Demirel Kars, Meltem; Aykül, Fatmanur; Çiçekci, Hacer; Akkuş, Mehmet

    2017-09-01

    In this study, carbon dots (CDs) were produced from yogurt, a fermented milk product, via microwave-assisted process (800 W) in 30 min without using any additional chemical agents. Yogurt CDs had outstanding nitrogen and oxygen ratios. These dots were monodisperse and about 2 nm sized. The toxicological assessments of yogurt carbon dots in human cancer cells and normal epithelial cells and their fluorescence imaging in living cell system were carried out. Yogurt carbon dots had intense fluorescent signal under confocal microscopy and good fluorescence stability in living cell system. The resulting yogurt carbon dots exhibited high biocompatibility up to 7.1 mg/mL CD concentration which may find utilization in medical applications such as cellular tracking, imaging and drug delivery. Yogurt carbon dots have potential to be good diagnostic agents to visualize cancer cells which may be developed as a therapeutic carrier.

  20. Three-terminal quantum-dot thermal management devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Zhang, Xin; Ye, Zhuolin; Lin, Guoxing; Chen, Jincan

    2017-04-01

    We theoretically demonstrate that the heat flows can be manipulated by designing a three-terminal quantum-dot system consisting of three Coulomb-coupled quantum dots connected to respective reservoirs. In this structure, the electron transport between the quantum dots is forbidden, but the heat transport is allowed by the Coulomb interaction to transmit heat between the reservoirs with a temperature difference. We show that such a system is capable of performing thermal management operations, such as heat flow swap, thermal switch, and heat path selector. An important thermal rectifier, i.e., a thermal diode, can be implemented separately in two different paths. The asymmetric configuration of a quantum-dot system is a necessary condition for thermal management operations in practical applications. These results should have important implications in providing the design principle for quantum-dot thermal management devices and may open up potential applications for the thermal management of quantum-dot systems at the nanoscale.

  1. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing

    NASA Astrophysics Data System (ADS)

    Li, Kai; Qin, Wei; Ding, Dan; Tomczak, Nikodem; Geng, Junlong; Liu, Rongrong; Liu, Jianzhao; Zhang, Xinhai; Liu, Hongwei; Liu, Bin; Tang, Ben Zhong

    2013-01-01

    Long-term noninvasive cell tracing by fluorescent probes is of great importance to life science and biomedical engineering. For example, understanding genesis, development, invasion and metastasis of cancerous cells and monitoring tissue regeneration after stem cell transplantation require continual tracing of the biological processes by cytocompatible fluorescent probes over a long period of time. In this work, we successfully developed organic far-red/near-infrared dots with aggregation-induced emission (AIE dots) and demonstrated their utilities as long-term cell trackers. The high emission efficiency, large absorptivity, excellent biocompatibility, and strong photobleaching resistance of the AIE dots functionalized by cell penetrating peptides derived from transactivator of transcription proteins ensured outstanding long-term noninvasive in vitro and in vivo cell tracing. The organic AIE dots outperform their counterparts of inorganic quantum dots, opening a new avenue in the development of fluorescent probes for following biological processes such as carcinogenesis.

  2. Real-time observation of FIB-created dots and ripples on GaAs

    NASA Astrophysics Data System (ADS)

    Rose, F.; Fujita, H.; Kawakatsu, H.

    2008-01-01

    We report a phenomenological study of Ga dots and ripples created by a focused ion beam (FIB) on the GaAs(001) surface. Real-time observation of dot diffusion and ripple formation was made possible by recording FIB movies. In the case of FIB irradiation with a 40 nA current of Ga+ ions accelerated under 40 kV with an incidence angle of θ = 30°, increasing ion dose gives rise to three different regimes. In Regime 1, dots with lateral sizes in the range 50-460 nm are formed. Dots diffuse under continuous sputtering. In Regime 2, dots self-assemble into Bradley and Harper (BH) type ripples with a pseudo-period of λ = 1150 ± 25 nm. In Regime 3, ripples are eroded and the surface topology evolves into microplanes. In the case of normal incidence, FIB sputtering leads only to the formation of dots, without surface rippling.

  3. Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing.

    PubMed

    Feng, Hui; Qian, Zhaosheng

    2018-05-01

    Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Transient Dynamics of Double Quantum Dots Coupled to Two Reservoirs

    NASA Astrophysics Data System (ADS)

    Fukadai, Takahisa; Sasamoto, Tomohiro

    2018-05-01

    We study the time-dependent properties of double quantum dots coupled to two reservoirs using the nonequilibrium Green function method. For an arbitrary time-dependent bias, we derive an expression for the time-dependent electron density of a dot and several currents, including the current between the dots in the wide-band-limit approximation. For the special case of a constant bias, we calculate the electron density and the currents numerically. As a result, we find that these quantities oscillate and that the number of crests in a single period of the current from a dot changes with the bias voltage. We also obtain an analytical expression for the relaxation time, which expresses how fast the system converges to its steady state. From the expression, we find that the relaxation time becomes constant when the coupling strength between the dots is sufficiently large in comparison with the difference of coupling strength between the dots and the reservoirs.

  5. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification DOT-107A * * * * seamless steel tank...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  6. 41 CFR 102-173.30 - Who may register in the dot-gov domain?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... dot-gov domain? 102-173.30 Section 102-173.30 Public Contracts and Property Management Federal...-INTERNET GOV DOMAIN Registration § 102-173.30 Who may register in the dot-gov domain? Registration in the dot-gov domain is available to official governmental organizations in the United States including...

  7. 41 CFR 102-173.30 - Who may register in the dot-gov domain?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dot-gov domain? 102-173.30 Section 102-173.30 Public Contracts and Property Management Federal...-INTERNET GOV DOMAIN Registration § 102-173.30 Who may register in the dot-gov domain? Registration in the dot-gov domain is available to official governmental organizations in the United States including...

  8. 41 CFR 102-173.30 - Who may register in the dot-gov domain?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... dot-gov domain? 102-173.30 Section 102-173.30 Public Contracts and Property Management Federal...-INTERNET GOV DOMAIN Registration § 102-173.30 Who may register in the dot-gov domain? Registration in the dot-gov domain is available to official governmental organizations in the United States including...

  9. 41 CFR 102-173.30 - Who may register in the dot-gov domain?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dot-gov domain? 102-173.30 Section 102-173.30 Public Contracts and Property Management Federal...-INTERNET GOV DOMAIN Registration § 102-173.30 Who may register in the dot-gov domain? Registration in the dot-gov domain is available to official governmental organizations in the United States including...

  10. 41 CFR 102-173.30 - Who may register in the dot-gov domain?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... dot-gov domain? 102-173.30 Section 102-173.30 Public Contracts and Property Management Federal...-INTERNET GOV DOMAIN Registration § 102-173.30 Who may register in the dot-gov domain? Registration in the dot-gov domain is available to official governmental organizations in the United States including...

  11. Four-Wave Mixing Spectroscopy of Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Sitek, A.; Machnikowski, P.

    2007-08-01

    We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.

  12. 48 CFR 1213.7100 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... issued for three DOT employees to attend a one week course at a university or other private entity, the policy does not apply. DOT does not control this course because the university or private entity has a...) When DOT awards a contract to a university or other private entity to provide training for DOT and/or...

  13. 48 CFR 1213.7100 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... issued for three DOT employees to attend a one week course at a university or other private entity, the policy does not apply. DOT does not control this course because the university or private entity has a...) When DOT awards a contract to a university or other private entity to provide training for DOT and/or...

  14. 48 CFR 1213.7100 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... issued for three DOT employees to attend a one week course at a university or other private entity, the policy does not apply. DOT does not control this course because the university or private entity has a...) When DOT awards a contract to a university or other private entity to provide training for DOT and/or...

  15. 48 CFR 1213.7100 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... issued for three DOT employees to attend a one week course at a university or other private entity, the policy does not apply. DOT does not control this course because the university or private entity has a...) When DOT awards a contract to a university or other private entity to provide training for DOT and/or...

  16. 48 CFR 1213.7100 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... issued for three DOT employees to attend a one week course at a university or other private entity, the policy does not apply. DOT does not control this course because the university or private entity has a...) When DOT awards a contract to a university or other private entity to provide training for DOT and/or...

  17. Metamorphic quantum dots: Quite different nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seravalli, L.; Frigeri, P.; Nasi, L.

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantummore » dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.« less

  18. Electron paramagnetic resonance of natural and gamma-irradiated alunite and kaolin mineral powders

    NASA Astrophysics Data System (ADS)

    Koksal, F.; Koseoglu, R.; Saka, I.; Basaran, E.; Sener, F.

    2004-06-01

    Natural alunite and kaolin minerals obtained from West Anatolia were investigated by electron paramagnetic resonance (EPR) in natural and gamma-irradiated states at room temperature and at 113 K. The paramagnetic centres at ambient temperature in natural alunite were attributed to the (C) over dot H 2OH, (C) over dot O-3(-), (S) over dot O-2(-), (C) over dot O-2(-) and [AlO4 ](0) radicals. In natural kaolin, the paramagnetic centres were attributed to the (C) over dot O-3(-), (S) over dot O-2(-) (C) over dot O-2(-) and [AlO4](0) radicals. The gamma-irradiation does not produce any detectable effects on these radicals. At 113 K, the lines for (C) over dot H2OH could not be observed well, probably due to the anisotropic behaviour of the hyperfine interaction of the methylene protons, but the lines for [AlO4](0) centres were found to be perfectly observable at above 20 mW microwave power in both alunite and kaolin powders before and after gamma-irradiation. The EPR parameters of the observed paramagnetic centres were reported.

  19. First demonstration of simultaneous measurement of beam current, beam position, and beam tilt on induction linac using combined B-dot monitor

    NASA Astrophysics Data System (ADS)

    He, Xiaozhong; Pang, Jian; Chen, Nan; Li, Qin; Dai, Wenhua; Ma, Chaofan; Zhao, Liangchao; Gao, Feng; Dai, Zhiyong

    2017-06-01

    The authors previously reported that the axial B-dots can be used to directly measure the beam tilt and demonstrated that the axial B-dots are applicable to a coaxial calibration stand. In this study, a combined B-dot monitor composed of four axial B-dot loops and four azimuthal ones is tested for the simultaneous measurement of the time-varying beam current, beam offset, and beam tilt at the output of the injector of the DRAGON-I induction linac. In the experiments, the beam offset and beam tilt at the position of the monitor are proportionally adjusted using a pair of steering coils. Eight waveforms acquired from the B-dot monitor are analyzed to reconstruct the time-varying beam current, beam offset, and beam tilt. The original signals of both the azimuthal B-dot and the axial B-dot ports change significantly with respect to the current applied to the steering coils. The measured beam tilt is linearly dependent on the current applied to the steering coils and agrees well with the measured beam offset.

  20. Arginine-glycine-aspartic acid-conjugated dendrimer-modified quantum dots for targeting and imaging melanoma.

    PubMed

    Li, Zhiming; Huang, Peng; Lin, Jing; He, Rong; Liu, Bing; Zhang, Xiaomin; Yang, Sen; Xi, Peng; Zhang, Xuejun; Ren, Qiushi; Cui, Daxiang

    2010-08-01

    Angiogenesis is essential for the development of malignant tumors and provides important targets for tumor diagnosis and therapy. Quantum dots have been broadly investigated for their potential application in cancer molecular imaging. In present work, CdSe quantum dots were synthesized, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified CdSe quantum dots were conjugated with arginine-glycine-aspartic acid (RGD) peptides. These prepared nanoprobes were injected into nude mice loaded with melanoma (A375) tumor xenografts via tail vessels, IVIS imaging system was used to image the targeting and bio-distribution of as-prepared nanoprobes. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. RGD-conjugated quantum dots can specifically target human umbilical vein endothelial cells (HUVEC) and A375 melanoma cells, as well as nude mice loaded with A735 melanoma cells. High-performance RGD-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as tumor diagnosis and therapy.

Top