Sample records for random error growth

  1. A predictability study of Lorenz's 28-variable model as a dynamical system

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, V.

    1993-01-01

    The dynamics of error growth in a two-layer nonlinear quasi-geostrophic model has been studied to gain an understanding of the mathematical theory of atmospheric predictability. The growth of random errors of varying initial magnitudes has been studied, and the relation between this classical approach and the concepts of the nonlinear dynamical systems theory has been explored. The local and global growths of random errors have been expressed partly in terms of the properties of an error ellipsoid and the Liapunov exponents determined by linear error dynamics. The local growth of small errors is initially governed by several modes of the evolving error ellipsoid but soon becomes dominated by the longest axis. The average global growth of small errors is exponential with a growth rate consistent with the largest Liapunov exponent. The duration of the exponential growth phase depends on the initial magnitude of the errors. The subsequent large errors undergo a nonlinear growth with a steadily decreasing growth rate and attain saturation that defines the limit of predictability. The degree of chaos and the largest Liapunov exponent show considerable variation with change in the forcing, which implies that the time variation in the external forcing can introduce variable character to the predictability.

  2. Diagnostics of Robust Growth Curve Modeling Using Student's "t" Distribution

    ERIC Educational Resources Information Center

    Tong, Xin; Zhang, Zhiyong

    2012-01-01

    Growth curve models with different types of distributions of random effects and of intraindividual measurement errors for robust analysis are compared. After demonstrating the influence of distribution specification on parameter estimation, 3 methods for diagnosing the distributions for both random effects and intraindividual measurement errors…

  3. A Gompertzian model with random effects to cervical cancer growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazlan, Mazma Syahidatul Ayuni; Rosli, Norhayati

    2015-05-15

    In this paper, a Gompertzian model with random effects is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via maximum likehood estimation. We apply 4-stage Runge-Kutta (SRK4) for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of the cervical cancer growth. Low values of root mean-square error (RMSE) of Gompertzian model with random effect indicate good fits.

  4. A spatial error model with continuous random effects and an application to growth convergence

    NASA Astrophysics Data System (ADS)

    Laurini, Márcio Poletti

    2017-10-01

    We propose a spatial error model with continuous random effects based on Matérn covariance functions and apply this model for the analysis of income convergence processes (β -convergence). The use of a model with continuous random effects permits a clearer visualization and interpretation of the spatial dependency patterns, avoids the problems of defining neighborhoods in spatial econometrics models, and allows projecting the spatial effects for every possible location in the continuous space, circumventing the existing aggregations in discrete lattice representations. We apply this model approach to analyze the economic growth of Brazilian municipalities between 1991 and 2010 using unconditional and conditional formulations and a spatiotemporal model of convergence. The results indicate that the estimated spatial random effects are consistent with the existence of income convergence clubs for Brazilian municipalities in this period.

  5. Ensemble-type numerical uncertainty information from single model integrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter

    2015-07-01

    We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of themore » influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.« less

  6. Simulated forecast error and climate drift resulting from the omission of the upper stratosphere in numerical models

    NASA Technical Reports Server (NTRS)

    Boville, Byron A.; Baumhefner, David P.

    1990-01-01

    Using an NCAR community climate model, Version I, the forecast error growth and the climate drift resulting from the omission of the upper stratosphere are investigated. In the experiment, the control simulation is a seasonal integration of a medium horizontal general circulation model with 30 levels extending from the surface to the upper mesosphere, while the main experiment uses an identical model, except that only the bottom 15 levels (below 10 mb) are retained. It is shown that both random and systematic errors develop rapidly in the lower stratosphere with some local propagation into the troposphere in the 10-30-day time range. The random growth rate in the troposphere in the case of the altered upper boundary was found to be slightly faster than that for the initial-condition uncertainty alone. However, this is not likely to make a significant impact in operational forecast models, because the initial-condition uncertainty is very large.

  7. Time Course of Visual Extrapolation Accuracy

    DTIC Science & Technology

    1995-09-01

    The pond and duckweed problem: Three experiments on the misperception of exponential growth . Acta Psychologica 43, 239-251. Wiener, E.L., 1962...random variation in tracker velocity. Both models predicted changes in hit and false alarm rates well, except in a condition where response asymmetries...systematic velocity error in tracking, only random variation in tracker velocity. Both models predicted changes in hit and false alarm rates well

  8. Inadvertently programmed bits in Samsung 128 Mbit flash devices: a flaky investigation

    NASA Technical Reports Server (NTRS)

    Swift, G.

    2002-01-01

    JPL's X2000 avionics design pioneers new territory by specifying a non-volatile memory (NVM) board based on flash memories. The Samsung 128Mb device chosen was found to demonstrate bit errors (mostly program disturbs) and block-erase failures that increase with cycling. Low temperature, certain pseudo- random patterns, and, probably, higher bias increase the observable bit errors. An experiment was conducted to determine the wearout dependence of the bit errors to 100k cycles at cold temperature using flight-lot devices (some pre-irradiated). The results show an exponential growth rate, a wide part-to-part variation, and some annealing behavior.

  9. Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification.

    PubMed

    Ye, Lidan; Zhao, Hua; Li, Zhi; Wu, Jin Chuan

    2013-05-01

    Acid tolerance of Lactobacillus pentosus ATCC 8041 was improved by error-prone amplification of its genomic DNA using random primers and Taq DNA polymerase. The resulting amplification products were transferred into wild-type L. pentosus by electroporation and the transformants were screened for growth on low-pH agar plates. After only one round of mutation, one mutant (MT3) was identified that was able to completely consume 20 g/L of glucose to produce lactic acid at a yield of 95% in 1L MRS medium at pH 3.8 within 36 h, whereas no growth or lactic acid production was observed for the wild-type strain under the same conditions. The acid tolerance of mutant MT3 remained genetically stable for at least 25 subcultures. Therefore, the error-prone whole genome amplification technique is a very powerful tool for improving phenotypes of this lactic acid bacterium and may also be applicable for other microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Are gestational age, birth weight, and birth length indicators of favorable fetal growth conditions? A structural equation analysis of Filipino infants.

    PubMed

    Bollen, Kenneth A; Noble, Mark D; Adair, Linda S

    2013-07-30

    The fetal origins hypothesis emphasizes the life-long health impacts of prenatal conditions. Birth weight, birth length, and gestational age are indicators of the fetal environment. However, these variables often have missing data and are subject to random and systematic errors caused by delays in measurement, differences in measurement instruments, and human error. With data from the Cebu (Philippines) Longitudinal Health and Nutrition Survey, we use structural equation models, to explore random and systematic errors in these birth outcome measures, to analyze how maternal characteristics relate to birth outcomes, and to take account of missing data. We assess whether birth weight, birth length, and gestational age are influenced by a single latent variable that we call favorable fetal growth conditions (FFGC) and if so, which variable is most closely related to FFGC. We find that a model with FFGC as a latent variable fits as well as a less parsimonious model that has birth weight, birth length, and gestational age as distinct individual variables. We also demonstrate that birth weight is more reliably measured than is gestational age. FFGCs were significantly influenced by taller maternal stature, better nutritional stores indexed by maternal arm fat and muscle area during pregnancy, higher birth order, avoidance of smoking, and maternal age 20-35 years. Effects of maternal characteristics on newborn weight, length, and gestational age were largely indirect, operating through FFGC. Copyright © 2013 John Wiley & Sons, Ltd.

  11. The role of model errors represented by nonlinear forcing singular vector tendency error in causing the "spring predictability barrier" within ENSO predictions

    NASA Astrophysics Data System (ADS)

    Duan, Wansuo; Zhao, Peng

    2017-04-01

    Within the Zebiak-Cane model, the nonlinear forcing singular vector (NFSV) approach is used to investigate the role of model errors in the "Spring Predictability Barrier" (SPB) phenomenon within ENSO predictions. NFSV-related errors have the largest negative effect on the uncertainties of El Niño predictions. NFSV errors can be classified into two types: the first is characterized by a zonal dipolar pattern of SST anomalies (SSTA), with the western poles centered in the equatorial central-western Pacific exhibiting positive anomalies and the eastern poles in the equatorial eastern Pacific exhibiting negative anomalies; and the second is characterized by a pattern almost opposite the first type. The first type of error tends to have the worst effects on El Niño growth-phase predictions, whereas the latter often yields the largest negative effects on decaying-phase predictions. The evolution of prediction errors caused by NFSV-related errors exhibits prominent seasonality, with the fastest error growth in the spring and/or summer seasons; hence, these errors result in a significant SPB related to El Niño events. The linear counterpart of NFSVs, the (linear) forcing singular vector (FSV), induces a less significant SPB because it contains smaller prediction errors. Random errors cannot generate a SPB for El Niño events. These results show that the occurrence of an SPB is related to the spatial patterns of tendency errors. The NFSV tendency errors cause the most significant SPB for El Niño events. In addition, NFSVs often concentrate these large value errors in a few areas within the equatorial eastern and central-western Pacific, which likely represent those areas sensitive to El Niño predictions associated with model errors. Meanwhile, these areas are also exactly consistent with the sensitive areas related to initial errors determined by previous studies. This implies that additional observations in the sensitive areas would not only improve the accuracy of the initial field but also promote the reduction of model errors to greatly improve ENSO forecasts.

  12. Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen

    2005-10-01

    Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errorsmore » of {sigma} = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with {sigma} = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for {sigma} = {sigma} = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D{sub 98}), clinical target volume (CTV) D{sub 90}, nodes D{sub 90}, cord D{sub 2}, and parotid D{sub 50} and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error {sigma} exceeded 3 mm. Simulated systematic setup errors with {sigma} = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a {sigma} = 3.0 mm resulted in half of the plans having more than a 3% dose error and 28% with a 5% dose error. Combined random and systematic dose errors with {sigma} = {sigma} = 3.0 mm resulted in more than 50% of plans having at least a 3% dose error and 38% of the plans having at least a 5% dose error. Evaluation with respect to a 3-mm expanded PTV reduced the observed dose deviations greater than 5% for the {sigma} = {sigma} = 3.0 mm simulations to 5.4% of the plans simulated. Conclusions: Head-and-neck SIB-IMRT dosimetric accuracy would benefit from methods to reduce patient systematic setup errors. When GTV, CTV, or nodal volumes are used for dose evaluation, plans simulated including the effects of random and systematic errors deviate substantially from the nominal plan. The use of PTVs for dose evaluation in the nominal plan improves agreement with evaluated GTV, CTV, and nodal dose values under simulated setup errors. PTV concepts should be used for SIB-IMRT head-and-neck squamous cell carcinoma patients, although the size of the margins may be less than those used with three-dimensional conformal radiation therapy.« less

  13. Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models.

    PubMed

    Elben, A; Vermersch, B; Dalmonte, M; Cirac, J I; Zoller, P

    2018-02-02

    We present a scheme for measuring Rényi entropies in generic atomic Hubbard and spin models using single copies of a quantum state and for partitions in arbitrary spatial dimensions. Our approach is based on the generation of random unitaries from random quenches, implemented using engineered time-dependent disorder potentials, and standard projective measurements, as realized by quantum gas microscopes. By analyzing the properties of the generated unitaries and the role of statistical errors, with respect to the size of the partition, we show that the protocol can be realized in existing quantum simulators and used to measure, for instance, area law scaling of entanglement in two-dimensional spin models or the entanglement growth in many-body localized systems.

  14. Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models

    NASA Astrophysics Data System (ADS)

    Elben, A.; Vermersch, B.; Dalmonte, M.; Cirac, J. I.; Zoller, P.

    2018-02-01

    We present a scheme for measuring Rényi entropies in generic atomic Hubbard and spin models using single copies of a quantum state and for partitions in arbitrary spatial dimensions. Our approach is based on the generation of random unitaries from random quenches, implemented using engineered time-dependent disorder potentials, and standard projective measurements, as realized by quantum gas microscopes. By analyzing the properties of the generated unitaries and the role of statistical errors, with respect to the size of the partition, we show that the protocol can be realized in existing quantum simulators and used to measure, for instance, area law scaling of entanglement in two-dimensional spin models or the entanglement growth in many-body localized systems.

  15. Single molecule counting and assessment of random molecular tagging errors with transposable giga-scale error-correcting barcodes.

    PubMed

    Lau, Billy T; Ji, Hanlee P

    2017-09-21

    RNA-Seq measures gene expression by counting sequence reads belonging to unique cDNA fragments. Molecular barcodes commonly in the form of random nucleotides were recently introduced to improve gene expression measures by detecting amplification duplicates, but are susceptible to errors generated during PCR and sequencing. This results in false positive counts, leading to inaccurate transcriptome quantification especially at low input and single-cell RNA amounts where the total number of molecules present is minuscule. To address this issue, we demonstrated the systematic identification of molecular species using transposable error-correcting barcodes that are exponentially expanded to tens of billions of unique labels. We experimentally showed random-mer molecular barcodes suffer from substantial and persistent errors that are difficult to resolve. To assess our method's performance, we applied it to the analysis of known reference RNA standards. By including an inline random-mer molecular barcode, we systematically characterized the presence of sequence errors in random-mer molecular barcodes. We observed that such errors are extensive and become more dominant at low input amounts. We described the first study to use transposable molecular barcodes and its use for studying random-mer molecular barcode errors. Extensive errors found in random-mer molecular barcodes may warrant the use of error correcting barcodes for transcriptome analysis as input amounts decrease.

  16. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less

  17. Error sensitivity analysis in 10-30-day extended range forecasting by using a nonlinear cross-prediction error model

    NASA Astrophysics Data System (ADS)

    Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan

    2017-06-01

    Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.

  18. Efficiently characterizing the total error in quantum circuits

    NASA Astrophysics Data System (ADS)

    Carignan-Dugas, Arnaud; Wallman, Joel J.; Emerson, Joseph

    A promising technological advancement meant to enlarge our computational means is the quantum computer. Such a device would harvest the quantum complexity of the physical world in order to unfold concrete mathematical problems more efficiently. However, the errors emerging from the implementation of quantum operations are likewise quantum, and hence share a similar level of intricacy. Fortunately, randomized benchmarking protocols provide an efficient way to characterize the operational noise within quantum devices. The resulting figures of merit, like the fidelity and the unitarity, are typically attached to a set of circuit components. While important, this doesn't fulfill the main goal: determining if the error rate of the total circuit is small enough in order to trust its outcome. In this work, we fill the gap by providing an optimal bound on the total fidelity of a circuit in terms of component-wise figures of merit. Our bound smoothly interpolates between the classical regime, in which the error rate grows linearly in the circuit's length, and the quantum regime, which can naturally allow quadratic growth. Conversely, our analysis substantially improves the bounds on single circuit element fidelities obtained through techniques such as interleaved randomized benchmarking. This research was supported by the U.S. Army Research Office through Grant W911NF- 14-1-0103, CIFAR, the Government of Ontario, and the Government of Canada through NSERC and Industry Canada.

  19. Testing and extension of a sea lamprey feeding model

    USGS Publications Warehouse

    Cochran, Philip A.; Swink, William D.; Kinziger, Andrew P.

    1999-01-01

    A previous model of feeding by sea lamprey Petromyzon marinus predicted energy intake and growth by lampreys as a function of lamprey size, host size, and duration of feeding attachments, but it was applicable only to lampreys feeding at 10°C and it was tested against only a single small data set of limited scope. We extended the model to other temperatures and tested it against an extensive data set (more than 700 feeding bouts) accumulated during experiments with captive sea lampreys. Model predictions of instantaneous growth were highly correlated with observed growth, and a partitioning of mean squared error between model predictions and observed results showed that 88.5% of the variance was due to random variation rather than to systematic errors. However, deviations between observed and predicted values varied substantially, especially for short feeding bouts. Predicted and observed growth trajectories of individual lampreys during multiple feeding bouts during the summer tended to correspond closely, but predicted growth was generally much higher than observed growth late in the year. This suggests the possibility that large overwintering lampreys reduce their feeding rates while attached to hosts. Seasonal or size-related shifts in the fate of consumed energy may provide an alternative explanation. The lamprey feeding model offers great flexibility in assessing growth of captive lampreys within various experimental protocols (e.g., different host species or thermal regimes) because it controls for individual differences in feeding history.

  20. Errors in causal inference: an organizational schema for systematic error and random error.

    PubMed

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Template-Directed Copolymerization, Random Walks along Disordered Tracks, and Fractals

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-12-01

    In biology, template-directed copolymerization is the fundamental mechanism responsible for the synthesis of DNA, RNA, and proteins. More than 50 years have passed since the discovery of DNA structure and its role in coding genetic information. Yet, the kinetics and thermodynamics of information processing in DNA replication, transcription, and translation remain poorly understood. Challenging issues are the facts that DNA or RNA sequences constitute disordered media for the motion of polymerases or ribosomes while errors occur in copying the template. Here, it is shown that these issues can be addressed and sequence heterogeneity effects can be quantitatively understood within a framework revealing universal aspects of information processing at the molecular scale. In steady growth regimes, the local velocities of polymerases or ribosomes along the template are distributed as the continuous or fractal invariant set of a so-called iterated function system, which determines the copying error probabilities. The growth may become sublinear in time with a scaling exponent that can also be deduced from the iterated function system.

  2. Some practical problems in implementing randomization.

    PubMed

    Downs, Matt; Tucker, Kathryn; Christ-Schmidt, Heidi; Wittes, Janet

    2010-06-01

    While often theoretically simple, implementing randomization to treatment in a masked, but confirmable, fashion can prove difficult in practice. At least three categories of problems occur in randomization: (1) bad judgment in the choice of method, (2) design and programming errors in implementing the method, and (3) human error during the conduct of the trial. This article focuses on these latter two types of errors, dealing operationally with what can go wrong after trial designers have selected the allocation method. We offer several case studies and corresponding recommendations for lessening the frequency of problems in allocating treatment or for mitigating the consequences of errors. Recommendations include: (1) reviewing the randomization schedule before starting a trial, (2) being especially cautious of systems that use on-demand random number generators, (3) drafting unambiguous randomization specifications, (4) performing thorough testing before entering a randomization system into production, (5) maintaining a dataset that captures the values investigators used to randomize participants, thereby allowing the process of treatment allocation to be reproduced and verified, (6) resisting the urge to correct errors that occur in individual treatment assignments, (7) preventing inadvertent unmasking to treatment assignments in kit allocations, and (8) checking a sample of study drug kits to allow detection of errors in drug packaging and labeling. Although we performed a literature search of documented randomization errors, the examples that we provide and the resultant recommendations are based largely on our own experience in industry-sponsored clinical trials. We do not know how representative our experience is or how common errors of the type we have seen occur. Our experience underscores the importance of verifying the integrity of the treatment allocation process before and during a trial. Clinical Trials 2010; 7: 235-245. http://ctj.sagepub.com.

  3. Sun compass error model

    NASA Technical Reports Server (NTRS)

    Blucker, T. J.; Ferry, W. W.

    1971-01-01

    An error model is described for the Apollo 15 sun compass, a contingency navigational device. Field test data are presented along with significant results of the test. The errors reported include a random error resulting from tilt in leveling the sun compass, a random error because of observer sighting inaccuracies, a bias error because of mean tilt in compass leveling, a bias error in the sun compass itself, and a bias error because the device is leveled to the local terrain slope.

  4. Random errors in interferometry with the least-squares method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qi

    2011-01-20

    This investigation analyzes random errors in interferometric surface profilers using the least-squares method when random noises are present. Two types of random noise are considered here: intensity noise and position noise. Two formulas have been derived for estimating the standard deviations of the surface height measurements: one is for estimating the standard deviation when only intensity noise is present, and the other is for estimating the standard deviation when only position noise is present. Measurements on simulated noisy interferometric data have been performed, and standard deviations of the simulated measurements have been compared with those theoretically derived. The relationships havemore » also been discussed between random error and the wavelength of the light source and between random error and the amplitude of the interference fringe.« less

  5. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.

    2015-04-01

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere, although there are certain environmental costs associated with this service, such as the acidification of ocean waters.

  6. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    PubMed

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  7. Comparison of Oral Reading Errors between Contextual Sentences and Random Words among Schoolchildren

    ERIC Educational Resources Information Center

    Khalid, Nursyairah Mohd; Buari, Noor Halilah; Chen, Ai-Hong

    2017-01-01

    This paper compares the oral reading errors between the contextual sentences and random words among schoolchildren. Two sets of reading materials were developed to test the oral reading errors in 30 schoolchildren (10.00±1.44 years). Set A was comprised contextual sentences while Set B encompassed random words. The schoolchildren were asked to…

  8. Random measurement error: Why worry? An example of cardiovascular risk factors.

    PubMed

    Brakenhoff, Timo B; van Smeden, Maarten; Visseren, Frank L J; Groenwold, Rolf H H

    2018-01-01

    With the increased use of data not originally recorded for research, such as routine care data (or 'big data'), measurement error is bound to become an increasingly relevant problem in medical research. A common view among medical researchers on the influence of random measurement error (i.e. classical measurement error) is that its presence leads to some degree of systematic underestimation of studied exposure-outcome relations (i.e. attenuation of the effect estimate). For the common situation where the analysis involves at least one exposure and one confounder, we demonstrate that the direction of effect of random measurement error on the estimated exposure-outcome relations can be difficult to anticipate. Using three example studies on cardiovascular risk factors, we illustrate that random measurement error in the exposure and/or confounder can lead to underestimation as well as overestimation of exposure-outcome relations. We therefore advise medical researchers to refrain from making claims about the direction of effect of measurement error in their manuscripts, unless the appropriate inferential tools are used to study or alleviate the impact of measurement error from the analysis.

  9. A Practical Methodology for Quantifying Random and Systematic Components of Unexplained Variance in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Deloach, Richard; Obara, Clifford J.; Goodman, Wesley L.

    2012-01-01

    This paper documents a check standard wind tunnel test conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3M TCT) that was designed and analyzed using the Modern Design of Experiments (MDOE). The test designed to partition the unexplained variance of typical wind tunnel data samples into two constituent components, one attributable to ordinary random error, and one attributable to systematic error induced by covariate effects. Covariate effects in wind tunnel testing are discussed, with examples. The impact of systematic (non-random) unexplained variance on the statistical independence of sequential measurements is reviewed. The corresponding correlation among experimental errors is discussed, as is the impact of such correlation on experimental results generally. The specific experiment documented herein was organized as a formal test for the presence of unexplained variance in representative samples of wind tunnel data, in order to quantify the frequency with which such systematic error was detected, and its magnitude relative to ordinary random error. Levels of systematic and random error reported here are representative of those quantified in other facilities, as cited in the references.

  10. The Effect of Random Error on Diagnostic Accuracy Illustrated with the Anthropometric Diagnosis of Malnutrition

    PubMed Central

    2016-01-01

    Background It is often thought that random measurement error has a minor effect upon the results of an epidemiological survey. Theoretically, errors of measurement should always increase the spread of a distribution. Defining an illness by having a measurement outside an established healthy range will lead to an inflated prevalence of that condition if there are measurement errors. Methods and results A Monte Carlo simulation was conducted of anthropometric assessment of children with malnutrition. Random errors of increasing magnitude were imposed upon the populations and showed that there was an increase in the standard deviation with each of the errors that became exponentially greater with the magnitude of the error. The potential magnitude of the resulting error of reported prevalence of malnutrition were compared with published international data and found to be of sufficient magnitude to make a number of surveys and the numerous reports and analyses that used these data unreliable. Conclusions The effect of random error in public health surveys and the data upon which diagnostic cut-off points are derived to define “health” has been underestimated. Even quite modest random errors can more than double the reported prevalence of conditions such as malnutrition. Increasing sample size does not address this problem, and may even result in less accurate estimates. More attention needs to be paid to the selection, calibration and maintenance of instruments, measurer selection, training & supervision, routine estimation of the likely magnitude of errors using standardization tests, use of statistical likelihood of error to exclude data from analysis and full reporting of these procedures in order to judge the reliability of survey reports. PMID:28030627

  11. A case study of the effects of random errors in rawinsonde data on computations of ageostrophic winds

    NASA Technical Reports Server (NTRS)

    Moore, J. T.

    1985-01-01

    Data input for the AVE-SESAME I experiment are utilized to describe the effects of random errors in rawinsonde data on the computation of ageostrophic winds. Computer-generated random errors for wind direction and speed and temperature are introduced into the station soundings at 25 mb intervals from which isentropic data sets are created. Except for the isallobaric and the local wind tendency, all winds are computed for Apr. 10, 1979 at 2000 GMT. Divergence fields reveal that the isallobaric and inertial-geostrophic-advective divergences are less affected by rawinsonde random errors than the divergence of the local wind tendency or inertial-advective winds.

  12. Network problem threshold

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra, R.

    1992-01-01

    Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.

  13. Reference-free error estimation for multiple measurement methods.

    PubMed

    Madan, Hennadii; Pernuš, Franjo; Špiclin, Žiga

    2018-01-01

    We present a computational framework to select the most accurate and precise method of measurement of a certain quantity, when there is no access to the true value of the measurand. A typical use case is when several image analysis methods are applied to measure the value of a particular quantitative imaging biomarker from the same images. The accuracy of each measurement method is characterized by systematic error (bias), which is modeled as a polynomial in true values of measurand, and the precision as random error modeled with a Gaussian random variable. In contrast to previous works, the random errors are modeled jointly across all methods, thereby enabling the framework to analyze measurement methods based on similar principles, which may have correlated random errors. Furthermore, the posterior distribution of the error model parameters is estimated from samples obtained by Markov chain Monte-Carlo and analyzed to estimate the parameter values and the unknown true values of the measurand. The framework was validated on six synthetic and one clinical dataset containing measurements of total lesion load, a biomarker of neurodegenerative diseases, which was obtained with four automatic methods by analyzing brain magnetic resonance images. The estimates of bias and random error were in a good agreement with the corresponding least squares regression estimates against a reference.

  14. Errors in radial velocity variance from Doppler wind lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Barthelmie, R. J.; Doubrawa, P.

    A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less

  15. Errors in radial velocity variance from Doppler wind lidar

    DOE PAGES

    Wang, H.; Barthelmie, R. J.; Doubrawa, P.; ...

    2016-08-29

    A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less

  16. Simulation of wave propagation in three-dimensional random media

    NASA Astrophysics Data System (ADS)

    Coles, Wm. A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.

    1995-04-01

    Quantitative error analyses for the simulation of wave propagation in three-dimensional random media, when narrow angular scattering is assumed, are presented for plane-wave and spherical-wave geometry. This includes the errors that result from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive indices of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared with the spatial spectra of

  17. Modeling error distributions of growth curve models through Bayesian methods.

    PubMed

    Zhang, Zhiyong

    2016-06-01

    Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided.

  18. Scattering from binary optics

    NASA Technical Reports Server (NTRS)

    Ricks, Douglas W.

    1993-01-01

    There are a number of sources of scattering in binary optics: etch depth errors, line edge errors, quantization errors, roughness, and the binary approximation to the ideal surface. These sources of scattering can be systematic (deterministic) or random. In this paper, scattering formulas for both systematic and random errors are derived using Fourier optics. These formulas can be used to explain the results of scattering measurements and computer simulations.

  19. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    DOE PAGES

    Ballantyne, A. P.; Andres, R.; Houghton, R.; ...

    2015-04-30

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we concludemore » that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr ₋1 in the 1960s to 0.3 Pg C yr ₋1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr ₋1 in the 1960s to almost 1.0 Pg C yr ₋1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO 2 emissions from the atmosphere, although there are certain environmental costs associated with this service, such as the acidification of ocean waters.« less

  20. The effects of recall errors and of selection bias in epidemiologic studies of mobile phone use and cancer risk.

    PubMed

    Vrijheid, Martine; Deltour, Isabelle; Krewski, Daniel; Sanchez, Marie; Cardis, Elisabeth

    2006-07-01

    This paper examines the effects of systematic and random errors in recall and of selection bias in case-control studies of mobile phone use and cancer. These sensitivity analyses are based on Monte-Carlo computer simulations and were carried out within the INTERPHONE Study, an international collaborative case-control study in 13 countries. Recall error scenarios simulated plausible values of random and systematic, non-differential and differential recall errors in amount of mobile phone use reported by study subjects. Plausible values for the recall error were obtained from validation studies. Selection bias scenarios assumed varying selection probabilities for cases and controls, mobile phone users, and non-users. Where possible these selection probabilities were based on existing information from non-respondents in INTERPHONE. Simulations used exposure distributions based on existing INTERPHONE data and assumed varying levels of the true risk of brain cancer related to mobile phone use. Results suggest that random recall errors of plausible levels can lead to a large underestimation in the risk of brain cancer associated with mobile phone use. Random errors were found to have larger impact than plausible systematic errors. Differential errors in recall had very little additional impact in the presence of large random errors. Selection bias resulting from underselection of unexposed controls led to J-shaped exposure-response patterns, with risk apparently decreasing at low to moderate exposure levels. The present results, in conjunction with those of the validation studies conducted within the INTERPHONE study, will play an important role in the interpretation of existing and future case-control studies of mobile phone use and cancer risk, including the INTERPHONE study.

  1. Demonstrating the robustness of population surveillance data: implications of error rates on demographic and mortality estimates.

    PubMed

    Fottrell, Edward; Byass, Peter; Berhane, Yemane

    2008-03-25

    As in any measurement process, a certain amount of error may be expected in routine population surveillance operations such as those in demographic surveillance sites (DSSs). Vital events are likely to be missed and errors made no matter what method of data capture is used or what quality control procedures are in place. The extent to which random errors in large, longitudinal datasets affect overall health and demographic profiles has important implications for the role of DSSs as platforms for public health research and clinical trials. Such knowledge is also of particular importance if the outputs of DSSs are to be extrapolated and aggregated with realistic margins of error and validity. This study uses the first 10-year dataset from the Butajira Rural Health Project (BRHP) DSS, Ethiopia, covering approximately 336,000 person-years of data. Simple programmes were written to introduce random errors and omissions into new versions of the definitive 10-year Butajira dataset. Key parameters of sex, age, death, literacy and roof material (an indicator of poverty) were selected for the introduction of errors based on their obvious importance in demographic and health surveillance and their established significant associations with mortality. Defining the original 10-year dataset as the 'gold standard' for the purposes of this investigation, population, age and sex compositions and Poisson regression models of mortality rate ratios were compared between each of the intentionally erroneous datasets and the original 'gold standard' 10-year data. The composition of the Butajira population was well represented despite introducing random errors, and differences between population pyramids based on the derived datasets were subtle. Regression analyses of well-established mortality risk factors were largely unaffected even by relatively high levels of random errors in the data. The low sensitivity of parameter estimates and regression analyses to significant amounts of randomly introduced errors indicates a high level of robustness of the dataset. This apparent inertia of population parameter estimates to simulated errors is largely due to the size of the dataset. Tolerable margins of random error in DSS data may exceed 20%. While this is not an argument in favour of poor quality data, reducing the time and valuable resources spent on detecting and correcting random errors in routine DSS operations may be justifiable as the returns from such procedures diminish with increasing overall accuracy. The money and effort currently spent on endlessly correcting DSS datasets would perhaps be better spent on increasing the surveillance population size and geographic spread of DSSs and analysing and disseminating research findings.

  2. ELLIPTICAL WEIGHTED HOLICs FOR WEAK LENSING SHEAR MEASUREMENT. III. THE EFFECT OF RANDOM COUNT NOISE ON IMAGE MOMENTS IN WEAK LENSING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okura, Yuki; Futamase, Toshifumi, E-mail: yuki.okura@nao.ac.jp, E-mail: tof@astr.tohoku.ac.jp

    This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging,more » but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of {nu} {approx} 11.7.« less

  3. Identifying sensitive areas of adaptive observations for prediction of the Kuroshio large meander using a shallow-water model

    NASA Astrophysics Data System (ADS)

    Zou, Guang'an; Wang, Qiang; Mu, Mu

    2016-09-01

    Sensitive areas for prediction of the Kuroshio large meander using a 1.5-layer, shallow-water ocean model were investigated using the conditional nonlinear optimal perturbation (CNOP) and first singular vector (FSV) methods. A series of sensitivity experiments were designed to test the sensitivity of sensitive areas within the numerical model. The following results were obtained: (1) the eff ect of initial CNOP and FSV patterns in their sensitive areas is greater than that of the same patterns in randomly selected areas, with the eff ect of the initial CNOP patterns in CNOP sensitive areas being the greatest; (2) both CNOP- and FSV-type initial errors grow more quickly than random errors; (3) the eff ect of random errors superimposed on the sensitive areas is greater than that of random errors introduced into randomly selected areas, and initial errors in the CNOP sensitive areas have greater eff ects on final forecasts. These results reveal that the sensitive areas determined using the CNOP are more sensitive than those of FSV and other randomly selected areas. In addition, ideal hindcasting experiments were conducted to examine the validity of the sensitive areas. The results indicate that reduction (or elimination) of CNOP-type errors in CNOP sensitive areas at the initial time has a greater forecast benefit than the reduction (or elimination) of FSV-type errors in FSV sensitive areas. These results suggest that the CNOP method is suitable for determining sensitive areas in the prediction of the Kuroshio large-meander path.

  4. Portable and Error-Free DNA-Based Data Storage.

    PubMed

    Yazdi, S M Hossein Tabatabaei; Gabrys, Ryan; Milenkovic, Olgica

    2017-07-10

    DNA-based data storage is an emerging nonvolatile memory technology of potentially unprecedented density, durability, and replication efficiency. The basic system implementation steps include synthesizing DNA strings that contain user information and subsequently retrieving them via high-throughput sequencing technologies. Existing architectures enable reading and writing but do not offer random-access and error-free data recovery from low-cost, portable devices, which is crucial for making the storage technology competitive with classical recorders. Here we show for the first time that a portable, random-access platform may be implemented in practice using nanopore sequencers. The novelty of our approach is to design an integrated processing pipeline that encodes data to avoid costly synthesis and sequencing errors, enables random access through addressing, and leverages efficient portable sequencing via new iterative alignment and deletion error-correcting codes. Our work represents the only known random access DNA-based data storage system that uses error-prone nanopore sequencers, while still producing error-free readouts with the highest reported information rate/density. As such, it represents a crucial step towards practical employment of DNA molecules as storage media.

  5. Simulation of the Effects of Random Measurement Errors

    ERIC Educational Resources Information Center

    Kinsella, I. A.; Hannaidh, P. B. O.

    1978-01-01

    Describes a simulation method for measurement of errors that requires calculators and tables of random digits. Each student simulates the random behaviour of the component variables in the function and by combining the results of all students, the outline of the sampling distribution of the function can be obtained. (GA)

  6. A Comparison of Fuzzy Models in Similarity Assessment of Misregistered Area Class Maps

    NASA Astrophysics Data System (ADS)

    Brown, Scott

    Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In this paper I build upon prior map comparison research, testing the effectiveness of similarity measures on misregistered data. Though several methods compare uncertain thematic maps, few methods have been tested on misregistration. My objective is to test five map comparison methods for sensitivity to misregistration, including sub-pixel errors in both position and rotation. Methods included four fuzzy categorical models: fuzzy kappa's model, fuzzy inference, cell aggregation, and the epsilon band. The fifth method used conventional crisp classification. I applied these methods to a case study map and simulated data in two sets: a test set with misregistration error, and a control set with equivalent uniform random error. For all five methods, I used raw accuracy or the kappa statistic to measure similarity. Rough-set epsilon bands report the most similarity increase in test maps relative to control data. Conversely, the fuzzy inference model reports a decrease in test map similarity.

  7. Development of multiple-eye PIV using mirror array

    NASA Astrophysics Data System (ADS)

    Maekawa, Akiyoshi; Sakakibara, Jun

    2018-06-01

    In order to reduce particle image velocimetry measurement error, we manufactured an ellipsoidal polyhedral mirror and placed it between a camera and flow target to capture n images of identical particles from n (=80 maximum) different directions. The 3D particle positions were determined from the ensemble average of n C2 intersecting points of a pair of line-of-sight back-projected points from a particle found in any combination of two images in the n images. The method was then applied to a rigid-body rotating flow and a turbulent pipe flow. In the former measurement, bias error and random error fell in a range of  ±0.02 pixels and 0.02–0.05 pixels, respectively; additionally, random error decreased in proportion to . In the latter measurement, in which the measured value was compared to direct numerical simulation, bias error was reduced and random error also decreased in proportion to .

  8. Effects of Random Circuit Fabrication Errors on Small Signal Gain and on Output Phase In a Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Rittersdorf, I. M.; Antonsen, T. M., Jr.; Chernin, D.; Lau, Y. Y.

    2011-10-01

    Random fabrication errors may have detrimental effects on the performance of traveling-wave tubes (TWTs) of all types. A new scaling law for the modification in the average small signal gain and in the output phase is derived from the third order ordinary differential equation that governs the forward wave interaction in a TWT in the presence of random error that is distributed along the axis of the tube. Analytical results compare favorably with numerical results, in both gain and phase modifications as a result of random error in the phase velocity of the slow wave circuit. Results on the effect of the reverse-propagating circuit mode will be reported. This work supported by AFOSR, ONR, L-3 Communications Electron Devices, and Northrop Grumman Corporation.

  9. At least some errors are randomly generated (Freud was wrong)

    NASA Technical Reports Server (NTRS)

    Sellen, A. J.; Senders, J. W.

    1986-01-01

    An experiment was carried out to expose something about human error generating mechanisms. In the context of the experiment, an error was made when a subject pressed the wrong key on a computer keyboard or pressed no key at all in the time allotted. These might be considered, respectively, errors of substitution and errors of omission. Each of seven subjects saw a sequence of three digital numbers, made an easily learned binary judgement about each, and was to press the appropriate one of two keys. Each session consisted of 1,000 presentations of randomly permuted, fixed numbers broken into 10 blocks of 100. One of two keys should have been pressed within one second of the onset of each stimulus. These data were subjected to statistical analyses in order to probe the nature of the error generating mechanisms. Goodness of fit tests for a Poisson distribution for the number of errors per 50 trial interval and for an exponential distribution of the length of the intervals between errors were carried out. There is evidence for an endogenous mechanism that may best be described as a random error generator. Furthermore, an item analysis of the number of errors produced per stimulus suggests the existence of a second mechanism operating on task driven factors producing exogenous errors. Some errors, at least, are the result of constant probability generating mechanisms with error rate idiosyncratically determined for each subject.

  10. On the Calculation of Uncertainty Statistics with Error Bounds for CFD Calculations Containing Random Parameters and Fields

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2016-01-01

    This chapter discusses the ongoing development of combined uncertainty and error bound estimates for computational fluid dynamics (CFD) calculations subject to imposed random parameters and random fields. An objective of this work is the construction of computable error bound formulas for output uncertainty statistics that guide CFD practitioners in systematically determining how accurately CFD realizations should be approximated and how accurately uncertainty statistics should be approximated for output quantities of interest. Formal error bounds formulas for moment statistics that properly account for the presence of numerical errors in CFD calculations and numerical quadrature errors in the calculation of moment statistics have been previously presented in [8]. In this past work, hierarchical node-nested dense and sparse tensor product quadratures are used to calculate moment statistics integrals. In the present work, a framework has been developed that exploits the hierarchical structure of these quadratures in order to simplify the calculation of an estimate of the quadrature error needed in error bound formulas. When signed estimates of realization error are available, this signed error may also be used to estimate output quantity of interest probability densities as a means to assess the impact of realization error on these density estimates. Numerical results are presented for CFD problems with uncertainty to demonstrate the capabilities of this framework.

  11. Using Audit Information to Adjust Parameter Estimates for Data Errors in Clinical Trials

    PubMed Central

    Shepherd, Bryan E.; Shaw, Pamela A.; Dodd, Lori E.

    2013-01-01

    Background Audits are often performed to assess the quality of clinical trial data, but beyond detecting fraud or sloppiness, the audit data is generally ignored. In earlier work using data from a non-randomized study, Shepherd and Yu (2011) developed statistical methods to incorporate audit results into study estimates, and demonstrated that audit data could be used to eliminate bias. Purpose In this manuscript we examine the usefulness of audit-based error-correction methods in clinical trial settings where a continuous outcome is of primary interest. Methods We demonstrate the bias of multiple linear regression estimates in general settings with an outcome that may have errors and a set of covariates for which some may have errors and others, including treatment assignment, are recorded correctly for all subjects. We study this bias under different assumptions including independence between treatment assignment, covariates, and data errors (conceivable in a double-blinded randomized trial) and independence between treatment assignment and covariates but not data errors (possible in an unblinded randomized trial). We review moment-based estimators to incorporate the audit data and propose new multiple imputation estimators. The performance of estimators is studied in simulations. Results When treatment is randomized and unrelated to data errors, estimates of the treatment effect using the original error-prone data (i.e., ignoring the audit results) are unbiased. In this setting, both moment and multiple imputation estimators incorporating audit data are more variable than standard analyses using the original data. In contrast, in settings where treatment is randomized but correlated with data errors and in settings where treatment is not randomized, standard treatment effect estimates will be biased. And in all settings, parameter estimates for the original, error-prone covariates will be biased. Treatment and covariate effect estimates can be corrected by incorporating audit data using either the multiple imputation or moment-based approaches. Bias, precision, and coverage of confidence intervals improve as the audit size increases. Limitations The extent of bias and the performance of methods depend on the extent and nature of the error as well as the size of the audit. This work only considers methods for the linear model. Settings much different than those considered here need further study. Conclusions In randomized trials with continuous outcomes and treatment assignment independent of data errors, standard analyses of treatment effects will be unbiased and are recommended. However, if treatment assignment is correlated with data errors or other covariates, naive analyses may be biased. In these settings, and when covariate effects are of interest, approaches for incorporating audit results should be considered. PMID:22848072

  12. Evaluation of a Mysis bioenergetics model

    USGS Publications Warehouse

    Chipps, S.R.; Bennett, D.H.

    2002-01-01

    Direct approaches for estimating the feeding rate of the opossum shrimp Mysis relicta can be hampered by variable gut residence time (evacuation rate models) and non-linear functional responses (clearance rate models). Bioenergetics modeling provides an alternative method, but the reliability of this approach needs to be evaluated using independent measures of growth and food consumption. In this study, we measured growth and food consumption for M. relicta and compared experimental results with those predicted from a Mysis bioenergetics model. For Mysis reared at 10??C, model predictions were not significantly different from observed values. Moreover, decomposition of mean square error indicated that 70% of the variation between model predictions and observed values was attributable to random error. On average, model predictions were within 12% of observed values. A sensitivity analysis revealed that Mysis respiration and prey energy density were the most sensitive parameters affecting model output. By accounting for uncertainty (95% CLs) in Mysis respiration, we observed a significant improvement in the accuracy of model output (within 5% of observed values), illustrating the importance of sensitive input parameters for model performance. These findings help corroborate the Mysis bioenergetics model and demonstrate the usefulness of this approach for estimating Mysis feeding rate.

  13. HyDEn: A Hybrid Steganocryptographic Approach for Data Encryption Using Randomized Error-Correcting DNA Codes

    PubMed Central

    Regoui, Chaouki; Durand, Guillaume; Belliveau, Luc; Léger, Serge

    2013-01-01

    This paper presents a novel hybrid DNA encryption (HyDEn) approach that uses randomized assignments of unique error-correcting DNA Hamming code words for single characters in the extended ASCII set. HyDEn relies on custom-built quaternary codes and a private key used in the randomized assignment of code words and the cyclic permutations applied on the encoded message. Along with its ability to detect and correct errors, HyDEn equals or outperforms existing cryptographic methods and represents a promising in silico DNA steganographic approach. PMID:23984392

  14. Random Error in Judgment: The Contribution of Encoding and Retrieval Processes

    ERIC Educational Resources Information Center

    Pleskac, Timothy J.; Dougherty, Michael R.; Rivadeneira, A. Walkyria; Wallsten, Thomas S.

    2009-01-01

    Theories of confidence judgments have embraced the role random error plays in influencing responses. An important next step is to identify the source(s) of these random effects. To do so, we used the stochastic judgment model (SJM) to distinguish the contribution of encoding and retrieval processes. In particular, we investigated whether dividing…

  15. The random coding bound is tight for the average code.

    NASA Technical Reports Server (NTRS)

    Gallager, R. G.

    1973-01-01

    The random coding bound of information theory provides a well-known upper bound to the probability of decoding error for the best code of a given rate and block length. The bound is constructed by upperbounding the average error probability over an ensemble of codes. The bound is known to give the correct exponential dependence of error probability on block length for transmission rates above the critical rate, but it gives an incorrect exponential dependence at rates below a second lower critical rate. Here we derive an asymptotic expression for the average error probability over the ensemble of codes used in the random coding bound. The result shows that the weakness of the random coding bound at rates below the second critical rate is due not to upperbounding the ensemble average, but rather to the fact that the best codes are much better than the average at low rates.

  16. Heterogeneity in the Effect of Common Shocks on Healthcare Expenditure Growth.

    PubMed

    Hauck, Katharina; Zhang, Xiaohui

    2016-09-01

    Healthcare expenditure growth is affected by important unobserved common shocks such as technological innovation, changes in sociological factors, shifts in preferences, and the epidemiology of diseases. While common factors impact in principle all countries, their effect is likely to differ across countries. To allow for unobserved heterogeneity in the effects of common shocks, we estimate a panel data model of healthcare expenditure growth in 34 OECD countries over the years 1980 to 2012, where the usual fixed or random effects are replaced by a multifactor error structure. We address model uncertainty with Bayesian model averaging, to identify a small set of robust expenditure drivers from 43 potential candidates. We establish 16 significant drivers of healthcare expenditure growth, including growth in GDP per capita and in insurance premiums, changes in financing arrangements and some institutional characteristics, expenditures on pharmaceuticals, population ageing, costs of health administration, and inpatient care. Our approach allows us to provide robust evidence to policy makers on the drivers that were most strongly associated with the growth in healthcare expenditures over the past 32 years. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Calculating radiotherapy margins based on Bayesian modelling of patient specific random errors

    NASA Astrophysics Data System (ADS)

    Herschtal, A.; te Marvelde, L.; Mengersen, K.; Hosseinifard, Z.; Foroudi, F.; Devereux, T.; Pham, D.; Ball, D.; Greer, P. B.; Pichler, P.; Eade, T.; Kneebone, A.; Bell, L.; Caine, H.; Hindson, B.; Kron, T.

    2015-02-01

    Collected real-life clinical target volume (CTV) displacement data show that some patients undergoing external beam radiotherapy (EBRT) demonstrate significantly more fraction-to-fraction variability in their displacement (‘random error’) than others. This contrasts with the common assumption made by historical recipes for margin estimation for EBRT, that the random error is constant across patients. In this work we present statistical models of CTV displacements in which random errors are characterised by an inverse gamma (IG) distribution in order to assess the impact of random error variability on CTV-to-PTV margin widths, for eight real world patient cohorts from four institutions, and for different sites of malignancy. We considered a variety of clinical treatment requirements and penumbral widths. The eight cohorts consisted of a total of 874 patients and 27 391 treatment sessions. Compared to a traditional margin recipe that assumes constant random errors across patients, for a typical 4 mm penumbral width, the IG based margin model mandates that in order to satisfy the common clinical requirement that 90% of patients receive at least 95% of prescribed RT dose to the entire CTV, margins be increased by a median of 10% (range over the eight cohorts -19% to +35%). This substantially reduces the proportion of patients for whom margins are too small to satisfy clinical requirements.

  18. Particle Tracking on the BNL Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell, G. F.

    1986-08-07

    Tracking studies including the effects of random multipole errors as well as the effects of random and systematic multipole errors have been made for RHIC. Initial results for operating at an off diagonal working point are discussed.

  19. Simulation of wave propagation in three-dimensional random media

    NASA Technical Reports Server (NTRS)

    Coles, William A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.

    1993-01-01

    Quantitative error analysis for simulation of wave propagation in three dimensional random media assuming narrow angular scattering are presented for the plane wave and spherical wave geometry. This includes the errors resulting from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive index of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared to the spatial spectra of intensity. The numerical requirements for a simulation of given accuracy are determined for realizations of the field. The numerical requirements for accurate estimation of higher moments of the field are less stringent.

  20. Regionalized PM2.5 Community Multiscale Air Quality model performance evaluation across a continuous spatiotemporal domain.

    PubMed

    Reyes, Jeanette M; Xu, Yadong; Vizuete, William; Serre, Marc L

    2017-01-01

    The regulatory Community Multiscale Air Quality (CMAQ) model is a means to understanding the sources, concentrations and regulatory attainment of air pollutants within a model's domain. Substantial resources are allocated to the evaluation of model performance. The Regionalized Air quality Model Performance (RAMP) method introduced here explores novel ways of visualizing and evaluating CMAQ model performance and errors for daily Particulate Matter ≤ 2.5 micrometers (PM2.5) concentrations across the continental United States. The RAMP method performs a non-homogenous, non-linear, non-homoscedastic model performance evaluation at each CMAQ grid. This work demonstrates that CMAQ model performance, for a well-documented 2001 regulatory episode, is non-homogeneous across space/time. The RAMP correction of systematic errors outperforms other model evaluation methods as demonstrated by a 22.1% reduction in Mean Square Error compared to a constant domain wide correction. The RAMP method is able to accurately reproduce simulated performance with a correlation of r = 76.1%. Most of the error coming from CMAQ is random error with only a minority of error being systematic. Areas of high systematic error are collocated with areas of high random error, implying both error types originate from similar sources. Therefore, addressing underlying causes of systematic error will have the added benefit of also addressing underlying causes of random error.

  1. A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands

    NASA Astrophysics Data System (ADS)

    Choler, P.; Sea, W.; Briggs, P.; Raupach, M.; Leuning, R.

    2009-09-01

    Modelling leaf phenology in water-controlled ecosystems remains a difficult task because of high spatial and temporal variability in the interaction of plant growth and soil moisture. Here, we move beyond widely used linear models to examine the performance of low-dimensional, nonlinear ecohydrological models that couple the dynamics of plant cover and soil moisture. The study area encompasses 400 000 km2 of semi-arid perennial tropical grasslands, dominated by C4 grasses, in the Northern Territory and Queensland (Australia). We prepared 8 yr time series (2001-2008) of climatic variables and estimates of fractional vegetation cover derived from MODIS Normalized Difference Vegetation Index (NDVI) for 400 randomly chosen sites, of which 25% were used for model calibration and 75% for model validation. We found that the mean absolute error of linear and nonlinear models did not markedly differ. However, nonlinear models presented key advantages: (1) they exhibited far less systematic error than their linear counterparts; (2) their error magnitude was consistent throughout a precipitation gradient while the performance of linear models deteriorated at the driest sites, and (3) they better captured the sharp transitions in leaf cover that are observed under high seasonality of precipitation. Our results showed that low-dimensional models including feedbacks between soil water balance and plant growth adequately predict leaf dynamics in semi-arid perennial grasslands. Because these models attempt to capture fundamental ecohydrological processes, they should be the favoured approach for prognostic models of phenology.

  2. A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands

    NASA Astrophysics Data System (ADS)

    Choler, P.; Sea, W.; Briggs, P.; Raupach, M.; Leuning, R.

    2010-03-01

    Modelling leaf phenology in water-controlled ecosystems remains a difficult task because of high spatial and temporal variability in the interaction of plant growth and soil moisture. Here, we move beyond widely used linear models to examine the performance of low-dimensional, nonlinear ecohydrological models that couple the dynamics of plant cover and soil moisture. The study area encompasses 400 000 km2 of semi-arid perennial tropical grasslands, dominated by C4 grasses, in the Northern Territory and Queensland (Australia). We prepared 8-year time series (2001-2008) of climatic variables and estimates of fractional vegetation cover derived from MODIS Normalized Difference Vegetation Index (NDVI) for 400 randomly chosen sites, of which 25% were used for model calibration and 75% for model validation. We found that the mean absolute error of linear and nonlinear models did not markedly differ. However, nonlinear models presented key advantages: (1) they exhibited far less systematic error than their linear counterparts; (2) their error magnitude was consistent throughout a precipitation gradient while the performance of linear models deteriorated at the driest sites, and (3) they better captured the sharp transitions in leaf cover that are observed under high seasonality of precipitation. Our results showed that low-dimensional models including feedbacks between soil water balance and plant growth adequately predict leaf dynamics in semi-arid perennial grasslands. Because these models attempt to capture fundamental ecohydrological processes, they should be the favoured approach for prognostic models of phenology.

  3. Error Distribution Evaluation of the Third Vanishing Point Based on Random Statistical Simulation

    NASA Astrophysics Data System (ADS)

    Li, C.

    2012-07-01

    POS, integrated by GPS / INS (Inertial Navigation Systems), has allowed rapid and accurate determination of position and attitude of remote sensing equipment for MMS (Mobile Mapping Systems). However, not only does INS have system error, but also it is very expensive. Therefore, in this paper error distributions of vanishing points are studied and tested in order to substitute INS for MMS in some special land-based scene, such as ground façade where usually only two vanishing points can be detected. Thus, the traditional calibration approach based on three orthogonal vanishing points is being challenged. In this article, firstly, the line clusters, which parallel to each others in object space and correspond to the vanishing points, are detected based on RANSAC (Random Sample Consensus) and parallelism geometric constraint. Secondly, condition adjustment with parameters is utilized to estimate nonlinear error equations of two vanishing points (VX, VY). How to set initial weights for the adjustment solution of single image vanishing points is presented. Solving vanishing points and estimating their error distributions base on iteration method with variable weights, co-factor matrix and error ellipse theory. Thirdly, under the condition of known error ellipses of two vanishing points (VX, VY) and on the basis of the triangle geometric relationship of three vanishing points, the error distribution of the third vanishing point (VZ) is calculated and evaluated by random statistical simulation with ignoring camera distortion. Moreover, Monte Carlo methods utilized for random statistical estimation are presented. Finally, experimental results of vanishing points coordinate and their error distributions are shown and analyzed.

  4. Using SAS PROC CALIS to fit Level-1 error covariance structures of latent growth models.

    PubMed

    Ding, Cherng G; Jane, Ten-Der

    2012-09-01

    In the present article, we demonstrates the use of SAS PROC CALIS to fit various types of Level-1 error covariance structures of latent growth models (LGM). Advantages of the SEM approach, on which PROC CALIS is based, include the capabilities of modeling the change over time for latent constructs, measured by multiple indicators; embedding LGM into a larger latent variable model; incorporating measurement models for latent predictors; and better assessing model fit and the flexibility in specifying error covariance structures. The strength of PROC CALIS is always accompanied with technical coding work, which needs to be specifically addressed. We provide a tutorial on the SAS syntax for modeling the growth of a manifest variable and the growth of a latent construct, focusing the documentation on the specification of Level-1 error covariance structures. Illustrations are conducted with the data generated from two given latent growth models. The coding provided is helpful when the growth model has been well determined and the Level-1 error covariance structure is to be identified.

  5. Spatio-temporal error growth in the multi-scale Lorenz'96 model

    NASA Astrophysics Data System (ADS)

    Herrera, S.; Fernández, J.; Rodríguez, M. A.; Gutiérrez, J. M.

    2010-07-01

    The influence of multiple spatio-temporal scales on the error growth and predictability of atmospheric flows is analyzed throughout the paper. To this aim, we consider the two-scale Lorenz'96 model and study the interplay of the slow and fast variables on the error growth dynamics. It is shown that when the coupling between slow and fast variables is weak the slow variables dominate the evolution of fluctuations whereas in the case of strong coupling the fast variables impose a non-trivial complex error growth pattern on the slow variables with two different regimes, before and after saturation of fast variables. This complex behavior is analyzed using the recently introduced Mean-Variance Logarithmic (MVL) diagram.

  6. Accuracy of Robotic Radiosurgical Liver Treatment Throughout the Respiratory Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, Jeff D.; Wong, Raimond; Swaminath, Anand

    Purpose: To quantify random uncertainties in robotic radiosurgical treatment of liver lesions with real-time respiratory motion management. Methods and Materials: We conducted a retrospective analysis of 27 liver cancer patients treated with robotic radiosurgery over 118 fractions. The robotic radiosurgical system uses orthogonal x-ray images to determine internal target position and correlates this position with an external surrogate to provide robotic corrections of linear accelerator positioning. Verification and update of this internal–external correlation model was achieved using periodic x-ray images collected throughout treatment. To quantify random uncertainties in targeting, we analyzed logged tracking information and isolated x-ray images collected immediately beforemore » beam delivery. For translational correlation errors, we quantified the difference between correlation model–estimated target position and actual position determined by periodic x-ray imaging. To quantify prediction errors, we computed the mean absolute difference between the predicted coordinates and actual modeled position calculated 115 milliseconds later. We estimated overall random uncertainty by quadratically summing correlation, prediction, and end-to-end targeting errors. We also investigated relationships between tracking errors and motion amplitude using linear regression. Results: The 95th percentile absolute correlation errors in each direction were 2.1 mm left–right, 1.8 mm anterior–posterior, 3.3 mm cranio–caudal, and 3.9 mm 3-dimensional radial, whereas 95th percentile absolute radial prediction errors were 0.5 mm. Overall 95th percentile random uncertainty was 4 mm in the radial direction. Prediction errors were strongly correlated with modeled target amplitude (r=0.53-0.66, P<.001), whereas only weak correlations existed for correlation errors. Conclusions: Study results demonstrate that model correlation errors are the primary random source of uncertainty in Cyberknife liver treatment and, unlike prediction errors, are not strongly correlated with target motion amplitude. Aggregate 3-dimensional radial position errors presented here suggest the target will be within 4 mm of the target volume for 95% of the beam delivery.« less

  7. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    PubMed

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather than the coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and acceleration curves despite increased complexity in coefficient interpretation. Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for non-statisticians using linear mixed-effect models.

  8. Measurements of stem diameter: implications for individual- and stand-level errors.

    PubMed

    Paul, Keryn I; Larmour, John S; Roxburgh, Stephen H; England, Jacqueline R; Davies, Micah J; Luck, Hamish D

    2017-08-01

    Stem diameter is one of the most common measurements made to assess the growth of woody vegetation, and the commercial and environmental benefits that it provides (e.g. wood or biomass products, carbon sequestration, landscape remediation). Yet inconsistency in its measurement is a continuing source of error in estimates of stand-scale measures such as basal area, biomass, and volume. Here we assessed errors in stem diameter measurement through repeated measurements of individual trees and shrubs of varying size and form (i.e. single- and multi-stemmed) across a range of contrasting stands, from complex mixed-species plantings to commercial single-species plantations. We compared a standard diameter tape with a Stepped Diameter Gauge (SDG) for time efficiency and measurement error. Measurement errors in diameter were slightly (but significantly) influenced by size and form of the tree or shrub, and stem height at which the measurement was made. Compared to standard tape measurement, the mean systematic error with SDG measurement was only -0.17 cm, but varied between -0.10 and -0.52 cm. Similarly, random error was relatively large, with standard deviations (and percentage coefficients of variation) averaging only 0.36 cm (and 3.8%), but varying between 0.14 and 0.61 cm (and 1.9 and 7.1%). However, at the stand scale, sampling errors (i.e. how well individual trees or shrubs selected for measurement of diameter represented the true stand population in terms of the average and distribution of diameter) generally had at least a tenfold greater influence on random errors in basal area estimates than errors in diameter measurements. This supports the use of diameter measurement tools that have high efficiency, such as the SDG. Use of the SDG almost halved the time required for measurements compared to the diameter tape. Based on these findings, recommendations include the following: (i) use of a tape to maximise accuracy when developing allometric models, or when monitoring relatively small changes in permanent sample plots (e.g. National Forest Inventories), noting that care is required in irregular-shaped, large-single-stemmed individuals, and (ii) use of a SDG to maximise efficiency when using inventory methods to assess basal area, and hence biomass or wood volume, at the stand scale (i.e. in studies of impacts of management or site quality) where there are budgetary constraints, noting the importance of sufficient sample sizes to ensure that the population sampled represents the true population.

  9. Gossip and Distributed Kalman Filtering: Weak Consensus Under Weak Detectability

    NASA Astrophysics Data System (ADS)

    Kar, Soummya; Moura, José M. F.

    2011-04-01

    The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \\emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.

  10. What errors do peer reviewers detect, and does training improve their ability to detect them?

    PubMed

    Schroter, Sara; Black, Nick; Evans, Stephen; Godlee, Fiona; Osorio, Lyda; Smith, Richard

    2008-10-01

    To analyse data from a trial and report the frequencies with which major and minor errors are detected at a general medical journal, the types of errors missed and the impact of training on error detection. 607 peer reviewers at the BMJ were randomized to two intervention groups receiving different types of training (face-to-face training or a self-taught package) and a control group. Each reviewer was sent the same three test papers over the study period, each of which had nine major and five minor methodological errors inserted. BMJ peer reviewers. The quality of review, assessed using a validated instrument, and the number and type of errors detected before and after training. The number of major errors detected varied over the three papers. The interventions had small effects. At baseline (Paper 1) reviewers found an average of 2.58 of the nine major errors, with no notable difference between the groups. The mean number of errors reported was similar for the second and third papers, 2.71 and 3.0, respectively. Biased randomization was the error detected most frequently in all three papers, with over 60% of reviewers rejecting the papers identifying this error. Reviewers who did not reject the papers found fewer errors and the proportion finding biased randomization was less than 40% for each paper. Editors should not assume that reviewers will detect most major errors, particularly those concerned with the context of study. Short training packages have only a slight impact on improving error detection.

  11. Application of a bioenergetics model for hatchery production: Largemouth bass fed commercial diets

    USGS Publications Warehouse

    Csargo, Isak J.; Michael L. Brown,; Chipps, Steven R.

    2012-01-01

    Fish bioenergetics models based on natural prey items have been widely used to address research and management questions. However, few attempts have been made to evaluate and apply bioenergetics models to hatchery-reared fish receiving commercial feeds that contain substantially higher energy densities than natural prey. In this study, we evaluated a bioenergetics model for age-0 largemouth bass Micropterus salmoidesreared on four commercial feeds. Largemouth bass (n ≈ 3,504) were reared for 70 d at 25°C in sixteen 833-L circular tanks connected in parallel to a recirculation system. Model performance was evaluated using error components (mean, slope, and random) derived from decomposition of the mean square error obtained from regression of observed on predicted values. Mean predicted consumption was only 8.9% lower than mean observed consumption and was similar to error rates observed for largemouth bass consuming natural prey. Model evaluation showed that the 97.5% joint confidence region included the intercept of 0 (−0.43 ± 3.65) and slope of 1 (1.08 ± 0.20), which indicates the model accurately predicted consumption. Moreover model error was similar among feeds (P = 0.98), and most error was probably attributable to sampling error (unconsumed feed), underestimated predator energy densities, or consumption-dependent error, which is common in bioenergetics models. This bioenergetics model could provide a valuable tool in hatchery production of largemouth bass. Furthermore, we believe that bioenergetics modeling could be useful in aquaculture production, particularly for species lacking historical hatchery constants or conventional growth models.

  12. An analytic technique for statistically modeling random atomic clock errors in estimation

    NASA Technical Reports Server (NTRS)

    Fell, P. J.

    1981-01-01

    Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.

  13. A study of digital holographic filters generation. Phase 2: Digital data communication system, volume 1

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Mo, C. D.

    1978-01-01

    An empirical study of the performance of the Viterbi decoders in bursty channels was carried out and an improved algebraic decoder for nonsystematic codes was developed. The hybrid algorithm was simulated for the (2,1), k = 7 code on a computer using 20 channels having various error statistics, ranging from pure random error to pure bursty channels. The hybrid system outperformed both the algebraic and the Viterbi decoders in every case, except the 1% random error channel where the Viterbi decoder had one bit less decoding error.

  14. Error threshold for color codes and random three-body Ising models.

    PubMed

    Katzgraber, Helmut G; Bombin, H; Martin-Delgado, M A

    2009-08-28

    We study the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates suitable for entanglement distillation, teleportation, and fault-tolerant quantum computation. We map the error-correction process onto a statistical mechanical random three-body Ising model and study its phase diagram via Monte Carlo simulations. The obtained error threshold of p(c) = 0.109(2) is very close to that of Kitaev's toric code, showing that enhanced computational capabilities do not necessarily imply lower resistance to noise.

  15. Effect of random errors in planar PIV data on pressure estimation in vortex dominated flows

    NASA Astrophysics Data System (ADS)

    McClure, Jeffrey; Yarusevych, Serhiy

    2015-11-01

    The sensitivity of pressure estimation techniques from Particle Image Velocimetry (PIV) measurements to random errors in measured velocity data is investigated using the flow over a circular cylinder as a test case. Direct numerical simulations are performed for ReD = 100, 300 and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A range of random errors typical for PIV measurements is applied to synthetic PIV data extracted from numerical results. A parametric study is then performed using a number of common pressure estimation techniques. Optimal temporal and spatial resolutions are derived based on the sensitivity of the estimated pressure fields to the simulated random error in velocity measurements, and the results are compared to an optimization model derived from error propagation theory. It is shown that the reductions in spatial and temporal scales at higher Reynolds numbers leads to notable changes in the optimal pressure evaluation parameters. The effect of smaller scale wake structures is also quantified. The errors in the estimated pressure fields are shown to depend significantly on the pressure estimation technique employed. The results are used to provide recommendations for the use of pressure and force estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.

  16. Do gender gaps in education and health affect economic growth? A cross-country study from 1975 to 2010.

    PubMed

    Mandal, Bidisha; Batina, Raymond G; Chen, Wen

    2018-05-01

    We use system-generalized method-of-moments to estimate the effect of gender-specific human capital on economic growth in a cross-country panel of 127 countries between 1975 and 2010. There are several benefits of using this methodology. First, a dynamic lagged dependent econometric model is suitable to address persistence in per capita output. Second, the generalized method-of-moments estimator uses dynamic properties of the data to generate appropriate instrumental variables to address joint endogeneity of the explanatory variables. Third, we allow the measurement error to include unobserved country-specific effect and random noise. We include two gender-disaggregated measures of human capital-education and health. We find that gender gap in health plays a critical role in explaining economic growth in developing countries. Our results provide aggregate evidence that returns to investments in health systematically differ across gender and between low-income and high-income countries. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Random Measurement Error as a Source of Discrepancies between the Reports of Wives and Husbands Concerning Marital Power and Task Allocation.

    ERIC Educational Resources Information Center

    Quarm, Daisy

    1981-01-01

    Findings for couples (N=119) show wife's work, money, and spare time low between-spouse correlations are due in part to random measurement error. Suggests that increasing reliability of measures by creating multi-item indices can also increase correlations. Car purchase, vacation, and child discipline were not accounted for by random measurement…

  18. Modeling and predicting urban growth pattern of the Tokyo metropolitan area based on cellular automata

    NASA Astrophysics Data System (ADS)

    Zhao, Yaolong; Zhao, Junsan; Murayama, Yuji

    2008-10-01

    The period of high economic growth in Japan which began in the latter half of the 1950s led to a massive migration of population from rural regions to the Tokyo metropolitan area. This phenomenon brought about rapid urban growth and urban structure changes in this area. Purpose of this study is to establish a constrained CA (Cellular Automata) model with GIS (Geographical Information Systems) to simulate urban growth pattern in the Tokyo metropolitan area towards predicting urban form and landscape for the near future. Urban land-use is classified into multi-categories for interpreting the effect of interaction among land-use categories in the spatial process of urban growth. Driving factors of urban growth pattern, such as land condition, railway network, land-use zoning, random perturbation, and neighborhood interaction and so forth, are explored and integrated into this model. These driving factors are calibrated based on exploratory spatial data analysis (ESDA), spatial statistics, logistic regression, and "trial and error" approach. The simulation is assessed at both macro and micro classification levels in three ways: visual approach; fractal dimension; and spatial metrics. Results indicate that this model provides an effective prototype to simulate and predict urban growth pattern of the Tokyo metropolitan area.

  19. Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan

    2013-01-01

    The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.

  20. One-step random mutagenesis by error-prone rolling circle amplification

    PubMed Central

    Fujii, Ryota; Kitaoka, Motomitsu; Hayashi, Kiyoshi

    2004-01-01

    In vitro random mutagenesis is a powerful tool for altering properties of enzymes. We describe here a novel random mutagenesis method using rolling circle amplification, named error-prone RCA. This method consists of only one DNA amplification step followed by transformation of the host strain, without treatment with any restriction enzymes or DNA ligases, and results in a randomly mutated plasmid library with 3–4 mutations per kilobase. Specific primers or special equipment, such as a thermal-cycler, are not required. This method permits rapid preparation of randomly mutated plasmid libraries, enabling random mutagenesis to become a more commonly used technique. PMID:15507684

  1. [Comparison study on sampling methods of Oncomelania hupensis snail survey in marshland schistosomiasis epidemic areas in China].

    PubMed

    An, Zhao; Wen-Xin, Zhang; Zhong, Yao; Yu-Kuan, Ma; Qing, Liu; Hou-Lang, Duan; Yi-di, Shang

    2016-06-29

    To optimize and simplify the survey method of Oncomelania hupensis snail in marshland endemic region of schistosomiasis and increase the precision, efficiency and economy of the snail survey. A quadrate experimental field was selected as the subject of 50 m×50 m size in Chayegang marshland near Henghu farm in the Poyang Lake region and a whole-covered method was adopted to survey the snails. The simple random sampling, systematic sampling and stratified random sampling methods were applied to calculate the minimum sample size, relative sampling error and absolute sampling error. The minimum sample sizes of the simple random sampling, systematic sampling and stratified random sampling methods were 300, 300 and 225, respectively. The relative sampling errors of three methods were all less than 15%. The absolute sampling errors were 0.221 7, 0.302 4 and 0.047 8, respectively. The spatial stratified sampling with altitude as the stratum variable is an efficient approach of lower cost and higher precision for the snail survey.

  2. Stochastic goal-oriented error estimation with memory

    NASA Astrophysics Data System (ADS)

    Ackmann, Jan; Marotzke, Jochem; Korn, Peter

    2017-11-01

    We propose a stochastic dual-weighted error estimator for the viscous shallow-water equation with boundaries. For this purpose, previous work on memory-less stochastic dual-weighted error estimation is extended by incorporating memory effects. The memory is introduced by describing the local truncation error as a sum of time-correlated random variables. The random variables itself represent the temporal fluctuations in local truncation errors and are estimated from high-resolution information at near-initial times. The resulting error estimator is evaluated experimentally in two classical ocean-type experiments, the Munk gyre and the flow around an island. In these experiments, the stochastic process is adapted locally to the respective dynamical flow regime. Our stochastic dual-weighted error estimator is shown to provide meaningful error bounds for a range of physically relevant goals. We prove, as well as show numerically, that our approach can be interpreted as a linearized stochastic-physics ensemble.

  3. QUANTIFYING UNCERTAINTY DUE TO RANDOM ERRORS FOR MOMENT ANALYSES OF BREAKTHROUGH CURVES

    EPA Science Inventory

    The uncertainty in moments calculated from breakthrough curves (BTCs) is investigated as a function of random measurement errors in the data used to define the BTCs. The method presented assumes moments are calculated by numerical integration using the trapezoidal rule, and is t...

  4. Random Versus Nonrandom Peer Review: A Case for More Meaningful Peer Review.

    PubMed

    Itri, Jason N; Donithan, Adam; Patel, Sohil H

    2018-05-10

    Random peer review programs are not optimized to discover cases with diagnostic error and thus have inherent limitations with respect to educational and quality improvement value. Nonrandom peer review offers an alternative approach in which diagnostic error cases are targeted for collection during routine clinical practice. The objective of this study was to compare error cases identified through random and nonrandom peer review approaches at an academic center. During the 1-year study period, the number of discrepancy cases and score of discrepancy were determined from each approach. The nonrandom peer review process collected 190 cases, of which 60 were scored as 2 (minor discrepancy), 94 as 3 (significant discrepancy), and 36 as 4 (major discrepancy). In the random peer review process, 1,690 cases were reviewed, of which 1,646 were scored as 1 (no discrepancy), 44 were scored as 2 (minor discrepancy), and none were scored as 3 or 4. Several teaching lessons and quality improvement measures were developed as a result of analysis of error cases collected through the nonrandom peer review process. Our experience supports the implementation of nonrandom peer review as a replacement to random peer review, with nonrandom peer review serving as a more effective method for collecting diagnostic error cases with educational and quality improvement value. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Forecasting the brittle failure of heterogeneous, porous geomaterials

    NASA Astrophysics Data System (ADS)

    Vasseur, Jérémie; Wadsworth, Fabian; Heap, Michael; Main, Ian; Lavallée, Yan; Dingwell, Donald

    2017-04-01

    Heterogeneity develops in magmas during ascent and is dominated by the development of crystal and importantly, bubble populations or pore-network clusters which grow, interact, localize, coalesce, outgas and resorb. Pore-scale heterogeneity is also ubiquitous in sedimentary basin fill during diagenesis. As a first step, we construct numerical simulations in 3D in which randomly generated heterogeneous and polydisperse spheres are placed in volumes and which are permitted to overlap with one another, designed to represent the random growth and interaction of bubbles in a liquid volume. We use these simulated geometries to show that statistical predictions of the inter-bubble lengthscales and evolving bubble surface area or cluster densities can be made based on fundamental percolation theory. As a second step, we take a range of well constrained random heterogeneous rock samples including sandstones, andesites, synthetic partially sintered glass bead samples, and intact glass samples and subject them to a variety of stress loading conditions at a range of temperatures until failure. We record in real time the evolution of the number of acoustic events that precede failure and show that in all scenarios, the acoustic event rate accelerates toward failure, consistent with previous findings. Applying tools designed to forecast the failure time based on these precursory signals, we constrain the absolute error on the forecast time. We find that for all sample types, the error associated with an accurate forecast of failure scales non-linearly with the lengthscale between the pore clusters in the material. Moreover, using a simple micromechanical model for the deformation of porous elastic bodies, we show that the ratio between the equilibrium sub-critical crack length emanating from the pore clusters relative to the inter-pore lengthscale, provides a scaling for the error on forecast accuracy. Thus for the first time we provide a potential quantitative correction for forecasting the failure of porous brittle solids that build the Earth's crust.

  6. Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking

    NASA Astrophysics Data System (ADS)

    Magesan, Easwar; Gambetta, Jay M.; Johnson, B. R.; Ryan, Colm A.; Chow, Jerry M.; Merkel, Seth T.; da Silva, Marcus P.; Keefe, George A.; Rothwell, Mary B.; Ohki, Thomas A.; Ketchen, Mark B.; Steffen, M.

    2012-08-01

    We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates Xπ/2 and Yπ/2. These bounded values provide better estimates of the average error than those extracted via quantum process tomography.

  7. Efficacy of Visual-Acoustic Biofeedback Intervention for Residual Rhotic Errors: A Single-Subject Randomization Study

    ERIC Educational Resources Information Center

    Byun, Tara McAllister

    2017-01-01

    Purpose: This study documented the efficacy of visual-acoustic biofeedback intervention for residual rhotic errors, relative to a comparison condition involving traditional articulatory treatment. All participants received both treatments in a single-subject experimental design featuring alternating treatments with blocked randomization of…

  8. Statistical Analysis Experiment for Freshman Chemistry Lab.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Describes a laboratory experiment dissolving zinc from galvanized nails in which data can be gathered very quickly for statistical analysis. The data have sufficient significant figures and the experiment yields a nice distribution of random errors. Freshman students can gain an appreciation of the relationships between random error, number of…

  9. Evaluation of seasonal and spatial variations of lumped water balance model sensitivity to precipitation data errors

    NASA Astrophysics Data System (ADS)

    Xu, Chong-yu; Tunemar, Liselotte; Chen, Yongqin David; Singh, V. P.

    2006-06-01

    Sensitivity of hydrological models to input data errors have been reported in the literature for particular models on a single or a few catchments. A more important issue, i.e. how model's response to input data error changes as the catchment conditions change has not been addressed previously. This study investigates the seasonal and spatial effects of precipitation data errors on the performance of conceptual hydrological models. For this study, a monthly conceptual water balance model, NOPEX-6, was applied to 26 catchments in the Mälaren basin in Central Sweden. Both systematic and random errors were considered. For the systematic errors, 5-15% of mean monthly precipitation values were added to the original precipitation to form the corrupted input scenarios. Random values were generated by Monte Carlo simulation and were assumed to be (1) independent between months, and (2) distributed according to a Gaussian law of zero mean and constant standard deviation that were taken as 5, 10, 15, 20, and 25% of the mean monthly standard deviation of precipitation. The results show that the response of the model parameters and model performance depends, among others, on the type of the error, the magnitude of the error, physical characteristics of the catchment, and the season of the year. In particular, the model appears less sensitive to the random error than to the systematic error. The catchments with smaller values of runoff coefficients were more influenced by input data errors than were the catchments with higher values. Dry months were more sensitive to precipitation errors than were wet months. Recalibration of the model with erroneous data compensated in part for the data errors by altering the model parameters.

  10. Conditional cash transfers are associated with a small reduction in the rate of weight gain of preschool children in northeast Brazil.

    PubMed

    Morris, Saul S; Olinto, Pedro; Flores, Rafael; Nilson, Eduardo A F; Figueiró, Ana C

    2004-09-01

    Programs providing cash transfers to poor families, conditioned upon uptake of preventive health services, are common in Latin America. Because of the consistent association between undernutrition and poverty, and the role of health services in providing growth promotion, these programs are supposed to improve children's growth. The impact of such a program was assessed in 4 municipalities in northeast Brazil by comparing 1387 children under 7 y of age from program beneficiary households with 502 matched nonbeneficiaries who were selected to receive the program but who subsequently were excluded as a result of quasi-random administrative errors. Anthropometric status was assessed 6 mo after benefits began to be distributed, and beneficiary children were 0.13 Z-scores lighter (weight-for-age) than excluded children, after adjusting for confounders (P = 0.024). The children's growth trajectories were reconstructed by copying up to 10 recorded weights from their Ministry of Health growth monitoring cards and by relating each weight to the child's age, gender, and duration of receipt of the program benefit in a random effects regression model. Totals of 472 beneficiary and 158 excluded children under 3 y of age were included in this analysis. Each additional month of exposure to the program was associated with a rate of weight gain 31 g lower than that observed in excluded children of the same age (P < 0.001). This failure to respond positively to the program may have been due to a perception that benefits would be discontinued if the child started to grow well. Nutrition programs should guard against giving the impression that poor growth will be rewarded.

  11. A global perspective of the limits of prediction skill based on the ECMWF ensemble

    NASA Astrophysics Data System (ADS)

    Zagar, Nedjeljka

    2016-04-01

    In this talk presents a new model of the global forecast error growth applied to the forecast errors simulated by the ensemble prediction system (ENS) of the ECMWF. The proxy for forecast errors is the total spread of the ECMWF operational ensemble forecasts obtained by the decomposition of the wind and geopotential fields in the normal-mode functions. In this way, the ensemble spread can be quantified separately for the balanced and inertio-gravity (IG) modes for every forecast range. Ensemble reliability is defined for the balanced and IG modes comparing the ensemble spread with the control analysis in each scale. The results show that initial uncertainties in the ECMWF ENS are largest in the tropical large-scale modes and their spatial distribution is similar to the distribution of the short-range forecast errors. Initially the ensemble spread grows most in the smallest scales and in the synoptic range of the IG modes but the overall growth is dominated by the increase of spread in balanced modes in synoptic and planetary scales in the midlatitudes. During the forecasts, the distribution of spread in the balanced and IG modes grows towards the climatological spread distribution characteristic of the analyses. The ENS system is found to be somewhat under-dispersive which is associated with the lack of tropical variability, primarily the Kelvin waves. The new model of the forecast error growth has three fitting parameters to parameterize the initial fast growth and a more slow exponential error growth later on. The asymptotic values of forecast errors are independent of the exponential growth rate. It is found that the asymptotic values of the errors due to unbalanced dynamics are around 10 days while the balanced and total errors saturate in 3 to 4 weeks. Reference: Žagar, N., R. Buizza, and J. Tribbia, 2015: A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble. J. Atmos. Sci., 72, 4423-4444.

  12. Predicting longitudinal trajectories of health probabilities with random-effects multinomial logit regression.

    PubMed

    Liu, Xian; Engel, Charles C

    2012-12-20

    Researchers often encounter longitudinal health data characterized with three or more ordinal or nominal categories. Random-effects multinomial logit models are generally applied to account for potential lack of independence inherent in such clustered data. When parameter estimates are used to describe longitudinal processes, however, random effects, both between and within individuals, need to be retransformed for correctly predicting outcome probabilities. This study attempts to go beyond existing work by developing a retransformation method that derives longitudinal growth trajectories of unbiased health probabilities. We estimated variances of the predicted probabilities by using the delta method. Additionally, we transformed the covariates' regression coefficients on the multinomial logit function, not substantively meaningful, to the conditional effects on the predicted probabilities. The empirical illustration uses the longitudinal data from the Asset and Health Dynamics among the Oldest Old. Our analysis compared three sets of the predicted probabilities of three health states at six time points, obtained from, respectively, the retransformation method, the best linear unbiased prediction, and the fixed-effects approach. The results demonstrate that neglect of retransforming random errors in the random-effects multinomial logit model results in severely biased longitudinal trajectories of health probabilities as well as overestimated effects of covariates on the probabilities. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Determination of the precision error of the pulmonary artery thermodilution catheter using an in vitro continuous flow test rig.

    PubMed

    Yang, Xiao-Xing; Critchley, Lester A; Joynt, Gavin M

    2011-01-01

    Thermodilution cardiac output using a pulmonary artery catheter is the reference method against which all new methods of cardiac output measurement are judged. However, thermodilution lacks precision and has a quoted precision error of ± 20%. There is uncertainty about its true precision and this causes difficulty when validating new cardiac output technology. Our aim in this investigation was to determine the current precision error of thermodilution measurements. A test rig through which water circulated at different constant rates with ports to insert catheters into a flow chamber was assembled. Flow rate was measured by an externally placed transonic flowprobe and meter. The meter was calibrated by timed filling of a cylinder. Arrow and Edwards 7Fr thermodilution catheters, connected to a Siemens SC9000 cardiac output monitor, were tested. Thermodilution readings were made by injecting 5 mL of ice-cold water. Precision error was divided into random and systematic components, which were determined separately. Between-readings (random) variability was determined for each catheter by taking sets of 10 readings at different flow rates. Coefficient of variation (CV) was calculated for each set and averaged. Between-catheter systems (systematic) variability was derived by plotting calibration lines for sets of catheters. Slopes were used to estimate the systematic component. Performances of 3 cardiac output monitors were compared: Siemens SC9000, Siemens Sirecust 1261, and Philips MP50. Five Arrow and 5 Edwards catheters were tested using the Siemens SC9000 monitor. Flow rates between 0.7 and 7.0 L/min were studied. The CV (random error) for Arrow was 5.4% and for Edwards was 4.8%. The random precision error was ± 10.0% (95% confidence limits). CV (systematic error) was 5.8% and 6.0%, respectively. The systematic precision error was ± 11.6%. The total precision error of a single thermodilution reading was ± 15.3% and ± 13.0% for triplicate readings. Precision error increased by 45% when using the Sirecust monitor and 100% when using the Philips monitor. In vitro testing of pulmonary artery catheters enabled us to measure both the random and systematic error components of thermodilution cardiac output measurement, and thus calculate the precision error. Using the Siemens monitor, we established a precision error of ± 15.3% for single and ± 13.0% for triplicate reading, which was similar to the previous estimate of ± 20%. However, this precision error was significantly worsened by using the Sirecust and Philips monitors. Clinicians should recognize that the precision error of thermodilution cardiac output is dependent on the selection of catheter and monitor model.

  14. On-board error correction improves IR earth sensor accuracy

    NASA Astrophysics Data System (ADS)

    Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.

    1989-10-01

    Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.

  15. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Improved Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.; hide

    2006-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%-15% at 5 mm day.1, with proportionate reductions in latent heating sampling errors.

  16. The Accuracy of Aggregate Student Growth Percentiles as Indicators of Educator Performance

    ERIC Educational Resources Information Center

    Castellano, Katherine E.; McCaffrey, Daniel F.

    2017-01-01

    Mean or median student growth percentiles (MGPs) are a popular measure of educator performance, but they lack rigorous evaluation. This study investigates the error in MGP due to test score measurement error (ME). Using analytic derivations, we find that errors in the commonly used MGP are correlated with average prior latent achievement: Teachers…

  17. Misinterpretation of Gram Stain from the Stationary Growth Phase of Positive Blood Cultures for Brucella and Acinetobacter Species.

    PubMed

    Bazzi, Ali M; Al-Tawfiq, Jaffar A; Rabaan, Ali A

    2017-01-01

    Acinetobacter baumannii and Brucella species are Gram-negative organisms that are vulnerable to misinterpretation as Gram-positive or Gram-variable in blood cultures. We assess the random errors in gram stain interpretation to reduce the likelihood of such errors and therefore patient harm. Aerobic and anaerobic blood cultures from two patients in an acute care facility in Saudi Arabia were subjected to preliminary Gram-staining. In case 1, VITEK-2 Anaerobe Identification, repeat Gram staining from a blood agar plate, Remel BactiDrop™ Oxidase test, Urea Agar urease test and real-time PCR were used to confirm presence of Brucella and absence of Coryneform species. In case 2, repeat Gram- staining from the plate and the vials, VITEK-2 Gram-Negative Identification, real-time PCR and subculture on to Columbia agar, blood agar, and MacConkey agar were carried out to identify A. baumannii . In case 1, initially pleomorphic Gram-positive bacteria were identified. Coryneform species were suspected. Tiny growth was observed after 24 h on blood agar plates, and good growth by 48 h. Presence of Brucella species was ultimately confirmed. In case 2, preliminary Gram-stain results suggested giant Gram-positive oval cocci. Further testing over 18-24 h identified A. baumannii . Oxidase test from the plate and urease test from the culture vial is recommended after apparent identification of pleomorphic Gram-positive bacilli from blood culture, once tiny growth is observed, to distinguish Brucella from Corynebacterium species. If giant Gram-positive oval cocci are indicated by preliminary Gram-staining, it is recommended that the Gram stain be repeated from the plate after 4-6 h, or culture should be tested in Triple Sugar Iron (TSI) medium and the Gram stain repeated after 2-4 h incubation.

  18. What Randomized Benchmarking Actually Measures

    DOE PAGES

    Proctor, Timothy; Rudinger, Kenneth; Young, Kevin; ...

    2017-09-28

    Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not amore » well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. Here, these theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed (completely positive) representation of the imperfect gates.« less

  19. Quantifying errors without random sampling.

    PubMed

    Phillips, Carl V; LaPole, Luwanna M

    2003-06-12

    All quantifications of mortality, morbidity, and other health measures involve numerous sources of error. The routine quantification of random sampling error makes it easy to forget that other sources of error can and should be quantified. When a quantification does not involve sampling, error is almost never quantified and results are often reported in ways that dramatically overstate their precision. We argue that the precision implicit in typical reporting is problematic and sketch methods for quantifying the various sources of error, building up from simple examples that can be solved analytically to more complex cases. There are straightforward ways to partially quantify the uncertainty surrounding a parameter that is not characterized by random sampling, such as limiting reported significant figures. We present simple methods for doing such quantifications, and for incorporating them into calculations. More complicated methods become necessary when multiple sources of uncertainty must be combined. We demonstrate that Monte Carlo simulation, using available software, can estimate the uncertainty resulting from complicated calculations with many sources of uncertainty. We apply the method to the current estimate of the annual incidence of foodborne illness in the United States. Quantifying uncertainty from systematic errors is practical. Reporting this uncertainty would more honestly represent study results, help show the probability that estimated values fall within some critical range, and facilitate better targeting of further research.

  20. Random errors of oceanic monthly rainfall derived from SSM/I using probability distribution functions

    NASA Technical Reports Server (NTRS)

    Chang, Alfred T. C.; Chiu, Long S.; Wilheit, Thomas T.

    1993-01-01

    Global averages and random errors associated with the monthly oceanic rain rates derived from the Special Sensor Microwave/Imager (SSM/I) data using the technique developed by Wilheit et al. (1991) are computed. Accounting for the beam-filling bias, a global annual average rain rate of 1.26 m is computed. The error estimation scheme is based on the existence of independent (morning and afternoon) estimates of the monthly mean. Calculations show overall random errors of about 50-60 percent for each 5 deg x 5 deg box. The results are insensitive to different sampling strategy (odd and even days of the month). Comparison of the SSM/I estimates with raingage data collected at the Pacific atoll stations showed a low bias of about 8 percent, a correlation of 0.7, and an rms difference of 55 percent.

  1. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies

    PubMed Central

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-01-01

    Abstract Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. PMID:29106476

  2. Flux control coefficients determined by inhibitor titration: the design and analysis of experiments to minimize errors.

    PubMed Central

    Small, J R

    1993-01-01

    This paper is a study into the effects of experimental error on the estimated values of flux control coefficients obtained using specific inhibitors. Two possible techniques for analysing the experimental data are compared: a simple extrapolation method (the so-called graph method) and a non-linear function fitting method. For these techniques, the sources of systematic errors are identified and the effects of systematic and random errors are quantified, using both statistical analysis and numerical computation. It is shown that the graph method is very sensitive to random errors and, under all conditions studied, that the fitting method, even under conditions where the assumptions underlying the fitted function do not hold, outperformed the graph method. Possible ways of designing experiments to minimize the effects of experimental errors are analysed and discussed. PMID:8257434

  3. Modeling Error Distributions of Growth Curve Models through Bayesian Methods

    ERIC Educational Resources Information Center

    Zhang, Zhiyong

    2016-01-01

    Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…

  4. Evaluation of random errors in Williams’ series coefficients obtained with digital image correlation

    NASA Astrophysics Data System (ADS)

    Lychak, Oleh V.; Holyns'kiy, Ivan S.

    2016-03-01

    The use of the Williams’ series parameters for fracture analysis requires valid information about their error values. The aim of this investigation is the development of the method for estimation of the standard deviation of random errors of the Williams’ series parameters, obtained from the measured components of the stress field. Also, the criteria for choosing the optimal number of terms in the truncated Williams’ series for derivation of their parameters with minimal errors is proposed. The method was used for the evaluation of the Williams’ parameters, obtained from the data, and measured by the digital image correlation technique for testing a three-point bending specimen.

  5. Large Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes

    NASA Astrophysics Data System (ADS)

    Golub, Malgorzata; Desai, Ankur R.; McKinley, Galen A.; Remucal, Christina K.; Stanley, Emily H.

    2017-11-01

    Most estimates of carbon dioxide (CO2) evasion from freshwaters rely on calculating partial pressure of aquatic CO2 (pCO2) from two out of three CO2-related parameters using carbonate equilibria. However, the pCO2 uncertainty has not been systematically evaluated across multiple lake types and equilibria. We quantified random errors in pH, dissolved inorganic carbon, alkalinity, and temperature from the North Temperate Lakes Long-Term Ecological Research site in four lake groups across a broad gradient of chemical composition. These errors were propagated onto pCO2 calculated from three carbonate equilibria, and for overlapping observations, compared against uncertainties in directly measured pCO2. The empirical random errors in CO2-related parameters were mostly below 2% of their median values. Resulting random pCO2 errors ranged from ±3.7% to ±31.5% of the median depending on alkalinity group and choice of input parameter pairs. Temperature uncertainty had a negligible effect on pCO2. When compared with direct pCO2 measurements, all parameter combinations produced biased pCO2 estimates with less than one third of total uncertainty explained by random pCO2 errors, indicating that systematic uncertainty dominates over random error. Multidecadal trend of pCO2 was difficult to reconstruct from uncertain historical observations of CO2-related parameters. Given poor precision and accuracy of pCO2 estimates derived from virtually any combination of two CO2-related parameters, we recommend direct pCO2 measurements where possible. To achieve consistently robust estimates of CO2 emissions from freshwater components of terrestrial carbon balances, future efforts should focus on improving accuracy and precision of CO2-related parameters (including direct pCO2) measurements and associated pCO2 calculations.

  6. Online automatic tuning and control for fed-batch cultivation

    PubMed Central

    van Straten, Gerrit; van der Pol, Leo A.; van Boxtel, Anton J. B.

    2007-01-01

    Performance of controllers applied in biotechnological production is often below expectation. Online automatic tuning has the capability to improve control performance by adjusting control parameters. This work presents automatic tuning approaches for model reference specific growth rate control during fed-batch cultivation. The approaches are direct methods that use the error between observed specific growth rate and its set point; systematic perturbations of the cultivation are not necessary. Two automatic tuning methods proved to be efficient, in which the adaptation rate is based on a combination of the error, squared error and integral error. These methods are relatively simple and robust against disturbances, parameter uncertainties, and initialization errors. Application of the specific growth rate controller yields a stable system. The controller and automatic tuning methods are qualified by simulations and laboratory experiments with Bordetella pertussis. PMID:18157554

  7. Accounting for unknown foster dams in the genetic evaluation of embryo transfer progeny.

    PubMed

    Suárez, M J; Munilla, S; Cantet, R J C

    2015-02-01

    Animals born by embryo transfer (ET) are usually not included in the genetic evaluation of beef cattle for preweaning growth if the recipient dam is unknown. This is primarily to avoid potential bias in the estimation of the unknown age of dam. We present a method that allows including records of calves with unknown age of dam. Assumptions are as follows: (i) foster cows belong to the same breed being evaluated, (ii) there is no correlation between the breeding value (BV) of the calf and the maternal BV of the recipient cow, and (iii) cows of all ages are used as recipients. We examine the issue of bias for the fixed level of unknown age of dam (AOD) and propose an estimator of the effect based on classical measurement error theory (MEM) and a Bayesian approach. Using stochastic simulation under random mating or selection, the MEM estimating equations were compared with BLUP in two situations as follows: (i) full information (FI); (ii) missing AOD information on some dams. Predictions of breeding value (PBV) from the FI situation had the smallest empirical average bias followed by PBV obtained without taking measurement error into account. In turn, MEM displayed the highest bias, although the differences were small. On the other hand, MEM showed the smallest MSEP, for either random mating or selection, followed by FI, whereas ignoring measurement error produced the largest MSEP. As a consequence from the smallest MSEP with a relatively small bias, empirical accuracies of PBV were larger for MEM than those for full information, which in turn showed larger accuracies than the situation ignoring measurement error. It is concluded that MEM equations are a useful alternative for analysing weaning weight data when recipient cows are unknown, as it mitigates the effects of bias in AOD by decreasing MSEP. © 2014 Blackwell Verlag GmbH.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Juan; Beltran, Chris J., E-mail: beltran.chris@mayo.edu; Herman, Michael G.

    Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 tomore » 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot spots along the field edges, which may be near critical structures. However, random PE showed minimal dose error. Conclusions: Dose error dependence for PE was quantitatively and systematically characterized and an analytic tool was built to simulate systematic and random errors for patient-specific IMPT. This information facilitates the determination of facility specific spot position error thresholds.« less

  9. INDIVIDUALIZED FETAL GROWTH ASSESSMENT: CRITICAL EVALUATION OF KEY CONCEPTS IN THE SPECIFICATION OF THIRD TRIMESTER GROWTH TRAJECTORIES

    PubMed Central

    Deter, Russell L.; Lee, Wesley; Yeo, Lami; Romero, Roberto

    2012-01-01

    Objectives To characterize 2nd and 3rd trimester fetal growth using Individualized Growth Assessment in a large cohort of fetuses with normal growth outcomes. Methods A prospective longitudinal study of 119 pregnancies was carried out from 18 weeks, MA, to delivery. Measurements of eleven fetal growth parameters were obtained from 3D scans at 3–4 week intervals. Regression analyses were used to determine Start Points [SP] and Rossavik model [P = c (t) k + st] coefficients c, k and s for each parameter in each fetus. Second trimester growth model specification functions were re-established. These functions were used to generate individual growth models and determine predicted s and s-residual [s = pred s + s-resid] values. Actual measurements were compared to predicted growth trajectories obtained from the growth models and Percent Deviations [% Dev = {{actual − predicted}/predicted} × 100] calculated. Age-specific reference standards for this statistic were defined using 2-level statistical modeling for the nine directly measured parameters and estimated weight. Results Rossavik models fit the data for all parameters very well [R2: 99%], with SP’s and k values similar to those found in a much smaller cohort. The c values were strongly related to the 2nd trimester slope [R2: 97%] as was predicted s to estimated c [R2: 95%]. The latter was negative for skeletal parameters and positive for soft tissue parameters. The s-residuals were unrelated to estimated c’s [R2: 0%], and had mean values of zero. Rossavik models predicted 3rd trimester growth with systematic errors close to 0% and random errors [95% range] of 5.7 – 10.9% and 20.0 – 24.3% for one and three dimensional parameters, respectively. Moderate changes in age-specific variability were seen in the 3rd trimester.. Conclusions IGA procedures for evaluating 2nd and 3rd trimester growth are now established based on a large cohort [4–6 fold larger than those used previously], thus permitting more reliable growth assessment with each fetus acting as its own control. New, more rigorously defined, age-specific standards for the evaluation of 3rd trimester growth deviations are now available for 10 anatomical parameters. Our results are also consistent with the predicted s and s-residual being representatives of growth controllers operating through the insulin-like growth factor [IGF] axis. PMID:23962305

  10. For how long can we predict the weather? - Insights into atmospheric predictability from global convection-allowing simulations

    NASA Astrophysics Data System (ADS)

    Judt, Falko

    2017-04-01

    A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex problem. The comparatively slower error growth in the tropics and in the stratosphere indicates that certain weather phenomena could potentially have longer predictability than currently thought.

  11. Testing the Recognition and Perception of Errors in Context

    ERIC Educational Resources Information Center

    Brandenburg, Laura C.

    2015-01-01

    This study tests the recognition of errors in context and whether the presence of errors affects the reader's perception of the writer's ethos. In an experimental, posttest only design, participants were randomly assigned a memo to read in an online survey: one version with errors and one version without. Of the six intentional errors in version…

  12. Exploring Measurement Error with Cookies: A Real and Virtual Approach via Interactive Excel

    ERIC Educational Resources Information Center

    Sinex, Scott A; Gage, Barbara A.; Beck, Peggy J.

    2007-01-01

    A simple, guided-inquiry investigation using stacked sandwich cookies is employed to develop a simple linear mathematical model and to explore measurement error by incorporating errors as part of the investigation. Both random and systematic errors are presented. The model and errors are then investigated further by engaging with an interactive…

  13. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  14. Estimation of population mean in the presence of measurement error and non response under stratified random sampling

    PubMed Central

    Shabbir, Javid

    2018-01-01

    In the present paper we propose an improved class of estimators in the presence of measurement error and non-response under stratified random sampling for estimating the finite population mean. The theoretical and numerical studies reveal that the proposed class of estimators performs better than other existing estimators. PMID:29401519

  15. Perceptions of Randomness: Why Three Heads Are Better than Four

    ERIC Educational Resources Information Center

    Hahn, Ulrike; Warren, Paul A.

    2009-01-01

    A long tradition of psychological research has lamented the systematic errors and biases in people's perception of the characteristics of sequences generated by a random mechanism such as a coin toss. It is proposed that once the likely nature of people's actual experience of such processes is taken into account, these "errors" and "biases"…

  16. A Bayesian mixture model for missing data in marine mammal growth analysis

    PubMed Central

    Shotwell, Mary E.; McFee, Wayne E.; Slate, Elizabeth H.

    2016-01-01

    Much of what is known about bottle nose dolphin (Tursiops truncatus) anatomy and physiology is based on necropsies from stranding events. Measurements of total body length, total body mass, and age are used to estimate growth. It is more feasible to retrieve and transport smaller animals for total body mass measurement than larger animals, introducing a systematic bias in sampling. Adverse weather events, volunteer availability, and other unforeseen circumstances also contribute to incomplete measurement. We have developed a Bayesian mixture model to describe growth in detected stranded animals using data from both those that are fully measured and those not fully measured. Our approach uses a shared random effect to link the missingness mechanism (i.e. full/partial measurement) to distinct growth curves in the fully and partially measured populations, thereby enabling drawing of strength for estimation. We use simulation to compare our model to complete case analysis and two common multiple imputation methods according to model mean square error. Results indicate that our mixture model provides better fit both when the two populations are present and when they are not. The feasibility and utility of our new method is demonstrated by application to South Carolina strandings data. PMID:28503080

  17. A Systematic Approach for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling

    ERIC Educational Resources Information Center

    Ding, Cherng G.; Jane, Ten-Der; Wu, Chiu-Hui; Lin, Hang-Rung; Shen, Chih-Kang

    2017-01-01

    It has been pointed out in the literature that misspecification of the level-1 error covariance structure in latent growth modeling (LGM) has detrimental impacts on the inferences about growth parameters. Since correct covariance structure is difficult to specify by theory, the identification needs to rely on a specification search, which,…

  18. The Effect of Data Quality on Short-term Growth Model Projections

    Treesearch

    David Gartner

    2005-01-01

    This study was designed to determine the effect of FIA's data quality on short-term growth model projections. The data from Georgia's 1996 statewide survey were used for the Southern variant of the Forest Vegetation Simulator to predict Georgia's first annual panel. The effect of several data error sources on growth modeling prediction errors...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, C.J.; McVey, B.; Quimby, D.C.

    The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of thesemore » errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.« less

  20. Statistical model for speckle pattern optimization.

    PubMed

    Su, Yong; Zhang, Qingchuan; Gao, Zeren

    2017-11-27

    Image registration is the key technique of optical metrologies such as digital image correlation (DIC), particle image velocimetry (PIV), and speckle metrology. Its performance depends critically on the quality of image pattern, and thus pattern optimization attracts extensive attention. In this article, a statistical model is built to optimize speckle patterns that are composed of randomly positioned speckles. It is found that the process of speckle pattern generation is essentially a filtered Poisson process. The dependence of measurement errors (including systematic errors, random errors, and overall errors) upon speckle pattern generation parameters is characterized analytically. By minimizing the errors, formulas of the optimal speckle radius are presented. Although the primary motivation is from the field of DIC, we believed that scholars in other optical measurement communities, such as PIV and speckle metrology, will benefit from these discussions.

  1. Predictability of CFSv2 in the tropical Indo-Pacific region, at daily and subseasonal time scales

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V.

    2018-06-01

    The predictability of a coupled climate model is evaluated at daily and intraseasonal time scales in the tropical Indo-Pacific region during boreal summer and winter. This study has assessed the daily retrospective forecasts of the Climate Forecast System version 2 from the National Centers of Environmental Prediction for the period 1982-2010. The growth of errors in the forecasts of daily precipitation, monsoon intraseasonal oscillation (MISO) and the Madden-Julian oscillation (MJO) is studied. The seasonal cycle of the daily climatology of precipitation is reasonably well predicted except for the underestimation during the peak of summer. The anomalies follow the typical pattern of error growth in nonlinear systems and show no difference between summer and winter. The initial errors in all the cases are found to be in the nonlinear phase of the error growth. The doubling time of small errors is estimated by applying Lorenz error formula. For summer and winter, the doubling time of the forecast errors is in the range of 4-7 and 5-14 days while the doubling time of the predictability errors is 6-8 and 8-14 days, respectively. The doubling time in MISO during the summer and MJO during the winter is in the range of 12-14 days, indicating higher predictability and providing optimism for long-range prediction. There is no significant difference in the growth of forecasts errors originating from different phases of MISO and MJO, although the prediction of the active phase seems to be slightly better.

  2. The decline and fall of Type II error rates

    Treesearch

    Steve Verrill; Mark Durst

    2005-01-01

    For general linear models with normally distributed random errors, the probability of a Type II error decreases exponentially as a function of sample size. This potentially rapid decline reemphasizes the importance of performing power calculations.

  3. Asymmetric Memory Circuit Would Resist Soft Errors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Perlman, Marvin

    1990-01-01

    Some nonlinear error-correcting codes more efficient in presence of asymmetry. Combination of circuit-design and coding concepts expected to make integrated-circuit random-access memories more resistant to "soft" errors (temporary bit errors, also called "single-event upsets" due to ionizing radiation). Integrated circuit of new type made deliberately more susceptible to one kind of bit error than to other, and associated error-correcting code adapted to exploit this asymmetry in error probabilities.

  4. Excitation of transverse dipole and quadrupole modes in a pure ion plasma in a linear Paul trap to study collective processes in intense beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.

    Transverse dipole and quadrupole modes have been excited in a one-component cesium ion plasma trapped in the Paul Trap Simulator Experiment (PTSX) in order to characterize their properties and understand the effect of their excitation on equivalent long-distance beam propagation. The PTSX device is a compact laboratory Paul trap that simulates the transverse dynamics of a long, intense charge bunch propagating through an alternating-gradient transport system by putting the physicist in the beam's frame of reference. A pair of arbitrary function generators was used to apply trapping voltage waveform perturbations with a range of frequencies and, by changing which electrodesmore » were driven with the perturbation, with either a dipole or quadrupole spatial structure. The results presented in this paper explore the dependence of the perturbation voltage's effect on the perturbation duration and amplitude. Perturbations were also applied that simulate the effect of random lattice errors that exist in an accelerator with quadrupole magnets that are misaligned or have variance in their field strength. The experimental results quantify the growth in the equivalent transverse beam emittance that occurs due to the applied noise and demonstrate that the random lattice errors interact with the trapped plasma through the plasma's internal collective modes. Coherent periodic perturbations were applied to simulate the effects of magnet errors in circular machines such as storage rings. The trapped one component plasma is strongly affected when the perturbation frequency is commensurate with a plasma mode frequency. The experimental results, which help to understand the physics of quiescent intense beam propagation over large distances, are compared with analytic models.« less

  5. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.

    2004-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).

  6. Theoretical analysis on the measurement errors of local 2D DIC: Part I temporal and spatial uncertainty quantification of displacement measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yueqi; Lava, Pascal; Reu, Phillip

    This study presents a theoretical uncertainty quantification of displacement measurements by subset-based 2D-digital image correlation. A generalized solution to estimate the random error of displacement measurement is presented. The obtained solution suggests that the random error of displacement measurements is determined by the image noise, the summation of the intensity gradient in a subset, the subpixel part of displacement, and the interpolation scheme. The proposed method is validated with virtual digital image correlation tests.

  7. Theoretical analysis on the measurement errors of local 2D DIC: Part I temporal and spatial uncertainty quantification of displacement measurements

    DOE PAGES

    Wang, Yueqi; Lava, Pascal; Reu, Phillip; ...

    2015-12-23

    This study presents a theoretical uncertainty quantification of displacement measurements by subset-based 2D-digital image correlation. A generalized solution to estimate the random error of displacement measurement is presented. The obtained solution suggests that the random error of displacement measurements is determined by the image noise, the summation of the intensity gradient in a subset, the subpixel part of displacement, and the interpolation scheme. The proposed method is validated with virtual digital image correlation tests.

  8. The invisible hand and EKC hypothesis: what are the drivers of environmental degradation and pollution in Africa?

    PubMed

    Sarkodie, Samuel Asumadu

    2018-05-24

    This study examined the drivers of environmental degradation and pollution in 17 countries in Africa from 1971 to 2013. The empirical study was analyzed with Westerlund error-correction model and panel cointegration tests with 1000 bootstrapping samples, U-shape test, fixed and random effect estimators, and panel causality test. The investigation of the nexus between environmental pollution economic growth in Africa confirms the validity of the EKC hypothesis in Africa at a turning point of US$ 5702 GDP per capita. However, the nexus between environmental degradation and economic growth reveals a U shape at a lower bound GDP of US$ 101/capita and upper bound GDP of US$ 8050/capita, at a turning point of US$ 7958 GDP per capita, confirming the scale effect hypothesis. The empirical findings revealed that energy consumption, food production, economic growth, permanent crop, agricultural land, birth rate, and fertility rate play a major role in environmental degradation and pollution in Africa, thus supporting the global indicators for achieving the sustainable development goals by 2030.

  9. Fix success and accuracy of GPS radio collars in old-growth temperate coniferous forests

    USGS Publications Warehouse

    Sager-Fradkin, Kimberly A.; Jenkins, Kurt J.; Hoffman, Robert L.; Happe, P.; Beecham, J.; Wright, R.G.

    2007-01-01

    Global Positioning System (GPS) telemetry is used extensively to study animal distribution and resource selection patterns but is susceptible to biases resulting from data omission and spatial inaccuracies. These data errors may cause misinterpretation of wildlife habitat selection or spatial use patterns. We used both stationary test collars and collared free-ranging American black bears (Ursus americanus) to quantify systemic data loss and location error of GPS telemetry in mountainous, old-growth temperate forests of Olympic National Park, Washington, USA. We developed predictive models of environmental factors that influence the probability of obtaining GPS locations and evaluated the ability of weighting factors derived from these models to mitigate data omission biases from collared bears. We also examined the effects of microhabitat on collar fix success rate and examined collar accuracy as related to elevation changes between successive fixes. The probability of collars successfully obtaining location fixes was positively associated with elevation and unobstructed satellite view and was negatively affected by the interaction of overstory canopy and satellite view. Test collars were 33% more successful at acquiring fixes than those on bears. Fix success rates of collared bears varied seasonally and diurnally. Application of weighting factors to individual collared bear fixes recouped only 6% of lost data and failed to reduce seasonal or diurnal variation in fix success, suggesting that variables not included in our model contributed to data loss. Test collars placed to mimic bear bedding sites received 16% fewer fixes than randomly placed collars, indicating that microhabitat selection may contribute to data loss for wildlife equipped with GPS collars. Horizontal collar errors of >800 m occurred when elevation changes between successive fixes were >400 m. We conclude that significant limitations remain in accounting for data loss and error inherent in using GPS telemetry in coniferous forest ecosystems and that, at present, resource selection patterns of large mammals derived from GPS telemetry should be interpreted cautiously.

  10. Error Analysis of Indirect Broadband Monitoring of Multilayer Optical Coatings using Computer Simulations

    NASA Astrophysics Data System (ADS)

    Semenov, Z. V.; Labusov, V. A.

    2017-11-01

    Results of studying the errors of indirect monitoring by means of computer simulations are reported. The monitoring method is based on measuring spectra of reflection from additional monitoring substrates in a wide spectral range. Special software (Deposition Control Simulator) is developed, which allows one to estimate the influence of the monitoring system parameters (noise of the photodetector array, operating spectral range of the spectrometer and errors of its calibration in terms of wavelengths, drift of the radiation source intensity, and errors in the refractive index of deposited materials) on the random and systematic errors of deposited layer thickness measurements. The direct and inverse problems of multilayer coatings are solved using the OptiReOpt library. Curves of the random and systematic errors of measurements of the deposited layer thickness as functions of the layer thickness are presented for various values of the system parameters. Recommendations are given on using the indirect monitoring method for the purpose of reducing the layer thickness measurement error.

  11. Error analysis and algorithm implementation for an improved optical-electric tracking device based on MEMS

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Wu, Qian-zhong

    2013-09-01

    In order to improve the precision of optical-electric tracking device, proposing a kind of improved optical-electric tracking device based on MEMS, in allusion to the tracking error of gyroscope senor and the random drift, According to the principles of time series analysis of random sequence, establish AR model of gyro random error based on Kalman filter algorithm, then the output signals of gyro are multiple filtered with Kalman filter. And use ARM as micro controller servo motor is controlled by fuzzy PID full closed loop control algorithm, and add advanced correction and feed-forward links to improve response lag of angle input, Free-forward can make output perfectly follow input. The function of lead compensation link is to shorten the response of input signals, so as to reduce errors. Use the wireless video monitor module and remote monitoring software (Visual Basic 6.0) to monitor servo motor state in real time, the video monitor module gathers video signals, and the wireless video module will sent these signals to upper computer, so that show the motor running state in the window of Visual Basic 6.0. At the same time, take a detailed analysis to the main error source. Through the quantitative analysis of the errors from bandwidth and gyro sensor, it makes the proportion of each error in the whole error more intuitive, consequently, decrease the error of the system. Through the simulation and experiment results shows the system has good following characteristic, and it is very valuable for engineering application.

  12. Error Sources in Asteroid Astrometry

    NASA Technical Reports Server (NTRS)

    Owen, William M., Jr.

    2000-01-01

    Asteroid astrometry, like any other scientific measurement process, is subject to both random and systematic errors, not all of which are under the observer's control. To design an astrometric observing program or to improve an existing one requires knowledge of the various sources of error, how different errors affect one's results, and how various errors may be minimized by careful observation or data reduction techniques.

  13. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies.

    PubMed

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-11-01

    Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  14. Minimum savings requirements in shared savings provider payment.

    PubMed

    Pope, Gregory C; Kautter, John

    2012-11-01

    Payer (insurer) sharing of savings is a way of motivating providers of medical services to reduce cost growth. A Medicare shared savings program is established for accountable care organizations in the 2010 Patient Protection and Affordable Care Act. However, savings created by providers cannot be distinguished from the normal (random) variation in medical claims costs, setting up a classic principal-agent problem. To lessen the likelihood of paying undeserved bonuses, payers may pay bonuses only if observed savings exceed minimum levels. We study the trade-off between two types of errors in setting minimum savings requirements: paying bonuses when providers do not create savings and not paying bonuses when providers create savings. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Health plan auditing: 100-percent-of-claims vs. random-sample audits.

    PubMed

    Sillup, George P; Klimberg, Ronald K

    2011-01-01

    The objective of this study was to examine the relative efficacy of two different methodologies for auditing self-funded medical claim expenses: 100-percent-of-claims auditing versus random-sampling auditing. Multiple data sets of claim errors or 'exceptions' from two Fortune-100 corporations were analysed and compared to 100 simulated audits of 300- and 400-claim random samples. Random-sample simulations failed to identify a significant number and amount of the errors that ranged from $200,000 to $750,000. These results suggest that health plan expenses of corporations could be significantly reduced if they audited 100% of claims and embraced a zero-defect approach.

  16. Enhanced orbit determination filter sensitivity analysis: Error budget development

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.; Burkhart, P. D.

    1994-01-01

    An error budget analysis is presented which quantifies the effects of different error sources in the orbit determination process when the enhanced orbit determination filter, recently developed, is used to reduce radio metric data. The enhanced filter strategy differs from more traditional filtering methods in that nearly all of the principal ground system calibration errors affecting the data are represented as filter parameters. Error budget computations were performed for a Mars Observer interplanetary cruise scenario for cases in which only X-band (8.4-GHz) Doppler data were used to determine the spacecraft's orbit, X-band ranging data were used exclusively, and a combined set in which the ranging data were used in addition to the Doppler data. In all three cases, the filter model was assumed to be a correct representation of the physical world. Random nongravitational accelerations were found to be the largest source of error contributing to the individual error budgets. Other significant contributors, depending on the data strategy used, were solar-radiation pressure coefficient uncertainty, random earth-orientation calibration errors, and Deep Space Network (DSN) station location uncertainty.

  17. Does Mckuer's Law Hold for Heart Rate Control via Biofeedback Display?

    NASA Technical Reports Server (NTRS)

    Courter, B. J.; Jex, H. R.

    1984-01-01

    Some persons can control their pulse rate with the aid of a biofeedback display. If the biofeedback display is modified to show the error between a command pulse-rate and the measured rate, a compensatory (error correcting) heart rate tracking control loop can be created. The dynamic response characteristics of this control loop when subjected to step and quasi-random disturbances were measured. The control loop includes a beat-to-beat cardiotachmeter differenced with a forcing function from a quasi-random input generator; the resulting error pulse-rate is displayed as feedback. The subject acts to null the displayed pulse-rate error, thereby closing a compensatory control loop. McRuer's Law should hold for this case. A few subjects already skilled in voluntary pulse-rate control were tested for heart-rate control response. Control-law properties are derived, such as: crossover frequency, stability margins, and closed-loop bandwidth. These are evaluated for a range of forcing functions and for step as well as random disturbances.

  18. Synthesis of hover autopilots for rotary-wing VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Hall, W. E.; Bryson, A. E., Jr.

    1972-01-01

    The practical situation is considered where imperfect information on only a few rotor and fuselage state variables is available. Filters are designed to estimate all the state variables from noisy measurements of fuselage pitch/roll angles and from noisy measurements of both fuselage and rotor pitch/roll angles. The mean square response of the vehicle to a very gusty, random wind is computed using various filter/controllers and is found to be quite satisfactory although, of course, not so good as when one has perfect information (idealized case). The second part of the report considers precision hover over a point on the ground. A vehicle model without rotor dynamics is used and feedback signals in position and integral of position error are added. The mean square response of the vehicle to a very gusty, random wind is computed, assuming perfect information feedback, and is found to be excellent. The integral error feedback gives zero position error for a steady wind, and smaller position error for a random wind.

  19. Basic Diagnosis and Prediction of Persistent Contrail Occurrence using High-resolution Numerical Weather Analyses/Forecasts and Logistic Regression. Part I: Effects of Random Error

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick

    2009-01-01

    Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy, the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher when the climatological frequency of contrail occurrence is used as the critical threshold, while the PC scores are higher when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85 percent for both the prediction of contrail occurrence and non-occurrence, although in practice, larger errors would be anticipated.

  20. Selecting Statistical Quality Control Procedures for Limiting the Impact of Increases in Analytical Random Error on Patient Safety.

    PubMed

    Yago, Martín

    2017-05-01

    QC planning based on risk management concepts can reduce the probability of harming patients due to an undetected out-of-control error condition. It does this by selecting appropriate QC procedures to decrease the number of erroneous results reported. The selection can be easily made by using published nomograms for simple QC rules when the out-of-control condition results in increased systematic error. However, increases in random error also occur frequently and are difficult to detect, which can result in erroneously reported patient results. A statistical model was used to construct charts for the 1 ks and X /χ 2 rules. The charts relate the increase in the number of unacceptable patient results reported due to an increase in random error with the capability of the measurement procedure. They thus allow for QC planning based on the risk of patient harm due to the reporting of erroneous results. 1 ks Rules are simple, all-around rules. Their ability to deal with increases in within-run imprecision is minimally affected by the possible presence of significant, stable, between-run imprecision. X /χ 2 rules perform better when the number of controls analyzed during each QC event is increased to improve QC performance. Using nomograms simplifies the selection of statistical QC procedures to limit the number of erroneous patient results reported due to an increase in analytical random error. The selection largely depends on the presence or absence of stable between-run imprecision. © 2017 American Association for Clinical Chemistry.

  1. Meta-analysis in evidence-based healthcare: a paradigm shift away from random effects is overdue.

    PubMed

    Doi, Suhail A R; Furuya-Kanamori, Luis; Thalib, Lukman; Barendregt, Jan J

    2017-12-01

    Each year up to 20 000 systematic reviews and meta-analyses are published whose results influence healthcare decisions, thus making the robustness and reliability of meta-analytic methods one of the world's top clinical and public health priorities. The evidence synthesis makes use of either fixed-effect or random-effects statistical methods. The fixed-effect method has largely been replaced by the random-effects method as heterogeneity of study effects led to poor error estimation. However, despite the widespread use and acceptance of the random-effects method to correct this, it too remains unsatisfactory and continues to suffer from defective error estimation, posing a serious threat to decision-making in evidence-based clinical and public health practice. We discuss here the problem with the random-effects approach and demonstrate that there exist better estimators under the fixed-effect model framework that can achieve optimal error estimation. We argue for an urgent return to the earlier framework with updates that address these problems and conclude that doing so can markedly improve the reliability of meta-analytical findings and thus decision-making in healthcare.

  2. Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection

    NASA Astrophysics Data System (ADS)

    Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.

    2015-10-01

    All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. Here, we are applying a consistent approach based on auto- and cross-covariance functions to quantify the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining data sets from several analysers and using simulations, we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time lag eliminates these effects (provided the time lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise and their associated errors.

  3. Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection

    NASA Astrophysics Data System (ADS)

    Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.

    2015-03-01

    All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. We are here applying a consistent approach based on auto- and cross-covariance functions to quantifying the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time-lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time-lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining datasets from several analysers and using simulations we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time-lag eliminates these effects (provided the time-lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time-lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise and their associated errors.

  4. Accurate initial conditions in mixed dark matter-baryon simulations

    NASA Astrophysics Data System (ADS)

    Valkenburg, Wessel; Villaescusa-Navarro, Francisco

    2017-06-01

    We quantify the error in the results of mixed baryon-dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations is of the order of few to 10 per cent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using a mix of general-relativistic gauges so as to approximate Newtonian gravity, namely longitudinal-gauge velocities with synchronous-gauge densities and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that dark matter and baryons experience a scale-dependent growth after photon decoupling, which results in directions of velocity that are not the same as their direction of displacement. We compare the outcome of hydrodynamic simulations with these four approximations to our reference simulation, all setup with the same random seed and simulated using gadget-III.

  5. ON NONSTATIONARY STOCHASTIC MODELS FOR EARTHQUAKES.

    USGS Publications Warehouse

    Safak, Erdal; Boore, David M.

    1986-01-01

    A seismological stochastic model for earthquake ground-motion description is presented. Seismological models are based on the physical properties of the source and the medium and have significant advantages over the widely used empirical models. The model discussed here provides a convenient form for estimating structural response by using random vibration theory. A commonly used random process for ground acceleration, filtered white-noise multiplied by an envelope function, introduces some errors in response calculations for structures whose periods are longer than the faulting duration. An alternate random process, filtered shot-noise process, eliminates these errors.

  6. Classification of echolocation clicks from odontocetes in the Southern California Bight.

    PubMed

    Roch, Marie A; Klinck, Holger; Baumann-Pickering, Simone; Mellinger, David K; Qui, Simon; Soldevilla, Melissa S; Hildebrand, John A

    2011-01-01

    This study presents a system for classifying echolocation clicks of six species of odontocetes in the Southern California Bight: Visually confirmed bottlenose dolphins, short- and long-beaked common dolphins, Pacific white-sided dolphins, Risso's dolphins, and presumed Cuvier's beaked whales. Echolocation clicks are represented by cepstral feature vectors that are classified by Gaussian mixture models. A randomized cross-validation experiment is designed to provide conditions similar to those found in a field-deployed system. To prevent matched conditions from inappropriately lowering the error rate, echolocation clicks associated with a single sighting are never split across the training and test data. Sightings are randomly permuted before assignment to folds in the experiment. This allows different combinations of the training and test data to be used while keeping data from each sighting entirely in the training or test set. The system achieves a mean error rate of 22% across 100 randomized three-fold cross-validation experiments. Four of the six species had mean error rates lower than the overall mean, with the presumed Cuvier's beaked whale clicks showing the best performance (<2% error rate). Long-beaked common and bottlenose dolphins proved the most difficult to classify, with mean error rates of 53% and 68%, respectively.

  7. Effects of random tooth profile errors on the dynamic behaviors of planetary gears

    NASA Astrophysics Data System (ADS)

    Xun, Chao; Long, Xinhua; Hua, Hongxing

    2018-02-01

    In this paper, a nonlinear random model is built to describe the dynamics of planetary gear trains (PGTs), in which the time-varying mesh stiffness, tooth profile modification (TPM), tooth contact loss, and random tooth profile error are considered. A stochastic method based on the method of multiple scales (MMS) is extended to analyze the statistical property of the dynamic performance of PGTs. By the proposed multiple-scales based stochastic method, the distributions of the dynamic transmission errors (DTEs) are investigated, and the lower and upper bounds are determined based on the 3σ principle. Monte Carlo method is employed to verify the proposed method. Results indicate that the proposed method can be used to determine the distribution of the DTE of PGTs high efficiently and allow a link between the manufacturing precision and the dynamical response. In addition, the effects of tooth profile modification on the distributions of vibration amplitudes and the probability of tooth contact loss with different manufacturing tooth profile errors are studied. The results show that the manufacturing precision affects the distribution of dynamic transmission errors dramatically and appropriate TPMs are helpful to decrease the nominal value and the deviation of the vibration amplitudes.

  8. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes

    Treesearch

    Andrew D. Richardson; David Y. Hollinger; George G. Burba; Kenneth J. Davis; Lawrence B. Flanagan; Gabriel G. Katul; J. William Munger; Daniel M. Ricciuto; Paul C. Stoy; Andrew E. Suyker; Shashi B. Verma; Steven C. Wofsy; Steven C. Wofsy

    2006-01-01

    Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE) and CO2 (FCO2) represent the ``true?? flux plus or minus potential random and systematic measurement errors. Here, we use data from seven sites in the AmeriFlux network, including five forested sites (two of which include ``tall tower?? instrumentation), one grassland site, and one...

  9. Statistical error model for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Bantell, M. H.

    1973-01-01

    The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.

  10. Far field beam pattern of one MW combined beam of laser diode array amplifiers for space power transmission

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.

    1989-01-01

    The far-field beam pattern and the power-collection efficiency are calculated for a multistage laser-diode-array amplifier consisting of about 200,000 5-W laser diode arrays with random distributions of phase and orientation errors and random diode failures. From the numerical calculation it is found that the far-field beam pattern is little affected by random failures of up to 20 percent of the laser diodes with reference of 80 percent receiving efficiency in the center spot. The random differences in phases among laser diodes due to probable manufacturing errors is allowed to about 0.2 times the wavelength. The maximum allowable orientation error is about 20 percent of the diffraction angle of a single laser diode aperture (about 1 cm). The preliminary results indicate that the amplifier could be used for space beam-power transmission with an efficiency of about 80 percent for a moderate-size (3-m-diameter) receiver placed at a distance of less than 50,000 km.

  11. An Analysis of Computational Errors in the Use of Division Algorithms by Fourth-Grade Students.

    ERIC Educational Resources Information Center

    Stefanich, Greg P.; Rokusek, Teri

    1992-01-01

    Presents a study that analyzed errors made by randomly chosen fourth grade students (25 of 57) while using the division algorithm and investigated the effect of remediation on identified systematic errors. Results affirm that error pattern diagnosis and directed remediation lead to new learning and long-term retention. (MDH)

  12. False Positives in Multiple Regression: Unanticipated Consequences of Measurement Error in the Predictor Variables

    ERIC Educational Resources Information Center

    Shear, Benjamin R.; Zumbo, Bruno D.

    2013-01-01

    Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…

  13. Physical layer one-time-pad data encryption through synchronized semiconductor laser networks

    NASA Astrophysics Data System (ADS)

    Argyris, Apostolos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-02-01

    Semiconductor lasers (SL) have been proven to be a key device in the generation of ultrafast true random bit streams. Their potential to emit chaotic signals under conditions with desirable statistics, establish them as a low cost solution to cover various needs, from large volume key generation to real-time encrypted communications. Usually, only undemanding post-processing is needed to convert the acquired analog timeseries to digital sequences that pass all established tests of randomness. A novel architecture that can generate and exploit these true random sequences is through a fiber network in which the nodes are semiconductor lasers that are coupled and synchronized to central hub laser. In this work we show experimentally that laser nodes in such a star network topology can synchronize with each other through complex broadband signals that are the seed to true random bit sequences (TRBS) generated at several Gb/s. The potential for each node to access real-time generated and synchronized with the rest of the nodes random bit streams, through the fiber optic network, allows to implement an one-time-pad encryption protocol that mixes the synchronized true random bit sequence with real data at Gb/s rates. Forward-error correction methods are used to reduce the errors in the TRBS and the final error rate at the data decoding level. An appropriate selection in the sampling methodology and properties, as well as in the physical properties of the chaotic seed signal through which network locks in synchronization, allows an error free performance.

  14. Adjustment of Measurements with Multiplicative Errors: Error Analysis, Estimates of the Variance of Unit Weight, and Effect on Volume Estimation from LiDAR-Type Digital Elevation Models

    PubMed Central

    Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan

    2014-01-01

    Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM. PMID:24434880

  15. Liquid Medication Dosing Errors by Hispanic Parents: Role of Health Literacy and English Proficiency

    PubMed Central

    Harris, Leslie M.; Dreyer, Benard; Mendelsohn, Alan; Bailey, Stacy C.; Sanders, Lee M.; Wolf, Michael S.; Parker, Ruth M.; Patel, Deesha A.; Kim, Kwang Youn A.; Jimenez, Jessica J.; Jacobson, Kara; Smith, Michelle; Yin, H. Shonna

    2016-01-01

    Objective Hispanic parents in the US are disproportionately affected by low health literacy and limited English proficiency (LEP). We examined associations between health literacy, LEP, and liquid medication dosing errors in Hispanic parents. Methods Cross-sectional analysis of data from a multisite randomized controlled experiment to identify best practices for the labeling/dosing of pediatric liquid medications (SAFE Rx for Kids study); 3 urban pediatric clinics. Analyses were limited to Hispanic parents of children <8 years, with health literacy and LEP data (n=1126). Parents were randomized to 5 groups that varied by pairing of units of measurement on the label/dosing tool. Each parent measured 9 doses [3 amounts (2.5,5,7.5 mL) using 3 tools (2 syringes (0.2,0.5 mL increment), 1 cup)] in random order. Dependent variable: Dosing error=>20% dose deviation. Predictor variables: health literacy (Newest Vital Sign) [limited=0–3; adequate=4–6], LEP (speaks English less than “very well”). Results 83.1% made dosing errors (mean(SD) errors/parent=2.2(1.9)). Parents with limited health literacy and LEP had the greatest odds of making a dosing error compared to parents with adequate health literacy who were English proficient (% trials with errors/parent=28.8 vs. 12.9%; AOR=2.2[1.7–2.8]). Parents with limited health literacy who were English proficient were also more likely to make errors (% trials with errors/parent=18.8%; AOR=1.4[1.1–1.9]). Conclusion Dosing errors are common among Hispanic parents; those with both LEP and limited health literacy are at particular risk. Further study is needed to examine how the redesign of medication labels and dosing tools could reduce literacy and language-associated disparities in dosing errors. PMID:28477800

  16. Combinatorial neural codes from a mathematical coding theory perspective.

    PubMed

    Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L

    2013-07-01

    Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.

  17. Theory of injection locking and rapid start-up of magnetrons, and effects of manufacturing errors in terahertz traveling wave tubes

    NASA Astrophysics Data System (ADS)

    Pengvanich, Phongphaeth

    In this thesis, several contemporary issues on coherent radiation sources are examined. They include the fast startup and the injection locking of microwave magnetrons, and the effects of random manufacturing errors on phase and small signal gain of terahertz traveling wave amplifiers. In response to the rapid startup and low noise magnetron experiments performed at the University of Michigan that employed periodic azimuthal perturbations in the axial magnetic field, a systematic study of single particle orbits is performed for a crossed electric and periodic magnetic field. A parametric instability in the orbits, which brings a fraction of the electrons from the cathode toward the anode, is discovered. This offers an explanation of the rapid startup observed in the experiments. A phase-locking model has been constructed from circuit theory to qualitatively explain various regimes observed in kilowatt magnetron injection-locking experiments, which were performed at the University of Michigan. These experiments utilize two continuous-wave magnetrons; one functions as an oscillator and the other as a driver. Time and frequency domain solutions are developed from the model, allowing investigations into growth, saturation, and frequency response of the output. The model qualitatively recovers many of the phase-locking frequency characteristics observed in the experiments. Effects of frequency chirp and frequency perturbation on the phase and lockability have also been quantified. Development of traveling wave amplifier operating at terahertz is a subject of current interest. The small circuit size has prompted a statistical analysis of the effects of random fabrication errors on phase and small signal gain of these amplifiers. The small signal theory is treated with a continuum model in which the electron beam is monoenergetic. Circuit perturbations that vary randomly along the beam axis are introduced through the dimensionless Pierce parameters describing the beam-wave velocity mismatch (b), the gain parameter (C), and the cold tube circuit loss ( d). Our study shows that perturbation in b dominates the other two in terms of power gain and phase shift. Extensive data show that standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C and d.

  18. Effects of learning climate and registered nurse staffing on medication errors.

    PubMed

    Chang, Yunkyung; Mark, Barbara

    2011-01-01

    Despite increasing recognition of the significance of learning from errors, little is known about how learning climate contributes to error reduction. The purpose of this study was to investigate whether learning climate moderates the relationship between error-producing conditions and medication errors. A cross-sectional descriptive study was done using data from 279 nursing units in 146 randomly selected hospitals in the United States. Error-producing conditions included work environment factors (work dynamics and nurse mix), team factors (communication with physicians and nurses' expertise), personal factors (nurses' education and experience), patient factors (age, health status, and previous hospitalization), and medication-related support services. Poisson models with random effects were used with the nursing unit as the unit of analysis. A significant negative relationship was found between learning climate and medication errors. It also moderated the relationship between nurse mix and medication errors: When learning climate was negative, having more registered nurses was associated with fewer medication errors. However, no relationship was found between nurse mix and medication errors at either positive or average levels of learning climate. Learning climate did not moderate the relationship between work dynamics and medication errors. The way nurse mix affects medication errors depends on the level of learning climate. Nursing units with fewer registered nurses and frequent medication errors should examine their learning climate. Future research should be focused on the role of learning climate as related to the relationships between nurse mix and medication errors.

  19. The (mis)reporting of statistical results in psychology journals.

    PubMed

    Bakker, Marjan; Wicherts, Jelte M

    2011-09-01

    In order to study the prevalence, nature (direction), and causes of reporting errors in psychology, we checked the consistency of reported test statistics, degrees of freedom, and p values in a random sample of high- and low-impact psychology journals. In a second study, we established the generality of reporting errors in a random sample of recent psychological articles. Our results, on the basis of 281 articles, indicate that around 18% of statistical results in the psychological literature are incorrectly reported. Inconsistencies were more common in low-impact journals than in high-impact journals. Moreover, around 15% of the articles contained at least one statistical conclusion that proved, upon recalculation, to be incorrect; that is, recalculation rendered the previously significant result insignificant, or vice versa. These errors were often in line with researchers' expectations. We classified the most common errors and contacted authors to shed light on the origins of the errors.

  20. Random synaptic feedback weights support error backpropagation for deep learning

    NASA Astrophysics Data System (ADS)

    Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.

    2016-11-01

    The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning.

  1. Random synaptic feedback weights support error backpropagation for deep learning

    PubMed Central

    Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.

    2016-01-01

    The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning. PMID:27824044

  2. Development of Predictive Models for the Growth Kinetics of Listeria monocytogenes on Fresh Pork under Different Storage Temperatures.

    PubMed

    Luo, Ke; Hong, Sung-Sam; Wang, Jun; Chung, Mi-Ja; Deog-Hwan, Oh

    2015-05-01

    This study was conducted to develop a predictive model to estimate the growth of Listeria monocytogenes on fresh pork during storage at constant temperatures (5, 10, 15, 20, 25, 30, and 35°C). The Baranyi model was fitted to growth data (log CFU per gram) to calculate the specific growth rate (SGR) and lag time (LT) with a high coefficient of determination (R(2) > 0.98). As expected, SGR increased with a decline in LT with rising temperatures in all samples. Secondary models were then developed to describe the variation of SGR and LT as a function of temperature. Subsequently, the developed models were validated with additional independent growth data collected at 7, 17, 27, and 37°C and from published reports using proportion of relative errors and proportion of standard error of prediction. The proportion of relative errors of the SGR and LT models developed herein were 0.79 and 0.18, respectively. In addition, the standard error of prediction values of the SGR and LT of L. monocytogenes ranged from 25.7 to 33.1% and from 44.92 to 58.44%, respectively. These results suggest that the model developed in this study was capable of predicting the growth of L. monocytogenes under various isothermal conditions.

  3. Pricing Employee Stock Options (ESOs) with Random Lattice

    NASA Astrophysics Data System (ADS)

    Chendra, E.; Chin, L.; Sukmana, A.

    2018-04-01

    Employee Stock Options (ESOs) are stock options granted by companies to their employees. Unlike standard options that can be traded by typical institutional or individual investors, employees cannot sell or transfer their ESOs to other investors. The sale restrictions may induce the ESO’s holder to exercise them earlier. In much cited paper, Hull and White propose a binomial lattice in valuing ESOs which assumes that employees will exercise voluntarily their ESOs if the stock price reaches a horizontal psychological barrier. Due to nonlinearity errors, the numerical pricing results oscillate significantly so they may lead to large pricing errors. In this paper, we use the random lattice method to price the Hull-White ESOs model. This method can reduce the nonlinearity error by aligning a layer of nodes of the random lattice with a psychological barrier.

  4. The influence of random element displacement on DOA estimates obtained with (Khatri-Rao-)root-MUSIC.

    PubMed

    Inghelbrecht, Veronique; Verhaevert, Jo; van Hecke, Tanja; Rogier, Hendrik

    2014-11-11

    Although a wide range of direction of arrival (DOA) estimation algorithms has been described for a diverse range of array configurations, no specific stochastic analysis framework has been established to assess the probability density function of the error on DOA estimates due to random errors in the array geometry. Therefore, we propose a stochastic collocation method that relies on a generalized polynomial chaos expansion to connect the statistical distribution of random position errors to the resulting distribution of the DOA estimates. We apply this technique to the conventional root-MUSIC and the Khatri-Rao-root-MUSIC methods. According to Monte-Carlo simulations, this novel approach yields a speedup by a factor of more than 100 in terms of CPU-time for a one-dimensional case and by a factor of 56 for a two-dimensional case.

  5. Electronic laboratory system reduces errors in National Tuberculosis Program: a cluster randomized controlled trial.

    PubMed

    Blaya, J A; Shin, S S; Yale, G; Suarez, C; Asencios, L; Contreras, C; Rodriguez, P; Kim, J; Cegielski, P; Fraser, H S F

    2010-08-01

    To evaluate the impact of the e-Chasqui laboratory information system in reducing reporting errors compared to the current paper system. Cluster randomized controlled trial in 76 health centers (HCs) between 2004 and 2008. Baseline data were collected every 4 months for 12 months. HCs were then randomly assigned to intervention (e-Chasqui) or control (paper). Further data were collected for the same months the following year. Comparisons were made between intervention and control HCs, and before and after the intervention. Intervention HCs had respectively 82% and 87% fewer errors in reporting results for drug susceptibility tests (2.1% vs. 11.9%, P = 0.001, OR 0.17, 95%CI 0.09-0.31) and cultures (2.0% vs. 15.1%, P < 0.001, OR 0.13, 95%CI 0.07-0.24), than control HCs. Preventing missing results through online viewing accounted for at least 72% of all errors. e-Chasqui users sent on average three electronic error reports per week to the laboratories. e-Chasqui reduced the number of missing laboratory results at point-of-care health centers. Clinical users confirmed viewing electronic results not available on paper. Reporting errors to the laboratory using e-Chasqui promoted continuous quality improvement. The e-Chasqui laboratory information system is an important part of laboratory infrastructure improvements to support multidrug-resistant tuberculosis care in Peru.

  6. [Exploration of the concept of genetic drift in genetics teaching of undergraduates].

    PubMed

    Wang, Chun-ming

    2016-01-01

    Genetic drift is one of the difficulties in teaching genetics due to its randomness and probability which could easily cause conceptual misunderstanding. The “sampling error" in its definition is often misunderstood because of the research method of “sampling", which disturbs the results and causes the random changes in allele frequency. I analyzed and compared the definitions of genetic drift in domestic and international genetic textbooks, and found that the definitions containing “sampling error" are widely adopted but are interpreted correctly in only a few textbooks. Here, the history of research on genetic drift, i.e., the contributions of Wright, Fisher and Kimura, is introduced. Moreover, I particularly describe two representative articles recently published about genetic drift teaching of undergraduates, which point out that misconceptions are inevitable for undergraduates during the studying process and also provide a preliminary solution. Combined with my own teaching practice, I suggest that the definition of genetic drift containing “sampling error" can be adopted with further interpretation, i.e., “sampling error" is random sampling among gametes when generating the next generation of alleles which is equivalent to a random sampling of all gametes participating in mating in gamete pool and has no relationship with artificial sampling in general genetics studies. This article may provide some help in genetics teaching.

  7. Density dependence and climate effects in Rocky Mountain elk: an application of regression with instrumental variables for population time series with sampling error.

    PubMed

    Creel, Scott; Creel, Michael

    2009-11-01

    1. Sampling error in annual estimates of population size creates two widely recognized problems for the analysis of population growth. First, if sampling error is mistakenly treated as process error, one obtains inflated estimates of the variation in true population trajectories (Staples, Taper & Dennis 2004). Second, treating sampling error as process error is thought to overestimate the importance of density dependence in population growth (Viljugrein et al. 2005; Dennis et al. 2006). 2. In ecology, state-space models are used to account for sampling error when estimating the effects of density and other variables on population growth (Staples et al. 2004; Dennis et al. 2006). In econometrics, regression with instrumental variables is a well-established method that addresses the problem of correlation between regressors and the error term, but requires fewer assumptions than state-space models (Davidson & MacKinnon 1993; Cameron & Trivedi 2005). 3. We used instrumental variables to account for sampling error and fit a generalized linear model to 472 annual observations of population size for 35 Elk Management Units in Montana, from 1928 to 2004. We compared this model with state-space models fit with the likelihood function of Dennis et al. (2006). We discuss the general advantages and disadvantages of each method. Briefly, regression with instrumental variables is valid with fewer distributional assumptions, but state-space models are more efficient when their distributional assumptions are met. 4. Both methods found that population growth was negatively related to population density and winter snow accumulation. Summer rainfall and wolf (Canis lupus) presence had much weaker effects on elk (Cervus elaphus) dynamics [though limitation by wolves is strong in some elk populations with well-established wolf populations (Creel et al. 2007; Creel & Christianson 2008)]. 5. Coupled with predictions for Montana from global and regional climate models, our results predict a substantial reduction in the limiting effect of snow accumulation on Montana elk populations in the coming decades. If other limiting factors do not operate with greater force, population growth rates would increase substantially.

  8. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Sen; Li, Guangjun; Wang, Maojie

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less

  9. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

  10. Evaluation of Bayesian Sequential Proportion Estimation Using Analyst Labels

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Abotteen, K. M. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. A total of ten Large Area Crop Inventory Experiment Phase 3 blind sites and analyst-interpreter labels were used in a study to compare proportional estimates obtained by the Bayes sequential procedure with estimates obtained from simple random sampling and from Procedure 1. The analyst error rate using the Bayes technique was shown to be no greater than that for the simple random sampling. Also, the segment proportion estimates produced using this technique had smaller bias and mean squared errors than the estimates produced using either simple random sampling or Procedure 1.

  11. Center of mass perception and inertial frames of reference.

    PubMed

    Bingham, G P; Muchisky, M M

    1993-11-01

    Center of mass perception was investigated by varying the shape, size, and orientation of planar objects. Shape was manipulated to investigate symmetries as information. The number of reflective symmetry axes, the amount of rotational symmetry, and the presence of radial symmetry were varied. Orientation affected systematic errors. Judgments tended to undershoot the center of mass. Random errors increased with size and decreased with symmetry. Size had no effect on random errors for maximally symmetric objects, although orientation did. The spatial distributions of judgments were elliptical. Distribution axes were found to align with the principle moments of inertia. Major axes tended to align with gravity in maximally symmetric objects. A functional and physical account was given in terms of the repercussions of error. Overall, judgments were very accurate.

  12. Incorporating a prediction of postgrazing herbage mass into a whole-farm model for pasture-based dairy systems.

    PubMed

    Gregorini, P; Galli, J; Romera, A J; Levy, G; Macdonald, K A; Fernandez, H H; Beukes, P C

    2014-07-01

    The DairyNZ whole-farm model (WFM; DairyNZ, Hamilton, New Zealand) consists of a framework that links component models for animal, pastures, crops, and soils. The model was developed to assist with analysis and design of pasture-based farm systems. New (this work) and revised (e.g., cow, pasture, crops) component models can be added to the WFM, keeping the model flexible and up to date. Nevertheless, the WFM does not account for plant-animal relationships determining herbage-depletion dynamics. The user has to preset the maximum allowable level of herbage depletion [i.e., postgrazing herbage mass (residuals)] throughout the year. Because residuals have a direct effect on herbage regrowth, the WFM in its current form does not dynamically simulate the effect of grazing pressure on herbage depletion and consequent effect on herbage regrowth. The management of grazing pressure is a key component of pasture-based dairy systems. Thus, the main objective of the present work was to develop a new version of the WFM able to predict residuals, and thereby simulate related effects of grazing pressure dynamically at the farm scale. This objective was accomplished by incorporating a new component model into the WFM. This model represents plant-animal relationships, for example sward structure and herbage intake rate, and resulting level of herbage depletion. The sensitivity of the new version of the WFM was evaluated and then the new WFM was tested against an experimental data set previously used to evaluate the WFM and to illustrate the adequacy and improvement of the model development. Key outputs variables of the new version pertinent to this work (milk production, herbage dry matter intake, intake rate, harvesting efficiency, and residuals) responded acceptably to a range of input variables. The relative prediction errors for monthly and mean annual residual predictions were 20 and 5%, respectively. Monthly predictions of residuals had a line bias (1.5%), with a proportion of square root of mean square prediction error (RMSPE) due to random error of 97.5%. Predicted monthly herbage growth rates had a line bias of 2%, a proportion of RMSPE due to random error of 96%, and a concordance correlation coefficient of 0.87. Annual herbage production was predicted with an RMSPE of 531 (kg of herbage dry matter/ha per year), a line bias of 11%, a proportion of RMSPE due to random error of 80%, and relative prediction errors of 2%. Annual herbage dry matter intake per cow and hectare, both per year, were predicted with RMSPE, relative prediction error, and concordance correlation coefficient of 169 and 692kg of dry matter, 3 and 4%, and 0.91 and 0.87, respectively. These results indicate that predictions of the new WFM are relatively accurate and precise, with a conclusion that incorporating a plant-animal relationship model into the WFM allows for dynamic predictions of residuals and more realistic simulations of the effect of grazing pressure on herbage production and intake at the farm level without the intervention from the user. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Gene-targeted Random Mutagenesis to Select Heterochromatin-destabilizing Proteasome Mutants in Fission Yeast.

    PubMed

    Seo, Hogyu David; Lee, Daeyoup

    2018-05-15

    Random mutagenesis of a target gene is commonly used to identify mutations that yield the desired phenotype. Of the methods that may be used to achieve random mutagenesis, error-prone PCR is a convenient and efficient strategy for generating a diverse pool of mutants (i.e., a mutant library). Error-prone PCR is the method of choice when a researcher seeks to mutate a pre-defined region, such as the coding region of a gene while leaving other genomic regions unaffected. After the mutant library is amplified by error-prone PCR, it must be cloned into a suitable plasmid. The size of the library generated by error-prone PCR is constrained by the efficiency of the cloning step. However, in the fission yeast, Schizosaccharomyces pombe, the cloning step can be replaced by the use of a highly efficient one-step fusion PCR to generate constructs for transformation. Mutants of desired phenotypes may then be selected using appropriate reporters. Here, we describe this strategy in detail, taking as an example, a reporter inserted at centromeric heterochromatin.

  14. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. C.; Alden, C.; White, J. W. C.

    2014-10-01

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of C in the atmosphere, ocean, and land; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate error and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2 σ error of the atmospheric growth rate has decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s, leading to a ~20% reduction in the over-all uncertainty of net global C uptake by the biosphere. While fossil fuel emissions have increased by a factor of 4 over the last 5 decades, 2 σ errors in fossil fuel emissions due to national reporting errors and differences in energy reporting practices have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s. At the same time land use emissions have declined slightly over the last 5 decades, but their relative errors remain high. Notably, errors associated with fossil fuel emissions have come to dominate uncertainty in the global C budget and are now comparable to the total emissions from land use, thus efforts to reduce errors in fossil fuel emissions are necessary. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that C uptake has increased and 97% confident that C uptake by the terrestrial biosphere has increased over the last 5 decades. Although the persistence of future C sinks remains unknown and some ecosystem services may be compromised by this continued C uptake (e.g. ocean acidification), it is clear that arguably the greatest ecosystem service currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere.

  15. Smooth empirical Bayes estimation of observation error variances in linear systems

    NASA Technical Reports Server (NTRS)

    Martz, H. F., Jr.; Lian, M. W.

    1972-01-01

    A smooth empirical Bayes estimator was developed for estimating the unknown random scale component of each of a set of observation error variances. It is shown that the estimator possesses a smaller average squared error loss than other estimators for a discrete time linear system.

  16. Within-Tunnel Variations in Pressure Data for Three Transonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2014-01-01

    This paper compares the results of pressure measurements made on the same test article with the same test matrix in three transonic wind tunnels. A comparison is presented of the unexplained variance associated with polar replicates acquired in each tunnel. The impact of a significance component of systematic (not random) unexplained variance is reviewed, and the results of analyses of variance are presented to assess the degree of significant systematic error in these representative wind tunnel tests. Total uncertainty estimates are reported for 140 samples of pressure data, quantifying the effects of within-polar random errors and between-polar systematic bias errors.

  17. The accuracy of the measurements in Ulugh Beg's star catalogue

    NASA Astrophysics Data System (ADS)

    Krisciunas, K.

    1992-12-01

    The star catalogue compiled by Ulugh Beg and his collaborators in Samarkand (ca. 1437) is the only catalogue primarily based on original observations between the times of Ptolemy and Tycho Brahe. Evans (1987) has given convincing evidence that Ulugh Beg's star catalogue was based on measurements made with a zodiacal armillary sphere graduated to 15(') , with interpolation to 0.2 units. He and Shevchenko (1990) were primarily interested in the systematic errors in ecliptic longitude. Shevchenko's analysis of the random errors was limited to the twelve zodiacal constellations. We have analyzed all 843 ecliptic longitudes and latitudes attributed to Ulugh Beg by Knobel (1917). This required multiplying all the longitude errors by the respective values of the cosine of the celestial latitudes. We find a random error of +/- 17minp 7 for ecliptic longitude and +/- 16minp 5 for ecliptic latitude. On the whole, the random errors are largest near the ecliptic, decreasing towards the ecliptic poles. For all of Ulugh Beg's measurements (excluding outliers) the mean systematic error is -10minp 8 +/- 0minp 8 for ecliptic longitude and 7minp 5 +/- 0minp 7 for ecliptic latitude, with the errors in the sense ``computed minus Ulugh Beg''. For the brighter stars (those designated alpha , beta , and gamma in the respective constellations), the mean systematic errors are -11minp 3 +/- 1minp 9 for ecliptic longitude and 9minp 4 +/- 1minp 5 for ecliptic latitude. Within the errors this matches the systematic error in both coordinates for alpha Vir. With greater confidence we may conclude that alpha Vir was the principal reference star in the catalogues of Ulugh Beg and Ptolemy. Evans, J. 1987, J. Hist. Astr. 18, 155. Knobel, E. B. 1917, Ulugh Beg's Catalogue of Stars, Washington, D. C.: Carnegie Institution. Shevchenko, M. 1990, J. Hist. Astr. 21, 187.

  18. Estimation of genetic connectedness diagnostics based on prediction errors without the prediction error variance-covariance matrix.

    PubMed

    Holmes, John B; Dodds, Ken G; Lee, Michael A

    2017-03-02

    An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.

  19. Tropical forecasting - Predictability perspective

    NASA Technical Reports Server (NTRS)

    Shukla, J.

    1989-01-01

    Results are presented of classical predictability studies and forecast experiments with observed initial conditions to show the nature of initial error growth and final error equilibration for the tropics and midlatitudes, separately. It is found that the theoretical upper limit of tropical circulation predictability is far less than for midlatitudes. The error growth for a complete general circulation model is compared to a dry version of the same model in which there is no prognostic equation for moisture, and diabatic heat sources are prescribed. It is found that the growth rate of synoptic-scale errors for the dry model is significantly smaller than for the moist model, suggesting that the interactions between dynamics and moist processes are among the important causes of atmospheric flow predictability degradation. Results are then presented of numerical experiments showing that correct specification of the slowly varying boundary condition of SST produces significant improvement in the prediction of time-averaged circulation and rainfall over the tropics.

  20. Linguistic pattern analysis of misspellings of typically developing writers in grades 1-9.

    PubMed

    Bahr, Ruth Huntley; Sillian, Elaine R; Berninger, Virginia W; Dow, Michael

    2012-12-01

    A mixed-methods approach, evaluating triple word-form theory, was used to describe linguistic patterns of misspellings. Spelling errors were taken from narrative and expository writing samples provided by 888 typically developing students in Grades 1-9. Errors were coded by category (phonological, orthographic, and morphological) and specific linguistic feature affected. Grade-level effects were analyzed with trend analysis. Qualitative analyses determined frequent error types and how use of specific linguistic features varied across grades. Phonological, orthographic, and morphological errors were noted across all grades, but orthographic errors predominated. Linear trends revealed developmental shifts in error proportions for the orthographic and morphological categories between Grades 4 and 5. Similar error types were noted across age groups, but the nature of linguistic feature error changed with age. Triple word-form theory was supported. By Grade 1, orthographic errors predominated, and phonological and morphological error patterns were evident. Morphological errors increased in relative frequency in older students, probably due to a combination of word-formation issues and vocabulary growth. These patterns suggest that normal spelling development reflects nonlinear growth and that it takes a long time to develop a robust orthographic lexicon that coordinates phonology, orthography, and morphology and supports word-specific, conventional spelling.

  1. Random access to mobile networks with advanced error correction

    NASA Technical Reports Server (NTRS)

    Dippold, Michael

    1990-01-01

    A random access scheme for unreliable data channels is investigated in conjunction with an adaptive Hybrid-II Automatic Repeat Request (ARQ) scheme using Rate Compatible Punctured Codes (RCPC) Forward Error Correction (FEC). A simple scheme with fixed frame length and equal slot sizes is chosen and reservation is implicit by the first packet transmitted randomly in a free slot, similar to Reservation Aloha. This allows the further transmission of redundancy if the last decoding attempt failed. Results show that a high channel utilization and superior throughput can be achieved with this scheme that shows a quite low implementation complexity. For the example of an interleaved Rayleigh channel and soft decision utilization and mean delay are calculated. A utilization of 40 percent may be achieved for a frame with the number of slots being equal to half the station number under high traffic load. The effects of feedback channel errors and some countermeasures are discussed.

  2. Predicting the random drift of MEMS gyroscope based on K-means clustering and OLS RBF Neural Network

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-yu; Zhang, Li-jie

    2017-10-01

    Measure error of the sensor can be effectively compensated with prediction. Aiming at large random drift error of MEMS(Micro Electro Mechanical System))gyroscope, an improved learning algorithm of Radial Basis Function(RBF) Neural Network(NN) based on K-means clustering and Orthogonal Least-Squares (OLS) is proposed in this paper. The algorithm selects the typical samples as the initial cluster centers of RBF NN firstly, candidates centers with K-means algorithm secondly, and optimizes the candidate centers with OLS algorithm thirdly, which makes the network structure simpler and makes the prediction performance better. Experimental results show that the proposed K-means clustering OLS learning algorithm can predict the random drift of MEMS gyroscope effectively, the prediction error of which is 9.8019e-007°/s and the prediction time of which is 2.4169e-006s

  3. A survey of mindset theories of intelligence and medical error self-reporting among pediatric housestaff and faculty.

    PubMed

    Jegathesan, Mithila; Vitberg, Yaffa M; Pusic, Martin V

    2016-02-11

    Intelligence theory research has illustrated that people hold either "fixed" (intelligence is immutable) or "growth" (intelligence can be improved) mindsets and that these views may affect how people learn throughout their lifetime. Little is known about the mindsets of physicians, and how mindset may affect their lifetime learning and integration of feedback. Our objective was to determine if pediatric physicians are of the "fixed" or "growth" mindset and whether individual mindset affects perception of medical error reporting.  We sent an anonymous electronic survey to pediatric residents and attending pediatricians at a tertiary care pediatric hospital. Respondents completed the "Theories of Intelligence Inventory" which classifies individuals on a 6-point scale ranging from 1 (Fixed Mindset) to 6 (Growth Mindset). Subsequent questions collected data on respondents' recall of medical errors by self or others. We received 176/349 responses (50 %). Participants were equally distributed between mindsets with 84 (49 %) classified as "fixed" and 86 (51 %) as "growth". Residents, fellows and attendings did not differ in terms of mindset. Mindset did not correlate with the small number of reported medical errors. There is no dominant theory of intelligence (mindset) amongst pediatric physicians. The distribution is similar to that seen in the general population. Mindset did not correlate with error reports.

  4. Quantifying Errors in TRMM-Based Multi-Sensor QPE Products Over Land in Preparation for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Tian, Yudong

    2011-01-01

    Determining uncertainties in satellite-based multi-sensor quantitative precipitation estimates over land of fundamental importance to both data producers and hydro climatological applications. ,Evaluating TRMM-era products also lays the groundwork and sets the direction for algorithm and applications development for future missions including GPM. QPE uncertainties result mostly from the interplay of systematic errors and random errors. In this work, we will synthesize our recent results quantifying the error characteristics of satellite-based precipitation estimates. Both systematic errors and total uncertainties have been analyzed for six different TRMM-era precipitation products (3B42, 3B42RT, CMORPH, PERSIANN, NRL and GSMap). For systematic errors, we devised an error decomposition scheme to separate errors in precipitation estimates into three independent components, hit biases, missed precipitation and false precipitation. This decomposition scheme reveals hydroclimatologically-relevant error features and provides a better link to the error sources than conventional analysis, because in the latter these error components tend to cancel one another when aggregated or averaged in space or time. For the random errors, we calculated the measurement spread from the ensemble of these six quasi-independent products, and thus produced a global map of measurement uncertainties. The map yields a global view of the error characteristics and their regional and seasonal variations, reveals many undocumented error features over areas with no validation data available, and provides better guidance to global assimilation of satellite-based precipitation data. Insights gained from these results and how they could help with GPM will be highlighted.

  5. Sloppy-slotted ALOHA

    NASA Technical Reports Server (NTRS)

    Crozier, Stewart N.

    1990-01-01

    Random access signaling, which allows slotted packets to spill over into adjacent slots, is investigated. It is shown that sloppy-slotted ALOHA can always provide higher throughput than conventional slotted ALOHA. The degree of improvement depends on the timing error distribution. Throughput performance is presented for Gaussian timing error distributions, modified to include timing error corrections. A general channel capacity lower bound, independent of the specific timing error distribution, is also presented.

  6. A general method for the definition of margin recipes depending on the treatment technique applied in helical tomotherapy prostate plans.

    PubMed

    Sevillano, David; Mínguez, Cristina; Sánchez, Alicia; Sánchez-Reyes, Alberto

    2016-01-01

    To obtain specific margin recipes that take into account the dosimetric characteristics of the treatment plans used in a single institution. We obtained dose-population histograms (DPHs) of 20 helical tomotherapy treatment plans for prostate cancer by simulating the effects of different systematic errors (Σ) and random errors (σ) on these plans. We obtained dosimetric margins and margin reductions due to random errors (random margins) by fitting the theoretical results of coverages for Gaussian distributions with coverages of the planned D99% obtained from the DPHs. The dosimetric margins obtained for helical tomotherapy prostate treatments were 3.3 mm, 3 mm, and 1 mm in the lateral (Lat), anterior-posterior (AP), and superior-inferior (SI) directions. Random margins showed parabolic dependencies, yielding expressions of 0.16σ(2), 0.13σ(2), and 0.15σ(2) for the Lat, AP, and SI directions, respectively. When focusing on values up to σ = 5 mm, random margins could be fitted considering Gaussian penumbras with standard deviations (σp) equal to 4.5 mm Lat, 6 mm AP, and 5.5 mm SI. Despite complex dose distributions in helical tomotherapy treatment plans, we were able to simplify the behaviour of our plans against treatment errors to single values of dosimetric and random margins for each direction. These margins allowed us to develop specific margin recipes for the respective treatment technique. The method is general and could be used for any treatment technique provided that DPHs can be obtained. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Model studies of the beam-filling error for rain-rate retrieval with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Ha, Eunho; North, Gerald R.

    1995-01-01

    Low-frequency (less than 20 GHz) single-channel microwave retrievals of rain rate encounter the problem of beam-filling error. This error stems from the fact that the relationship between microwave brightness temperature and rain rate is nonlinear, coupled with the fact that the field of view is large or comparable to important scales of variability of the rain field. This means that one may not simply insert the area average of the brightness temperature into the formula for rain rate without incurring both bias and random error. The statistical heterogeneity of the rain-rate field in the footprint of the instrument is key to determining the nature of these errors. This paper makes use of a series of random rain-rate fields to study the size of the bias and random error associated with beam filling. A number of examples are analyzed in detail: the binomially distributed field, the gamma, the Gaussian, the mixed gamma, the lognormal, and the mixed lognormal ('mixed' here means there is a finite probability of no rain rate at a point of space-time). Of particular interest are the applicability of a simple error formula due to Chiu and collaborators and a formula that might hold in the large field of view limit. It is found that the simple formula holds for Gaussian rain-rate fields but begins to fail for highly skewed fields such as the mixed lognormal. While not conclusively demonstrated here, it is suggested that the notionof climatologically adjusting the retrievals to remove the beam-filling bias is a reasonable proposition.

  8. Technical Note: Millimeter precision in ultrasound based patient positioning: Experimental quantification of inherent technical limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballhausen, Hendrik, E-mail: hendrik.ballhausen@med.uni-muenchen.de; Hieber, Sheila; Li, Minglun

    2014-08-15

    Purpose: To identify the relevant technical sources of error of a system based on three-dimensional ultrasound (3D US) for patient positioning in external beam radiotherapy. To quantify these sources of error in a controlled laboratory setting. To estimate the resulting end-to-end geometric precision of the intramodality protocol. Methods: Two identical free-hand 3D US systems at both the planning-CT and the treatment room were calibrated to the laboratory frame of reference. Every step of the calibration chain was repeated multiple times to estimate its contribution to overall systematic and random error. Optimal margins were computed given the identified and quantified systematicmore » and random errors. Results: In descending order of magnitude, the identified and quantified sources of error were: alignment of calibration phantom to laser marks 0.78 mm, alignment of lasers in treatment vs planning room 0.51 mm, calibration and tracking of 3D US probe 0.49 mm, alignment of stereoscopic infrared camera to calibration phantom 0.03 mm. Under ideal laboratory conditions, these errors are expected to limit ultrasound-based positioning to an accuracy of 1.05 mm radially. Conclusions: The investigated 3D ultrasound system achieves an intramodal accuracy of about 1 mm radially in a controlled laboratory setting. The identified systematic and random errors require an optimal clinical tumor volume to planning target volume margin of about 3 mm. These inherent technical limitations do not prevent clinical use, including hypofractionation or stereotactic body radiation therapy.« less

  9. Discrepancy-based error estimates for Quasi-Monte Carlo III. Error distributions and central limits

    NASA Astrophysics Data System (ADS)

    Hoogland, Jiri; Kleiss, Ronald

    1997-04-01

    In Quasi-Monte Carlo integration, the integration error is believed to be generally smaller than in classical Monte Carlo with the same number of integration points. Using an appropriate definition of an ensemble of quasi-random point sets, we derive various results on the probability distribution of the integration error, which can be compared to the standard Central Limit Theorem for normal stochastic sampling. In many cases, a Gaussian error distribution is obtained.

  10. Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.

    2015-07-01

    Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.

  11. Effect of Random Circuit Fabrication Errors on Small Signal Gain and Phase in Helix Traveling Wave Tubes

    NASA Astrophysics Data System (ADS)

    Pengvanich, P.; Chernin, D. P.; Lau, Y. Y.; Luginsland, J. W.; Gilgenbach, R. M.

    2007-11-01

    Motivated by the current interest in mm-wave and THz sources, which use miniature, difficult-to-fabricate circuit components, we evaluate the statistical effects of random fabrication errors on a helix traveling wave tube amplifier's small signal characteristics. The small signal theory is treated in a continuum model in which the electron beam is assumed to be monoenergetic, and axially symmetric about the helix axis. Perturbations that vary randomly along the beam axis are introduced in the dimensionless Pierce parameters b, the beam-wave velocity mismatch, C, the gain parameter, and d, the cold tube circuit loss. Our study shows, as expected, that perturbation in b dominates the other two. The extensive numerical data have been confirmed by our analytic theory. They show in particular that the standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C, and d. Simple formulas have been derived which yield the output phase variations in terms of the statistical random manufacturing errors. This work was supported by AFOSR and by ONR.

  12. Accuracy of indirect estimation of power output from uphill performance in cycling.

    PubMed

    Millet, Grégoire P; Tronche, Cyrille; Grappe, Frédéric

    2014-09-01

    To use measurement by cycling power meters (Pmes) to evaluate the accuracy of commonly used models for estimating uphill cycling power (Pest). Experiments were designed to explore the influence of wind speed and steepness of climb on accuracy of Pest. The authors hypothesized that the random error in Pest would be largely influenced by the windy conditions, the bias would be diminished in steeper climbs, and windy conditions would induce larger bias in Pest. Sixteen well-trained cyclists performed 15 uphill-cycling trials (range: length 1.3-6.3 km, slope 4.4-10.7%) in a random order. Trials included different riding position in a group (lead or follow) and different wind speeds. Pmes was quantified using a power meter, and Pest was calculated with a methodology used by journalists reporting on the Tour de France. Overall, the difference between Pmes and Pest was -0.95% (95%CI: -10.4%, +8.5%) for all trials and 0.24% (-6.1%, +6.6%) in conditions without wind (<2 m/s). The relationship between percent slope and the error between Pest and Pmes were considered trivial. Aerodynamic drag (affected by wind velocity and orientation, frontal area, drafting, and speed) is the most confounding factor. The mean estimated values are close to the power-output values measured by power meters, but the random error is between ±6% and ±10%. Moreover, at the power outputs (>400 W) produced by professional riders, this error is likely to be higher. This observation calls into question the validity of releasing individual values without reporting the range of random errors.

  13. On the error probability of general tree and trellis codes with applications to sequential decoding

    NASA Technical Reports Server (NTRS)

    Johannesson, R.

    1973-01-01

    An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random binary tree codes is derived and shown to be independent of the length of the tree. An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random L-branch binary trellis codes of rate R = 1/n is derived which separates the effects of the tail length T and the memory length M of the code. It is shown that the bound is independent of the length L of the information sequence. This implication is investigated by computer simulations of sequential decoding utilizing the stack algorithm. These simulations confirm the implication and further suggest an empirical formula for the true undetected decoding error probability with sequential decoding.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, Timothy; Rudinger, Kenneth; Young, Kevin

    Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not amore » well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. Here, these theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed (completely positive) representation of the imperfect gates.« less

  15. Numerical Error Estimation with UQ

    NASA Astrophysics Data System (ADS)

    Ackmann, Jan; Korn, Peter; Marotzke, Jochem

    2014-05-01

    Ocean models are still in need of means to quantify model errors, which are inevitably made when running numerical experiments. The total model error can formally be decomposed into two parts, the formulation error and the discretization error. The formulation error arises from the continuous formulation of the model not fully describing the studied physical process. The discretization error arises from having to solve a discretized model instead of the continuously formulated model. Our work on error estimation is concerned with the discretization error. Given a solution of a discretized model, our general problem statement is to find a way to quantify the uncertainties due to discretization in physical quantities of interest (diagnostics), which are frequently used in Geophysical Fluid Dynamics. The approach we use to tackle this problem is called the "Goal Error Ensemble method". The basic idea of the Goal Error Ensemble method is that errors in diagnostics can be translated into a weighted sum of local model errors, which makes it conceptually based on the Dual Weighted Residual method from Computational Fluid Dynamics. In contrast to the Dual Weighted Residual method these local model errors are not considered deterministically but interpreted as local model uncertainty and described stochastically by a random process. The parameters for the random process are tuned with high-resolution near-initial model information. However, the original Goal Error Ensemble method, introduced in [1], was successfully evaluated only in the case of inviscid flows without lateral boundaries in a shallow-water framework and is hence only of limited use in a numerical ocean model. Our work consists in extending the method to bounded, viscous flows in a shallow-water framework. As our numerical model, we use the ICON-Shallow-Water model. In viscous flows our high-resolution information is dependent on the viscosity parameter, making our uncertainty measures viscosity-dependent. We will show that we can choose a sensible parameter by using the Reynolds-number as a criteria. Another topic, we will discuss is the choice of the underlying distribution of the random process. This is especially of importance in the scope of lateral boundaries. We will present resulting error estimates for different height- and velocity-based diagnostics applied to the Munk gyre experiment. References [1] F. RAUSER: Error Estimation in Geophysical Fluid Dynamics through Learning; PhD Thesis, IMPRS-ESM, Hamburg, 2010 [2] F. RAUSER, J. MAROTZKE, P. KORN: Ensemble-type numerical uncertainty quantification from single model integrations; SIAM/ASA Journal on Uncertainty Quantification, submitted

  16. The detection of problem analytes in a single proficiency test challenge in the absence of the Health Care Financing Administration rule violations.

    PubMed

    Cembrowski, G S; Hackney, J R; Carey, N

    1993-04-01

    The Clinical Laboratory Improvement Act of 1988 (CLIA 88) has dramatically changed proficiency testing (PT) practices having mandated (1) satisfactory PT for certain analytes as a condition of laboratory operation, (2) fixed PT limits for many of these "regulated" analytes, and (3) an increased number of PT specimens (n = 5) for each testing cycle. For many of these analytes, the fixed limits are much broader than the previously employed Standard Deviation Index (SDI) criteria. Paradoxically, there may be less incentive to identify and evaluate analytically significant outliers to improve the analytical process. Previously described "control rules" to evaluate these PT results are unworkable as they consider only two or three results. We used Monte Carlo simulations of Kodak Ektachem analyzers participating in PT to determine optimal control rules for the identification of PT results that are inconsistent with those from other laboratories using the same methods. The analysis of three representative analytes, potassium, creatine kinase, and iron was simulated with varying intrainstrument and interinstrument standard deviations (si and sg, respectively) obtained from the College of American Pathologists (Northfield, Ill) Quality Assurance Services data and Proficiency Test data, respectively. Analytical errors were simulated in each of the analytes and evaluated in terms of multiples of the interlaboratory SDI. Simple control rules for detecting systematic and random error were evaluated with power function graphs, graphs of probability of error detected vs magnitude of error. Based on the simulation results, we recommend screening all analytes for the occurrence of two or more observations exceeding the same +/- 1 SDI limit. For any analyte satisfying this condition, the mean of the observations should be calculated. For analytes with sg/si ratios between 1.0 and 1.5, a significant systematic error is signaled by the mean exceeding 1.0 SDI. Significant random error is signaled by one observation exceeding the +/- 3-SDI limit or the range of the observations exceeding 4 SDIs. For analytes with higher sg/si, significant systematic or random error is signaled by violation of the screening rule (having at least two observations exceeding the same +/- 1 SDI limit). Random error can also be signaled by one observation exceeding the +/- 1.5-SDI limit or the range of the observations exceeding 3 SDIs. We present a practical approach to the workup of apparent PT errors.

  17. An efficient algorithm for generating random number pairs drawn from a bivariate normal distribution

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1983-01-01

    An efficient algorithm for generating random number pairs from a bivariate normal distribution was developed. Any desired value of the two means, two standard deviations, and correlation coefficient can be selected. Theoretically the technique is exact and in practice its accuracy is limited only by the quality of the uniform distribution random number generator, inaccuracies in computer function evaluation, and arithmetic. A FORTRAN routine was written to check the algorithm and good accuracy was obtained. Some small errors in the correlation coefficient were observed to vary in a surprisingly regular manner. A simple model was developed which explained the qualities aspects of the errors.

  18. The Applicability of Standard Error of Measurement and Minimal Detectable Change to Motor Learning Research-A Behavioral Study.

    PubMed

    Furlan, Leonardo; Sterr, Annette

    2018-01-01

    Motor learning studies face the challenge of differentiating between real changes in performance and random measurement error. While the traditional p -value-based analyses of difference (e.g., t -tests, ANOVAs) provide information on the statistical significance of a reported change in performance scores, they do not inform as to the likely cause or origin of that change, that is, the contribution of both real modifications in performance and random measurement error to the reported change. One way of differentiating between real change and random measurement error is through the utilization of the statistics of standard error of measurement (SEM) and minimal detectable change (MDC). SEM is estimated from the standard deviation of a sample of scores at baseline and a test-retest reliability index of the measurement instrument or test employed. MDC, in turn, is estimated from SEM and a degree of confidence, usually 95%. The MDC value might be regarded as the minimum amount of change that needs to be observed for it to be considered a real change, or a change to which the contribution of real modifications in performance is likely to be greater than that of random measurement error. A computer-based motor task was designed to illustrate the applicability of SEM and MDC to motor learning research. Two studies were conducted with healthy participants. Study 1 assessed the test-retest reliability of the task and Study 2 consisted in a typical motor learning study, where participants practiced the task for five consecutive days. In Study 2, the data were analyzed with a traditional p -value-based analysis of difference (ANOVA) and also with SEM and MDC. The findings showed good test-retest reliability for the task and that the p -value-based analysis alone identified statistically significant improvements in performance over time even when the observed changes could in fact have been smaller than the MDC and thereby caused mostly by random measurement error, as opposed to by learning. We suggest therefore that motor learning studies could complement their p -value-based analyses of difference with statistics such as SEM and MDC in order to inform as to the likely cause or origin of any reported changes in performance.

  19. Estimation and Simulation of Slow Crack Growth Parameters from Constant Stress Rate Data

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Weaver, Aaron S.

    2003-01-01

    Closed form, approximate functions for estimating the variances and degrees-of-freedom associated with the slow crack growth parameters n, D, B, and A(sup *) as measured using constant stress rate ('dynamic fatigue') testing were derived by using propagation of errors. Estimates made with the resulting functions and slow crack growth data for a sapphire window were compared to the results of Monte Carlo simulations. The functions for estimation of the variances of the parameters were derived both with and without logarithmic transformation of the initial slow crack growth equations. The transformation was performed to make the functions both more linear and more normal. Comparison of the Monte Carlo results and the closed form expressions derived with propagation of errors indicated that linearization is not required for good estimates of the variances of parameters n and D by the propagation of errors method. However, good estimates variances of the parameters B and A(sup *) could only be made when the starting slow crack growth equation was transformed and the coefficients of variation of the input parameters were not too large. This was partially a result of the skewered distributions of B and A(sup *). Parametric variation of the input parameters was used to determine an acceptable range for using closed form approximate equations derived from propagation of errors.

  20. Positivity, discontinuity, finite resources, and nonzero error for arbitrarily varying quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boche, H., E-mail: boche@tum.de, E-mail: janis.noetzel@tum.de; Nötzel, J., E-mail: boche@tum.de, E-mail: janis.noetzel@tum.de

    2014-12-15

    This work is motivated by a quite general question: Under which circumstances are the capacities of information transmission systems continuous? The research is explicitly carried out on finite arbitrarily varying quantum channels (AVQCs). We give an explicit example that answers the recent question whether the transmission of messages over AVQCs can benefit from assistance by distribution of randomness between the legitimate sender and receiver in the affirmative. The specific class of channels introduced in that example is then extended to show that the unassisted capacity does have discontinuity points, while it is known that the randomness-assisted capacity is always continuousmore » in the channel. We characterize the discontinuity points and prove that the unassisted capacity is always continuous around its positivity points. After having established shared randomness as an important resource, we quantify the interplay between the distribution of finite amounts of randomness between the legitimate sender and receiver, the (nonzero) probability of a decoding error with respect to the average error criterion and the number of messages that can be sent over a finite number of channel uses. We relate our results to the entanglement transmission capacities of finite AVQCs, where the role of shared randomness is not yet well understood, and give a new sufficient criterion for the entanglement transmission capacity with randomness assistance to vanish.« less

  1. Noise in two-color electronic distance meter measurements revisited

    USGS Publications Warehouse

    Langbein, J.

    2004-01-01

    Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.

  2. Helical tomotherapy setup variations in canine nasal tumor patients immobilized with a bite block.

    PubMed

    Kubicek, Lyndsay N; Seo, Songwon; Chappell, Richard J; Jeraj, Robert; Forrest, Lisa J

    2012-01-01

    The purpose of our study was to compare setup variation in four degrees of freedom (vertical, longitudinal, lateral, and roll) between canine nasal tumor patients immobilized with a mattress and bite block, versus a mattress alone. Our secondary aim was to define a clinical target volume (CTV) to planning target volume (PTV) expansion margin based on our mean systematic error values associated with nasal tumor patients immobilized by a mattress and bite block. We evaluated six parameters for setup corrections: systematic error, random error, patient-patient variation in systematic errors, the magnitude of patient-specific random errors (root mean square [RMS]), distance error, and the variation of setup corrections from zero shift. The variations in all parameters were statistically smaller in the group immobilized by a mattress and bite block. The mean setup corrections in the mattress and bite block group ranged from 0.91 mm to 1.59 mm for the translational errors and 0.5°. Although most veterinary radiation facilities do not have access to Image-guided radiotherapy (IGRT), we identified a need for more rigid fixation, established the value of adding IGRT to veterinary radiation therapy, and define the CTV-PTV setup error margin for canine nasal tumor patients immobilized in a mattress and bite block. © 2012 Veterinary Radiology & Ultrasound.

  3. Estimating the Uncertainty In Diameter Growth Model Predictions and Its Effects On The Uncertainty of Annual Inventory Estimates

    Treesearch

    Ronald E. McRoberts; Veronica C. Lessard

    2001-01-01

    Uncertainty in diameter growth predictions is attributed to three general sources: measurement error or sampling variability in predictor variables, parameter covariances, and residual or unexplained variation around model expectations. Using measurement error and sampling variability distributions obtained from the literature and Monte Carlo simulation methods, the...

  4. Covariate Measurement Error Correction for Student Growth Percentiles Using the SIMEX Method

    ERIC Educational Resources Information Center

    Shang, Yi; VanIwaarden, Adam; Betebenner, Damian W.

    2015-01-01

    In this study, we examined the impact of covariate measurement error (ME) on the estimation of quantile regression and student growth percentiles (SGPs), and find that SGPs tend to be overestimated among students with higher prior achievement and underestimated among those with lower prior achievement, a problem we describe as ME endogeneity in…

  5. A General Approach to Defining Latent Growth Components

    ERIC Educational Resources Information Center

    Mayer, Axel; Steyer, Rolf; Mueller, Horst

    2012-01-01

    We present a 3-step approach to defining latent growth components. In the first step, a measurement model with at least 2 indicators for each time point is formulated to identify measurement error variances and obtain latent variables that are purged from measurement error. In the second step, we use contrast matrices to define the latent growth…

  6. Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun

    1996-01-01

    In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.

  7. Effect of phase errors in stepped-frequency radar systems

    NASA Astrophysics Data System (ADS)

    Vanbrundt, H. E.

    1988-04-01

    Stepped-frequency waveforms are being considered for inverse synthetic aperture radar (ISAR) imaging from ship and airborne platforms and for detailed radar cross section (RCS) measurements of ships and aircraft. These waveforms make it possible to achieve resolutions of 1.0 foot by using existing radar designs and processing technology. One problem not yet fully resolved in using stepped-frequency waveform for ISAR imaging is the deterioration in signal level caused by random frequency error. Random frequency error of the stepped-frequency source results in reduced peak responses and increased null responses. The resulting reduced signal-to-noise ratio is range dependent. Two of the major concerns addressed in this report are radar range limitations for ISAR and the error in calibration for RCS measurements caused by differences in range between a passive reflector used for an RCS reference and the target to be measured. In addressing these concerns, NOSC developed an analysis to assess the tolerable frequency error in terms of resulting power loss in signal power and signal-to-phase noise.

  8. Value stream mapping of the Pap test processing procedure: a lean approach to improve quality and efficiency.

    PubMed

    Michael, Claire W; Naik, Kalyani; McVicker, Michael

    2013-05-01

    We developed a value stream map (VSM) of the Papanicolaou test procedure to identify opportunities to reduce waste and errors, created a new VSM, and implemented a new process emphasizing Lean tools. Preimplementation data revealed the following: (1) processing time (PT) for 1,140 samples averaged 54 hours; (2) 27 accessioning errors were detected on review of 357 random requisitions (7.6%); (3) 5 of the 20,060 tests had labeling errors that had gone undetected in the processing stage. Four were detected later during specimen processing but 1 reached the reporting stage. Postimplementation data were as follows: (1) PT for 1,355 samples averaged 31 hours; (2) 17 accessioning errors were detected on review of 385 random requisitions (4.4%); and (3) no labeling errors were undetected. Our results demonstrate that implementation of Lean methods, such as first-in first-out processes and minimizing batch size by staff actively participating in the improvement process, allows for higher quality, greater patient safety, and improved efficiency.

  9. Influence of ultraviolet irradiation on data retention characteristics in resistive random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, K.; Ohmi, K.; Tottori University Electronic Display Research Center, 101 Minami4-chome, Koyama-cho, Tottori-shi, Tottori 680-8551

    With increasing density of memory devices, the issue of generating soft errors by cosmic rays is becoming more and more serious. Therefore, the irradiation resistance of resistance random access memory (ReRAM) to cosmic radiation has to be elucidated for practical use. In this paper, we investigated the data retention characteristics of ReRAM against ultraviolet irradiation with a Pt/NiO/ITO structure. Soft errors were confirmed to be caused by ultraviolet irradiation in both low- and high-resistance states. An analysis of the wavelength dependence of light irradiation on data retention characteristics suggested that electronic excitation from the valence to the conduction band andmore » to the energy level generated due to the introduction of oxygen vacancies caused the errors. Based on a statistically estimated soft error rates, the errors were suggested to be caused by the cohesion and dispersion of oxygen vacancies owing to the generation of electron-hole pairs and valence changes by the ultraviolet irradiation.« less

  10. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: Quality-assurance implications for target volume and organ-at-risk margination using daily CT-on-rails imaging

    PubMed Central

    Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S. R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R; Kocak-Uzel, Esengul; Fuller, Clifton D.

    2016-01-01

    Larynx may alternatively serve as a target or organ-at-risk (OAR) in head and neck cancer (HNC) image-guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population–based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT-on-rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other 6 points were calculated post-isocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all 6 points for all scans over the course of treatment were calculated. Residual systematic and random error, and the necessary compensatory CTV-to-PTV and OAR-to-PRV margins were calculated, using both observational cohort data and a bootstrap-resampled population estimator. The grand mean displacements for all anatomical points was 5.07mm, with mean systematic error of 1.1mm and mean random setup error of 2.63mm, while bootstrapped POIs grand mean displacement was 5.09mm, with mean systematic error of 1.23mm and mean random setup error of 2.61mm. Required margin for CTV-PTV expansion was 4.6mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9mm. The calculated OAR-to-PRV expansion for the observed residual set-up error was 2.7mm, and bootstrap estimated expansion of 2.9mm. We conclude that the interfractional larynx setup error is a significant source of RT set-up/delivery error in HNC both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5mm to compensate for set up error if the larynx is a target or 3mm if the larynx is an OAR when using a non-laryngeal bony isocenter. PMID:25679151

  11. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: quality assurance implications for target volume and organs‐at‐risk margination using daily CT on‐rails imaging

    PubMed Central

    Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S.R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R.; Kocak‐Uzel, Esengul

    2014-01-01

    Larynx may alternatively serve as a target or organs at risk (OAR) in head and neck cancer (HNC) image‐guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population‐based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT on‐rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior‐anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other six points were calculated postisocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all six points for all scans over the course of treatment was calculated. Residual systematic and random error and the necessary compensatory CTV‐to‐PTV and OAR‐to‐PRV margins were calculated, using both observational cohort data and a bootstrap‐resampled population estimator. The grand mean displacements for all anatomical points was 5.07 mm, with mean systematic error of 1.1 mm and mean random setup error of 2.63 mm, while bootstrapped POIs grand mean displacement was 5.09 mm, with mean systematic error of 1.23 mm and mean random setup error of 2.61 mm. Required margin for CTV‐PTV expansion was 4.6 mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9 mm. The calculated OAR‐to‐PRV expansion for the observed residual setup error was 2.7 mm and bootstrap estimated expansion of 2.9 mm. We conclude that the interfractional larynx setup error is a significant source of RT setup/delivery error in HNC, both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5 mm to compensate for setup error if the larynx is a target, or 3 mm if the larynx is an OAR, when using a nonlaryngeal bony isocenter. PACS numbers: 87.55.D‐, 87.55.Qr

  12. Analysis of space telescope data collection system

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Schoggen, W. O.

    1982-01-01

    An analysis of the expected performance for the Multiple Access (MA) system is provided. The analysis covers the expected bit error rate performance, the effects of synchronization loss, the problem of self-interference, and the problem of phase ambiguity. The problem of false acceptance of a command word due to data inversion is discussed. A mathematical determination of the probability of accepting an erroneous command word due to a data inversion is presented. The problem is examined for three cases: (1) a data inversion only, (2) a data inversion and a random error within the same command word, and a block (up to 256 48-bit words) containing both a data inversion and a random error.

  13. Modeling methodology for MLS range navigation system errors using flight test data

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Flight test data was used to develop a methodology for modeling MLS range navigation system errors. The data used corresponded to the constant velocity and glideslope approach segment of a helicopter landing trajectory. The MLS range measurement was assumed to consist of low frequency and random high frequency components. The random high frequency component was extracted from the MLS range measurements. This was done by appropriate filtering of the range residual generated from a linearization of the range profile for the final approach segment. This range navigation system error was then modeled as an autoregressive moving average (ARMA) process. Maximum likelihood techniques were used to identify the parameters of the ARMA process.

  14. The statistical pitfalls of the partially randomized preference design in non-blinded trials of psychological interventions.

    PubMed

    Gemmell, Isla; Dunn, Graham

    2011-03-01

    In a partially randomized preference trial (PRPT) patients with no treatment preference are allocated to groups at random, but those who express a preference receive the treatment of their choice. It has been suggested that the design can improve the external and internal validity of trials. We used computer simulation to illustrate the impact that an unmeasured confounder could have on the results and conclusions drawn from a PRPT. We generated 4000 observations ("patients") that reflected the distribution of the Beck Depression Index (DBI) in trials of depression. Half were randomly assigned to a randomized controlled trial (RCT) design and half were assigned to a PRPT design. In the RCT, "patients" were evenly split between treatment and control groups; whereas in the preference arm, to reflect patient choice, 87.5% of patients were allocated to the experimental treatment and 12.5% to the control. Unadjusted analyses of the PRPT data consistently overestimated the treatment effect and its standard error. This lead to Type I errors when the true treatment effect was small and Type II errors when the confounder effect was large. The PRPT design is not recommended as a method of establishing an unbiased estimate of treatment effect due to the potential influence of unmeasured confounders. Copyright © 2011 John Wiley & Sons, Ltd.

  15. An improved procedure for the validation of satellite-based precipitation estimates

    NASA Astrophysics Data System (ADS)

    Tang, Ling; Tian, Yudong; Yan, Fang; Habib, Emad

    2015-09-01

    The objective of this study is to propose and test a new procedure to improve the validation of remote-sensing, high-resolution precipitation estimates. Our recent studies show that many conventional validation measures do not accurately capture the unique error characteristics in precipitation estimates to better inform both data producers and users. The proposed new validation procedure has two steps: 1) an error decomposition approach to separate the total retrieval error into three independent components: hit error, false precipitation and missed precipitation; and 2) the hit error is further analyzed based on a multiplicative error model. In the multiplicative error model, the error features are captured by three model parameters. In this way, the multiplicative error model separates systematic and random errors, leading to more accurate quantification of the uncertainties. The proposed procedure is used to quantitatively evaluate the recent two versions (Version 6 and 7) of TRMM's Multi-sensor Precipitation Analysis (TMPA) real-time and research product suite (3B42 and 3B42RT) for seven years (2005-2011) over the continental United States (CONUS). The gauge-based National Centers for Environmental Prediction (NCEP) Climate Prediction Center (CPC) near-real-time daily precipitation analysis is used as the reference. In addition, the radar-based NCEP Stage IV precipitation data are also model-fitted to verify the effectiveness of the multiplicative error model. The results show that winter total bias is dominated by the missed precipitation over the west coastal areas and the Rocky Mountains, and the false precipitation over large areas in Midwest. The summer total bias is largely coming from the hit bias in Central US. Meanwhile, the new version (V7) tends to produce more rainfall in the higher rain rates, which moderates the significant underestimation exhibited in the previous V6 products. Moreover, the error analysis from the multiplicative error model provides a clear and concise picture of the systematic and random errors, with both versions of 3B42RT have higher errors in varying degrees than their research (post-real-time) counterparts. The new V7 algorithm shows obvious improvements in reducing random errors in both winter and summer seasons, compared to its predecessors V6. Stage IV, as expected, surpasses the satellite-based datasets in all the metrics over CONUS. Based on the results, we recommend the new procedure be adopted for routine validation of satellite-based precipitation datasets, and we expect the procedure will work effectively for higher resolution data to be produced in the Global Precipitation Measurement (GPM) era.

  16. Using Analysis Increments (AI) to Estimate and Correct Systematic Errors in the Global Forecast System (GFS) Online

    NASA Astrophysics Data System (ADS)

    Bhargava, K.; Kalnay, E.; Carton, J.; Yang, F.

    2017-12-01

    Systematic forecast errors, arising from model deficiencies, form a significant portion of the total forecast error in weather prediction models like the Global Forecast System (GFS). While much effort has been expended to improve models, substantial model error remains. The aim here is to (i) estimate the model deficiencies in the GFS that lead to systematic forecast errors, (ii) implement an online correction (i.e., within the model) scheme to correct GFS following the methodology of Danforth et al. [2007] and Danforth and Kalnay [2008, GRL]. Analysis Increments represent the corrections that new observations make on, in this case, the 6-hr forecast in the analysis cycle. Model bias corrections are estimated from the time average of the analysis increments divided by 6-hr, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-2016, seasonal means of the 6-hr model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which is attributed to improvements in the specification of the SSTs. These results encourage application of online correction, as suggested by Danforth and Kalnay, for mean, seasonal and diurnal and semidiurnal model biases in GFS to reduce both systematic and random errors. As the error growth in the short-term is still linear, estimated model bias corrections can be added as a forcing term in the model tendency equation to correct online. Preliminary experiments with GFS, correcting temperature and specific humidity online show reduction in model bias in 6-hr forecast. This approach can then be used to guide and optimize the design of sub-grid scale physical parameterizations, more accurate discretization of the model dynamics, boundary conditions, radiative transfer codes, and other potential model improvements which can then replace the empirical correction scheme. The analysis increments also provide guidance in testing new physical parameterizations.

  17. Linguistic Pattern Analysis of Misspellings of Typically Developing Writers in Grades 1 to 9

    PubMed Central

    Bahr, Ruth Huntley; Silliman, Elaine R.; Berninger, Virginia W.; Dow, Michael

    2012-01-01

    Purpose A mixed methods approach, evaluating triple word form theory, was used to describe linguistic patterns of misspellings. Method Spelling errors were taken from narrative and expository writing samples provided by 888 typically developing students in grades 1–9. Errors were coded by category (phonological, orthographic, and morphological) and specific linguistic feature affected. Grade level effects were analyzed with trend analysis. Qualitative analyses determined frequent error types and how use of specific linguistic features varied across grades. Results Phonological, orthographic, and morphological errors were noted across all grades, but orthographic errors predominated. Linear trends revealed developmental shifts in error proportions for the orthographic and morphological categories between grades 4–5. Similar error types were noted across age groups but the nature of linguistic feature error changed with age. Conclusions Triple word-form theory was supported. By grade 1, orthographic errors predominated and phonological and morphological error patterns were evident. Morphological errors increased in relative frequency in older students, probably due to a combination of word-formation issues and vocabulary growth. These patterns suggest that normal spelling development reflects non-linear growth and that it takes a long time to develop a robust orthographic lexicon that coordinates phonology, orthography, and morphology and supports word-specific, conventional spelling. PMID:22473834

  18. Prophylactic tetracycline does not diminish the severity of epidermal growth factor receptor (EGFR) inhibitor-induced rash: results from the North Central Cancer Treatment Group (Supplementary N03CB).

    PubMed

    Jatoi, Aminah; Dakhil, Shaker R; Sloan, Jeff A; Kugler, John W; Rowland, Kendrith M; Schaefer, Paul L; Novotny, Paul J; Wender, Donald B; Gross, Howard M; Loprinzi, Charles L

    2011-10-01

    Previous studies suggest tetracycline and other antibiotics lessen the severity of epidermal growth factor receptor (EGFR) inhibitor-induced rash. This study sought to confirm such findings. Patients starting an EGFR inhibitor were eligible for this randomized, double-blinded, placebo-controlled study and had to be rash-free. They were then randomly assigned to tetracycline 500 mg orally twice a day for 28 days versus a placebo. Rash development and severity (monthly physician assessment and weekly patient-reported questionnaires), quality of life (SKINDEX-16), and adverse events were monitored during the 4-week intervention and then for an additional 4 weeks. The primary objective was to compare the incidence of grade 2 or worse rash between study arms; 32 patients per group provided a 90% probability of detecting a 40% difference in incidence with a type I error rate of 0.05 (two-sided). Sixty-five patients were enrolled, and groups were balanced on baseline characteristics. During the first 4 weeks, healthcare provider-reported data found that 27 tetracycline-treated patients (82%) and 24 placebo-exposed patients (75%) developed a rash. This rash was a grade 2+ in 17 (52%) and 14 (44%), respectively (p = 0.62). Comparable grade 2+ rash rates were observed during weeks 5 through 8 as well as with patient-reported rash data throughout the study period. Quality of life was comparable across study arms, and tetracycline was well tolerated. Although previous studies suggest otherwise, this randomized, double-blinded, placebo-controlled study did not find that tetracycline lessened rash incidence or severity in patients who were taking EGFR inhibitors.

  19. Making electronic prescribing alerts more effective: scenario-based experimental study in junior doctors

    PubMed Central

    Shah, Priya; Wyatt, Jeremy C; Makubate, Boikanyo; Cross, Frank W

    2011-01-01

    Objective Expert authorities recommend clinical decision support systems to reduce prescribing error rates, yet large numbers of insignificant on-screen alerts presented in modal dialog boxes persistently interrupt clinicians, limiting the effectiveness of these systems. This study compared the impact of modal and non-modal electronic (e-) prescribing alerts on prescribing error rates, to help inform the design of clinical decision support systems. Design A randomized study of 24 junior doctors each performing 30 simulated prescribing tasks in random order with a prototype e-prescribing system. Using a within-participant design, doctors were randomized to be shown one of three types of e-prescribing alert (modal, non-modal, no alert) during each prescribing task. Measurements The main outcome measure was prescribing error rate. Structured interviews were performed to elicit participants' preferences for the prescribing alerts and their views on clinical decision support systems. Results Participants exposed to modal alerts were 11.6 times less likely to make a prescribing error than those not shown an alert (OR 11.56, 95% CI 6.00 to 22.26). Those shown a non-modal alert were 3.2 times less likely to make a prescribing error (OR 3.18, 95% CI 1.91 to 5.30) than those not shown an alert. The error rate with non-modal alerts was 3.6 times higher than with modal alerts (95% CI 1.88 to 7.04). Conclusions Both kinds of e-prescribing alerts significantly reduced prescribing error rates, but modal alerts were over three times more effective than non-modal alerts. This study provides new evidence about the relative effects of modal and non-modal alerts on prescribing outcomes. PMID:21836158

  20. Statistics of the epoch of reionization 21-cm signal - I. Power spectrum error-covariance

    NASA Astrophysics Data System (ADS)

    Mondal, Rajesh; Bharadwaj, Somnath; Majumdar, Suman

    2016-02-01

    The non-Gaussian nature of the epoch of reionization (EoR) 21-cm signal has a significant impact on the error variance of its power spectrum P(k). We have used a large ensemble of seminumerical simulations and an analytical model to estimate the effect of this non-Gaussianity on the entire error-covariance matrix {C}ij. Our analytical model shows that {C}ij has contributions from two sources. One is the usual variance for a Gaussian random field which scales inversely of the number of modes that goes into the estimation of P(k). The other is the trispectrum of the signal. Using the simulated 21-cm Signal Ensemble, an ensemble of the Randomized Signal and Ensembles of Gaussian Random Ensembles we have quantified the effect of the trispectrum on the error variance {C}II. We find that its relative contribution is comparable to or larger than that of the Gaussian term for the k range 0.3 ≤ k ≤ 1.0 Mpc-1, and can be even ˜200 times larger at k ˜ 5 Mpc-1. We also establish that the off-diagonal terms of {C}ij have statistically significant non-zero values which arise purely from the trispectrum. This further signifies that the error in different k modes are not independent. We find a strong correlation between the errors at large k values (≥0.5 Mpc-1), and a weak correlation between the smallest and largest k values. There is also a small anticorrelation between the errors in the smallest and intermediate k values. These results are relevant for the k range that will be probed by the current and upcoming EoR 21-cm experiments.

  1. Evaluation and optimization of sampling errors for the Monte Carlo Independent Column Approximation

    NASA Astrophysics Data System (ADS)

    Räisänen, Petri; Barker, W. Howard

    2004-07-01

    The Monte Carlo Independent Column Approximation (McICA) method for computing domain-average broadband radiative fluxes is unbiased with respect to the full ICA, but its flux estimates contain conditional random noise. McICA's sampling errors are evaluated here using a global climate model (GCM) dataset and a correlated-k distribution (CKD) radiation scheme. Two approaches to reduce McICA's sampling variance are discussed. The first is to simply restrict all of McICA's samples to cloudy regions. This avoids wasting precious few samples on essentially homogeneous clear skies. Clear-sky fluxes need to be computed separately for this approach, but this is usually done in GCMs for diagnostic purposes anyway. Second, accuracy can be improved by repeated sampling, and averaging those CKD terms with large cloud radiative effects. Although this naturally increases computational costs over the standard CKD model, random errors for fluxes and heating rates are reduced by typically 50% to 60%, for the present radiation code, when the total number of samples is increased by 50%. When both variance reduction techniques are applied simultaneously, globally averaged flux and heating rate random errors are reduced by a factor of #3.

  2. An efficient computational method for characterizing the effects of random surface errors on the average power pattern of reflectors

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1983-01-01

    Based on the works of Ruze (1966) and Vu (1969), a novel mathematical model has been developed to determine efficiently the average power pattern degradations caused by random surface errors. In this model, both nonuniform root mean square (rms) surface errors and nonuniform illumination functions are employed. In addition, the model incorporates the dependence on F/D in the construction of the solution. The mathematical foundation of the model rests on the assumption that in each prescribed annular region of the antenna, the geometrical rms surface value is known. It is shown that closed-form expressions can then be derived, which result in a very efficient computational method for the average power pattern. Detailed parametric studies are performed with these expressions to determine the effects of different random errors and illumination tapers on parameters such as gain loss and sidelobe levels. The results clearly demonstrate that as sidelobe levels decrease, their dependence on the surface rms/wavelength becomes much stronger and, for a specified tolerance level, a considerably smaller rms/wavelength is required to maintain the low sidelobes within the required bounds.

  3. Effects of uncertainty and variability on population declines and IUCN Red List classifications.

    PubMed

    Rueda-Cediel, Pamela; Anderson, Kurt E; Regan, Tracey J; Regan, Helen M

    2018-01-22

    The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat classifications through measurement and process error in empirical data and uncertainty in the models used to estimate extinction risk and population declines. Furthermore, species traits are known to affect extinction risk. We investigated the effects of measurement and process error, model type, population growth rate, and age at first reproduction on the reliability of risk classifications based on projected population declines on IUCN Red List classifications. We used an age-structured population model to simulate true population trajectories with different growth rates, reproductive ages and levels of variation, and subjected them to measurement error. We evaluated the ability of scalar and matrix models parameterized with these simulated time series to accurately capture the IUCN Red List classification generated with true population declines. Under all levels of measurement error tested and low process error, classifications were reasonably accurate; scalar and matrix models yielded roughly the same rate of misclassifications, but the distribution of errors differed; matrix models led to greater overestimation of extinction risk than underestimations; process error tended to contribute to misclassifications to a greater extent than measurement error; and more misclassifications occurred for fast, rather than slow, life histories. These results indicate that classifications of highly threatened taxa (i.e., taxa with low growth rates) under criterion A are more likely to be reliable than for less threatened taxa when assessed with population models. Greater scrutiny needs to be placed on data used to parameterize population models for species with high growth rates, particularly when available evidence indicates a potential transition to higher risk categories. © 2018 Society for Conservation Biology.

  4. Narrowband (LPC-10) Vocoder Performance under Combined Effects of Random Bit Errors and Jet Aircraft Cabin Noise.

    DTIC Science & Technology

    1983-12-01

    rAD-141 333 NRRROWRAND (LPC-iB) VOCODER PERFORMANCE UNDER COMBINED i/ EFFECTS OF RRNDOM.(U) ROME AIR DEVELOPMENT CENTER GRIFFISS RFB NY C P SMITH DEC...LPC-10) VOCODER In House. PERFORMANCE UNDER COMBINED EFFECTS June 82 - Sept. 83 OF RANDOM BIT ERRORS AND JET AIRCRAFT Z PERFORMING ORG REPO- NUMSEF...PAGE(Wh.n Does Eneerd) 20. (contd) Compartment, and NCA Compartment were alike in their effects on overall vocoder performance . Composite performance

  5. Inventory implications of using sampling variances in estimation of growth model coefficients

    Treesearch

    Albert R. Stage; William R. Wykoff

    2000-01-01

    Variables based on stand densities or stocking have sampling errors that depend on the relation of tree size to plot size and on the spatial structure of the population, ignoring the sampling errors of such variables, which include most measures of competition used in both distance-dependent and distance-independent growth models, can bias the predictions obtained from...

  6. Insight into organic reactions from the direct random phase approximation and its corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzsinszky, Adrienn; Zhang, Igor Ying; Scheffler, Matthias

    2015-10-14

    The performance of the random phase approximation (RPA) and beyond-RPA approximations for the treatment of electron correlation is benchmarked on three different molecular test sets. The test sets are chosen to represent three typical sources of error which can contribute to the failure of most density functional approximations in chemical reactions. The first test set (atomization and n-homodesmotic reactions) offers a gradually increasing balance of error from the chemical environment. The second test set (Diels-Alder reaction cycloaddition = DARC) reflects more the effect of weak dispersion interactions in chemical reactions. Finally, the third test set (self-interaction error 11 = SIE11)more » represents reactions which are exposed to noticeable self-interaction errors. This work seeks to answer whether any one of the many-body approximations considered here successfully addresses all these challenges.« less

  7. Quantifying Adventitious Error in a Covariance Structure as a Random Effect

    PubMed Central

    Wu, Hao; Browne, Michael W.

    2017-01-01

    We present an approach to quantifying errors in covariance structures in which adventitious error, identified as the process underlying the discrepancy between the population and the structured model, is explicitly modeled as a random effect with a distribution, and the dispersion parameter of this distribution to be estimated gives a measure of misspecification. Analytical properties of the resultant procedure are investigated and the measure of misspecification is found to be related to the RMSEA. An algorithm is developed for numerical implementation of the procedure. The consistency and asymptotic sampling distributions of the estimators are established under a new asymptotic paradigm and an assumption weaker than the standard Pitman drift assumption. Simulations validate the asymptotic sampling distributions and demonstrate the importance of accounting for the variations in the parameter estimates due to adventitious error. Two examples are also given as illustrations. PMID:25813463

  8. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sawhney, Kawal

    2016-05-15

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds intomore » the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.« less

  9. Random Weighting, Strong Tracking, and Unscented Kalman Filter for Soft Tissue Characterization.

    PubMed

    Shin, Jaehyun; Zhong, Yongmin; Oetomo, Denny; Gu, Chengfan

    2018-05-21

    This paper presents a new nonlinear filtering method based on the Hunt-Crossley model for online nonlinear soft tissue characterization. This method overcomes the problem of performance degradation in the unscented Kalman filter due to contact model error. It adopts the concept of Mahalanobis distance to identify contact model error, and further incorporates a scaling factor in predicted state covariance to compensate identified model error. This scaling factor is determined according to the principle of innovation orthogonality to avoid the cumbersome computation of Jacobian matrix, where the random weighting concept is adopted to improve the estimation accuracy of innovation covariance. A master-slave robotic indentation system is developed to validate the performance of the proposed method. Simulation and experimental results as well as comparison analyses demonstrate that the efficacy of the proposed method for online characterization of soft tissue parameters in the presence of contact model error.

  10. The Gnomon Experiment

    NASA Astrophysics Data System (ADS)

    Krisciunas, Kevin

    2007-12-01

    A gnomon, or vertical pointed stick, can be used to determine the north-south direction at a site, as well as one's latitude. If one has accurate time and knows one's time zone, it is also possible to determine one's longitude. From observations on the first day of winter and the first day of summer one can determine the obliquity of the ecliptic. Since we can obtain accurate geographical coordinates from Google Earth or a GPS device, analysis of set of shadow length measurements can be used by students to learn about astronomical coordinate systems, time systems, systematic errors, and random errors. Systematic latitude errors of student datasets are typically 30 nautical miles (0.5 degree) or more, but with care one can achieve systematic and random errors less than 8 nautical miles. One of the advantages of this experiment is that it can be carried out during the day. Also, it is possible to determine if a student has made up his data.

  11. Biometrics encryption combining palmprint with two-layer error correction codes

    NASA Astrophysics Data System (ADS)

    Li, Hengjian; Qiu, Jian; Dong, Jiwen; Feng, Guang

    2017-07-01

    To bridge the gap between the fuzziness of biometrics and the exactitude of cryptography, based on combining palmprint with two-layer error correction codes, a novel biometrics encryption method is proposed. Firstly, the randomly generated original keys are encoded by convolutional and cyclic two-layer coding. The first layer uses a convolution code to correct burst errors. The second layer uses cyclic code to correct random errors. Then, the palmprint features are extracted from the palmprint images. Next, they are fused together by XORing operation. The information is stored in a smart card. Finally, the original keys extraction process is the information in the smart card XOR the user's palmprint features and then decoded with convolutional and cyclic two-layer code. The experimental results and security analysis show that it can recover the original keys completely. The proposed method is more secure than a single password factor, and has higher accuracy than a single biometric factor.

  12. Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?

    NASA Technical Reports Server (NTRS)

    Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander

    2016-01-01

    Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.

  13. Hybrid computer technique yields random signal probability distributions

    NASA Technical Reports Server (NTRS)

    Cameron, W. D.

    1965-01-01

    Hybrid computer determines the probability distributions of instantaneous and peak amplitudes of random signals. This combined digital and analog computer system reduces the errors and delays of manual data analysis.

  14. [Efficacy of motivational interviewing for reducing medication errors in chronic patients over 65 years with polypharmacy: Results of a cluster randomized trial].

    PubMed

    Pérula de Torres, Luis Angel; Pulido Ortega, Laura; Pérula de Torres, Carlos; González Lama, Jesús; Olaya Caro, Inmaculada; Ruiz Moral, Roger

    2014-10-21

    To evaluate the effectiveness of an intervention based on motivational interviewing to reduce medication errors in chronic patients over 65 with polypharmacy. Cluster randomized trial that included doctors and nurses of 16 Primary Care centers and chronic patients with polypharmacy over 65 years. The professionals were assigned to the experimental or the control group using stratified randomization. Interventions consisted of training of professionals and revision of patient treatments, application of motivational interviewing in the experimental group and also the usual approach in the control group. The primary endpoint (medication error) was analyzed at individual level, and was estimated with the absolute risk reduction (ARR), relative risk reduction (RRR), number of subjects to treat (NNT) and by multiple logistic regression analysis. Thirty-two professionals were randomized (19 doctors and 13 nurses), 27 of them recruited 154 patients consecutively (13 professionals in the experimental group recruited 70 patients and 14 professionals recruited 84 patients in the control group) and completed 6 months of follow-up. The mean age of patients was 76 years (68.8% women). A decrease in the average of medication errors was observed along the period. The reduction was greater in the experimental than in the control group (F=5.109, P=.035). RRA 29% (95% confidence interval [95% CI] 15.0-43.0%), RRR 0.59 (95% CI:0.31-0.76), and NNT 3.5 (95% CI 2.3-6.8). Motivational interviewing is more efficient than the usual approach to reduce medication errors in patients over 65 with polypharmacy. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  15. A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior

    DOE PAGES

    Ye, Xin; Garikapati, Venu M.; You, Daehyun; ...

    2017-11-08

    Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less

  16. A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Xin; Garikapati, Venu M.; You, Daehyun

    Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less

  17. Assessment of the interactions between economic growth and industrial wastewater discharges using co-integration analysis: a case study for China's Hunan Province.

    PubMed

    Xiao, Qiang; Gao, Yang; Hu, Dan; Tan, Hong; Wang, Tianxiang

    2011-07-01

    We have investigated the interactions between economic growth and industrial wastewater discharge from 1978 to 2007 in China's Hunan Province using co-integration theory and an error-correction model. Two main economic growth indicators and four representative industrial wastewater pollutants were selected to demonstrate the interaction mechanism. We found a long-term equilibrium relationship between economic growth and the discharge of industrial pollutants in wastewater between 1978 and 2007 in Hunan Province. The error-correction mechanism prevented the variable expansion for long-term relationship at quantity and scale, and the size of the error-correction parameters reflected short-term adjustments that deviate from the long-term equilibrium. When economic growth changes within a short term, the discharge of pollutants will constrain growth because the values of the parameters in the short-term equation are smaller than those in the long-term co-integrated regression equation, indicating that a remarkable long-term influence of economic growth on the discharge of industrial wastewater pollutants and that increasing pollutant discharge constrained economic growth. Economic growth is the main driving factor that affects the discharge of industrial wastewater pollutants in Hunan Province. On the other hand, the discharge constrains economic growth by producing external pressure on growth, although this feedback mechanism has a lag effect. Economic growth plays an important role in explaining the predicted decomposition of the variance in the discharge of industrial wastewater pollutants, but this discharge contributes less to predictions of the variations in economic growth.

  18. Assessment of the Interactions between Economic Growth and Industrial Wastewater Discharges Using Co-integration Analysis: A Case Study for China’s Hunan Province

    PubMed Central

    Xiao, Qiang; Gao, Yang; Hu, Dan; Tan, Hong; Wang, Tianxiang

    2011-01-01

    We have investigated the interactions between economic growth and industrial wastewater discharge from 1978 to 2007 in China’s Hunan Province using co-integration theory and an error-correction model. Two main economic growth indicators and four representative industrial wastewater pollutants were selected to demonstrate the interaction mechanism. We found a long-term equilibrium relationship between economic growth and the discharge of industrial pollutants in wastewater between 1978 and 2007 in Hunan Province. The error-correction mechanism prevented the variable expansion for long-term relationship at quantity and scale, and the size of the error-correction parameters reflected short-term adjustments that deviate from the long-term equilibrium. When economic growth changes within a short term, the discharge of pollutants will constrain growth because the values of the parameters in the short-term equation are smaller than those in the long-term co-integrated regression equation, indicating that a remarkable long-term influence of economic growth on the discharge of industrial wastewater pollutants and that increasing pollutant discharge constrained economic growth. Economic growth is the main driving factor that affects the discharge of industrial wastewater pollutants in Hunan Province. On the other hand, the discharge constrains economic growth by producing external pressure on growth, although this feedback mechanism has a lag effect. Economic growth plays an important role in explaining the predicted decomposition of the variance in the discharge of industrial wastewater pollutants, but this discharge contributes less to predictions of the variations in economic growth. PMID:21845167

  19. [Comparative volumetry of human testes using special types of testicular sonography, Prader's orchidometer, Schirren's circle and sliding caliber].

    PubMed

    Dörnberger, V; Dörnberger, G

    1987-01-01

    On 99 testes of corpses (death had occurred between 26 und 86 years) comparative volumetry was done. In the left surrounding capsules (without scrotal skin and tunica dartos) the testes were measured via real time sonography in a waterbath (7.5 MHz linear-scan), afterwards length, breadth and height were measured by a sliding calibre, the largest diameter (the length) of the testis was determined by Schirren's circle and finally the size of the testis was measured via Prader's orchidometer. After all the testes were surgically exposed, their volume (by litres) was determined according to Archimedes' principle. As for the Archimedes' principle a random mean error of 7% must be accepted, sonographic determination of the volume showed a random mean error of 15%. Whereas the accuracy of measurement increases with increasing volumes, both methods should be used with caution if the volumes are below 4 ml, since the possibilities of error are rather great. According to Prader's orchidometer the measured volumes on average were higher (+ 27%) with a random mean error of 19.5%. With Schirren's circle the obtained mean value was even higher (+ 52%) in comparison to the "real" volume by Archimedes' principle with a random mean error of 19%. The measurements of the testes in the left capsules by sliding calibre can be optimized, if one applies a correcting factor f (sliding calibre) = 0.39 for calculation of the testis volume corresponding to an ellipsoid. Here you will get the same mean value as in Archimedes' principle with a standard mean error of only 9%. If one applies the correction factor of real time sonography of testis f (sono) = 0.65 the mean value of sliding calibre measurements would be 68.8% too high with a standard mean error of 20.3%. For measurements via sliding calibre the calculation of the testis volume corresponding to an ellipsoid one should apply the smaller factor f (sliding calibre) = 0.39, because in this way the left capsules of testis and the epididymis are considered.

  20. Setup deviations for whole-breast radiotherapy with TomoDirect: A comparison of weekly and biweekly image-guided protocols

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hong; Jung, Joo-Young; Bae, Sun Hyun; Moon, Seong Kwon; Cho, Kwang Hwan

    2016-10-01

    The purpose of this study was to compare patient setup deviations for different image-guided protocols (weekly vs. biweekly) that are used in TomoDirect three-dimensional conformal radiotherapy (TD-3DCRT) for whole-breast radiation therapy (WBRT). A total of 138 defined megavoltage computed tomography (MVCT) image sets from 46 breast cancer cases were divided into two groups based on the imaging acquisition times: weekly or biweekly. The mean error, three-dimensional setup displacement error (3D-error), systematic error (Σ), and random error (σ) were calculated for each group. The 3D-errors were 4.29 ± 1.11 mm and 5.02 ± 1.85 mm for the weekly and biweekly groups, respectively; the biweekly error was 14.6% higher than the weekly error. The systematic errors in the roll angle and the x, y, and z directions were 0.48°, 1.72 mm, 2.18 mm, and 1.85 mm for the weekly protocol and 0.21°, 1.24 mm, 1.39 mm, and 1.85 mm for the biweekly protocol. Random errors in the roll angle and the x, y, and z directions were 25.7%, 40.6%, 40.0%, and 40.8% higher in the biweekly group than in the weekly group. For the x, y, and z directions, the distributions of the treatment frequency at less than 5 mm were 98.6%, 91.3%, and 94.2% in the weekly group and 94.2%, 89.9%, and 82.6% in the biweekly group. Moreover, the roll angles with 0 - 1° were 79.7% and 89.9% in the weekly and the biweekly groups, respectively. Overall, the evaluation of setup deviations for the two protocols revealed no significant differences (p > 0.05). Reducing the frequency of MVCT imaging could have promising effects on imaging doses and machine times during treatment. However, the biweekly protocol was associated with increased random setup deviations in the treatment. We have demonstrated a biweekly protocol of TD-3DCRT for WBRT, and we anticipate that our method may provide an alternative approach for considering the uncertainties in the patient setup.

  1. Documentation of study medication dispensing in a prospective large randomized clinical trial: experiences from the ARISTOTLE Trial.

    PubMed

    Alexander, John H; Levy, Elliott; Lawrence, Jack; Hanna, Michael; Waclawski, Anthony P; Wang, Junyuan; Califf, Robert M; Wallentin, Lars; Granger, Christopher B

    2013-09-01

    In ARISTOTLE, apixaban resulted in a 21% reduction in stroke, a 31% reduction in major bleeding, and an 11% reduction in death. However, approval of apixaban was delayed to investigate a statement in the clinical study report that "7.3% of subjects in the apixaban group and 1.2% of subjects in the warfarin group received, at some point during the study, a container of the wrong type." Rates of study medication dispensing error were characterized through reviews of study medication container tear-off labels in 6,520 participants from randomly selected study sites. The potential effect of dispensing errors on study outcomes was statistically simulated in sensitivity analyses in the overall population. The rate of medication dispensing error resulting in treatment error was 0.04%. Rates of participants receiving at least 1 incorrect container were 1.04% (34/3,273) in the apixaban group and 0.77% (25/3,247) in the warfarin group. Most of the originally reported errors were data entry errors in which the correct medication container was dispensed but the wrong container number was entered into the case report form. Sensitivity simulations in the overall trial population showed no meaningful effect of medication dispensing error on the main efficacy and safety outcomes. Rates of medication dispensing error were low and balanced between treatment groups. The initially reported dispensing error rate was the result of data recording and data management errors and not true medication dispensing errors. These analyses confirm the previously reported results of ARISTOTLE. © 2013.

  2. Equivalent Linearization Analysis of Geometrically Nonlinear Random Vibrations Using Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2002-01-01

    Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented. Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial finite element codes and are suitable for use with any finite element code having geometrically nonlinear static analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively new version of a potential energy-error minimization approach, which has been generalized for multiple degree-of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and comparisons of the displacement root-mean-square values and power spectral densities are made with results from a nonlinear time domain numerical simulation.

  3. Effect of ephemeris errors on the accuracy of the computation of the tangent point altitude of a solar scanning ray as measured by the SAGE 1 and 2 instruments

    NASA Technical Reports Server (NTRS)

    Buglia, James J.

    1989-01-01

    An analysis was made of the error in the minimum altitude of a geometric ray from an orbiting spacecraft to the Sun. The sunrise and sunset errors are highly correlated and are opposite in sign. With the ephemeris generated for the SAGE 1 instrument data reduction, these errors can be as large as 200 to 350 meters (1 sigma) after 7 days of orbit propagation. The bulk of this error results from errors in the position of the orbiting spacecraft rather than errors in computing the position of the Sun. These errors, in turn, result from the discontinuities in the ephemeris tapes resulting from the orbital determination process. Data taken from the end of the definitive ephemeris tape are used to generate the predict data for the time interval covered by the next arc of the orbit determination process. The predicted data are then updated by using the tracking data. The growth of these errors is very nearly linear, with a slight nonlinearity caused by the beta angle. An approximate analytic method is given, which predicts the magnitude of the errors and their growth in time with reasonable fidelity.

  4. Test-retest reliability of jump execution variables using mechanography: a comparison of jump protocols.

    PubMed

    Fitzgerald, John S; Johnson, LuAnn; Tomkinson, Grant; Stein, Jesse; Roemmich, James N

    2018-05-01

    Mechanography during the vertical jump may enhance screening and determining mechanistic causes underlying physical performance changes. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the test-retest reliability of eight jump execution variables assessed from mechanography. Thirty-two women (mean±SD: age 20.8 ± 1.3 yr) and 16 men (age 22.1 ± 1.9 yr) attended a familiarization session and two testing sessions, all one week apart. Participants performed two variations of the squat jump with squat depth self-selected and controlled using a goniometer to 80º knee flexion. Test-retest reliability was quantified as the systematic error (using effect size between jumps), random error (using coefficients of variation), and test-retest correlations (using intra-class correlation coefficients). Overall, jump execution variables demonstrated acceptable reliability, evidenced by small systematic errors (mean±95%CI: 0.2 ± 0.07), moderate random errors (mean±95%CI: 17.8 ± 3.7%), and very strong test-retest correlations (range: 0.73-0.97). Differences in random errors between controlled and self-selected protocols were negligible (mean±95%CI: 1.3 ± 2.3%). Jump execution variables demonstrated acceptable reliability, with no meaningful differences between the controlled and self-selected jump protocols. To simplify testing, a self-selected jump protocol can be used to assess force-time variables with negligible impact on measurement error.

  5. Effects of Heterogeneity and Uncertainties in Sources and Initial and Boundary Conditions on Spatiotemporal Variations of Groundwater Levels

    NASA Astrophysics Data System (ADS)

    Zhang, Y. K.; Liang, X.

    2014-12-01

    Effects of aquifer heterogeneity and uncertainties in source/sink, and initial and boundary conditions in a groundwater flow model on the spatiotemporal variations of groundwater level, h(x,t), were investigated. Analytical solutions for the variance and covariance of h(x, t) in an unconfined aquifer described by a linearized Boussinesq equation with a white noise source/sink and a random transmissivity field were derived. It was found that in a typical aquifer the error in h(x,t) in early time is mainly caused by the random initial condition and the error reduces as time goes to reach a constant error in later time. The duration during which the effect of the random initial condition is significant may last a few hundred days in most aquifers. The constant error in groundwater in later time is due to the combined effects of the uncertain source/sink and flux boundary: the closer to the flux boundary, the larger the error. The error caused by the uncertain head boundary is limited in a narrow zone near the boundary but it remains more or less constant over time. The effect of the heterogeneity is to increase the variation of groundwater level and the maximum effect occurs close to the constant head boundary because of the linear mean hydraulic gradient. The correlation of groundwater level decreases with temporal interval and spatial distance. In addition, the heterogeneity enhances the correlation of groundwater level, especially at larger time intervals and small spatial distances.

  6. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    USGS Publications Warehouse

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  7. Computer-assisted image analysis to quantify daily growth rates of broiler chickens.

    PubMed

    De Wet, L; Vranken, E; Chedad, A; Aerts, J M; Ceunen, J; Berckmans, D

    2003-09-01

    1. The objective was to investigate the possibility of detecting daily body weight changes of broiler chickens with computer-assisted image analysis. 2. The experiment included 50 broiler chickens reared under commercial conditions. Ten out of 50 chickens were randomly selected and video recorded (upper view) 18 times during the 42-d growing period. The number of surface and periphery pixels from the images was used to derive a relationship between body dimension and live weight. 3. The relative error in weight estimation, expressed in terms of the standard deviation of the residuals from image surface data was 10%, while it was found to be 15% for the image periphery data. 4. Image-processing systems could be developed to assist the farmer in making important management and marketing decisions.

  8. On fatigue crack growth under random loading

    NASA Astrophysics Data System (ADS)

    Zhu, W. Q.; Lin, Y. K.; Lei, Y.

    1992-09-01

    A probabilistic analysis of the fatigue crack growth, fatigue life and reliability of a structural or mechanical component is presented on the basis of fracture mechanics and theory of random processes. The material resistance to fatigue crack growth and the time-history of the stress are assumed to be random. Analytical expressions are obtained for the special case in which the random stress is a stationary narrow-band Gaussian random process, and a randomized Paris-Erdogan law is applicable. As an example, the analytical method is applied to a plate with a central crack, and the results are compared with those obtained from digital Monte Carlo simulations.

  9. Assessing tropical rainforest growth traits: Data - Model fusion in the Congo basin and beyond

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan

    2017-04-01

    Virgin forest ecosystems resemble the key reference level for natural tree growth dynamics. The mosaic cycle concept describes such dynamics as local disequilibria driven by patch level succession cycles of breakdown, regeneration, juvenescence and old growth. These cycles, however, may involve different traits of light demanding and shade tolerant species assemblies. In this work a data model fusion concept will be introduced to assess the differences in growth dynamics of the mosaic cycle of the Western Congolian Lowland Rainforest ecosystem. Field data from 34 forest patches located in an ice age forest refuge, recently pinpointed to the ground and still devoid of direct human impact up to today - resemble the data base. A 3D error assessment procedure versus BGC model simulations for the 34 patches revealed two different growth dynamics, consistent with observed growth traits of pioneer and late succession species assemblies of the Western Congolian Lowland rainforest. An application of the same procedure to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to assess different growth traits of the mosaic cycle of natural forest dynamics.

  10. The Hurst Phenomenon in Error Estimates Related to Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Dias, Nelson Luís; Crivellaro, Bianca Luhm; Chamecki, Marcelo

    2018-05-01

    The Hurst phenomenon is a well-known feature of long-range persistence first observed in hydrological and geophysical time series by E. Hurst in the 1950s. It has also been found in several cases in turbulence time series measured in the wind tunnel, the atmosphere, and in rivers. Here, we conduct a systematic investigation of the value of the Hurst coefficient H in atmospheric surface-layer data, and its impact on the estimation of random errors. We show that usually H > 0.5 , which implies the non-existence (in the statistical sense) of the integral time scale. Since the integral time scale is present in the Lumley-Panofsky equation for the estimation of random errors, this has important practical consequences. We estimated H in two principal ways: (1) with an extension of the recently proposed filtering method to estimate the random error (H_p ), and (2) with the classical rescaled range introduced by Hurst (H_R ). Other estimators were tried but were found less able to capture the statistical behaviour of the large scales of turbulence. Using data from three micrometeorological campaigns we found that both first- and second-order turbulence statistics display the Hurst phenomenon. Usually, H_R is larger than H_p for the same dataset, raising the question that one, or even both, of these estimators, may be biased. For the relative error, we found that the errors estimated with the approach adopted by us, that we call the relaxed filtering method, and that takes into account the occurrence of the Hurst phenomenon, are larger than both the filtering method and the classical Lumley-Panofsky estimates. Finally, we found that there is no apparent relationship between H and the Obukhov stability parameter. The relative errors, however, do show stability dependence, particularly in the case of the error of the kinematic momentum flux in unstable conditions, and that of the kinematic sensible heat flux in stable conditions.

  11. A multiobserver study of the effects of including point-of-care patient photographs with portable radiography: a means to detect wrong-patient errors.

    PubMed

    Tridandapani, Srini; Ramamurthy, Senthil; Provenzale, James; Obuchowski, Nancy A; Evanoff, Michael G; Bhatti, Pamela

    2014-08-01

    To evaluate whether the presence of facial photographs obtained at the point-of-care of portable radiography leads to increased detection of wrong-patient errors. In this institutional review board-approved study, 166 radiograph-photograph combinations were obtained from 30 patients. Consecutive radiographs from the same patients resulted in 83 unique pairs (ie, a new radiograph and prior, comparison radiograph) for interpretation. To simulate wrong-patient errors, mismatched pairs were generated by pairing radiographs from different patients chosen randomly from the sample. Ninety radiologists each interpreted a unique randomly chosen set of 10 radiographic pairs, containing up to 10% mismatches (ie, error pairs). Radiologists were randomly assigned to interpret radiographs with or without photographs. The number of mismatches was identified, and interpretation times were recorded. Ninety radiologists with 21 ± 10 (mean ± standard deviation) years of experience were recruited to participate in this observer study. With the introduction of photographs, the proportion of errors detected increased from 31% (9 of 29) to 77% (23 of 30; P = .006). The odds ratio for detection of error with photographs to detection without photographs was 7.3 (95% confidence interval: 2.29-23.18). Observer qualifications, training, or practice in cardiothoracic radiology did not influence sensitivity for error detection. There is no significant difference in interpretation time for studies without photographs and those with photographs (60 ± 22 vs. 61 ± 25 seconds; P = .77). In this observer study, facial photographs obtained simultaneously with portable chest radiographs increased the identification of any wrong-patient errors, without substantial increase in interpretation time. This technique offers a potential means to increase patient safety through correct patient identification. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  12. Modeling Forest Biomass and Growth: Coupling Long-Term Inventory and Lidar Data

    NASA Technical Reports Server (NTRS)

    Babcock, Chad; Finley, Andrew O.; Cook, Bruce D.; Weiskittel, Andrew; Woodall, Christopher W.

    2016-01-01

    Combining spatially-explicit long-term forest inventory and remotely sensed information from Light Detection and Ranging (LiDAR) datasets through statistical models can be a powerful tool for predicting and mapping above-ground biomass (AGB) at a range of geographic scales. We present and examine a novel modeling approach to improve prediction of AGB and estimate AGB growth using LiDAR data. The proposed model accommodates temporal misalignment between field measurements and remotely sensed data-a problem pervasive in such settings-by including multiple time-indexed measurements at plot locations to estimate AGB growth. We pursue a Bayesian modeling framework that allows for appropriately complex parameter associations and uncertainty propagation through to prediction. Specifically, we identify a space-varying coefficients model to predict and map AGB and its associated growth simultaneously. The proposed model is assessed using LiDAR data acquired from NASA Goddard's LiDAR, Hyper-spectral & Thermal imager and field inventory data from the Penobscot Experimental Forest in Bradley, Maine. The proposed model outperformed the time-invariant counterpart models in predictive performance as indicated by a substantial reduction in root mean squared error. The proposed model adequately accounts for temporal misalignment through the estimation of forest AGB growth and accommodates residual spatial dependence. Results from this analysis suggest that future AGB models informed using remotely sensed data, such as LiDAR, may be improved by adapting traditional modeling frameworks to account for temporal misalignment and spatial dependence using random effects.

  13. The Propagation of Errors in Experimental Data Analysis: A Comparison of Pre-and Post-Test Designs

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2013-01-01

    Experimental designs involving the randomization of cases to treatment and control groups are powerful and under-used in many areas of social science and social policy. This paper reminds readers of the pre-and post-test, and the post-test only, designs, before explaining briefly how measurement errors propagate according to error theory. The…

  14. Analysis of Errors Committed by Physics Students in Secondary Schools in Ilorin Metropolis, Nigeria

    ERIC Educational Resources Information Center

    Omosewo, Esther Ore; Akanbi, Abdulrasaq Oladimeji

    2013-01-01

    The study attempt to find out the types of error committed and influence of gender on the type of error committed by senior secondary school physics students in metropolis. Six (6) schools were purposively chosen for the study. One hundred and fifty five students' scripts were randomly sampled for the study. Joint Mock physics essay questions…

  15. Multiscale measurement error models for aggregated small area health data.

    PubMed

    Aregay, Mehreteab; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Carroll, Rachel; Watjou, Kevin

    2016-08-01

    Spatial data are often aggregated from a finer (smaller) to a coarser (larger) geographical level. The process of data aggregation induces a scaling effect which smoothes the variation in the data. To address the scaling problem, multiscale models that link the convolution models at different scale levels via the shared random effect have been proposed. One of the main goals in aggregated health data is to investigate the relationship between predictors and an outcome at different geographical levels. In this paper, we extend multiscale models to examine whether a predictor effect at a finer level hold true at a coarser level. To adjust for predictor uncertainty due to aggregation, we applied measurement error models in the framework of multiscale approach. To assess the benefit of using multiscale measurement error models, we compare the performance of multiscale models with and without measurement error in both real and simulated data. We found that ignoring the measurement error in multiscale models underestimates the regression coefficient, while it overestimates the variance of the spatially structured random effect. On the other hand, accounting for the measurement error in multiscale models provides a better model fit and unbiased parameter estimates. © The Author(s) 2016.

  16. Two-dimensional confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    NASA Astrophysics Data System (ADS)

    Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos

    2016-11-01

    We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.

  17. Statistical models for estimating daily streamflow in Michigan

    USGS Publications Warehouse

    Holtschlag, D.J.; Salehi, Habib

    1992-01-01

    Statistical models for estimating daily streamflow were analyzed for 25 pairs of streamflow-gaging stations in Michigan. Stations were paired by randomly choosing a station operated in 1989 at which 10 or more years of continuous flow data had been collected and at which flow is virtually unregulated; a nearby station was chosen where flow characteristics are similar. Streamflow data from the 25 randomly selected stations were used as the response variables; streamflow data at the nearby stations were used to generate a set of explanatory variables. Ordinary-least squares regression (OLSR) equations, autoregressive integrated moving-average (ARIMA) equations, and transfer function-noise (TFN) equations were developed to estimate the log transform of flow for the 25 randomly selected stations. The precision of each type of equation was evaluated on the basis of the standard deviation of the estimation errors. OLSR equations produce one set of estimation errors; ARIMA and TFN models each produce l sets of estimation errors corresponding to the forecast lead. The lead-l forecast is the estimate of flow l days ahead of the most recent streamflow used as a response variable in the estimation. In this analysis, the standard deviation of lead l ARIMA and TFN forecast errors were generally lower than the standard deviation of OLSR errors for l < 2 days and l < 9 days, respectively. Composite estimates were computed as a weighted average of forecasts based on TFN equations and backcasts (forecasts of the reverse-ordered series) based on ARIMA equations. The standard deviation of composite errors varied throughout the length of the estimation interval and generally was at maximum near the center of the interval. For comparison with OLSR errors, the mean standard deviation of composite errors were computed for intervals of length 1 to 40 days. The mean standard deviation of length-l composite errors were generally less than the standard deviation of the OLSR errors for l < 32 days. In addition, the composite estimates ensure a gradual transition between periods of estimated and measured flows. Model performance among stations of differing model error magnitudes were compared by computing ratios of the mean standard deviation of the length l composite errors to the standard deviation of OLSR errors. The mean error ratio for the set of 25 selected stations was less than 1 for intervals l < 32 days. Considering the frequency characteristics of the length of intervals of estimated record in Michigan, the effective mean error ratio for intervals < 30 days was 0.52. Thus, for intervals of estimation of 1 month or less, the error of the composite estimate is substantially lower than error of the OLSR estimate.

  18. Error coding simulations in C

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1994-01-01

    When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.

  19. Do Errors on Classroom Reading Tasks Slow Growth in Reading? Technical Report No. 404.

    ERIC Educational Resources Information Center

    Anderson, Richard C.; And Others

    A pervasive finding from research on teaching and classroom learning is that a low rate of error on classroom tasks is associated with large year to year gains in achievement, particularly for reading in the primary grades. The finding of a negative relationship between error rate, especially rate of oral reading errors, and gains in reading…

  20. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level.

    PubMed

    Moerbeek, Mirjam; van Schie, Sander

    2016-07-11

    The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects. The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are investigated by means of a simulation study. The factors in this study are the degree of imbalance, the covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and measured at the cluster level; the outcome is continuous and measured at the individual level. The results show covariate imbalance results in negligible parameter bias and small standard error bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the required number of clusters to achieve a desired power level is smallest. The possibility of covariate imbalance should be taken into account while calculating the sample size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified, be actually measured and included in the statistical model to avoid severe levels of parameter and standard error bias and insufficient power levels.

  1. Stochastic characterization of phase detection algorithms in phase-shifting interferometry

    DOE PAGES

    Munteanu, Florin

    2016-11-01

    Phase-shifting interferometry (PSI) is the preferred non-contact method for profiling sub-nanometer surfaces. Based on monochromatic light interference, the method computes the surface profile from a set of interferograms collected at separate stepping positions. Errors in the estimated profile are introduced when these positions are not located correctly. In order to cope with this problem, various algorithms that minimize the effects of certain types of stepping errors (linear, sinusoidal, etc.) have been developed. Despite the relatively large number of algorithms suggested in the literature, there is no unified way of characterizing their performance when additional unaccounted random errors are present. Here,more » we suggest a procedure for quantifying the expected behavior of each algorithm in the presence of independent and identically distributed (i.i.d.) random stepping errors, which can occur in addition to the systematic errors for which the algorithm has been designed. As a result, the usefulness of this method derives from the fact that it can guide the selection of the best algorithm for specific measurement situations.« less

  2. Study on the Rationality and Validity of Probit Models of Domino Effect to Chemical Process Equipment caused by Overpressure

    NASA Astrophysics Data System (ADS)

    Sun, Dongliang; Huang, Guangtuan; Jiang, Juncheng; Zhang, Mingguang; Wang, Zhirong

    2013-04-01

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Some models considering propagation probability and threshold values of the domino effect caused by overpressure have been proposed in previous study. In order to prove the rationality and validity of the models reported in the reference, two boundary values of three damage degrees reported were considered as random variables respectively in the interval [0, 100%]. Based on the overpressure data for damage to the equipment and the damage state, and the calculation method reported in the references, the mean square errors of the four categories of damage probability models of overpressure were calculated with random boundary values, and then a relationship of mean square error vs. the two boundary value was obtained, the minimum of mean square error was obtained, compared with the result of the present work, mean square error decreases by about 3%. Therefore, the error was in the acceptable range of engineering applications, the models reported can be considered reasonable and valid.

  3. Disclosure of Medical Errors: What Factors Influence How Patients Respond?

    PubMed Central

    Mazor, Kathleen M; Reed, George W; Yood, Robert A; Fischer, Melissa A; Baril, Joann; Gurwitz, Jerry H

    2006-01-01

    BACKGROUND Disclosure of medical errors is encouraged, but research on how patients respond to specific practices is limited. OBJECTIVE This study sought to determine whether full disclosure, an existing positive physician-patient relationship, an offer to waive associated costs, and the severity of the clinical outcome influenced patients' responses to medical errors. PARTICIPANTS Four hundred and seven health plan members participated in a randomized experiment in which they viewed video depictions of medical error and disclosure. DESIGN Subjects were randomly assigned to experimental condition. Conditions varied in type of medication error, level of disclosure, reference to a prior positive physician-patient relationship, an offer to waive costs, and clinical outcome. MEASURES Self-reported likelihood of changing physicians and of seeking legal advice; satisfaction, trust, and emotional response. RESULTS Nondisclosure increased the likelihood of changing physicians, and reduced satisfaction and trust in both error conditions. Nondisclosure increased the likelihood of seeking legal advice and was associated with a more negative emotional response in the missed allergy error condition, but did not have a statistically significant impact on seeking legal advice or emotional response in the monitoring error condition. Neither the existence of a positive relationship nor an offer to waive costs had a statistically significant impact. CONCLUSIONS This study provides evidence that full disclosure is likely to have a positive effect or no effect on how patients respond to medical errors. The clinical outcome also influences patients' responses. The impact of an existing positive physician-patient relationship, or of waiving costs associated with the error remains uncertain. PMID:16808770

  4. Considerations for analysis of time-to-event outcomes measured with error: Bias and correction with SIMEX.

    PubMed

    Oh, Eric J; Shepherd, Bryan E; Lumley, Thomas; Shaw, Pamela A

    2018-04-15

    For time-to-event outcomes, a rich literature exists on the bias introduced by covariate measurement error in regression models, such as the Cox model, and methods of analysis to address this bias. By comparison, less attention has been given to understanding the impact or addressing errors in the failure time outcome. For many diseases, the timing of an event of interest (such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant on self-report and therefore prone to measurement error. For linear models, it is well known that random errors in the outcome variable do not bias regression estimates. With nonlinear models, however, even random error or misclassification can introduce bias into estimated parameters. We compare the performance of 2 common regression models, the Cox and Weibull models, in the setting of measurement error in the failure time outcome. We introduce an extension of the SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other analysis options to address measurement error in the response. A formula to estimate the bias induced into the hazard ratio by classical measurement error in the event time for a log-linear survival model is presented. Detailed numerical studies are presented to examine the performance of the proposed SIMEX method under varying levels and parametric forms of the error in the outcome. We further illustrate the method with observational data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic. Copyright © 2017 John Wiley & Sons, Ltd.

  5. The Role of Moist Processes in the Intrinsic Predictability of Indian Ocean Cyclones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taraphdar, Sourav; Mukhopadhyay, P.; Leung, Lai-Yung R.

    The role of moist processes and the possibility of error cascade from cloud scale processes affecting the intrinsic predictable time scale of a high resolution convection permitting model within the environment of tropical cyclones (TCs) over the Indian region are investigated. Consistent with past studies of extra-tropical cyclones, it is demonstrated that moist processes play a major role in forecast error growth which may ultimately limit the intrinsic predictability of the TCs. Small errors in the initial conditions may grow rapidly and cascades from smaller scales to the larger scales through strong diabatic heating and nonlinearities associated with moist convection.more » Results from a suite of twin perturbation experiments for four tropical cyclones suggest that the error growth is significantly higher in cloud permitting simulation at 3.3 km resolutions compared to simulations at 3.3 km and 10 km resolution with parameterized convection. Convective parameterizations with prescribed convective time scales typically longer than the model time step allows the effects of microphysical tendencies to average out so convection responds to a smoother dynamical forcing. Without convective parameterizations, the finer-scale instabilities resolved at 3.3 km resolution and stronger vertical motion that results from the cloud microphysical parameterizations removing super-saturation at each model time step can ultimately feed the error growth in convection permitting simulations. This implies that careful considerations and/or improvements in cloud parameterizations are needed if numerical predictions are to be improved through increased model resolution. Rapid upscale error growth from convective scales may ultimately limit the intrinsic mesoscale predictability of the TCs, which further supports the needs for probabilistic forecasts of these events, even at the mesoscales.« less

  6. Growth models and the expected distribution of fluctuating asymmetry

    USGS Publications Warehouse

    Graham, John H.; Shimizu, Kunio; Emlen, John M.; Freeman, D. Carl; Merkel, John

    2003-01-01

    Multiplicative error accounts for much of the size-scaling and leptokurtosis in fluctuating asymmetry. It arises when growth involves the addition of tissue to that which is already present. Such errors are lognormally distributed. The distribution of the difference between two lognormal variates is leptokurtic. If those two variates are correlated, then the asymmetry variance will scale with size. Inert tissues typically exhibit additive error and have a gamma distribution. Although their asymmetry variance does not exhibit size-scaling, the distribution of the difference between two gamma variates is nevertheless leptokurtic. Measurement error is also additive, but has a normal distribution. Thus, the measurement of fluctuating asymmetry may involve the mixing of additive and multiplicative error. When errors are multiplicative, we recommend computing log E(l) − log E(r), the difference between the logarithms of the expected values of left and right sides, even when size-scaling is not obvious. If l and r are lognormally distributed, and measurement error is nil, the resulting distribution will be normal, and multiplicative error will not confound size-related changes in asymmetry. When errors are additive, such a transformation to remove size-scaling is unnecessary. Nevertheless, the distribution of l − r may still be leptokurtic.

  7. Printer model for dot-on-dot halftone screens

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Raja

    1995-04-01

    A printer model is described for dot-on-dot halftone screens. For a given input CMYK signal, the model predicts the resulting spectral reflectance of the printed patch. The model is derived in two steps. First, the C, M, Y, K dot growth functions are determined which relate the input digital value to the actual dot area coverages of the colorants. Next, the reflectance of a patch is predicted as a weighted combination of the reflectances of the four solid C, M, Y, K patches and their various overlays. This approach is analogous to the Neugebauer model, with the random mixing equations being replaced by dot-on-dot mixing equations. A Yule-Neilsen correction factor is incorporated to account for light scattering within the paper. The dot area functions and Yule-Neilsen parameter are chosen to optimize the fit to a set of training data. The model is also extended to a cellular framework, requiring additional measurements. The model is tested with a four color xerographic printer employing a line-on-line halftone screen. CIE L*a*b* errors are obtained between measurements and model predictions. The Yule-Neilsen factor significantly decreases the model error. Accuracy is also increased with the use of a cellular framework.

  8. Magnetic field errors tolerances of Nuclotron booster

    NASA Astrophysics Data System (ADS)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  9. An extended Reed Solomon decoder design

    NASA Technical Reports Server (NTRS)

    Chen, J.; Owsley, P.; Purviance, J.

    1991-01-01

    It has previously been shown that the Reed-Solomon (RS) codes can correct errors beyond the Singleton and Rieger Bounds with an arbitrarily small probability of a miscorrect. That is, an (n,k) RS code can correct more than (n-k)/2 errors. An implementation of such an RS decoder is presented in this paper. An existing RS decoder, the AHA4010, is utilized in this work. This decoder is especially useful for errors which are patterned with a long burst plus some random errors.

  10. Universal principles governing multiple random searchers on complex networks: The logarithmic growth pattern and the harmonic law

    NASA Astrophysics Data System (ADS)

    Weng, Tongfeng; Zhang, Jie; Small, Michael; Harandizadeh, Bahareh; Hui, Pan

    2018-03-01

    We propose a unified framework to evaluate and quantify the search time of multiple random searchers traversing independently and concurrently on complex networks. We find that the intriguing behaviors of multiple random searchers are governed by two basic principles—the logarithmic growth pattern and the harmonic law. Specifically, the logarithmic growth pattern characterizes how the search time increases with the number of targets, while the harmonic law explores how the search time of multiple random searchers varies relative to that needed by individual searchers. Numerical and theoretical results demonstrate these two universal principles established across a broad range of random search processes, including generic random walks, maximal entropy random walks, intermittent strategies, and persistent random walks. Our results reveal two fundamental principles governing the search time of multiple random searchers, which are expected to facilitate investigation of diverse dynamical processes like synchronization and spreading.

  11. Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics.

    PubMed

    Cheng, Sen; Sabes, Philip N

    2007-04-01

    The sensorimotor calibration of visually guided reaching changes on a trial-to-trial basis in response to random shifts in the visual feedback of the hand. We show that a simple linear dynamical system is sufficient to model the dynamics of this adaptive process. In this model, an internal variable represents the current state of sensorimotor calibration. Changes in this state are driven by error feedback signals, which consist of the visually perceived reach error, the artificial shift in visual feedback, or both. Subjects correct for > or =20% of the error observed on each movement, despite being unaware of the visual shift. The state of adaptation is also driven by internal dynamics, consisting of a decay back to a baseline state and a "state noise" process. State noise includes any source of variability that directly affects the state of adaptation, such as variability in sensory feedback processing, the computations that drive learning, or the maintenance of the state. This noise is accumulated in the state across trials, creating temporal correlations in the sequence of reach errors. These correlations allow us to distinguish state noise from sensorimotor performance noise, which arises independently on each trial from random fluctuations in the sensorimotor pathway. We show that these two noise sources contribute comparably to the overall magnitude of movement variability. Finally, the dynamics of adaptation measured with random feedback shifts generalizes to the case of constant feedback shifts, allowing for a direct comparison of our results with more traditional blocked-exposure experiments.

  12. The Gulliver Effect: The Impact of Error in an Elephantine Subpopulation on Estimates for Lilliputian Subpopulations

    ERIC Educational Resources Information Center

    Micceri, Theodore; Parasher, Pradnya; Waugh, Gordon W.; Herreid, Charlene

    2009-01-01

    An extensive review of the research literature and a study comparing over 36,000 survey responses with archival true scores indicated that one should expect a minimum of at least three percent random error for the least ambiguous of self-report measures. The Gulliver Effect occurs when a small proportion of error in a sizable subpopulation exerts…

  13. Uneven flows: On cosmic bulk flows, local observers, and gravity

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Bilicki, Maciej; Libeskind, Noam I.

    2018-05-01

    Using N -body simulations we study the impact of various systematic effects on the low-order moments of the cosmic velocity field: the bulk flow (BF) and the cosmic Mach number (CMN). We consider two types of systematics: those related to survey properties and those induced by the observer's location in the Universe. In the former category we model sparse sampling, velocity errors, and survey incompleteness (radial and geometrical). In the latter, we consider local group (LG) analogue observers, placed in a specific location within the cosmic web, satisfying various observational criteria. We differentiate such LG observers from Copernican ones, who are at random locations. We report strong systematic effects on the measured BF and CMN induced by sparse sampling, velocity errors and radial incompleteness. For BF most of these effects exceed 10% for scales R ≲100 h-1 Mpc . For CMN some of these systematics can be catastrophically large (i.e., >50 %) also on bigger scales. Moreover, we find that the position of the observer in the cosmic web significantly affects the locally measured BF (CMN), with effects as large as ˜20 % (30 % ) at R ≲50 h-1 Mpc for a LG-like observer as compared to a random one. This effect is comparable to the sample variance at the same scales. Such location-dependent effects have not been considered previously in BF and CMN studies and here we report their magnitude and scale for the first time. To highlight the importance of these systematics, we additionally study a model of modified gravity with ˜15 % enhanced growth rate (compared to general relativity). We found that the systematic effects can mimic the modified gravity signal. The worst-case scenario is realized for a case of a LG-like observer, when the effects induced by local structures are degenerate with the enhanced growth rate fostered by modified gravity. Our results indicate that dedicated constrained simulations and realistic mock galaxy catalogs will be absolutely necessary to fully benefit from the statistical power of the forthcoming peculiar velocity data from surveys such as TAIPAN, WALLABY, COSMICFLOWS-4 and SKA.

  14. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    PubMed Central

    Marchal-Crespo, Laura; Michels, Lars; Jaeger, Lukas; López-Olóriz, Jorge; Riener, Robert

    2017-01-01

    Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS) in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL), i.e., precuneus, and temporal cortex. These neuroimaging findings indicate that gait-like motor learning depends on interplay between subcortical, cerebellar, and fronto-parietal brain regions. An interesting observation was the low activation observed in the brain's reward system after training with error amplification compared to training without perturbations. Our results suggest that to enhance learning of a locomotor task, errors should be augmented based on subjects' skill level. The impacts of these strategies on motor learning, brain activation, and motivation in neurological patients need further investigation. PMID:29021739

  15. Nonconvergence of the Wang-Landau algorithms with multiple random walkers.

    PubMed

    Belardinelli, R E; Pereyra, V D

    2016-05-01

    This paper discusses some convergence properties in the entropic sampling Monte Carlo methods with multiple random walkers, particularly in the Wang-Landau (WL) and 1/t algorithms. The classical algorithms are modified by the use of m-independent random walkers in the energy landscape to calculate the density of states (DOS). The Ising model is used to show the convergence properties in the calculation of the DOS, as well as the critical temperature, while the calculation of the number π by multiple dimensional integration is used in the continuum approximation. In each case, the error is obtained separately for each walker at a fixed time, t; then, the average over m walkers is performed. It is observed that the error goes as 1/sqrt[m]. However, if the number of walkers increases above a certain critical value m>m_{x}, the error reaches a constant value (i.e., it saturates). This occurs for both algorithms; however, it is shown that for a given system, the 1/t algorithm is more efficient and accurate than the similar version of the WL algorithm. It follows that it makes no sense to increase the number of walkers above a critical value m_{x}, since it does not reduce the error in the calculation. Therefore, the number of walkers does not guarantee convergence.

  16. Accounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory.

    PubMed

    Sztepanacz, Jacqueline L; Blows, Mark W

    2017-07-01

    The distribution of genetic variance in multivariate phenotypes is characterized by the empirical spectral distribution of the eigenvalues of the genetic covariance matrix. Empirical estimates of genetic eigenvalues from random effects linear models are known to be overdispersed by sampling error, where large eigenvalues are biased upward, and small eigenvalues are biased downward. The overdispersion of the leading eigenvalues of sample covariance matrices have been demonstrated to conform to the Tracy-Widom (TW) distribution. Here we show that genetic eigenvalues estimated using restricted maximum likelihood (REML) in a multivariate random effects model with an unconstrained genetic covariance structure will also conform to the TW distribution after empirical scaling and centering. However, where estimation procedures using either REML or MCMC impose boundary constraints, the resulting genetic eigenvalues tend not be TW distributed. We show how using confidence intervals from sampling distributions of genetic eigenvalues without reference to the TW distribution is insufficient protection against mistaking sampling error as genetic variance, particularly when eigenvalues are small. By scaling such sampling distributions to the appropriate TW distribution, the critical value of the TW statistic can be used to determine if the magnitude of a genetic eigenvalue exceeds the sampling error for each eigenvalue in the spectral distribution of a given genetic covariance matrix. Copyright © 2017 by the Genetics Society of America.

  17. CONTEXTUAL INTERFERENCE AND INTROVERSION/EXTRAVERSION IN MOTOR LEARNING.

    PubMed

    Meira, Cassio M; Fairbrother, Jeffrey T; Perez, Carlos R

    2015-10-01

    The Introversion/Extraversion dimension may interact with contextual interference, as random and blocked practice schedules imply distinct levels of variation. This study investigated the effect of different practice schedules in the acquisition of a motor skill in extraverts and introverts. Forty male undergraduate students (M = 24.3 yr., SD = 5.6) were classified as extraverts (n = 20) and introverts (n = 20) by the Eysenck Personality Questionnaire and allocated in one of two practice schedules with different levels of contextual interference: blocked (low contextual interference) and random (high contextual interference). Half of each group was assigned to a blocked practice schedule, and the other half was assigned to a random practice schedule. The design had two phases: acquisition and transfer (5 min. and 24 hr.). The participants learned variations of a sequential timing keypressing task. Each variation required the same sequence but different timing; three variations were used in acquisition, and one variation of intermediate length was used in transfer. Results for absolute error and overall timing error (root mean square error) indicated that the contextual interference effect was more pronounced for introverts. In addition, introverts who practiced according to the blocked schedule committed more errors during the 24-hr. transfer, suggesting that introverts did not appear to be challenged by a low contextual interference practice schedule.

  18. Estimating the Standard Error of the Impact Estimator in Individually Randomized Trials with Clustering

    ERIC Educational Resources Information Center

    Weiss, Michael J.; Lockwood, J. R.; McCaffrey, Daniel F.

    2016-01-01

    In the "individually randomized group treatment" (IRGT) experimental design, individuals are first randomly assigned to a treatment arm or a control arm, but then within each arm, are grouped together (e.g., within classrooms/schools, through shared case managers, in group therapy sessions, through shared doctors, etc.) to receive…

  19. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    PubMed Central

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin

    2012-01-01

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766

  20. Short-Term Estimates of Growth Using Curriculum-Based Measurement of Oral Reading Fluency: Estimating Standard Error of the Slope to Construct Confidence Intervals

    ERIC Educational Resources Information Center

    Christ, Theodore J.

    2006-01-01

    Curriculum-based measurement of oral reading fluency (CBM-R) is an established procedure used to index the level and trend of student growth. A substantial literature base exists regarding best practices in the administration and interpretation of CBM-R; however, research has yet to adequately address the potential influence of measurement error.…

  1. Effects of hyperbaric oxygen and nerve growth factor on the long-term neural behavior of neonatal rats with hypoxic ischemic brain damage.

    PubMed

    Wei, Lixia; Ren, Qing; Zhang, Yongjun; Wang, Jiwen

    2017-04-01

    To evaluate the effects of HBO (Hyperbaric oxygen) and NGF (Nerve growth factor) on the long-term neural behavior of neonatal rats with HIBD (Neonatal hypoxic ischemic brain damage). The HIBD model was produced by ligating the right common carotid artery of 7 days old SD (Sprague-Dawley) rats followed by 8% O2 + 92% N2 for 2h. Totally 40 rats were randomly divided into 5 groups including sham-operated group, HIBD control group, HBO treated group, NGF treated group and NGF + HBO treated group. The learning and memory ability of these rats was evaluated by Morris water maze at 30 days after birth, and sensory motor function was assessed by experiments of foot error and limb placement at 42 days after birth. The escape latency of HBO treated group, NGF treated group and NGF + HBO treated group was shorter than that of HIBD control group (p<0.01) and longer than that of sham-operated group. The piercing indexes of 3 treated groups were higher than that of HIBD control group (p<0.01). Hyperbaric oxygen and nerve growth factor treatments may improve learning and memory ability and sensory motor function in neonatal rats after hypoxic ischemic brain damage.

  2. Random-access algorithms for multiuser computer communication networks. Doctoral thesis, 1 September 1986-31 August 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papantoni-Kazakos, P.; Paterakis, M.

    1988-07-01

    For many communication applications with time constraints (e.g., transmission of packetized voice messages), a critical performance measure is the percentage of messages transmitted within a given amount of time after their generation at the transmitting station. This report presents a random-access algorithm (RAA) suitable for time-constrained applications. Performance analysis demonstrates that significant message-delay improvement is attained at the expense of minimal traffic loss. Also considered is the case of noisy channels. The noise effect appears at erroneously observed channel feedback. Error sensitivity analysis shows that the proposed random-access algorithm is insensitive to feedback channel errors. Window Random-Access Algorithms (RAAs) aremore » considered next. These algorithms constitute an important subclass of Multiple-Access Algorithms (MAAs); they are distributive, and they attain high throughput and low delays by controlling the number of simultaneously transmitting users.« less

  3. Enhancement of cooperation in the spatial prisoner's dilemma with a coherence-resonance effect through annealed randomness at a cooperator-defector boundary; comparison of two variant models

    NASA Astrophysics Data System (ADS)

    Tanimoto, Jun

    2016-11-01

    Inspired by the commonly observed real-world fact that people tend to behave in a somewhat random manner after facing interim equilibrium to break a stalemate situation whilst seeking a higher output, we established two models of the spatial prisoner's dilemma. One presumes that an agent commits action errors, while the other assumes that an agent refers to a payoff matrix with an added random noise instead of an original payoff matrix. A numerical simulation revealed that mechanisms based on the annealing of randomness due to either the action error or the payoff noise could significantly enhance the cooperation fraction. In this study, we explain the detailed enhancement mechanism behind the two models by referring to the concepts that we previously presented with respect to evolutionary dynamic processes under the names of enduring and expanding periods.

  4. Bias Correction and Random Error Characterization for the Assimilation of HRDI Line-of-Sight Wind Measurements

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Menard, Richard; Ortland, David; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A new approach to the analysis of systematic and random observation errors is presented in which the error statistics are obtained using forecast data rather than observations from a different instrument type. The analysis is carried out at an intermediate retrieval level, instead of the more typical state variable space. This method is carried out on measurements made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). HRDI, a limb sounder, is the only satellite instrument measuring winds in the stratosphere, and the only instrument of any kind making global wind measurements in the upper atmosphere. HRDI measures doppler shifts in the two different O2 absorption bands (alpha and B) and the retrieved products are tangent point Line-of-Sight wind component (level 2 retrieval) and UV winds (level 3 retrieval). This analysis is carried out on a level 1.9 retrieval, in which the contributions from different points along the line-of-sight have not been removed. Biases are calculated from O-F (observed minus forecast) LOS wind components and are separated into a measurement parameter space consisting of 16 different values. The bias dependence on these parameters (plus an altitude dependence) is used to create a bias correction scheme carried out on the level 1.9 retrieval. The random error component is analyzed by separating the gamma and B band observations and locating observation pairs where both bands are very nearly looking at the same location at the same time. It is shown that the two observation streams are uncorrelated and that this allows the forecast error variance to be estimated. The bias correction is found to cut the effective observation error variance in half.

  5. Comparison of error-based and errorless learning for people with severe traumatic brain injury: study protocol for a randomized control trial.

    PubMed

    Ownsworth, Tamara; Fleming, Jennifer; Tate, Robyn; Shum, David H K; Griffin, Janelle; Schmidt, Julia; Lane-Brown, Amanda; Kendall, Melissa; Chevignard, Mathilde

    2013-11-05

    Poor skills generalization poses a major barrier to successful outcomes of rehabilitation after traumatic brain injury (TBI). Error-based learning (EBL) is a relatively new intervention approach that aims to promote skills generalization by teaching people internal self-regulation skills, or how to anticipate, monitor and correct their own errors. This paper describes the protocol of a study that aims to compare the efficacy of EBL and errorless learning (ELL) for improving error self-regulation, behavioral competency, awareness of deficits and long-term outcomes after TBI. This randomized, controlled trial (RCT) has two arms (EBL and ELL); each arm entails 8 × 2 h training sessions conducted within the participants' homes. The first four sessions involve a meal preparation activity, and the final four sessions incorporate a multitasking errand activity. Based on a sample size estimate, 135 participants with severe TBI will be randomized into either the EBL or ELL condition. The primary outcome measure assesses error self-regulation skills on a task related to but distinct from training. Secondary outcomes include measures of self-monitoring and self-regulation, behavioral competency, awareness of deficits, role participation and supportive care needs. Assessments will be conducted at pre-intervention, post-intervention, and at 6-months post-intervention. This study seeks to determine the efficacy and long-term impact of EBL for training internal self-regulation strategies following severe TBI. In doing so, the study will advance theoretical understanding of the role of errors in task learning and skills generalization. EBL has the potential to reduce the length and costs of rehabilitation and lifestyle support because the techniques could enhance generalization success and lifelong application of strategies after TBI. ACTRN12613000585729.

  6. Autoregressive Modeling of Drift and Random Error to Characterize a Continuous Intravascular Glucose Monitoring Sensor.

    PubMed

    Zhou, Tony; Dickson, Jennifer L; Geoffrey Chase, J

    2018-01-01

    Continuous glucose monitoring (CGM) devices have been effective in managing diabetes and offer potential benefits for use in the intensive care unit (ICU). Use of CGM devices in the ICU has been limited, primarily due to the higher point accuracy errors over currently used traditional intermittent blood glucose (BG) measures. General models of CGM errors, including drift and random errors, are lacking, but would enable better design of protocols to utilize these devices. This article presents an autoregressive (AR) based modeling method that separately characterizes the drift and random noise of the GlySure CGM sensor (GlySure Limited, Oxfordshire, UK). Clinical sensor data (n = 33) and reference measurements were used to generate 2 AR models to describe sensor drift and noise. These models were used to generate 100 Monte Carlo simulations based on reference blood glucose measurements. These were then compared to the original CGM clinical data using mean absolute relative difference (MARD) and a Trend Compass. The point accuracy MARD was very similar between simulated and clinical data (9.6% vs 9.9%). A Trend Compass was used to assess trend accuracy, and found simulated and clinical sensor profiles were similar (simulated trend index 11.4° vs clinical trend index 10.9°). The model and method accurately represents cohort sensor behavior over patients, providing a general modeling approach to any such sensor by separately characterizing each type of error that can arise in the data. Overall, it enables better protocol design based on accurate expected CGM sensor behavior, as well as enabling the analysis of what level of each type of sensor error would be necessary to obtain desired glycemic control safety and performance with a given protocol.

  7. Robust Tomography using Randomized Benchmarking

    NASA Astrophysics Data System (ADS)

    Silva, Marcus; Kimmel, Shelby; Johnson, Blake; Ryan, Colm; Ohki, Thomas

    2013-03-01

    Conventional randomized benchmarking (RB) can be used to estimate the fidelity of Clifford operations in a manner that is robust against preparation and measurement errors -- thus allowing for a more accurate and relevant characterization of the average error in Clifford gates compared to standard tomography protocols. Interleaved RB (IRB) extends this result to the extraction of error rates for individual Clifford gates. In this talk we will show how to combine multiple IRB experiments to extract all information about the unital part of any trace preserving quantum process. Consequently, one can compute the average fidelity to any unitary, not just the Clifford group, with tighter bounds than IRB. Moreover, the additional information can be used to design improvements in control. MS, BJ, CR and TO acknowledge support from IARPA under contract W911NF-10-1-0324.

  8. Linear discriminant analysis with misallocation in training samples

    NASA Technical Reports Server (NTRS)

    Chhikara, R. (Principal Investigator); Mckeon, J.

    1982-01-01

    Linear discriminant analysis for a two-class case is studied in the presence of misallocation in training samples. A general appraoch to modeling of mislocation is formulated, and the mean vectors and covariance matrices of the mixture distributions are derived. The asymptotic distribution of the discriminant boundary is obtained and the asymptotic first two moments of the two types of error rate given. Certain numerical results for the error rates are presented by considering the random and two non-random misallocation models. It is shown that when the allocation procedure for training samples is objectively formulated, the effect of misallocation on the error rates of the Bayes linear discriminant rule can almost be eliminated. If, however, this is not possible, the use of Fisher rule may be preferred over the Bayes rule.

  9. A Prospective, Randomized, Double-blind, Split-face Clinical Trial Comparing the Efficacy of Two Topical Human Growth Factors for the Rejuvenation of the Aging Face

    PubMed Central

    Goldman, Mitchel P.

    2017-01-01

    Background: Cosmeceutical products represent an increasingly important therapeutic option for anti-aging and rejuvenation, either used alone or in combination with dermatologic surgical procedures. Among this group of products, topical growth factors have demonstrated efficacy in randomized, controlled clinical trials. However, comparisons between different products remain uncommon. Objective: The objective of this randomized, double-blind, split-face clinical trial was to compare two different topical growth factor formulations derived from either human fibroblasts or human adipose tissue derived mesenchymal stem cells. Methods: This was an institutional review board-approved, randomized, double-blind, split-face clinical trial involving 20 healthy subjects with moderate-to-severe facial wrinkling secondary to photodamage. One half of the face was randomized to receive topical human fibroblast growth factors and the other topical human mesenchymal stem cell growth factors. Treatment was continued for three months, and evaluations were performed in a double-blind fashion. Results: Both growth factor formulations achieved significant improvement in facial wrinkling. Blinded investigator and subject evaluations did not detect any significant differences between the two formulations in terms of efficacy, safety, or tolerability. Conclusion: Both human fibroblast growth factors and human mesenchymal stem cell growth factors are effective at facial rejuvenation. Topical growth factors represent a useful therapeutic modality. PMID:28670356

  10. A Prospective, Randomized, Double-blind, Split-face Clinical Trial Comparing the Efficacy of Two Topical Human Growth Factors for the Rejuvenation of the Aging Face.

    PubMed

    Wu, Douglas C; Goldman, Mitchel P

    2017-05-01

    Background: Cosmeceutical products represent an increasingly important therapeutic option for anti-aging and rejuvenation, either used alone or in combination with dermatologic surgical procedures. Among this group of products, topical growth factors have demonstrated efficacy in randomized, controlled clinical trials. However, comparisons between different products remain uncommon. Objective: The objective of this randomized, double-blind, split-face clinical trial was to compare two different topical growth factor formulations derived from either human fibroblasts or human adipose tissue derived mesenchymal stem cells. Methods: This was an institutional review board-approved, randomized, double-blind, split-face clinical trial involving 20 healthy subjects with moderate-to-severe facial wrinkling secondary to photodamage. One half of the face was randomized to receive topical human fibroblast growth factors and the other topical human mesenchymal stem cell growth factors. Treatment was continued for three months, and evaluations were performed in a double-blind fashion. Results: Both growth factor formulations achieved significant improvement in facial wrinkling. Blinded investigator and subject evaluations did not detect any significant differences between the two formulations in terms of efficacy, safety, or tolerability. Conclusion: Both human fibroblast growth factors and human mesenchymal stem cell growth factors are effective at facial rejuvenation. Topical growth factors represent a useful therapeutic modality.

  11. Ideas for a pattern-oriented approach towards a VERA analysis ensemble

    NASA Astrophysics Data System (ADS)

    Gorgas, T.; Dorninger, M.

    2010-09-01

    Ideas for a pattern-oriented approach towards a VERA analysis ensemble For many applications in meteorology and especially for verification purposes it is important to have some information about the uncertainties of observation and analysis data. A high quality of these "reference data" is an absolute necessity as the uncertainties are reflected in verification measures. The VERA (Vienna Enhanced Resolution Analysis) scheme includes a sophisticated quality control tool which accounts for the correction of observational data and provides an estimation of the observation uncertainty. It is crucial for meteorologically and physically reliable analysis fields. VERA is based on a variational principle and does not need any first guess fields. It is therefore NWP model independent and can also be used as an unbiased reference for real time model verification. For downscaling purposes VERA uses an a priori knowledge on small-scale physical processes over complex terrain, the so called "fingerprint technique", which transfers information from rich to data sparse regions. The enhanced Joint D-PHASE and COPS data set forms the data base for the analysis ensemble study. For the WWRP projects D-PHASE and COPS a joint activity has been started to collect GTS and non-GTS data from the national and regional meteorological services in Central Europe for 2007. Data from more than 11.000 stations are available for high resolution analyses. The usage of random numbers as perturbations for ensemble experiments is a common approach in meteorology. In most implementations, like for NWP-model ensemble systems, the focus lies on error growth and propagation on the spatial and temporal scale. When defining errors in analysis fields we have to consider the fact that analyses are not time dependent and that no perturbation method aimed at temporal evolution is possible. Further, the method applied should respect two major sources of analysis errors: Observation errors AND analysis or interpolation errors. With the concept of an analysis ensemble we hope to get a more detailed sight on both sources of analysis errors. For the computation of the VERA ensemble members a sample of Gaussian random perturbations is produced for each station and parameter. The deviation of perturbations is based on the correction proposals by the VERA QC scheme to provide some "natural" limits for the ensemble. In order to put more emphasis on the weather situation we aim to integrate the main synoptic field structures as weighting factors for the perturbations. Two widely approved approaches are used for the definition of these main field structures: The Principal Component Analysis and a 2D-Discrete Wavelet Transform. The results of tests concerning the implementation of this pattern-supported analysis ensemble system and a comparison of the different approaches are given in the presentation.

  12. Multi-field inflation with a random potential

    NASA Astrophysics Data System (ADS)

    Tye, S.-H. Henry; Xu, Jiajun; Zhang, Yang

    2009-04-01

    Motivated by the possibility of inflation in the cosmic landscape, which may be approximated by a complicated potential, we study the density perturbations in multi-field inflation with a random potential. The random potential causes the inflaton to undergo a Brownian-like motion with a drift in the D-dimensional field space, allowing entropic perturbation modes to continuously and randomly feed into the adiabatic mode. To quantify such an effect, we employ a stochastic approach to evaluate the two-point and three-point functions of primordial perturbations. We find that in the weakly random scenario where the stochastic scatterings are frequent but mild, the resulting power spectrum resembles that of the single field slow-roll case, with up to 2% more red tilt. The strongly random scenario, in which the coarse-grained motion of the inflaton is significantly slowed down by the scatterings, leads to rich phenomenologies. The power spectrum exhibits primordial fluctuations on all angular scales. Such features may already be hiding in the error bars of observed CMB TT (as well as TE and EE) power spectrum and have been smoothed out by binning of data points. With more data coming in the future, we expect these features can be detected or falsified. On the other hand the tensor power spectrum itself is free of fluctuations and the tensor to scalar ratio is enhanced by the large ratio of the Brownian-like motion speed over the drift speed. In addition a large negative running of the power spectral index is possible. Non-Gaussianity is generically suppressed by the growth of adiabatic perturbations on super-horizon scales, and is negligible in the weakly random scenario. However, non-Gaussianity can possibly be enhanced by resonant effects in the strongly random scenario or arise from the entropic perturbations during the onset of (p)reheating if the background inflaton trajectory exhibits particular properties. The formalism developed in this paper can be applied to a wide class of multi-field inflation models including, e.g. the N-flation scenario.

  13. Consistent evaluation of GOSAT, SCIAMACHY, carbontracker, and MACC through comparisons to TCCON

    DOE PAGES

    Kulawik, S. S.; Wunch, D.; O'Dell, C.; ...

    2015-06-22

    Consistent validation of satellite CO 2 estimates is a prerequisite for using multiple satellite CO 2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO 2 data record. We focus on validating model and satellite observation attributes that impact flux estimates and CO 2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry air mole fraction (X CO 2) for GOSAT (ACOS b3.5) and SCIAMACHY (BESD v2.00.08) as wellmore » as the CarbonTracker (CT2013b) simulated CO 2 mole fraction fields and the MACC CO 2 inversion system (v13.1) and compare these to TCCON observations (GGG2014). We find standard deviations of 0.9 ppm, 0.9, 1.7, and 2.1 ppm versus TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single target errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. When satellite data are averaged and interpreted according to error 2 = a 2+ b 2 / n (where n are the number of observations averaged, a are the systematic (correlated) errors, and b are the random (uncorrelated) errors), we find that the correlated error term a = 0.6 ppm and the uncorrelated error term b = 1.7 ppm for GOSAT and a = 1.0 ppm, b = 1.4 ppm for SCIAMACHY regional averages. Biases at individual stations have year-to-year variability of ~ 0.3 ppm, with biases larger than the TCCON predicted bias uncertainty of 0.4 ppm at many stations. Using fitting software, we find that GOSAT underpredicts the seasonal cycle amplitude in the Northern Hemisphere (NH) between 46–53° N. In the Southern Hemisphere (SH), CT2013b underestimates the seasonal cycle amplitude. Biases are calculated for 3-month intervals and indicate the months that contribute to the observed amplitude differences. The seasonal cycle phase indicates whether a dataset or model lags another dataset in time. We calculate this at a subset of stations where there is adequate satellite data, and find that the GOSAT retrieved phase improves substantially over the prior and the SCIAMACHY retrieved phase improves substantially for 2 of 7 sites. The models reproduce the measured seasonal cycle phase well except for at Lauder125 (CT2013b), Darwin (MACC), and Izana (+ 10 days, CT2013b), as for Bremen and Four Corners, which are highly influenced by local effects. We compare the variability within one day between TCCON and models in JJA; there is correlation between 0.2 and 0.8 in the NH, with models showing 10–100 % the variability of TCCON at different stations (except Bremen and Four Corners which have no variability compared to TCCON) and CT2013b showing more variability than MACC. This paper highlights findings that provide inputs to estimate flux errors in model assimilations, and places where models and satellites need further investigation, e.g. the SH for models and 45–67° N for GOSAT« less

  14. The Number of Patients and Events Required to Limit the Risk of Overestimation of Intervention Effects in Meta-Analysis—A Simulation Study

    PubMed Central

    Thorlund, Kristian; Imberger, Georgina; Walsh, Michael; Chu, Rong; Gluud, Christian; Wetterslev, Jørn; Guyatt, Gordon; Devereaux, Philip J.; Thabane, Lehana

    2011-01-01

    Background Meta-analyses including a limited number of patients and events are prone to yield overestimated intervention effect estimates. While many assume bias is the cause of overestimation, theoretical considerations suggest that random error may be an equal or more frequent cause. The independent impact of random error on meta-analyzed intervention effects has not previously been explored. It has been suggested that surpassing the optimal information size (i.e., the required meta-analysis sample size) provides sufficient protection against overestimation due to random error, but this claim has not yet been validated. Methods We simulated a comprehensive array of meta-analysis scenarios where no intervention effect existed (i.e., relative risk reduction (RRR) = 0%) or where a small but possibly unimportant effect existed (RRR = 10%). We constructed different scenarios by varying the control group risk, the degree of heterogeneity, and the distribution of trial sample sizes. For each scenario, we calculated the probability of observing overestimates of RRR>20% and RRR>30% for each cumulative 500 patients and 50 events. We calculated the cumulative number of patients and events required to reduce the probability of overestimation of intervention effect to 10%, 5%, and 1%. We calculated the optimal information size for each of the simulated scenarios and explored whether meta-analyses that surpassed their optimal information size had sufficient protection against overestimation of intervention effects due to random error. Results The risk of overestimation of intervention effects was usually high when the number of patients and events was small and this risk decreased exponentially over time as the number of patients and events increased. The number of patients and events required to limit the risk of overestimation depended considerably on the underlying simulation settings. Surpassing the optimal information size generally provided sufficient protection against overestimation. Conclusions Random errors are a frequent cause of overestimation of intervention effects in meta-analyses. Surpassing the optimal information size will provide sufficient protection against overestimation. PMID:22028777

  15. Adaptive use of research aircraft data sets for hurricane forecasts

    NASA Astrophysics Data System (ADS)

    Biswas, M. K.; Krishnamurti, T. N.

    2008-02-01

    This study uses an adaptive observational strategy for hurricane forecasting. It shows the impacts of Lidar Atmospheric Sensing Experiment (LASE) and dropsonde data sets from Convection and Moisture Experiment (CAMEX) field campaigns on hurricane track and intensity forecasts. The following cases are used in this study: Bonnie, Danielle and Georges of 1998 and Erin, Gabrielle and Humberto of 2001. A single model run for each storm is carried out using the Florida State University Global Spectral Model (FSUGSM) with the European Center for Medium Range Weather Forecasts (ECMWF) analysis as initial conditions, in addition to 50 other model runs where the analysis is randomly perturbed for each storm. The centers of maximum variance of the DLM heights are located from the forecast error variance fields at the 84-hr forecast. Back correlations are then performed using the centers of these maximum variances and the fields at the 36-hr forecast. The regions having the highest correlations in the vicinity of the hurricanes are indicative of regions from where the error growth emanates and suggests the need for additional observations. Data sets are next assimilated in those areas that contain high correlations. Forecasts are computed using the new initial conditions for the storm cases, and track and intensity skills are then examined with respect to the control forecast. The adaptive strategy is capable of identifying sensitive areas where additional observations can help in reducing the hurricane track forecast errors. A reduction of position error by approximately 52% for day 3 of forecast (averaged over 7 storm cases) over the control runs is observed. The intensity forecast shows only a slight positive impact due to the model’s coarse resolution.

  16. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST)

    PubMed Central

    Xu, Chonggang; Gertner, George

    2013-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements. PMID:24143037

  17. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST).

    PubMed

    Xu, Chonggang; Gertner, George

    2011-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements.

  18. Comparison of direct and heterodyne detection optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1987-01-01

    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.

  19. Estimating random errors due to shot noise in backscatter lidar observations.

    PubMed

    Liu, Zhaoyan; Hunt, William; Vaughan, Mark; Hostetler, Chris; McGill, Matthew; Powell, Kathleen; Winker, David; Hu, Yongxiang

    2006-06-20

    We discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson- distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root mean square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF, uncertainties can be reliably calculated from or for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar and tested using data from the Lidar In-space Technology Experiment.

  20. Estimating Random Errors Due to Shot Noise in Backscatter Lidar Observations

    NASA Technical Reports Server (NTRS)

    Liu, Zhaoyan; Hunt, William; Vaughan, Mark A.; Hostetler, Chris A.; McGill, Matthew J.; Powell, Kathy; Winker, David M.; Hu, Yongxiang

    2006-01-01

    In this paper, we discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson-distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root-mean-square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF uncertainties can be reliably calculated from/for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar and tested using data from the Lidar In-space Technology Experiment (LITE). OCIS Codes:

  1. A proposed method to investigate reliability throughout a questionnaire.

    PubMed

    Wentzel-Larsen, Tore; Norekvål, Tone M; Ulvik, Bjørg; Nygård, Ottar; Pripp, Are H

    2011-10-05

    Questionnaires are used extensively in medical and health care research and depend on validity and reliability. However, participants may differ in interest and awareness throughout long questionnaires, which can affect reliability of their answers. A method is proposed for "screening" of systematic change in random error, which could assess changed reliability of answers. A simulation study was conducted to explore whether systematic change in reliability, expressed as changed random error, could be assessed using unsupervised classification of subjects by cluster analysis (CA) and estimation of intraclass correlation coefficient (ICC). The method was also applied on a clinical dataset from 753 cardiac patients using the Jalowiec Coping Scale. The simulation study showed a relationship between the systematic change in random error throughout a questionnaire and the slope between the estimated ICC for subjects classified by CA and successive items in a questionnaire. This slope was proposed as an awareness measure--to assessing if respondents provide only a random answer or one based on a substantial cognitive effort. Scales from different factor structures of Jalowiec Coping Scale had different effect on this awareness measure. Even though assumptions in the simulation study might be limited compared to real datasets, the approach is promising for assessing systematic change in reliability throughout long questionnaires. Results from a clinical dataset indicated that the awareness measure differed between scales.

  2. Evaluation of a Three-Dimensional Stereophotogrammetric Method to Identify and Measure the Palatal Surface Area in Children With Unilateral Cleft Lip and Palate.

    PubMed

    De Menezes, Marcio; Cerón-Zapata, Ana Maria; López-Palacio, Ana Maria; Mapelli, Andrea; Pisoni, Luca; Sforza, Chiarella

    2016-01-01

    To assess a three-dimensional (3D) stereophotogrammetric method for area delimitation and evaluation of the dental arches of children with unilateral cleft lip and palate (UCLP). Obtained data were also used to assess the 3D changes occurring in the maxillary arch with the use of orthopedic therapy prior to rhinocheiloplasty and before the first year of life. Within the collaboration between the Università degli Studi di Milano (Italy) and the University CES of Medellin (Colombia), 96 palatal cast models obtained from neonatal patients with UCLP were analyzed using a 3D stereophotogrammetric imaging system. The area of the minor and greater cleft segments on the digital dental cast surface were delineated by the visualization tool of the stereophotogrammetric software and then examined. "Trueness" of the measurements, as well as systematic and random errors between operators' tracings ("precision") were calculated. The method gave area measurements close to true values (errors lower than 2%), without systematic measurement errors for tracings by both interoperators and intraoperators (P > .05). Statistically significant differences (P < .05) were noted for alveolar segment and time. Maxillary segments have the potential for growth during presurgical orthopedic treatment in the early neonatal period. The cleft segment delimitation on digital dental casts and area measurements by the 3D stereophotogrammetric system revealed an accurate (true and precise) method for evaluating the stone casts of newborn patients with UCLP.

  3. Predicting Daily Insolation with Hourly Cloud Height and Coverage.

    NASA Astrophysics Data System (ADS)

    Meyers, T. P.; Dale, R. F.

    1983-04-01

    Solar radiation information is used in crop growth, boundary layer, entomological and plant pathological models, and in determining the potential use of active and passive solar energy systems. Yet solar radiation is among the least measured meteorological variables.A semi-physical model based on standard meteorological data was developed to estimate solar radiation received at the earth's surface. The radiation model includes the effects of Rayleigh scattering, absorption by water vapor and permanent gases, and absorption and scattering by aerosols and clouds. Cloud attenuation is accounted for by assigning transmission coefficients based on cloud height and amount. The cloud transmission coefficients for various heights and coverages were derived empirically from hourly observations of solar radiation in conjunction with corresponding cloud observations at West Lafayette, Indiana. The model was tested with independent data from West Lafayette and Indianapolis, Madison, WI, Omaha, NE, Columbia, MO, Nashville, TN, Seattle, WA, Los Angeles, CA, Phoenix, AZ, Lake Charles, LA, Miami, FL, and Sterling, VA. For each of these locations a 16% random sample of days was drawn within each of the 12 months in a year for testing the model. Excellent agreement between predicted and observed radiation values was obtained for all stations tested. Mean absolute errors ranged from 1.05 to 1.80 MJ m2 day1 and root-mean-square errors ranged from 1.31 to 2.32 MJ m2 day1. The model's performance judged by relative error was found to be independent of season and cloud amount for all locations tested.

  4. Radar error statistics for the space shuttle

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1979-01-01

    Radar error statistics of C-band and S-band that are recommended for use with the groundtracking programs to process space shuttle tracking data are presented. The statistics are divided into two parts: bias error statistics, using the subscript B, and high frequency error statistics, using the subscript q. Bias errors may be slowly varying to constant. High frequency random errors (noise) are rapidly varying and may or may not be correlated from sample to sample. Bias errors were mainly due to hardware defects and to errors in correction for atmospheric refraction effects. High frequency noise was mainly due to hardware and due to atmospheric scintillation. Three types of atmospheric scintillation were identified: horizontal, vertical, and line of sight. This was the first time that horizontal and line of sight scintillations were identified.

  5. Analysis of the impact of error detection on computer performance

    NASA Technical Reports Server (NTRS)

    Shin, K. C.; Lee, Y. H.

    1983-01-01

    Conventionally, reliability analyses either assume that a fault/error is detected immediately following its occurrence, or neglect damages caused by latent errors. Though unrealistic, this assumption was imposed in order to avoid the difficulty of determining the respective probabilities that a fault induces an error and the error is then detected in a random amount of time after its occurrence. As a remedy for this problem a model is proposed to analyze the impact of error detection on computer performance under moderate assumptions. Error latency, the time interval between occurrence and the moment of detection, is used to measure the effectiveness of a detection mechanism. This model is used to: (1) predict the probability of producing an unreliable result, and (2) estimate the loss of computation due to fault and/or error.

  6. An evaluation of satellite-derived humidity and its relationship to convective development

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.

    1993-01-01

    An aircraft prototype of the High-Resolution Interferometer Sounder (HIS) was flown over Tennessee and northern Alabama during summer 1986. The HIS temperature and dewpoint soundings were examined on two flight days to determine their error characteristics and utility in mesoscale analyses. Random errors were calculated from structure functions while total errors were obtained by pairing the HIS soundings with radiosonde-derived profiles. Random temperature errors were found to be less than 1 C at most levels, but random dewpoint errors ranged from 1 to 5 C. Total errors of both parameters were considerably greater, with dewpoint errors especially large on the day having a pronounced subsidence inversion. Cumulus cloud cover on 15 June limited HIS mesoscale analyses on that day. Previously undetected clouds were found in many HIS fields of view, and these probably produced the low-level horizontal temperature and dewpoint variations observed in the retrievals. HIS dewpoints at 300 mb indicated a strong moisture gradient that was confirmed by GOES 6.7-micron imagery. HIS mesoscale analyses on 19 June revealed a tongue of humid air stretching across the study area. The moist region was confirmed by radiosonde data and imagery from the Multispectral Atmospheric Mapping Sensor (MAMS). Convective temperatures derived from HIS retrievals helped explain the cloud formation that occurred after the HIS overflights. Crude estimates of Bowen ratio were obtained from HIS data using a mixing-line approach. Values indicated that areas of large sensible heat flux were the areas of first cloud development. These locations were also suggested by GOES visible and infrared imagery. The HIS retrievals indicated that areas of thunderstorm formation were regions of greatest instability. Local landscape variability and atmospheric temperature and humidity fluctuations were found to be important factors in producing the cumulus clouds on 19 June. HIS soundings were capable of detecting some of this variability. The authors were impressed by HIS's performance on the two study days.

  7. Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Deng, H.; Lin, S.

    1984-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots.

  8. Spatial Assessment of Model Errors from Four Regression Techniques

    Treesearch

    Lianjun Zhang; Jeffrey H. Gove; Jeffrey H. Gove

    2005-01-01

    Fomst modelers have attempted to account for the spatial autocorrelations among trees in growth and yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized additive models (GAM), and geographicalIy weighted regression (GWR). However, the model errors are commonly assessed using average errors across the entire study...

  9. Stable estimate of primary OC/EC ratios in the EC tracer method

    NASA Astrophysics Data System (ADS)

    Chu, Shao-Hang

    In fine particulate matter studies, the primary OC/EC ratio plays an important role in estimating the secondary organic aerosol contribution to PM2.5 concentrations using the EC tracer method. In this study, numerical experiments are carried out to test and compare various statistical techniques in the estimation of primary OC/EC ratios. The influence of random measurement errors in both primary OC and EC measurements on the estimation of the expected primary OC/EC ratios is examined. It is found that random measurement errors in EC generally create an underestimation of the slope and an overestimation of the intercept of the ordinary least-squares regression line. The Deming regression analysis performs much better than the ordinary regression, but it tends to overcorrect the problem by slightly overestimating the slope and underestimating the intercept. Averaging the ratios directly is usually undesirable because the average is strongly influenced by unrealistically high values of OC/EC ratios resulting from random measurement errors at low EC concentrations. The errors generally result in a skewed distribution of the OC/EC ratios even if the parent distributions of OC and EC are close to normal. When measured OC contains a significant amount of non-combustion OC Deming regression is a much better tool and should be used to estimate both the primary OC/EC ratio and the non-combustion OC. However, if the non-combustion OC is negligibly small the best and most robust estimator of the OC/EC ratio turns out to be the simple ratio of the OC and EC averages. It not only reduces random errors by averaging individual variables separately but also acts as a weighted average of ratios to minimize the influence of unrealistically high OC/EC ratios created by measurement errors at low EC concentrations. The median of OC/EC ratios ranks a close second, and the geometric mean of ratios ranks third. This is because their estimations are insensitive to questionable extreme values. A real world example is given using the ambient data collected from an Atlanta STN site during the winter of 2001-2002.

  10. Advanced Water Vapor Lidar Detection System

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1998-01-01

    In the present water vapor lidar system, the detected signal is sent over long cables to a waveform digitizer in a CAMAC crate. This has the disadvantage of transmitting analog signals for a relatively long distance, which is subjected to pickup noise, leading to a decrease in the signal to noise ratio. Generally, errors in the measurement of water vapor with the DIAL method arise from both random and systematic sources. Systematic errors in DIAL measurements are caused by both atmospheric and instrumentation effects. The selection of the on-line alexandrite laser with a narrow linewidth, suitable intensity and high spectral purity, and its operation at the center of the water vapor lines, ensures minimum influence in the DIAL measurement that are caused by the laser spectral distribution and avoid system overloads. Random errors are caused by noise in the detected signal. Variability of the photon statistics in the lidar return signal, noise resulting from detector dark current, and noise in the background signal are the main sources of random error. This type of error can be minimized by maximizing the signal to noise ratio. The increase in the signal to noise ratio can be achieved by several ways. One way is to increase the laser pulse energy, by increasing its amplitude or the pulse repetition rate. Another way, is to use a detector system with higher quantum efficiency and lower noise, on the other hand, the selection of a narrow band optical filter that rejects most of the day background light and retains high optical efficiency is an important issue. Following acquisition of the lidar data, we minimize random errors in the DIAL measurement by averaging the data, but this will result in the reduction of the vertical and horizontal resolutions. Thus, a trade off is necessary to achieve a balance between the spatial resolution and the measurement precision. Therefore, the main goal of this research effort is to increase the signal to noise ratio by a factor of 10 over the current system, using a newly evaluated, very low noise avalanche photo diode detector and constructing a 10 MHz waveform digitizer which will replace the current CAMAC system.

  11. Decorrelation of the true and estimated classifier errors in high-dimensional settings.

    PubMed

    Hanczar, Blaise; Hua, Jianping; Dougherty, Edward R

    2007-01-01

    The aim of many microarray experiments is to build discriminatory diagnosis and prognosis models. Given the huge number of features and the small number of examples, model validity which refers to the precision of error estimation is a critical issue. Previous studies have addressed this issue via the deviation distribution (estimated error minus true error), in particular, the deterioration of cross-validation precision in high-dimensional settings where feature selection is used to mitigate the peaking phenomenon (overfitting). Because classifier design is based upon random samples, both the true and estimated errors are sample-dependent random variables, and one would expect a loss of precision if the estimated and true errors are not well correlated, so that natural questions arise as to the degree of correlation and the manner in which lack of correlation impacts error estimation. We demonstrate the effect of correlation on error precision via a decomposition of the variance of the deviation distribution, observe that the correlation is often severely decreased in high-dimensional settings, and show that the effect of high dimensionality on error estimation tends to result more from its decorrelating effects than from its impact on the variance of the estimated error. We consider the correlation between the true and estimated errors under different experimental conditions using both synthetic and real data, several feature-selection methods, different classification rules, and three error estimators commonly used (leave-one-out cross-validation, k-fold cross-validation, and .632 bootstrap). Moreover, three scenarios are considered: (1) feature selection, (2) known-feature set, and (3) all features. Only the first is of practical interest; however, the other two are needed for comparison purposes. We will observe that the true and estimated errors tend to be much more correlated in the case of a known feature set than with either feature selection or using all features, with the better correlation between the latter two showing no general trend, but differing for different models.

  12. Why Are People Bad at Detecting Randomness? A Statistical Argument

    ERIC Educational Resources Information Center

    Williams, Joseph J.; Griffiths, Thomas L.

    2013-01-01

    Errors in detecting randomness are often explained in terms of biases and misconceptions. We propose and provide evidence for an account that characterizes the contribution of the inherent statistical difficulty of the task. Our account is based on a Bayesian statistical analysis, focusing on the fact that a random process is a special case of…

  13. Wiring Damage Analyses for STS OV-103

    NASA Technical Reports Server (NTRS)

    Thomas, Walter, III

    2006-01-01

    This study investigated the Shuttle Program s belief that Space Transportation System (STS) wiring damage occurrences are random, that is, a constant occurrence rate. Using Problem Reporting and Corrective Action (PRACA)-derived data for STS Space Shuttle OV-103, wiring damage was observed to increase over the vehicle s life. Causal factors could include wiring physical deterioration, maintenance and inspection induced damage, and inspection process changes resulting in more damage events being reported. Induced damage effects cannot be resolved with existent data. Growth analysis (using Crow-AMSAA, or CA) resolved maintenance/inspection effects (e.g., heightened awareness) on all wire damages and indicated an overall increase since Challenger Return-to-Flight (RTF). An increasing failure or occurrence rate per flight cycle was seen for each wire damage mode; these (individual) rates were not affected by inspection process effects, within statistical error.

  14. Antioxidant supplements and mortality.

    PubMed

    Bjelakovic, Goran; Nikolova, Dimitrinka; Gluud, Christian

    2014-01-01

    Oxidative damage to cells and tissues is considered involved in the aging process and in the development of chronic diseases in humans, including cancer and cardiovascular diseases, the leading causes of death in high-income countries. This has stimulated interest in the preventive potential of antioxidant supplements. Today, more than one half of adults in high-income countries ingest antioxidant supplements hoping to improve their health, oppose unhealthy behaviors, and counteract the ravages of aging. Older observational studies and some randomized clinical trials with high risks of systematic errors ('bias') have suggested that antioxidant supplements may improve health and prolong life. A number of randomized clinical trials with adequate methodologies observed neutral or negative results of antioxidant supplements. Recently completed large randomized clinical trials with low risks of bias and systematic reviews of randomized clinical trials taking systematic errors ('bias') and risks of random errors ('play of chance') into account have shown that antioxidant supplements do not seem to prevent cancer, cardiovascular diseases, or death. Even more, beta-carotene, vitamin A, and vitamin E may increase mortality. Some recent large observational studies now support these findings. According to recent dietary guidelines, there is no evidence to support the use of antioxidant supplements in the primary prevention of chronic diseases or mortality. Antioxidant supplements do not possess preventive effects and may be harmful with unwanted consequences to our health, especially in well-nourished populations. The optimal source of antioxidants seems to come from our diet, not from antioxidant supplements in pills or tablets.

  15. POLICY IMPLICATIONS OF ADJUSTING RANDOMIZED TRIAL DATA FOR ECONOMIC EVALUATIONS: A DEMONSTRATION FROM THE ASCUS-LSIL TRIAGE STUDY

    PubMed Central

    Campos, Nicole G.; Castle, Philip E.; Schiffman, Mark; Kim, Jane J.

    2013-01-01

    Background Although the randomized controlled trial (RCT) is widely considered the most reliable method for evaluation of health care interventions, challenges to both internal and external validity exist. Thus, the efficacy of an intervention in a trial setting does not necessarily represent the real-world performance that decision makers seek to inform comparative effectiveness studies and economic evaluations. Methods Using data from the ASCUS-LSIL Triage Study (ALTS), we performed a simplified economic evaluation of age-based management strategies to detect cervical intraepithelial neoplasia grade 3 (CIN3) among women who were referred to the study with low-grade squamous intraepithelial lesions (LSIL). We used data from the trial itself to adjust for 1) potential lead time bias and random error that led to variation in the observed prevalence of CIN3 by study arm, and 2) potential ascertainment bias among providers in the most aggressive management arm. Results We found that using unadjusted RCT data may result in counterintuitive cost-effectiveness results when random error and/or bias are present. Following adjustment, the rank order of management strategies changed for two of the three age groups we considered. Conclusion Decision analysts need to examine study design, available trial data and cost-effectiveness results closely in order to detect evidence of potential bias. Adjustment for random error and bias in RCTs may yield different policy conclusions relative to unadjusted trial data. PMID:22147881

  16. Electron Beam Propagation Through a Magnetic Wiggler with Random Field Errors

    DTIC Science & Technology

    1989-08-21

    Another quantity of interest is the vector potential 6.A,.(:) associated with the field error 6B,,,(:). Defining the normalized vector potentials ba = ebA...then follows that the correlation of the normalized vector potential errors is given by 1 . 12 (-a.(zj)a.,(z2)) = a,k,, dz’ , dz" (bBE(z’)bB , (z")) a2...Throughout the following, terms of order O(z:/z) will be neglected. Similarly, for the y-component of the normalized vector potential errors, one

  17. Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal

    NASA Astrophysics Data System (ADS)

    Zamudio, Gabriel S.; José, Marco V.

    2018-03-01

    In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.

  18. Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in UWB Ranging Systems

    PubMed Central

    Yin, Zhendong; Cui, Kai; Wu, Zhilu; Yin, Liang

    2015-01-01

    The major challenges for Ultra-wide Band (UWB) indoor ranging systems are the dense multipath and non-line-of-sight (NLOS) problems of the indoor environment. To precisely estimate the time of arrival (TOA) of the first path (FP) in such a poor environment, a novel approach of entropy-based TOA estimation and support vector machine (SVM) regression-based ranging error mitigation is proposed in this paper. The proposed method can estimate the TOA precisely by measuring the randomness of the received signals and mitigate the ranging error without the recognition of the channel conditions. The entropy is used to measure the randomness of the received signals and the FP can be determined by the decision of the sample which is followed by a great entropy decrease. The SVM regression is employed to perform the ranging-error mitigation by the modeling of the regressor between the characteristics of received signals and the ranging error. The presented numerical simulation results show that the proposed approach achieves significant performance improvements in the CM1 to CM4 channels of the IEEE 802.15.4a standard, as compared to conventional approaches. PMID:26007726

  19. Debiasing affective forecasting errors with targeted, but not representative, experience narratives.

    PubMed

    Shaffer, Victoria A; Focella, Elizabeth S; Scherer, Laura D; Zikmund-Fisher, Brian J

    2016-10-01

    To determine whether representative experience narratives (describing a range of possible experiences) or targeted experience narratives (targeting the direction of forecasting bias) can reduce affective forecasting errors, or errors in predictions of experiences. In Study 1, participants (N=366) were surveyed about their experiences with 10 common medical events. Those who had never experienced the event provided ratings of predicted discomfort and those who had experienced the event provided ratings of actual discomfort. Participants making predictions were randomly assigned to either the representative experience narrative condition or the control condition in which they made predictions without reading narratives. In Study 2, participants (N=196) were again surveyed about their experiences with these 10 medical events, but participants making predictions were randomly assigned to either the targeted experience narrative condition or the control condition. Affective forecasting errors were observed in both studies. These forecasting errors were reduced with the use of targeted experience narratives (Study 2) but not representative experience narratives (Study 1). Targeted, but not representative, narratives improved the accuracy of predicted discomfort. Public collections of patient experiences should favor stories that target affective forecasting biases over stories representing the range of possible experiences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Maximum type I error rate inflation from sample size reassessment when investigators are blind to treatment labels.

    PubMed

    Żebrowska, Magdalena; Posch, Martin; Magirr, Dominic

    2016-05-30

    Consider a parallel group trial for the comparison of an experimental treatment to a control, where the second-stage sample size may depend on the blinded primary endpoint data as well as on additional blinded data from a secondary endpoint. For the setting of normally distributed endpoints, we demonstrate that this may lead to an inflation of the type I error rate if the null hypothesis holds for the primary but not the secondary endpoint. We derive upper bounds for the inflation of the type I error rate, both for trials that employ random allocation and for those that use block randomization. We illustrate the worst-case sample size reassessment rule in a case study. For both randomization strategies, the maximum type I error rate increases with the effect size in the secondary endpoint and the correlation between endpoints. The maximum inflation increases with smaller block sizes if information on the block size is used in the reassessment rule. Based on our findings, we do not question the well-established use of blinded sample size reassessment methods with nuisance parameter estimates computed from the blinded interim data of the primary endpoint. However, we demonstrate that the type I error rate control of these methods relies on the application of specific, binding, pre-planned and fully algorithmic sample size reassessment rules and does not extend to general or unplanned sample size adjustments based on blinded data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  1. Improved uncertainty quantification in nondestructive assay for nonproliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Tom; Croft, Stephen; Jarman, Ken

    2016-12-01

    This paper illustrates methods to improve uncertainty quantification (UQ) for non-destructive assay (NDA) measurements used in nuclear nonproliferation. First, it is shown that current bottom-up UQ applied to calibration data is not always adequate, for three main reasons: (1) Because there are errors in both the predictors and the response, calibration involves a ratio of random quantities, and calibration data sets in NDA usually consist of only a modest number of samples (3–10); therefore, asymptotic approximations involving quantities needed for UQ such as means and variances are often not sufficiently accurate; (2) Common practice overlooks that calibration implies a partitioningmore » of total error into random and systematic error, and (3) In many NDA applications, test items exhibit non-negligible departures in physical properties from calibration items, so model-based adjustments are used, but item-specific bias remains in some data. Therefore, improved bottom-up UQ using calibration data should predict the typical magnitude of item-specific bias, and the suggestion is to do so by including sources of item-specific bias in synthetic calibration data that is generated using a combination of modeling and real calibration data. Second, for measurements of the same nuclear material item by both the facility operator and international inspectors, current empirical (top-down) UQ is described for estimating operator and inspector systematic and random error variance components. A Bayesian alternative is introduced that easily accommodates constraints on variance components, and is more robust than current top-down methods to the underlying measurement error distributions.« less

  2. MERLIN: a Franco-German LIDAR space mission for atmospheric methane

    NASA Astrophysics Data System (ADS)

    Bousquet, P.; Ehret, G.; Pierangelo, C.; Marshall, J.; Bacour, C.; Chevallier, F.; Gibert, F.; Armante, R.; Crevoisier, C. D.; Edouart, D.; Esteve, F.; Julien, E.; Kiemle, C.; Alpers, M.; Millet, B.

    2017-12-01

    The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase C, is a joint cooperation between France and Germany on the development, launch and operation of a space LIDAR dedicated to the retrieval of total weighted methane (CH4) atmospheric columns. Atmospheric methane is the second most potent anthropogenic greenhouse gas, contributing 20% to climate radiative forcing but also plying an important role in atmospheric chemistry as a precursor of tropospheric ozone and low-stratosphere water vapour. Its short lifetime ( 9 years) and the nature and variety of its anthropogenic sources also offer interesting mitigation options in regards to the 2° objective of the Paris agreement. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging), with a precision (target ±27 ppb for a 50km aggregation along the trace) and accuracy (target <3.7 ppb at 68%) sufficient to significantly reduce the uncertainties on methane emissions. The very low targeted systematic error target is particularly ambitious compared to current passive methane space mission. It is achievable because of the differential active measurements of MERLIN, which guarantees almost no contamination by aerosols or water vapour cross-sensitivity. As an active mission, MERLIN will deliver global methane weighted columns (XCH4) for all seasons and all latitudes, day and night Here, we recall the MERLIN objectives and mission characteristics. We also propose an end-to-end error analysis, from the causes of random and systematic errors of the instrument, of the platform and of the data treatment, to the error on methane emissions. To do so, we propose an OSSE analysis (observing system simulation experiment) to estimate the uncertainty reduction on methane emissions brought by MERLIN XCH4. The originality of our inversion system is to transfer both random and systematic errors from the observation space to the flux space, thus providing more realistic error reductions than usually provided in OSSE only using the random part of errors. Uncertainty reductions are presented using two different atmospheric transport models, TM3 and LMDZ, and compared with error reduction achieved with the GOSAT passive mission.

  3. Research of laser echo signal simulator

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Shi, Rui; Wang, Xin; Li, Zhou

    2015-11-01

    Laser echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR. System model and time series model of laser echo signal simulator are established. Some influential factors which could induce fixed error and random error on the simulated return signals are analyzed, and then these system insertion errors are analyzed quantitatively. Using this theoretical model, the simulation system is investigated experimentally. The results corrected by subtracting fixed error indicate that the range error of the simulated laser return signal is less than 0.25m, and the distance range that the system can simulate is from 50m to 20km.

  4. Natural Selection as an Emergent Process: Instructional Implications

    ERIC Educational Resources Information Center

    Cooper, Robert A.

    2017-01-01

    Student reasoning about cases of natural selection is often plagued by errors that stem from miscategorising selection as a direct, causal process, misunderstanding the role of randomness, and from the intuitive ideas of intentionality, teleology and essentialism. The common thread throughout many of these reasoning errors is a failure to apply…

  5. Measurement variability error for estimates of volume change

    Treesearch

    James A. Westfall; Paul L. Patterson

    2007-01-01

    Using quality assurance data, measurement variability distributions were developed for attributes that affect tree volume prediction. Random deviations from the measurement variability distributions were applied to 19381 remeasured sample trees in Maine. The additional error due to measurement variation and measurement bias was estimated via a simulation study for...

  6. Data entry errors and design for model-based tight glycemic control in critical care.

    PubMed

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. Model-based methods and computerized protocols offer the opportunity to improve TGC quality but require human data entry, particularly of blood glucose (BG) values, which can be significantly prone to error. This study presents the design and optimization of data entry methods to minimize error for a computerized and model-based TGC method prior to pilot clinical trials. To minimize data entry error, two tests were carried out to optimize a method with errors less than the 5%-plus reported in other studies. Four initial methods were tested on 40 subjects in random order, and the best two were tested more rigorously on 34 subjects. The tests measured entry speed and accuracy. Errors were reported as corrected and uncorrected errors, with the sum comprising a total error rate. The first set of tests used randomly selected values, while the second set used the same values for all subjects to allow comparisons across users and direct assessment of the magnitude of errors. These research tests were approved by the University of Canterbury Ethics Committee. The final data entry method tested reduced errors to less than 1-2%, a 60-80% reduction from reported values. The magnitude of errors was clinically significant and was typically by 10.0 mmol/liter or an order of magnitude but only for extreme values of BG < 2.0 mmol/liter or BG > 15.0-20.0 mmol/liter, both of which could be easily corrected with automated checking of extreme values for safety. The data entry method selected significantly reduced data entry errors in the limited design tests presented, and is in use on a clinical pilot TGC study. The overall approach and testing methods are easily performed and generalizable to other applications and protocols. © 2012 Diabetes Technology Society.

  7. Localization Methods for a Mobile Robot in Urban Environments

    DTIC Science & Technology

    2004-10-04

    Columbia University, Department of Computer Science, 2001. [30] R. Brown and P. Hwang , Introduction to random signals and applied Kalman filtering, 3rd...sensor. An extended Kalman filter integrates the sensor data and keeps track of the uncertainty associated with it. The second method is based on...errors+ compass/GPS errors corrected odometry pose odometry error estimates zk zk h(x)~ h(x)~ Kalman Filter zk Fig. 4. A diagram of the extended

  8. Modified Bat Algorithm for Feature Selection with the Wisconsin Diagnosis Breast Cancer (WDBC) Dataset

    PubMed

    Jeyasingh, Suganthi; Veluchamy, Malathi

    2017-05-01

    Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and repeated data from the dataset before final diagnosis. This can be done using any of the feature selection algorithms available in data mining. Feature selection is considered as a vital step to increase the classification accuracy. This paper proposes a Modified Bat Algorithm (MBA) for feature selection to eliminate irrelevant features from an original dataset. The Bat algorithm was modified using simple random sampling to select the random instances from the dataset. Ranking was with the global best features to recognize the predominant features available in the dataset. The selected features are used to train a Random Forest (RF) classification algorithm. The MBA feature selection algorithm enhanced the classification accuracy of RF in identifying the occurrence of breast cancer. The Wisconsin Diagnosis Breast Cancer Dataset (WDBC) was used for estimating the performance analysis of the proposed MBA feature selection algorithm. The proposed algorithm achieved better performance in terms of Kappa statistic, Mathew’s Correlation Coefficient, Precision, F-measure, Recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE). Creative Commons Attribution License

  9. Error begat error: design error analysis and prevention in social infrastructure projects.

    PubMed

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  10. Echocardiographic Methods, Quality Review, and Measurement Accuracy in a Randomized Multicenter Clinical Trial of Marfan Syndrome

    PubMed Central

    Selamet Tierney, Elif Seda; Levine, Jami C.; Chen, Shan; Bradley, Timothy J.; Pearson, Gail D.; Colan, Steven D.; Sleeper, Lynn A.; Campbell, M. Jay; Cohen, Meryl S.; Backer, Julie De; Guey, Lin T.; Heydarian, Haleh; Lai, Wyman W.; Lewin, Mark B.; Marcus, Edward; Mart, Christopher R.; Pignatelli, Ricardo H.; Printz, Beth F.; Sharkey, Angela M.; Shirali, Girish S.; Srivastava, Shubhika; Lacro, Ronald V.

    2013-01-01

    Background The Pediatric Heart Network is conducting a large international randomized trial to compare aortic root growth and other cardiovascular outcomes in 608 subjects with Marfan syndrome randomized to receive atenolol or losartan for 3 years. The authors report here the echocardiographic methods and baseline echocardiographic characteristics of the randomized subjects, describe the interobserver agreement of aortic measurements, and identify factors influencing agreement. Methods Individuals aged 6 months to 25 years who met the original Ghent criteria and had body surface area–adjusted maximum aortic root diameter (ROOTmax) Z scores > 3 were eligible for inclusion. The primary outcome measure for the trial is the change over time in ROOTmax Z score. A detailed echocardiographic protocol was established and implemented across 22 centers, with an extensive training and quality review process. Results Interobserver agreement for the aortic measurements was excellent, with intraclass correlation coefficients ranging from 0.921 to 0.989. Lower interobserver percentage error in ROOTmax measurements was independently associated (model R2 = 0.15) with better image quality (P = .002) and later study reading date (P < .001). Echocardiographic characteristics of the randomized subjects did not differ by treatment arm. Subjects with ROOTmax Z scores ≥ 4.5 (36%) were more likely to have mitral valve prolapse and dilation of the main pulmonary artery and left ventricle, but there were no differences in aortic regurgitation, aortic stiffness indices, mitral regurgitation, or left ventricular function compared with subjects with ROOTmax Z scores < 4.5. Conclusions The echocardiographic methodology, training, and quality review process resulted in a robust evaluation of aortic root dimensions, with excellent reproducibility. PMID:23582510

  11. Iterative random vs. Kennard-Stone sampling for IR spectrum-based classification task using PLS2-DA

    NASA Astrophysics Data System (ADS)

    Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz

    2018-04-01

    External testing (ET) is preferred over auto-prediction (AP) or k-fold-cross-validation in estimating more realistic predictive ability of a statistical model. With IR spectra, Kennard-stone (KS) sampling algorithm is often used to split the data into training and test sets, i.e. respectively for model construction and for model testing. On the other hand, iterative random sampling (IRS) has not been the favored choice though it is theoretically more likely to produce reliable estimation. The aim of this preliminary work is to compare performances of KS and IRS in sampling a representative training set from an attenuated total reflectance - Fourier transform infrared spectral dataset (of four varieties of blue gel pen inks) for PLS2-DA modeling. The `best' performance achievable from the dataset is estimated with AP on the full dataset (APF, error). Both IRS (n = 200) and KS were used to split the dataset in the ratio of 7:3. The classic decision rule (i.e. maximum value-based) is employed for new sample prediction via partial least squares - discriminant analysis (PLS2-DA). Error rate of each model was estimated repeatedly via: (a) AP on full data (APF, error); (b) AP on training set (APS, error); and (c) ET on the respective test set (ETS, error). A good PLS2-DA model is expected to produce APS, error and EVS, error that is similar to the APF, error. Bearing that in mind, the similarities between (a) APS, error vs. APF, error; (b) ETS, error vs. APF, error and; (c) APS, error vs. ETS, error were evaluated using correlation tests (i.e. Pearson and Spearman's rank test), using series of PLS2-DA models computed from KS-set and IRS-set, respectively. Overall, models constructed from IRS-set exhibits more similarities between the internal and external error rates than the respective KS-set, i.e. less risk of overfitting. In conclusion, IRS is more reliable than KS in sampling representative training set.

  12. Longitudinal Growth Curves of Brain Function Underlying Inhibitory Control through Adolescence

    PubMed Central

    Foran, William; Velanova, Katerina; Luna, Beatriz

    2013-01-01

    Neuroimaging studies suggest that developmental improvements in inhibitory control are primarily supported by changes in prefrontal executive function. However, studies are contradictory with respect to how activation in prefrontal regions changes with age, and they have yet to analyze longitudinal data using growth curve modeling, which allows characterization of dynamic processes of developmental change, individual differences in growth trajectories, and variables that predict any interindividual variability in trajectories. In this study, we present growth curves modeled from longitudinal fMRI data collected over 302 visits (across ages 9 to 26 years) from 123 human participants. Brain regions within circuits known to support motor response control, executive control, and error processing (i.e., aspects of inhibitory control) were investigated. Findings revealed distinct developmental trajectories for regions within each circuit and indicated that a hierarchical pattern of maturation of brain activation supports the gradual emergence of adult-like inhibitory control. Mean growth curves of activation in motor response control regions revealed no changes with age, although interindividual variability decreased with development, indicating equifinality with maturity. Activation in certain executive control regions decreased with age until adolescence, and variability was stable across development. Error-processing activation in the dorsal anterior cingulate cortex showed continued increases into adulthood and no significant interindividual variability across development, and was uniquely associated with task performance. These findings provide evidence that continued maturation of error-processing abilities supports the protracted development of inhibitory control over adolescence, while motor response control regions provide early-maturing foundational capacities and suggest that some executive control regions may buttress immature networks as error processing continues to mature. PMID:24227721

  13. Multimodel ensembles of wheat growth: many models are better than one.

    PubMed

    Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W; Rötter, Reimund P; Boote, Kenneth J; Ruane, Alex C; Thorburn, Peter J; Cammarano, Davide; Hatfield, Jerry L; Rosenzweig, Cynthia; Aggarwal, Pramod K; Angulo, Carlos; Basso, Bruno; Bertuzzi, Patrick; Biernath, Christian; Brisson, Nadine; Challinor, Andrew J; Doltra, Jordi; Gayler, Sebastian; Goldberg, Richie; Grant, Robert F; Heng, Lee; Hooker, Josh; Hunt, Leslie A; Ingwersen, Joachim; Izaurralde, Roberto C; Kersebaum, Kurt Christian; Müller, Christoph; Kumar, Soora Naresh; Nendel, Claas; O'leary, Garry; Olesen, Jørgen E; Osborne, Tom M; Palosuo, Taru; Priesack, Eckart; Ripoche, Dominique; Semenov, Mikhail A; Shcherbak, Iurii; Steduto, Pasquale; Stöckle, Claudio O; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Travasso, Maria; Waha, Katharina; White, Jeffrey W; Wolf, Joost

    2015-02-01

    Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models. © 2014 John Wiley & Sons Ltd.

  14. Multimodel Ensembles of Wheat Growth: More Models are Better than One

    NASA Technical Reports Server (NTRS)

    Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W.; Rotter, Reimund P.; Boote, Kenneth J.; Ruane, Alex C.; Thorburn, Peter J.; Cammarano, Davide; hide

    2015-01-01

    Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.

  15. Multimodel Ensembles of Wheat Growth: Many Models are Better than One

    NASA Technical Reports Server (NTRS)

    Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W.; Rotter, Reimund P.; Boote, Kenneth J.; Ruane, Alexander C.; Thorburn, Peter J.; Cammarano, Davide; hide

    2015-01-01

    Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop model scan give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 2438 for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.

  16. Approximating prediction uncertainty for random forest regression models

    Treesearch

    John W. Coulston; Christine E. Blinn; Valerie A. Thomas; Randolph H. Wynne

    2016-01-01

    Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as...

  17. Consistent Evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC Through Comparisons to TCCON

    NASA Technical Reports Server (NTRS)

    Kulawik, Susan; Wunch, Debra; O’Dell, Christopher; Frankenberg, Christian; Reuter, Maximilian; Chevallier, Frederic; Oda, Tomohiro; Sherlock, Vanessa; Buchwitz, Michael; Osterman, Greg; hide

    2016-01-01

    Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO2 data record. Harmonizing satellite CO2 measurements is particularly important since the differences in instruments, observing geometries, sampling strategies, etc. imbue different measurement characteristics in the various satellite CO2 data products. We focus on validating model and satellite observation attributes that impact flux estimates and CO2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry-air mole fraction (X(sub CO2)) for Greenhouse gases Observing SATellite (GOSAT) (Atmospheric CO2 Observations from Space, ACOS b3.5) and SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) (Bremen Optimal Estimation DOAS, BESD v2.00.08) as well as the CarbonTracker (CT2013b) simulated CO2 mole fraction fields and the Monitoring Atmospheric Composition and Climate (MACC) CO2 inversion system (v13.1) and compare these to Total Carbon Column Observing Network (TCCON) observations (GGG2012/2014). We find standard deviations of 0.9, 0.9, 1.7, and 2.1 parts per million vs. TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single observation errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. We quantify how satellite error drops with data averaging by interpreting according to (error(sup 2) equals a(sup 2) plus b(sup 2) divided by n (with n being the number of observations averaged, a the systematic (correlated) errors, and b the random (uncorrelated) errors). a and b are estimated by satellites, coincidence criteria, and hemisphere. Biases at individual stations have year-to-year variability of 0.3 parts per million, with biases larger than the TCCON predicted bias uncertainty of 0.4 parts per million at many stations. We find that GOSAT and CT2013b under-predict the seasonal cycle amplitude in the Northern Hemisphere (NH) between 46 and 53 degrees North latitude, MACC over-predicts between 26 and 37 degrees North latitude, and CT2013b under-predicts the seasonal cycle amplitude in the Southern Hemisphere (SH). The seasonal cycle phase indicates whether a data set or model lags another data set in time. We find that the GOSAT measurements improve the seasonal cycle phase substantially over the prior while SCIAMACHY measurements improve the phase significantly for just two of seven sites. The models reproduce the measured seasonal cycle phase well except for at Lauder_125HR (CT2013b) and Darwin (MACC). We compare the variability within 1 day between TCCON and models in June-July-August; there is correlation between 0.2 and 0.8 in the NH, with models showing 10-50 percent the variability of TCCON at different stations and CT2013b showing more variability than MACC. This paper highlights findings that provide inputs to estimate flux errors in model assimilations, and places where models and satellites need further investigation, e.g., the SH for models and 45-67 degrees North latitude for GOSAT and CT2013b.

  18. Accurate Magnetometer/Gyroscope Attitudes Using a Filter with Correlated Sensor Noise

    NASA Technical Reports Server (NTRS)

    Sedlak, J.; Hashmall, J.

    1997-01-01

    Magnetometers and gyroscopes have been shown to provide very accurate attitudes for a variety of spacecraft. These results have been obtained, however, using a batch-least-squares algorithm and long periods of data. For use in onboard applications, attitudes are best determined using sequential estimators such as the Kalman filter. When a filter is used to determine attitudes using magnetometer and gyroscope data for input, the resulting accuracy is limited by both the sensor accuracies and errors inherent in the Earth magnetic field model. The Kalman filter accounts for the random component by modeling the magnetometer and gyroscope errors as white noise processes. However, even when these tuning parameters are physically realistic, the rate biases (included in the state vector) have been found to show systematic oscillations. These are attributed to the field model errors. If the gyroscope noise is sufficiently small, the tuned filter 'memory' will be long compared to the orbital period. In this case, the variations in the rate bias induced by field model errors are substantially reduced. Mistuning the filter to have a short memory time leads to strongly oscillating rate biases and increased attitude errors. To reduce the effect of the magnetic field model errors, these errors are estimated within the filter and used to correct the reference model. An exponentially-correlated noise model is used to represent the filter estimate of the systematic error. Results from several test cases using in-flight data from the Compton Gamma Ray Observatory are presented. These tests emphasize magnetometer errors, but the method is generally applicable to any sensor subject to a combination of random and systematic noise.

  19. A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo

    A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).

  20. [Errors in Peruvian medical journals references].

    PubMed

    Huamaní, Charles; Pacheco-Romero, José

    2009-01-01

    References are fundamental in our studies; an adequate selection is asimportant as an adequate description. To determine the number of errors in a sample of references found in Peruvian medical journals. We reviewed 515 scientific papers references selected by systematic randomized sampling and corroborated reference information with the original document or its citation in Pubmed, LILACS or SciELO-Peru. We found errors in 47,6% (245) of the references, identifying 372 types of errors; the most frequent were errors in presentation style (120), authorship (100) and title (100), mainly due to spelling mistakes (91). References error percentage was high, varied and multiple. We suggest systematic revision of references in the editorial process as well as to extend the discussion on this theme. references, periodicals, research, bibliometrics.

  1. A service evaluation of on-line image-guided radiotherapy to lower extremity sarcoma: Investigating the workload implications of a 3 mm action level for image assessment and correction prior to delivery.

    PubMed

    Taylor, C; Parker, J; Stratford, J; Warren, M

    2018-05-01

    Although all systematic and random positional setup errors can be corrected for in entirety during on-line image-guided radiotherapy, the use of a specified action level, below which no correction occurs, is also an option. The following service evaluation aimed to investigate the use of this 3 mm action level for on-line image assessment and correction (online, systematic set-up error and weekly evaluation) for lower extremity sarcoma, and understand the impact on imaging frequency and patient positioning error within one cancer centre. All patients were immobilised using a thermoplastic shell attached to a plastic base and an individual moulded footrest. A retrospective analysis of 30 patients was performed. Patient setup and correctional data derived from cone beam CT analysis was retrieved. The timing, frequency and magnitude of corrections were evaluated. The population systematic and random error was derived. 20% of patients had no systematic corrections over the duration of treatment, and 47% had one. The maximum number of systematic corrections per course of radiotherapy was 4, which occurred for 2 patients. 34% of episodes occurred within the first 5 fractions. All patients had at least one observed translational error during their treatment greater than 0.3 cm, and 80% of patients had at least one observed translational error during their treatment greater than 0.5 cm. The population systematic error was 0.14 cm, 0.10 cm, 0.14 cm and random error was 0.27 cm, 0.22 cm, 0.23 cm in the lateral, caudocranial and anteroposterial directions. The required Planning Target Volume margin for the study population was 0.55 cm, 0.41 cm and 0.50 cm in the lateral, caudocranial and anteroposterial directions. The 3 mm action level for image assessment and correction prior to delivery reduced the imaging burden and focussed intervention on patients that exhibited greater positional variability. This strategy could be an efficient deployment of departmental resources if full daily correction of positional setup error is not possible. Copyright © 2017. Published by Elsevier Ltd.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chengqiang, L; Yin, Y; Chen, L

    Purpose: To investigate the impact of MLC position errors on simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for patients with nasopharyngeal carcinoma. Methods: To compare the dosimetric differences between the simulated plans and the clinical plans, ten patients with locally advanced NPC treated with SIB-IMRT were enrolled in this study. All plans were calculated with an inverse planning system (Pinnacle3, Philips Medical System{sub )}. Random errors −2mm to 2mm{sub )},shift errors{sub (} 2mm,1mm and 0.5mm) and systematic extension/ contraction errors (±2mm, ±1mm and ±0.5mm) of the MLC leaf position were introduced respectively into the original plans to create the simulated plans.more » Dosimetry factors were compared between the original and the simulated plans. Results: The dosimetric impact of the random and system shift errors of MLC position was insignificant within 2mm, the maximum changes in D95% of PGTV,PTV1,PTV2 were-0.92±0.51%,1.00±0.24% and 0.62±0.17%, the maximum changes in the D0.1cc of spinal cord and brainstem were 1.90±2.80% and −1.78±1.42%, the maximum changes in the Dmean of parotids were1.36±1.23% and −2.25±2.04%.However,the impact of MLC extension or contraction errors was found significant. For 2mm leaf extension errors, the average changes in D95% of PGTV,PTV1,PTV2 were 4.31±0.67%,4.29±0.65% and 4.79±0.82%, the averaged value of the D0.1cc to spinal cord and brainstem were increased by 7.39±5.25% and 6.32±2.28%,the averaged value of the mean dose to left and right parotid were increased by 12.75±2.02%,13.39±2.17% respectively. Conclusion: The dosimetric effect was insignificant for random MLC leaf position errors up to 2mm. There was a high sensitivity to dose distribution for MLC extension or contraction errors.We should pay attention to the anatomic changes in target organs and anatomical structures during the course,individual radiotherapy was recommended to ensure adaptive doses.« less

  3. Learning a locomotor task: with or without errors?

    PubMed

    Marchal-Crespo, Laura; Schneider, Jasmin; Jaeger, Lukas; Riener, Robert

    2014-03-04

    Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is the most appropriate to learn an especially simple task. In this study, the impact of robotic training strategies that amplify or reduce errors on muscle activation and motor learning of a simple locomotor task was investigated in twenty two healthy subjects. The experiment was conducted with the MAgnetic Resonance COmpatible Stepper (MARCOS) a special robotic device developed for investigations in the MR scanner. The robot moved the dominant leg passively and the subject was requested to actively synchronize the non-dominant leg to achieve an alternating stepping-like movement. Learning with four different training strategies that reduce or amplify errors was evaluated: (i) Haptic guidance: errors were eliminated by passively moving the limbs, (ii) No guidance: no robot disturbances were presented, (iii) Error amplification: existing errors were amplified with repulsive forces, (iv) Noise disturbance: errors were evoked intentionally with a randomly-varying force disturbance on top of the no guidance strategy. Additionally, the activation of four lower limb muscles was measured by the means of surface electromyography (EMG). Strategies that reduce or do not amplify errors limit muscle activation during training and result in poor learning gains. Adding random disturbing forces during training seems to increase attention, and therefore improve motor learning. Error amplification seems to be the most suitable strategy for initially less skilled subjects, perhaps because subjects could better detect their errors and correct them. Error strategies have a great potential to evoke higher muscle activation and provoke better motor learning of simple tasks. Neuroimaging evaluation of brain regions involved in learning can provide valuable information on observed behavioral outcomes related to learning processes. The impacts of these strategies on neurological patients need further investigations.

  4. Impact of SST Anomaly Events over the Kuroshio-Oyashio Extension on the "Summer Prediction Barrier"

    NASA Astrophysics Data System (ADS)

    Wu, Yujie; Duan, Wansuo

    2018-04-01

    The "summer prediction barrier" (SPB) of SST anomalies (SSTA) over the Kuroshio-Oyashio Extension (KOE) refers to the phenomenon that prediction errors of KOE-SSTA tend to increase rapidly during boreal summer, resulting in large prediction uncertainties. The fast error growth associated with the SPB occurs in the mature-to-decaying transition phase, which is usually during the August-September-October (ASO) season, of the KOE-SSTA events to be predicted. Thus, the role of KOE-SSTA evolutionary characteristics in the transition phase in inducing the SPB is explored by performing perfect model predictability experiments in a coupled model, indicating that the SSTA events with larger mature-to-decaying transition rates (Category-1) favor a greater possibility of yielding a more significant SPB than those events with smaller transition rates (Category-2). The KOE-SSTA events in Category-1 tend to have more significant anomalous Ekman pumping in their transition phase, resulting in larger prediction errors of vertical oceanic temperature advection associated with the SSTA events. Consequently, Category-1 events possess faster error growth and larger prediction errors. In addition, the anomalous Ekman upwelling (downwelling) in the ASO season also causes SSTA cooling (warming), accelerating the transition rates of warm (cold) KOE-SSTA events. Therefore, the SSTA transition rate and error growth rate are both related with the anomalous Ekman pumping of the SSTA events to be predicted in their transition phase. This may explain why the SSTA events transferring more rapidly from the mature to decaying phase tend to have a greater possibility of yielding a more significant SPB.

  5. Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN

    NASA Astrophysics Data System (ADS)

    Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.

    2016-12-01

    In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.

  6. Quantification of errors in ordinal outcome scales using shannon entropy: effect on sample size calculations.

    PubMed

    Mandava, Pitchaiah; Krumpelman, Chase S; Shah, Jharna N; White, Donna L; Kent, Thomas A

    2013-01-01

    Clinical trial outcomes often involve an ordinal scale of subjective functional assessments but the optimal way to quantify results is not clear. In stroke, the most commonly used scale, the modified Rankin Score (mRS), a range of scores ("Shift") is proposed as superior to dichotomization because of greater information transfer. The influence of known uncertainties in mRS assessment has not been quantified. We hypothesized that errors caused by uncertainties could be quantified by applying information theory. Using Shannon's model, we quantified errors of the "Shift" compared to dichotomized outcomes using published distributions of mRS uncertainties and applied this model to clinical trials. We identified 35 randomized stroke trials that met inclusion criteria. Each trial's mRS distribution was multiplied with the noise distribution from published mRS inter-rater variability to generate an error percentage for "shift" and dichotomized cut-points. For the SAINT I neuroprotectant trial, considered positive by "shift" mRS while the larger follow-up SAINT II trial was negative, we recalculated sample size required if classification uncertainty was taken into account. Considering the full mRS range, error rate was 26.1%±5.31 (Mean±SD). Error rates were lower for all dichotomizations tested using cut-points (e.g. mRS 1; 6.8%±2.89; overall p<0.001). Taking errors into account, SAINT I would have required 24% more subjects than were randomized. We show when uncertainty in assessments is considered, the lowest error rates are with dichotomization. While using the full range of mRS is conceptually appealing, a gain of information is counter-balanced by a decrease in reliability. The resultant errors need to be considered since sample size may otherwise be underestimated. In principle, we have outlined an approach to error estimation for any condition in which there are uncertainties in outcome assessment. We provide the user with programs to calculate and incorporate errors into sample size estimation.

  7. Measuring Data Quality Through a Source Data Verification Audit in a Clinical Research Setting.

    PubMed

    Houston, Lauren; Probst, Yasmine; Humphries, Allison

    2015-01-01

    Health data has long been scrutinised in relation to data quality and integrity problems. Currently, no internationally accepted or "gold standard" method exists measuring data quality and error rates within datasets. We conducted a source data verification (SDV) audit on a prospective clinical trial dataset. An audit plan was applied to conduct 100% manual verification checks on a 10% random sample of participant files. A quality assurance rule was developed, whereby if >5% of data variables were incorrect a second 10% random sample would be extracted from the trial data set. Error was coded: correct, incorrect (valid or invalid), not recorded or not entered. Audit-1 had a total error of 33% and audit-2 36%. The physiological section was the only audit section to have <5% error. Data not recorded to case report forms had the greatest impact on error calculations. A significant association (p=0.00) was found between audit-1 and audit-2 and whether or not data was deemed correct or incorrect. Our study developed a straightforward method to perform a SDV audit. An audit rule was identified and error coding was implemented. Findings demonstrate that monitoring data quality by a SDV audit can identify data quality and integrity issues within clinical research settings allowing quality improvement to be made. The authors suggest this approach be implemented for future research.

  8. Prevalence of refractive errors among school children in gondar town, northwest ethiopia.

    PubMed

    Yared, Assefa Wolde; Belaynew, Wasie Taye; Destaye, Shiferaw; Ayanaw, Tsegaw; Zelalem, Eshete

    2012-10-01

    Many children with poor vision due to refractive error remain undiagnosed and perform poorly in school. The situation is worse in the Sub-Saharan Africa, including Ethiopia, and current information is lacking. The objective of this study is to determine the prevalence of refractive error among children enrolled in elementary schools in Gondar town, Ethiopia. This was a cross-sectional study of 1852 students in 8 elementary schools. Subjects were selected by multistage random sampling. The study parameters were visual acuity (VA) evaluation and ocular examination. VA was measured by staff optometrists with the Snellen E-chart while students with subnormal vision were examined using pinhole, retinoscopy evaluation and subjective refraction by ophthalmologists. The study cohort was comprised of 45.8% males and 54.2% females from 8 randomly selected elementary schools with a response rate of 93%. Refractive errors in either eye were present in 174 (9.4%) children. Of these, myopia was diagnosed in 55 (31.6%) children in the right and left eyes followed by hyperopia in 46 (26.4%) and 39 (22.4%) in the right and left eyes respectively. Low myopia was the most common refractive error in 61 (49.2%) and 68 (50%) children for the right and left eyes respectively. Refractive error among children is a common problem in Gondar town and needs to be assessed at every health evaluation of school children for timely treatment.

  9. A proposed method to investigate reliability throughout a questionnaire

    PubMed Central

    2011-01-01

    Background Questionnaires are used extensively in medical and health care research and depend on validity and reliability. However, participants may differ in interest and awareness throughout long questionnaires, which can affect reliability of their answers. A method is proposed for "screening" of systematic change in random error, which could assess changed reliability of answers. Methods A simulation study was conducted to explore whether systematic change in reliability, expressed as changed random error, could be assessed using unsupervised classification of subjects by cluster analysis (CA) and estimation of intraclass correlation coefficient (ICC). The method was also applied on a clinical dataset from 753 cardiac patients using the Jalowiec Coping Scale. Results The simulation study showed a relationship between the systematic change in random error throughout a questionnaire and the slope between the estimated ICC for subjects classified by CA and successive items in a questionnaire. This slope was proposed as an awareness measure - to assessing if respondents provide only a random answer or one based on a substantial cognitive effort. Scales from different factor structures of Jalowiec Coping Scale had different effect on this awareness measure. Conclusions Even though assumptions in the simulation study might be limited compared to real datasets, the approach is promising for assessing systematic change in reliability throughout long questionnaires. Results from a clinical dataset indicated that the awareness measure differed between scales. PMID:21974842

  10. Predicting areas of sustainable error growth in quasigeostrophic flows using perturbation alignment properties

    NASA Astrophysics Data System (ADS)

    Rivière, G.; Hua, B. L.

    2004-10-01

    A new perturbation initialization method is used to quantify error growth due to inaccuracies of the forecast model initial conditions in a quasigeostrophic box ocean model describing a wind-driven double gyre circulation. This method is based on recent analytical results on Lagrangian alignment dynamics of the perturbation velocity vector in quasigeostrophic flows. More specifically, it consists in initializing a unique perturbation from the sole knowledge of the control flow properties at the initial time of the forecast and whose velocity vector orientation satisfies a Lagrangian equilibrium criterion. This Alignment-based Initialization method is hereafter denoted as the AI method.In terms of spatial distribution of the errors, we have compared favorably the AI error forecast with the mean error obtained with a Monte-Carlo ensemble prediction. It is shown that the AI forecast is on average as efficient as the error forecast initialized with the leading singular vector for the palenstrophy norm, and significantly more efficient than that for total energy and enstrophy norms. Furthermore, a more precise examination shows that the AI forecast is systematically relevant for all control flows whereas the palenstrophy singular vector forecast leads sometimes to very good scores and sometimes to very bad ones.A principal component analysis at the final time of the forecast shows that the AI mode spatial structure is comparable to that of the first eigenvector of the error covariance matrix for a "bred mode" ensemble. Furthermore, the kinetic energy of the AI mode grows at the same constant rate as that of the "bred modes" from the initial time to the final time of the forecast and is therefore characterized by a sustained phase of error growth. In this sense, the AI mode based on Lagrangian dynamics of the perturbation velocity orientation provides a rationale of the "bred mode" behavior.

  11. Self-dual random-plaquette gauge model and the quantum toric code

    NASA Astrophysics Data System (ADS)

    Takeda, Koujin; Nishimori, Hidetoshi

    2004-05-01

    We study the four-dimensional Z2 random-plaquette lattice gauge theory as a model of topological quantum memory, the toric code in particular. In this model, the procedure of quantum error correction works properly in the ordered (Higgs) phase, and phase boundary between the ordered (Higgs) and disordered (confinement) phases gives the accuracy threshold of error correction. Using self-duality of the model in conjunction with the replica method, we show that this model has exactly the same mathematical structure as that of the two-dimensional random-bond Ising model, which has been studied very extensively. This observation enables us to derive a conjecture on the exact location of the multicritical point (accuracy threshold) of the model, pc=0.889972…, and leads to several nontrivial results including bounds on the accuracy threshold in three dimensions.

  12. Random walk, diffusion and mixing in simulations of scalar transport in fluid flows

    NASA Astrophysics Data System (ADS)

    Klimenko, A. Y.

    2008-12-01

    Physical similarity and mathematical equivalence of continuous diffusion and particle random walk form one of the cornerstones of modern physics and the theory of stochastic processes. In many applied models used in simulation of turbulent transport and turbulent combustion, mixing between particles is used to reflect the influence of the continuous diffusion terms in the transport equations. We show that the continuous scalar transport and diffusion can be accurately specified by means of mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. This gives an alternative formulation for the stochastic process which is selected to represent the continuous diffusion. This paper focuses on statistical errors and deals with relatively simple cases, where one-particle distributions are sufficient for a complete description of the problem.

  13. Hazard Function Estimation with Cause-of-Death Data Missing at Random.

    PubMed

    Wang, Qihua; Dinse, Gregg E; Liu, Chunling

    2012-04-01

    Hazard function estimation is an important part of survival analysis. Interest often centers on estimating the hazard function associated with a particular cause of death. We propose three nonparametric kernel estimators for the hazard function, all of which are appropriate when death times are subject to random censorship and censoring indicators can be missing at random. Specifically, we present a regression surrogate estimator, an imputation estimator, and an inverse probability weighted estimator. All three estimators are uniformly strongly consistent and asymptotically normal. We derive asymptotic representations of the mean squared error and the mean integrated squared error for these estimators and we discuss a data-driven bandwidth selection method. A simulation study, conducted to assess finite sample behavior, demonstrates that the proposed hazard estimators perform relatively well. We illustrate our methods with an analysis of some vascular disease data.

  14. Comment on 3PL IRT Adjustment for Guessing

    ERIC Educational Resources Information Center

    Chiu, Ting-Wei; Camilli, Gregory

    2013-01-01

    Guessing behavior is an issue discussed widely with regard to multiple choice tests. Its primary effect is on number-correct scores for examinees at lower levels of proficiency. This is a systematic error or bias, which increases observed test scores. Guessing also can inflate random error variance. Correction or adjustment for guessing formulas…

  15. The Effects of Observation Errors on the Attack Vulnerability of Complex Networks

    DTIC Science & Technology

    2012-11-01

    more detail, to construct a true network we select a topology (erdos- renyi (Erdos & Renyi , 1959), scale-free (Barabási & Albert, 1999), small world...Efficiency of Scale-Free Networks: Error and Attack Tolerance. Physica A, Volume 320, pp. 622-642. 6. Erdos, P. & Renyi , A., 1959. On Random Graphs, I

  16. Modeling uncertainty of evapotranspiration measurements from multiple eddy covariance towers over a crop canopy

    USDA-ARS?s Scientific Manuscript database

    All measurements have random error associated with them. With fluxes in an eddy covariance system, measurement error can been modelled in several ways, often involving a statistical description of turbulence at its core. Using a field experiment with four towers, we generated four replicates of meas...

  17. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography

    DTIC Science & Technology

    1980-03-01

    interpreting/smoothing data containing a significant percentage of gross errors, and thus is ideally suited for applications in automated image ... analysis where interpretation is based on the data provided by error-prone feature detectors. A major portion of the paper describes the application of

  18. Biases and Standard Errors of Standardized Regression Coefficients

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Chan, Wai

    2011-01-01

    The paper obtains consistent standard errors (SE) and biases of order O(1/n) for the sample standardized regression coefficients with both random and given predictors. Analytical results indicate that the formulas for SEs given in popular text books are consistent only when the population value of the regression coefficient is zero. The sample…

  19. Bootstrap-based methods for estimating standard errors in Cox's regression analyses of clustered event times.

    PubMed

    Xiao, Yongling; Abrahamowicz, Michal

    2010-03-30

    We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.

  20. Validation of TRMM precipitation radar monthly rainfall estimates over Brazil

    NASA Astrophysics Data System (ADS)

    Franchito, Sergio H.; Rao, V. Brahmananda; Vasques, Ana C.; Santo, Clovis M. E.; Conforte, Jorge C.

    2009-01-01

    In an attempt to validate the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) over Brazil, TRMM PR estimates are compared with rain gauge station data from Agência Nacional de Energia Elétrica (ANEEL). The analysis is conducted on a seasonal basis and considers five geographic regions with different precipitation regimes. The results showed that TRMM PR seasonal rainfall is well correlated with ANEEL rainfall (correlation coefficients are significant at the 99% confidence level) over most of Brazil. The random and systematic errors of TRMM PR are sensitive to seasonal and regional differences. During December to February and March to May, TRMM PR rainfall is reliable over Brazil. In June to August (September to November) TRMM PR estimates are only reliable in the Amazonian and southern (Amazonian and southeastern) regions. In the other regions the relative RMS errors are larger than 50%, indicating that the random errors are high.

  1. Experiential Teaching Increases Medication Calculation Accuracy Among Baccalaureate Nursing Students.

    PubMed

    Hurley, Teresa V

    Safe medication administration is an international goal. Calculation errors cause patient harm despite education. The research purpose was to evaluate the effectiveness of an experiential teaching strategy to reduce errors in a sample of 78 baccalaureate nursing students at a Northeastern college. A pretest-posttest design with random assignment into equal-sized groups was used. The experiential strategy was more effective than the traditional method (t = -0.312, df = 37, p = .004, 95% CI) with a reduction in calculation errors. Evaluations of error type and teaching strategies are indicated to facilitate course and program changes.

  2. The impact of 3D volume of interest definition on accuracy and precision of activity estimation in quantitative SPECT and planar processing methods

    NASA Astrophysics Data System (ADS)

    He, Bin; Frey, Eric C.

    2010-06-01

    Accurate and precise estimation of organ activities is essential for treatment planning in targeted radionuclide therapy. We have previously evaluated the impact of processing methodology, statistical noise and variability in activity distribution and anatomy on the accuracy and precision of organ activity estimates obtained with quantitative SPECT (QSPECT) and planar (QPlanar) processing. Another important factor impacting the accuracy and precision of organ activity estimates is accuracy of and variability in the definition of organ regions of interest (ROI) or volumes of interest (VOI). The goal of this work was thus to systematically study the effects of VOI definition on the reliability of activity estimates. To this end, we performed Monte Carlo simulation studies using randomly perturbed and shifted VOIs to assess the impact on organ activity estimates. The 3D NCAT phantom was used with activities that modeled clinically observed 111In ibritumomab tiuxetan distributions. In order to study the errors resulting from misdefinitions due to manual segmentation errors, VOIs of the liver and left kidney were first manually defined. Each control point was then randomly perturbed to one of the nearest or next-nearest voxels in three ways: with no, inward or outward directional bias, resulting in random perturbation, erosion or dilation, respectively, of the VOIs. In order to study the errors resulting from the misregistration of VOIs, as would happen, e.g. in the case where the VOIs were defined using a misregistered anatomical image, the reconstructed SPECT images or projections were shifted by amounts ranging from -1 to 1 voxels in increments of with 0.1 voxels in both the transaxial and axial directions. The activity estimates from the shifted reconstructions or projections were compared to those from the originals, and average errors were computed for the QSPECT and QPlanar methods, respectively. For misregistration, errors in organ activity estimations were linear in the shift for both the QSPECT and QPlanar methods. QPlanar was less sensitive to object definition perturbations than QSPECT, especially for dilation and erosion cases. Up to 1 voxel misregistration or misdefinition resulted in up to 8% error in organ activity estimates, with the largest errors for small or low uptake organs. Both types of VOI definition errors produced larger errors in activity estimates for a small and low uptake organs (i.e. -7.5% to 5.3% for the left kidney) than for a large and high uptake organ (i.e. -2.9% to 2.1% for the liver). We observed that misregistration generally had larger effects than misdefinition, with errors ranging from -7.2% to 8.4%. The different imaging methods evaluated responded differently to the errors from misregistration and misdefinition. We found that QSPECT was more sensitive to misdefinition errors, but less sensitive to misregistration errors, as compared to the QPlanar method. Thus, sensitivity to VOI definition errors should be an important criterion in evaluating quantitative imaging methods.

  3. Multipath induced errors in meteorological Doppler/interferometer location systems

    NASA Technical Reports Server (NTRS)

    Wallace, R. G.

    1984-01-01

    One application of an RF interferometer aboard a low-orbiting spacecraft to determine the location of ground-based transmitters is in tracking high-altitude balloons for meteorological studies. A source of error in this application is reflection of the signal from the sea surface. Through propagating and signal analysis, the magnitude of the reflection-induced error in both Doppler frequency measurements and interferometer phase measurements was estimated. The theory of diffuse scattering from random surfaces was applied to obtain the power spectral density of the reflected signal. The processing of the combined direct and reflected signals was then analyzed to find the statistics of the measurement error. It was found that the error varies greatly during the satellite overpass and attains its maximum value at closest approach. The maximum values of interferometer phase error and Doppler frequency error found for the system configuration considered were comparable to thermal noise-induced error.

  4. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  5. Metrological Software Test for Simulating the Method of Determining the Thermocouple Error in Situ During Operation

    NASA Astrophysics Data System (ADS)

    Chen, Jingliang; Su, Jun; Kochan, Orest; Levkiv, Mariana

    2018-04-01

    The simplified metrological software test (MST) for modeling the method of determining the thermocouple (TC) error in situ during operation is considered in the paper. The interaction between the proposed MST and a temperature measuring system is also reflected in order to study the error of determining the TC error in situ during operation. The modelling studies of the random error influence of the temperature measuring system, as well as interference magnitude (both the common and normal mode noises) on the error of determining the TC error in situ during operation using the proposed MST, have been carried out. The noise and interference of the order of 5-6 μV cause the error of about 0.2-0.3°C. It is shown that high noise immunity is essential for accurate temperature measurements using TCs.

  6. Managing numerical errors in random sequential adsorption

    NASA Astrophysics Data System (ADS)

    Cieśla, Michał; Nowak, Aleksandra

    2016-09-01

    Aim of this study is to examine the influence of a finite surface size and a finite simulation time on a packing fraction estimated using random sequential adsorption simulations. The goal of particular interest is providing hints on simulation setup to achieve desired level of accuracy. The analysis is based on properties of saturated random packing of disks on continuous and flat surfaces of different sizes.

  7. The Expected Sample Variance of Uncorrelated Random Variables with a Common Mean and Some Applications in Unbalanced Random Effects Models

    ERIC Educational Resources Information Center

    Vardeman, Stephen B.; Wendelberger, Joanne R.

    2005-01-01

    There is a little-known but very simple generalization of the standard result that for uncorrelated random variables with common mean [mu] and variance [sigma][superscript 2], the expected value of the sample variance is [sigma][superscript 2]. The generalization justifies the use of the usual standard error of the sample mean in possibly…

  8. A Note on Parameters of Random Substitutions by γ-Diagonal Matrices

    NASA Astrophysics Data System (ADS)

    Kang, Ju-Sung

    Random substitutions are very useful and practical method for privacy-preserving schemes. In this paper we obtain the exact relationship between the estimation errors and three parameters used in the random substitutions, namely the privacy assurance metric γ, the total number n of data records, and the size N of transition matrix. We also demonstrate some simulations concerning the theoretical result.

  9. Why Is Rainfall Error Analysis Requisite for Data Assimilation and Climate Modeling?

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.

    2004-01-01

    Given the large temporal and spatial variability of precipitation processes, errors in rainfall observations are difficult to quantify yet crucial to making effective use of rainfall data for improving atmospheric analysis, weather forecasting, and climate modeling. We highlight the need for developing a quantitative understanding of systematic and random errors in precipitation observations by examining explicit examples of how each type of errors can affect forecasts and analyses in global data assimilation. We characterize the error information needed from the precipitation measurement community and how it may be used to improve data usage within the general framework of analysis techniques, as well as accuracy requirements from the perspective of climate modeling and global data assimilation.

  10. Double-Pulse Two-Micron IPDA Lidar Simulation for Airborne Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    An advanced double-pulsed 2-micron integrated path differential absorption lidar has been developed at NASA Langley Research Center for measuring atmospheric carbon dioxide. The instrument utilizes a state-of-the-art 2-micron laser transmitter with tunable on-line wavelength and advanced receiver. Instrument modeling and airborne simulations are presented in this paper. Focusing on random errors, results demonstrate instrument capabilities of performing precise carbon dioxide differential optical depth measurement with less than 3% random error for single-shot operation from up to 11 km altitude. This study is useful for defining CO2 measurement weighting, instrument setting, validation and sensitivity trade-offs.

  11. Quantifying Uncertainties in Land Surface Microwave Emissivity Retrievals

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2012-01-01

    Uncertainties in the retrievals of microwave land surface emissivities were quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including SSM/I, TMI and AMSR-E, were studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors in the retrievals. Generally these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 14% (312 K) over desert and 17% (320 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.52% (26 K). In particular, at 85.0/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are mostly likely caused by rain/cloud contamination, which can lead to random errors up to 1017 K under the most severe conditions.

  12. Covariate Imbalance and Precision in Measuring Treatment Effects

    ERIC Educational Resources Information Center

    Liu, Xiaofeng Steven

    2011-01-01

    Covariate adjustment can increase the precision of estimates by removing unexplained variance from the error in randomized experiments, although chance covariate imbalance tends to counteract the improvement in precision. The author develops an easy measure to examine chance covariate imbalance in randomization by standardizing the average…

  13. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE PAGES

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  14. Cone-Beam CT Assessment of Interfraction and Intrafraction Setup Error of Two Head-and-Neck Cancer Thermoplastic Masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velec, Michael; Waldron, John N.; O'Sullivan, Brian

    2010-03-01

    Purpose: To prospectively compare setup error in standard thermoplastic masks and skin-sparing masks (SSMs) modified with low neck cutouts for head-and-neck intensity-modulated radiation therapy (IMRT) patients. Methods and Materials: Twenty head-and-neck IMRT patients were randomized to be treated in a standard mask (SM) or SSM. Cone-beam computed tomography (CBCT) scans, acquired daily after both initial setup and any repositioning, were used for initial and residual interfraction evaluation, respectively. Weekly, post-IMRT CBCT scans were acquired for intrafraction setup evaluation. The population random (sigma) and systematic (SIGMA) errors were compared for SMs and SSMs. Skin toxicity was recorded weekly by use ofmore » Radiation Therapy Oncology Group criteria. Results: We evaluated 762 CBCT scans in 11 patients randomized to the SM and 9 to the SSM. Initial interfraction sigma was 1.6 mm or less or 1.1 deg. or less for SM and 2.0 mm or less and 0.8 deg. for SSM. Initial interfraction SIGMA was 1.0 mm or less or 1.4 deg. or less for SM and 1.1 mm or less or 0.9 deg. or less for SSM. These errors were reduced before IMRT with CBCT image guidance with no significant differences in residual interfraction or intrafraction uncertainties between SMs and SSMs. Intrafraction sigma and SIGMA were less than 1 mm and less than 1 deg. for both masks. Less severe skin reactions were observed in the cutout regions of the SSM compared with non-cutout regions. Conclusions: Interfraction and intrafraction setup error is not significantly different for SSMs and conventional masks in head-and-neck radiation therapy. Mask cutouts should be considered for these patients in an effort to reduce skin toxicity.« less

  15. Effects of postexercise ice-water and room-temperature water immersion on the sensory organization of balance control and lower limb proprioception in amateur rugby players: A randomized controlled trial.

    PubMed

    Chow, Gary C C; Yam, Timothy T T; Chung, Joanne W Y; Fong, Shirley S M

    2017-02-01

    This single-blinded, three-armed randomized controlled trial aimed to compare the effects of postexercise ice-water immersion (IWI), room-temperature water immersion (RWI), and no water immersion on the balance performance and knee joint proprioception of amateur rugby players. Fifty-three eligible amateur rugby players (mean age ± standard deviation: 21.6 ± 2.9 years) were randomly assigned to the IWI group (5.3 °C), RWI group (25.0 °C), or the no immersion control group. The participants in each group underwent the same fatigue protocol followed by their allocated recovery intervention, which lasted for 1 minute. Measurements were taken before and after the fatigue-recovery intervention. The primary outcomes were the sensory organization test (SOT) composite equilibrium score (ES) and the condition-specific ES, which were measured using a computerized dynamic posturography machine. The secondary outcome was the knee joint repositioning error. Two-way repeated measures analysis of variance was used to test the effect of water immersion on each outcome variable. There were no significant within- and between-group differences in the SOT composite ESs or the condition-specific ESs. However, there was a group-by-time interaction effect on the knee joint repositioning error. It seems that participants in the RWI group had lower errors over time, but those in the IWI and control groups had increased errors over time. The RWI group had significantly lower error score than the IWI group at postintervention. One minute of postexercise IWI or RWI did not impair rugby players' sensory organization of balance control. RWI had a less detrimental effect on knee joint proprioception to IWI at postintervention.

  16. Theoretical investigation on the mass loss impact on asteroseismic grid-based estimates of mass, radius, and age for RGB stars

    NASA Astrophysics Data System (ADS)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2018-01-01

    Aims: We aim to perform a theoretical evaluation of the impact of the mass loss indetermination on asteroseismic grid based estimates of masses, radii, and ages of stars in the red giant branch (RGB) phase. Methods: We adopted the SCEPtER pipeline on a grid spanning the mass range [0.8; 1.8] M⊙. As observational constraints, we adopted the star effective temperatures, the metallicity [Fe/H], the average large frequency spacing Δν, and the frequency of maximum oscillation power νmax. The mass loss was modelled following a Reimers parametrization with the two different efficiencies η = 0.4 and η = 0.8. Results: In the RGB phase, the average random relative error (owing only to observational uncertainty) on mass and age estimates is about 8% and 30% respectively. The bias in mass and age estimates caused by the adoption of a wrong mass loss parameter in the recovery is minor for the vast majority of the RGB evolution. The biases get larger only after the RGB bump. In the last 2.5% of the RGB lifetime the error on the mass determination reaches 6.5% becoming larger than the random error component in this evolutionary phase. The error on the age estimate amounts to 9%, that is, equal to the random error uncertainty. These results are independent of the stellar metallicity [Fe/H] in the explored range. Conclusions: Asteroseismic-based estimates of stellar mass, radius, and age in the RGB phase can be considered mass loss independent within the range (η ∈ [0.0,0.8]) as long as the target is in an evolutionary phase preceding the RGB bump.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balderson, Michael, E-mail: michael.balderson@rmp.uhn.ca; Brown, Derek; Johnson, Patricia

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic–based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for themore » different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15 mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT.« less

  18. Effects of Systematic and Random Errors on the Retrieval of Particle Microphysical Properties from Multiwavelength Lidar Measurements Using Inversion with Regularization

    NASA Technical Reports Server (NTRS)

    Ramirez, Daniel Perez; Whiteman, David N.; Veselovskii, Igor; Kolgotin, Alexei; Korenskiy, Michael; Alados-Arboledas, Lucas

    2013-01-01

    In this work we study the effects of systematic and random errors on the inversion of multiwavelength (MW) lidar data using the well-known regularization technique to obtain vertically resolved aerosol microphysical properties. The software implementation used here was developed at the Physics Instrumentation Center (PIC) in Troitsk (Russia) in conjunction with the NASA/Goddard Space Flight Center. Its applicability to Raman lidar systems based on backscattering measurements at three wavelengths (355, 532 and 1064 nm) and extinction measurements at two wavelengths (355 and 532 nm) has been demonstrated widely. The systematic error sensitivity is quantified by first determining the retrieved parameters for a given set of optical input data consistent with three different sets of aerosol physical parameters. Then each optical input is perturbed by varying amounts and the inversion is repeated. Using bimodal aerosol size distributions, we find a generally linear dependence of the retrieved errors in the microphysical properties on the induced systematic errors in the optical data. For the retrievals of effective radius, number/surface/volume concentrations and fine-mode radius and volume, we find that these results are not significantly affected by the range of the constraints used in inversions. But significant sensitivity was found to the allowed range of the imaginary part of the particle refractive index. Our results also indicate that there exists an additive property for the deviations induced by the biases present in the individual optical data. This property permits the results here to be used to predict deviations in retrieved parameters when multiple input optical data are biased simultaneously as well as to study the influence of random errors on the retrievals. The above results are applied to questions regarding lidar design, in particular for the spaceborne multiwavelength lidar under consideration for the upcoming ACE mission.

  19. Reducing Errors in Satellite Simulated Views of Clouds with an Improved Parameterization of Unresolved Scales

    NASA Astrophysics Data System (ADS)

    Hillman, B. R.; Marchand, R.; Ackerman, T. P.

    2016-12-01

    Satellite instrument simulators have emerged as a means to reduce errors in model evaluation by producing simulated or psuedo-retrievals from model fields, which account for limitations in the satellite retrieval process. Because of the mismatch in resolved scales between satellite retrievals and large-scale models, model cloud fields must first be downscaled to scales consistent with satellite retrievals. This downscaling is analogous to that required for model radiative transfer calculations. The assumption is often made in both model radiative transfer codes and satellite simulators that the unresolved clouds follow maximum-random overlap with horizontally homogeneous cloud condensate amounts. We examine errors in simulated MISR and CloudSat retrievals that arise due to these assumptions by applying the MISR and CloudSat simulators to cloud resolving model (CRM) output generated by the Super-parameterized Community Atmosphere Model (SP-CAM). Errors are quantified by comparing simulated retrievals performed directly on the CRM fields with those simulated by first averaging the CRM fields to approximately 2-degree resolution, applying a "subcolumn generator" to regenerate psuedo-resolved cloud and precipitation condensate fields, and then applying the MISR and CloudSat simulators on the regenerated condensate fields. We show that errors due to both assumptions of maximum-random overlap and homogeneous condensate are significant (relative to uncertainties in the observations and other simulator limitations). The treatment of precipitation is particularly problematic for CloudSat-simulated radar reflectivity. We introduce an improved subcolumn generator for use with the simulators, and show that these errors can be greatly reduced by replacing the maximum-random overlap assumption with the more realistic generalized overlap and incorporating a simple parameterization of subgrid-scale cloud and precipitation condensate heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. SAND2016-7485 A

  20. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    NASA Technical Reports Server (NTRS)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  1. Extrinsic value orientation and affective forecasting: overestimating the rewards, underestimating the costs.

    PubMed

    Sheldon, Kennon M; Gunz, Alexander; Nichols, Charles P; Ferguson, Yuna

    2010-02-01

    We examined affective forecasting errors as a possible explanation of the perennial appeal of extrinsic values and goals. Study 1 found that although people relatively higher in extrinsic (money, fame, image) compared to intrinsic (growth, intimacy, community) value orientation (REVO) are less happy, they nevertheless believe that attaining extrinsic goals offers a strong potential route to happiness. Study 2's longitudinal experimental design randomly assigned participants to pursue either 3 extrinsic or 3 intrinsic goals over 4 weeks, and REVO again predicted stronger forecasts regarding extrinsic goals. However, not even extrinsically oriented participants gained well-being benefits from attaining extrinsic goals, whereas all participants tended to gain in happiness from attaining intrinsic goals. Study 3 showed that the effect of REVO on forecasts is mediated by extrinsic individuals' belief that extrinsic goals will satisfy autonomy and competence needs. It appears that some people overestimate the emotional benefits of achieving extrinsic goals, to their potential detriment.

  2. A statistical model for analyzing the rotational error of single isocenter for multiple targets technique.

    PubMed

    Chang, Jenghwa

    2017-06-01

    To develop a statistical model that incorporates the treatment uncertainty from the rotational error of the single isocenter for multiple targets technique, and calculates the extra PTV (planning target volume) margin required to compensate for this error. The random vector for modeling the setup (S) error in the three-dimensional (3D) patient coordinate system was assumed to follow a 3D normal distribution with a zero mean, and standard deviations of σ x , σ y , σ z . It was further assumed that the rotation of clinical target volume (CTV) about the isocenter happens randomly and follows a three-dimensional (3D) independent normal distribution with a zero mean and a uniform standard deviation of σ δ . This rotation leads to a rotational random error (R), which also has a 3D independent normal distribution with a zero mean and a uniform standard deviation of σ R equal to the product of σδπ180 and dI⇔T, the distance between the isocenter and CTV. Both (S and R) random vectors were summed, normalized, and transformed to the spherical coordinates to derive the Chi distribution with three degrees of freedom for the radial coordinate of S+R. PTV margin was determined using the critical value of this distribution for a 0.05 significance level so that 95% of the time the treatment target would be covered by the prescription dose. The additional PTV margin required to compensate for the rotational error was calculated as a function of σ R and dI⇔T. The effect of the rotational error is more pronounced for treatments that require high accuracy/precision like stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT). With a uniform 2-mm PTV margin (or σ x = σ y = σ z = 0.715 mm), a σ R = 0.328 mm will decrease the CTV coverage probability from 95.0% to 90.9%, or an additional 0.2-mm PTV margin is needed to prevent this loss of coverage. If we choose 0.2 mm as the threshold, any σ R > 0.328 mm will lead to an extra PTV margin that cannot be ignored, and the maximal σ δ that can be ignored is 0.45° (or 0.0079 rad ) for dI⇔T = 50 mm or 0.23° (or 0.004 rad ) for dI⇔T = 100 mm. The rotational error cannot be ignored for high-accuracy/-precision treatments like SRS/SBRT, particularly when the distance between the isocenter and target is large. © 2017 American Association of Physicists in Medicine.

  3. Detecting Growth Shape Misspecifications in Latent Growth Models: An Evaluation of Fit Indexes

    ERIC Educational Resources Information Center

    Leite, Walter L.; Stapleton, Laura M.

    2011-01-01

    In this study, the authors compared the likelihood ratio test and fit indexes for detection of misspecifications of growth shape in latent growth models through a simulation study and a graphical analysis. They found that the likelihood ratio test, MFI, and root mean square error of approximation performed best for detecting model misspecification…

  4. The Biasing Effects of Unmodeled ARMA Time Series Processes on Latent Growth Curve Model Estimates

    ERIC Educational Resources Information Center

    Sivo, Stephen; Fan, Xitao; Witta, Lea

    2005-01-01

    The purpose of this study was to evaluate the robustness of estimated growth curve models when there is stationary autocorrelation among manifest variable errors. The results suggest that when, in practice, growth curve models are fitted to longitudinal data, alternative rival hypotheses to consider would include growth models that also specify…

  5. Improving Exercise Performance with an Accelerometer-Based Smartphone App: A Randomized Controlled Trial.

    PubMed

    Bittel, Daniel C; Bittel, Adam J; Williams, Christine; Elazzazi, Ashraf

    2017-05-01

    Proper exercise form is critical for the safety and efficacy of therapeutic exercise. This research examines if a novel smartphone application, designed to monitor and provide real-time corrections during resistance training, can reduce performance errors and elicit a motor learning response. Forty-two participants aged 18 to 65 years were randomly assigned to treatment and control groups. Both groups were tested for the number of movement errors made during a 10-repetition set completed at baseline, immediately after, and 1 to 2 weeks after a single training session of knee extensions. The treatment group trained with real-time, smartphone-generated feedback, whereas the control subjects did not. Group performance (number of errors) was compared across test sets using a 2-factor mixed-model analysis of variance. No differences were observed between groups for age, sex, or resistance training experience. There was a significant interaction between test set and group. The treatment group demonstrated fewer errors on posttests 1 and 2 compared with pretest (P < 0.05). There was no reduction in the number of errors on any posttest for control subjects. Smartphone apps, such as the one used in this study, may enhance patient supervision, safety, and exercise efficacy across rehabilitation settings. A single training session with the app promoted motor learning and improved exercise performance.

  6. Chain pooling to minimize prediction error in subset regression. [Monte Carlo studies using population models

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1974-01-01

    Monte Carlo studies using population models intended to represent response surface applications are reported. Simulated experiments were generated by adding pseudo random normally distributed errors to population values to generate observations. Model equations were fitted to the observations and the decision procedure was used to delete terms. Comparison of values predicted by the reduced models with the true population values enabled the identification of deletion strategies that are approximately optimal for minimizing prediction errors.

  7. A review of the evidence linking child stunting to economic outcomes.

    PubMed

    McGovern, Mark E; Krishna, Aditi; Aguayo, Victor M; Subramanian, S V

    2017-08-01

    To understand the full impact of stunting in childhood it is important to consider the long-run effects of undernutrition on the outcomes of adults who were affected in early life. Focusing on the costs of stunting provides a means of evaluating the economic case for investing in childhood nutrition. We review the literature on the association between stunting and undernutrition in childhood and economic outcomes in adulthood. At the national level, we also evaluate the evidence linking stunting to economic growth. Throughout, we consider randomized controlled trials (RCTs), quasi-experimental approaches and observational studies. Long-run evaluations of two randomized nutrition interventions indicate substantial returns to the programmes (a 25% and 46% increase in wages for those affected as children, respectively). Cost-benefit analyses of nutrition interventions using calibrated return estimates report a median return of 17.9:1 per child. Assessing the wage premium associated with adult height, we find that a 1-cm increase in stature is associated with a 4% increase in wages for men and a 6% increase in wages for women in our preferred set of studies which attempt to address unobserved confounding and measurement error. In contrast, the evidence on the association between economic growth and stunting is mixed. Countries with high rates of stunting, such as those in South Asia and sub-Saharan Africa, should scale up policies and programmes aiming to reduce child undernutrition as cost-beneficial investments that expand the economic opportunities of their children, better allowing them and their countries to reach their full potential. However, economic growth as a policy will only be effective at reducing the prevalence of stunting when increases in national income are directed at improving the diets of children, addressing gender inequalities and strengthening the status of women, improving sanitation and reducing poverty and inequities. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association

  8. A review of the evidence linking child stunting to economic outcomes

    PubMed Central

    McGovern, Mark E; Krishna, Aditi; Aguayo, Victor M; Subramanian, SV

    2017-01-01

    Abstract Background To understand the full impact of stunting in childhood it is important to consider the long-run effects of undernutrition on the outcomes of adults who were affected in early life. Focusing on the costs of stunting provides a means of evaluating the economic case for investing in childhood nutrition. Methods We review the literature on the association between stunting and undernutrition in childhood and economic outcomes in adulthood. At the national level, we also evaluate the evidence linking stunting to economic growth. Throughout, we consider randomized controlled trials (RCTs), quasi-experimental approaches and observational studies. Results Long-run evaluations of two randomized nutrition interventions indicate substantial returns to the programmes (a 25% and 46% increase in wages for those affected as children, respectively). Cost-benefit analyses of nutrition interventions using calibrated return estimates report a median return of 17.9:1 per child. Assessing the wage premium associated with adult height, we find that a 1-cm increase in stature is associated with a 4% increase in wages for men and a 6% increase in wages for women in our preferred set of studies which attempt to address unobserved confounding and measurement error. In contrast, the evidence on the association between economic growth and stunting is mixed. Conclusions Countries with high rates of stunting, such as those in South Asia and sub-Saharan Africa, should scale up policies and programmes aiming to reduce child undernutrition as cost-beneficial investments that expand the economic opportunities of their children, better allowing them and their countries to reach their full potential. However, economic growth as a policy will only be effective at reducing the prevalence of stunting when increases in national income are directed at improving the diets of children, addressing gender inequalities and strengthening the status of women, improving sanitation and reducing poverty and inequities. PMID:28379434

  9. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study.

    PubMed

    Lendvay, Thomas S; Brand, Timothy C; White, Lee; Kowalewski, Timothy; Jonnadula, Saikiran; Mercer, Laina D; Khorsand, Derek; Andros, Justin; Hannaford, Blake; Satava, Richard M

    2013-06-01

    Preoperative simulation warm-up has been shown to improve performance and reduce errors in novice and experienced surgeons, yet existing studies have only investigated conventional laparoscopy. We hypothesized that a brief virtual reality (VR) robotic warm-up would enhance robotic task performance and reduce errors. In a 2-center randomized trial, 51 residents and experienced minimally invasive surgery faculty in General Surgery, Urology, and Gynecology underwent a validated robotic surgery proficiency curriculum on a VR robotic simulator and on the da Vinci surgical robot (Intuitive Surgical Inc). Once they successfully achieved performance benchmarks, surgeons were randomized to either receive a 3- to 5-minute VR simulator warm-up or read a leisure book for 10 minutes before performing similar and dissimilar (intracorporeal suturing) robotic surgery tasks. The primary outcomes compared were task time, tool path length, economy of motion, technical, and cognitive errors. Task time (-29.29 seconds, p = 0.001; 95% CI, -47.03 to -11.56), path length (-79.87 mm; p = 0.014; 95% CI, -144.48 to -15.25), and cognitive errors were reduced in the warm-up group compared with the control group for similar tasks. Global technical errors in intracorporeal suturing (0.32; p = 0.020; 95% CI, 0.06-0.59) were reduced after the dissimilar VR task. When surgeons were stratified by earlier robotic and laparoscopic clinical experience, the more experienced surgeons (n = 17) demonstrated significant improvements from warm-up in task time (-53.5 seconds; p = 0.001; 95% CI, -83.9 to -23.0) and economy of motion (0.63 mm/s; p = 0.007; 95% CI, 0.18-1.09), and improvement in these metrics was not statistically significantly appreciated in the less-experienced cohort (n = 34). We observed significant performance improvement and error reduction rates among surgeons of varying experience after VR warm-up for basic robotic surgery tasks. In addition, the VR warm-up reduced errors on a more complex task (robotic suturing), suggesting the generalizability of the warm-up. Copyright © 2013 American College of Surgeons. All rights reserved.

  10. Virtual Reality Robotic Surgery Warm-Up Improves Task Performance in a Dry Lab Environment: A Prospective Randomized Controlled Study

    PubMed Central

    Lendvay, Thomas S.; Brand, Timothy C.; White, Lee; Kowalewski, Timothy; Jonnadula, Saikiran; Mercer, Laina; Khorsand, Derek; Andros, Justin; Hannaford, Blake; Satava, Richard M.

    2014-01-01

    Background Pre-operative simulation “warm-up” has been shown to improve performance and reduce errors in novice and experienced surgeons, yet existing studies have only investigated conventional laparoscopy. We hypothesized a brief virtual reality (VR) robotic warm-up would enhance robotic task performance and reduce errors. Study Design In a two-center randomized trial, fifty-one residents and experienced minimally invasive surgery faculty in General Surgery, Urology, and Gynecology underwent a validated robotic surgery proficiency curriculum on a VR robotic simulator and on the da Vinci surgical robot. Once successfully achieving performance benchmarks, surgeons were randomized to either receive a 3-5 minute VR simulator warm-up or read a leisure book for 10 minutes prior to performing similar and dissimilar (intracorporeal suturing) robotic surgery tasks. The primary outcomes compared were task time, tool path length, economy of motion, technical and cognitive errors. Results Task time (-29.29sec, p=0.001, 95%CI-47.03,-11.56), path length (-79.87mm, p=0.014, 95%CI -144.48,-15.25), and cognitive errors were reduced in the warm-up group compared to the control group for similar tasks. Global technical errors in intracorporeal suturing (0.32, p=0.020, 95%CI 0.06,0.59) were reduced after the dissimilar VR task. When surgeons were stratified by prior robotic and laparoscopic clinical experience, the more experienced surgeons(n=17) demonstrated significant improvements from warm-up in task time (-53.5sec, p=0.001, 95%CI -83.9,-23.0) and economy of motion (0.63mm/sec, p=0.007, 95%CI 0.18,1.09), whereas improvement in these metrics was not statistically significantly appreciated in the less experienced cohort(n=34). Conclusions We observed a significant performance improvement and error reduction rate among surgeons of varying experience after VR warm-up for basic robotic surgery tasks. In addition, the VR warm-up reduced errors on a more complex task (robotic suturing) suggesting the generalizability of the warm-up. PMID:23583618

  11. Error analysis in inverse scatterometry. I. Modeling.

    PubMed

    Al-Assaad, Rayan M; Byrne, Dale M

    2007-02-01

    Scatterometry is an optical technique that has been studied and tested in recent years in semiconductor fabrication metrology for critical dimensions. Previous work presented an iterative linearized method to retrieve surface-relief profile parameters from reflectance measurements upon diffraction. With the iterative linear solution model in this work, rigorous models are developed to represent the random and deterministic or offset errors in scatterometric measurements. The propagation of different types of error from the measurement data to the profile parameter estimates is then presented. The improvement in solution accuracies is then demonstrated with theoretical and experimental data by adjusting for the offset errors. In a companion paper (in process) an improved optimization method is presented to account for unknown offset errors in the measurements based on the offset error model.

  12. Error "Reflection": Embracing Growth Mindset in the General Music Classroom

    ERIC Educational Resources Information Center

    Davis, Virginia Wayman

    2017-01-01

    As music teachers, part of the job description involves the detection of student errors and the use of our experience and education to eliminate them. This article is an exploration of the role of error in the learning process, with the goal of recognizing mistakes not as an enemy to be vanquished but as a friend with much to teach us. Carol…

  13. Model comparison for Escherichia coli growth in pouched food.

    PubMed

    Fujikawa, Hiroshi; Yano, Kazuyoshi; Morozumi, Satoshi

    2006-06-01

    We recently studied the growth characteristics of Escherichia coli cells in pouched mashed potatoes (Fujikawa et al., J. Food Hyg. Soc. Japan, 47, 95-98 (2006)). Using those experimental data, in the present study, we compared a logistic model newly developed by us with the modified Gompertz and the Baranyi models, which are used as growth models worldwide. Bacterial growth curves at constant temperatures in the range of 12 to 34 degrees C were successfully described with the new logistic model, as well as with the other models. The Baranyi gave the least error in cell number and our model gave the least error in the rate constant and the lag period. For dynamic temperature, our model successfully predicted the bacterial growth, whereas the Baranyi model considerably overestimated it. Also, there was a discrepancy between the growth curves described with the differential equations of the Baranyi model and those obtained with DMfit, a software program for Baranyi model fitting. These results indicate that the new logistic model can be used to predict bacterial growth in pouched food.

  14. Animal social networks as substrate for cultural behavioural diversity.

    PubMed

    Whitehead, Hal; Lusseau, David

    2012-02-07

    We used individual-based stochastic models to examine how social structure influences the diversity of socially learned behaviour within a non-human population. For continuous behavioural variables we modelled three forms of dyadic social learning, averaging the behavioural value of the two individuals, random transfer of information from one individual to the other, and directional transfer from the individual with highest behavioural value to the other. Learning had potential error. We also examined the transfer of categorical behaviour between individuals with random directionality and two forms of error, the adoption of a randomly chosen existing behavioural category or the innovation of a new type of behaviour. In populations without social structuring the diversity of culturally transmitted behaviour increased with learning error and population size. When the populations were structured socially either by making individuals members of permanent social units or by giving them overlapping ranges, behavioural diversity increased with network modularity under all scenarios, although the proportional increase varied considerably between continuous and categorical behaviour, with transmission mechanism, and population size. Although functions of the form e(c)¹(m)⁻(c)² + (c)³(Log(N)) predicted the mean increase in diversity with modularity (m) and population size (N), behavioural diversity could be highly unpredictable both between simulations with the same set of parameters, and within runs. Errors in social learning and social structuring generally promote behavioural diversity. Consequently, social learning may be considered to produce culture in populations whose social structure is sufficiently modular. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Assessing the statistical significance of the achieved classification error of classifiers constructed using serum peptide profiles, and a prescription for random sampling repeated studies for massive high-throughput genomic and proteomic studies.

    PubMed

    Lyons-Weiler, James; Pelikan, Richard; Zeh, Herbert J; Whitcomb, David C; Malehorn, David E; Bigbee, William L; Hauskrecht, Milos

    2005-01-01

    Peptide profiles generated using SELDI/MALDI time of flight mass spectrometry provide a promising source of patient-specific information with high potential impact on the early detection and classification of cancer and other diseases. The new profiling technology comes, however, with numerous challenges and concerns. Particularly important are concerns of reproducibility of classification results and their significance. In this work we describe a computational validation framework, called PACE (Permutation-Achieved Classification Error), that lets us assess, for a given classification model, the significance of the Achieved Classification Error (ACE) on the profile data. The framework compares the performance statistic of the classifier on true data samples and checks if these are consistent with the behavior of the classifier on the same data with randomly reassigned class labels. A statistically significant ACE increases our belief that a discriminative signal was found in the data. The advantage of PACE analysis is that it can be easily combined with any classification model and is relatively easy to interpret. PACE analysis does not protect researchers against confounding in the experimental design, or other sources of systematic or random error. We use PACE analysis to assess significance of classification results we have achieved on a number of published data sets. The results show that many of these datasets indeed possess a signal that leads to a statistically significant ACE.

  16. Speeding up Coarse Point Cloud Registration by Threshold-Independent Baysac Match Selection

    NASA Astrophysics Data System (ADS)

    Kang, Z.; Lindenbergh, R.; Pu, S.

    2016-06-01

    This paper presents an algorithm for the automatic registration of terrestrial point clouds by match selection using an efficiently conditional sampling method -- threshold-independent BaySAC (BAYes SAmpling Consensus) and employs the error metric of average point-to-surface residual to reduce the random measurement error and then approach the real registration error. BaySAC and other basic sampling algorithms usually need to artificially determine a threshold by which inlier points are identified, which leads to a threshold-dependent verification process. Therefore, we applied the LMedS method to construct the cost function that is used to determine the optimum model to reduce the influence of human factors and improve the robustness of the model estimate. Point-to-point and point-to-surface error metrics are most commonly used. However, point-to-point error in general consists of at least two components, random measurement error and systematic error as a result of a remaining error in the found rigid body transformation. Thus we employ the measure of the average point-to-surface residual to evaluate the registration accuracy. The proposed approaches, together with a traditional RANSAC approach, are tested on four data sets acquired by three different scanners in terms of their computational efficiency and quality of the final registration. The registration results show the st.dev of the average point-to-surface residuals is reduced from 1.4 cm (plain RANSAC) to 0.5 cm (threshold-independent BaySAC). The results also show that, compared to the performance of RANSAC, our BaySAC strategies lead to less iterations and cheaper computational cost when the hypothesis set is contaminated with more outliers.

  17. Measurement uncertainty evaluation of conicity error inspected on CMM

    NASA Astrophysics Data System (ADS)

    Wang, Dongxia; Song, Aiguo; Wen, Xiulan; Xu, Youxiong; Qiao, Guifang

    2016-01-01

    The cone is widely used in mechanical design for rotation, centering and fixing. Whether the conicity error can be measured and evaluated accurately will directly influence its assembly accuracy and working performance. According to the new generation geometrical product specification(GPS), the error and its measurement uncertainty should be evaluated together. The mathematical model of the minimum zone conicity error is established and an improved immune evolutionary algorithm(IIEA) is proposed to search for the conicity error. In the IIEA, initial antibodies are firstly generated by using quasi-random sequences and two kinds of affinities are calculated. Then, each antibody clone is generated and they are self-adaptively mutated so as to maintain diversity. Similar antibody is suppressed and new random antibody is generated. Because the mathematical model of conicity error is strongly nonlinear and the input quantities are not independent, it is difficult to use Guide to the expression of uncertainty in the measurement(GUM) method to evaluate measurement uncertainty. Adaptive Monte Carlo method(AMCM) is proposed to estimate measurement uncertainty in which the number of Monte Carlo trials is selected adaptively and the quality of the numerical results is directly controlled. The cone parts was machined on lathe CK6140 and measured on Miracle NC 454 Coordinate Measuring Machine(CMM). The experiment results confirm that the proposed method not only can search for the approximate solution of the minimum zone conicity error(MZCE) rapidly and precisely, but also can evaluate measurement uncertainty and give control variables with an expected numerical tolerance. The conicity errors computed by the proposed method are 20%-40% less than those computed by NC454 CMM software and the evaluation accuracy improves significantly.

  18. Free kick instead of cross-validation in maximum-likelihood refinement of macromolecular crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pražnikar, Jure; University of Primorska,; Turk, Dušan, E-mail: dusan.turk@ijs.si

    2014-12-01

    The maximum-likelihood free-kick target, which calculates model error estimates from the work set and a randomly displaced model, proved superior in the accuracy and consistency of refinement of crystal structures compared with the maximum-likelihood cross-validation target, which calculates error estimates from the test set and the unperturbed model. The refinement of a molecular model is a computational procedure by which the atomic model is fitted to the diffraction data. The commonly used target in the refinement of macromolecular structures is the maximum-likelihood (ML) function, which relies on the assessment of model errors. The current ML functions rely on cross-validation. Theymore » utilize phase-error estimates that are calculated from a small fraction of diffraction data, called the test set, that are not used to fit the model. An approach has been developed that uses the work set to calculate the phase-error estimates in the ML refinement from simulating the model errors via the random displacement of atomic coordinates. It is called ML free-kick refinement as it uses the ML formulation of the target function and is based on the idea of freeing the model from the model bias imposed by the chemical energy restraints used in refinement. This approach for the calculation of error estimates is superior to the cross-validation approach: it reduces the phase error and increases the accuracy of molecular models, is more robust, provides clearer maps and may use a smaller portion of data for the test set for the calculation of R{sub free} or may leave it out completely.« less

  19. Encouraging the Flight of Error: Ethical Standards, Evidence Standards, and Randomized Trials

    ERIC Educational Resources Information Center

    Boruch, Robert

    2007-01-01

    Thomas Jefferson recognized the value of reason and scientific experimentation in the eighteenth century. This chapter extends the idea in contemporary ways to standards that may be used to judge the ethical propriety of randomized trials and the dependability of evidence on effects of social interventions.

  20. Fatigue crack growth model RANDOM2 user manual. Appendix 1: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN program RANDOM2 is presented in the form of a user's manual. RANDOM2 is based on fracture mechanics using a probabilistic fatigue crack growth model. It predicts the random lifetime of an engine component to reach a given crack size. Details of the theoretical background, input data instructions, and a sample problem illustrating the use of the program are included.

  1. Analysis on pseudo excitation of random vibration for structure of time flight counter

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Li, Dapeng

    2015-03-01

    Traditional computing method is inefficient for getting key dynamical parameters of complicated structure. Pseudo Excitation Method(PEM) is an effective method for calculation of random vibration. Due to complicated and coupling random vibration in rocket or shuttle launching, the new staging white noise mathematical model is deduced according to the practical launch environment. This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC). The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level. Considering stiffness of fixture structure, the random vibration experiments are conducted in three directions to compare with the revised PEM. The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained. The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results. The maximum error is within 9%. The reasons of errors are analyzed to improve reliability of calculation. This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching.

  2. Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction

    PubMed Central

    Rahman, Raziur; Haider, Saad; Ghosh, Souparno; Pal, Ranadip

    2015-01-01

    Random forests consisting of an ensemble of regression trees with equal weights are frequently used for design of predictive models. In this article, we consider an extension of the methodology by representing the regression trees in the form of probabilistic trees and analyzing the nature of heteroscedasticity. The probabilistic tree representation allows for analytical computation of confidence intervals (CIs), and the tree weight optimization is expected to provide stricter CIs with comparable performance in mean error. We approached the ensemble of probabilistic trees’ prediction from the perspectives of a mixture distribution and as a weighted sum of correlated random variables. We applied our methodology to the drug sensitivity prediction problem on synthetic and cancer cell line encyclopedia dataset and illustrated that tree weights can be selected to reduce the average length of the CI without increase in mean error. PMID:27081304

  3. Hazard Function Estimation with Cause-of-Death Data Missing at Random

    PubMed Central

    Wang, Qihua; Dinse, Gregg E.; Liu, Chunling

    2010-01-01

    Hazard function estimation is an important part of survival analysis. Interest often centers on estimating the hazard function associated with a particular cause of death. We propose three nonparametric kernel estimators for the hazard function, all of which are appropriate when death times are subject to random censorship and censoring indicators can be missing at random. Specifically, we present a regression surrogate estimator, an imputation estimator, and an inverse probability weighted estimator. All three estimators are uniformly strongly consistent and asymptotically normal. We derive asymptotic representations of the mean squared error and the mean integrated squared error for these estimators and we discuss a data-driven bandwidth selection method. A simulation study, conducted to assess finite sample behavior, demonstrates that the proposed hazard estimators perform relatively well. We illustrate our methods with an analysis of some vascular disease data. PMID:22267874

  4. Optimal error analysis of the intraseasonal convection due to uncertainties of the sea surface temperature in a coupled model

    NASA Astrophysics Data System (ADS)

    Li, Xiaojing; Tang, Youmin; Yao, Zhixiong

    2017-04-01

    The predictability of the convection related to the Madden-Julian Oscillation (MJO) is studied using a coupled model CESM (Community Earth System Model) and the climatically relevant singular vector (CSV) approach. The CSV approach is an ensemble-based strategy to calculate the optimal initial error on climate scale. In this study, we focus on the optimal initial error of the sea surface temperature in Indian Ocean, where is the location of the MJO onset. Six MJO events are chosen from the 10 years model simulation output. The results show that the large values of the SVs are mainly located in the bay of Bengal and the south central IO (around (25°S, 90°E)), which is a meridional dipole-like pattern. The fast error growth of the CSVs have important impacts on the prediction of the convection related to the MJO. The initial perturbations with the SV pattern result in the deep convection damping more quickly in the east Pacific Ocean. Moreover, the sensitivity studies of the CSVs show that different initial fields do not affect the CSVs obviously, while the perturbation domain is a more responsive factor to the CSVs. The rapid growth of the CSVs is found to be related to the west bay of Bengal, where the wind stress starts to be perturbed due to the CSV initial error. These results contribute to the establishment of an ensemble prediction system, as well as the optimal observation network. In addition, the analysis of the error growth can provide us some enlightment about the relationship between SST and the intraseasonal convection related to the MJO.

  5. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China).

    PubMed

    Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu

    2017-05-25

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems.

  6. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China)

    PubMed Central

    Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu

    2017-01-01

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3–5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems. PMID:28587086

  7. Bayesian adjustment for measurement error in continuous exposures in an individually matched case-control study.

    PubMed

    Espino-Hernandez, Gabriela; Gustafson, Paul; Burstyn, Igor

    2011-05-14

    In epidemiological studies explanatory variables are frequently subject to measurement error. The aim of this paper is to develop a Bayesian method to correct for measurement error in multiple continuous exposures in individually matched case-control studies. This is a topic that has not been widely investigated. The new method is illustrated using data from an individually matched case-control study of the association between thyroid hormone levels during pregnancy and exposure to perfluorinated acids. The objective of the motivating study was to examine the risk of maternal hypothyroxinemia due to exposure to three perfluorinated acids measured on a continuous scale. Results from the proposed method are compared with those obtained from a naive analysis. Using a Bayesian approach, the developed method considers a classical measurement error model for the exposures, as well as the conditional logistic regression likelihood as the disease model, together with a random-effect exposure model. Proper and diffuse prior distributions are assigned, and results from a quality control experiment are used to estimate the perfluorinated acids' measurement error variability. As a result, posterior distributions and 95% credible intervals of the odds ratios are computed. A sensitivity analysis of method's performance in this particular application with different measurement error variability was performed. The proposed Bayesian method to correct for measurement error is feasible and can be implemented using statistical software. For the study on perfluorinated acids, a comparison of the inferences which are corrected for measurement error to those which ignore it indicates that little adjustment is manifested for the level of measurement error actually exhibited in the exposures. Nevertheless, a sensitivity analysis shows that more substantial adjustments arise if larger measurement errors are assumed. In individually matched case-control studies, the use of conditional logistic regression likelihood as a disease model in the presence of measurement error in multiple continuous exposures can be justified by having a random-effect exposure model. The proposed method can be successfully implemented in WinBUGS to correct individually matched case-control studies for several mismeasured continuous exposures under a classical measurement error model.

  8. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China)

    NASA Astrophysics Data System (ADS)

    Zhao, Q.

    2017-12-01

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems.

  9. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

    DOE PAGES

    Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik; ...

    2017-02-15

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Finally, we usemore » gate set tomography to completely characterize operations on a trapped-Yb +-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10 -4).« less

  10. Simulation of rare events in quantum error correction

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey; Vargo, Alexander

    2013-12-01

    We consider the problem of calculating the logical error probability for a stabilizer quantum code subject to random Pauli errors. To access the regime of large code distances where logical errors are extremely unlikely we adopt the splitting method widely used in Monte Carlo simulations of rare events and Bennett's acceptance ratio method for estimating the free energy difference between two canonical ensembles. To illustrate the power of these methods in the context of error correction, we calculate the logical error probability PL for the two-dimensional surface code on a square lattice with a pair of holes for all code distances d≤20 and all error rates p below the fault-tolerance threshold. Our numerical results confirm the expected exponential decay PL˜exp[-α(p)d] and provide a simple fitting formula for the decay rate α(p). Both noiseless and noisy syndrome readout circuits are considered.

  11. The effect of covariate mean differences on the standard error and confidence interval for the comparison of treatment means.

    PubMed

    Liu, Xiaofeng Steven

    2011-05-01

    The use of covariates is commonly believed to reduce the unexplained error variance and the standard error for the comparison of treatment means, but the reduction in the standard error is neither guaranteed nor uniform over different sample sizes. The covariate mean differences between the treatment conditions can inflate the standard error of the covariate-adjusted mean difference and can actually produce a larger standard error for the adjusted mean difference than that for the unadjusted mean difference. When the covariate observations are conceived of as randomly varying from one study to another, the covariate mean differences can be related to a Hotelling's T(2) . Using this Hotelling's T(2) statistic, one can always find a minimum sample size to achieve a high probability of reducing the standard error and confidence interval width for the adjusted mean difference. ©2010 The British Psychological Society.

  12. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

    PubMed Central

    Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik; Rudinger, Kenneth; Mizrahi, Jonathan; Fortier, Kevin; Maunz, Peter

    2017-01-01

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Here we use gate set tomography to completely characterize operations on a trapped-Yb+-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10−4). PMID:28198466

  13. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Finally, we usemore » gate set tomography to completely characterize operations on a trapped-Yb +-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10 -4).« less

  14. Model parameter-related optimal perturbations and their contributions to El Niño prediction errors

    NASA Astrophysics Data System (ADS)

    Tao, Ling-Jiang; Gao, Chuan; Zhang, Rong-Hua

    2018-04-01

    Errors in initial conditions and model parameters (MPs) are the main sources that limit the accuracy of ENSO predictions. In addition to exploring the initial error-induced prediction errors, model errors are equally important in determining prediction performance. In this paper, the MP-related optimal errors that can cause prominent error growth in ENSO predictions are investigated using an intermediate coupled model (ICM) and a conditional nonlinear optimal perturbation (CNOP) approach. Two MPs related to the Bjerknes feedback are considered in the CNOP analysis: one involves the SST-surface wind coupling ({α _τ } ), and the other involves the thermocline effect on the SST ({α _{Te}} ). The MP-related optimal perturbations (denoted as CNOP-P) are found uniformly positive and restrained in a small region: the {α _τ } component is mainly concentrated in the central equatorial Pacific, and the {α _{Te}} component is mainly located in the eastern cold tongue region. This kind of CNOP-P enhances the strength of the Bjerknes feedback and induces an El Niño- or La Niña-like error evolution, resulting in an El Niño-like systematic bias in this model. The CNOP-P is also found to play a role in the spring predictability barrier (SPB) for ENSO predictions. Evidently, such error growth is primarily attributed to MP errors in small areas based on the localized distribution of CNOP-P. Further sensitivity experiments firmly indicate that ENSO simulations are sensitive to the representation of SST-surface wind coupling in the central Pacific and to the thermocline effect in the eastern Pacific in the ICM. These results provide guidance and theoretical support for the future improvement in numerical models to reduce the systematic bias and SPB phenomenon in ENSO predictions.

  15. Randomized clinical trials in dentistry: Risks of bias, risks of random errors, reporting quality, and methodologic quality over the years 1955–2013

    PubMed Central

    Armijo-Olivo, Susan; Cummings, Greta G.; Amin, Maryam; Flores-Mir, Carlos

    2017-01-01

    Objectives To examine the risks of bias, risks of random errors, reporting quality, and methodological quality of randomized clinical trials of oral health interventions and the development of these aspects over time. Methods We included 540 randomized clinical trials from 64 selected systematic reviews. We extracted, in duplicate, details from each of the selected randomized clinical trials with respect to publication and trial characteristics, reporting and methodologic characteristics, and Cochrane risk of bias domains. We analyzed data using logistic regression and Chi-square statistics. Results Sequence generation was assessed to be inadequate (at unclear or high risk of bias) in 68% (n = 367) of the trials, while allocation concealment was inadequate in the majority of trials (n = 464; 85.9%). Blinding of participants and blinding of the outcome assessment were judged to be inadequate in 28.5% (n = 154) and 40.5% (n = 219) of the trials, respectively. A sample size calculation before the initiation of the study was not performed/reported in 79.1% (n = 427) of the trials, while the sample size was assessed as adequate in only 17.6% (n = 95) of the trials. Two thirds of the trials were not described as double blinded (n = 358; 66.3%), while the method of blinding was appropriate in 53% (n = 286) of the trials. We identified a significant decrease over time (1955–2013) in the proportion of trials assessed as having inadequately addressed methodological quality items (P < 0.05) in 30 out of the 40 quality criteria, or as being inadequate (at high or unclear risk of bias) in five domains of the Cochrane risk of bias tool: sequence generation, allocation concealment, incomplete outcome data, other sources of bias, and overall risk of bias. Conclusions The risks of bias, risks of random errors, reporting quality, and methodological quality of randomized clinical trials of oral health interventions have improved over time; however, further efforts that contribute to the development of more stringent methodology and detailed reporting of trials are still needed. PMID:29272315

  16. Randomized clinical trials in dentistry: Risks of bias, risks of random errors, reporting quality, and methodologic quality over the years 1955-2013.

    PubMed

    Saltaji, Humam; Armijo-Olivo, Susan; Cummings, Greta G; Amin, Maryam; Flores-Mir, Carlos

    2017-01-01

    To examine the risks of bias, risks of random errors, reporting quality, and methodological quality of randomized clinical trials of oral health interventions and the development of these aspects over time. We included 540 randomized clinical trials from 64 selected systematic reviews. We extracted, in duplicate, details from each of the selected randomized clinical trials with respect to publication and trial characteristics, reporting and methodologic characteristics, and Cochrane risk of bias domains. We analyzed data using logistic regression and Chi-square statistics. Sequence generation was assessed to be inadequate (at unclear or high risk of bias) in 68% (n = 367) of the trials, while allocation concealment was inadequate in the majority of trials (n = 464; 85.9%). Blinding of participants and blinding of the outcome assessment were judged to be inadequate in 28.5% (n = 154) and 40.5% (n = 219) of the trials, respectively. A sample size calculation before the initiation of the study was not performed/reported in 79.1% (n = 427) of the trials, while the sample size was assessed as adequate in only 17.6% (n = 95) of the trials. Two thirds of the trials were not described as double blinded (n = 358; 66.3%), while the method of blinding was appropriate in 53% (n = 286) of the trials. We identified a significant decrease over time (1955-2013) in the proportion of trials assessed as having inadequately addressed methodological quality items (P < 0.05) in 30 out of the 40 quality criteria, or as being inadequate (at high or unclear risk of bias) in five domains of the Cochrane risk of bias tool: sequence generation, allocation concealment, incomplete outcome data, other sources of bias, and overall risk of bias. The risks of bias, risks of random errors, reporting quality, and methodological quality of randomized clinical trials of oral health interventions have improved over time; however, further efforts that contribute to the development of more stringent methodology and detailed reporting of trials are still needed.

  17. Pressing the Approach: A NASA Study of 19 Recent Accidents Yields a New Perspective on Pilot Error

    NASA Technical Reports Server (NTRS)

    Berman, Benjamin A.; Dismukes, R. Key

    2007-01-01

    This article begins with a review of two sample airplane accidents that were caused by pilot error. The analysis of these and 17 other accidents suggested that almost all experienced pilot operating in the same environment in which the accident crews were operating and knowing only what the accident crews knew at each moment of the flight, would be vulnerable to making a similar decision and similar errors. Whether a particular crew in a given situation makes errors depends on somewhat random interaction of factors. Two themes that seem to be prevalent in these cases are: Plan Continuation Bias, and Snowballing Workload.

  18. Error analysis and prevention of cosmic ion-induced soft errors in static CMOS RAMs

    NASA Astrophysics Data System (ADS)

    Diehl, S. E.; Ochoa, A., Jr.; Dressendorfer, P. V.; Koga, P.; Kolasinski, W. A.

    1982-12-01

    Cosmic ray interactions with memory cells are known to cause temporary, random, bit errors in some designs. The sensitivity of polysilicon gate CMOS static RAM designs to logic upset by impinging ions has been studied using computer simulations and experimental heavy ion bombardment. Results of the simulations are confirmed by experimental upset cross-section data. Analytical models have been extended to determine and evaluate design modifications which reduce memory cell sensitivity to cosmic ions. A simple design modification, the addition of decoupling resistance in the feedback path, is shown to produce static RAMs immune to cosmic ray-induced bit errors.

  19. Prevalence of Refractive Errors Among School Children in Gondar Town, Northwest Ethiopia

    PubMed Central

    Yared, Assefa Wolde; Belaynew, Wasie Taye; Destaye, Shiferaw; Ayanaw, Tsegaw; Zelalem, Eshete

    2012-01-01

    Purpose: Many children with poor vision due to refractive error remain undiagnosed and perform poorly in school. The situation is worse in the Sub-Saharan Africa, including Ethiopia, and current information is lacking. The objective of this study is to determine the prevalence of refractive error among children enrolled in elementary schools in Gondar town, Ethiopia. Materials and Methods: This was a cross-sectional study of 1852 students in 8 elementary schools. Subjects were selected by multistage random sampling. The study parameters were visual acuity (VA) evaluation and ocular examination. VA was measured by staff optometrists with the Snellen E-chart while students with subnormal vision were examined using pinhole, retinoscopy evaluation and subjective refraction by ophthalmologists. Results: The study cohort was comprised of 45.8% males and 54.2% females from 8 randomly selected elementary schools with a response rate of 93%. Refractive errors in either eye were present in 174 (9.4%) children. Of these, myopia was diagnosed in 55 (31.6%) children in the right and left eyes followed by hyperopia in 46 (26.4%) and 39 (22.4%) in the right and left eyes respectively. Low myopia was the most common refractive error in 61 (49.2%) and 68 (50%) children for the right and left eyes respectively. Conclusions: Refractive error among children is a common problem in Gondar town and needs to be assessed at every health evaluation of school children for timely treatment. PMID:23248538

  20. Growth of non-toxigenic Clostridium botulinum mutant LNT01 in cooked beef: One-step kinetic analysis and comparison with C. sporogenes and C. perfringens.

    PubMed

    Huang, Lihan

    2018-05-01

    The objective of this study was to investigate the growth kinetics of Clostridium botulinum LNT01, a non-toxigenic mutant of C. botulinum 62A, in cooked ground beef. The spores of C. botulinum LNT01 were inoculated to ground beef and incubated anaerobically under different temperature conditions to observe growth and develop growth curves. A one-step kinetic analysis method was used to analyze the growth curves simultaneously to minimize the global residual error. The data analysis was performed using the USDA IPMP-Global Fit, with the Huang model as the primary model and the cardinal parameters model as the secondary model. The results of data analysis showed that the minimum, optimum, and maximum growth temperatures of this mutant are 11.5, 36.4, and 44.3 °C, and the estimated optimum specific growth rate is 0.633 ln CFU/g per h, or 0.275 log CFU/g per h. The maximum cell density is 7.84 log CFU/g. The models and kinetic parameters were validated using additional isothermal and dynamic growth curves. The resulting residual errors of validation followed a Laplace distribution, with about 60% of the residual errors within ±0.5 log CFU/g of experimental observations, suggesting that the models could predict the growth of C. botulinum LNT01 in ground beef with reasonable accuracy. Comparing with C. perfringens, C. botulinum LNT01 grows at much slower rates and with much longer lag times. Its growth kinetics is also very similar to C. sporogenes in ground beef. The results of computer simulation using kinetic models showed that, while prolific growth of C. perfringens may occur in ground beef during cooling, no growth of C. botulinum LNT01 or C. sporogenes would occur under the same cooling conditions. The models developed in this study may be used for prediction of the growth and risk assessments of proteolytic C. botulinum in cooked meats. Published by Elsevier Ltd.

  1. How Do Simulated Error Experiences Impact Attitudes Related to Error Prevention?

    PubMed

    Breitkreuz, Karen R; Dougal, Renae L; Wright, Melanie C

    2016-10-01

    The objective of this project was to determine whether simulated exposure to error situations changes attitudes in a way that may have a positive impact on error prevention behaviors. Using a stratified quasi-randomized experiment design, we compared risk perception attitudes of a control group of nursing students who received standard error education (reviewed medication error content and watched movies about error experiences) to an experimental group of students who reviewed medication error content and participated in simulated error experiences. Dependent measures included perceived memorability of the educational experience, perceived frequency of errors, and perceived caution with respect to preventing errors. Experienced nursing students perceived the simulated error experiences to be more memorable than movies. Less experienced students perceived both simulated error experiences and movies to be highly memorable. After the intervention, compared with movie participants, simulation participants believed errors occurred more frequently. Both types of education increased the participants' intentions to be more cautious and reported caution remained higher than baseline for medication errors 6 months after the intervention. This study provides limited evidence of an advantage of simulation over watching movies describing actual errors with respect to manipulating attitudes related to error prevention. Both interventions resulted in long-term impacts on perceived caution in medication administration. Simulated error experiences made participants more aware of how easily errors can occur, and the movie education made participants more aware of the devastating consequences of errors.

  2. Bias, Confounding, and Interaction: Lions and Tigers, and Bears, Oh My!

    PubMed

    Vetter, Thomas R; Mascha, Edward J

    2017-09-01

    Epidemiologists seek to make a valid inference about the causal effect between an exposure and a disease in a specific population, using representative sample data from a specific population. Clinical researchers likewise seek to make a valid inference about the association between an intervention and outcome(s) in a specific population, based upon their randomly collected, representative sample data. Both do so by using the available data about the sample variable to make a valid estimate about its corresponding or underlying, but unknown population parameter. Random error in an experiment can be due to the natural, periodic fluctuation or variation in the accuracy or precision of virtually any data sampling technique or health measurement tool or scale. In a clinical research study, random error can be due to not only innate human variability but also purely chance. Systematic error in an experiment arises from an innate flaw in the data sampling technique or measurement instrument. In the clinical research setting, systematic error is more commonly referred to as systematic bias. The most commonly encountered types of bias in anesthesia, perioperative, critical care, and pain medicine research include recall bias, observational bias (Hawthorne effect), attrition bias, misclassification or informational bias, and selection bias. A confounding variable is a factor associated with both the exposure of interest and the outcome of interest. A confounding variable (confounding factor or confounder) is a variable that correlates (positively or negatively) with both the exposure and outcome. Confounding is typically not an issue in a randomized trial because the randomized groups are sufficiently balanced on all potential confounding variables, both observed and nonobserved. However, confounding can be a major problem with any observational (nonrandomized) study. Ignoring confounding in an observational study will often result in a "distorted" or incorrect estimate of the association or treatment effect. Interaction among variables, also known as effect modification, exists when the effect of 1 explanatory variable on the outcome depends on the particular level or value of another explanatory variable. Bias and confounding are common potential explanations for statistically significant associations between exposure and outcome when the true relationship is noncausal. Understanding interactions is vital to proper interpretation of treatment effects. These complex concepts should be consistently and appropriately considered whenever one is not only designing but also analyzing and interpreting data from a randomized trial or observational study.

  3. Regression-assisted deconvolution.

    PubMed

    McIntyre, Julie; Stefanski, Leonard A

    2011-06-30

    We present a semi-parametric deconvolution estimator for the density function of a random variable biX that is measured with error, a common challenge in many epidemiological studies. Traditional deconvolution estimators rely only on assumptions about the distribution of X and the error in its measurement, and ignore information available in auxiliary variables. Our method assumes the availability of a covariate vector statistically related to X by a mean-variance function regression model, where regression errors are normally distributed and independent of the measurement errors. Simulations suggest that the estimator achieves a much lower integrated squared error than the observed-data kernel density estimator when models are correctly specified and the assumption of normal regression errors is met. We illustrate the method using anthropometric measurements of newborns to estimate the density function of newborn length. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Mind your errors: evidence for a neural mechanism linking growth mind-set to adaptive posterror adjustments.

    PubMed

    Moser, Jason S; Schroder, Hans S; Heeter, Carrie; Moran, Tim P; Lee, Yu-Hao

    2011-12-01

    How well people bounce back from mistakes depends on their beliefs about learning and intelligence. For individuals with a growth mind-set, who believe intelligence develops through effort, mistakes are seen as opportunities to learn and improve. For individuals with a fixed mind-set, who believe intelligence is a stable characteristic, mistakes indicate lack of ability. We examined performance-monitoring event-related potentials (ERPs) to probe the neural mechanisms underlying these different reactions to mistakes. Findings revealed that a growth mind-set was associated with enhancement of the error positivity component (Pe), which reflects awareness of and allocation of attention to mistakes. More growth-minded individuals also showed superior accuracy after mistakes compared with individuals endorsing a more fixed mind-set. It is critical to note that Pe amplitude mediated the relationship between mind-set and posterror accuracy. These results suggest that neural mechanisms indexing on-line awareness of and attention to mistakes are intimately involved in growth-minded individuals' ability to rebound from mistakes.

  5. A Method of Reducing Random Drift in the Combined Signal of an Array of Inertial Sensors

    DTIC Science & Technology

    2015-09-30

    stability of the collective output, Bayard et al, US Patent 6,882,964. The prior art methods rely upon the use of Kalman filtering and averaging...including scale-factor errors, quantization effects, temperature effects, random drift, and additive noise. A comprehensive account of all of these

  6. A Strategy to Use Soft Data Effectively in Randomized Controlled Clinical Trials.

    ERIC Educational Resources Information Center

    Kraemer, Helena Chmura; Thiemann, Sue

    1989-01-01

    Sees soft data, measures having substantial intrasubject variability due to errors of measurement or response inconsistency, as important measures of response in randomized clinical trials. Shows that using intensive design and slope of response on time as outcome measure maximizes sample retention and decreases within-group variability, thus…

  7. A note on variance estimation in random effects meta-regression.

    PubMed

    Sidik, Kurex; Jonkman, Jeffrey N

    2005-01-01

    For random effects meta-regression inference, variance estimation for the parameter estimates is discussed. Because estimated weights are used for meta-regression analysis in practice, the assumed or estimated covariance matrix used in meta-regression is not strictly correct, due to possible errors in estimating the weights. Therefore, this note investigates the use of a robust variance estimation approach for obtaining variances of the parameter estimates in random effects meta-regression inference. This method treats the assumed covariance matrix of the effect measure variables as a working covariance matrix. Using an example of meta-analysis data from clinical trials of a vaccine, the robust variance estimation approach is illustrated in comparison with two other methods of variance estimation. A simulation study is presented, comparing the three methods of variance estimation in terms of bias and coverage probability. We find that, despite the seeming suitability of the robust estimator for random effects meta-regression, the improved variance estimator of Knapp and Hartung (2003) yields the best performance among the three estimators, and thus may provide the best protection against errors in the estimated weights.

  8. FOG Random Drift Signal Denoising Based on the Improved AR Model and Modified Sage-Husa Adaptive Kalman Filter.

    PubMed

    Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao

    2016-07-12

    In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved.

  9. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests.

    PubMed

    Ma, Li; Fan, Suohai

    2017-03-14

    The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.

  10. Comparison of Parametric and Nonparametric Bootstrap Methods for Estimating Random Error in Equipercentile Equating

    ERIC Educational Resources Information Center

    Cui, Zhongmin; Kolen, Michael J.

    2008-01-01

    This article considers two methods of estimating standard errors of equipercentile equating: the parametric bootstrap method and the nonparametric bootstrap method. Using a simulation study, these two methods are compared under three sample sizes (300, 1,000, and 3,000), for two test content areas (the Iowa Tests of Basic Skills Maps and Diagrams…

  11. Teaching Common Errors in Applying a Procedure. IDD&E Working Paper No. 18.

    ERIC Educational Resources Information Center

    Garduno, Alberto O.; And Others

    The purpose of this study was to replicate the Bentti, Golden, and Reigeluth study (1983), which explored the use of nonexamples to teach common errors as an effective strategy in teaching a procedure. A total of 24 undergraduate students enrolled in the Syracuse University Symphonic Band were randomly assigned to an experimental group and a…

  12. Is the Intergenerational Transmission of High Cultural Activities Biased by the Retrospective Measurement of Parental High Cultural Activities?

    ERIC Educational Resources Information Center

    de Vries, Jannes; de Graaf, Paul M.

    2008-01-01

    In this article we study the bias caused by the conventional retrospective measurement of parental high cultural activities in the effects of parental high cultural activities and educational attainment on son's or daughter's high cultural activities. Multi-informant data show that there is both random measurement error and correlated error in the…

  13. Measurement Error and Bias in Value-Added Models. Research Report. ETS RR-17-25

    ERIC Educational Resources Information Center

    Kane, Michael T.

    2017-01-01

    By aggregating residual gain scores (the differences between each student's current score and a predicted score based on prior performance) for a school or a teacher, value-added models (VAMs) can be used to generate estimates of school or teacher effects. It is known that random errors in the prior scores will introduce bias into predictions of…

  14. The Impact of Short-Term Science Teacher Professional Development on the Evaluation of Student Understanding and Errors Related to Natural Selection

    ERIC Educational Resources Information Center

    Buschang, Rebecca Ellen

    2012-01-01

    This study evaluated the effects of a short-term professional development session. Forty volunteer high school biology teachers were randomly assigned to one of two professional development conditions: (a) developing deep content knowledge (i.e., control condition) or (b) evaluating student errors and understanding in writing samples (i.e.,…

  15. A quarter of a century of the DBQ: some supplementary notes on its validity with regard to accidents.

    PubMed

    de Winter, Joost C F; Dodou, Dimitra; Stanton, Neville A

    2015-01-01

    This article synthesises the latest information on the relationship between the Driver Behaviour Questionnaire (DBQ) and accidents. We show by means of computer simulation that correlations with accidents are necessarily small because accidents are rare events. An updated meta-analysis on the zero-order correlations between the DBQ and self-reported accidents yielded an overall r of .13 (fixed-effect and random-effects models) for violations (57,480 participants; 67 samples) and .09 (fixed-effect and random-effects models) for errors (66,028 participants; 56 samples). An analysis of a previously published DBQ dataset (975 participants) showed that by aggregating across four measurement occasions, the correlation coefficient with self-reported accidents increased from .14 to .24 for violations and from .11 to .19 for errors. Our meta-analysis also showed that DBQ violations (r = .24; 6353 participants; 20 samples) but not DBQ errors (r = - .08; 1086 participants; 16 samples) correlated with recorded vehicle speed. Practitioner Summary: The DBQ is probably the most widely used self-report questionnaire in driver behaviour research. This study shows that DBQ violations and errors correlate moderately with self-reported traffic accidents.

  16. Automated Identification of Abnormal Adult EEGs

    PubMed Central

    López, S.; Suarez, G.; Jungreis, D.; Obeid, I.; Picone, J.

    2016-01-01

    The interpretation of electroencephalograms (EEGs) is a process that is still dependent on the subjective analysis of the examiners. Though interrater agreement on critical events such as seizures is high, it is much lower on subtler events (e.g., when there are benign variants). The process used by an expert to interpret an EEG is quite subjective and hard to replicate by machine. The performance of machine learning technology is far from human performance. We have been developing an interpretation system, AutoEEG, with a goal of exceeding human performance on this task. In this work, we are focusing on one of the early decisions made in this process – whether an EEG is normal or abnormal. We explore two baseline classification algorithms: k-Nearest Neighbor (kNN) and Random Forest Ensemble Learning (RF). A subset of the TUH EEG Corpus was used to evaluate performance. Principal Components Analysis (PCA) was used to reduce the dimensionality of the data. kNN achieved a 41.8% detection error rate while RF achieved an error rate of 31.7%. These error rates are significantly lower than those obtained by random guessing based on priors (49.5%). The majority of the errors were related to misclassification of normal EEGs. PMID:27195311

  17. A Comparison of Latent Growth Models for Constructs Measured by Multiple Items

    ERIC Educational Resources Information Center

    Leite, Walter L.

    2007-01-01

    Univariate latent growth modeling (LGM) of composites of multiple items (e.g., item means or sums) has been frequently used to analyze the growth of latent constructs. This study evaluated whether LGM of composites yields unbiased parameter estimates, standard errors, chi-square statistics, and adequate fit indexes. Furthermore, LGM was compared…

  18. Adjusting STEMS growth model for Wisconsin forests.

    Treesearch

    Margaret R. Holdaway

    1985-01-01

    Describes a simple procedure for adjusting growth in the STEMS regional tree growth model to compensate for subregional differences. Coefficients are reported to adjust Lake States STEMS to the forests of Northern and Central Wisconsin--an area of essentially uniform climate and similar broad physiographic features. Errors are presented for various combinations of...

  19. Estimating True Student Growth Percentile Distributions Using Latent Regression Multidimensional IRT Models

    ERIC Educational Resources Information Center

    Lockwood, J. R.; Castellano, Katherine E.

    2017-01-01

    Student Growth Percentiles (SGPs) increasingly are being used in the United States for inferences about student achievement growth and educator effectiveness. Emerging research has indicated that SGPs estimated from observed test scores have large measurement errors. As such, little is known about "true" SGPs, which are defined in terms…

  20. The use of a covariate reduces experimental error in nutrient digestion studies in growing pigs

    USDA-ARS?s Scientific Manuscript database

    Covariance analysis limits error, the degree of nuisance variation, and overparameterizing factors to accurately measure treatment effects. Data dealing with growth, carcass composition, and genetics often utilize covariates in data analysis. In contrast, nutritional studies typically do not. The ob...

  1. SU-E-J-88: The Study of Setup Error Measured by CBCT in Postoperative Radiotherapy for Cervical Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runxiao, L; Aikun, W; Xiaomei, F

    2015-06-15

    Purpose: To compare two registration methods in the CBCT guided radiotherapy for cervical carcinoma, analyze the setup errors and registration methods, determine the margin required for clinical target volume(CTV) extending to planning target volume(PTV). Methods: Twenty patients with cervical carcinoma were enrolled. All patients were underwent CT simulation in the supine position. Transfering the CT images to the treatment planning system and defining the CTV, PTV and the organs at risk (OAR), then transmit them to the XVI workshop. CBCT scans were performed before radiotherapy and registered to planning CT images according to bone and gray value registration methods. Comparedmore » two methods and obtain left-right(X), superior-inferior(Y), anterior-posterior (Z) setup errors, the margin required for CTV to PTV were calculated. Results: Setup errors were unavoidable in postoperative cervical carcinoma irradiation. The setup errors measured by method of bone (systemic ± random) on X(1eft.right),Y(superior.inferior),Z(anterior.posterior) directions were(0.24±3.62),(0.77±5.05) and (0.13±3.89)mm, respectively, the setup errors measured by method of grey (systemic ± random) on X(1eft-right), Y(superior-inferior), Z(anterior-posterior) directions were(0.31±3.93), (0.85±5.16) and (0.21±4.12)mm, respectively.The spatial distributions of setup error was maximum in Y direction. The margins were 4 mm in X axis, 6 mm in Y axis, 4 mm in Z axis respectively.These two registration methods were similar and highly recommended. Conclusion: Both bone and grey registration methods could offer an accurate setup error. The influence of setup errors of a PTV margin would be suggested by 4mm, 4mm and 6mm on X, Y and Z directions for postoperative radiotherapy for cervical carcinoma.« less

  2. A multifaceted program for improving quality of care in intensive care units: IATROREF study.

    PubMed

    Garrouste-Orgeas, Maite; Soufir, Lilia; Tabah, Alexis; Schwebel, Carole; Vesin, Aurelien; Adrie, Christophe; Thuong, Marie; Timsit, Jean Francois

    2012-02-01

    To test the effects of three multifaceted safety programs designed to decrease insulin administration errors, anticoagulant prescription and administration errors, and errors leading to accidental removal of endotracheal tubes and central venous catheters, respectively. Medical errors and adverse events are associated with increased mortality in intensive care patients, indicating an urgent need for prevention programs. Multicenter cluster-randomized study. One medical intensive care unit in a university hospital and two medical-surgical intensive care units in community hospitals belonging to the Outcomerea Study Group. Consecutive patients >18 yrs admitted from January 2007 to January 2008 to the intensive care units. We tested three multifaceted safety programs vs. standard care in random order, each over 2.5 months, after a 1.5-month observation period. Incidence rates of medical errors/1000 patient-days in the multifaceted safety program and standard-care groups were compared using adjusted hierarchical models. In 2117 patients with 15,014 patient-days, 8520 medical errors (567.5/1000 patient-days) were reported, including 1438 adverse events (16.9%, 95.8/1000 patient-days). The insulin multifaceted safety program significantly decreased errors during implementation (risk ratio 0.65; 95% confidence interval [CI] 0.52-0.82; p = .0003) and after implementation (risk ratio 0.51; 95% CI 0.35-0.73; p = .0004). A significant Hawthorne effect was found. The accidental tube/catheter removal multifaceted safety program decreased errors significantly during implementation (odds ratio [OR] 0.34; 95% CI 0.15-0.81; p = .01]) and nonsignificantly after implementation (OR 1.65; 95% CI 0.78-3.48). The anticoagulation multifaceted safety program was not significantly effective (OR 0.64; 95% CI 0.26-1.59) but produced a significant Hawthorne effect. A multifaceted program was effective in preventing insulin errors and accidental tube/catheter removal. Significant Hawthorne effects occurred, emphasizing the need for appropriately designed studies before definitively implementing strategies. clinicaltrials.gov Identifier: NCT00461461.

  3. Beyond alpha: an empirical examination of the effects of different sources of measurement error on reliability estimates for measures of individual differences constructs.

    PubMed

    Schmidt, Frank L; Le, Huy; Ilies, Remus

    2003-06-01

    On the basis of an empirical study of measures of constructs from the cognitive domain, the personality domain, and the domain of affective traits, the authors of this study examine the implications of transient measurement error for the measurement of frequently studied individual differences variables. The authors clarify relevant reliability concepts as they relate to transient error and present a procedure for estimating the coefficient of equivalence and stability (L. J. Cronbach, 1947), the only classical reliability coefficient that assesses all 3 major sources of measurement error (random response, transient, and specific factor errors). The authors conclude that transient error exists in all 3 trait domains and is especially large in the domain of affective traits. Their findings indicate that the nearly universal use of the coefficient of equivalence (Cronbach's alpha; L. J. Cronbach, 1951), which fails to assess transient error, leads to overestimates of reliability and undercorrections for biases due to measurement error.

  4. Error simulation of paired-comparison-based scaling methods

    NASA Astrophysics Data System (ADS)

    Cui, Chengwu

    2000-12-01

    Subjective image quality measurement usually resorts to psycho physical scaling. However, it is difficult to evaluate the inherent precision of these scaling methods. Without knowing the potential errors of the measurement, subsequent use of the data can be misleading. In this paper, the errors on scaled values derived form paired comparison based scaling methods are simulated with randomly introduced proportion of choice errors that follow the binomial distribution. Simulation results are given for various combinations of the number of stimuli and the sampling size. The errors are presented in the form of average standard deviation of the scaled values and can be fitted reasonably well with an empirical equation that can be sued for scaling error estimation and measurement design. The simulation proves paired comparison based scaling methods can have large errors on the derived scaled values when the sampling size and the number of stimuli are small. Examples are also given to show the potential errors on actually scaled values of color image prints as measured by the method of paired comparison.

  5. Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Gardner, Chester S.

    1989-01-01

    Given the rms transmitter pointing error and the desired probability of bit error (PBE), it can be shown that an optimal transmitter antenna gain exists which minimizes the required transmitter power. Given the rms local oscillator tracking error, an optimum receiver antenna gain can be found which optimizes the receiver performance. The impact of pointing and tracking errors on the design of direct-detection pulse-position modulation (PPM) and heterodyne noncoherent frequency-shift keying (NCFSK) systems are then analyzed in terms of constraints on the antenna size and the power penalty incurred. It is shown that in the limit of large spatial tracking errors, the advantage in receiver sensitivity for the heterodyne system is quickly offset by the smaller antenna gain and the higher power penalty due to tracking errors. In contrast, for systems with small spatial tracking errors, the heterodyne system is superior because of the higher receiver sensitivity.

  6. An investigation of error characteristics and coding performance

    NASA Technical Reports Server (NTRS)

    Ebel, William J.; Ingels, Frank M.

    1992-01-01

    The performance of forward error correcting coding schemes on errors anticipated for the Earth Observation System (EOS) Ku-band downlink are studied. The EOS transmits picture frame data to the ground via the Telemetry Data Relay Satellite System (TDRSS) to a ground-based receiver at White Sands. Due to unintentional RF interference from other systems operating in the Ku band, the noise at the receiver is non-Gaussian which may result in non-random errors output by the demodulator. That is, the downlink channel cannot be modeled by a simple memoryless Gaussian-noise channel. From previous experience, it is believed that those errors are bursty. The research proceeded by developing a computer based simulation, called Communication Link Error ANalysis (CLEAN), to model the downlink errors, forward error correcting schemes, and interleavers used with TDRSS. To date, the bulk of CLEAN was written, documented, debugged, and verified. The procedures for utilizing CLEAN to investigate code performance were established and are discussed.

  7. The influence of different error estimates in the detection of postoperative cognitive dysfunction using reliable change indices with correction for practice effects.

    PubMed

    Lewis, Matthew S; Maruff, Paul; Silbert, Brendan S; Evered, Lis A; Scott, David A

    2007-02-01

    The reliable change index (RCI) expresses change relative to its associated error, and is useful in the identification of postoperative cognitive dysfunction (POCD). This paper examines four common RCIs that each account for error in different ways. Three rules incorporate a constant correction for practice effects and are contrasted with the standard RCI that had no correction for practice. These rules are applied to 160 patients undergoing coronary artery bypass graft (CABG) surgery who completed neuropsychological assessments preoperatively and 1 week postoperatively using error and reliability data from a comparable healthy nonsurgical control group. The rules all identify POCD in a similar proportion of patients, but the use of the within-subject standard deviation (WSD), expressing the effects of random error, as an error estimate is a theoretically appropriate denominator when a constant error correction, removing the effects of systematic error, is deducted from the numerator in a RCI.

  8. SU-G-BRB-03: Assessing the Sensitivity and False Positive Rate of the Integrated Quality Monitor (IQM) Large Area Ion Chamber to MLC Positioning Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehnke, E McKenzie; DeMarco, J; Steers, J

    2016-06-15

    Purpose: To examine both the IQM’s sensitivity and false positive rate to varying MLC errors. By balancing these two characteristics, an optimal tolerance value can be derived. Methods: An un-modified SBRT Liver IMRT plan containing 7 fields was randomly selected as a representative clinical case. The active MLC positions for all fields were perturbed randomly from a square distribution of varying width (±1mm to ±5mm). These unmodified and modified plans were measured multiple times each by the IQM (a large area ion chamber mounted to a TrueBeam linac head). Measurements were analyzed relative to the initial, unmodified measurement. IQM readingsmore » are analyzed as a function of control points. In order to examine sensitivity to errors along a field’s delivery, each measured field was divided into 5 groups of control points, and the maximum error in each group was recorded. Since the plans have known errors, we compared how well the IQM is able to differentiate between unmodified and error plans. ROC curves and logistic regression were used to analyze this, independent of thresholds. Results: A likelihood-ratio Chi-square test showed that the IQM could significantly predict whether a plan had MLC errors, with the exception of the beginning and ending control points. Upon further examination, we determined there was ramp-up occurring at the beginning of delivery. Once the linac AFC was tuned, the subsequent measurements (relative to a new baseline) showed significant (p <0.005) abilities to predict MLC errors. Using the area under the curve, we show the IQM’s ability to detect errors increases with increasing MLC error (Spearman’s Rho=0.8056, p<0.0001). The optimal IQM count thresholds from the ROC curves are ±3%, ±2%, and ±7% for the beginning, middle 3, and end segments, respectively. Conclusion: The IQM has proven to be able to detect not only MLC errors, but also differences in beam tuning (ramp-up). Partially supported by the Susan Scott Foundation.« less

  9. Prediction skill of tropical synoptic scale transients from ECMWF and NCEP ensemble prediction systems

    DOE PAGES

    Taraphdar, S.; Mukhopadhyay, P.; Leung, L. Ruby; ...

    2016-12-05

    The prediction skill of tropical synoptic scale transients (SSTR) such as monsoon low and depression during the boreal summer of 2007–2009 are assessed using high resolution ECMWF and NCEP TIGGE forecasts data. By analyzing 246 forecasts for lead times up to 10 days, it is found that the models have good skills in forecasting the planetary scale means but the skills of SSTR remain poor, with the latter showing no skill beyond 2 days for the global tropics and Indian region. Consistent forecast skills among precipitation, velocity potential, and vorticity provide evidence that convection is the primary process responsible formore » precipitation. The poor skills of SSTR can be attributed to the larger random error in the models as they fail to predict the locations and timings of SSTR. Strong correlation between the random error and synoptic precipitation suggests that the former starts to develop from regions of convection. As the NCEP model has larger biases of synoptic scale precipitation, it has a tendency to generate more random error that ultimately reduces the prediction skill of synoptic systems in that model. Finally, the larger biases in NCEP may be attributed to the model moist physics and/or coarser horizontal resolution compared to ECMWF.« less

  10. Quantifying Uncertainties in Land-Surface Microwave Emissivity Retrievals

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2013-01-01

    Uncertainties in the retrievals of microwaveland-surface emissivities are quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including the Special Sensor Microwave Imager, the Tropical Rainfall Measuring Mission Microwave Imager, and the Advanced Microwave Scanning Radiometer for Earth Observing System, are studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land-surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors inthe retrievals. Generally, these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 1%-4% (3-12 K) over desert and 1%-7% (3-20 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.5%-2% (2-6 K). In particular, at 85.5/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are most likely caused by rain/cloud contamination, which can lead to random errors up to 10-17 K under the most severe conditions.

  11. Prediction skill of tropical synoptic scale transients from ECMWF and NCEP ensemble prediction systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taraphdar, S.; Mukhopadhyay, P.; Leung, L. Ruby

    The prediction skill of tropical synoptic scale transients (SSTR) such as monsoon low and depression during the boreal summer of 2007–2009 are assessed using high resolution ECMWF and NCEP TIGGE forecasts data. By analyzing 246 forecasts for lead times up to 10 days, it is found that the models have good skills in forecasting the planetary scale means but the skills of SSTR remain poor, with the latter showing no skill beyond 2 days for the global tropics and Indian region. Consistent forecast skills among precipitation, velocity potential, and vorticity provide evidence that convection is the primary process responsible formore » precipitation. The poor skills of SSTR can be attributed to the larger random error in the models as they fail to predict the locations and timings of SSTR. Strong correlation between the random error and synoptic precipitation suggests that the former starts to develop from regions of convection. As the NCEP model has larger biases of synoptic scale precipitation, it has a tendency to generate more random error that ultimately reduces the prediction skill of synoptic systems in that model. Finally, the larger biases in NCEP may be attributed to the model moist physics and/or coarser horizontal resolution compared to ECMWF.« less

  12. Response Surface Analysis of Experiments with Random Blocks

    DTIC Science & Technology

    1988-09-01

    partitioned into a lack of fit sum of squares, SSLOF, and a pure error sum of squares, SSPE . The latter is obtained by pooling the pure error sums of squares...from the blocks. Tests concerning the polynomial effects can then proceed using SSPE as the error term in the denominators of the F test statistics. 3.2...the center point in each of the three blocks is equal to SSPE = 2.0127 with 5 degrees of freedom. Hence, the lack of fit sum of squares is SSLoF

  13. Effects of a Multicomponent Life-Style Intervention on Weight, Glycemic Control, Depressive Symptoms, and Renal Function in Low-Income, Minority Patients With Type 2 Diabetes: Results of the Community Approach to Lifestyle Modification for Diabetes Randomized Controlled Trial.

    PubMed

    Moncrieft, Ashley E; Llabre, Maria M; McCalla, Judith Rey; Gutt, Miriam; Mendez, Armando J; Gellman, Marc D; Goldberg, Ronald B; Schneiderman, Neil

    2016-09-01

    Few interventions have combined life-style and psychosocial approaches in the context of Type 2 diabetes management. The purpose of this study was to determine the effect of a multicomponent behavioral intervention on weight, glycemic control, renal function, and depressive symptoms in a sample of overweight/obese adults with Type 2 diabetes and marked depressive symptoms. A sample of 111 adults with Type 2 diabetes were randomly assigned to a 1-year intervention (n = 57) or usual care (n = 54) in a parallel groups design. Primary outcomes included weight, glycosylated hemoglobin, and Beck Depression Inventory II score. Estimated glomerular filtration rate served as a secondary outcome. All measures were assessed at baseline and 6 and 12 months after randomization by assessors blind to randomization. Latent growth modeling was used to examine intervention effects on each outcome. The intervention resulted in decreased weight (mean [M] = 0.322 kg, standard error [SE] = 0.124 kg, p = .010) and glycosylated hemoglobin (M = 0.066%, SE = 0.028%, p = .017), and Beck Depression Inventory II scores (M = 1.009, SE = 0.226, p < .001), and improved estimated glomerular filtration rate (M = 0.742 ml·min·1.73 m, SE = 0.318 ml·min·1.73 m, p = .020) each month during the first 6 months relative to usual care. Multicomponent behavioral interventions targeting weight loss and depressive symptoms as well as diet and physical activity are efficacious in the management of Type 2 diabetes. This study is registered at Clinicaltrials.gov ID: NCT01739205.

  14. MEASURING ECONOMIC GROWTH FROM OUTER SPACE.

    PubMed

    Henderson, J Vernon; Storeygard, Adam; Weil, David N

    2012-04-01

    GDP growth is often measured poorly for countries and rarely measured at all for cities or subnational regions. We propose a readily available proxy: satellite data on lights at night. We develop a statistical framework that uses lights growth to augment existing income growth measures, under the assumption that measurement error in using observed light as an indicator of income is uncorrelated with measurement error in national income accounts. For countries with good national income accounts data, information on growth of lights is of marginal value in estimating the true growth rate of income, while for countries with the worst national income accounts, the optimal estimate of true income growth is a composite with roughly equal weights. Among poor-data countries, our new estimate of average annual growth differs by as much as 3 percentage points from official data. Lights data also allow for measurement of income growth in sub- and supranational regions. As an application, we examine growth in Sub Saharan African regions over the last 17 years. We find that real incomes in non-coastal areas have grown faster by 1/3 of an annual percentage point than coastal areas; non-malarial areas have grown faster than malarial ones by 1/3 to 2/3 annual percent points; and primate city regions have grown no faster than hinterland areas. Such applications point toward a research program in which "empirical growth" need no longer be synonymous with "national income accounts."

  15. Improvement of Parameter Estimations in Tumor Growth Inhibition Models on Xenografted Animals: Handling Sacrifice Censoring and Error Caused by Experimental Measurement on Larger Tumor Sizes.

    PubMed

    Pierrillas, Philippe B; Tod, Michel; Amiel, Magali; Chenel, Marylore; Henin, Emilie

    2016-09-01

    The purpose of this study was to explore the impact of censoring due to animal sacrifice on parameter estimates and tumor volume calculated from two diameters in larger tumors during tumor growth experiments in preclinical studies. The type of measurement error that can be expected was also investigated. Different scenarios were challenged using the stochastic simulation and estimation process. One thousand datasets were simulated under the design of a typical tumor growth study in xenografted mice, and then, eight approaches were used for parameter estimation with the simulated datasets. The distribution of estimates and simulation-based diagnostics were computed for comparison. The different approaches were robust regarding the choice of residual error and gave equivalent results. However, by not considering missing data induced by sacrificing the animal, parameter estimates were biased and led to false inferences in terms of compound potency; the threshold concentration for tumor eradication when ignoring censoring was 581 ng.ml(-1), but the true value was 240 ng.ml(-1).

  16. DNA replication error-induced extinction of diploid yeast.

    PubMed

    Herr, Alan J; Kennedy, Scott R; Knowels, Gary M; Schultz, Eric M; Preston, Bradley D

    2014-03-01

    Genetic defects in DNA polymerase accuracy, proofreading, or mismatch repair (MMR) induce mutator phenotypes that accelerate adaptation of microbes and tumor cells. Certain combinations of mutator alleles synergistically increase mutation rates to levels that drive extinction of haploid cells. The maximum tolerated mutation rate of diploid cells is unknown. Here, we define the threshold for replication error-induced extinction (EEX) of diploid Saccharomyces cerevisiae. Double-mutant pol3 alleles that carry mutations for defective DNA polymerase-δ proofreading (pol3-01) and accuracy (pol3-L612M or pol3-L612G) induce strong mutator phenotypes in heterozygous diploids (POL3/pol3-01,L612M or POL3/pol3-01,L612G). Both pol3-01,L612M and pol3-01,L612G alleles are lethal in the homozygous state; cells with pol3-01,L612M divide up to 10 times before arresting at random stages in the cell cycle. Antimutator eex mutations in the pol3 alleles suppress this lethality (pol3-01,L612M,eex or pol3-01,L612G,eex). MMR defects synergize with pol3-01,L612M,eex and pol3-01,L612G,eex alleles, increasing mutation rates and impairing growth. Conversely, inactivation of the Dun1 S-phase checkpoint kinase suppresses strong pol3-01,L612M,eex and pol3-01,L612G,eex mutator phenotypes as well as the lethal pol3-01,L612M phenotype. Our results reveal that the lethal error threshold in diploids is 10 times higher than in haploids and likely determined by homozygous inactivation of essential genes. Pronounced loss of fitness occurs at mutation rates well below the lethal threshold, suggesting that mutator-driven cancers may be susceptible to drugs that exacerbate replication errors.

  17. Meta-analysis inside and outside particle physics: two traditions that should converge?

    PubMed

    Baker, Rose D; Jackson, Dan

    2013-06-01

    The use of meta-analysis in medicine and epidemiology really took off in the 1970s. However, in high-energy physics, the Particle Data Group has been carrying out meta-analyses of measurements of particle masses and other properties since 1957. Curiously, there has been virtually no interaction between those working inside and outside particle physics. In this paper, we use statistical models to study two major differences in practice. The first is the usefulness of systematic errors, which physicists are now beginning to quote in addition to statistical errors. The second is whether it is better to treat heterogeneity by scaling up errors as do the Particle Data Group or by adding a random effect as does the rest of the community. Besides fitting models, we derive and use an exact test of the error-scaling hypothesis. We also discuss the other methodological differences between the two streams of meta-analysis. Our conclusion is that systematic errors are not currently very useful and that the conventional random effects model, as routinely used in meta-analysis, has a useful role to play in particle physics. The moral we draw for statisticians is that we should be more willing to explore 'grassroots' areas of statistical application, so that good statistical practice can flow both from and back to the statistical mainstream. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Distance error correction for time-of-flight cameras

    NASA Astrophysics Data System (ADS)

    Fuersattel, Peter; Schaller, Christian; Maier, Andreas; Riess, Christian

    2017-06-01

    The measurement accuracy of time-of-flight cameras is limited due to properties of the scene and systematic errors. These errors can accumulate to multiple centimeters which may limit the applicability of these range sensors. In the past, different approaches have been proposed for improving the accuracy of these cameras. In this work, we propose a new method that improves two important aspects of the range calibration. First, we propose a new checkerboard which is augmented by a gray-level gradient. With this addition it becomes possible to capture the calibration features for intrinsic and distance calibration at the same time. The gradient strip allows to acquire a large amount of distance measurements for different surface reflectivities, which results in more meaningful training data. Second, we present multiple new features which are used as input to a random forest regressor. By using random regression forests, we circumvent the problem of finding an accurate model for the measurement error. During application, a correction value for each individual pixel is estimated with the trained forest based on a specifically tailored feature vector. With our approach the measurement error can be reduced by more than 40% for the Mesa SR4000 and by more than 30% for the Microsoft Kinect V2. In our evaluation we also investigate the impact of the individual forest parameters and illustrate the importance of the individual features.

  19. Peak-locking centroid bias in Shack-Hartmann wavefront sensing

    NASA Astrophysics Data System (ADS)

    Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.

    2018-05-01

    Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.

  20. Müller glia-derived PRSS56 is required to sustain ocular axial growth and prevent refractive error.

    PubMed

    Paylakhi, Seyyedhassan; Labelle-Dumais, Cassandre; Tolman, Nicholas G; Sellarole, Michael A; Seymens, Yusef; Saunders, Joseph; Lakosha, Hesham; deVries, Wilhelmine N; Orr, Andrew C; Topilko, Piotr; John, Simon Wm; Nair, K Saidas

    2018-03-01

    A mismatch between optical power and ocular axial length results in refractive errors. Uncorrected refractive errors constitute the most common cause of vision loss and second leading cause of blindness worldwide. Although the retina is known to play a critical role in regulating ocular growth and refractive development, the precise factors and mechanisms involved are poorly defined. We have previously identified a role for the secreted serine protease PRSS56 in ocular size determination and PRSS56 variants have been implicated in the etiology of both hyperopia and myopia, highlighting its importance in refractive development. Here, we use a combination of genetic mouse models to demonstrate that Prss56 mutations leading to reduced ocular size and hyperopia act via a loss of function mechanism. Using a conditional gene targeting strategy, we show that PRSS56 derived from Müller glia contributes to ocular growth, implicating a new retinal cell type in ocular size determination. Importantly, we demonstrate that persistent activity of PRSS56 is required during distinct developmental stages spanning the pre- and post-eye opening periods to ensure optimal ocular growth. Thus, our mouse data provide evidence for the existence of a molecule contributing to both the prenatal and postnatal stages of human ocular growth. Finally, we demonstrate that genetic inactivation of Prss56 rescues axial elongation in a mouse model of myopia caused by a null mutation in Egr1. Overall, our findings identify PRSS56 as a potential therapeutic target for modulating ocular growth aimed at preventing or slowing down myopia, which is reaching epidemic proportions.

  1. Müller glia-derived PRSS56 is required to sustain ocular axial growth and prevent refractive error

    PubMed Central

    Tolman, Nicholas G; Sellarole, Michael A.; Saunders, Joseph; Lakosha, Hesham; Topilko, Piotr; John, Simon WM.

    2018-01-01

    A mismatch between optical power and ocular axial length results in refractive errors. Uncorrected refractive errors constitute the most common cause of vision loss and second leading cause of blindness worldwide. Although the retina is known to play a critical role in regulating ocular growth and refractive development, the precise factors and mechanisms involved are poorly defined. We have previously identified a role for the secreted serine protease PRSS56 in ocular size determination and PRSS56 variants have been implicated in the etiology of both hyperopia and myopia, highlighting its importance in refractive development. Here, we use a combination of genetic mouse models to demonstrate that Prss56 mutations leading to reduced ocular size and hyperopia act via a loss of function mechanism. Using a conditional gene targeting strategy, we show that PRSS56 derived from Müller glia contributes to ocular growth, implicating a new retinal cell type in ocular size determination. Importantly, we demonstrate that persistent activity of PRSS56 is required during distinct developmental stages spanning the pre- and post-eye opening periods to ensure optimal ocular growth. Thus, our mouse data provide evidence for the existence of a molecule contributing to both the prenatal and postnatal stages of human ocular growth. Finally, we demonstrate that genetic inactivation of Prss56 rescues axial elongation in a mouse model of myopia caused by a null mutation in Egr1. Overall, our findings identify PRSS56 as a potential therapeutic target for modulating ocular growth aimed at preventing or slowing down myopia, which is reaching epidemic proportions. PMID:29529029

  2. Testing treatment effect in schizophrenia clinical trials with heavy patient dropout using latent class growth mixture models.

    PubMed

    Kong, Fanhui; Chen, Yeh-Fong

    2016-07-01

    By examining the outcome trajectories of the dropout patients with different reasons in the schizophrenia trials, we note that although patients are recruited from the same protocol that have compatible baseline characteristics, they may respond differently even to the same treatment. Some patients show consistent improvement while others only have temporary relief. This creates different patient subpopulations characterized by their response and dropout patterns. At the same time, those who continue to improve seem to be more likely to complete the study while those who only experience temporary relief have a higher chance to drop out. Such phenomenon appears to be quite general in schizophrenia clinical trials. This simultaneous inhomogeneity both in patient response as well as dropout patterns creates a scenario of missing not at random and therefore results in biases when we use the statistical methods based on the missing at random assumption to test treatment efficacy. In this paper, we propose to use the latent class growth mixture model, which is a special case of the latent mixture model, to conduct the statistical analyses in such situation. This model allows us to take the inhomogeneity among subpopulations into consideration to make more accurate inferences on the treatment effect at any visit time. Comparing with the conventional statistical methods such as mixed-effects model for repeated measures, we demonstrate through simulations that the proposed latent mixture model approach gives better control on the Type I error rate in testing treatment effect. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Dynamical decoupling of local transverse random telegraph noise in a two-qubit gate

    NASA Astrophysics Data System (ADS)

    D'Arrigo, A.; Falci, G.; Paladino, E.

    2015-10-01

    Achieving high-fidelity universal two-qubit gates is a central requisite of any implementation of quantum information processing. The presence of spurious fluctuators of various physical origin represents a limiting factor for superconducting nanodevices. Operating qubits at optimal points, where the qubit-fluctuator interaction is transverse with respect to the single qubit Hamiltonian, considerably improved single qubit gates. Further enhancement has been achieved by dynamical decoupling (DD). In this article we investigate DD of transverse random telegraph noise acting locally on each of the qubits forming an entangling gate. Our analysis is based on the exact numerical solution of the stochastic Schrödinger equation. We evaluate the gate error under local periodic, Carr-Purcell and Uhrig DD sequences. We find that a threshold value of the number, n, of pulses exists above which the gate error decreases with a sequence-specific power-law dependence on n. Below threshold, DD may even increase the error with respect to the unconditioned evolution, a behaviour reminiscent of the anti-Zeno effect.

  4. CALCULATION OF NONLINEAR CONFIDENCE AND PREDICTION INTERVALS FOR GROUND-WATER FLOW MODELS.

    USGS Publications Warehouse

    Cooley, Richard L.; Vecchia, Aldo V.

    1987-01-01

    A method is derived to efficiently compute nonlinear confidence and prediction intervals on any function of parameters derived as output from a mathematical model of a physical system. The method is applied to the problem of obtaining confidence and prediction intervals for manually-calibrated ground-water flow models. To obtain confidence and prediction intervals resulting from uncertainties in parameters, the calibrated model and information on extreme ranges and ordering of the model parameters within one or more independent groups are required. If random errors in the dependent variable are present in addition to uncertainties in parameters, then calculation of prediction intervals also requires information on the extreme range of error expected. A simple Monte Carlo method is used to compute the quantiles necessary to establish probability levels for the confidence and prediction intervals. Application of the method to a hypothetical example showed that inclusion of random errors in the dependent variable in addition to uncertainties in parameters can considerably widen the prediction intervals.

  5. Waterbodies Extraction from LANDSAT8-OLI Imagery Using Awater Indexs-Guied Stochastic Fully-Connected Conditional Random Field Model and the Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xu, L.

    2018-04-01

    One of the most important applications of remote sensing classification is water extraction. The water index (WI) based on Landsat images is one of the most common ways to distinguish water bodies from other land surface features. But conventional WI methods take into account spectral information only form a limited number of bands, and therefore the accuracy of those WI methods may be constrained in some areas which are covered with snow/ice, clouds, etc. An accurate and robust water extraction method is the key to the study at present. The support vector machine (SVM) using all bands spectral information can reduce for these classification error to some extent. Nevertheless, SVM which barely considers spatial information is relatively sensitive to noise in local regions. Conditional random field (CRF) which considers both spatial information and spectral information has proven to be able to compensate for these limitations. Hence, in this paper, we develop a systematic water extraction method by taking advantage of the complementarity between the SVM and a water index-guided stochastic fully-connected conditional random field (SVM-WIGSFCRF) to address the above issues. In addition, we comprehensively evaluate the reliability and accuracy of the proposed method using Landsat-8 operational land imager (OLI) images of one test site. We assess the method's performance by calculating the following accuracy metrics: Omission Errors (OE) and Commission Errors (CE); Kappa coefficient (KP) and Total Error (TE). Experimental results show that the new method can improve target detection accuracy under complex and changeable environments.

  6. Previous Estimates of Mitochondrial DNA Mutation Level Variance Did Not Account for Sampling Error: Comparing the mtDNA Genetic Bottleneck in Mice and Humans

    PubMed Central

    Wonnapinij, Passorn; Chinnery, Patrick F.; Samuels, David C.

    2010-01-01

    In cases of inherited pathogenic mitochondrial DNA (mtDNA) mutations, a mother and her offspring generally have large and seemingly random differences in the amount of mutated mtDNA that they carry. Comparisons of measured mtDNA mutation level variance values have become an important issue in determining the mechanisms that cause these large random shifts in mutation level. These variance measurements have been made with samples of quite modest size, which should be a source of concern because higher-order statistics, such as variance, are poorly estimated from small sample sizes. We have developed an analysis of the standard error of variance from a sample of size n, and we have defined error bars for variance measurements based on this standard error. We calculate variance error bars for several published sets of measurements of mtDNA mutation level variance and show how the addition of the error bars alters the interpretation of these experimental results. We compare variance measurements from human clinical data and from mouse models and show that the mutation level variance is clearly higher in the human data than it is in the mouse models at both the primary oocyte and offspring stages of inheritance. We discuss how the standard error of variance can be used in the design of experiments measuring mtDNA mutation level variance. Our results show that variance measurements based on fewer than 20 measurements are generally unreliable and ideally more than 50 measurements are required to reliably compare variances with less than a 2-fold difference. PMID:20362273

  7. Use of a low-literacy written action plan to improve parent understanding of pediatric asthma management: A randomized controlled study.

    PubMed

    Yin, Hsiang Shonna; Gupta, Ruchi S; Mendelsohn, Alan L; Dreyer, Benard; van Schaick, Linda; Brown, Christina R; Encalada, Karen; Sanchez, Dayana C; Warren, Christopher M; Tomopoulos, Suzy

    2017-11-01

    The objective of the study was to determine whether parents who use a low-literacy, pictogram- and photograph-based written asthma action plan (WAAP) have a better understanding of child asthma management compared to parents using a standard plan. A randomized controlled study was carried out in 2 urban pediatric outpatient clinics. Inclusion criteria were English- and Spanish-speaking parents of 2- to 12-year-old asthmatic children. Parents were randomized to receive a low-literacy or standard asthma action plan (American Academy of Allergy, Asthma and Immunology) for a hypothetical patient on controller and rescue medications. A structured questionnaire was used to assess whether there was an error in knowledge of (1) medications to give everyday and when sick, (2) need for spacer use, and (3) appropriate emergency response to give albuterol and seek medical help. Multiple logistic regression analyses were performed, adjusting for parent age, health literacy (Newest Vital Sign); child asthma severity, medications; and site. 217 parents were randomized (109 intervention and 108 control). Parents who received the low-literacy plan were (1) less likely to make an error in knowledge of medications to take everyday and when sick compared to parents who received the standard plan (63.0 vs. 77.3%, p = 0.03; adjusted odds ratio [AOR] = 0.5[95% confidence interval: 0.2-0.9]) and (2) less likely to make an error regarding spacer use (14.0 vs. 51.1%, p < 0.001; AOR = 0.1 [0.06-0.3]). No difference in error in appropriate emergency response was seen (43.1 vs. 48.1%, p = 0.5). Use of a low-literacy WAAP was associated with better parent understanding of asthma management. Further study is needed to assess whether the use of this action plan improves child asthma outcomes.

  8. Development of a Tablet-based symbol digit modalities test for reliably assessing information processing speed in patients with stroke.

    PubMed

    Tung, Li-Chen; Yu, Wan-Hui; Lin, Gong-Hong; Yu, Tzu-Ying; Wu, Chien-Te; Tsai, Chia-Yin; Chou, Willy; Chen, Mei-Hsiang; Hsieh, Ching-Lin

    2016-09-01

    To develop a Tablet-based Symbol Digit Modalities Test (T-SDMT) and to examine the test-retest reliability and concurrent validity of the T-SDMT in patients with stroke. The study had two phases. In the first phase, six experts, nine college students and five outpatients participated in the development and testing of the T-SDMT. In the second phase, 52 outpatients were evaluated twice (2 weeks apart) with the T-SDMT and SDMT to examine the test-retest reliability and concurrent validity of the T-SDMT. The T-SDMT was developed via expert input and college student/patient feedback. Regarding test-retest reliability, the practise effects of the T-SDMT and SDMT were both trivial (d=0.12) but significant (p≦0.015). The improvement in the T-SDMT (4.7%) was smaller than that in the SDMT (5.6%). The minimal detectable changes (MDC%) of the T-SDMT and SDMT were 6.7 (22.8%) and 10.3 (32.8%), respectively. The T-SDMT and SDMT were highly correlated with each other at the two time points (Pearson's r=0.90-0.91). The T-SDMT demonstrated good concurrent validity with the SDMT. Because the T-SDMT had a smaller practise effect and less random measurement error (superior test-retest reliability), it is recommended over the SDMT for assessing information processing speed in patients with stroke. Implications for Rehabilitation The Symbol Digit Modalities Test (SDMT), a common measure of information processing speed, showed a substantial practise effect and considerable random measurement error in patients with stroke. The Tablet-based SDMT (T-SDMT) has been developed to reduce the practise effect and random measurement error of the SDMT in patients with stroke. The T-SDMT had smaller practise effect and random measurement error than the SDMT, which can provide more reliable assessments of information processing speed.

  9. On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo

    NASA Astrophysics Data System (ADS)

    Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl

    2016-09-01

    A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.

  10. Assessing tropical rainforest growth traits: Data - Model fusion in the Congo basin and beyond.

    NASA Astrophysics Data System (ADS)

    Pietsch, S.

    2016-12-01

    Virgin forest ecosystems resemble the key reference level for natural tree growth dynamics. The mosaic cycle concept describes such dynamics as local disequilibria driven by patch level succession cycles of breakdown, regeneration, juvenescence and old growth. These cycles, however, may involve different traits of light demanding and shade tolerant species assemblies. In this work a data model fusion concept will be introduced to assess the differences in growth dynamics of the mosaic cycle of the Western Congolian Lowland Rainforest ecosystem. Field data from 34 forest patches located in an ice age forest refuge, recently pinpointed to the ground and still devoid of direct human impact up to today - resemble the data base. A 3D error assessment procedure versus BGC model simulations for the 34 patches revealed two different growth dynamics, consistent with observed growth traits of pioneer and late succession species assemblies of the Western Congolian Lowland rainforest. An application of the same procedure to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to assess different growth traits of the mosaic cycle of natural forest dynamics.

  11. Policies on documentation and disciplinary action in hospital pharmacies after a medication error.

    PubMed

    Bauman, A N; Pedersen, C A; Schommer, J C; Griffith, N L

    2001-06-15

    Hospital pharmacies were surveyed about policies on medication error documentation and actions taken against pharmacists involved in an error. The survey was mailed to 500 randomly selected hospital pharmacy directors in the United States. Data were collected on the existence of medication error reporting policies, what types of errors were documented and how, and hospital demographics. The response rate was 28%. Virtually all of the hospitals had policies and procedures for medication error reporting. Most commonly, documentation of oral and written reprimand was placed in the personnel file of a pharmacist involved in an error. One sixth of respondents had no policy on documentation or disciplinary action in the event of an error. Approximately one fourth of respondents reported that suspension or termination had been used as a form of disciplinary action; legal action was rarely used. Many respondents said errors that caused harm (42%) or death (40%) to the patient were documented in the personnel file, but 34% of hospitals did not document errors in the personnel file regardless of error type. Nearly three fourths of respondents differentiated between errors caught and not caught before a medication leaves the pharmacy and between errors caught and not caught before administration to the patient. More emphasis is needed on documentation of medication errors in hospital pharmacies.

  12. Random regression analyses using B-splines to model growth of Australian Angus cattle

    PubMed Central

    Meyer, Karin

    2005-01-01

    Regression on the basis function of B-splines has been advocated as an alternative to orthogonal polynomials in random regression analyses. Basic theory of splines in mixed model analyses is reviewed, and estimates from analyses of weights of Australian Angus cattle from birth to 820 days of age are presented. Data comprised 84 533 records on 20 731 animals in 43 herds, with a high proportion of animals with 4 or more weights recorded. Changes in weights with age were modelled through B-splines of age at recording. A total of thirteen analyses, considering different combinations of linear, quadratic and cubic B-splines and up to six knots, were carried out. Results showed good agreement for all ages with many records, but fluctuated where data were sparse. On the whole, analyses using B-splines appeared more robust against "end-of-range" problems and yielded more consistent and accurate estimates of the first eigenfunctions than previous, polynomial analyses. A model fitting quadratic B-splines, with knots at 0, 200, 400, 600 and 821 days and a total of 91 covariance components, appeared to be a good compromise between detailedness of the model, number of parameters to be estimated, plausibility of results, and fit, measured as residual mean square error. PMID:16093011

  13. Wisdom in Medicine: What Helps Physicians After a Medical Error?

    PubMed

    Plews-Ogan, Margaret; May, Natalie; Owens, Justine; Ardelt, Monika; Shapiro, Jo; Bell, Sigall K

    2016-02-01

    Confronting medical error openly is critical to organizational learning, but less is known about what helps individual clinicians learn and adapt positively after making a harmful mistake. Understanding what factors help doctors gain wisdom can inform educational and peer support programs, and may facilitate the development of specific tools to assist doctors after harmful errors occur. Using "posttraumatic growth" as a model, the authors conducted semistructured interviews (2009-2011) with 61 physicians who had made a serious medical error. Interviews were recorded, professionally transcribed, and coded by two study team members (kappa 0.8) using principles of grounded theory and NVivo software. Coders also scored interviewees as wisdom exemplars or nonexemplars based on Ardelt's three-dimensional wisdom model. Of the 61 physicians interviewed, 33 (54%) were male, and on average, eight years had elapsed since the error. Wisdom exemplars were more likely to report disclosing the error to the patient/family (69%) than nonexemplars (38%); P < .03. Fewer than 10% of all participants reported receiving disclosure training. Investigators identified eight themes reflecting what helped physician wisdom exemplars cope positively: talking about it, disclosure and apology, forgiveness, a moral context, dealing with imperfection, learning/becoming an expert, preventing recurrences/improving teamwork, and helping others/teaching. The path forged by doctors who coped well with medical error highlights specific ways to help clinicians move through this difficult experience so that they avoid devastating professional outcomes and have the best chance of not just recovery but positive growth.

  14. Mesoscale Predictability and Error Growth in Short Range Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Gingrich, Mark

    Although it was originally suggested that small-scale, unresolved errors corrupt forecasts at all scales through an inverse error cascade, some authors have proposed that those mesoscale circulations resulting from stationary forcing on the larger scale may inherit the predictability of the large-scale motions. Further, the relative contributions of large- and small-scale uncertainties in producing error growth in the mesoscales remain largely unknown. Here, 100 member ensemble forecasts are initialized from an ensemble Kalman filter (EnKF) to simulate two winter storms impacting the East Coast of the United States in 2010. Four verification metrics are considered: the local snow water equivalence, total liquid water, and 850 hPa temperatures representing mesoscale features; and the sea level pressure field representing a synoptic feature. It is found that while the predictability of the mesoscale features can be tied to the synoptic forecast, significant uncertainty existed on the synoptic scale at lead times as short as 18 hours. Therefore, mesoscale details remained uncertain in both storms due to uncertainties at the large scale. Additionally, the ensemble perturbation kinetic energy did not show an appreciable upscale propagation of error for either case. Instead, the initial condition perturbations from the cycling EnKF were maximized at large scales and immediately amplified at all scales without requiring initial upscale propagation. This suggests that relatively small errors in the synoptic-scale initialization may have more importance in limiting predictability than errors in the unresolved, small-scale initial conditions.

  15. Growth and Construction of Oceanic Crust at Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Schwartz, J. J.; John, B. E.; Cheadle, M. J.; Miranda, E. A.; Grimes, C. B.; Wooden, J. L.; Dick, H. J.

    2005-12-01

    Magmatic zircon is a common accessory mineral in oceanic crustal rocks including gabbro, oxide gabbro, diabase and felsic veins. Its presence in these rocks provides an exceptional opportunity to document crustal growth processes at slow-spreading mid-ocean ridges. We present nineteen Pb/U zircon SHRIMP-RG ion probe ages of lower crustal rocks collected by manned submersible, ROV, dredging and ODP drilling from a 20 x 30 km2 area of Atlantis Bank, Southwest Indian Ridge, which allow us to constrain the growth and construction of oceanic crust. Weighted average 206Pb/238U ages of these samples range from 10.7 to 13.9 Ma, with errors of 0.1-0.6 m.y. (<1 - 4%). At least 75% of these gabbros accreted within error of the predicted sea-surface magnetic age, whereas up to 25% are between 700,000 and 2.5 m.y. older. In one sample, we identified zircon with inherited cores as much as 1.5 m.y. older than their corresponding rims. There is no observable correlation between age and lithology, and the anomalously old samples are not from any specific part of Atlantis Bank; they appear to be randomly distributed amongst the non-anomalous age samples and come from various structural depths. We consider two models to explain the presence of these anomalously old rocks: i) a stochastic intrusion model whereby magma was intruded at different spatial locations within the rift valley as the plates spread apart, resulting in the entrapment of older lower crust by subsequent intrusions; and/or ii) a model in which some gabbroic bodies originally crystallized at depths of ~5-18 km below the base of the crust in a thick, cold, axial lithosphere and were subsequently uplifted along flow-lines and intruded by shallow-level magmas during the creation of Atlantis Bank. In this model, the difference in time between the Pb/U zircon crystallization age and the magnetic age is a proxy for the depth at which zircon crystallized (assuming a constant mantle upwelling rate during the construction of Atlantis Bank over ~1.3 m.y.). We prefer the latter model, although aspects of both models may apply.

  16. Analysis of the “naming game” with learning errors in communications

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Chen, Guanrong

    2015-07-01

    Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.

  17. Analysis of the "naming game" with learning errors in communications.

    PubMed

    Lou, Yang; Chen, Guanrong

    2015-07-16

    Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.

  18. MacWilliams Identity for M-Spotty Weight Enumerator

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazuyoshi; Fujiwara, Eiji

    M-spotty byte error control codes are very effective for correcting/detecting errors in semiconductor memory systems that employ recent high-density RAM chips with wide I/O data (e.g., 8, 16, or 32bits). In this case, the width of the I/O data is one byte. A spotty byte error is defined as random t-bit errors within a byte of length b bits, where 1 le t ≤ b. Then, an error is called an m-spotty byte error if at least one spotty byte error is present in a byte. M-spotty byte error control codes are characterized by the m-spotty distance, which includes the Hamming distance as a special case for t =1 or t = b. The MacWilliams identity provides the relationship between the weight distribution of a code and that of its dual code. The present paper presents the MacWilliams identity for the m-spotty weight enumerator of m-spotty byte error control codes. In addition, the present paper clarifies that the indicated identity includes the MacWilliams identity for the Hamming weight enumerator as a special case.

  19. Investigation of technology needs for avoiding helicopter pilot error related accidents

    NASA Technical Reports Server (NTRS)

    Chais, R. I.; Simpson, W. E.

    1985-01-01

    Pilot error which is cited as a cause or related factor in most rotorcraft accidents was examined. Pilot error related accidents in helicopters to identify areas in which new technology could reduce or eliminate the underlying causes of these human errors were investigated. The aircraft accident data base at the U.S. Army Safety Center was studied as the source of data on helicopter accidents. A randomly selected sample of 110 aircraft records were analyzed on a case-by-case basis to assess the nature of problems which need to be resolved and applicable technology implications. Six technology areas in which there appears to be a need for new or increased emphasis are identified.

  20. Using integrated models to minimize environmentally induced wavefront error in optomechanical design and analysis

    NASA Astrophysics Data System (ADS)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate design goal of an optical system subjected to dynamic loads is to minimize system level wavefront error (WFE). In random response analysis, system WFE is difficult to predict from finite element results due to the loss of phase information. In the past, the use of ystem WFE was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for determining system level WFE using a linear optics model is presented. An error estimate is included in the analysis output based on fitting errors of mode shapes. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  1. Bandwagon effects and error bars in particle physics

    NASA Astrophysics Data System (ADS)

    Jeng, Monwhea

    2007-02-01

    We study historical records of experiments on particle masses, lifetimes, and widths, both for signs of expectation bias, and to compare actual errors with reported error bars. We show that significant numbers of particle properties exhibit "bandwagon effects": reported values show trends and clustering as a function of the year of publication, rather than random scatter about the mean. While the total amount of clustering is significant, it is also fairly small; most individual particle properties do not display obvious clustering. When differences between experiments are compared with the reported error bars, the deviations do not follow a normal distribution, but instead follow an exponential distribution for up to ten standard deviations.

  2. An investigation of error correcting techniques for OMV and AXAF

    NASA Technical Reports Server (NTRS)

    Ingels, Frank; Fryer, John

    1991-01-01

    The original objectives of this project were to build a test system for the NASA 255/223 Reed/Solomon encoding/decoding chip set and circuit board. This test system was then to be interfaced with a convolutional system at MSFC to examine the performance of the concantinated codes. After considerable work, it was discovered that the convolutional system could not function as needed. This report documents the design, construction, and testing of the test apparatus for the R/S chip set. The approach taken was to verify the error correcting behavior of the chip set by injecting known error patterns onto data and observing the results. Error sequences were generated using pseudo-random number generator programs, with Poisson time distribution between errors and Gaussian burst lengths. Sample means, variances, and number of un-correctable errors were calculated for each data set before testing.

  3. Sensitivity to prediction error in reach adaptation

    PubMed Central

    Haith, Adrian M.; Harran, Michelle D.; Shadmehr, Reza

    2012-01-01

    It has been proposed that the brain predicts the sensory consequences of a movement and compares it to the actual sensory feedback. When the two differ, an error signal is formed, driving adaptation. How does an error in one trial alter performance in the subsequent trial? Here we show that the sensitivity to error is not constant but declines as a function of error magnitude. That is, one learns relatively less from large errors compared with small errors. We performed an experiment in which humans made reaching movements and randomly experienced an error in both their visual and proprioceptive feedback. Proprioceptive errors were created with force fields, and visual errors were formed by perturbing the cursor trajectory to create a visual error that was smaller, the same size, or larger than the proprioceptive error. We measured single-trial adaptation and calculated sensitivity to error, i.e., the ratio of the trial-to-trial change in motor commands to error size. We found that for both sensory modalities sensitivity decreased with increasing error size. A reanalysis of a number of previously published psychophysical results also exhibited this feature. Finally, we asked how the brain might encode sensitivity to error. We reanalyzed previously published probabilities of cerebellar complex spikes (CSs) and found that this probability declined with increasing error size. From this we posit that a CS may be representative of the sensitivity to error, and not error itself, a hypothesis that may explain conflicting reports about CSs and their relationship to error. PMID:22773782

  4. The Use of Compressive Sensing to Reconstruct Radiation Characteristics of Wide-Band Antennas from Sparse Measurements

    DTIC Science & Technology

    2015-06-01

    of uniform- versus nonuniform -pattern reconstruction, of transform function used, and of minimum randomly distributed measurements needed to...the radiation-frequency pattern’s reconstruction using uniform and nonuniform randomly distributed samples even though the pattern error manifests...5 Fig. 3 The nonuniform compressive-sensing reconstruction of the radiation

  5. Mapping ecological systems with a random foret model: tradeoffs between errors and bias

    Treesearch

    Emilie Grossmann; Janet Ohmann; James Kagan; Heather May; Matthew Gregory

    2010-01-01

    New methods for predictive vegetation mapping allow improved estimations of plant community composition across large regions. Random Forest (RF) models limit over-fitting problems of other methods, and are known for making accurate classification predictions from noisy, nonnormal data, but can be biased when plot samples are unbalanced. We developed two contrasting...

  6. Fisher, Sir Ronald Aylmer (1890-1962)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Statistician, born in London, England. After studying astronomy using AIRY's manual on the Theory of Errors he became interested in statistics, and laid the foundation of randomization in experimental design, the analysis of variance and the use of data in estimating the properties of the parent population from which it was drawn. Invented the maximum likelihood method for estimating from random ...

  7. The Effectiveness of Two Grammar Treatment Procedures for Children with SLI: A Randomized Clinical Trial

    ERIC Educational Resources Information Center

    Smith-Lock, Karen M.; Leitão, Suze; Prior, Polly; Nickels, Lyndsey

    2015-01-01

    Purpose: This study compared the effectiveness of two grammar treatment procedures for children with specific language impairment. Method: A double-blind superiority trial with cluster randomization was used to compare a cueing procedure, designed to elicit a correct production following an initial error, to a recasting procedure, which required…

  8. Measurement Error Correction Formula for Cluster-Level Group Differences in Cluster Randomized and Observational Studies

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Preacher, Kristopher J.

    2016-01-01

    Multilevel modeling (MLM) is frequently used to detect cluster-level group differences in cluster randomized trial and observational studies. Group differences on the outcomes (posttest scores) are detected by controlling for the covariate (pretest scores) as a proxy variable for unobserved factors that predict future attributes. The pretest and…

  9. Annual updating of plantation inventory estimates using hybrid models

    Treesearch

    Peter Snowdon

    2000-01-01

    Data for Pinus radiata D. Don grown in the Australian Capital Territory (ACT) are used to show that annual indices of growth potential can be successfully incorporated into Schumacher projection models of stand basal area growth. Significant reductions in the error mean squares of the models can be obtained by including an annual growth index derived...

  10. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  11. Accuracy of modal wavefront estimation from eye transverse aberration measurements

    NASA Astrophysics Data System (ADS)

    Chyzh, Igor H.; Sokurenko, Vyacheslav M.

    2001-01-01

    The influence of random errors in measurement of eye transverse aberrations on the accuracy of reconstructing wave aberration as well as ametropia and astigmatism parameters is investigated. The dependence of mentioned errors on a ratio between the number of measurement points and the number of polynomial coefficients is found for different pupil location of measurement points. Recommendations are proposed for setting these ratios.

  12. Why Three Heads Are a Better Bet than Four: A Reply to Sun, Tweney, and Wang (2010)

    ERIC Educational Resources Information Center

    Hahn, Ulrike; Warren, Paul A.

    2010-01-01

    We (Hahn & Warren, 2009) recently proposed a new account of the systematic errors and biases that appear to be present in people's perception of randomly generated events. In a comment on that article, Sun, Tweney, and Wang (2010) critiqued our treatment of the gambler's fallacy. We had argued that this fallacy was less gross an error than it…

  13. The Impact of Short-Term Science Teacher Professional Development on the Evaluation of Student Understanding and Errors Related to Natural Selection. CRESST Report 822

    ERIC Educational Resources Information Center

    Buschang, Rebecca E.

    2012-01-01

    This study evaluated the effects of a short-term professional development session. Forty volunteer high school biology teachers were randomly assigned to one of two professional development conditions: (a) developing deep content knowledge (i.e., control condition) or (b) evaluating student errors and understanding in writing samples (i.e.,…

  14. The Accuracy of Two-Way Satellite Time Transfer Calibrations

    DTIC Science & Technology

    2005-01-01

    20392, USA Abstract Results from successive calibrations of Two-Way Satellite Time and Frequency Transfer ( TWSTFT ) operational equipment at...USNO and five remote stations using portable TWSTFT equipment are analyzed for internal and external errors, finding an average random error of ±0.35...most accurate means of operational long-distance time transfer are Two-Way Satellite Time and Frequency Transfer ( TWSTFT ) and carrier-phase GPS

  15. Adjusting for multiple prognostic factors in the analysis of randomised trials

    PubMed Central

    2013-01-01

    Background When multiple prognostic factors are adjusted for in the analysis of a randomised trial, it is unclear (1) whether it is necessary to account for each of the strata, formed by all combinations of the prognostic factors (stratified analysis), when randomisation has been balanced within each stratum (stratified randomisation), or whether adjusting for the main effects alone will suffice, and (2) the best method of adjustment in terms of type I error rate and power, irrespective of the randomisation method. Methods We used simulation to (1) determine if a stratified analysis is necessary after stratified randomisation, and (2) to compare different methods of adjustment in terms of power and type I error rate. We considered the following methods of analysis: adjusting for covariates in a regression model, adjusting for each stratum using either fixed or random effects, and Mantel-Haenszel or a stratified Cox model depending on outcome. Results Stratified analysis is required after stratified randomisation to maintain correct type I error rates when (a) there are strong interactions between prognostic factors, and (b) there are approximately equal number of patients in each stratum. However, simulations based on real trial data found that type I error rates were unaffected by the method of analysis (stratified vs unstratified), indicating these conditions were not met in real datasets. Comparison of different analysis methods found that with small sample sizes and a binary or time-to-event outcome, most analysis methods lead to either inflated type I error rates or a reduction in power; the lone exception was a stratified analysis using random effects for strata, which gave nominal type I error rates and adequate power. Conclusions It is unlikely that a stratified analysis is necessary after stratified randomisation except in extreme scenarios. Therefore, the method of analysis (accounting for the strata, or adjusting only for the covariates) will not generally need to depend on the method of randomisation used. Most methods of analysis work well with large sample sizes, however treating strata as random effects should be the analysis method of choice with binary or time-to-event outcomes and a small sample size. PMID:23898993

  16. Handheld vs. laptop computers for electronic data collection in clinical research: a crossover randomized trial.

    PubMed

    Haller, Guy; Haller, Dagmar M; Courvoisier, Delphine S; Lovis, Christian

    2009-01-01

    To compare users' speed, number of entry errors and satisfaction in using two current devices for electronic data collection in clinical research: handheld and laptop computers. The authors performed a randomized cross-over trial using 160 different paper-based questionnaires and representing altogether 45,440 variables. Four data coders were instructed to record, according to a random predefined and equally balanced sequence, the content of these questionnaires either on a laptop or on a handheld computer. Instructions on the kind of device to be used were provided to data-coders in individual sealed and opaque envelopes. Study conditions were controlled and the data entry process performed in a quiet environment. The authors compared the duration of the data recording process, the number of errors and users' satisfaction with the two devices. The authors divided errors into two separate categories, typing and missing data errors. The original paper-based questionnaire was used as a gold-standard. The overall duration of the recording process was significantly reduced (2.0 versus 3.3 min) when data were recorded on the laptop computer (p < 0.001). Data accuracy also improved. There were 5.8 typing errors per 1,000 entries with the laptop compared to 8.4 per 1,000 with the handheld computer (p < 0.001). The difference was even more important for missing data which decreased from 22.8 to 2.9 per 1,000 entries when a laptop was used (p < 0.001). Users found the laptop easier, faster and more satisfying to use than the handheld computer. Despite the increasing use of handheld computers for electronic data collection in clinical research, these devices should be used with caution. They double the duration of the data entry process and significantly increase the risk of typing errors and missing data. This may become a particularly crucial issue in studies where these devices are provided to patients or healthcare workers, unfamiliar with computer technologies, for self-reporting or research data collection processes.

  17. Handheld vs. Laptop Computers for Electronic Data Collection in Clinical Research: A Crossover Randomized Trial

    PubMed Central

    Haller, Guy; Haller, Dagmar M.; Courvoisier, Delphine S.; Lovis, Christian

    2009-01-01

    Objective To compare users' speed, number of entry errors and satisfaction in using two current devices for electronic data collection in clinical research: handheld and laptop computers. Design The authors performed a randomized cross-over trial using 160 different paper-based questionnaires and representing altogether 45,440 variables. Four data coders were instructed to record, according to a random predefined and equally balanced sequence, the content of these questionnaires either on a laptop or on a handheld computer. Instructions on the kind of device to be used were provided to data-coders in individual sealed and opaque envelopes. Study conditions were controlled and the data entry process performed in a quiet environment. Measurements The authors compared the duration of the data recording process, the number of errors and users' satisfaction with the two devices. The authors divided errors into two separate categories, typing and missing data errors. The original paper-based questionnaire was used as a gold-standard. Results The overall duration of the recording process was significantly reduced (2.0 versus 3.3 min) when data were recorded on the laptop computer (p < 0.001). Data accuracy also improved. There were 5.8 typing errors per 1,000 entries with the laptop compared to 8.4 per 1,000 with the handheld computer (p < 0.001). The difference was even more important for missing data which decreased from 22.8 to 2.9 per 1,000 entries when a laptop was used (p < 0.001). Users found the laptop easier, faster and more satisfying to use than the handheld computer. Conclusions Despite the increasing use of handheld computers for electronic data collection in clinical research, these devices should be used with caution. They double the duration of the data entry process and significantly increase the risk of typing errors and missing data. This may become a particularly crucial issue in studies where these devices are provided to patients or healthcare workers, unfamiliar with Computer Technologies, for self-reporting or research data collection processes. PMID:19567799

  18. Analyzing communication errors in an air medical transport service.

    PubMed

    Dalto, Joseph D; Weir, Charlene; Thomas, Frank

    2013-01-01

    Poor communication can result in adverse events. Presently, no standards exist for classifying and analyzing air medical communication errors. This study sought to determine the frequency and types of communication errors reported within an air medical quality and safety assurance reporting system. Of 825 quality assurance reports submitted in 2009, 278 were randomly selected and analyzed for communication errors. Each communication error was classified and mapped to Clark's communication level hierarchy (ie, levels 1-4). Descriptive statistics were performed, and comparisons were evaluated using chi-square analysis. Sixty-four communication errors were identified in 58 reports (21% of 278). Of the 64 identified communication errors, only 18 (28%) were classified by the staff to be communication errors. Communication errors occurred most often at level 1 (n = 42/64, 66%) followed by level 4 (21/64, 33%). Level 2 and 3 communication failures were rare (, 1%). Communication errors were found in a fifth of quality and safety assurance reports. The reporting staff identified less than a third of these errors. Nearly all communication errors (99%) occurred at either the lowest level of communication (level 1, 66%) or the highest level (level 4, 33%). An air medical communication ontology is necessary to improve the recognition and analysis of communication errors. Copyright © 2013 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  19. Procedural error monitoring and smart checklists

    NASA Technical Reports Server (NTRS)

    Palmer, Everett

    1990-01-01

    Human beings make and usually detect errors routinely. The same mental processes that allow humans to cope with novel problems can also lead to error. Bill Rouse has argued that errors are not inherently bad but their consequences may be. He proposes the development of error-tolerant systems that detect errors and take steps to prevent the consequences of the error from occurring. Research should be done on self and automatic detection of random and unanticipated errors. For self detection, displays should be developed that make the consequences of errors immediately apparent. For example, electronic map displays graphically show the consequences of horizontal flight plan entry errors. Vertical profile displays should be developed to make apparent vertical flight planning errors. Other concepts such as energy circles could also help the crew detect gross flight planning errors. For automatic detection, systems should be developed that can track pilot activity, infer pilot intent and inform the crew of potential errors before their consequences are realized. Systems that perform a reasonableness check on flight plan modifications by checking route length and magnitude of course changes are simple examples. Another example would be a system that checked the aircraft's planned altitude against a data base of world terrain elevations. Information is given in viewgraph form.

  20. Recommendations for choosing an analysis method that controls Type I error for unbalanced cluster sample designs with Gaussian outcomes.

    PubMed

    Johnson, Jacqueline L; Kreidler, Sarah M; Catellier, Diane J; Murray, David M; Muller, Keith E; Glueck, Deborah H

    2015-11-30

    We used theoretical and simulation-based approaches to study Type I error rates for one-stage and two-stage analytic methods for cluster-randomized designs. The one-stage approach uses the observed data as outcomes and accounts for within-cluster correlation using a general linear mixed model. The two-stage model uses the cluster specific means as the outcomes in a general linear univariate model. We demonstrate analytically that both one-stage and two-stage models achieve exact Type I error rates when cluster sizes are equal. With unbalanced data, an exact size α test does not exist, and Type I error inflation may occur. Via simulation, we compare the Type I error rates for four one-stage and six two-stage hypothesis testing approaches for unbalanced data. With unbalanced data, the two-stage model, weighted by the inverse of the estimated theoretical variance of the cluster means, and with variance constrained to be positive, provided the best Type I error control for studies having at least six clusters per arm. The one-stage model with Kenward-Roger degrees of freedom and unconstrained variance performed well for studies having at least 14 clusters per arm. The popular analytic method of using a one-stage model with denominator degrees of freedom appropriate for balanced data performed poorly for small sample sizes and low intracluster correlation. Because small sample sizes and low intracluster correlation are common features of cluster-randomized trials, the Kenward-Roger method is the preferred one-stage approach. Copyright © 2015 John Wiley & Sons, Ltd.

Top