Sample records for random intersection graphs

  1. Characterizing Containment and Related Classes of Graphs,

    DTIC Science & Technology

    1985-01-01

    Math . to appear. [G2] Golumbic,. Martin C., D. Rotem and J. Urrutia. "Comparability graphs and intersection graphs" Discrete Math . 43 (1983) 37-40. [G3...intersection classes of graphs" Discrete Math . to appear. [S2] Scheinerman, Edward R. Intersection Classes and Multiple Intersection Parameters of Graphs...graphs and of interval graphs" Canad. Jour. of blath. 16 (1964) 539-548. [G1] Golumbic, Martin C. "Containment graphs: and. intersection graphs" Discrete

  2. Local Refinement of Analysis-Suitable T-splines

    DTIC Science & Technology

    2011-03-01

    3.2. The extension graph Intersecting T-junction extensions in an extended T-mesh Text can be visualized using an undirected graph . We call this graph ...the extension graph and denote it by E(Text). Each node in E corresponds to a single T-junction extension in Text. If two extensions in Text...intersect then an edge is drawn between the corresponding nodes in E. The extension graph for the extended T-mesh in Figure 7b is shown in Figure 8a. In this

  3. Results on Vertex Degree and K-Connectivity in Uniform S-Intersection Graphs

    DTIC Science & Technology

    2014-01-01

    distribution. A uniform s-intersection graph models the topology of a secure wireless sensor network employing the widely used s-composite key predistribution scheme. Our theoretical findings is also confirmed by numerical results.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Hagberg, Aric; Hengartner, Nick

    We analyze component evolution in general random intersection graphs (RIGs) and give conditions on existence and uniqueness of the giant component. Our techniques generalize the existing methods for analysis on component evolution in RIGs. That is, we analyze survival and extinction properties of a dependent, inhomogeneous Galton-Watson branching process on general RIGs. Our analysis relies on bounding the branching processes and inherits the fundamental concepts from the study on component evolution in Erdos-Renyi graphs. The main challenge becomes from the underlying structure of RIGs, when the number of offsprings follows a binomial distribution with a different number of nodes andmore » different rate at each step during the evolution. RIGs can be interpreted as a model for large randomly formed non-metric data sets. Besides the mathematical analysis on component evolution, which we provide in this work, we perceive RIGs as an important random structure which has already found applications in social networks, epidemic networks, blog readership, or wireless sensor networks.« less

  5. Complexity and approximability for a problem of intersecting of proximity graphs with minimum number of equal disks

    NASA Astrophysics Data System (ADS)

    Kobylkin, Konstantin

    2016-10-01

    Computational complexity and approximability are studied for the problem of intersecting of a set of straight line segments with the smallest cardinality set of disks of fixed radii r > 0 where the set of segments forms straight line embedding of possibly non-planar geometric graph. This problem arises in physical network security analysis for telecommunication, wireless and road networks represented by specific geometric graphs defined by Euclidean distances between their vertices (proximity graphs). It can be formulated in a form of known Hitting Set problem over a set of Euclidean r-neighbourhoods of segments. Being of interest computational complexity and approximability of Hitting Set over so structured sets of geometric objects did not get much focus in the literature. Strong NP-hardness of the problem is reported over special classes of proximity graphs namely of Delaunay triangulations, some of their connected subgraphs, half-θ6 graphs and non-planar unit disk graphs as well as APX-hardness is given for non-planar geometric graphs at different scales of r with respect to the longest graph edge length. Simple constant factor approximation algorithm is presented for the case where r is at the same scale as the longest edge length.

  6. NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways.

    PubMed

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Sand, Olivier; Janky, Rekin's; Vanderstocken, Gilles; Deville, Yves; van Helden, Jacques

    2008-07-01

    The network analysis tools (NeAT) (http://rsat.ulb.ac.be/neat/) provide a user-friendly web access to a collection of modular tools for the analysis of networks (graphs) and clusters (e.g. microarray clusters, functional classes, etc.). A first set of tools supports basic operations on graphs (comparison between two graphs, neighborhood of a set of input nodes, path finding and graph randomization). Another set of programs makes the connection between networks and clusters (graph-based clustering, cliques discovery and mapping of clusters onto a network). The toolbox also includes programs for detecting significant intersections between clusters/classes (e.g. clusters of co-expression versus functional classes of genes). NeAT are designed to cope with large datasets and provide a flexible toolbox for analyzing biological networks stored in various databases (protein interactions, regulation and metabolism) or obtained from high-throughput experiments (two-hybrid, mass-spectrometry and microarrays). The web interface interconnects the programs in predefined analysis flows, enabling to address a series of questions about networks of interest. Each tool can also be used separately by entering custom data for a specific analysis. NeAT can also be used as web services (SOAP/WSDL interface), in order to design programmatic workflows and integrate them with other available resources.

  7. Optimal graph based segmentation using flow lines with application to airway wall segmentation.

    PubMed

    Petersen, Jens; Nielsen, Mads; Lo, Pechin; Saghir, Zaigham; Dirksen, Asger; de Bruijne, Marleen

    2011-01-01

    This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan pairs from a lung cancer screening trial are reproducible and correlate significantly with lung function.

  8. Internally connected graphs and the Kashiwara-Vergne Lie algebra

    NASA Astrophysics Data System (ADS)

    Felder, Matteo

    2018-06-01

    It is conjectured that the Kashiwara-Vergne Lie algebra \\widehat{krv}_2 is isomorphic to the direct sum of the Grothendieck-Teichmüller Lie algebra grt_1 and a one-dimensional Lie algebra. In this paper, we use the graph complex of internally connected graphs to define a nested sequence of Lie subalgebras of \\widehat{krv}_2 whose intersection is grt_1, thus giving a way to interpolate between these two Lie algebras.

  9. Using Peano Curves to Construct Laplacians on Fractals

    NASA Astrophysics Data System (ADS)

    Molitor, Denali; Ott, Nadia; Strichartz, Robert

    2015-12-01

    We describe a new method to construct Laplacians on fractals using a Peano curve from the circle onto the fractal, extending an idea that has been used in the case of certain Julia sets. The Peano curve allows us to visualize eigenfunctions of the Laplacian by graphing the pullback to the circle. We study in detail three fractals: the pentagasket, the octagasket and the magic carpet. We also use the method for two nonfractal self-similar sets, the torus and the equilateral triangle, obtaining appealing new visualizations of eigenfunctions on the triangle. In contrast to the many familiar pictures of approximations to standard Peano curves, that do no show self-intersections, our descriptions of approximations to the Peano curves have self-intersections that play a vital role in constructing graph approximations to the fractal with explicit graph Laplacians that give the fractal Laplacian in the limit.

  10. Critical Behavior of the Annealed Ising Model on Random Regular Graphs

    NASA Astrophysics Data System (ADS)

    Can, Van Hao

    2017-11-01

    In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.

  11. Modeling flow and transport in fracture networks using graphs

    NASA Astrophysics Data System (ADS)

    Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.

  12. Modeling flow and transport in fracture networks using graphs.

    PubMed

    Karra, S; O'Malley, D; Hyman, J D; Viswanathan, H S; Srinivasan, G

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O(10^{4}) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.

  13. Modeling flow and transport in fracture networks using graphs

    DOE PAGES

    Karra, S.; O'Malley, D.; Hyman, J. D.; ...

    2018-03-09

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.« less

  14. Modeling flow and transport in fracture networks using graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karra, S.; O'Malley, D.; Hyman, J. D.

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.« less

  15. On Edge Exchangeable Random Graphs

    NASA Astrophysics Data System (ADS)

    Janson, Svante

    2017-06-01

    We study a recent model for edge exchangeable random graphs introduced by Crane and Dempsey; in particular we study asymptotic properties of the random simple graph obtained by merging multiple edges. We study a number of examples, and show that the model can produce dense, sparse and extremely sparse random graphs. One example yields a power-law degree distribution. We give some examples where the random graph is dense and converges a.s. in the sense of graph limit theory, but also an example where a.s. every graph limit is the limit of some subsequence. Another example is sparse and yields convergence to a non-integrable generalized graphon defined on (0,∞).

  16. Plane representations of graphs and visibility between parallel segments

    NASA Astrophysics Data System (ADS)

    Tamassia, R.; Tollis, I. G.

    1985-04-01

    Several layout compaction strategies for VLSI are based on the concept of visibility between parallel segments, where we say that two parallel segments of a given set are visible if they can be joined by a segment orthogonal to them, which does not intersect any other segment. This paper studies visibility representations of graphs, which are constructed by mapping vertices to horizontal segments, and edges to vertical segments drawn between visible vertex-segments. Clearly, every graph that admits such a representation must be a planar. The authors consider three types of visibility representations, and give complete characterizations of the classes of graphs that admit them. Furthermore, they present linear time algorithms for testing the existence of and constructing visibility representations of planar graphs.

  17. Groupies in multitype random graphs.

    PubMed

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  18. Fast generation of sparse random kernel graphs

    DOE PAGES

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in timemore » at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.« less

  19. The investigation of social networks based on multi-component random graphs

    NASA Astrophysics Data System (ADS)

    Zadorozhnyi, V. N.; Yudin, E. B.

    2018-01-01

    The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdôs-Rényi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (owners) of the networks to predict their development correctly and to choose effective strategies for controlling network projects.

  20. Are randomly grown graphs really random?

    PubMed

    Callaway, D S; Hopcroft, J E; Kleinberg, J M; Newman, M E; Strogatz, S H

    2001-10-01

    We analyze a minimal model of a growing network. At each time step, a new vertex is added; then, with probability delta, two vertices are chosen uniformly at random and joined by an undirected edge. This process is repeated for t time steps. In the limit of large t, the resulting graph displays surprisingly rich characteristics. In particular, a giant component emerges in an infinite-order phase transition at delta=1/8. At the transition, the average component size jumps discontinuously but remains finite. In contrast, a static random graph with the same degree distribution exhibits a second-order phase transition at delta=1/4, and the average component size diverges there. These dramatic differences between grown and static random graphs stem from a positive correlation between the degrees of connected vertices in the grown graph-older vertices tend to have higher degree, and to link with other high-degree vertices, merely by virtue of their age. We conclude that grown graphs, however randomly they are constructed, are fundamentally different from their static random graph counterparts.

  1. Spectral statistics of random geometric graphs

    NASA Astrophysics Data System (ADS)

    Dettmann, C. P.; Georgiou, O.; Knight, G.

    2017-04-01

    We use random matrix theory to study the spectrum of random geometric graphs, a fundamental model of spatial networks. Considering ensembles of random geometric graphs we look at short-range correlations in the level spacings of the spectrum via the nearest-neighbour and next-nearest-neighbour spacing distribution and long-range correlations via the spectral rigidity Δ3 statistic. These correlations in the level spacings give information about localisation of eigenvectors, level of community structure and the level of randomness within the networks. We find a parameter-dependent transition between Poisson and Gaussian orthogonal ensemble statistics. That is the spectral statistics of spatial random geometric graphs fits the universality of random matrix theory found in other models such as Erdős-Rényi, Barabási-Albert and Watts-Strogatz random graphs.

  2. Local dependence in random graph models: characterization, properties and statistical inference

    PubMed Central

    Schweinberger, Michael; Handcock, Mark S.

    2015-01-01

    Summary Dependent phenomena, such as relational, spatial and temporal phenomena, tend to be characterized by local dependence in the sense that units which are close in a well-defined sense are dependent. In contrast with spatial and temporal phenomena, though, relational phenomena tend to lack a natural neighbourhood structure in the sense that it is unknown which units are close and thus dependent. Owing to the challenge of characterizing local dependence and constructing random graph models with local dependence, many conventional exponential family random graph models induce strong dependence and are not amenable to statistical inference. We take first steps to characterize local dependence in random graph models, inspired by the notion of finite neighbourhoods in spatial statistics and M-dependence in time series, and we show that local dependence endows random graph models with desirable properties which make them amenable to statistical inference. We show that random graph models with local dependence satisfy a natural domain consistency condition which every model should satisfy, but conventional exponential family random graph models do not satisfy. In addition, we establish a central limit theorem for random graph models with local dependence, which suggests that random graph models with local dependence are amenable to statistical inference. We discuss how random graph models with local dependence can be constructed by exploiting either observed or unobserved neighbourhood structure. In the absence of observed neighbourhood structure, we take a Bayesian view and express the uncertainty about the neighbourhood structure by specifying a prior on a set of suitable neighbourhood structures. We present simulation results and applications to two real world networks with ‘ground truth’. PMID:26560142

  3. Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.

    PubMed

    Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri

    2017-08-18

    Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.

  4. Measuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence.

    PubMed

    Rossi, Luca; Torsello, Andrea; Hancock, Edwin R

    2015-02-01

    In this paper we propose a quantum algorithm to measure the similarity between a pair of unattributed graphs. We design an experiment where the two graphs are merged by establishing a complete set of connections between their nodes and the resulting structure is probed through the evolution of continuous-time quantum walks. In order to analyze the behavior of the walks without causing wave function collapse, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the divergence between the evolution of two suitably initialized quantum walks over this structure is maximum when the original pair of graphs is isomorphic. We also prove that under special conditions the divergence is minimum when the sets of eigenvalues of the Hamiltonians associated with the two original graphs have an empty intersection.

  5. Is the Yellow Light Long Enough?

    ERIC Educational Resources Information Center

    Salow, Robert; And Others

    1993-01-01

    Describes an activity to determine whether the length of the yellow (warning) signal of a traffic light provides adequate time to stop or pass through the intersection. Discusses the necessary equations, mathematics, and subsequent graphs. (MVL)

  6. Using Combinatorica/Mathematica for Student Projects in Random Graph Theory

    ERIC Educational Resources Information Center

    Pfaff, Thomas J.; Zaret, Michele

    2006-01-01

    We give an example of a student project that experimentally explores a topic in random graph theory. We use the "Combinatorica" package in "Mathematica" to estimate the minimum number of edges needed in a random graph to have a 50 percent chance that the graph is connected. We provide the "Mathematica" code and compare it to the known theoretical…

  7. Return probabilities and hitting times of random walks on sparse Erdös-Rényi graphs.

    PubMed

    Martin, O C; Sulc, P

    2010-03-01

    We consider random walks on random graphs, focusing on return probabilities and hitting times for sparse Erdös-Rényi graphs. Using the tree approach, which is expected to be exact in the large graph limit, we show how to solve for the distribution of these quantities and we find that these distributions exhibit a form of self-similarity.

  8. Comparing Algorithms for Graph Isomorphism Using Discrete- and Continuous-Time Quantum Random Walks

    DOE PAGES

    Rudinger, Kenneth; Gamble, John King; Bach, Eric; ...

    2013-07-01

    Berry and Wang [Phys. Rev. A 83, 042317 (2011)] show numerically that a discrete-time quan- tum random walk of two noninteracting particles is able to distinguish some non-isomorphic strongly regular graphs from the same family. Here we analytically demonstrate how it is possible for these walks to distinguish such graphs, while continuous-time quantum walks of two noninteracting parti- cles cannot. We show analytically and numerically that even single-particle discrete-time quantum random walks can distinguish some strongly regular graphs, though not as many as two-particle noninteracting discrete-time walks. Additionally, we demonstrate how, given the same quantum random walk, subtle di erencesmore » in the graph certi cate construction algorithm can nontrivially im- pact the walk's distinguishing power. We also show that no continuous-time walk of a xed number of particles can distinguish all strongly regular graphs when used in conjunction with any of the graph certi cates we consider. We extend this constraint to discrete-time walks of xed numbers of noninteracting particles for one kind of graph certi cate; it remains an open question as to whether or not this constraint applies to the other graph certi cates we consider.« less

  9. An automatic graph-based approach for artery/vein classification in retinal images.

    PubMed

    Dashtbozorg, Behdad; Mendonça, Ana Maria; Campilho, Aurélio

    2014-03-01

    The classification of retinal vessels into artery/vein (A/V) is an important phase for automating the detection of vascular changes, and for the calculation of characteristic signs associated with several systemic diseases such as diabetes, hypertension, and other cardiovascular conditions. This paper presents an automatic approach for A/V classification based on the analysis of a graph extracted from the retinal vasculature. The proposed method classifies the entire vascular tree deciding on the type of each intersection point (graph nodes) and assigning one of two labels to each vessel segment (graph links). Final classification of a vessel segment as A/V is performed through the combination of the graph-based labeling results with a set of intensity features. The results of this proposed method are compared with manual labeling for three public databases. Accuracy values of 88.3%, 87.4%, and 89.8% are obtained for the images of the INSPIRE-AVR, DRIVE, and VICAVR databases, respectively. These results demonstrate that our method outperforms recent approaches for A/V classification.

  10. Stability and dynamical properties of material flow systems on random networks

    NASA Astrophysics Data System (ADS)

    Anand, K.; Galla, T.

    2009-04-01

    The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.

  11. Structure and Growth of the Leeward Kohala Field System: An Analysis with Directed Graphs

    PubMed Central

    Dye, Thomas S.

    2014-01-01

    This study illustrates how the theory of directed graphs can be used to investigate the structure and growth of the leeward Kohala field system, a traditional Hawaiian archaeological site that presents an unparalleled opportunity to investigate relative chronology. The relative chronological relationships of agricultural walls and trails in two detailed study areas are represented as directed graphs and then investigated using graph theoretic concepts including cycle, level, and connectedness. The structural properties of the directed graphs reveal structure in the field system at several spatial scales. A process of deduction yields a history of construction in each detailed study area that is different than the history produced by an earlier investigation. These results indicate that it is now possible to study the structure and growth of the entire field system remnant using computer software implementations of graph theoretic concepts applied to observations of agricultural wall and trail intersections made on aerial imagery and/or during fieldwork. A relative chronology of field system development with a resolution of one generation is a possible result. PMID:25058167

  12. Continuous-Time Classical and Quantum Random Walk on Direct Product of Cayley Graphs

    NASA Astrophysics Data System (ADS)

    Salimi, S.; Jafarizadeh, M. A.

    2009-06-01

    In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on complicated graphs. Using this method, we calculate the probability of continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete Kn, charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t → ∞ but for quantum state is not always satisfied.

  13. Probabilistic generation of random networks taking into account information on motifs occurrence.

    PubMed

    Bois, Frederic Y; Gayraud, Ghislaine

    2015-01-01

    Because of the huge number of graphs possible even with a small number of nodes, inference on network structure is known to be a challenging problem. Generating large random directed graphs with prescribed probabilities of occurrences of some meaningful patterns (motifs) is also difficult. We show how to generate such random graphs according to a formal probabilistic representation, using fast Markov chain Monte Carlo methods to sample them. As an illustration, we generate realistic graphs with several hundred nodes mimicking a gene transcription interaction network in Escherichia coli.

  14. Probabilistic Generation of Random Networks Taking into Account Information on Motifs Occurrence

    PubMed Central

    Bois, Frederic Y.

    2015-01-01

    Abstract Because of the huge number of graphs possible even with a small number of nodes, inference on network structure is known to be a challenging problem. Generating large random directed graphs with prescribed probabilities of occurrences of some meaningful patterns (motifs) is also difficult. We show how to generate such random graphs according to a formal probabilistic representation, using fast Markov chain Monte Carlo methods to sample them. As an illustration, we generate realistic graphs with several hundred nodes mimicking a gene transcription interaction network in Escherichia coli. PMID:25493547

  15. Anderson localization for radial tree-like random quantum graphs

    NASA Astrophysics Data System (ADS)

    Hislop, Peter D.; Post, Olaf

    We prove that certain random models associated with radial, tree-like, rooted quantum graphs exhibit Anderson localization at all energies. The two main examples are the random length model (RLM) and the random Kirchhoff model (RKM). In the RLM, the lengths of each generation of edges form a family of independent, identically distributed random variables (iid). For the RKM, the iid random variables are associated with each generation of vertices and moderate the current flow through the vertex. We consider extensions to various families of decorated graphs and prove stability of localization with respect to decoration. In particular, we prove Anderson localization for the random necklace model.

  16. Adaptive random walks on the class of Web graphs

    NASA Astrophysics Data System (ADS)

    Tadić, B.

    2001-09-01

    We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [B. Tadić, Physica A 293, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β is varied. For β≥ 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit β↦βc≲ 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.

  17. Efficient quantum pseudorandomness with simple graph states

    NASA Astrophysics Data System (ADS)

    Mezher, Rawad; Ghalbouni, Joe; Dgheim, Joseph; Markham, Damian

    2018-02-01

    Measurement based (MB) quantum computation allows for universal quantum computing by measuring individual qubits prepared in entangled multipartite states, known as graph states. Unless corrected for, the randomness of the measurements leads to the generation of ensembles of random unitaries, where each random unitary is identified with a string of possible measurement results. We show that repeating an MB scheme an efficient number of times, on a simple graph state, with measurements at fixed angles and no feedforward corrections, produces a random unitary ensemble that is an ɛ -approximate t design on n qubits. Unlike previous constructions, the graph is regular and is also a universal resource for measurement based quantum computing, closely related to the brickwork state.

  18. Scaling Limits and Generic Bounds for Exploration Processes

    NASA Astrophysics Data System (ADS)

    Bermolen, Paola; Jonckheere, Matthieu; Sanders, Jaron

    2017-12-01

    We consider exploration algorithms of the random sequential adsorption type both for homogeneous random graphs and random geometric graphs based on spatial Poisson processes. At each step, a vertex of the graph becomes active and its neighboring nodes become blocked. Given an initial number of vertices N growing to infinity, we study statistical properties of the proportion of explored (active or blocked) nodes in time using scaling limits. We obtain exact limits for homogeneous graphs and prove an explicit central limit theorem for the final proportion of active nodes, known as the jamming constant, through a diffusion approximation for the exploration process which can be described as a unidimensional process. We then focus on bounding the trajectories of such exploration processes on random geometric graphs, i.e., random sequential adsorption. As opposed to exploration processes on homogeneous random graphs, these do not allow for such a dimensional reduction. Instead we derive a fundamental relationship between the number of explored nodes and the discovered volume in the spatial process, and we obtain generic bounds for the fluid limit and jamming constant: bounds that are independent of the dimension of space and the detailed shape of the volume associated to the discovered node. Lastly, using coupling techinques, we give trajectorial interpretations of the generic bounds.

  19. Spectral partitioning in equitable graphs.

    PubMed

    Barucca, Paolo

    2017-06-01

    Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.

  20. Spectral partitioning in equitable graphs

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo

    2017-06-01

    Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.

  1. On Connected Diagrams and Cumulants of Erdős-Rényi Matrix Models

    NASA Astrophysics Data System (ADS)

    Khorunzhiy, O.

    2008-08-01

    Regarding the adjacency matrices of n-vertex graphs and related graph Laplacian we introduce two families of discrete matrix models constructed both with the help of the Erdős-Rényi ensemble of random graphs. Corresponding matrix sums represent the characteristic functions of the average number of walks and closed walks over the random graph. These sums can be considered as discrete analogues of the matrix integrals of random matrix theory. We study the diagram structure of the cumulant expansions of logarithms of these matrix sums and analyze the limiting expressions as n → ∞ in the cases of constant and vanishing edge probabilities.

  2. Evolution of a Modified Binomial Random Graph by Agglomeration

    NASA Astrophysics Data System (ADS)

    Kang, Mihyun; Pachon, Angelica; Rodríguez, Pablo M.

    2018-02-01

    In the classical Erdős-Rényi random graph G( n, p) there are n vertices and each of the possible edges is independently present with probability p. The random graph G( n, p) is homogeneous in the sense that all vertices have the same characteristics. On the other hand, numerous real-world networks are inhomogeneous in this respect. Such an inhomogeneity of vertices may influence the connection probability between pairs of vertices. The purpose of this paper is to propose a new inhomogeneous random graph model which is obtained in a constructive way from the Erdős-Rényi random graph G( n, p). Given a configuration of n vertices arranged in N subsets of vertices (we call each subset a super-vertex), we define a random graph with N super-vertices by letting two super-vertices be connected if and only if there is at least one edge between them in G( n, p). Our main result concerns the threshold for connectedness. We also analyze the phase transition for the emergence of the giant component and the degree distribution. Even though our model begins with G( n, p), it assumes the existence of some community structure encoded in the configuration. Furthermore, under certain conditions it exhibits a power law degree distribution. Both properties are important for real-world applications.

  3. Entropy of spatial network ensembles

    NASA Astrophysics Data System (ADS)

    Coon, Justin P.; Dettmann, Carl P.; Georgiou, Orestis

    2018-04-01

    We analyze complexity in spatial network ensembles through the lens of graph entropy. Mathematically, we model a spatial network as a soft random geometric graph, i.e., a graph with two sources of randomness, namely nodes located randomly in space and links formed independently between pairs of nodes with probability given by a specified function (the "pair connection function") of their mutual distance. We consider the general case where randomness arises in node positions as well as pairwise connections (i.e., for a given pair distance, the corresponding edge state is a random variable). Classical random geometric graph and exponential graph models can be recovered in certain limits. We derive a simple bound for the entropy of a spatial network ensemble and calculate the conditional entropy of an ensemble given the node location distribution for hard and soft (probabilistic) pair connection functions. Under this formalism, we derive the connection function that yields maximum entropy under general constraints. Finally, we apply our analytical framework to study two practical examples: ad hoc wireless networks and the US flight network. Through the study of these examples, we illustrate that both exhibit properties that are indicative of nearly maximally entropic ensembles.

  4. Cross over of recurrence networks to random graphs and random geometric graphs

    NASA Astrophysics Data System (ADS)

    Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.

    2017-02-01

    Recurrence networks are complex networks constructed from the time series of chaotic dynamical systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the topology of every recurrence network unique with the degree distribution determined by the probability density variations of the representative attractor from which it is constructed. Here we numerically investigate the properties of recurrence networks from standard low-dimensional chaotic attractors using some basic network measures and show how the recurrence networks are different from random and scale-free networks. In particular, we show that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to the time series and into the classical random graphs by increasing the range of interaction to the system size. We also highlight the effectiveness of a combined plot of characteristic path length and clustering coefficient in capturing the small changes in the network characteristics.

  5. Localization on Quantum Graphs with Random Vertex Couplings

    NASA Astrophysics Data System (ADS)

    Klopp, Frédéric; Pankrashkin, Konstantin

    2008-05-01

    We consider Schrödinger operators on a class of periodic quantum graphs with randomly distributed Kirchhoff coupling constants at all vertices. We obtain necessary conditions for localization on quantum graphs in terms of finite volume criteria for some energy-dependent discrete Hamiltonians. These conditions hold in the strong disorder limit and at the spectral edges.

  6. Aircraft control position indicator

    NASA Technical Reports Server (NTRS)

    Dennis, Dale V. (Inventor)

    1987-01-01

    An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces.

  7. Exploring the evolution of London's street network in the information space: A dual approach

    NASA Astrophysics Data System (ADS)

    Masucci, A. Paolo; Stanilov, Kiril; Batty, Michael

    2014-01-01

    We study the growth of London's street network in its dual representation, as the city has evolved over the past 224 years. The dual representation of a planar graph is a content-based network, where each node is a set of edges of the planar graph and represents a transportation unit in the so-called information space, i.e., the space where information is handled in order to navigate through the city. First, we discuss a novel hybrid technique to extract dual graphs from planar graphs, called the hierarchical intersection continuity negotiation principle. Then we show that the growth of the network can be analytically described by logistic laws and that the topological properties of the network are governed by robust log-normal distributions characterizing the network's connectivity and small-world properties that are consistent over time. Moreover, we find that the double-Pareto-like distributions for the connectivity emerge for major roads and can be modeled via a stochastic content-based network model using simple space-filling principles.

  8. An Xdata Architecture for Federated Graph Models and Multi-tier Asymmetric Computing

    DTIC Science & Technology

    2014-01-01

    Wikipedia, a scale-free random graph (kron), Akamai trace route data, Bitcoin transaction data, and a Twitter follower network. We present results for...3x (SSSP on a random graph) and nearly 300x (Akamai and Bitcoin ) over the CPU performance of a well-known and widely deployed CPU-based graph...provided better throughput for smaller frontiers such as roadmaps or the Bitcoin data set. In our work, we have focused on two-phase kernels, but it

  9. Synchronizability of random rectangular graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada, Ernesto, E-mail: ernesto.estrada@strath.ac.uk; Chen, Guanrong

    2015-08-15

    Random rectangular graphs (RRGs) represent a generalization of the random geometric graphs in which the nodes are embedded into hyperrectangles instead of on hypercubes. The synchronizability of RRG model is studied. Both upper and lower bounds of the eigenratio of the network Laplacian matrix are determined analytically. It is proven that as the rectangular network is more elongated, the network becomes harder to synchronize. The synchronization processing behavior of a RRG network of chaotic Lorenz system nodes is numerically investigated, showing complete consistence with the theoretical results.

  10. Unimodular lattice triangulations as small-world and scale-free random graphs

    NASA Astrophysics Data System (ADS)

    Krüger, B.; Schmidt, E. M.; Mecke, K.

    2015-02-01

    Real-world networks, e.g., the social relations or world-wide-web graphs, exhibit both small-world and scale-free behaviour. We interpret lattice triangulations as planar graphs by identifying triangulation vertices with graph nodes and one-dimensional simplices with edges. Since these triangulations are ergodic with respect to a certain Pachner flip, applying different Monte Carlo simulations enables us to calculate average properties of random triangulations, as well as canonical ensemble averages, using an energy functional that is approximately the variance of the degree distribution. All considered triangulations have clustering coefficients comparable with real-world graphs; for the canonical ensemble there are inverse temperatures with small shortest path length independent of system size. Tuning the inverse temperature to a quasi-critical value leads to an indication of scale-free behaviour for degrees k≥slant 5. Using triangulations as a random graph model can improve the understanding of real-world networks, especially if the actual distance of the embedded nodes becomes important.

  11. Limits on relief through constrained exchange on random graphs

    NASA Astrophysics Data System (ADS)

    LaViolette, Randall A.; Ellebracht, Lory A.; Gieseler, Charles J.

    2007-09-01

    Agents are represented by nodes on a random graph (e.g., “small world”). Each agent is endowed with a zero-mean random value that may be either positive or negative. All agents attempt to find relief, i.e., to reduce the magnitude of that initial value, to zero if possible, through exchanges. The exchange occurs only between the agents that are linked, a constraint that turns out to dominate the results. The exchange process continues until Pareto equilibrium is achieved. Only 40-90% of the agents achieved relief on small-world graphs with mean degree between 2 and 40. Even fewer agents achieved relief on scale-free-like graphs with a truncated power-law degree distribution. The rate at which relief grew with increasing degree was slow, only at most logarithmic for all of the graphs considered; viewed in reverse, the fraction of nodes that achieve relief is resilient to the removal of links.

  12. Corrected Mean-Field Model for Random Sequential Adsorption on Random Geometric Graphs

    NASA Astrophysics Data System (ADS)

    Dhara, Souvik; van Leeuwaarden, Johan S. H.; Mukherjee, Debankur

    2018-03-01

    A notorious problem in mathematics and physics is to create a solvable model for random sequential adsorption of non-overlapping congruent spheres in the d-dimensional Euclidean space with d≥ 2 . Spheres arrive sequentially at uniformly chosen locations in space and are accepted only when there is no overlap with previously deposited spheres. Due to spatial correlations, characterizing the fraction of accepted spheres remains largely intractable. We study this fraction by taking a novel approach that compares random sequential adsorption in Euclidean space to the nearest-neighbor blocking on a sequence of clustered random graphs. This random network model can be thought of as a corrected mean-field model for the interaction graph between the attempted spheres. Using functional limit theorems, we characterize the fraction of accepted spheres and its fluctuations.

  13. Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs

    NASA Astrophysics Data System (ADS)

    van der Hofstad, Remco; Kliem, Sandra; van Leeuwaarden, Johan S. H.

    2018-04-01

    Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299-2361, 2012). It was proved that when the degrees obey a power law with exponent τ \\in (3,4), the sequence of clusters ordered in decreasing size and multiplied through by n^{-(τ -2)/(τ -1)} converges as n→ ∞ to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237-269, 2001) for the Erdős-Rényi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments.

  14. On the mixing time of geographical threshold graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan

    In this paper, we study the mixing time of random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Wemore » specifically study the mixing times of random walks on 2-dimensional GTGs near the connectivity threshold. We provide a set of criteria on the distribution of vertex weights that guarantees that the mixing time is {Theta}(n log n).« less

  15. Graph Representations of Flow and Transport in Fracture Networks using Machine Learning

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; Viswanathan, H. S.; Karra, S.; O'Malley, D.; Godinez, H. C.; Hagberg, A.; Osthus, D.; Mohd-Yusof, J.

    2017-12-01

    Flow and transport of fluids through fractured systems is governed by the properties and interactions at the micro-scale. Retaining information about the micro-structure such as fracture length, orientation, aperture and connectivity in mesh-based computational models results in solving for millions to billions of degrees of freedom and quickly renders the problem computationally intractable. Our approach depicts fracture networks graphically, by mapping fractures to nodes and intersections to edges, thereby greatly reducing computational burden. Additionally, we use machine learning techniques to build simulators on the graph representation, trained on data from the mesh-based high fidelity simulations to speed up computation by orders of magnitude. We demonstrate our methodology on ensembles of discrete fracture networks, dividing up the data into training and validation sets. Our machine learned graph-based solvers result in over 3 orders of magnitude speedup without any significant sacrifice in accuracy.

  16. Assessment of statewide intersection safety performance.

    DOT National Transportation Integrated Search

    2011-06-01

    This report summarizes the results of an analysis of the safety performance of Oregons intersections. Following a pilot : study, a database of 500 intersections randomly sampled from around the state of Oregon in both urban and rural : environment...

  17. Comparing the effects of infrastructure on bicycling injury at intersections and non-intersections using a case–crossover design

    PubMed Central

    Harris, M Anne; Reynolds, Conor C O; Winters, Meghan; Cripton, Peter A; Shen, Hui; Chipman, Mary L; Cusimano, Michael D; Babul, Shelina; Brubacher, Jeffrey R; Friedman, Steven M; Hunte, Garth; Monro, Melody; Vernich, Lee; Teschke, Kay

    2013-01-01

    Background This study examined the impact of transportation infrastructure at intersection and non-intersection locations on bicycling injury risk. Methods In Vancouver and Toronto, we studied adult cyclists who were injured and treated at a hospital emergency department. A case–crossover design compared the infrastructure of injury and control sites within each injured bicyclist's route. Intersection injury sites (N=210) were compared to randomly selected intersection control sites (N=272). Non-intersection injury sites (N=478) were compared to randomly selected non-intersection control sites (N=801). Results At intersections, the types of routes meeting and the intersection design influenced safety. Intersections of two local streets (no demarcated traffic lanes) had approximately one-fifth the risk (adjusted OR 0.19, 95% CI 0.05 to 0.66) of intersections of two major streets (more than two traffic lanes). Motor vehicle speeds less than 30 km/h also reduced risk (adjusted OR 0.52, 95% CI 0.29 to 0.92). Traffic circles (small roundabouts) on local streets increased the risk of these otherwise safe intersections (adjusted OR 7.98, 95% CI 1.79 to 35.6). At non-intersection locations, very low risks were found for cycle tracks (bike lanes physically separated from motor vehicle traffic; adjusted OR 0.05, 95% CI 0.01 to 0.59) and local streets with diverters that reduce motor vehicle traffic (adjusted OR 0.04, 95% CI 0.003 to 0.60). Downhill grades increased risks at both intersections and non-intersections. Conclusions These results provide guidance for transportation planners and engineers: at local street intersections, traditional stops are safer than traffic circles, and at non-intersections, cycle tracks alongside major streets and traffic diversion from local streets are safer than no bicycle infrastructure. PMID:23411678

  18. Unsupervised Metric Fusion Over Multiview Data by Graph Random Walk-Based Cross-View Diffusion.

    PubMed

    Wang, Yang; Zhang, Wenjie; Wu, Lin; Lin, Xuemin; Zhao, Xiang

    2017-01-01

    Learning an ideal metric is crucial to many tasks in computer vision. Diverse feature representations may combat this problem from different aspects; as visual data objects described by multiple features can be decomposed into multiple views, thus often provide complementary information. In this paper, we propose a cross-view fusion algorithm that leads to a similarity metric for multiview data by systematically fusing multiple similarity measures. Unlike existing paradigms, we focus on learning distance measure by exploiting a graph structure of data samples, where an input similarity matrix can be improved through a propagation of graph random walk. In particular, we construct multiple graphs with each one corresponding to an individual view, and a cross-view fusion approach based on graph random walk is presented to derive an optimal distance measure by fusing multiple metrics. Our method is scalable to a large amount of data by enforcing sparsity through an anchor graph representation. To adaptively control the effects of different views, we dynamically learn view-specific coefficients, which are leveraged into graph random walk to balance multiviews. However, such a strategy may lead to an over-smooth similarity metric where affinities between dissimilar samples may be enlarged by excessively conducting cross-view fusion. Thus, we figure out a heuristic approach to controlling the iteration number in the fusion process in order to avoid over smoothness. Extensive experiments conducted on real-world data sets validate the effectiveness and efficiency of our approach.

  19. Random graph models of social networks.

    PubMed

    Newman, M E J; Watts, D J; Strogatz, S H

    2002-02-19

    We describe some new exactly solvable models of the structure of social networks, based on random graphs with arbitrary degree distributions. We give models both for simple unipartite networks, such as acquaintance networks, and bipartite networks, such as affiliation networks. We compare the predictions of our models to data for a number of real-world social networks and find that in some cases, the models are in remarkable agreement with the data, whereas in others the agreement is poorer, perhaps indicating the presence of additional social structure in the network that is not captured by the random graph.

  20. Phase transitions in Ising models on directed networks

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof

    2015-11-01

    We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme.

  1. Cryptographic Boolean Functions with Biased Inputs

    DTIC Science & Technology

    2015-07-31

    theory of random graphs developed by Erdős and Rényi [2]. The graph properties in a random graph expressed as such Boolean functions are used by...distributed Bernoulli variates with the parameter p. Since our scope is within the area of cryptography , we initiate an analysis of cryptographic...Boolean functions with biased inputs, which we refer to as µp-Boolean functions, is a common generalization of Boolean functions which stems from the

  2. Offdiagonal complexity: A computationally quick complexity measure for graphs and networks

    NASA Astrophysics Data System (ADS)

    Claussen, Jens Christian

    2007-02-01

    A vast variety of biological, social, and economical networks shows topologies drastically differing from random graphs; yet the quantitative characterization remains unsatisfactory from a conceptual point of view. Motivated from the discussion of small scale-free networks, a biased link distribution entropy is defined, which takes an extremum for a power-law distribution. This approach is extended to the node-node link cross-distribution, whose nondiagonal elements characterize the graph structure beyond link distribution, cluster coefficient and average path length. From here a simple (and computationally cheap) complexity measure can be defined. This offdiagonal complexity (OdC) is proposed as a novel measure to characterize the complexity of an undirected graph, or network. While both for regular lattices and fully connected networks OdC is zero, it takes a moderately low value for a random graph and shows high values for apparently complex structures as scale-free networks and hierarchical trees. The OdC approach is applied to the Helicobacter pylori protein interaction network and randomly rewired surrogates.

  3. A Random Walk Approach to Query Informative Constraints for Clustering.

    PubMed

    Abin, Ahmad Ali

    2017-08-09

    This paper presents a random walk approach to the problem of querying informative constraints for clustering. The proposed method is based on the properties of the commute time, that is the expected time taken for a random walk to travel between two nodes and return, on the adjacency graph of data. Commute time has the nice property of that, the more short paths connect two given nodes in a graph, the more similar those nodes are. Since computing the commute time takes the Laplacian eigenspectrum into account, we use this property in a recursive fashion to query informative constraints for clustering. At each recursion, the proposed method constructs the adjacency graph of data and utilizes the spectral properties of the commute time matrix to bipartition the adjacency graph. Thereafter, the proposed method benefits from the commute times distance on graph to query informative constraints between partitions. This process iterates for each partition until the stop condition becomes true. Experiments on real-world data show the efficiency of the proposed method for constraints selection.

  4. Quantum walks on the chimera graph and its variants

    NASA Astrophysics Data System (ADS)

    Sanders, Barry; Sun, Xiangxiang; Xu, Shu; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum

    We study quantum walks on the chimera graph, which is an important graph for performing quantum annealing, and we explore the nature of quantum walks on variants of the chimera graph. Features of these quantum walks provide profound insights into the nature of the chimera graph, including effects of greater and lesser connectivity, strong differences between quantum and classical random walks, isotropic spreading and localization only in the quantum case, and random graphs. We analyze finite-size effects due to limited width and length of the graph, and we explore the effect of different boundary conditions such as periodic and reflecting. Effects are explained via spectral analysis and the properties of stationary states, and spectral analysis enables us to characterize asymptotic behavior of the quantum walker in the long-time limit. Supported by China 1000 Talent Plan, National Science Foundation of China, Hefei National Laboratory for Physical Sciences at Microscale Fellowship, and the Chinese Academy of Sciences President's International Fellowship Initiative.

  5. Approximate ground states of the random-field Potts model from graph cuts

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Kumar, Ravinder; Weigel, Martin; Banerjee, Varsha; Janke, Wolfhard; Puri, Sanjay

    2018-05-01

    While the ground-state problem for the random-field Ising model is polynomial, and can be solved using a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new technique to analyze the breakup length of the random-field Potts model in two dimensions.

  6. A Wave Chaotic Study of Quantum Graphs with Microwave Networks

    NASA Astrophysics Data System (ADS)

    Fu, Ziyuan

    Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. I study the quantum graphs with a wave chaotic approach. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. Some basic features and the distributions of impedance statistics are analyzed from experimental data on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. Waves trapped due to multiple reflections on bonds between nodes in the graph most likely cause the deviations from universal behavior in the finite-size realization of a quantum graph. In addition, I have done some investigations on the Random Coupling Model, which are useful for further research.

  7. Graph theoretical model of a sensorimotor connectome in zebrafish.

    PubMed

    Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan

    2012-01-01

    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  8. Disentangling giant component and finite cluster contributions in sparse random matrix spectra.

    PubMed

    Kühn, Reimer

    2016-04-01

    We describe a method for disentangling giant component and finite cluster contributions to sparse random matrix spectra, using sparse symmetric random matrices defined on Erdős-Rényi graphs as an example and test bed. Our methods apply to sparse matrices defined in terms of arbitrary graphs in the configuration model class, as long as they have finite mean degree.

  9. Sampling Large Graphs for Anticipatory Analytics

    DTIC Science & Technology

    2015-05-15

    low. C. Random Area Sampling Random area sampling [8] is a “ snowball ” sampling method in which a set of random seed vertices are selected and areas... Sampling Large Graphs for Anticipatory Analytics Lauren Edwards, Luke Johnson, Maja Milosavljevic, Vijay Gadepally, Benjamin A. Miller Lincoln...systems, greater human-in-the-loop involvement, or through complex algorithms. We are investigating the use of sampling to mitigate these challenges

  10. Spectral fluctuations of quantum graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluhař, Z.; Weidenmüller, H. A.

    We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry.

  11. Detecting Abnormal Vehicular Dynamics at Intersections Based on an Unsupervised Learning Approach and a Stochastic Model

    PubMed Central

    Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa

    2010-01-01

    This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems. PMID:22163616

  12. Detecting abnormal vehicular dynamics at intersections based on an unsupervised learning approach and a stochastic model.

    PubMed

    Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa

    2010-01-01

    This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems.

  13. A simple rule for the evolution of cooperation on graphs and social networks.

    PubMed

    Ohtsuki, Hisashi; Hauert, Christoph; Lieberman, Erez; Nowak, Martin A

    2006-05-25

    A fundamental aspect of all biological systems is cooperation. Cooperative interactions are required for many levels of biological organization ranging from single cells to groups of animals. Human society is based to a large extent on mechanisms that promote cooperation. It is well known that in unstructured populations, natural selection favours defectors over cooperators. There is much current interest, however, in studying evolutionary games in structured populations and on graphs. These efforts recognize the fact that who-meets-whom is not random, but determined by spatial relationships or social networks. Here we describe a surprisingly simple rule that is a good approximation for all graphs that we have analysed, including cycles, spatial lattices, random regular graphs, random graphs and scale-free networks: natural selection favours cooperation, if the benefit of the altruistic act, b, divided by the cost, c, exceeds the average number of neighbours, k, which means b/c > k. In this case, cooperation can evolve as a consequence of 'social viscosity' even in the absence of reputation effects or strategic complexity.

  14. Quantifying randomness in real networks

    NASA Astrophysics Data System (ADS)

    Orsini, Chiara; Dankulov, Marija M.; Colomer-de-Simón, Pol; Jamakovic, Almerima; Mahadevan, Priya; Vahdat, Amin; Bassler, Kevin E.; Toroczkai, Zoltán; Boguñá, Marián; Caldarelli, Guido; Fortunato, Santo; Krioukov, Dmitri

    2015-10-01

    Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks--the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain--and find that many important local and global structural properties of these networks are closely reproduced by dk-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate dk-random graphs.

  15. Most Undirected Random Graphs Are Amplifiers of Selection for Birth-Death Dynamics, but Suppressors of Selection for Death-Birth Dynamics.

    PubMed

    Hindersin, Laura; Traulsen, Arne

    2015-11-01

    We analyze evolutionary dynamics on graphs, where the nodes represent individuals of a population. The links of a node describe which other individuals can be displaced by the offspring of the individual on that node. Amplifiers of selection are graphs for which the fixation probability is increased for advantageous mutants and decreased for disadvantageous mutants. A few examples of such amplifiers have been developed, but so far it is unclear how many such structures exist and how to construct them. Here, we show that almost any undirected random graph is an amplifier of selection for Birth-death updating, where an individual is selected to reproduce with probability proportional to its fitness and one of its neighbors is replaced by that offspring at random. If we instead focus on death-Birth updating, in which a random individual is removed and its neighbors compete for the empty spot, then the same ensemble of graphs consists of almost only suppressors of selection for which the fixation probability is decreased for advantageous mutants and increased for disadvantageous mutants. Thus, the impact of population structure on evolutionary dynamics is a subtle issue that will depend on seemingly minor details of the underlying evolutionary process.

  16. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Pinar, Ali; Sariyuce, Ahmet Erdem

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account formore » overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.« less

  17. Stationary Random Metrics on Hierarchical Graphs Via {(min,+)}-type Recursive Distributional Equations

    NASA Astrophysics Data System (ADS)

    Khristoforov, Mikhail; Kleptsyn, Victor; Triestino, Michele

    2016-07-01

    This paper is inspired by the problem of understanding in a mathematical sense the Liouville quantum gravity on surfaces. Here we show how to define a stationary random metric on self-similar spaces which are the limit of nice finite graphs: these are the so-called hierarchical graphs. They possess a well-defined level structure and any level is built using a simple recursion. Stopping the construction at any finite level, we have a discrete random metric space when we set the edges to have random length (using a multiplicative cascade with fixed law {m}). We introduce a tool, the cut-off process, by means of which one finds that renormalizing the sequence of metrics by an exponential factor, they converge in law to a non-trivial metric on the limit space. Such limit law is stationary, in the sense that glueing together a certain number of copies of the random limit space, according to the combinatorics of the brick graph, the obtained random metric has the same law when rescaled by a random factor of law {m} . In other words, the stationary random metric is the solution of a distributional equation. When the measure m has continuous positive density on {mathbf{R}+}, the stationary law is unique up to rescaling and any other distribution tends to a rescaled stationary law under the iterations of the hierarchical transformation. We also investigate topological and geometric properties of the random space when m is log-normal, detecting a phase transition influenced by the branching random walk associated to the multiplicative cascade.

  18. Geographic Gossip: Efficient Averaging for Sensor Networks

    NASA Astrophysics Data System (ADS)

    Dimakis, Alexandros D. G.; Sarwate, Anand D.; Wainwright, Martin J.

    Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of $n$ and $\\sqrt{n}$ respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy $\\epsilon$ using $O(\\frac{n^{1.5}}{\\sqrt{\\log n}} \\log \\epsilon^{-1})$ radio transmissions, which yields a $\\sqrt{\\frac{n}{\\log n}}$ factor improvement over standard gossip algorithms. We illustrate these theoretical results with experimental comparisons between our algorithm and standard methods as applied to various classes of random fields.

  19. A Graph Theory Practice on Transformed Image: A Random Image Steganography

    PubMed Central

    Thanikaiselvan, V.; Arulmozhivarman, P.; Subashanthini, S.; Amirtharajan, Rengarajan

    2013-01-01

    Modern day information age is enriched with the advanced network communication expertise but unfortunately at the same time encounters infinite security issues when dealing with secret and/or private information. The storage and transmission of the secret information become highly essential and have led to a deluge of research in this field. In this paper, an optimistic effort has been taken to combine graceful graph along with integer wavelet transform (IWT) to implement random image steganography for secure communication. The implementation part begins with the conversion of cover image into wavelet coefficients through IWT and is followed by embedding secret image in the randomly selected coefficients through graph theory. Finally stegoimage is obtained by applying inverse IWT. This method provides a maximum of 44 dB peak signal to noise ratio (PSNR) for 266646 bits. Thus, the proposed method gives high imperceptibility through high PSNR value and high embedding capacity in the cover image due to adaptive embedding scheme and high robustness against blind attack through graph theoretic random selection of coefficients. PMID:24453857

  20. Gps-Denied Geo-Localisation Using Visual Odometry

    NASA Astrophysics Data System (ADS)

    Gupta, Ashish; Chang, Huan; Yilmaz, Alper

    2016-06-01

    The primary method for geo-localization is based on GPS which has issues of localization accuracy, power consumption, and unavailability. This paper proposes a novel approach to geo-localization in a GPS-denied environment for a mobile platform. Our approach has two principal components: public domain transport network data available in GIS databases or OpenStreetMap; and a trajectory of a mobile platform. This trajectory is estimated using visual odometry and 3D view geometry. The transport map information is abstracted as a graph data structure, where various types of roads are modelled as graph edges and typically intersections are modelled as graph nodes. A search for the trajectory in real time in the graph yields the geo-location of the mobile platform. Our approach uses a simple visual sensor and it has a low memory and computational footprint. In this paper, we demonstrate our method for trajectory estimation and provide examples of geolocalization using public-domain map data. With the rapid proliferation of visual sensors as part of automated driving technology and continuous growth in public domain map data, our approach has the potential to completely augment, or even supplant, GPS based navigation since it functions in all environments.

  1. Splash singularity for water waves.

    PubMed

    Castro, Angel; Córdoba, Diego; Fefferman, Charles L; Gancedo, Francisco; Gómez-Serrano, Javier

    2012-01-17

    We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time.

  2. Splash singularity for water waves

    PubMed Central

    Castro, Angel; Córdoba, Diego; Fefferman, Charles L.; Gancedo, Francisco; Gómez-Serrano, Javier

    2012-01-01

    We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time. PMID:22219372

  3. Einstein Critical-Slowing-Down is Siegel CyberWar Denial-of-Access Queuing/Pinning/ Jamming/Aikido Via Siegel DIGIT-Physics BEC ``Intersection''-BECOME-UNION Barabasi Network/GRAPH-Physics BEC: Strutt/Rayleigh-Siegel Percolation GLOBALITY-to-LOCALITY Phase-Transition Critical-Phenomenon

    NASA Astrophysics Data System (ADS)

    Buick, Otto; Falcon, Pat; Alexander, G.; Siegel, Edward Carl-Ludwig

    2013-03-01

    Einstein[Dover(03)] critical-slowing-down(CSD)[Pais, Subtle in The Lord; Life & Sci. of Albert Einstein(81)] is Siegel CyberWar denial-of-access(DOA) operations-research queuing theory/pinning/jamming/.../Read [Aikido, Aikibojitsu & Natural-Law(90)]/Aikido(!!!) phase-transition critical-phenomenon via Siegel DIGIT-Physics (Newcomb[Am.J.Math. 4,39(1881)]-{Planck[(1901)]-Einstein[(1905)])-Poincare[Calcul Probabilités(12)-p.313]-Weyl [Goett.Nachr.(14); Math.Ann.77,313 (16)]-{Bose[(24)-Einstein[(25)]-Fermi[(27)]-Dirac[(1927)]}-``Benford''[Proc.Am.Phil.Soc. 78,4,551 (38)]-Kac[Maths.Stat.-Reasoning(55)]-Raimi[Sci.Am. 221,109 (69)...]-Jech[preprint, PSU(95)]-Hill[Proc.AMS 123,3,887(95)]-Browne[NYT(8/98)]-Antonoff-Smith-Siegel[AMS Joint-Mtg.,S.-D.(02)] algebraic-inversion to yield ONLY BOSE-EINSTEIN QUANTUM-statistics (BEQS) with ZERO-digit Bose-Einstein CONDENSATION(BEC) ``INTERSECTION''-BECOME-UNION to Barabasi[PRL 876,5632(01); Rev.Mod.Phys.74,47(02)...] Network /Net/GRAPH(!!!)-physics BEC: Strutt/Rayleigh(1881)-Polya(21)-``Anderson''(58)-Siegel[J.Non-crystalline-Sol.40,453(80)

  4. Consistent latent position estimation and vertex classification for random dot product graphs.

    PubMed

    Sussman, Daniel L; Tang, Minh; Priebe, Carey E

    2014-01-01

    In this work, we show that using the eigen-decomposition of the adjacency matrix, we can consistently estimate latent positions for random dot product graphs provided the latent positions are i.i.d. from some distribution. If class labels are observed for a number of vertices tending to infinity, then we show that the remaining vertices can be classified with error converging to Bayes optimal using the $(k)$-nearest-neighbors classification rule. We evaluate the proposed methods on simulated data and a graph derived from Wikipedia.

  5. Emergence of a spectral gap in a class of random matrices associated with split graphs

    NASA Astrophysics Data System (ADS)

    Bassler, Kevin E.; Zia, R. K. P.

    2018-01-01

    Motivated by the intriguing behavior displayed in a dynamic network that models a population of extreme introverts and extroverts (XIE), we consider the spectral properties of ensembles of random split graph adjacency matrices. We discover that, in general, a gap emerges in the bulk spectrum between -1 and 0 that contains a single eigenvalue. An analytic expression for the bulk distribution is derived and verified with numerical analysis. We also examine their relation to chiral ensembles, which are associated with bipartite graphs.

  6. Evolutionary Games of Multiplayer Cooperation on Graphs

    PubMed Central

    Arranz, Jordi; Traulsen, Arne

    2016-01-01

    There has been much interest in studying evolutionary games in structured populations, often modeled as graphs. However, most analytical results so far have only been obtained for two-player or linear games, while the study of more complex multiplayer games has been usually tackled by computer simulations. Here we investigate evolutionary multiplayer games on graphs updated with a Moran death-Birth process. For cycles, we obtain an exact analytical condition for cooperation to be favored by natural selection, given in terms of the payoffs of the game and a set of structure coefficients. For regular graphs of degree three and larger, we estimate this condition using a combination of pair approximation and diffusion approximation. For a large class of cooperation games, our approximations suggest that graph-structured populations are stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate our analytical approximations for random regular graphs and cycles, but show systematic differences for graphs with many loops such as lattices. In particular, our simulation results show that these kinds of graphs can even lead to more stringent conditions for the evolution of cooperation than well-mixed populations. Overall, we provide evidence suggesting that the complexity arising from many-player interactions and spatial structure can be captured by pair approximation in the case of random graphs, but that it need to be handled with care for graphs with high clustering. PMID:27513946

  7. Cooperation in the noisy case: Prisoner's dilemma game on two types of regular random graphs

    NASA Astrophysics Data System (ADS)

    Vukov, Jeromos; Szabó, György; Szolnoki, Attila

    2006-06-01

    We have studied an evolutionary prisoner’s dilemma game with players located on two types of random regular graphs with a degree of 4. The analysis is focused on the effects of payoffs and noise (temperature) on the maintenance of cooperation. When varying the noise level and/or the highest payoff, the system exhibits a second-order phase transition from a mixed state of cooperators and defectors to an absorbing state where only defectors remain alive. For the random regular graph (and Bethe lattice) the behavior of the system is similar to those found previously on the square lattice with nearest neighbor interactions, although the measure of cooperation is enhanced by the absence of loops in the connectivity structure. For low noise the optimal connectivity structure is built up from randomly connected triangles.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fangyan; Zhang, Song; Chung Wong, Pak

    Effectively visualizing large graphs and capturing the statistical properties are two challenging tasks. To aid in these two tasks, many sampling approaches for graph simplification have been proposed, falling into three categories: node sampling, edge sampling, and traversal-based sampling. It is still unknown which approach is the best. We evaluate commonly used graph sampling methods through a combined visual and statistical comparison of graphs sampled at various rates. We conduct our evaluation on three graph models: random graphs, small-world graphs, and scale-free graphs. Initial results indicate that the effectiveness of a sampling method is dependent on the graph model, themore » size of the graph, and the desired statistical property. This benchmark study can be used as a guideline in choosing the appropriate method for a particular graph sampling task, and the results presented can be incorporated into graph visualization and analysis tools.« less

  9. Exact and approximate graph matching using random walks.

    PubMed

    Gori, Marco; Maggini, Marco; Sarti, Lorenzo

    2005-07-01

    In this paper, we propose a general framework for graph matching which is suitable for different problems of pattern recognition. The pattern representation we assume is at the same time highly structured, like for classic syntactic and structural approaches, and of subsymbolic nature with real-valued features, like for connectionist and statistic approaches. We show that random walk based models, inspired by Google's PageRank, give rise to a spectral theory that nicely enhances the graph topological features at node level. As a straightforward consequence, we derive a polynomial algorithm for the classic graph isomorphism problem, under the restriction of dealing with Markovian spectrally distinguishable graphs (MSD), a class of graphs that does not seem to be easily reducible to others proposed in the literature. The experimental results that we found on different test-beds of the TC-15 graph database show that the defined MSD class "almost always" covers the database, and that the proposed algorithm is significantly more efficient than top scoring VF algorithm on the same data. Most interestingly, the proposed approach is very well-suited for dealing with partial and approximate graph matching problems, derived for instance from image retrieval tasks. We consider the objects of the COIL-100 visual collection and provide a graph-based representation, whose node's labels contain appropriate visual features. We show that the adoption of classic bipartite graph matching algorithms offers a straightforward generalization of the algorithm given for graph isomorphism and, finally, we report very promising experimental results on the COIL-100 visual collection.

  10. Existence of the Harmonic Measure for Random Walks on Graphs and in Random Environments

    NASA Astrophysics Data System (ADS)

    Boivin, Daniel; Rau, Clément

    2013-01-01

    We give a sufficient condition for the existence of the harmonic measure from infinity of transient random walks on weighted graphs. In particular, this condition is verified by the random conductance model on ℤ d , d≥3, when the conductances are i.i.d. and the bonds with positive conductance percolate. The harmonic measure from infinity also exists for random walks on supercritical clusters of ℤ2. This is proved using results of Barlow (Ann. Probab. 32:3024-3084, 2004) and Barlow and Hambly (Electron. J. Probab. 14(1):1-27, 2009).

  11. Interacting particle systems on graphs

    NASA Astrophysics Data System (ADS)

    Sood, Vishal

    In this dissertation, the dynamics of socially or biologically interacting populations are investigated. The individual members of the population are treated as particles that interact via links on a social or biological network represented as a graph. The effect of the structure of the graph on the properties of the interacting particle system is studied using statistical physics techniques. In the first chapter, the central concepts of graph theory and social and biological networks are presented. Next, interacting particle systems that are drawn from physics, mathematics and biology are discussed in the second chapter. In the third chapter, the random walk on a graph is studied. The mean time for a random walk to traverse between two arbitrary sites of a random graph is evaluated. Using an effective medium approximation it is found that the mean first-passage time between pairs of sites, as well as all moments of this first-passage time, are insensitive to the density of links in the graph. The inverse of the mean-first passage time varies non-monotonically with the density of links near the percolation transition of the random graph. Much of the behavior can be understood by simple heuristic arguments. Evolutionary dynamics, by which mutants overspread an otherwise uniform population on heterogeneous graphs, are studied in the fourth chapter. Such a process underlies' epidemic propagation, emergence of fads, social cooperation or invasion of an ecological niche by a new species. The first part of this chapter is devoted to neutral dynamics, in which the mutant genotype does not have a selective advantage over the resident genotype. The time to extinction of one of the two genotypes is derived. In the second part of this chapter, selective advantage or fitness is introduced such that the mutant genotype has a higher birth rate or a lower death rate. This selective advantage leads to a dynamical competition in which selection dominates for large populations, while for small populations the dynamics are similar to the neutral case. The likelihood for the fitter mutants to drive the resident genotype to extinction is calculated.

  12. Exploring the Consequences of IED Deployment with a Generalized Linear Model Implementation of the Canadian Traveller Problem

    DTIC Science & Technology

    2010-11-30

    Erdos- Renyi -Gilbert random graph [Erdos and Renyi , 1959; Gilbert, 1959], the Watts-Strogatz “small world” framework [Watts and Strogatz, 1998], and the...2003). Evolution of Networks. Oxford University Press, USA. Erdos, P. and Renyi , A. (1959). On Random Graphs. Publications Mathematicae, 6 290–297

  13. Empirical Determination of Pattern Match Confidence in Labeled Graphs

    DTIC Science & Technology

    2014-02-07

    were explored; Erdős–Rényi [6] random graphs, Barabási–Albert preferential attachment graphs [2], and Watts– Strogatz [18] small world graphs. The ER...B. Erdos - Renyi Barabasi - Albert Gr ap h Ty pe Strogatz - Watts Direct Within 2 nodes Within 4 nodes Search Limit 1 10 100 1000 10000 100000 100...Barabási–Albert (BA, crosses) and Watts– Strogatz (WS, trian- gles) graphs were generated with sizes ranging from 50 to 2500 nodes, and labeled

  14. An internet graph model based on trade-off optimization

    NASA Astrophysics Data System (ADS)

    Alvarez-Hamelin, J. I.; Schabanel, N.

    2004-03-01

    This paper presents a new model for the Internet graph (AS graph) based on the concept of heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in[CITE] to grow a random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations and an analysis of the standard parameters measured in our model, compared with measurements from the physical Internet graph.

  15. Multi-INT Complex Event Processing using Approximate, Incremental Graph Pattern Search

    DTIC Science & Technology

    2012-06-01

    graph pattern search and SPARQL queries . Total execution time for 10 executions each of 5 random pattern searches in synthetic data sets...01/11 1000 10000 100000 RDF triples Time (secs) 10 20 Graph pattern algorithm SPARQL queries Initial Performance Comparisons 09/18/11 2011 Thrust Area

  16. Interval Graph Limits

    PubMed Central

    Diaconis, Persi; Holmes, Susan; Janson, Svante

    2015-01-01

    We work out a graph limit theory for dense interval graphs. The theory developed departs from the usual description of a graph limit as a symmetric function W (x, y) on the unit square, with x and y uniform on the interval (0, 1). Instead, we fix a W and change the underlying distribution of the coordinates x and y. We find choices such that our limits are continuous. Connections to random interval graphs are given, including some examples. We also show a continuity result for the chromatic number and clique number of interval graphs. Some results on uniqueness of the limit description are given for general graph limits. PMID:26405368

  17. Coloring geographical threshold graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyzemore » the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.« less

  18. Statistically significant relational data mining :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Jonathan W.; Leung, Vitus Joseph; Phillips, Cynthia Ann

    This report summarizes the work performed under the project (3z(BStatitically significant relational data mining.(3y (BThe goal of the project was to add more statistical rigor to the fairly ad hoc area of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate algorithm quality. We concetrated on algorithms for community detection, approximate pattern matching, and graph similarity measures. Approximate pattern matching involves finding an instance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with uncertainty. This report gathers the abstracts and references for the eight refereed publicationsmore » that have appeared as part of this work. We then archive three pieces of research that have not yet been published. The first is theoretical and experimental evidence that a popular statistical measure for comparison of community assignments favors over-resolved communities over approximations to a ground truth. The second are statistically motivated methods for measuring the quality of an approximate match of a small pattern in a large graph. The third is a new probabilistic random graph model. Statisticians favor these models for graph analysis. The new local structure graph model overcomes some of the issues with popular models such as exponential random graph models and latent variable models.« less

  19. Spatial Search by Quantum Walk is Optimal for Almost all Graphs.

    PubMed

    Chakraborty, Shantanav; Novo, Leonardo; Ambainis, Andris; Omar, Yasser

    2016-03-11

    The problem of finding a marked node in a graph can be solved by the spatial search algorithm based on continuous-time quantum walks (CTQW). However, this algorithm is known to run in optimal time only for a handful of graphs. In this work, we prove that for Erdös-Renyi random graphs, i.e., graphs of n vertices where each edge exists with probability p, search by CTQW is almost surely optimal as long as p≥log^{3/2}(n)/n. Consequently, we show that quantum spatial search is in fact optimal for almost all graphs, meaning that the fraction of graphs of n vertices for which this optimality holds tends to one in the asymptotic limit. We obtain this result by proving that search is optimal on graphs where the ratio between the second largest and the largest eigenvalue is bounded by a constant smaller than 1. Finally, we show that we can extend our results on search to establish high fidelity quantum communication between two arbitrary nodes of a random network of interacting qubits, namely, to perform quantum state transfer, as well as entanglement generation. Our work shows that quantum information tasks typically designed for structured systems retain performance in very disordered structures.

  20. Bound Electron States in Skew-symmetric Quantum Wire Intersections

    DTIC Science & Technology

    2014-01-01

    18 1.2.3 Kirchhoffs Rule for Quantum Wires . . . . . . . . . . . 19 1.3 Novel numerical methods development . . . . . . . . . . . . . 19 2...regions, though this is not as obvious as it is for bulges. CHAPTER 1. LITERATURE REVIEW 19 1.2.3 Kirchhoffs Rule for Quantum Wires One particle quantum...scattering theory on an arbitrary finite graph with n open ends and where we define the Hamiltonian to be (minus) the Laplace operator with general

  1. Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal

    NASA Astrophysics Data System (ADS)

    Zamudio, Gabriel S.; José, Marco V.

    2018-03-01

    In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.

  2. An Analytical Framework for Fast Estimation of Capacity and Performance in Communication Networks

    DTIC Science & Technology

    2012-01-25

    standard random graph (due to Erdos- Renyi ) in the regime where the average degrees remain fixed (and above 1) and the number of nodes get large, is not...abs/1010.3305 (Oct 2010). [6] O. Narayan, I. Saniee, G. H. Tucci, “Lack of Spectral Gap and Hyperbolicity in Asymptotic Erdös- Renyi Random Graphs

  3. Evolution of tag-based cooperation on Erdős-Rényi random graphs

    NASA Astrophysics Data System (ADS)

    Lima, F. W. S.; Hadzibeganovic, Tarik; Stauffer, Dietrich

    2014-12-01

    Here, we study an agent-based model of the evolution of tag-mediated cooperation on Erdős-Rényi random graphs. In our model, agents with heritable phenotypic traits play pairwise Prisoner's Dilemma-like games and follow one of the four possible strategies: Ethnocentric, altruistic, egoistic and cosmopolitan. Ethnocentric and cosmopolitan strategies are conditional, i.e. their selection depends upon the shared phenotypic similarity among interacting agents. The remaining two strategies are always unconditional, meaning that egoists always defect while altruists always cooperate. Our simulations revealed that ethnocentrism can win in both early and later evolutionary stages on directed random graphs when reproduction of artificial agents was asexual; however, under the sexual mode of reproduction on a directed random graph, we found that altruists dominate initially for a rather short period of time, whereas ethnocentrics and egoists suppress other strategists and compete for dominance in the intermediate and later evolutionary stages. Among our results, we also find surprisingly regular oscillations which are not damped in the course of time even after half a million Monte Carlo steps. Unlike most previous studies, our findings highlight conditions under which ethnocentrism is less stable or suppressed by other competing strategies.

  4. Bayesian exponential random graph modelling of interhospital patient referral networks.

    PubMed

    Caimo, Alberto; Pallotti, Francesca; Lomi, Alessandro

    2017-08-15

    Using original data that we have collected on referral relations between 110 hospitals serving a large regional community, we show how recently derived Bayesian exponential random graph models may be adopted to illuminate core empirical issues in research on relational coordination among healthcare organisations. We show how a rigorous Bayesian computation approach supports a fully probabilistic analytical framework that alleviates well-known problems in the estimation of model parameters of exponential random graph models. We also show how the main structural features of interhospital patient referral networks that prior studies have described can be reproduced with accuracy by specifying the system of local dependencies that produce - but at the same time are induced by - decentralised collaborative arrangements between hospitals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Percolation in real interdependent networks

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo

    2015-07-01

    The function of a real network depends not only on the reliability of its own components, but is affected also by the simultaneous operation of other real networks coupled with it. Whereas theoretical methods of direct applicability to real isolated networks exist, the frameworks developed so far in percolation theory for interdependent network layers are of little help in practical contexts, as they are suited only for special models in the limit of infinite size. Here, we introduce a set of heuristic equations that takes as inputs the adjacency matrices of the layers to draw the entire phase diagram for the interconnected network. We demonstrate that percolation transitions in interdependent networks can be understood by decomposing these systems into uncoupled graphs: the intersection among the layers, and the remainders of the layers. When the intersection dominates the remainders, an interconnected network undergoes a smooth percolation transition. Conversely, if the intersection is dominated by the contribution of the remainders, the transition becomes abrupt even in small networks. We provide examples of real systems that have developed interdependent networks sharing cores of `high quality’ edges to prevent catastrophic failures.

  6. Graph Kernels for Molecular Similarity.

    PubMed

    Rupp, Matthias; Schneider, Gisbert

    2010-04-12

    Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Information Selection in Intelligence Processing

    DTIC Science & Technology

    2011-12-01

    given. Edges connecting nodes representing irrelevant persons with either relevant or irrelevant persons are added randomly, as in an Erdos- Renyi ...graph (Erdos at Renyi , 1959): For each irrelevant node i , and another node j (either relevant or irrelevant) there is a predetermined probability that...statistics for engineering and the sciences (7th ed.). Boston: Duxbury Press. Erdos, P., & Renyi , A. (1959). “On Random Graphs,” Publicationes

  8. A characterization of horizontal visibility graphs and combinatorics on words

    NASA Astrophysics Data System (ADS)

    Gutin, Gregory; Mansour, Toufik; Severini, Simone

    2011-06-01

    A Horizontal Visibility Graph (HVG) is defined in association with an ordered set of non-negative reals. HVGs realize a methodology in the analysis of time series, their degree distribution being a good discriminator between randomness and chaos Luque et al. [B. Luque, L. Lacasa, F. Ballesteros, J. Luque, Horizontal visibility graphs: exact results for random time series, Phys. Rev. E 80 (2009), 046103]. We prove that a graph is an HVG if and only if it is outerplanar and has a Hamilton path. Therefore, an HVG is a noncrossing graph, as defined in algebraic combinatorics Flajolet and Noy [P. Flajolet, M. Noy, Analytic combinatorics of noncrossing configurations, Discrete Math., 204 (1999) 203-229]. Our characterization of HVGs implies a linear time recognition algorithm. Treating ordered sets as words, we characterize subfamilies of HVGs highlighting various connections with combinatorial statistics and introducing the notion of a visible pair. With this technique, we determine asymptotically the average number of edges of HVGs.

  9. Quantum walk on a chimera graph

    NASA Astrophysics Data System (ADS)

    Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.

    2018-05-01

    We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.

  10. Matched signal detection on graphs: Theory and application to brain imaging data classification.

    PubMed

    Hu, Chenhui; Sepulcre, Jorge; Johnson, Keith A; Fakhri, Georges E; Lu, Yue M; Li, Quanzheng

    2016-01-15

    Motivated by recent progress in signal processing on graphs, we have developed a matched signal detection (MSD) theory for signals with intrinsic structures described by weighted graphs. First, we regard graph Laplacian eigenvalues as frequencies of graph-signals and assume that the signal is in a subspace spanned by the first few graph Laplacian eigenvectors associated with lower eigenvalues. The conventional matched subspace detector can be applied to this case. Furthermore, we study signals that may not merely live in a subspace. Concretely, we consider signals with bounded variation on graphs and more general signals that are randomly drawn from a prior distribution. For bounded variation signals, the test is a weighted energy detector. For the random signals, the test statistic is the difference of signal variations on associated graphs, if a degenerate Gaussian distribution specified by the graph Laplacian is adopted. We evaluate the effectiveness of the MSD on graphs both with simulated and real data sets. Specifically, we apply MSD to the brain imaging data classification problem of Alzheimer's disease (AD) based on two independent data sets: 1) positron emission tomography data with Pittsburgh compound-B tracer of 30 AD and 40 normal control (NC) subjects, and 2) resting-state functional magnetic resonance imaging (R-fMRI) data of 30 early mild cognitive impairment and 20 NC subjects. Our results demonstrate that the MSD approach is able to outperform the traditional methods and help detect AD at an early stage, probably due to the success of exploiting the manifold structure of the data. Copyright © 2015. Published by Elsevier Inc.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberger, Seth A.; Klymko, Christine F.; Henderson, Keith A.

    Betweenness centrality is a graph statistic used to nd vertices that are participants in a large number of shortest paths in a graph. This centrality measure is commonly used in path and network interdiction problems and its complete form requires the calculation of all-pairs shortest paths for each vertex. This leads to a time complexity of O(jV jjEj), which is impractical for large graphs. Estimation of betweenness centrality has focused on performing shortest-path calculations on a subset of randomly- selected vertices. This reduces the complexity of the centrality estimation to O(jSjjEj); jSj < jV j, which can be scaled appropriatelymore » based on the computing resources available. An estimation strategy that uses random selection of vertices for seed selection is fast and simple to implement, but may not provide optimal estimation of betweenness centrality when the number of samples is constrained. Our experimentation has identi ed a number of alternate seed-selection strategies that provide lower error than random selection in common scale-free graphs. These strategies are discussed and experimental results are presented.« less

  12. Maximum efficiency of state-space models of nanoscale energy conversion devices

    NASA Astrophysics Data System (ADS)

    Einax, Mario; Nitzan, Abraham

    2016-07-01

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  13. Maximum efficiency of state-space models of nanoscale energy conversion devices.

    PubMed

    Einax, Mario; Nitzan, Abraham

    2016-07-07

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  14. Estimation of crossing conflict at signalized intersection using high-resolution traffic data : final report.

    DOT National Transportation Integrated Search

    2017-03-01

    This project explores the possibility of using high-resolution traffic signal data to evaluate intersection safety. : Traditional methods using historical crash data collected from infrequently and randomly occurring vehicle : collisions can require ...

  15. Distribution of diameters for Erdős-Rényi random graphs.

    PubMed

    Hartmann, A K; Mézard, M

    2018-03-01

    We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity c. The diameter d is the maximum among all the shortest distances between pairs of nodes in a graph and an important quantity for all dynamic processes taking place on graphs. Here we study the distribution P(d) numerically for various values of c, in the nonpercolating and percolating regimes. Using large-deviation techniques, we are able to reach small probabilities like 10^{-100} which allow us to obtain the distribution over basically the full range of the support, for graphs up to N=1000 nodes. For values c<1, our results are in good agreement with analytical results, proving the reliability of our numerical approach. For c>1 the distribution is more complex and no complete analytical results are available. For this parameter range, P(d) exhibits an inflection point, which we found to be related to a structural change of the graphs. For all values of c, we determined the finite-size rate function Φ(d/N) and were able to extrapolate numerically to N→∞, indicating that the large-deviation principle holds.

  16. Distribution of diameters for Erdős-Rényi random graphs

    NASA Astrophysics Data System (ADS)

    Hartmann, A. K.; Mézard, M.

    2018-03-01

    We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity c . The diameter d is the maximum among all the shortest distances between pairs of nodes in a graph and an important quantity for all dynamic processes taking place on graphs. Here we study the distribution P (d ) numerically for various values of c , in the nonpercolating and percolating regimes. Using large-deviation techniques, we are able to reach small probabilities like 10-100 which allow us to obtain the distribution over basically the full range of the support, for graphs up to N =1000 nodes. For values c <1 , our results are in good agreement with analytical results, proving the reliability of our numerical approach. For c >1 the distribution is more complex and no complete analytical results are available. For this parameter range, P (d ) exhibits an inflection point, which we found to be related to a structural change of the graphs. For all values of c , we determined the finite-size rate function Φ (d /N ) and were able to extrapolate numerically to N →∞ , indicating that the large-deviation principle holds.

  17. Weights and topology: a study of the effects of graph construction on 3D image segmentation.

    PubMed

    Grady, Leo; Jolly, Marie-Pierre

    2008-01-01

    Graph-based algorithms have become increasingly popular for medical image segmentation. The fundamental process for each of these algorithms is to use the image content to generate a set of weights for the graph and then set conditions for an optimal partition of the graph with respect to these weights. To date, the heuristics used for generating the weighted graphs from image intensities have largely been ignored, while the primary focus of attention has been on the details of providing the partitioning conditions. In this paper we empirically study the effects of graph connectivity and weighting function on the quality of the segmentation results. To control for algorithm-specific effects, we employ both the Graph Cuts and Random Walker algorithms in our experiments.

  18. Proceedings of the Workshop on Future Directions in Computer Architecture and Software, Held in Charleston, South Carolina on 5-7 May 1986,

    DTIC Science & Technology

    1986-08-30

    as write traffic begins to interfere with access sor, and a moderate performance bus, it is to each cache. (3) Directory methods (see, e.g. possible...less reliable because of the greater possibility of interference . Ease of programming is important. Mapping a complicated algorithm flow graph to a... interference . These features enable the use of fine granularity and recon- figurabilitv. Each intersection in a crossba, witch. Fig. 2a. ha, a switch

  19. Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen E.; Humble, Travis S.

    2017-04-01

    Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. In an effort to reduce the complexity of the minor embedding problem, we introduce the minor set cover (MSC) of a known graph G: a subset of graph minors which contain any remaining minor of the graph as a subgraph. Any graph that can be embedded into G will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, which is a complete bipartite graph. We show that the complete bipartite graph K_{N,N} has a MSC of N minors, from which K_{N+1} is identified as the largest clique minor of K_{N,N}. The case of determining the largest clique minor of hardware with faults is briefly discussed but remains an open question.

  20. Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets

    DOE PAGES

    Hamilton, Kathleen E.; Humble, Travis S.

    2017-02-23

    Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. We introduce the minor set cover (MSC) of a known graph GG : a subset of graph minors which contain any remaining minor of the graph as a subgraph, in an effort to reduce the complexity of the minor embedding problem. Any graph that can be embedded into GG will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, whichmore » is a complete bipartite graph. Furthermore, we show that the complete bipartite graph K N,N has a MSC of N minors, from which K N+1 is identified as the largest clique minor of K N,N. In the case of determining the largest clique minor of hardware with faults we briefly discussed this open question.« less

  1. graphkernels: R and Python packages for graph comparison

    PubMed Central

    Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-01-01

    Abstract Summary Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. Availability and implementation The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. Contact mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch Supplementary information Supplementary data are available online at Bioinformatics. PMID:29028902

  2. Detecting labor using graph theory on connectivity matrices of uterine EMG.

    PubMed

    Al-Omar, S; Diab, A; Nader, N; Khalil, M; Karlsson, B; Marque, C

    2015-08-01

    Premature labor is one of the most serious health problems in the developed world. One of the main reasons for this is that no good way exists to distinguish true labor from normal pregnancy contractions. The aim of this paper is to investigate if the application of graph theory techniques to multi-electrode uterine EMG signals can improve the discrimination between pregnancy contractions and labor. To test our methods we first applied them to synthetic graphs where we detected some differences in the parameters results and changes in the graph model from pregnancy-like graphs to labor-like graphs. Then, we applied the same methods to real signals. We obtained the best differentiation between pregnancy and labor through the same parameters. Major improvements in differentiating between pregnancy and labor were obtained using a low pass windowing preprocessing step. Results show that real graphs generally became more organized when moving from pregnancy, where the graph showed random characteristics, to labor where the graph became a more small-world like graph.

  3. graphkernels: R and Python packages for graph comparison.

    PubMed

    Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-02-01

    Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Elsasser, Robert; Friedrich, Tobias

    In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or themore » giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.« less

  5. Multivariate random-parameters zero-inflated negative binomial regression model: an application to estimate crash frequencies at intersections.

    PubMed

    Dong, Chunjiao; Clarke, David B; Yan, Xuedong; Khattak, Asad; Huang, Baoshan

    2014-09-01

    Crash data are collected through police reports and integrated with road inventory data for further analysis. Integrated police reports and inventory data yield correlated multivariate data for roadway entities (e.g., segments or intersections). Analysis of such data reveals important relationships that can help focus on high-risk situations and coming up with safety countermeasures. To understand relationships between crash frequencies and associated variables, while taking full advantage of the available data, multivariate random-parameters models are appropriate since they can simultaneously consider the correlation among the specific crash types and account for unobserved heterogeneity. However, a key issue that arises with correlated multivariate data is the number of crash-free samples increases, as crash counts have many categories. In this paper, we describe a multivariate random-parameters zero-inflated negative binomial (MRZINB) regression model for jointly modeling crash counts. The full Bayesian method is employed to estimate the model parameters. Crash frequencies at urban signalized intersections in Tennessee are analyzed. The paper investigates the performance of MZINB and MRZINB regression models in establishing the relationship between crash frequencies, pavement conditions, traffic factors, and geometric design features of roadway intersections. Compared to the MZINB model, the MRZINB model identifies additional statistically significant factors and provides better goodness of fit in developing the relationships. The empirical results show that MRZINB model possesses most of the desirable statistical properties in terms of its ability to accommodate unobserved heterogeneity and excess zero counts in correlated data. Notably, in the random-parameters MZINB model, the estimated parameters vary significantly across intersections for different crash types. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Scale-free characteristics of random networks: the topology of the world-wide web

    NASA Astrophysics Data System (ADS)

    Barabási, Albert-László; Albert, Réka; Jeong, Hawoong

    2000-06-01

    The world-wide web forms a large directed graph, whose vertices are documents and edges are links pointing from one document to another. Here we demonstrate that despite its apparent random character, the topology of this graph has a number of universal scale-free characteristics. We introduce a model that leads to a scale-free network, capturing in a minimal fashion the self-organization processes governing the world-wide web.

  7. Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.

    2018-05-01

    Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shrinking linking range, the number of isolated nodes is Poisson distributed, and the probability of no isolated nodes is equal to the probability the whole graph is connected. Here we examine these properties for several self-similar node distributions, including smooth and fractal, uniform and nonuniform, and finitely ramified or otherwise. We show that nonuniformity can break the Poisson distribution property, but it strengthens the link between isolation and connectivity. It also stretches out the connectivity transition. Finite ramification is another mechanism for lack of connectivity. The same considerations apply to fractal distributions as smooth, with some technical differences in evaluation of the integrals and analytical arguments.

  8. Typical performance of approximation algorithms for NP-hard problems

    NASA Astrophysics Data System (ADS)

    Takabe, Satoshi; Hukushima, Koji

    2016-11-01

    Typical performance of approximation algorithms is studied for randomized minimum vertex cover problems. A wide class of random graph ensembles characterized by an arbitrary degree distribution is discussed with the presentation of a theoretical framework. Herein, three approximation algorithms are examined: linear-programming relaxation, loopy-belief propagation, and the leaf-removal algorithm. The former two algorithms are analyzed using a statistical-mechanical technique, whereas the average-case analysis of the last one is conducted using the generating function method. These algorithms have a threshold in the typical performance with increasing average degree of the random graph, below which they find true optimal solutions with high probability. Our study reveals that there exist only three cases, determined by the order of the typical performance thresholds. In addition, we provide some conditions for classification of the graph ensembles and demonstrate explicitly some examples for the difference in thresholds.

  9. Small-world bias of correlation networks: From brain to climate

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan

    2017-03-01

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

  10. Small-world bias of correlation networks: From brain to climate.

    PubMed

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan

    2017-03-01

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

  11. Visibility graphs of random scalar fields and spatial data

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas; Iacovacci, Jacopo

    2017-07-01

    We extend the family of visibility algorithms to map scalar fields of arbitrary dimension into graphs, enabling the analysis of spatially extended data structures as networks. We introduce several possible extensions and provide analytical results on the topological properties of the graphs associated to different types of real-valued matrices, which can be understood as the high and low disorder limits of real-valued scalar fields. In particular, we find a closed expression for the degree distribution of these graphs associated to uncorrelated random fields of generic dimension. This result holds independently of the field's marginal distribution and it directly yields a statistical randomness test, applicable in any dimension. We showcase its usefulness by discriminating spatial snapshots of two-dimensional white noise from snapshots of a two-dimensional lattice of diffusively coupled chaotic maps, a system that generates high dimensional spatiotemporal chaos. The range of potential applications of this combinatorial framework includes image processing in engineering, the description of surface growth in material science, soft matter or medicine, and the characterization of potential energy surfaces in chemistry, disordered systems, and high energy physics. An illustration on the applicability of this method for the classification of the different stages involved in carcinogenesis is briefly discussed.

  12. Overlapping clusters for distributed computation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirrokni, Vahab; Andersen, Reid; Gleich, David F.

    2010-11-01

    Scalable, distributed algorithms must address communication problems. We investigate overlapping clusters, or vertex partitions that intersect, for graph computations. This setup stores more of the graph than required but then affords the ease of implementation of vertex partitioned algorithms. Our hope is that this technique allows us to reduce communication in a computation on a distributed graph. The motivation above draws on recent work in communication avoiding algorithms. Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an overlapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for a Schwarz method. Both techniques extend an initialmore » partitioning with overlap. Our procedure generates overlap directly. Indeed, Schwarz methods are commonly used to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature 2009; Mishra et al. WAW2007) are now a popular model of structure in social networks. These have long been studied in statistics (Cole and Wishart, CompJ 1970). We present two types of results: (i) an estimated swapping probability {rho}{infinity}; and (ii) the communication volume of a parallel PageRank solution (link-following {alpha} = 0.85) using an additive Schwarz method. The volume ratio is the amount of extra storage for the overlap (2 means we store the graph twice). Below, as the ratio increases, the swapping probability and PageRank communication volume decreases.« less

  13. Optimal Quantum Spatial Search on Random Temporal Networks

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  14. Measuring Academic Progress of Students with Learning Difficulties: A Comparison of the Semi-Logarithmic Chart and Equal Interval Graph Paper.

    ERIC Educational Resources Information Center

    Marston, Doug; Deno, Stanley L.

    The accuracy of predictions of future student performance on the basis of graphing data on semi-logarithmic charts and equal interval graphs was examined. All 83 low-achieving students in grades 3 to 6 read randomly-selected lists of words from the Harris-Jacobson Word List for 1 minute. The number of words read correctly and words read…

  15. The many faces of graph dynamics

    NASA Astrophysics Data System (ADS)

    Pignolet, Yvonne Anne; Roy, Matthieu; Schmid, Stefan; Tredan, Gilles

    2017-06-01

    The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a ‘one fits it all’ model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.

  16. Growth and structure of the World Wide Web: Towards realistic modeling

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka

    2002-08-01

    We simulate evolution of the World Wide Web from the dynamic rules incorporating growth, bias attachment, and rewiring. We show that the emergent double-hierarchical structure with distinct distributions of out- and in-links is comparable with the observed empirical data when the control parameter (average graph flexibility β) is kept in the range β=3-4. We then explore the Web graph by simulating (a) Web crawling to determine size and depth of connected components, and (b) a random walker that discovers the structure of connected subgraphs with dominant attractor and promoter nodes. A random walker that adapts its move strategy to mimic local node linking preferences is shown to have a short access time to "important" nodes on the Web graph.

  17. Exactly solvable random graph ensemble with extensively many short cycles

    NASA Astrophysics Data System (ADS)

    Aguirre López, Fabián; Barucca, Paolo; Fekom, Mathilde; Coolen, Anthony C. C.

    2018-02-01

    We introduce and analyse ensembles of 2-regular random graphs with a tuneable distribution of short cycles. The phenomenology of these graphs depends critically on the scaling of the ensembles’ control parameters relative to the number of nodes. A phase diagram is presented, showing a second order phase transition from a connected to a disconnected phase. We study both the canonical formulation, where the size is large but fixed, and the grand canonical formulation, where the size is sampled from a discrete distribution, and show their equivalence in the thermodynamical limit. We also compute analytically the spectral density, which consists of a discrete set of isolated eigenvalues, representing short cycles, and a continuous part, representing cycles of diverging size.

  18. Quasirandom geometric networks from low-discrepancy sequences

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto

    2017-08-01

    We define quasirandom geometric networks using low-discrepancy sequences, such as Halton, Sobol, and Niederreiter. The networks are built in d dimensions by considering the d -tuples of digits generated by these sequences as the coordinates of the vertices of the networks in a d -dimensional Id unit hypercube. Then, two vertices are connected by an edge if they are at a distance smaller than a connection radius. We investigate computationally 11 network-theoretic properties of two-dimensional quasirandom networks and compare them with analogous random geometric networks. We also study their degree distribution and their spectral density distributions. We conclude from this intensive computational study that in terms of the uniformity of the distribution of the vertices in the unit square, the quasirandom networks look more random than the random geometric networks. We include an analysis of potential strategies for generating higher-dimensional quasirandom networks, where it is know that some of the low-discrepancy sequences are highly correlated. In this respect, we conclude that up to dimension 20, the use of scrambling, skipping and leaping strategies generate quasirandom networks with the desired properties of uniformity. Finally, we consider a diffusive process taking place on the nodes and edges of the quasirandom and random geometric graphs. We show that the diffusion time is shorter in the quasirandom graphs as a consequence of their larger structural homogeneity. In the random geometric graphs the diffusion produces clusters of concentration that make the process more slow. Such clusters are a direct consequence of the heterogeneous and irregular distribution of the nodes in the unit square in which the generation of random geometric graphs is based on.

  19. Bridges in complex networks

    NASA Astrophysics Data System (ADS)

    Wu, Ang-Kun; Tian, Liang; Liu, Yang-Yu

    2018-01-01

    A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized counterparts. We find that real networks typically have more bridges than their completely randomized counterparts, but they have a fraction of bridges that is very similar to their degree-preserving randomizations. We define an edge centrality measure, called bridgeness, to quantify the importance of a bridge in damaging a network. We find that certain real networks have a very large average and variance of bridgeness compared to their degree-preserving randomizations and other real networks. Finally, we offer an analytical framework to calculate the bridge fraction and the average and variance of bridgeness for uncorrelated random networks with arbitrary degree distributions.

  20. Electric field theory based approach to search-direction line definition in image segmentation: application to optimal femur-tibia cartilage segmentation in knee-joint 3-D MR

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Sonka, M.

    2010-03-01

    A novel method is presented for definition of search lines in a variety of surface segmentation approaches. The method is inspired by properties of electric field direction lines and is applicable to general-purpose n-D shapebased image segmentation tasks. Its utility is demonstrated in graph construction and optimal segmentation of multiple mutually interacting objects. The properties of the electric field-based graph construction guarantee that inter-object graph connecting lines are non-intersecting and inherently covering the entire object-interaction space. When applied to inter-object cross-surface mapping, our approach generates one-to-one and all-to-all vertex correspondent pairs between the regions of mutual interaction. We demonstrate the benefits of the electric field approach in several examples ranging from relatively simple single-surface segmentation to complex multiobject multi-surface segmentation of femur-tibia cartilage. The performance of our approach is demonstrated in 60 MR images from the Osteoarthritis Initiative (OAI), in which our approach achieved a very good performance as judged by surface positioning errors (average of 0.29 and 0.59 mm for signed and unsigned cartilage positioning errors, respectively).

  1. Edge grouping combining boundary and region information.

    PubMed

    Stahl, Joachim S; Wang, Song

    2007-10-01

    This paper introduces a new edge-grouping method to detect perceptually salient structures in noisy images. Specifically, we define a new grouping cost function in a ratio form, where the numerator measures the boundary proximity of the resulting structure and the denominator measures the area of the resulting structure. This area term introduces a preference towards detecting larger-size structures and, therefore, makes the resulting edge grouping more robust to image noise. To find the optimal edge grouping with the minimum grouping cost, we develop a special graph model with two different kinds of edges and then reduce the grouping problem to finding a special kind of cycle in this graph with a minimum cost in ratio form. This optimal cycle-finding problem can be solved in polynomial time by a previously developed graph algorithm. We implement this edge-grouping method, test it on both synthetic data and real images, and compare its performance against several available edge-grouping and edge-linking methods. Furthermore, we discuss several extensions of the proposed method, including the incorporation of the well-known grouping cues of continuity and intensity homogeneity, introducing a factor to balance the contributions from the boundary and region information, and the prevention of detecting self-intersecting boundaries.

  2. Paving the Way Towards Reactive Planar Spanner Construction in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Frey, Hannes; Rührup, Stefan

    A spanner is a subgraph of a given graph that supports the original graph's shortest path lengths up to a constant factor. Planar spanners and their distributed construction are of particular interest for geographic routing, which is an efficient localized routing scheme for wireless ad hoc and sensor networks. Planarity of the network graph is a key criterion for guaranteed delivery, while the spanner property supports efficiency in terms of path length. We consider the problem of reactive local spanner construction, where a node's local topology is determined on demand. Known message-efficient reactive planarization algorithms do not preserve the spanner property, while reactive spanner constructions with a low message overhead have not been described so far. We introduce the concept of direct planarization which may be an enabler of efficient reactive spanner construction. Given an edge, nodes check for all incident intersecting edges a certain geometric criterion and withdraw the edge if this criterion is not satisfied. We use this concept to derive a generic reactive topology control mechanism and consider two geometric criteria. Simulation results show that direct planarization increases the performance of localized geographic routing by providing shorter paths than existing reactive approaches.

  3. The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.

    PubMed

    Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; De Bacco, Caterina; Franz, Silvio

    2015-01-01

    We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length.

  4. The Edge-Disjoint Path Problem on Random Graphs by Message-Passing

    PubMed Central

    2015-01-01

    We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102

  5. Antiferromagnetic Potts Model on the Erdős-Rényi Random Graph

    NASA Astrophysics Data System (ADS)

    Contucci, Pierluigi; Dommers, Sander; Giardinà, Cristian; Starr, Shannon

    2013-10-01

    We study the antiferromagnetic Potts model on the Poissonian Erdős-Rényi random graph. By identifying a suitable interpolation structure and an extended variational principle, together with a positive temperature second-moment analysis we prove the existence of a phase transition at a positive critical temperature. Upper and lower bounds on the temperature critical value are obtained from the stability analysis of the replica symmetric solution (recovered in the framework of Derrida-Ruelle probability cascades) and from an entropy positivity argument.

  6. Finding paths in tree graphs with a quantum walk

    NASA Astrophysics Data System (ADS)

    Koch, Daniel; Hillery, Mark

    2018-01-01

    We analyze the potential for different types of searches using the formalism of scattering random walks on quantum computers. Given a particular type of graph consisting of nodes and connections, a "tree maze," we would like to find a selected final node as quickly as possible, faster than any classical search algorithm. We show that this can be done using a quantum random walk, both through numerical calculations as well as by using the eigenvectors and eigenvalues of the quantum system.

  7. Convergence of the Graph Allen-Cahn Scheme

    NASA Astrophysics Data System (ADS)

    Luo, Xiyang; Bertozzi, Andrea L.

    2017-05-01

    The graph Laplacian and the graph cut problem are closely related to Markov random fields, and have many applications in clustering and image segmentation. The diffuse interface model is widely used for modeling in material science, and can also be used as a proxy to total variation minimization. In Bertozzi and Flenner (Multiscale Model Simul 10(3):1090-1118, 2012), an algorithm was developed to generalize the diffuse interface model to graphs to solve the graph cut problem. This work analyzes the conditions for the graph diffuse interface algorithm to converge. Using techniques from numerical PDE and convex optimization, monotonicity in function value and convergence under an a posteriori condition are shown for a class of schemes under a graph-independent stepsize condition. We also generalize our results to incorporate spectral truncation, a common technique used to save computation cost, and also to the case of multiclass classification. Various numerical experiments are done to compare theoretical results with practical performance.

  8. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.

    PubMed

    Shang, Yilun

    2015-01-01

    Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

  9. The genealogy of samples in models with selection.

    PubMed

    Neuhauser, C; Krone, S M

    1997-02-01

    We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models. DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case.

  10. The Genealogy of Samples in Models with Selection

    PubMed Central

    Neuhauser, C.; Krone, S. M.

    1997-01-01

    We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models, DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case. PMID:9071604

  11. Site- and bond-percolation thresholds in K_{n,n}-based lattices: Vulnerability of quantum annealers to random qubit and coupler failures on chimera topologies.

    PubMed

    Melchert, O; Katzgraber, Helmut G; Novotny, M A

    2016-04-01

    We estimate the critical thresholds of bond and site percolation on nonplanar, effectively two-dimensional graphs with chimeralike topology. The building blocks of these graphs are complete and symmetric bipartite subgraphs of size 2n, referred to as K_{n,n} graphs. For the numerical simulations we use an efficient union-find-based algorithm and employ a finite-size scaling analysis to obtain the critical properties for both bond and site percolation. We report the respective percolation thresholds for different sizes of the bipartite subgraph and verify that the associated universality class is that of standard two-dimensional percolation. For the canonical chimera graph used in the D-Wave Systems Inc. quantum annealer (n=4), we discuss device failure in terms of network vulnerability, i.e., we determine the critical fraction of qubits and couplers that can be absent due to random failures prior to losing large-scale connectivity throughout the device.

  12. Listing triangles in expected linear time on a class of power law graphs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordman, Daniel J.; Wilson, Alyson G.; Phillips, Cynthia Ann

    Enumerating triangles (3-cycles) in graphs is a kernel operation for social network analysis. For example, many community detection methods depend upon finding common neighbors of two related entities. We consider Cohen's simple and elegant solution for listing triangles: give each node a 'bucket.' Place each edge into the bucket of its endpoint of lowest degree, breaking ties consistently. Each node then checks each pair of edges in its bucket, testing for the adjacency that would complete that triangle. Cohen presents an informal argument that his algorithm should run well on real graphs. We formalize this argument by providing an analysismore » for the expected running time on a class of random graphs, including power law graphs. We consider a rigorously defined method for generating a random simple graph, the erased configuration model (ECM). In the ECM each node draws a degree independently from a marginal degree distribution, endpoints pair randomly, and we erase self loops and multiedges. If the marginal degree distribution has a finite second moment, it follows immediately that Cohen's algorithm runs in expected linear time. Furthermore, it can still run in expected linear time even when the degree distribution has such a heavy tail that the second moment is not finite. We prove that Cohen's algorithm runs in expected linear time when the marginal degree distribution has finite 4/3 moment and no vertex has degree larger than {radical}n. In fact we give the precise asymptotic value of the expected number of edge pairs per bucket. A finite 4/3 moment is required; if it is unbounded, then so is the number of pairs. The marginal degree distribution of a power law graph has bounded 4/3 moment when its exponent {alpha} is more than 7/3. Thus for this class of power law graphs, with degree at most {radical}n, Cohen's algorithm runs in expected linear time. This is precisely the value of {alpha} for which the clustering coefficient tends to zero asymptotically, and it is in the range that is relevant for the degree distribution of the World-Wide Web.« less

  13. On the generality of the topological theory of visual shape perception.

    PubMed

    Kanbe, Fumio

    2013-01-01

    This study used a series of six closely related experiments to examine whether individuals use topological structures to discriminate figures. Strict control was exerted over the selection of stimuli, which were a specific type of randomly generated lined figures that can be classified using isomorphic sets defined by graph theory. Any two figures within an isomorphic set possessed the same topological structure. The experiments described here used a same/different discrimination task with simultaneously presented pairs of figures: (a) identical pairs (Id pairs), in which each pair of figures had the same topological and superficial properties; (b) nonidentical and isomorphic pairs (Iso pairs), in which each pair had the same topological but different superficial properties; and (c) nonidentical and nonisomorphic pairs (Noniso pairs), in which each pair had different topological properties. Within these experiments I varied the conditions related to the intersecting line segments, presentation of points defining each figure, figure complexity, stimulus aspect ratios, and the parity of the total line-segment lengths between the figures in each pair. These variations showed that the latencies for making accurate discriminations were shorter for Noniso pairs than for Iso pairs, suggesting that individuals are sensitive to topology when distinguishing figures.

  14. Automatic Molecular Design using Evolutionary Techniques

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    Molecular nanotechnology is the precise, three-dimensional control of materials and devices at the atomic scale. An important part of nanotechnology is the design of molecules for specific purposes. This paper describes early results using genetic software techniques to automatically design molecules under the control of a fitness function. The fitness function must be capable of determining which of two arbitrary molecules is better for a specific task. The software begins by generating a population of random molecules. The population is then evolved towards greater fitness by randomly combining parts of the better individuals to create new molecules. These new molecules then replace some of the worst molecules in the population. The unique aspect of our approach is that we apply genetic crossover to molecules represented by graphs, i.e., sets of atoms and the bonds that connect them. We present evidence suggesting that crossover alone, operating on graphs, can evolve any possible molecule given an appropriate fitness function and a population containing both rings and chains. Prior work evolved strings or trees that were subsequently processed to generate molecular graphs. In principle, genetic graph software should be able to evolve other graph representable systems such as circuits, transportation networks, metabolic pathways, computer networks, etc.

  15. Scale-free Graphs for General Aviation Flight Schedules

    NASA Technical Reports Server (NTRS)

    Alexandov, Natalia M. (Technical Monitor); Kincaid, Rex K.

    2003-01-01

    In the late 1990s a number of researchers noticed that networks in biology, sociology, and telecommunications exhibited similar characteristics unlike standard random networks. In particular, they found that the cummulative degree distributions of these graphs followed a power law rather than a binomial distribution and that their clustering coefficients tended to a nonzero constant as the number of nodes, n, became large rather than O(1/n). Moreover, these networks shared an important property with traditional random graphs as n becomes large the average shortest path length scales with log n. This latter property has been coined the small-world property. When taken together these three properties small-world, power law, and constant clustering coefficient describe what are now most commonly referred to as scale-free networks. Since 1997 at least six books and over 400 articles have been written about scale-free networks. In this manuscript an overview of the salient characteristics of scale-free networks. Computational experience will be provided for two mechanisms that grow (dynamic) scale-free graphs. Additional computational experience will be given for constructing (static) scale-free graphs via a tabu search optimization approach. Finally, a discussion of potential applications to general aviation networks is given.

  16. Bayesian Analysis for Exponential Random Graph Models Using the Adaptive Exchange Sampler.

    PubMed

    Jin, Ick Hoon; Yuan, Ying; Liang, Faming

    2013-10-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the intractable normalizing constant and model degeneracy. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the intractable normalizing constant and model degeneracy issues encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.

  17. Sudden emergence of q-regular subgraphs in random graphs

    NASA Astrophysics Data System (ADS)

    Pretti, M.; Weigt, M.

    2006-07-01

    We investigate the computationally hard problem whether a random graph of finite average vertex degree has an extensively large q-regular subgraph, i.e., a subgraph with all vertices having degree equal to q. We reformulate this problem as a constraint-satisfaction problem, and solve it using the cavity method of statistical physics at zero temperature. For q = 3, we find that the first large q-regular subgraphs appear discontinuously at an average vertex degree c3 - reg simeq 3.3546 and contain immediately about 24% of all vertices in the graph. This transition is extremely close to (but different from) the well-known 3-core percolation point c3 - core simeq 3.3509. For q > 3, the q-regular subgraph percolation threshold is found to coincide with that of the q-core.

  18. U-Th-Pb systematics on lunar rocks and inferences about lunar evolution and the age of the moon

    NASA Technical Reports Server (NTRS)

    Tera, F.; Wasserburg, G. J.

    1974-01-01

    The investigation reported continues a study conducted by Tera et al. (1974). An attempt is made to summarize all of the data currently available in the literature on terra materials and to discuss the implications of the upper intersection with the concordia curve. Data on total rocks and some plagioclase separates are presented in a graph. The data appear to give further support to a model of a terminal lunar cataclysm associated with intense global bombardment at about 3.9 aeons.

  19. Fortuin-Kasteleyn and damage-spreading transitions in random-bond Ising lattices

    NASA Astrophysics Data System (ADS)

    Lundow, P. H.; Campbell, I. A.

    2012-10-01

    The Fortuin-Kasteleyn and heat-bath damage-spreading temperatures TFK(p) and TDS(p) are studied on random-bond Ising models of dimensions 2-5 and as functions of the ferromagnetic interaction probability p; the conjecture that TDS(p)˜TFK(p) is tested. It follows from a statement by Nishimori that in any such system, exact coordinates can be given for the intersection point between the Fortuin-Kasteleyn TFK(p) transition line and the Nishimori line [pNL,FK,TNL,FK]. There are no finite-size corrections for this intersection point. In dimension 3, at the intersection concentration [pNL,FK], the damage spreading TDS(p) is found to be equal to TFK(p) to within 0.1%. For the other dimensions, however, TDS(p) is observed to be systematically a few percent lower than TFK(p).

  20. Network meta-analysis, electrical networks and graph theory.

    PubMed

    Rücker, Gerta

    2012-12-01

    Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Parallel Algorithms for Switching Edges in Heterogeneous Graphs.

    PubMed

    Bhuiyan, Hasanuzzaman; Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav

    2017-06-01

    An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors.

  2. Evolutionary dynamics on graphs

    NASA Astrophysics Data System (ADS)

    Lieberman, Erez; Hauert, Christoph; Nowak, Martin A.

    2005-01-01

    Evolutionary dynamics have been traditionally studied in the context of homogeneous or spatially extended populations. Here we generalize population structure by arranging individuals on a graph. Each vertex represents an individual. The weighted edges denote reproductive rates which govern how often individuals place offspring into adjacent vertices. The homogeneous population, described by the Moran process, is the special case of a fully connected graph with evenly weighted edges. Spatial structures are described by graphs where vertices are connected with their nearest neighbours. We also explore evolution on random and scale-free networks. We determine the fixation probability of mutants, and characterize those graphs for which fixation behaviour is identical to that of a homogeneous population. Furthermore, some graphs act as suppressors and others as amplifiers of selection. It is even possible to find graphs that guarantee the fixation of any advantageous mutant. We also study frequency-dependent selection and show that the outcome of evolutionary games can depend entirely on the structure of the underlying graph. Evolutionary graph theory has many fascinating applications ranging from ecology to multi-cellular organization and economics.

  3. Global Binary Optimization on Graphs for Classification of High Dimensional Data

    DTIC Science & Technology

    2014-09-01

    Buades et al . in [10] introduce a new non-local means algorithm for image denoising and compare it to some of the best methods. In [28], Grady de...scribes a random walk algorithm for image seg- mentation using the solution to a Dirichlet prob- lem. Elmoataz et al . present generalizations of the...graph Laplacian [19] for image denoising and man- ifold smoothing. Couprie et al . in [16] propose a parameterized graph-based energy function that unifies

  4. Resource-constrained Data Collection and Fusion for Identifying Weak Distributed Patterns in Networks

    DTIC Science & Technology

    2013-10-15

    statistic,” in Artifical Intelligence and Statistics (AISTATS), 2013. [6] ——, “Detecting activity in graphs via the Graph Ellipsoid Scan Statistic... Artifical Intelligence and Statistics (AISTATS), 2013. [8] ——, “Near-optimal anomaly detection in graphs using Lovász Extended Scan Statistic,” in Neural...networks,” in Artificial Intelligence and Statistics (AISTATS), 2010. 11 [11] D. Aldous, “The random walk construction of uniform spanning trees and

  5. A nonlinear q-voter model with deadlocks on the Watts-Strogatz graph

    NASA Astrophysics Data System (ADS)

    Sznajd-Weron, Katarzyna; Michal Suszczynski, Karol

    2014-07-01

    We study the nonlinear $q$-voter model with deadlocks on a Watts-Strogats graph. Using Monte Carlo simulations, we obtain so called exit probability and exit time. We determine how network properties, such as randomness or density of links influence exit properties of a model.

  6. Using a high-dimensional graph of semantic space to model relationships among words

    PubMed Central

    Jackson, Alice F.; Bolger, Donald J.

    2014-01-01

    The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD). PMID:24860525

  7. Using a high-dimensional graph of semantic space to model relationships among words.

    PubMed

    Jackson, Alice F; Bolger, Donald J

    2014-01-01

    The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD).

  8. Spectral stability of shifted states on star graphs

    NASA Astrophysics Data System (ADS)

    Kairzhan, Adilbek; Pelinovsky, Dmitry E.

    2018-03-01

    We consider the nonlinear Schrödinger (NLS) equation with the subcritical power nonlinearity on a star graph consisting of N edges and a single vertex under generalized Kirchhoff boundary conditions. The stationary NLS equation may admit a family of solitary waves parameterized by a translational parameter, which we call the shifted states. The two main examples include (i) the star graph with even N under the classical Kirchhoff boundary conditions and (ii) the star graph with one incoming edge and N  -  1 outgoing edges under a single constraint on coefficients of the generalized Kirchhoff boundary conditions. We obtain the general counting results on the Morse index of the shifted states and apply them to the two examples. In the case of (i), we prove that the shifted states with even N ≥slant 4 are saddle points of the action functional which are spectrally unstable under the NLS flow. In the case of (ii), we prove that the shifted states with the monotone profiles in the N  -  1 edges are spectrally stable, whereas the shifted states with non-monotone profiles in the N  -  1 edges are spectrally unstable, the two families intersect at the half-soliton states which are spectrally stable but nonlinearly unstable under the NLS flow. Since the NLS equation on a star graph with shifted states can be reduced to the homogeneous NLS equation on an infinite line, the spectral instability of shifted states is due to the perturbations breaking this reduction. We give a simple argument suggesting that the spectrally stable shifted states in the case of (ii) are nonlinearly unstable under the NLS flow due to the perturbations breaking the reduction to the homogeneous NLS equation.

  9. Efficient structure from motion for oblique UAV images based on maximal spanning tree expansion

    NASA Astrophysics Data System (ADS)

    Jiang, San; Jiang, Wanshou

    2017-10-01

    The primary contribution of this paper is an efficient Structure from Motion (SfM) solution for oblique unmanned aerial vehicle (UAV) images. First, an algorithm, considering spatial relationship constraints between image footprints, is designed for match pair selection with the assistance of UAV flight control data and oblique camera mounting angles. Second, a topological connection network (TCN), represented by an undirected weighted graph, is constructed from initial match pairs, which encodes the overlap areas and intersection angles into edge weights. Then, an algorithm, termed MST-Expansion, is proposed to extract the match graph from the TCN, where the TCN is first simplified by a maximum spanning tree (MST). By further analysis of the local structure in the MST, expansion operations are performed on the vertices of the MST for match graph enhancement, which is achieved by introducing critical connections in the expansion directions. Finally, guided by the match graph, an efficient SfM is proposed. Under extensive analysis and comparison, its performance is verified by using three oblique UAV datasets captured with different multi-camera systems. Experimental results demonstrate that the efficiency of image matching is improved, with speedup ratios ranging from 19 to 35, and competitive orientation accuracy is achieved from both relative bundle adjustment (BA) without GCPs (Ground Control Points) and absolute BA with GCPs. At the same time, images in the three datasets are successfully oriented. For the orientation of oblique UAV images, the proposed method can be a more efficient solution.

  10. Fast Inbound Top-K Query for Random Walk with Restart.

    PubMed

    Zhang, Chao; Jiang, Shan; Chen, Yucheng; Sun, Yidan; Han, Jiawei

    2015-09-01

    Random walk with restart (RWR) is widely recognized as one of the most important node proximity measures for graphs, as it captures the holistic graph structure and is robust to noise in the graph. In this paper, we study a novel query based on the RWR measure, called the inbound top-k (Ink) query. Given a query node q and a number k , the Ink query aims at retrieving k nodes in the graph that have the largest weighted RWR scores to q . Ink queries can be highly useful for various applications such as traffic scheduling, disease treatment, and targeted advertising. Nevertheless, none of the existing RWR computation techniques can accurately and efficiently process the Ink query in large graphs. We propose two algorithms, namely Squeeze and Ripple, both of which can accurately answer the Ink query in a fast and incremental manner. To identify the top- k nodes, Squeeze iteratively performs matrix-vector multiplication and estimates the lower and upper bounds for all the nodes in the graph. Ripple employs a more aggressive strategy by only estimating the RWR scores for the nodes falling in the vicinity of q , the nodes outside the vicinity do not need to be evaluated because their RWR scores are propagated from the boundary of the vicinity and thus upper bounded. Ripple incrementally expands the vicinity until the top- k result set can be obtained. Our extensive experiments on real-life graph data sets show that Ink queries can retrieve interesting results, and the proposed algorithms are orders of magnitude faster than state-of-the-art method.

  11. The Effective Resistance of the -Cycle Graph with Four Nearest Neighbors

    NASA Astrophysics Data System (ADS)

    Chair, Noureddine

    2014-02-01

    The exact expression for the effective resistance between any two vertices of the -cycle graph with four nearest neighbors , is given. It turns out that this expression is written in terms of the effective resistance of the -cycle graph , the square of the Fibonacci numbers, and the bisected Fibonacci numbers. As a consequence closed form formulas for the total effective resistance, the first passage time, and the mean first passage time for the simple random walk on the the -cycle graph with four nearest neighbors are obtained. Finally, a closed form formula for the effective resistance of with all first neighbors removed is obtained.

  12. Consensus, Polarization and Clustering of Opinions in Social Networks

    DTIC Science & Technology

    2013-06-01

    values of τ , and consensus at larger values. Fig. 6 compares the phase transitions for three different network configurations: RGG, Erdos- Renyi graph and...Erdos- Renyi graph [25] is generated uniformly at random from the collection of all graphs which have n = 50 nodes and M = 120 edges. The small- world...0.6 0.8 1 Threshold τ N or m al iz ed A lg eb ra ic C on ne ct iv ity RGG Erdos− Renyi Small−World Fig. 6. Phase transitions using three

  13. Quantum walks of two interacting particles on percolation graphs

    NASA Astrophysics Data System (ADS)

    Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Paris, Matteo G. A.; Bordone, Paolo

    2017-10-01

    We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.

  14. Impact of social and technological distraction on pedestrian crossing behaviour: an observational study

    PubMed Central

    Thompson, Leah L; Rivara, Frederick P; Ayyagari, Rajiv C; Ebel, Beth E

    2013-01-01

    Objectives The objective of the present work was to study the impact of technological and social distraction on cautionary behaviours and crossing times in pedestrians. Methods Pedestrians were observed at 20 high-risk intersections during 1 of 3 randomly assigned time windows in 2012. Observers recorded demographic and behavioural information, including use of a mobile device (talking on the phone, text messaging, or listening to music). We examined the association between distraction and crossing behaviours, adjusting for age and gender. All multivariate analyses were conducted with random effect logistic regression (binary outcomes) and random effect linear regression (continuous outcomes), accounting for clustering by site. Results Observers recorded crossing behaviours for 1102 pedestrians. Nearly one-third (29.8%) of all pedestrians performed a distracting activity while crossing. Distractions included listening to music (11.2%), text messaging (7.3%) and using a handheld phone (6.2%). Text messaging, mobile phone use and talking with a companion increased crossing time. Texting pedestrians took 1.87 additional seconds (18.0%) to cross the average intersection (3.4 lanes), compared to undistracted pedestrians. Texting pedestrians were 3.9 times more likely than undistracted pedestrians to display at least 1 unsafe crossing behaviour (disobeying the lights, crossing mid-intersection, or failing to look both ways). Pedestrians listening to music walked more than half a second (0.54) faster across the average intersection than undistracted pedestrians. Conclusions Distracting activity is common among pedestrians, even while crossing intersections. Technological and social distractions increase crossing times, with text messaging associated with the highest risk. Our findings suggest the need for intervention studies to reduce risk of pedestrian injury. PMID:23243104

  15. Experimental Study of Quantum Graphs with Microwave Networks

    NASA Astrophysics Data System (ADS)

    Fu, Ziyuan; Koch, Trystan; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Wave Chaos Team

    An experimental setup consisting of microwave networks is used to simulate quantum graphs. The networks are constructed from coaxial cables connected by T junctions. The networks are built for operation both at room temperature and superconducting versions that operate at cryogenic temperatures. In the experiments, a phase shifter is connected to one of the network bonds to generate an ensemble of quantum graphs by varying the phase delay. The eigenvalue spectrum is found from S-parameter measurements on one-port graphs. With the experimental data, the nearest-neighbor spacing statistics and the impedance statistics of the graphs are examined. It is also demonstrated that time-reversal invariance for microwave propagation in the graphs can be broken without increasing dissipation significantly by making nodes with circulators. Random matrix theory (RMT) successfully describes universal statistical properties of the system. We acknowledge support under contract AFOSR COE Grant FA9550-15-1-0171.

  16. Localization in random bipartite graphs: Numerical and empirical study

    NASA Astrophysics Data System (ADS)

    Slanina, František

    2017-05-01

    We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.

  17. Localization in random bipartite graphs: Numerical and empirical study.

    PubMed

    Slanina, František

    2017-05-01

    We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.

  18. How mutation affects evolutionary games on graphs

    PubMed Central

    Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E.; Nowak, Martin A.

    2011-01-01

    Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration. PMID:21473871

  19. Flux control coefficients determined by inhibitor titration: the design and analysis of experiments to minimize errors.

    PubMed Central

    Small, J R

    1993-01-01

    This paper is a study into the effects of experimental error on the estimated values of flux control coefficients obtained using specific inhibitors. Two possible techniques for analysing the experimental data are compared: a simple extrapolation method (the so-called graph method) and a non-linear function fitting method. For these techniques, the sources of systematic errors are identified and the effects of systematic and random errors are quantified, using both statistical analysis and numerical computation. It is shown that the graph method is very sensitive to random errors and, under all conditions studied, that the fitting method, even under conditions where the assumptions underlying the fitted function do not hold, outperformed the graph method. Possible ways of designing experiments to minimize the effects of experimental errors are analysed and discussed. PMID:8257434

  20. Figure-Ground Segmentation Using Factor Graphs

    PubMed Central

    Shen, Huiying; Coughlan, James; Ivanchenko, Volodymyr

    2009-01-01

    Foreground-background segmentation has recently been applied [26,12] to the detection and segmentation of specific objects or structures of interest from the background as an efficient alternative to techniques such as deformable templates [27]. We introduce a graphical model (i.e. Markov random field)-based formulation of structure-specific figure-ground segmentation based on simple geometric features extracted from an image, such as local configurations of linear features, that are characteristic of the desired figure structure. Our formulation is novel in that it is based on factor graphs, which are graphical models that encode interactions among arbitrary numbers of random variables. The ability of factor graphs to express interactions higher than pairwise order (the highest order encountered in most graphical models used in computer vision) is useful for modeling a variety of pattern recognition problems. In particular, we show how this property makes factor graphs a natural framework for performing grouping and segmentation, and demonstrate that the factor graph framework emerges naturally from a simple maximum entropy model of figure-ground segmentation. We cast our approach in a learning framework, in which the contributions of multiple grouping cues are learned from training data, and apply our framework to the problem of finding printed text in natural scenes. Experimental results are described, including a performance analysis that demonstrates the feasibility of the approach. PMID:20160994

  1. Random walk and graph cut based active contour model for three-dimension interactive pituitary adenoma segmentation from MR images

    NASA Astrophysics Data System (ADS)

    Sun, Min; Chen, Xinjian; Zhang, Zhiqiang; Ma, Chiyuan

    2017-02-01

    Accurate volume measurements of pituitary adenoma are important to the diagnosis and treatment for this kind of sellar tumor. The pituitary adenomas have different pathological representations and various shapes. Particularly, in the case of infiltrating to surrounding soft tissues, they present similar intensities and indistinct boundary in T1-weighted (T1W) magnetic resonance (MR) images. Then the extraction of pituitary adenoma from MR images is still a challenging task. In this paper, we propose an interactive method to segment the pituitary adenoma from brain MR data, by combining graph cuts based active contour model (GCACM) and random walk algorithm. By using the GCACM method, the segmentation task is formulated as an energy minimization problem by a hybrid active contour model (ACM), and then the problem is solved by the graph cuts method. The region-based term in the hybrid ACM considers the local image intensities as described by Gaussian distributions with different means and variances, expressed as maximum a posteriori probability (MAP). Random walk is utilized as an initialization tool to provide initialized surface for GCACM. The proposed method is evaluated on the three-dimensional (3-D) T1W MR data of 23 patients and compared with the standard graph cuts method, the random walk method, the hybrid ACM method, a GCACM method which considers global mean intensity in region forces, and a competitive region-growing based GrowCut method planted in 3D Slicer. Based on the experimental results, the proposed method is superior to those methods.

  2. Random sequential renormalization and agglomerative percolation in networks: application to Erdös-Rényi and scale-free graphs.

    PubMed

    Bizhani, Golnoosh; Grassberger, Peter; Paczuski, Maya

    2011-12-01

    We study the statistical behavior under random sequential renormalization (RSR) of several network models including Erdös-Rényi (ER) graphs, scale-free networks, and an annealed model related to ER graphs. In RSR the network is locally coarse grained by choosing at each renormalization step a node at random and joining it to all its neighbors. Compared to previous (quasi-)parallel renormalization methods [Song et al., Nature (London) 433, 392 (2005)], RSR allows a more fine-grained analysis of the renormalization group (RG) flow and unravels new features that were not discussed in the previous analyses. In particular, we find that all networks exhibit a second-order transition in their RG flow. This phase transition is associated with the emergence of a giant hub and can be viewed as a new variant of percolation, called agglomerative percolation. We claim that this transition exists also in previous graph renormalization schemes and explains some of the scaling behavior seen there. For critical trees it happens as N/N(0) → 0 in the limit of large systems (where N(0) is the initial size of the graph and N its size at a given RSR step). In contrast, it happens at finite N/N(0) in sparse ER graphs and in the annealed model, while it happens for N/N(0) → 1 on scale-free networks. Critical exponents seem to depend on the type of the graph but not on the average degree and obey usual scaling relations for percolation phenomena. For the annealed model they agree with the exponents obtained from a mean-field theory. At late times, the networks exhibit a starlike structure in agreement with the results of Radicchi et al. [Phys. Rev. Lett. 101, 148701 (2008)]. While degree distributions are of main interest when regarding the scheme as network renormalization, mass distributions (which are more relevant when considering "supernodes" as clusters) are much easier to study using the fast Newman-Ziff algorithm for percolation, allowing us to obtain very high statistics.

  3. Efficient Graph-Based Resource Allocation Scheme Using Maximal Independent Set for Randomly- Deployed Small Star Networks

    PubMed Central

    Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng

    2017-01-01

    In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search. PMID:29113109

  4. An efficient randomized algorithm for contact-based NMR backbone resonance assignment.

    PubMed

    Kamisetty, Hetunandan; Bailey-Kellogg, Chris; Pandurangan, Gopal

    2006-01-15

    Backbone resonance assignment is a critical bottleneck in studies of protein structure, dynamics and interactions by nuclear magnetic resonance (NMR) spectroscopy. A minimalist approach to assignment, which we call 'contact-based', seeks to dramatically reduce experimental time and expense by replacing the standard suite of through-bond experiments with the through-space (nuclear Overhauser enhancement spectroscopy, NOESY) experiment. In the contact-based approach, spectral data are represented in a graph with vertices for putative residues (of unknown relation to the primary sequence) and edges for hypothesized NOESY interactions, such that observed spectral peaks could be explained if the residues were 'close enough'. Due to experimental ambiguity, several incorrect edges can be hypothesized for each spectral peak. An assignment is derived by identifying consistent patterns of edges (e.g. for alpha-helices and beta-sheets) within a graph and by mapping the vertices to the primary sequence. The key algorithmic challenge is to be able to uncover these patterns even when they are obscured by significant noise. This paper develops, analyzes and applies a novel algorithm for the identification of polytopes representing consistent patterns of edges in a corrupted NOESY graph. Our randomized algorithm aggregates simplices into polytopes and fixes inconsistencies with simple local modifications, called rotations, that maintain most of the structure already uncovered. In characterizing the effects of experimental noise, we employ an NMR-specific random graph model in proving that our algorithm gives optimal performance in expected polynomial time, even when the input graph is significantly corrupted. We confirm this analysis in simulation studies with graphs corrupted by up to 500% noise. Finally, we demonstrate the practical application of the algorithm on several experimental beta-sheet datasets. Our approach is able to eliminate a large majority of noise edges and to uncover large consistent sets of interactions. Our algorithm has been implemented in the platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  5. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    NASA Astrophysics Data System (ADS)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  6. Robust-yet-fragile nature of interdependent networks

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Xia, Yongxiang; Wei, Zhi

    2015-05-01

    Interdependent networks have been shown to be extremely vulnerable based on the percolation model. Parshani et al. [Europhys. Lett. 92, 68002 (2010), 10.1209/0295-5075/92/68002] further indicated that the more intersimilar networks are, the more robust they are to random failures. When traffic load is considered, how do the coupling patterns impact cascading failures in interdependent networks? This question has been largely unexplored until now. In this paper, we address this question by investigating the robustness of interdependent Erdös-Rényi random graphs and Barabási-Albert scale-free networks under either random failures or intentional attacks. It is found that interdependent Erdös-Rényi random graphs are robust yet fragile under either random failures or intentional attacks. Interdependent Barabási-Albert scale-free networks, however, are only robust yet fragile under random failures but fragile under intentional attacks. We further analyze the interdependent communication network and power grid and achieve similar results. These results advance our understanding of how interdependency shapes network robustness.

  7. A Statistical Method to Distinguish Functional Brain Networks

    PubMed Central

    Fujita, André; Vidal, Maciel C.; Takahashi, Daniel Y.

    2017-01-01

    One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism (p < 0.001). PMID:28261045

  8. A Statistical Method to Distinguish Functional Brain Networks.

    PubMed

    Fujita, André; Vidal, Maciel C; Takahashi, Daniel Y

    2017-01-01

    One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism ( p < 0.001).

  9. Combining joint models for biomedical event extraction

    PubMed Central

    2012-01-01

    Background We explore techniques for performing model combination between the UMass and Stanford biomedical event extraction systems. Both sub-components address event extraction as a structured prediction problem, and use dual decomposition (UMass) and parsing algorithms (Stanford) to find the best scoring event structure. Our primary focus is on stacking where the predictions from the Stanford system are used as features in the UMass system. For comparison, we look at simpler model combination techniques such as intersection and union which require only the outputs from each system and combine them directly. Results First, we find that stacking substantially improves performance while intersection and union provide no significant benefits. Second, we investigate the graph properties of event structures and their impact on the combination of our systems. Finally, we trace the origins of events proposed by the stacked model to determine the role each system plays in different components of the output. We learn that, while stacking can propose novel event structures not seen in either base model, these events have extremely low precision. Removing these novel events improves our already state-of-the-art F1 to 56.6% on the test set of Genia (Task 1). Overall, the combined system formed via stacking ("FAUST") performed well in the BioNLP 2011 shared task. The FAUST system obtained 1st place in three out of four tasks: 1st place in Genia Task 1 (56.0% F1) and Task 2 (53.9%), 2nd place in the Epigenetics and Post-translational Modifications track (35.0%), and 1st place in the Infectious Diseases track (55.6%). Conclusion We present a state-of-the-art event extraction system that relies on the strengths of structured prediction and model combination through stacking. Akin to results on other tasks, stacking outperforms intersection and union and leads to very strong results. The utility of model combination hinges on complementary views of the data, and we show that our sub-systems capture different graph properties of event structures. Finally, by removing low precision novel events, we show that performance from stacking can be further improved. PMID:22759463

  10. Random Walk Graph Laplacian-Based Smoothness Prior for Soft Decoding of JPEG Images.

    PubMed

    Liu, Xianming; Cheung, Gene; Wu, Xiaolin; Zhao, Debin

    2017-02-01

    Given the prevalence of joint photographic experts group (JPEG) compressed images, optimizing image reconstruction from the compressed format remains an important problem. Instead of simply reconstructing a pixel block from the centers of indexed discrete cosine transform (DCT) coefficient quantization bins (hard decoding), soft decoding reconstructs a block by selecting appropriate coefficient values within the indexed bins with the help of signal priors. The challenge thus lies in how to define suitable priors and apply them effectively. In this paper, we combine three image priors-Laplacian prior for DCT coefficients, sparsity prior, and graph-signal smoothness prior for image patches-to construct an efficient JPEG soft decoding algorithm. Specifically, we first use the Laplacian prior to compute a minimum mean square error initial solution for each code block. Next, we show that while the sparsity prior can reduce block artifacts, limiting the size of the overcomplete dictionary (to lower computation) would lead to poor recovery of high DCT frequencies. To alleviate this problem, we design a new graph-signal smoothness prior (desired signal has mainly low graph frequencies) based on the left eigenvectors of the random walk graph Laplacian matrix (LERaG). Compared with the previous graph-signal smoothness priors, LERaG has desirable image filtering properties with low computation overhead. We demonstrate how LERaG can facilitate recovery of high DCT frequencies of a piecewise smooth signal via an interpretation of low graph frequency components as relaxed solutions to normalized cut in spectral clustering. Finally, we construct a soft decoding algorithm using the three signal priors with appropriate prior weights. Experimental results show that our proposal outperforms the state-of-the-art soft decoding algorithms in both objective and subjective evaluations noticeably.

  11. Sampling ARG of multiple populations under complex configurations of subdivision and admixture.

    PubMed

    Carrieri, Anna Paola; Utro, Filippo; Parida, Laxmi

    2016-04-01

    Simulating complex evolution scenarios of multiple populations is an important task for answering many basic questions relating to population genomics. Apart from the population samples, the underlying Ancestral Recombinations Graph (ARG) is an additional important means in hypothesis checking and reconstruction studies. Furthermore, complex simulations require a plethora of interdependent parameters making even the scenario-specification highly non-trivial. We present an algorithm SimRA that simulates generic multiple population evolution model with admixture. It is based on random graphs that improve dramatically in time and space requirements of the classical algorithm of single populations.Using the underlying random graphs model, we also derive closed forms of expected values of the ARG characteristics i.e., height of the graph, number of recombinations, number of mutations and population diversity in terms of its defining parameters. This is crucial in aiding the user to specify meaningful parameters for the complex scenario simulations, not through trial-and-error based on raw compute power but intelligent parameter estimation. To the best of our knowledge this is the first time closed form expressions have been computed for the ARG properties. We show that the expected values closely match the empirical values through simulations.Finally, we demonstrate that SimRA produces the ARG in compact forms without compromising any accuracy. We demonstrate the compactness and accuracy through extensive experiments. SimRA (Simulation based on Random graph Algorithms) source, executable, user manual and sample input-output sets are available for downloading at: https://github.com/ComputationalGenomics/SimRA CONTACT: : parida@us.ibm.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. The ergodicity landscape of quantum theories

    NASA Astrophysics Data System (ADS)

    Ho, Wen Wei; Radičević, Đorđe

    2018-02-01

    This paper is a physicist’s review of the major conceptual issues concerning the problem of spectral universality in quantum systems. Here, we present a unified, graph-based view of all archetypical models of such universality (billiards, particles in random media, interacting spin or fermion systems). We find phenomenological relations between the onset of ergodicity (Gaussian-random delocalization of eigenstates) and the structure of the appropriate graphs, and we construct a heuristic picture of summing trajectories on graphs that describes why a generic interacting system should be ergodic. We also provide an operator-based discussion of quantum chaos and propose criteria to distinguish bases that can usefully diagnose ergodicity. The result of this analysis is a rough but systematic outline of how ergodicity changes across the space of all theories with a given Hilbert space dimension. As a particular example, we study the SYK model and report on the transition from maximal to partial ergodicity as the disorder strength is decreased.

  13. Stochastic generation of complex crystal structures combining group and graph theory with application to carbon

    NASA Astrophysics Data System (ADS)

    Shi, Xizhi; He, Chaoyu; Pickard, Chris J.; Tang, Chao; Zhong, Jianxin

    2018-01-01

    A method is introduced to stochastically generate crystal structures with defined structural characteristics. Reasonable quotient graphs for symmetric crystals are constructed using a random strategy combined with space group and graph theory. Our algorithm enables the search for large-size and complex crystal structures with a specified connectivity, such as threefold sp2 carbons, fourfold sp3 carbons, as well as mixed sp2-sp3 carbons. To demonstrate the method, we randomly construct initial structures adhering to space groups from 75 to 230 and a range of lattice constants, and we identify 281 new sp3 carbon crystals. First-principles optimization of these structures show that most of them are dynamically and mechanically stable and are energetically comparable to those previously proposed. Some of the new structures can be considered as candidates to explain the experimental cold compression of graphite.

  14. Social inertia and diversity in collaboration networks

    NASA Astrophysics Data System (ADS)

    Ramasco, J. J.

    2007-04-01

    Random graphs are useful tools to study social interactions. In particular, the use of weighted random graphs allows to handle a high level of information concerning which agents interact and in which degree the interactions take place. Taking advantage of this representation, we recently defined a magnitude, the Social Inertia, that measures the eagerness of agents to keep ties with previous partners. To study this magnitude, we used collaboration networks that are specially appropriate to obtain valid statitical results due to the large size of publically available databases. In this work, I study the Social Inertia in two of these empirical networks, IMDB movie database and condmat. More specifically, I focus on how the Inertia relates to other properties of the graphs, and show that the Inertia provides information on how the weight of neighboring edges correlates. A social interpretation of this effect is also offered.

  15. Efficient Inference for Trees and Alignments: Modeling Monolingual and Bilingual Syntax with Hard and Soft Constraints and Latent Variables

    ERIC Educational Resources Information Center

    Smith, David Arthur

    2010-01-01

    Much recent work in natural language processing treats linguistic analysis as an inference problem over graphs. This development opens up useful connections between machine learning, graph theory, and linguistics. The first part of this dissertation formulates syntactic dependency parsing as a dynamic Markov random field with the novel…

  16. Monetary Policy Rules, Supply Shocks, and the Price-Level Elasticity of Aggregate Demand: A Graphical Examination.

    ERIC Educational Resources Information Center

    Kyer, Ben L.; Maggs, Gary E.

    1995-01-01

    Utilizes two-dimensional price and output graphs to demonstrate the way that the price-level elasticity of aggregate demand affects alternative monetary policy rules designed to cope with random aggregate supply shocks. Includes graphs illustrating price-level, real Gross Domestic Product (GDP), nominal GDP, and nominal money supply targeting.…

  17. Spread of information and infection on finite random networks

    NASA Astrophysics Data System (ADS)

    Isham, Valerie; Kaczmarska, Joanna; Nekovee, Maziar

    2011-04-01

    The modeling of epidemic-like processes on random networks has received considerable attention in recent years. While these processes are inherently stochastic, most previous work has been focused on deterministic models that ignore important fluctuations that may persist even in the infinite network size limit. In a previous paper, for a class of epidemic and rumor processes, we derived approximate models for the full probability distribution of the final size of the epidemic, as opposed to only mean values. In this paper we examine via direct simulations the adequacy of the approximate model to describe stochastic epidemics and rumors on several random network topologies: homogeneous networks, Erdös-Rényi (ER) random graphs, Barabasi-Albert scale-free networks, and random geometric graphs. We find that the approximate model is reasonably accurate in predicting the probability of spread. However, the position of the threshold and the conditional mean of the final size for processes near the threshold are not well described by the approximate model even in the case of homogeneous networks. We attribute this failure to the presence of other structural properties beyond degree-degree correlations, and in particular clustering, which are present in any finite network but are not incorporated in the approximate model. In order to test this “hypothesis” we perform additional simulations on a set of ER random graphs where degree-degree correlations and clustering are separately and independently introduced using recently proposed algorithms from the literature. Our results show that even strong degree-degree correlations have only weak effects on the position of the threshold and the conditional mean of the final size. On the other hand, the introduction of clustering greatly affects both the position of the threshold and the conditional mean. Similar analysis for the Barabasi-Albert scale-free network confirms the significance of clustering on the dynamics of rumor spread. For this network, though, with its highly skewed degree distribution, the addition of positive correlation had a much stronger effect on the final size distribution than was found for the simple random graph.

  18. The impact of home care nurses' numeracy and graph literacy on comprehension of visual display information: implications for dashboard design.

    PubMed

    Dowding, Dawn; Merrill, Jacqueline A; Onorato, Nicole; Barrón, Yolanda; Rosati, Robert J; Russell, David

    2018-02-01

    To explore home care nurses' numeracy and graph literacy and their relationship to comprehension of visualized data. A multifactorial experimental design using online survey software. Nurses were recruited from 2 Medicare-certified home health agencies. Numeracy and graph literacy were measured using validated scales. Nurses were randomized to 1 of 4 experimental conditions. Each condition displayed data for 1 of 4 quality indicators, in 1 of 4 different visualized formats (bar graph, line graph, spider graph, table). A mixed linear model measured the impact of numeracy, graph literacy, and display format on data understanding. In all, 195 nurses took part in the study. They were slightly more numerate and graph literate than the general population. Overall, nurses understood information presented in bar graphs most easily (88% correct), followed by tables (81% correct), line graphs (77% correct), and spider graphs (41% correct). Individuals with low numeracy and low graph literacy had poorer comprehension of information displayed across all formats. High graph literacy appeared to enhance comprehension of data regardless of numeracy capabilities. Clinical dashboards are increasingly used to provide information to clinicians in visualized format, under the assumption that visual display reduces cognitive workload. Results of this study suggest that nurses' comprehension of visualized information is influenced by their numeracy, graph literacy, and the display format of the data. Individual differences in numeracy and graph literacy skills need to be taken into account when designing dashboard technology. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  19. Synthesis of Polyferrocenylsilane Block Copolymers and their Crystallization-Driven Self-Assembly in Protic Solvents

    NASA Astrophysics Data System (ADS)

    Zhou, Hang

    Quantum walks are the quantum mechanical analogue of classical random walks. Discrete-time quantum walks have been introduced and studied mostly on the line Z or higher dimensional space Zd but rarely defined on graphs with fractal dimensions because the coin operator depends on the position and the Fourier transform on the fractals is not defined. Inspired by its nature of classical walks, different quantum walks will be defined by choosing different shift and coin operators. When the coin operator is uniform, the results of classical walks will be obtained upon measurement at each step. Moreover, with measurement at each step, our results reveal more information about the classical random walks. In this dissertation, two graphs with fractal dimensions will be considered. The first one is Sierpinski gasket, a degree-4 regular graph with Hausdorff dimension of df = ln 3/ ln 2. The second is the Cantor graph derived like Cantor set, with Hausdorff dimension of df = ln 2/ ln 3. The definitions and amplitude functions of the quantum walks will be introduced. The main part of this dissertation is to derive a recursive formula to compute the amplitude Green function. The exiting probability will be computed and compared with the classical results. When the generation of graphs goes to infinity, the recursion of the walks will be investigated and the convergence rates will be obtained and compared with the classical counterparts.

  20. Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random fields by graph cuts

    NASA Astrophysics Data System (ADS)

    Zhou, Lifan; Chai, Dengfeng; Xia, Yu; Ma, Peifeng; Lin, Hui

    2018-01-01

    Phase unwrapping (PU) is one of the key processes in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) data. It is known that two-dimensional (2-D) PU problems can be formulated as maximum a posteriori estimation of Markov random fields (MRFs). However, considering that the traditional MRF algorithm is usually defined on a rectangular grid, it fails easily if large parts of the wrapped data are dominated by noise caused by large low-coherence area or rapid-topography variation. A PU solution based on sparse MRF is presented to extend the traditional MRF algorithm to deal with sparse data, which allows the unwrapping of InSAR data dominated by high phase noise. To speed up the graph cuts algorithm for sparse MRF, we designed dual elementary graphs and merged them to obtain the Delaunay triangle graph, which is used to minimize the energy function efficiently. The experiments on simulated and real data, compared with other existing algorithms, both confirm the effectiveness of the proposed MRF approach, which suffers less from decorrelation effects caused by large low-coherence area or rapid-topography variation.

  1. Learning of Multimodal Representations With Random Walks on the Click Graph.

    PubMed

    Wu, Fei; Lu, Xinyan; Song, Jun; Yan, Shuicheng; Zhang, Zhongfei Mark; Rui, Yong; Zhuang, Yueting

    2016-02-01

    In multimedia information retrieval, most classic approaches tend to represent different modalities of media in the same feature space. With the click data collected from the users' searching behavior, existing approaches take either one-to-one paired data (text-image pairs) or ranking examples (text-query-image and/or image-query-text ranking lists) as training examples, which do not make full use of the click data, particularly the implicit connections among the data objects. In this paper, we treat the click data as a large click graph, in which vertices are images/text queries and edges indicate the clicks between an image and a query. We consider learning a multimodal representation from the perspective of encoding the explicit/implicit relevance relationship between the vertices in the click graph. By minimizing both the truncated random walk loss as well as the distance between the learned representation of vertices and their corresponding deep neural network output, the proposed model which is named multimodal random walk neural network (MRW-NN) can be applied to not only learn robust representation of the existing multimodal data in the click graph, but also deal with the unseen queries and images to support cross-modal retrieval. We evaluate the latent representation learned by MRW-NN on a public large-scale click log data set Clickture and further show that MRW-NN achieves much better cross-modal retrieval performance on the unseen queries/images than the other state-of-the-art methods.

  2. Automatic Nanodesign Using Evolutionary Techniques

    NASA Technical Reports Server (NTRS)

    Globus, Al; Saini, Subhash (Technical Monitor)

    1998-01-01

    Many problems associated with the development of nanotechnology require custom designed molecules. We use genetic graph software, a new development, to automatically evolve molecules of interest when only the requirements are known. Genetic graph software designs molecules, and potentially nanoelectronic circuits, given a fitness function that determines which of two molecules is better. A set of molecules, the first generation, is generated at random then tested with the fitness function, Subsequent generations are created by randomly choosing two parent molecules with a bias towards high scoring molecules, tearing each molecules in two at random, and mating parts from the mother and father to create two children. This procedure is repeated until a satisfactory molecule is found. An atom pair similarity test is currently used as the fitness function to evolve molecules similar to existing pharmaceuticals.

  3. Cargos Rotate at Microtubule Intersections during Intracellular Trafficking.

    PubMed

    Gao, Yuan; Anthony, Stephen M; Yu, Yanqi; Yi, Yi; Yu, Yan

    2018-06-19

    Intracellular cargos are transported by molecular motors along actin and microtubules, but how their dynamics depends on the complex structure of the cytoskeletal network remains unclear. In this study, we investigated this longstanding question by measuring simultaneously the rotational and translational dynamics of cargos at microtubule intersections in living cells. We engineered two-faced particles that are fluorescent on one hemisphere and opaque on the other and used their optical anisotropy to report the rotation of cargos. We show that cargos undergo brief episodes of unidirectional and rapid rotation while pausing at microtubule intersections. Probability and amplitude of the cargo rotation depend on the geometry of the intersecting filaments. The cargo rotation is not random motion due to detachment from microtubules, as revealed by statistical analyses of the translational and rotational dynamics. Instead, it is an active rotation driven by motor proteins. Although cargos are known to pause at microtubule intersections, this study reveals a different dimension of dynamics at this seemingly static state and, more importantly, provides direct evidence showing the correlation between cargo rotation and the geometry of underlying microtubule intersections. Copyright © 2018 Biophysical Society. All rights reserved.

  4. Understanding regulatory networks requires more than computing a multitude of graph statistics. Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin et al.

    NASA Astrophysics Data System (ADS)

    Tkačik, Gašper

    2016-07-01

    The article by O. Martin and colleagues provides a much needed systematic review of a body of work that relates the topological structure of genetic regulatory networks to evolutionary selection for function. This connection is very important. Using the current wealth of genomic data, statistical features of regulatory networks (e.g., degree distributions, motif composition, etc.) can be quantified rather easily; it is, however, often unclear how to interpret the results. On a graph theoretic level the statistical significance of the results can be evaluated by comparing observed graphs to ;randomized; ones (bravely ignoring the issue of how precisely to randomize!) and comparing the frequency of appearance of a particular network structure relative to a randomized null expectation. While this is a convenient operational test for statistical significance, its biological meaning is questionable. In contrast, an in-silico genotype-to-phenotype model makes explicit the assumptions about the network function, and thus clearly defines the expected network structures that can be compared to the case of no selection for function and, ultimately, to data.

  5. A scale-free network with limiting on vertices

    NASA Astrophysics Data System (ADS)

    Tang, Lian; Wang, Bin

    2010-05-01

    We propose and analyze a random graph model which explains a phenomena in the economic company network in which company may not expand its business at some time due to the limiting of money and capacity. The random graph process is defined as follows: at any time-step t, (i) with probability α(k) and independently of other time-step, each vertex vi (i≤t-1) is inactive which means it cannot be connected by more edges, where k is the degree of vi at the time-step t; (ii) a new vertex vt is added along with m edges incident with vt at one time and its neighbors are chosen in the manner of preferential attachment. We prove that the degree distribution P(k) of this random graph process satisfies P(k)∝C1k if α(ṡ) is a constant α0; and P(k)∝C2k-3 if α(ℓ)↓0 as ℓ↑∞, where C1,C2 are two positive constants. The analytical result is found to be in good agreement with that obtained by numerical simulations. Furthermore, we get the degree distributions in this model with m-varying functions by simulation.

  6. Fast Decentralized Averaging via Multi-scale Gossip

    NASA Astrophysics Data System (ADS)

    Tsianos, Konstantinos I.; Rabbat, Michael G.

    We are interested in the problem of computing the average consensus in a distributed fashion on random geometric graphs. We describe a new algorithm called Multi-scale Gossip which employs a hierarchical decomposition of the graph to partition the computation into tractable sub-problems. Using only pairwise messages of fixed size that travel at most O(n^{1/3}) hops, our algorithm is robust and has communication cost of O(n loglogn logɛ - 1) transmissions, which is order-optimal up to the logarithmic factor in n. Simulated experiments verify the good expected performance on graphs of many thousands of nodes.

  7. Faster quantum walk search on a weighted graph

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2015-09-01

    A randomly walking quantum particle evolving by Schrödinger's equation searches for a unique marked vertex on the "simplex of complete graphs" in time Θ (N3 /4) . We give a weighted version of this graph that preserves vertex transitivity, and we show that the time to search on it can be reduced to nearly Θ (√{N }) . To prove this, we introduce two extensions to degenerate perturbation theory: an adjustment that distinguishes the weights of the edges and a method to determine how precisely the jumping rate of the quantum walk must be chosen.

  8. Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics

    NASA Astrophysics Data System (ADS)

    Changaival, Boonyarit; Rosalie, Martin; Danoy, Grégoire; Lavangnananda, Kittichai; Bouvry, Pascal

    2017-12-01

    Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rössler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown environment graphs. CHAT performance using Lozi map is proven superior than the, commonly known, Random Walk, in terms of number of nodes visited (coverage percentage) and computation time where the environment is unknown and memory usage is restricted.

  9. A simple method for finding the scattering coefficients of quantum graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, Seth S.

    2015-09-15

    Quantum walks are roughly analogous to classical random walks, and similar to classical walks they have been used to find new (quantum) algorithms. When studying the behavior of large graphs or combinations of graphs, it is useful to find the response of a subgraph to signals of different frequencies. In doing so, we can replace an entire subgraph with a single vertex with variable scattering coefficients. In this paper, a simple technique for quickly finding the scattering coefficients of any discrete-time quantum graph will be presented. These scattering coefficients can be expressed entirely in terms of the characteristic polynomial ofmore » the graph’s time step operator. This is a marked improvement over previous techniques which have traditionally required finding eigenstates for a given eigenvalue, which is far more computationally costly. With the scattering coefficients we can easily derive the “impulse response” which is the key to predicting the response of a graph to any signal. This gives us a powerful set of tools for rapidly understanding the behavior of graphs or for reducing a large graph into its constituent subgraphs regardless of how they are connected.« less

  10. Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism

    NASA Astrophysics Data System (ADS)

    Trugenberger, Carlo A.

    2015-12-01

    Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.

  11. An In-Depth Analysis of the Chung-Lu Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winlaw, M.; DeSterck, H.; Sanders, G.

    2015-10-28

    In the classic Erd}os R enyi random graph model [5] each edge is chosen with uniform probability and the degree distribution is binomial, limiting the number of graphs that can be modeled using the Erd}os R enyi framework [10]. The Chung-Lu model [1, 2, 3] is an extension of the Erd}os R enyi model that allows for more general degree distributions. The probability of each edge is no longer uniform and is a function of a user-supplied degree sequence, which by design is the expected degree sequence of the model. This property makes it an easy model to work withmore » theoretically and since the Chung-Lu model is a special case of a random graph model with a given degree sequence, many of its properties are well known and have been studied extensively [2, 3, 13, 8, 9]. It is also an attractive null model for many real-world networks, particularly those with power-law degree distributions and it is sometimes used as a benchmark for comparison with other graph generators despite some of its limitations [12, 11]. We know for example, that the average clustering coe cient is too low relative to most real world networks. As well, measures of a nity are also too low relative to most real-world networks of interest. However, despite these limitations or perhaps because of them, the Chung-Lu model provides a basis for comparing new graph models.« less

  12. Euclidean commute time distance embedding and its application to spectral anomaly detection

    NASA Astrophysics Data System (ADS)

    Albano, James A.; Messinger, David W.

    2012-06-01

    Spectral image analysis problems often begin by performing a preprocessing step composed of applying a transformation that generates an alternative representation of the spectral data. In this paper, a transformation based on a Markov-chain model of a random walk on a graph is introduced. More precisely, we quantify the random walk using a quantity known as the average commute time distance and find a nonlinear transformation that embeds the nodes of a graph in a Euclidean space where the separation between them is equal to the square root of this quantity. This has been referred to as the Commute Time Distance (CTD) transformation and it has the important characteristic of increasing when the number of paths between two nodes decreases and/or the lengths of those paths increase. Remarkably, a closed form solution exists for computing the average commute time distance that avoids running an iterative process and is found by simply performing an eigendecomposition on the graph Laplacian matrix. Contained in this paper is a discussion of the particular graph constructed on the spectral data for which the commute time distance is then calculated from, an introduction of some important properties of the graph Laplacian matrix, and a subspace projection that approximately preserves the maximal variance of the square root commute time distance. Finally, RX anomaly detection and Topological Anomaly Detection (TAD) algorithms will be applied to the CTD subspace followed by a discussion of their results.

  13. Dynamic graph cuts for efficient inference in Markov Random Fields.

    PubMed

    Kohli, Pushmeet; Torr, Philip H S

    2007-12-01

    Abstract-In this paper we present a fast new fully dynamic algorithm for the st-mincut/max-flow problem. We show how this algorithm can be used to efficiently compute MAP solutions for certain dynamically changing MRF models in computer vision such as image segmentation. Specifically, given the solution of the max-flow problem on a graph, the dynamic algorithm efficiently computes the maximum flow in a modified version of the graph. The time taken by it is roughly proportional to the total amount of change in the edge weights of the graph. Our experiments show that, when the number of changes in the graph is small, the dynamic algorithm is significantly faster than the best known static graph cut algorithm. We test the performance of our algorithm on one particular problem: the object-background segmentation problem for video. It should be noted that the application of our algorithm is not limited to the above problem, the algorithm is generic and can be used to yield similar improvements in many other cases that involve dynamic change.

  14. Network Reliability: The effect of local network structure on diffusive processes

    PubMed Central

    Youssef, Mina; Khorramzadeh, Yasamin; Eubank, Stephen

    2014-01-01

    This paper re-introduces the network reliability polynomial – introduced by Moore and Shannon in 1956 – for studying the effect of network structure on the spread of diseases. We exhibit a representation of the polynomial that is well-suited for estimation by distributed simulation. We describe a collection of graphs derived from Erdős-Rényi and scale-free-like random graphs in which we have manipulated assortativity-by-degree and the number of triangles. We evaluate the network reliability for all these graphs under a reliability rule that is related to the expected size of a connected component. Through these extensive simulations, we show that for positively or neutrally assortative graphs, swapping edges to increase the number of triangles does not increase the network reliability. Also, positively assortative graphs are more reliable than neutral or disassortative graphs with the same number of edges. Moreover, we show the combined effect of both assortativity-by-degree and the presence of triangles on the critical point and the size of the smallest subgraph that is reliable. PMID:24329321

  15. Ensembles of physical states and random quantum circuits on graphs

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Santra, Siddhartha; Zanardi, Paolo

    2012-11-01

    In this paper we continue and extend the investigations of the ensembles of random physical states introduced in Hamma [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.040502 109, 040502 (2012)]. These ensembles are constructed by finite-length random quantum circuits (RQC) acting on the (hyper)edges of an underlying (hyper)graph structure. The latter encodes for the locality structure associated with finite-time quantum evolutions generated by physical, i.e., local, Hamiltonians. Our goal is to analyze physical properties of typical states in these ensembles; in particular here we focus on proxies of quantum entanglement as purity and α-Renyi entropies. The problem is formulated in terms of matrix elements of superoperators which depend on the graph structure, choice of probability measure over the local unitaries, and circuit length. In the α=2 case these superoperators act on a restricted multiqubit space generated by permutation operators associated to the subsets of vertices of the graph. For permutationally invariant interactions the dynamics can be further restricted to an exponentially smaller subspace. We consider different families of RQCs and study their typical entanglement properties for finite time as well as their asymptotic behavior. We find that area law holds in average and that the volume law is a typical property (that is, it holds in average and the fluctuations around the average are vanishing for the large system) of physical states. The area law arises when the evolution time is O(1) with respect to the size L of the system, while the volume law arises as is typical when the evolution time scales like O(L).

  16. A comparison study of brachial blood pressure recorded with Spacelabs 90217A and Mobil-O-Graph NG devices under static and ambulatory conditions.

    PubMed

    Sarafidis, P A; Lazaridis, A A; Imprialos, K P; Georgianos, P I; Avranas, K A; Protogerou, A D; Doumas, M N; Athyros, V G; Karagiannis, A I

    2016-12-01

    Ambulatory blood pressure monitoring is an important tool in hypertension diagnosis and management. Although several ambulatory devices exist, comparative studies are scarce. This study aimed to compare for the first time brachial blood pressure levels of Spacelabs 90217A and Mobil-O-Graph NG, under static and ambulatory conditions. We examined 40 healthy individuals under static (study A) and ambulatory (study B) conditions. In study A, participants were randomized into two groups that included blood pressure measurements with mercury sphygmomanometer, Spacelabs and Mobil-O-Graph devices with reverse order of recordings. In study B, simultaneous 6-h recordings with both devices were performed with participants randomized in two sequences of device positioning with arm reversal at 3 h. Finally, all the participants filled in a questionnaire rating their overall preference for a device. In study A, brachial systolic blood pressure (117.2±10.3 vs 117.1±9.8 mm Hg, P=0.943) and diastolic blood pressure (73.3±9.4 mm Hg vs 74.1±9.4 mm Hg, P=0.611) did not differ between Spacelabs and Mobil-O-Graph or vs sphygmomanometer (117.8±11.1 mm Hg, P=0.791 vs Spacelabs, P=0.753 vs Mobil-O-Graph). Similarly, no differences were found in ambulatory systolic blood pressure (117.9±11.4 vs 118.3±11.0 mm Hg, P=0.864), diastolic blood pressure (73.7±7.4 vs 74.7±8.0 mm Hg, P=0.571), mean blood pressure and heart rate between Spacelabs and Mobil-O-Graph. Correlation analyses and Bland-Altman plots showed agreement between the monitors. Overall, the participants showed a preference for the Mobil-O-Graph. Spacelabs 90217A and Mobil-O-Graph NG provide practically identical measurements during the static and ambulatory conditions in healthy individuals and can be rather used interchangeably in clinical practice.

  17. Summing Feynman graphs by Monte Carlo: Planar ϕ3-theory and dynamically triangulated random surfaces

    NASA Astrophysics Data System (ADS)

    Boulatov, D. V.; Kazakov, V. A.

    1988-12-01

    New combinatorial identities are suggested relating the ratio of (n - 1)th and nth orders of (planar) perturbation expansion for any quantity to some average over the ensemble of all planar graphs of the nth order. These identities are used for Monte Carlo calculation of critical exponents γstr (string susceptibility) in planar ϕ3-theory and in the dynamically triangulated random surface (DTRS) model near the convergence circle for various dimensions. In the solvable case D = 1 the exact critical properties of the theory are reproduced numerically. After August 3, 1988 the address will be: Cybernetics Council, Academy of Science, ul. Vavilova 40, 117333 Moscow, USSR.

  18. Quantum Algorithms Based on Physical Processes

    DTIC Science & Technology

    2013-12-03

    quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of

  19. Quantum Algorithms Based on Physical Processes

    DTIC Science & Technology

    2013-12-02

    quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of

  20. Optimizing spread dynamics on graphs by message passing

    NASA Astrophysics Data System (ADS)

    Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.

    2013-09-01

    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).

  1. Clustering in complex directed networks

    NASA Astrophysics Data System (ADS)

    Fagiolo, Giorgio

    2007-08-01

    Many empirical networks display an inherent tendency to cluster, i.e., to form circles of connected nodes. This feature is typically measured by the clustering coefficient (CC). The CC, originally introduced for binary, undirected graphs, has been recently generalized to weighted, undirected networks. Here we extend the CC to the case of (binary and weighted) directed networks and we compute its expected value for random graphs. We distinguish between CCs that count all directed triangles in the graph (independently of the direction of their edges) and CCs that only consider particular types of directed triangles (e.g., cycles). The main concepts are illustrated by employing empirical data on world-trade flows.

  2. The complex network of the Brazilian Popular Music

    NASA Astrophysics Data System (ADS)

    de Lima e Silva, D.; Medeiros Soares, M.; Henriques, M. V. C.; Schivani Alves, M. T.; de Aguiar, S. G.; de Carvalho, T. P.; Corso, G.; Lucena, L. S.

    2004-02-01

    We study the Brazilian Popular Music in a network perspective. We call the Brazilian Popular Music Network, BPMN, the graph where the vertices are the song writers and the links are determined by the existence of at least a common singer. The linking degree distribution of such graph shows power law and exponential regions. The exponent of the power law is compatible with the values obtained by the evolving network algorithms seen in the literature. The average path length of the BPMN is similar to the correspondent random graph, its clustering coefficient, however, is significantly larger. These results indicate that the BPMN forms a small-world network.

  3. Graph-based analysis of kinetics on multidimensional potential-energy surfaces.

    PubMed

    Okushima, T; Niiyama, T; Ikeda, K S; Shimizu, Y

    2009-09-01

    The aim of this paper is twofold: one is to give a detailed description of an alternative graph-based analysis method, which we call saddle connectivity graph, for analyzing the global topography and the dynamical properties of many-dimensional potential-energy landscapes and the other is to give examples of applications of this method in the analysis of the kinetics of realistic systems. A Dijkstra-type shortest path algorithm is proposed to extract dynamically dominant transition pathways by kinetically defining transition costs. The applicability of this approach is first confirmed by an illustrative example of a low-dimensional random potential. We then show that a coarse-graining procedure tailored for saddle connectivity graphs can be used to obtain the kinetic properties of 13- and 38-atom Lennard-Jones clusters. The coarse-graining method not only reduces the complexity of the graphs, but also, with iterative use, reveals a self-similar hierarchical structure in these clusters. We also propose that the self-similarity is common to many-atom Lennard-Jones clusters.

  4. Intersectionality takes it to the streets: Mobilizing across diverse interests for the Women’s March

    PubMed Central

    Fisher, Dana R.; Dow, Dawn M.; Ray, Rashawn

    2017-01-01

    Can a diverse crowd of individuals whose interests focus on distinct issues related to racial identity, class, gender, and sexuality mobilize around a shared issue? If so, how does this process work in practice? To date, limited research has explored intersectionality as a mobilization tool for social movements. This paper unpacks how intersectionality influences the constituencies represented in one of the largest protests ever observed in the United States: the Women’s March on Washington in January 2017. Analyzing a data set collected from a random sample of participants, we explore how social identities influenced participation in the Women’s March. Our analysis demonstrates how individuals’ motivations to participate represented an intersectional set of issues and how coalitions of issues emerge. We conclude by discussing how these coalitions enable us to understand and predict the future of the anti-Trump resistance. PMID:28948230

  5. Intersectionality takes it to the streets: Mobilizing across diverse interests for the Women's March.

    PubMed

    Fisher, Dana R; Dow, Dawn M; Ray, Rashawn

    2017-09-01

    Can a diverse crowd of individuals whose interests focus on distinct issues related to racial identity, class, gender, and sexuality mobilize around a shared issue? If so, how does this process work in practice? To date, limited research has explored intersectionality as a mobilization tool for social movements. This paper unpacks how intersectionality influences the constituencies represented in one of the largest protests ever observed in the United States: the Women's March on Washington in January 2017. Analyzing a data set collected from a random sample of participants, we explore how social identities influenced participation in the Women's March. Our analysis demonstrates how individuals' motivations to participate represented an intersectional set of issues and how coalitions of issues emerge. We conclude by discussing how these coalitions enable us to understand and predict the future of the anti-Trump resistance.

  6. Connectivity is a Poor Indicator of Fast Quantum Search

    NASA Astrophysics Data System (ADS)

    Meyer, David A.; Wong, Thomas G.

    2015-03-01

    A randomly walking quantum particle evolving by Schrödinger's equation searches on d -dimensional cubic lattices in O (√{N }) time when d ≥5 , and with progressively slower runtime as d decreases. This suggests that graph connectivity (including vertex, edge, algebraic, and normalized algebraic connectivities) is an indicator of fast quantum search, a belief supported by fast quantum search on complete graphs, strongly regular graphs, and hypercubes, all of which are highly connected. In this Letter, we show this intuition to be false by giving two examples of graphs for which the opposite holds true: one with low connectivity but fast search, and one with high connectivity but slow search. The second example is a novel two-stage quantum walk algorithm in which the walking rate must be adjusted to yield high search probability.

  7. Phase transitions in the quadratic contact process on complex networks

    NASA Astrophysics Data System (ADS)

    Varghese, Chris; Durrett, Rick

    2013-06-01

    The quadratic contact process (QCP) is a natural extension of the well-studied linear contact process where infected (1) individuals infect susceptible (0) neighbors at rate λ and infected individuals recover (10) at rate 1. In the QCP, a combination of two 1's is required to effect a 01 change. We extend the study of the QCP, which so far has been limited to lattices, to complex networks. We define two versions of the QCP: vertex-centered (VQCP) and edge-centered (EQCP) with birth events 1-0-11-1-1 and 1-1-01-1-1, respectively, where “-” represents an edge. We investigate the effects of network topology by considering the QCP on random regular, Erdős-Rényi, and power-law random graphs. We perform mean-field calculations as well as simulations to find the steady-state fraction of occupied vertices as a function of the birth rate. We find that on the random regular and Erdős-Rényi graphs, there is a discontinuous phase transition with a region of bistability, whereas on the heavy-tailed power-law graph, the transition is continuous. The critical birth rate is found to be positive in the former but zero in the latter.

  8. Parallel Algorithms for Switching Edges in Heterogeneous Graphs☆

    PubMed Central

    Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav

    2017-01-01

    An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors. PMID:28757680

  9. Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2018-05-01

    Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.

  10. Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2018-06-01

    Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.

  11. Ghana randomized air pollution and health study (GRAPHS): study protocol for a randomized controlled trial.

    PubMed

    Jack, Darby W; Asante, Kwaku Poku; Wylie, Blair J; Chillrud, Steve N; Whyatt, Robin M; Ae-Ngibise, Kenneth A; Quinn, Ashlinn K; Yawson, Abena Konadu; Boamah, Ellen Abrafi; Agyei, Oscar; Mujtaba, Mohammed; Kaali, Seyram; Kinney, Patrick; Owusu-Agyei, Seth

    2015-09-22

    Household air pollution exposure is a major health risk, but validated interventions remain elusive. The Ghana Randomized Air Pollution and Health Study (GRAPHS) is a cluster-randomized trial that evaluates the efficacy of clean fuels (liquefied petroleum gas, or LPG) and efficient biomass cookstoves in the Brong-Ahafo region of central Ghana. We recruit pregnant women into LPG, efficient cookstove, and control arms and track birth weight and physician-assessed severe pneumonia incidence in the first year of life. A woman is eligible to participate if she is in the first or second trimester of pregnancy and carrying a live singleton fetus, if she is the primary cook, and if she does not smoke. We hypothesize that babies born to intervention mothers will weigh more and will have fewer cases of physician-assessed severe pneumonia in the first year of life. Additionally, an extensive personal air pollution exposure monitoring effort opens the way for exposure-response analyses, which we will present alongside intention-to-treat analyses. Major funding was provided by the National Institute of Environmental Health Sciences, The Thrasher Research Fund, and the Global Alliance for Clean Cookstoves. Household air pollution exposure is a major health risk that requires well-tested interventions. GRAPHS will provide important new evidence on the efficacy of both efficient biomass cookstoves and LPG, and will thus help inform health and energy policies in developing countries. The trial was registered with clinicaltrials.gov on 13 April 2011 with the identifier NCT01335490 .

  12. A Weighted Configuration Model and Inhomogeneous Epidemics

    NASA Astrophysics Data System (ADS)

    Britton, Tom; Deijfen, Maria; Liljeros, Fredrik

    2011-12-01

    A random graph model with prescribed degree distribution and degree dependent edge weights is introduced. Each vertex is independently equipped with a random number of half-edges and each half-edge is assigned an integer valued weight according to a distribution that is allowed to depend on the degree of its vertex. Half-edges with the same weight are then paired randomly to create edges. An expression for the threshold for the appearance of a giant component in the resulting graph is derived using results on multi-type branching processes. The same technique also gives an expression for the basic reproduction number for an epidemic on the graph where the probability that a certain edge is used for transmission is a function of the edge weight (reflecting how closely `connected' the corresponding vertices are). It is demonstrated that, if vertices with large degree tend to have large (small) weights on their edges and if the transmission probability increases with the edge weight, then it is easier (harder) for the epidemic to take off compared to a randomized epidemic with the same degree and weight distribution. A recipe for calculating the probability of a large outbreak in the epidemic and the size of such an outbreak is also given. Finally, the model is fitted to three empirical weighted networks of importance for the spread of contagious diseases and it is shown that R 0 can be substantially over- or underestimated if the correlation between degree and weight is not taken into account.

  13. Graph drawing using tabu search coupled with path relinking.

    PubMed

    Dib, Fadi K; Rodgers, Peter

    2018-01-01

    Graph drawing, or the automatic layout of graphs, is a challenging problem. There are several search based methods for graph drawing which are based on optimizing an objective function which is formed from a weighted sum of multiple criteria. In this paper, we propose a new neighbourhood search method which uses a tabu search coupled with path relinking to optimize such objective functions for general graph layouts with undirected straight lines. To our knowledge, before our work, neither of these methods have been previously used in general multi-criteria graph drawing. Tabu search uses a memory list to speed up searching by avoiding previously tested solutions, while the path relinking method generates new solutions by exploring paths that connect high quality solutions. We use path relinking periodically within the tabu search procedure to speed up the identification of good solutions. We have evaluated our new method against the commonly used neighbourhood search optimization techniques: hill climbing and simulated annealing. Our evaluation examines the quality of the graph layout (objective function's value) and the speed of layout in terms of the number of evaluated solutions required to draw a graph. We also examine the relative scalability of each method. Our experimental results were applied to both random graphs and a real-world dataset. We show that our method outperforms both hill climbing and simulated annealing by producing a better layout in a lower number of evaluated solutions. In addition, we demonstrate that our method has greater scalability as it can layout larger graphs than the state-of-the-art neighbourhood search methods. Finally, we show that similar results can be produced in a real world setting by testing our method against a standard public graph dataset.

  14. Graph drawing using tabu search coupled with path relinking

    PubMed Central

    Rodgers, Peter

    2018-01-01

    Graph drawing, or the automatic layout of graphs, is a challenging problem. There are several search based methods for graph drawing which are based on optimizing an objective function which is formed from a weighted sum of multiple criteria. In this paper, we propose a new neighbourhood search method which uses a tabu search coupled with path relinking to optimize such objective functions for general graph layouts with undirected straight lines. To our knowledge, before our work, neither of these methods have been previously used in general multi-criteria graph drawing. Tabu search uses a memory list to speed up searching by avoiding previously tested solutions, while the path relinking method generates new solutions by exploring paths that connect high quality solutions. We use path relinking periodically within the tabu search procedure to speed up the identification of good solutions. We have evaluated our new method against the commonly used neighbourhood search optimization techniques: hill climbing and simulated annealing. Our evaluation examines the quality of the graph layout (objective function’s value) and the speed of layout in terms of the number of evaluated solutions required to draw a graph. We also examine the relative scalability of each method. Our experimental results were applied to both random graphs and a real-world dataset. We show that our method outperforms both hill climbing and simulated annealing by producing a better layout in a lower number of evaluated solutions. In addition, we demonstrate that our method has greater scalability as it can layout larger graphs than the state-of-the-art neighbourhood search methods. Finally, we show that similar results can be produced in a real world setting by testing our method against a standard public graph dataset. PMID:29746576

  15. Combinatorial Statistics on Trees and Networks

    DTIC Science & Technology

    2010-09-29

    interaction graph is drawn from the Erdos- Renyi , G(n,p), where each edge is present independently with probability p. For this model we establish a double...special interest is the behavior of Gibbs sampling on the Erdos- Renyi random graph G{n, d/n), where each edge is chosen independently with...which have no counterparts in the coloring setting. Our proof presented here exploits in novel ways the local treelike structure of Erdos- Renyi

  16. Comparative Effectiveness of TI-84 Graphing Calculators on Algebra I and Geometry Outcomes: A Report of Randomized Experiments in the East Side Union High School District and San Diego Unified School District. Research Report

    ERIC Educational Resources Information Center

    Miller, Gloria I.; Jaciw, Andrew; Hoshiko, Brandon; Wei, Xin

    2007-01-01

    Texas Instruments has undertaken a research program with the goal of producing scientifically-based evidence of the effectiveness of graphing calculators and the "TI-Navigator"[TM] classroom networking system in the context of a professional development and curriculum framework. The program includes a two-year longitudinal study. The…

  17. Solving Hard Computational Problems Efficiently: Asymptotic Parametric Complexity 3-Coloring Algorithm

    PubMed Central

    Martín H., José Antonio

    2013-01-01

    Many practical problems in almost all scientific and technological disciplines have been classified as computationally hard (NP-hard or even NP-complete). In life sciences, combinatorial optimization problems frequently arise in molecular biology, e.g., genome sequencing; global alignment of multiple genomes; identifying siblings or discovery of dysregulated pathways. In almost all of these problems, there is the need for proving a hypothesis about certain property of an object that can be present if and only if it adopts some particular admissible structure (an NP-certificate) or be absent (no admissible structure), however, none of the standard approaches can discard the hypothesis when no solution can be found, since none can provide a proof that there is no admissible structure. This article presents an algorithm that introduces a novel type of solution method to “efficiently” solve the graph 3-coloring problem; an NP-complete problem. The proposed method provides certificates (proofs) in both cases: present or absent, so it is possible to accept or reject the hypothesis on the basis of a rigorous proof. It provides exact solutions and is polynomial-time (i.e., efficient) however parametric. The only requirement is sufficient computational power, which is controlled by the parameter . Nevertheless, here it is proved that the probability of requiring a value of to obtain a solution for a random graph decreases exponentially: , making tractable almost all problem instances. Thorough experimental analyses were performed. The algorithm was tested on random graphs, planar graphs and 4-regular planar graphs. The obtained experimental results are in accordance with the theoretical expected results. PMID:23349711

  18. Detecting false positives in multielement designs: implications for brief assessments.

    PubMed

    Bartlett, Sara M; Rapp, John T; Henrickson, Marissa L

    2011-11-01

    The authors assessed the extent to which multielement designs produced false positives using continuous duration recording (CDR) and interval recording with 10-s and 1-min interval sizes. Specifically, they created 6,000 graphs with multielement designs that varied in the number of data paths, and the number of data points per data path, using a random number generator. In Experiment 1, the authors visually analyzed the graphs for the occurrence of false positives. Results indicated that graphs depicting only two sessions for each condition (e.g., a control condition plotted with multiple test conditions) produced the highest percentage of false positives for CDR and interval recording with 10-s and 1-min intervals. Conversely, graphs with four or five sessions for each condition produced the lowest percentage of false positives for each method. In Experiment 2, they applied two new rules, which were intended to decrease false positives, to each graph that depicted a false positive in Experiment 1. Results showed that application of new rules decreased false positives to less than 5% for all of the graphs except for those with two data paths and two data points per data path. Implications for brief assessments are discussed.

  19. Feedback topology and XOR-dynamics in Boolean networks with varying input structure

    NASA Astrophysics Data System (ADS)

    Ciandrini, L.; Maffi, C.; Motta, A.; Bassetti, B.; Cosentino Lagomarsino, M.

    2009-08-01

    We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter γ . We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying γ , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.

  20. Feedback topology and XOR-dynamics in Boolean networks with varying input structure.

    PubMed

    Ciandrini, L; Maffi, C; Motta, A; Bassetti, B; Cosentino Lagomarsino, M

    2009-08-01

    We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter gamma. We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying gamma , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.

  1. A matrix-algebraic formulation of distributed-memory maximal cardinality matching algorithms in bipartite graphs

    DOE PAGES

    Azad, Ariful; Buluç, Aydın

    2016-05-16

    We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First, unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant with increasing processor counts, which is important for predictable and reproducible performance. Second, relying on bulk-synchronous matrix operations,more » these algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. We report high-performance implementations of three maximal matching algorithms using hybrid OpenMP-MPI and evaluate the performance of these algorithm using more than 35 real and randomly generated graphs. On real instances, our algorithms achieve up to 200 × speedup on 2048 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 cores.« less

  2. Modeling and optimization of Quality of Service routing in Mobile Ad hoc Networks

    NASA Astrophysics Data System (ADS)

    Rafsanjani, Marjan Kuchaki; Fatemidokht, Hamideh; Balas, Valentina Emilia

    2016-01-01

    Mobile ad hoc networks (MANETs) are a group of mobile nodes that are connected without using a fixed infrastructure. In these networks, nodes communicate with each other by forming a single-hop or multi-hop network. To design effective mobile ad hoc networks, it is important to evaluate the performance of multi-hop paths. In this paper, we present a mathematical model for a routing protocol under energy consumption and packet delivery ratio of multi-hop paths. In this model, we use geometric random graphs rather than random graphs. Our proposed model finds effective paths that minimize the energy consumption and maximizes the packet delivery ratio of the network. Validation of the mathematical model is performed through simulation.

  3. Evolution of tag-based cooperation with emotion on complex networks

    NASA Astrophysics Data System (ADS)

    Lima, F. W. S.

    2018-04-01

    We study the evolution of the four strategies: Ethnocentric, altruistic, egoistic and cosmopolitan in one community of individuals through Monte Carlo simulations. Interactions and reproduction among computational agents are simulated on undirected Barabási-Albert (UBA) networks and Erdös-Rènyi random graphs (ER).We study the Hammond-Axelrod model on both UBA networks and ER random graphs for the asexual reproduction case. We use a modified version of the traditional Hammond-Axelrod model and we also allow the agents’ decisions about one of the strategies to take into account the emotion among their equals. Our simulations showed that egoism and altruism win, differently from other results found in the literature where ethnocentric strategy is common.

  4. Dynamics of tax evasion through an epidemic-like model

    NASA Astrophysics Data System (ADS)

    Brum, Rafael M.; Crokidakis, Nuno

    In this work, we study a model of tax evasion. We considered a fixed population divided in three compartments, namely honest tax payers, tax evaders and a third class between the mentioned two, which we call susceptibles to become evaders. The transitions among those compartments are ruled by probabilities, similarly to a model of epidemic spreading. These probabilities model social interactions among the individuals, as well as the government’s fiscalization. We simulate the model on fully-connected graphs, as well as on scale-free and random complex networks. For the fully-connected and random graph cases, we observe that the emergence of tax evaders in the population is associated with an active-absorbing nonequilibrium phase transition, that is absent in scale-free networks.

  5. Vertices cannot be hidden from quantum spatial search for almost all random graphs

    NASA Astrophysics Data System (ADS)

    Glos, Adam; Krawiec, Aleksandra; Kukulski, Ryszard; Puchała, Zbigniew

    2018-04-01

    In this paper, we show that all nodes can be found optimally for almost all random Erdős-Rényi G(n,p) graphs using continuous-time quantum spatial search procedure. This works for both adjacency and Laplacian matrices, though under different conditions. The first one requires p=ω (log ^8(n)/n), while the second requires p≥ (1+ɛ )log (n)/n, where ɛ >0. The proof was made by analyzing the convergence of eigenvectors corresponding to outlying eigenvalues in the \\Vert \\cdot \\Vert _∞ norm. At the same time for p<(1-ɛ )log (n)/n, the property does not hold for any matrix, due to the connectivity issues. Hence, our derivation concerning Laplacian matrix is tight.

  6. Random sequential adsorption of cubes

    NASA Astrophysics Data System (ADS)

    Cieśla, Michał; Kubala, Piotr

    2018-01-01

    Random packings built of cubes are studied numerically using a random sequential adsorption algorithm. To compare the obtained results with previous reports, three different models of cube orientation sampling were used. Also, three different cube-cube intersection algorithms were tested to find the most efficient one. The study focuses on the mean saturated packing fraction as well as kinetics of packing growth. Microstructural properties of packings were analyzed using density autocorrelation function.

  7. Finding the Optimal Nets for Self-Folding Kirigami

    NASA Astrophysics Data System (ADS)

    Araújo, N. A. M.; da Costa, R. A.; Dorogovtsev, S. N.; Mendes, J. F. F.

    2018-05-01

    Three-dimensional shells can be synthesized from the spontaneous self-folding of two-dimensional templates of interconnected panels, called nets. However, some nets are more likely to self-fold into the desired shell under random movements. The optimal nets are the ones that maximize the number of vertex connections, i.e., vertices that have only two of its faces cut away from each other in the net. Previous methods for finding such nets are based on random search, and thus, they do not guarantee the optimal solution. Here, we propose a deterministic procedure. We map the connectivity of the shell into a shell graph, where the nodes and links of the graph represent the vertices and edges of the shell, respectively. Identifying the nets that maximize the number of vertex connections corresponds to finding the set of maximum leaf spanning trees of the shell graph. This method allows us not only to design the self-assembly of much larger shell structures but also to apply additional design criteria, as a complete catalog of the maximum leaf spanning trees is obtained.

  8. Understanding spatial connectivity of individuals with non-uniform population density.

    PubMed

    Wang, Pu; González, Marta C

    2009-08-28

    We construct a two-dimensional geometric graph connecting individuals placed in space within a given contact distance. The individuals are distributed using a measured country's density of population. We observe that while large clusters (group of individuals connected) emerge within some regions, they are trapped in detached urban areas owing to the low population density of the regions bordering them. To understand the emergence of a giant cluster that connects the entire population, we compare the empirical geometric graph with the one generated by placing the same number of individuals randomly in space. We find that, for small contact distances, the empirical distribution of population dominates the growth of connected components, but no critical percolation transition is observed in contrast to the graph generated by a random distribution of population. Our results show that contact distances from real-world situations as for WIFI and Bluetooth connections drop in a zone where a fully connected cluster is not observed, hinting that human mobility must play a crucial role in contact-based diseases and wireless viruses' large-scale spreading.

  9. Learning molecular energies using localized graph kernels.

    PubMed

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-21

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  10. Learning molecular energies using localized graph kernels

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  11. Non-Markovian Infection Spread Dramatically Alters the Susceptible-Infected-Susceptible Epidemic Threshold in Networks

    NASA Astrophysics Data System (ADS)

    Van Mieghem, P.; van de Bovenkamp, R.

    2013-03-01

    Most studies on susceptible-infected-susceptible epidemics in networks implicitly assume Markovian behavior: the time to infect a direct neighbor is exponentially distributed. Much effort so far has been devoted to characterize and precisely compute the epidemic threshold in susceptible-infected-susceptible Markovian epidemics on networks. Here, we report the rather dramatic effect of a nonexponential infection time (while still assuming an exponential curing time) on the epidemic threshold by considering Weibullean infection times with the same mean, but different power exponent α. For three basic classes of graphs, the Erdős-Rényi random graph, scale-free graphs and lattices, the average steady-state fraction of infected nodes is simulated from which the epidemic threshold is deduced. For all graph classes, the epidemic threshold significantly increases with the power exponents α. Hence, real epidemics that violate the exponential or Markovian assumption can behave seriously differently than anticipated based on Markov theory.

  12. Simulation of 'hitch-hiking' genealogies.

    PubMed

    Slade, P F

    2001-01-01

    An ancestral influence graph is derived, an analogue of the coalescent and a composite of Griffiths' (1991) two-locus ancestral graph and Krone and Neuhauser's (1997) ancestral selection graph. This generalizes their use of branching-coalescing random graphs so as to incorporate both selection and recombination into gene genealogies. Qualitative understanding of a 'hitch-hiking' effect on genealogies is pursued via diagrammatic representation of the genealogical process in a two-locus, two-allele haploid model. Extending the simulation technique of Griffiths and Tavare (1996), computational estimation of expected times to the most recent common ancestor of samples of n genes under recombination and selection in two-locus, two-allele haploid and diploid models are presented. Such times are conditional on sample configuration. Monte Carlo simulations show that 'hitch-hiking' is a subtle effect that alters the conditional expected depth of the genealogy at the linked neutral locus depending on a mutation-selection-recombination balance.

  13. Multifractal analysis of visibility graph-based Ito-related connectivity time series.

    PubMed

    Czechowski, Zbigniew; Lovallo, Michele; Telesca, Luciano

    2016-02-01

    In this study, we investigate multifractal properties of connectivity time series resulting from the visibility graph applied to normally distributed time series generated by the Ito equations with multiplicative power-law noise. We show that multifractality of the connectivity time series (i.e., the series of numbers of links outgoing any node) increases with the exponent of the power-law noise. The multifractality of the connectivity time series could be due to the width of connectivity degree distribution that can be related to the exit time of the associated Ito time series. Furthermore, the connectivity time series are characterized by persistence, although the original Ito time series are random; this is due to the procedure of visibility graph that, connecting the values of the time series, generates persistence but destroys most of the nonlinear correlations. Moreover, the visibility graph is sensitive for detecting wide "depressions" in input time series.

  14. Why should we pay more for layout designers?

    NASA Astrophysics Data System (ADS)

    Khan, Samee U.

    2003-12-01

    In this paper, we discuss the Passive Optical Network (PON) deployment on an arbitrary grid with guarenteed p-1 equipment failure. We show that this problem in general is NP-hard. We propose an algorithm, which guarantees a solution of 4-approximation to the optimal deployment, and further argue that this is the best lower bound achievable in our case.A basic architecture of PON is shown in figure 1.The main component of PON is an optical splitter device. Depending on which direction the light is travelling, it splits the incoming light and distributes it to multiple fibers towards Optical Network Termination (ONT), or combines it into one towards Optical Line Terminal (OLT). The PON technology uses a double-star architecture. The first star topology centers at the OLT, and the second at the optical splitter. PROBLEM DESCRIPTION: We can formulate the problem of optimal p-1 fault-tolerent PON Network Layout (PNL)as a graph theoretical problem. Consider a graph G(V,E), such that V represent the physical locations of the subscriber's, CO, and another location acquired by the CO to expand its network, and E represent the communication lines between two Vi's. If there is no direct communication line c(i,j) between Vi and Vj, we consider the shortest path between them measured in terms of simple distance or cost constraints. Without the loss of generality we assume that c(i,j)=c(j,i). For simplicity we do not further sub-divide V into the obvious categories that represent the locations of OLT, ONT, CO, optical splitters and the subscribers. We can now formulate the PNL problem as follows: "Given an undirected graph G, find the locations of ONTs and splitters such that the cost of the equipment is minimized and for QoS the maximum distance from an ONT to the pth splitter and from a splitter to the pth OLT is minimized". We assume that the OLT is residing inside the CO. The problem definition does not consider the optimization of ONT to the customer premises. This is due to the fact that the distance from ONT to the premises is negligibly small, and fault tolerance for a failed ONT can be answered by replacing the connection from a nearby ONT. We will treat ONT and ONU as more or less the same entity. GENERALIZED PNL IS NP-Hard: Essentially our problem definition consists of two major optimization steps, i.e. ONT to splitters and splitters to the OLT. Showing the hardness of the problem over one optimization step would be sufficient to show that the over all the problem is hard. If we consider the optimization of the first phase of the problem, i.e. minimize the maximum distance of ONTs to the splitters and reduce the cost of the equipment, this can be solved by associating cost to vertices V (equipment cost) and edges E (fiber cost). Thus the problem reduces to finding the smallest number of minimum cost edges from a splitter to an ONT, such that the chosen set of edges identify vertices that connect in a min-max fashion. Lemma 1 Let U be maximal k-independent set such that |U|>=k, then U is a k-dominating set in G^2. Proof (follows form def 1&2) Lemma 2 Let V be a k-dominating set in G, then |U|<=|V| holds for any k-independent set U in G^2. Proof For the two non-trivial cases of U subset V, a) U is not contained in V. Pick a node u at random such that u belongs U-V. Thus a set of nodes S can be defined such that the neighborhood of u N(u) is not contained in V, i.e. S=N(u) intersection V. Let L define the set of nodes that are adjacent to S, then any node v in SUL is contained in G^2 (definition 2) and is adjacent to at most k vertices in SUL. b) U is contained in V. If U is contained in V, then we can define a graph G containing vertices V-(SUL). Thus the lemma would hold, if V'=V-(SUL)=V-S, where V' is a k-dominating set in G. Pick a random node v in G not contained in V, then v belongs to V-V', and v has atleast k neighbors in G not present in V'. Since we assumed that V' is a k-dominating set in G, no neighbor belongs to G (by definition of G). Thus N(v) intersection V' is a subset of V'. Theorem 1 Assuming P!=NP, for any arbitrary fixed a<=p, there does not exist any polynomial time algorithm for PNL. Proof Suppose we have an algorithm A, which gives a solution for the PNL problem, then a solution for dominating set can be obtained. We will now give a polynomial time reduction from PNL to the dominating set problem. Let |V| be the pairwise neighborhood graph such that by picking any vertex v in V, N(v) intersection V is null. Thus the graph to find PNL (figure 2) can be computed by picking vertices as follows:(u,v)= 1 if u,v belongs V(u,v)= 1 if u belongs V and n belongs N(v) (u,v)= f(|V|)+ epsilon otherwise The choice of epsilon, exhibits the epsilon approximation factor in the final layout. If G has the dominating set of size d, then the solution for PNL has a set J such that dUN(v) is a set of nodes with cardinality d+(a-1), where a<=p. For a=1, the problem reduces to minimum k-center problem, so we will consider a>=2. Pick any node v in N(v). It is clear that v has only one neighbor in V', which is at a distance of 1 (triangle inequality). If it is not equal to 1, then it must be covered by a neibours within a distance of 1. Let Z=P intersection V such that Z is subset of V and contains d nodes such that d=|P|-(a-1)|V|, then any arbitrary node v belongs to V-Z must have atleast a nodes in P with a adistance of 1, but by definition and previous argument, only a-1 nodes can form the neighborhood. Thus, Z is a dominating set of size d, but by lemma 2, G cannot contain a dominating set of size d. OUR APPROACH: We assume that the edges of the graph G have the triangle inequality property. Let Si represent the set of weighted vertices w(v) such that once picked, they form a clique in graph G. PNL Algorithm Input: G Output: G' (Final PNL) 1. Construct G1^2,G2^2,....,Gm^2 2. Compute I, (Mi) in each Gi^2 3. Find the smallest index i, such that |Mi|<=k, say Mj 4. Input Mj for step 5. 5. Construct G1j^2,G2j^2,....,Gmj^2 6. Compute I, (Mij) in each Gij^2 7. Compute Si=si(u)|u belongs to Mij 8. Find the minimum index i such that w(Si)<= w(D) 9. Return Sj 10. Compute G'=min Mij belongs V [max si sum{i=0}^{|Sj|] 11. Return G' Theorem 2 The PNL algorithm is complete and will identify a solution, if there exists one. Proof (Trivial and not included due to space) Theorem 3 The PNL algorithm has a lower bound of 4-approximation to the optimal algorithm. Proof (Not included due to space, but the basic argument, is due to the fact that picking a node v with 2-epsilon in G^2, would required the neighbors to be picked in G^4, thus the PNL is no better than 4-epsilon, where epsilon >0) Experiments We made some initial experiments, which are showing promissing results with savings in fiber, equipment cost, due to space, and inital phase of the experiments, we are not including the results here. P.S. My appologies for exceeding the text limit. There is much more detail to the formal proof, I hope the idea is still conveyed. There are also 2 figures which will be faxed.

  15. Exact Solution of the Markov Propagator for the Voter Model on the Complete Graph

    DTIC Science & Technology

    2014-07-01

    distribution of the random walk. This process can also be applied to other models, incomplete graphs, or to multiple dimensions. An advantage of this...since any multiple of an eigenvector remains an eigenvector. Without any loss, let bk = 1. Now we can ascertain the explicit solution for bj when k < j...this bound is valid for all initial probability distributions. However, without detailed information about the eigenvectors, we cannot extract more

  16. The hypergraph regularity method and its applications

    PubMed Central

    Rödl, V.; Nagle, B.; Skokan, J.; Schacht, M.; Kohayakawa, Y.

    2005-01-01

    Szemerédi's regularity lemma asserts that every graph can be decomposed into relatively few random-like subgraphs. This random-like behavior enables one to find and enumerate subgraphs of a given isomorphism type, yielding the so-called counting lemma for graphs. The combined application of these two lemmas is known as the regularity method for graphs and has proved useful in graph theory, combinatorial geometry, combinatorial number theory, and theoretical computer science. Here, we report on recent advances in the regularity method for k-uniform hypergraphs, for arbitrary k ≥ 2. This method, purely combinatorial in nature, gives alternative proofs of density theorems originally due to E. Szemerédi, H. Furstenberg, and Y. Katznelson. Further results in extremal combinatorics also have been obtained with this approach. The two main components of the regularity method for k-uniform hypergraphs, the regularity lemma and the counting lemma, have been obtained recently: Rödl and Skokan (based on earlier work of Frankl and Rödl) generalized Szemerédi's regularity lemma to k-uniform hypergraphs, and Nagle, Rödl, and Schacht succeeded in proving a counting lemma accompanying the Rödl–Skokan hypergraph regularity lemma. The counting lemma is proved by reducing the counting problem to a simpler one previously investigated by Kohayakawa, Rödl, and Skokan. Similar results were obtained independently by W. T. Gowers, following a different approach. PMID:15919821

  17. Law of large numbers for the SIR model with random vertex weights on Erdős-Rényi graph

    NASA Astrophysics Data System (ADS)

    Xue, Xiaofeng

    2017-11-01

    In this paper we are concerned with the SIR model with random vertex weights on Erdős-Rényi graph G(n , p) . The Erdős-Rényi graph G(n , p) is generated from the complete graph Cn with n vertices through independently deleting each edge with probability (1 - p) . We assign i. i. d. copies of a positive r. v. ρ on each vertex as the vertex weights. For the SIR model, each vertex is in one of the three states 'susceptible', 'infective' and 'removed'. An infective vertex infects a given susceptible neighbor at rate proportional to the production of the weights of these two vertices. An infective vertex becomes removed at a constant rate. A removed vertex will never be infected again. We assume that at t = 0 there is no removed vertex and the number of infective vertices follows a Bernoulli distribution B(n , θ) . Our main result is a law of large numbers of the model. We give two deterministic functions HS(ψt) ,HV(ψt) for t ≥ 0 and show that for any t ≥ 0, HS(ψt) is the limit proportion of susceptible vertices and HV(ψt) is the limit of the mean capability of an infective vertex to infect a given susceptible neighbor at moment t as n grows to infinity.

  18. SpectralNET – an application for spectral graph analysis and visualization

    PubMed Central

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-01-01

    Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from . Source code is available upon request. PMID:16236170

  19. SpectralNET--an application for spectral graph analysis and visualization.

    PubMed

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-10-19

    Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is available upon request.

  20. Pattern formations and optimal packing.

    PubMed

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Breaking of Ensemble Equivalence in Networks

    NASA Astrophysics Data System (ADS)

    Squartini, Tiziano; de Mol, Joey; den Hollander, Frank; Garlaschelli, Diego

    2015-12-01

    It is generally believed that, in the thermodynamic limit, the microcanonical description as a function of energy coincides with the canonical description as a function of temperature. However, various examples of systems for which the microcanonical and canonical ensembles are not equivalent have been identified. A complete theory of this intriguing phenomenon is still missing. Here we show that ensemble nonequivalence can manifest itself also in random graphs with topological constraints. We find that, while graphs with a given number of links are ensemble equivalent, graphs with a given degree sequence are not. This result holds irrespective of whether the energy is nonadditive (as in unipartite graphs) or additive (as in bipartite graphs). In contrast with previous expectations, our results show that (1) physically, nonequivalence can be induced by an extensive number of local constraints, and not necessarily by long-range interactions or nonadditivity, (2) mathematically, nonequivalence is determined by a different large-deviation behavior of microcanonical and canonical probabilities for a single microstate, and not necessarily for almost all microstates. The latter criterion, which is entirely local, is not restricted to networks and holds in general.

  2. Naming games in two-dimensional and small-world-connected random geometric networks.

    PubMed

    Lu, Qiming; Korniss, G; Szymanski, B K

    2008-01-01

    We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric networks. The naming game [Baronchelli, J. Stat. Mech.: Theory Exp. (2006) P06014] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case.

  3. Data and graph interpretation practices among preservice science teachers

    NASA Astrophysics Data System (ADS)

    Bowen, G. Michael; Roth, Wolff-Michael

    2005-12-01

    The interpretation of data and construction and interpretation of graphs are central practices in science, which, according to recent reform documents, science and mathematics teachers are expected to foster in their classrooms. However, are (preservice) science teachers prepared to teach inquiry with the purpose of transforming and analyzing data, and interpreting graphical representations? That is, are preservice science teachers prepared to teach data analysis and graph interpretation practices that scientists use by default in their everyday work? The present study was designed to answer these and related questions. We investigated the responses of preservice elementary and secondary science teachers to data and graph interpretation tasks. Our investigation shows that, despite considerable preparation, and for many, despite bachelor of science degrees, preservice teachers do not enact the (authentic) practices that scientists routinely do when asked to interpret data or graphs. Detailed analyses are provided of what data and graph interpretation practices actually were enacted. We conclude that traditional schooling emphasizes particular beliefs in the mathematical nature of the universe that make it difficult for many individuals to deal with data possessing the random variation found in measurements of natural phenomena. The results suggest that preservice teachers need more experience in engaging in data and graph interpretation practices originating in activities that provide the degree of variation in and complexity of data present in realistic investigations.

  4. Fair sharing of resources in a supply network with constraints.

    PubMed

    Carvalho, Rui; Buzna, Lubos; Just, Wolfram; Helbing, Dirk; Arrowsmith, David K

    2012-04-01

    This paper investigates the effect of network topology on the fair allocation of network resources among a set of agents, an all-important issue for the efficiency of transportation networks all around us. We analyze a generic mechanism that distributes network capacity fairly among existing flow demands. The problem can be solved by semianalytical methods on a nearest-neighbor graph with one source and sink pair, when transport occurs over shortest paths. For this setup, we uncover a broad range of patterns of intersecting shortest paths as a function of the distance between the source and the sink. When the number of intersections is the maximum and the distance between the source and the sink is large, we find that a fair allocation implies a decrease of at least 50% from the maximum throughput. We also find that the histogram of the flow allocations assigned to the agents decays as a power law with exponent -1. Our semianalytical framework suggests possible explanations for the well-known reduction of the throughput in fair allocations. It also suggests that the combination of network topology and routing rules can lead to highly uneven (but fair) distributions of resources, a remark of caution to network designers.

  5. Solutions to Improve Road Circulation in the Pitesti City Based on Analysis-Diagnostics of Road Traffic

    NASA Astrophysics Data System (ADS)

    Vîlcan, A.; Neagu, E.; Badarau Suster, H.; Boroiu, A. A.

    2017-10-01

    Road traffic congestion has become a daily phenomenon in the central area of Pitesti in the peak traffic periods. In order to achieve the mobility plan of Pitesti, an important stage is the diagnostic analysis of the road traffic. For this purpose, the urban road network was formalized through a graph containing the most important 40 intersections and traffic measurements were made at all these intersections and on the main roads connecting the peri-urban area. The data obtained by traffic macrosimulation confirmed the overloading of the street network during peak traffic hours and the analyzes made for various road traffic organization scenarios have shown that there are sustainable solutions for urban mobility only if the road network is fundamentally reconfigured (a belt outside the city and a median ring). Thus, the necessity of realizing the road passage in the Prundu neighbourhood and the finishing of the city belt by realizing the “detour West” of the city is argued. The importance of the work is that it brings scientific arguments for the realization of these road infrastructure projects, integrated in the urban mobility plan, which will base the development strategy of the Pitesti municipality.

  6. Fair sharing of resources in a supply network with constraints

    NASA Astrophysics Data System (ADS)

    Carvalho, Rui; Buzna, Lubos; Just, Wolfram; Helbing, Dirk; Arrowsmith, David K.

    2012-04-01

    This paper investigates the effect of network topology on the fair allocation of network resources among a set of agents, an all-important issue for the efficiency of transportation networks all around us. We analyze a generic mechanism that distributes network capacity fairly among existing flow demands. The problem can be solved by semianalytical methods on a nearest-neighbor graph with one source and sink pair, when transport occurs over shortest paths. For this setup, we uncover a broad range of patterns of intersecting shortest paths as a function of the distance between the source and the sink. When the number of intersections is the maximum and the distance between the source and the sink is large, we find that a fair allocation implies a decrease of at least 50% from the maximum throughput. We also find that the histogram of the flow allocations assigned to the agents decays as a power law with exponent -1. Our semianalytical framework suggests possible explanations for the well-known reduction of the throughput in fair allocations. It also suggests that the combination of network topology and routing rules can lead to highly uneven (but fair) distributions of resources, a remark of caution to network designers.

  7. Listing All Maximal Cliques in Sparse Graphs in Near-optimal Time

    DTIC Science & Technology

    2011-01-01

    523 10 Arabisopsis thaliana 1745 3098 71 12 Drosophila melanogaster 7282 24894 176 12 Homo Sapiens 9527 31182 308 12 Schizosaccharomyces pombe 2031...clusters of actors [6,14,28,40] and may be used as features in exponential random graph models for statistical analysis of social networks [17,19,20,44,49...29. R. Horaud and T. Skordas. Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Patt. An. Mach. Int. 11(11):1168–1180

  8. A heuristic for efficient data distribution management in distributed simulation

    NASA Astrophysics Data System (ADS)

    Gupta, Pankaj; Guha, Ratan K.

    2005-05-01

    In this paper, we propose an algorithm for reducing the complexity of region matching and efficient multicasting in data distribution management component of High Level Architecture (HLA) Run Time Infrastructure (RTI). The current data distribution management (DDM) techniques rely on computing the intersection between the subscription and update regions. When a subscription region and an update region of different federates overlap, RTI establishes communication between the publisher and the subscriber. It subsequently routes the updates from the publisher to the subscriber. The proposed algorithm computes the update/subscription regions matching for dynamic allocation of multicast group. It provides new multicast routines that exploit the connectivity of federation by communicating updates regarding interactions and routes information only to those federates that require them. The region-matching problem in DDM reduces to clique-covering problem using the connections graph abstraction where the federations represent the vertices and the update/subscribe relations represent the edges. We develop an abstract model based on connection graph for data distribution management. Using this abstract model, we propose a heuristic for solving the region-matching problem of DDM. We also provide complexity analysis of the proposed heuristics.

  9. Consistent and powerful non-Euclidean graph-based change-point test with applications to segmenting random interfered video data.

    PubMed

    Shi, Xiaoping; Wu, Yuehua; Rao, Calyampudi Radhakrishna

    2018-06-05

    The change-point detection has been carried out in terms of the Euclidean minimum spanning tree (MST) and shortest Hamiltonian path (SHP), with successful applications in the determination of authorship of a classic novel, the detection of change in a network over time, the detection of cell divisions, etc. However, these Euclidean graph-based tests may fail if a dataset contains random interferences. To solve this problem, we present a powerful non-Euclidean SHP-based test, which is consistent and distribution-free. The simulation shows that the test is more powerful than both Euclidean MST- and SHP-based tests and the non-Euclidean MST-based test. Its applicability in detecting both landing and departure times in video data of bees' flower visits is illustrated.

  10. Perfect Information vs Random Investigation: Safety Guidelines for a Consumer in the Jungle of Product Differentiation.

    PubMed

    Biondo, Alessio Emanuele; Giarlotta, Alfio; Pluchino, Alessandro; Rapisarda, Andrea

    2016-01-01

    We present a graph-theoretic model of consumer choice, where final decisions are shown to be influenced by information and knowledge, in the form of individual awareness, discriminating ability, and perception of market structure. Building upon the distance-based Hotelling's differentiation idea, we describe the behavioral experience of several prototypes of consumers, who walk a hypothetical cognitive path in an attempt to maximize their satisfaction. Our simulations show that even consumers endowed with a small amount of information and knowledge may reach a very high level of utility. On the other hand, complete ignorance negatively affects the whole consumption process. In addition, rather unexpectedly, a random walk on the graph reveals to be a winning strategy, below a minimal threshold of information and knowledge.

  11. Perfect Information vs Random Investigation: Safety Guidelines for a Consumer in the Jungle of Product Differentiation

    PubMed Central

    Biondo, Alessio Emanuele; Giarlotta, Alfio; Pluchino, Alessandro; Rapisarda, Andrea

    2016-01-01

    We present a graph-theoretic model of consumer choice, where final decisions are shown to be influenced by information and knowledge, in the form of individual awareness, discriminating ability, and perception of market structure. Building upon the distance-based Hotelling’s differentiation idea, we describe the behavioral experience of several prototypes of consumers, who walk a hypothetical cognitive path in an attempt to maximize their satisfaction. Our simulations show that even consumers endowed with a small amount of information and knowledge may reach a very high level of utility. On the other hand, complete ignorance negatively affects the whole consumption process. In addition, rather unexpectedly, a random walk on the graph reveals to be a winning strategy, below a minimal threshold of information and knowledge. PMID:26784700

  12. Social capital calculations in economic systems: Experimental study

    NASA Astrophysics Data System (ADS)

    Chepurov, E. G.; Berg, D. B.; Zvereva, O. M.; Nazarova, Yu. Yu.; Chekmarev, I. V.

    2017-11-01

    The paper describes the social capital study for a system where actors are engaged in an economic activity. The focus is on the analysis of communications structural parameters (transactions) between the actors. Comparison between transaction network graph structure and the structure of a random Bernoulli graph of the same dimension and density allows revealing specific structural features of the economic system under study. Structural analysis is based on SNA-methodology (SNA - Social Network Analysis). It is shown that structural parameter values of the graph formed by agent relationship links may well characterize different aspects of the social capital structure. The research advocates that it is useful to distinguish the difference between each agent social capital and the whole system social capital.

  13. The Full Ward-Takahashi Identity for Colored Tensor Models

    NASA Astrophysics Data System (ADS)

    Pérez-Sánchez, Carlos I.

    2018-03-01

    Colored tensor models (CTM) is a random geometrical approach to quantum gravity. We scrutinize the structure of the connected correlation functions of general CTM-interactions and organize them by boundaries of Feynman graphs. For rank- D interactions including, but not restricted to, all melonic φ^4 -vertices—to wit, solely those quartic vertices that can lead to dominant spherical contributions in the large- N expansion—the aforementioned boundary graphs are shown to be precisely all (possibly disconnected) vertex-bipartite regularly edge- D-colored graphs. The concept of CTM-compatible boundary-graph automorphism is introduced and an auxiliary graph calculus is developed. With the aid of these constructs, certain U (∞)-invariance of the path integral measure is fully exploited in order to derive a strong Ward-Takahashi Identity for CTMs with a symmetry-breaking kinetic term. For the rank-3 φ^4 -theory, we get the exact integral-like equation for the 2-point function. Similarly, exact equations for higher multipoint functions can be readily obtained departing from this full Ward-Takahashi identity. Our results hold for some Group Field Theories as well. Altogether, our non-perturbative approach trades some graph theoretical methods for analytical ones. We believe that these tools can be extended to tensorial SYK-models.

  14. Nonlinear complexity of random visibility graph and Lempel-Ziv on multitype range-intensity interacting financial dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Yali; Wang, Jun

    2017-09-01

    In an attempt to investigate the nonlinear complex evolution of financial dynamics, a new financial price model - the multitype range-intensity contact (MRIC) financial model, is developed based on the multitype range-intensity interacting contact system, in which the interaction and transmission of different types of investment attitudes in a stock market are simulated by viruses spreading. Two new random visibility graph (VG) based analyses and Lempel-Ziv complexity (LZC) are applied to study the complex behaviors of return time series and the corresponding random sorted series. The VG method is the complex network theory, and the LZC is a non-parametric measure of complexity reflecting the rate of new pattern generation of a series. In this work, the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, the numerical empirical study shows the similar complexity behaviors between the model and the real markets, the research confirms that the financial model is reasonable to some extent.

  15. CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.

    PubMed

    Shalizi, Cosma Rohilla; Rinaldo, Alessandro

    2013-04-01

    The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling , or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.

  16. CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS

    PubMed Central

    Shalizi, Cosma Rohilla; Rinaldo, Alessandro

    2015-01-01

    The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling, or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM’s expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses. PMID:26166910

  17. Educational network comparative analysis of small groups: Short- and long-term communications

    NASA Astrophysics Data System (ADS)

    Berg, D. B.; Zvereva, O. M.; Nazarova, Yu. Yu.; Chepurov, E. G.; Kokovin, A. V.; Ranyuk, S. V.

    2017-11-01

    The present study is devoted to the discussion of small group communication network structures. These communications were observed in student groups, where actors were united with a regular educational activity. The comparative analysis was carried out for networks of short-term (1 hour) and long-term (4 weeks) communications, it was based on seven structural parameters, and consisted of two stages. At the first stage, differences between the network graphs were examined, and the random corresponding Bernoulli graphs were built. At the second stage, revealed differences were compared. Calculations were performed using UCINET software framework. It was found out that networks of long-term and short-term communications are quite different: the structure of a short-term communication network is close to a random one, whereas the most of long-term communication network parameters differ from the corresponding random ones by more than 30%. This difference can be explained by strong "noisiness" of a short-term communication network, and the lack of social in it.

  18. Linear game non-contextuality and Bell inequalities—a graph-theoretic approach

    NASA Astrophysics Data System (ADS)

    Rosicka, M.; Ramanathan, R.; Gnaciński, P.; Horodecki, K.; Horodecki, M.; Horodecki, P.; Severini, S.

    2016-04-01

    We study the classical and quantum values of a class of one- and two-party unique games, that generalizes the well-known XOR games to the case of non-binary outcomes. In the bipartite case the generalized XOR (XOR-d) games we study are a subclass of the well-known linear games. We introduce a ‘constraint graph’ associated to such a game, with the constraints defining the game represented by an edge-coloring of the graph. We use the graph-theoretic characterization to relate the task of finding equivalent games to the notion of signed graphs and switching equivalence from graph theory. We relate the problem of computing the classical value of single-party anti-correlation XOR games to finding the edge bipartization number of a graph, which is known to be MaxSNP hard, and connect the computation of the classical value of XOR-d games to the identification of specific cycles in the graph. We construct an orthogonality graph of the game from the constraint graph and study its Lovász theta number as a general upper bound on the quantum value even in the case of single-party contextual XOR-d games. XOR-d games possess appealing properties for use in device-independent applications such as randomness of the local correlated outcomes in the optimal quantum strategy. We study the possibility of obtaining quantum algebraic violation of these games, and show that no finite XOR-d game possesses the property of pseudo-telepathy leaving the frequently used chained Bell inequalities as the natural candidates for such applications. We also show this lack of pseudo-telepathy for multi-party XOR-type inequalities involving two-body correlation functions.

  19. The nodal count {0,1,2,3,…} implies the graph is a tree

    PubMed Central

    Band, Ram

    2014-01-01

    Sturm's oscillation theorem states that the nth eigenfunction of a Sturm–Liouville operator on the interval has n−1 zeros (nodes) (Sturm 1836 J. Math. Pures Appl. 1, 106–186; 373–444). This result was generalized for all metric tree graphs (Pokornyĭ et al. 1996 Mat. Zametki 60, 468–470 (doi:10.1007/BF02320380); Schapotschnikow 2006 Waves Random Complex Media 16, 167–178 (doi:10.1080/1745530600702535)) and an analogous theorem was proved for discrete tree graphs (Berkolaiko 2007 Commun. Math. Phys. 278, 803–819 (doi:10.1007/S00220-007-0391-3); Dhar & Ramaswamy 1985 Phys. Rev. Lett. 54, 1346–1349 (doi:10.1103/PhysRevLett.54.1346); Fiedler 1975 Czechoslovak Math. J. 25, 607–618). We prove the converse theorems for both discrete and metric graphs. Namely if for all n, the nth eigenfunction of the graph has n−1 zeros, then the graph is a tree. Our proofs use a recently obtained connection between the graph's nodal count and the magnetic stability of its eigenvalues (Berkolaiko 2013 Anal. PDE 6, 1213–1233 (doi:10.2140/apde.2013.6.1213); Berkolaiko & Weyand 2014 Phil. Trans. R. Soc. A 372, 20120522 (doi:10.1098/rsta.2012.0522); Colin de Verdière 2013 Anal. PDE 6, 1235–1242 (doi:10.2140/apde.2013.6.1235)). In the course of the proof, we show that it is not possible for all (or even almost all, in the metric case) the eigenvalues to exhibit a diamagnetic behaviour. In addition, we develop a notion of ‘discretized’ versions of a metric graph and prove that their nodal counts are related to those of the metric graph. PMID:24344337

  20. An exact general remeshing scheme applied to physically conservative voxelization

    DOE PAGES

    Powell, Devon; Abel, Tom

    2015-05-21

    We present an exact general remeshing scheme to compute analytic integrals of polynomial functions over the intersections between convex polyhedral cells of old and new meshes. In physics applications this allows one to ensure global mass, momentum, and energy conservation while applying higher-order polynomial interpolation. We elaborate on applications of our algorithm arising in the analysis of cosmological N-body data, computer graphics, and continuum mechanics problems. We focus on the particular case of remeshing tetrahedral cells onto a Cartesian grid such that the volume integral of the polynomial density function given on the input mesh is guaranteed to equal themore » corresponding integral over the output mesh. We refer to this as “physically conservative voxelization.” At the core of our method is an algorithm for intersecting two convex polyhedra by successively clipping one against the faces of the other. This algorithm is an implementation of the ideas presented abstractly by Sugihara [48], who suggests using the planar graph representations of convex polyhedra to ensure topological consistency of the output. This makes our implementation robust to geometric degeneracy in the input. We employ a simplicial decomposition to calculate moment integrals up to quadratic order over the resulting intersection domain. We also address practical issues arising in a software implementation, including numerical stability in geometric calculations, management of cancellation errors, and extension to two dimensions. In a comparison to recent work, we show substantial performance gains. We provide a C implementation intended to be a fast, accurate, and robust tool for geometric calculations on polyhedral mesh elements.« less

  1. Are signalized intersections with cycle tracks safer? A case-control study based on automated surrogate safety analysis using video data.

    PubMed

    Zangenehpour, Sohail; Strauss, Jillian; Miranda-Moreno, Luis F; Saunier, Nicolas

    2016-01-01

    Cities in North America have been building bicycle infrastructure, in particular cycle tracks, with the intention of promoting urban cycling and improving cyclist safety. These facilities have been built and expanded but very little research has been done to investigate the safety impacts of cycle tracks, in particular at intersections, where cyclists interact with turning motor-vehicles. Some safety research has looked at injury data and most have reached the conclusion that cycle tracks have positive effects of cyclist safety. The objective of this work is to investigate the safety effects of cycle tracks at signalized intersections using a case-control study. For this purpose, a video-based method is proposed for analyzing the post-encroachment time as a surrogate measure of the severity of the interactions between cyclists and turning vehicles travelling in the same direction. Using the city of Montreal as the case study, a sample of intersections with and without cycle tracks on the right and left sides of the road were carefully selected accounting for intersection geometry and traffic volumes. More than 90h of video were collected from 23 intersections and processed to obtain cyclist and motor-vehicle trajectories and interactions. After cyclist and motor-vehicle interactions were defined, ordered logit models with random effects were developed to evaluate the safety effects of cycle tracks at intersections. Based on the extracted data from the recorded videos, it was found that intersection approaches with cycle tracks on the right are safer than intersection approaches with no cycle track. However, intersections with cycle tracks on the left compared to no cycle tracks seem to be significantly safer. Results also identify that the likelihood of a cyclist being involved in a dangerous interaction increases with increasing turning vehicle flow and decreases as the size of the cyclist group arriving at the intersection increases. The results highlight the important role of cycle tracks and the factors that increase or decrease cyclist safety. Results need however to be confirmed using longer periods of video data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Topological structure of dictionary graphs

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk; Krzemiński, Mark

    2009-09-01

    We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers—that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 103 and 104. A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.

  3. Learning molecular energies using localized graph kernels

    DOE PAGES

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    2017-03-21

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  4. Learning molecular energies using localized graph kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  5. The effect of alternative graphical displays used to present the benefits of antibiotics for sore throat on decisions about whether to seek treatment: a randomized trial.

    PubMed

    Carling, Cheryl L L; Kristoffersen, Doris Tove; Flottorp, Signe; Fretheim, Atle; Oxman, Andrew D; Schünemann, Holger J; Akl, Elie A; Herrin, Jeph; MacKenzie, Thomas D; Montori, Victor M

    2009-08-01

    We conducted an Internet-based randomized trial comparing four graphical displays of the benefits of antibiotics for people with sore throat who must decide whether to go to the doctor to seek treatment. Our objective was to determine which display resulted in choices most consistent with participants' values. This was the first of a series of televised trials undertaken in cooperation with the Norwegian Broadcasting Company. We recruited adult volunteers in Norway through a nationally televised weekly health program. Participants went to our Web site and rated the relative importance of the consequences of treatment using visual analogue scales (VAS). They viewed the graphical display (or no information) to which they were randomized and were asked to decide whether to go to the doctor for an antibiotic prescription. We compared four presentations: face icons (happy/sad) or a bar graph showing the proportion of people with symptoms on day three with and without treatment, a bar graph of the average duration of symptoms, and a bar graph of proportion with symptoms on both days three and seven. Before completing the study, all participants were shown all the displays and detailed patient information about the treatment of sore throat and were asked to decide again. We calculated a relative importance score (RIS) by subtracting the VAS scores for the undesirable consequences of antibiotics from the VAS score for the benefit of symptom relief. We used logistic regression to determine the association between participants' RIS and their choice. 1,760 participants completed the study. There were statistically significant differences in the likelihood of choosing to go to the doctor in relation to different values (RIS). Of the four presentations, the bar graph of duration of symptoms resulted in decisions that were most consistent with the more fully informed second decision. Most participants also preferred this presentation (38%) and found it easiest to understand (37%). Participants shown the other three presentations were more likely to decide to go to the doctor based on their first decision than everyone based on the second decision. Participants preferred the graph using faces the least (14.4%). For decisions about going to the doctor to get antibiotics for sore throat, treatment effects presented by a bar graph showing the duration of symptoms helped people make decisions more consistent with their values than treatment effects presented as graphical displays of proportions of people with sore throat following treatment. ISRCTN58507086.

  6. Evaluation of a Risk Awareness Perception Training Program on Novice Teen Driver Behavior at Left-Turn Intersections.

    PubMed

    McDonald, Catherine C; Kandadai, Venk; Loeb, Helen; Seacrist, Thomas; Lee, Yi-Ching; Bonfiglio, Dana; Fisher, Donald L; Winston, Flaura K

    Collisions at left turn intersections are among the most prevalent types of teen driver serious crashes, with inadequate surveillance as a key factor. Risk awareness perception training (RAPT) has shown effectiveness in improving hazard anticipation for latent hazards. The goal of this study was to determine if RAPT version 3 (RAPT-3) improved intersection turning behaviors among novice teen drivers when the hazards were not latent and frequent glancing to multiple locations at the intersection was needed. Teens aged 16-18 with ≤180 days of licensure were randomly assigned to: 1) an intervention group (n=18) that received RAPT-3 (Trained); or 2) a control group (n=19) that received no training (Untrained). Both groups completed RAPT-3 Baseline Assessment and the Trained group completed RAPT-3 Training and RAPT-3 Post Assessment. Training effects were evaluated on a driving simulator. Simulator ( gap selection errors and collisions ) and eye tracker ( traffic check errors) metrics from six left-turn stop sign controlled intersections in the Simulated Driving Assessment (SDA) were analyzed. The Trained group scored significantly higher in RAPT-3 Post Assessment than RAPT-3 Baseline Assessment (p< 0.0001). There were no significant differences in either traffic check and gap selection errors or collisions among Trained and Untrained teens in the SDA. Though Trained teens learned about hazard anticipation related to latent hazards, learning did not translate to performance differences in left-turn stop sign controlled intersections where the hazards were not latent. Our findings point to further research to better understand the challenges teens have with left turn intersections.

  7. Finding Maximum Cliques on the D-Wave Quantum Annealer

    DOE PAGES

    Chapuis, Guillaume; Djidjev, Hristo; Hahn, Georg; ...

    2018-05-03

    This work assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph, one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs and analyze their performance. For smaller graphs that fit DW, we provide formulations of the maximum clique problem as a quadratic unconstrained binary optimization (QUBO) problem, which is one of the two input types (together with the Ising model) acceptable by the machine, andmore » compare several quantum implementations to current classical algorithms such as simulated annealing, Gurobi, and third-party clique finding heuristics. We further estimate the contributions of the quantum phase of the quantum annealer and the classical post-processing phase typically used to enhance each solution returned by DW. We demonstrate that on random graphs that fit DW, no quantum speedup can be observed compared with the classical algorithms. On the other hand, for instances specifically designed to fit well the DW qubit interconnection network, we observe substantial speed-ups in computing time over classical approaches.« less

  8. Information extraction and knowledge graph construction from geoscience literature

    NASA Astrophysics Data System (ADS)

    Wang, Chengbin; Ma, Xiaogang; Chen, Jianguo; Chen, Jingwen

    2018-03-01

    Geoscience literature published online is an important part of open data, and brings both challenges and opportunities for data analysis. Compared with studies of numerical geoscience data, there are limited works on information extraction and knowledge discovery from textual geoscience data. This paper presents a workflow and a few empirical case studies for that topic, with a focus on documents written in Chinese. First, we set up a hybrid corpus combining the generic and geology terms from geology dictionaries to train Chinese word segmentation rules of the Conditional Random Fields model. Second, we used the word segmentation rules to parse documents into individual words, and removed the stop-words from the segmentation results to get a corpus constituted of content-words. Third, we used a statistical method to analyze the semantic links between content-words, and we selected the chord and bigram graphs to visualize the content-words and their links as nodes and edges in a knowledge graph, respectively. The resulting graph presents a clear overview of key information in an unstructured document. This study proves the usefulness of the designed workflow, and shows the potential of leveraging natural language processing and knowledge graph technologies for geoscience.

  9. Finding Maximum Cliques on the D-Wave Quantum Annealer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapuis, Guillaume; Djidjev, Hristo; Hahn, Georg

    This work assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph, one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs and analyze their performance. For smaller graphs that fit DW, we provide formulations of the maximum clique problem as a quadratic unconstrained binary optimization (QUBO) problem, which is one of the two input types (together with the Ising model) acceptable by the machine, andmore » compare several quantum implementations to current classical algorithms such as simulated annealing, Gurobi, and third-party clique finding heuristics. We further estimate the contributions of the quantum phase of the quantum annealer and the classical post-processing phase typically used to enhance each solution returned by DW. We demonstrate that on random graphs that fit DW, no quantum speedup can be observed compared with the classical algorithms. On the other hand, for instances specifically designed to fit well the DW qubit interconnection network, we observe substantial speed-ups in computing time over classical approaches.« less

  10. Probabilistic graphs as a conceptual and computational tool in hydrology and water management

    NASA Astrophysics Data System (ADS)

    Schoups, Gerrit

    2014-05-01

    Originally developed in the fields of machine learning and artificial intelligence, probabilistic graphs constitute a general framework for modeling complex systems in the presence of uncertainty. The framework consists of three components: 1. Representation of the model as a graph (or network), with nodes depicting random variables in the model (e.g. parameters, states, etc), which are joined together by factors. Factors are local probabilistic or deterministic relations between subsets of variables, which, when multiplied together, yield the joint distribution over all variables. 2. Consistent use of probability theory for quantifying uncertainty, relying on basic rules of probability for assimilating data into the model and expressing unknown variables as a function of observations (via the posterior distribution). 3. Efficient, distributed approximation of the posterior distribution using general-purpose algorithms that exploit model structure encoded in the graph. These attributes make probabilistic graphs potentially useful as a conceptual and computational tool in hydrology and water management (and beyond). Conceptually, they can provide a common framework for existing and new probabilistic modeling approaches (e.g. by drawing inspiration from other fields of application), while computationally they can make probabilistic inference feasible in larger hydrological models. The presentation explores, via examples, some of these benefits.

  11. 1 / n Expansion for the Number of Matchings on Regular Graphs and Monomer-Dimer Entropy

    NASA Astrophysics Data System (ADS)

    Pernici, Mario

    2017-08-01

    Using a 1 / n expansion, that is an expansion in descending powers of n, for the number of matchings in regular graphs with 2 n vertices, we study the monomer-dimer entropy for two classes of graphs. We study the difference between the extensive monomer-dimer entropy of a random r-regular graph G (bipartite or not) with 2 n vertices and the average extensive entropy of r-regular graphs with 2 n vertices, in the limit n → ∞. We find a series expansion for it in the numbers of cycles; with probability 1 it converges for dimer density p < 1 and, for G bipartite, it diverges as |ln(1-p)| for p → 1. In the case of regular lattices, we similarly expand the difference between the specific monomer-dimer entropy on a lattice and the one on the Bethe lattice; we write down its Taylor expansion in powers of p through the order 10, expressed in terms of the number of totally reducible walks which are not tree-like. We prove through order 6 that its expansion coefficients in powers of p are non-negative.

  12. Consensus pursuit of heterogeneous multi-agent systems under a directed acyclic graph

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Guan, Xin-Ping; Luo, Xiao-Yuan

    2011-04-01

    This paper is concerned with the cooperative target pursuit problem by multiple agents based on directed acyclic graph. The target appears at a random location and moves only when sensed by the agents, and agents will pursue the target once they detect its existence. Since the ability of each agent may be different, we consider the heterogeneous multi-agent systems. According to the topology of the multi-agent systems, a novel consensus-based control law is proposed, where the target and agents are modeled as a leader and followers, respectively. Based on Mason's rule and signal flow graph analysis, the convergence conditions are provided to show that the agents can catch the target in a finite time. Finally, simulation studies are provided to verify the effectiveness of the proposed approach.

  13. Object recognition in images via a factor graph model

    NASA Astrophysics Data System (ADS)

    He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu

    2018-04-01

    Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.

  14. Ising Critical Behavior of Inhomogeneous Curie-Weiss Models and Annealed Random Graphs

    NASA Astrophysics Data System (ADS)

    Dommers, Sander; Giardinà, Cristian; Giberti, Claudio; van der Hofstad, Remco; Prioriello, Maria Luisa

    2016-11-01

    We study the critical behavior for inhomogeneous versions of the Curie-Weiss model, where the coupling constant {J_{ij}(β)} for the edge {ij} on the complete graph is given by {J_{ij}(β)=β w_iw_j/( {sum_{kin[N]}w_k})}. We call the product form of these couplings the rank-1 inhomogeneous Curie-Weiss model. This model also arises [with inverse temperature {β} replaced by {sinh(β)} ] from the annealed Ising model on the generalized random graph. We assume that the vertex weights {(w_i)_{iin[N]}} are regular, in the sense that their empirical distribution converges and the second moment converges as well. We identify the critical temperatures and exponents for these models, as well as a non-classical limit theorem for the total spin at the critical point. These depend sensitively on the number of finite moments of the weight distribution. When the fourth moment of the weight distribution converges, then the critical behavior is the same as on the (homogeneous) Curie-Weiss model, so that the inhomogeneity is weak. When the fourth moment of the weights converges to infinity, and the weights satisfy an asymptotic power law with exponent {τ} with {τin(3,5)}, then the critical exponents depend sensitively on {τ}. In addition, at criticality, the total spin {S_N} satisfies that {S_N/N^{(τ-2)/(τ-1)}} converges in law to some limiting random variable whose distribution we explicitly characterize.

  15. Theory of rumour spreading in complex social networks

    NASA Astrophysics Data System (ADS)

    Nekovee, M.; Moreno, Y.; Bianconi, G.; Marsili, M.

    2007-01-01

    We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.

  16. Using Exponential Random Graph Models to Analyze the Character of Peer Relationship Networks and Their Effects on the Subjective Well-being of Adolescents.

    PubMed

    Jiao, Can; Wang, Ting; Liu, Jianxin; Wu, Huanjie; Cui, Fang; Peng, Xiaozhe

    2017-01-01

    The influences of peer relationships on adolescent subjective well-being were investigated within the framework of social network analysis, using exponential random graph models as a methodological tool. The participants in the study were 1,279 students (678 boys and 601 girls) from nine junior middle schools in Shenzhen, China. The initial stage of the research used a peer nomination questionnaire and a subjective well-being scale (used in previous studies) to collect data on the peer relationship networks and the subjective well-being of the students. Exponential random graph models were then used to explore the relationships between students with the aim of clarifying the character of the peer relationship networks and the influence of peer relationships on subjective well being. The results showed that all the adolescent peer relationship networks in our investigation had positive reciprocal effects, positive transitivity effects and negative expansiveness effects. However, none of the relationship networks had obvious receiver effects or leaders. The adolescents in partial peer relationship networks presented similar levels of subjective well-being on three dimensions (satisfaction with life, positive affects and negative affects) though not all network friends presented these similarities. The study shows that peer networks can affect an individual's subjective well-being. However, whether similarities among adolescents are the result of social influences or social choices needs further exploration, including longitudinal studies that investigate the potential processes of subjective well-being similarities among adolescents.

  17. Motifs in triadic random graphs based on Steiner triple systems

    NASA Astrophysics Data System (ADS)

    Winkler, Marco; Reichardt, Jörg

    2013-08-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.

  18. Using Exponential Random Graph Models to Analyze the Character of Peer Relationship Networks and Their Effects on the Subjective Well-being of Adolescents

    PubMed Central

    Jiao, Can; Wang, Ting; Liu, Jianxin; Wu, Huanjie; Cui, Fang; Peng, Xiaozhe

    2017-01-01

    The influences of peer relationships on adolescent subjective well-being were investigated within the framework of social network analysis, using exponential random graph models as a methodological tool. The participants in the study were 1,279 students (678 boys and 601 girls) from nine junior middle schools in Shenzhen, China. The initial stage of the research used a peer nomination questionnaire and a subjective well-being scale (used in previous studies) to collect data on the peer relationship networks and the subjective well-being of the students. Exponential random graph models were then used to explore the relationships between students with the aim of clarifying the character of the peer relationship networks and the influence of peer relationships on subjective well being. The results showed that all the adolescent peer relationship networks in our investigation had positive reciprocal effects, positive transitivity effects and negative expansiveness effects. However, none of the relationship networks had obvious receiver effects or leaders. The adolescents in partial peer relationship networks presented similar levels of subjective well-being on three dimensions (satisfaction with life, positive affects and negative affects) though not all network friends presented these similarities. The study shows that peer networks can affect an individual’s subjective well-being. However, whether similarities among adolescents are the result of social influences or social choices needs further exploration, including longitudinal studies that investigate the potential processes of subjective well-being similarities among adolescents. PMID:28450845

  19. Improved belief propagation algorithm finds many Bethe states in the random-field Ising model on random graphs

    NASA Astrophysics Data System (ADS)

    Perugini, G.; Ricci-Tersenghi, F.

    2018-01-01

    We first present an empirical study of the Belief Propagation (BP) algorithm, when run on the random field Ising model defined on random regular graphs in the zero temperature limit. We introduce the notion of extremal solutions for the BP equations, and we use them to fix a fraction of spins in their ground state configuration. At the phase transition point the fraction of unconstrained spins percolates and their number diverges with the system size. This in turn makes the associated optimization problem highly non trivial in the critical region. Using the bounds on the BP messages provided by the extremal solutions we design a new and very easy to implement BP scheme which is able to output a large number of stable fixed points. On one hand this new algorithm is able to provide the minimum energy configuration with high probability in a competitive time. On the other hand we found that the number of fixed points of the BP algorithm grows with the system size in the critical region. This unexpected feature poses new relevant questions about the physics of this class of models.

  20. Localisation in a Growth Model with Interaction

    NASA Astrophysics Data System (ADS)

    Costa, M.; Menshikov, M.; Shcherbakov, V.; Vachkovskaia, M.

    2018-05-01

    This paper concerns the long term behaviour of a growth model describing a random sequential allocation of particles on a finite cycle graph. The model can be regarded as a reinforced urn model with graph-based interaction. It is motivated by cooperative sequential adsorption, where adsorption rates at a site depend on the configuration of existing particles in the neighbourhood of that site. Our main result is that, with probability one, the growth process will eventually localise either at a single site, or at a pair of neighbouring sites.

  1. Localisation in a Growth Model with Interaction

    NASA Astrophysics Data System (ADS)

    Costa, M.; Menshikov, M.; Shcherbakov, V.; Vachkovskaia, M.

    2018-06-01

    This paper concerns the long term behaviour of a growth model describing a random sequential allocation of particles on a finite cycle graph. The model can be regarded as a reinforced urn model with graph-based interaction. It is motivated by cooperative sequential adsorption, where adsorption rates at a site depend on the configuration of existing particles in the neighbourhood of that site. Our main result is that, with probability one, the growth process will eventually localise either at a single site, or at a pair of neighbouring sites.

  2. Dynamics of Nearest-Neighbour Competitions on Graphs

    NASA Astrophysics Data System (ADS)

    Rador, Tonguç

    2017-10-01

    Considering a collection of agents representing the vertices of a graph endowed with integer points, we study the asymptotic dynamics of the rate of the increase of their points according to a very simple rule: we randomly pick an an edge from the graph which unambiguously defines two agents we give a point the the agent with larger point with probability p and to the lagger with probability q such that p+q=1. The model we present is the most general version of the nearest-neighbour competition model introduced by Ben-Naim, Vazquez and Redner. We show that the model combines aspects of hyperbolic partial differential equations—as that of a conservation law—graph colouring and hyperplane arrangements. We discuss the properties of the model for general graphs but we confine in depth study to d-dimensional tori. We present a detailed study for the ring graph, which includes a chemical potential approximation to calculate all its statistics that gives rather accurate results. The two-dimensional torus, not studied in depth as the ring, is shown to possess critical behaviour in that the asymptotic speeds arrange themselves in two-coloured islands separated by borders of three other colours and the size of the islands obey power law distribution. We also show that in the large d limit the d-dimensional torus shows inverse sine law for the distribution of asymptotic speeds.

  3. Analyzing cross-college course enrollments via contextual graph mining

    PubMed Central

    Liu, Xiaozhong; Chen, Yan

    2017-01-01

    The ability to predict what courses a student may enroll in the coming semester plays a pivotal role in the allocation of learning resources, which is a hot topic in the domain of educational data mining. In this study, we propose an innovative approach to characterize students’ cross-college course enrollments by leveraging a novel contextual graph. Specifically, different kinds of variables, such as students, courses, colleges and diplomas, as well as various types of variable relations, are utilized to depict the context of each variable, and then a representation learning algorithm node2vec is applied to extracting sophisticated graph-based features for the enrollment analysis. In this manner, the relations between any pair of variables can be measured quantitatively, which enables the variable type to transform from nominal to ratio. These graph-based features are examined by the random forest algorithm, and experiments on 24,663 students, 1,674 courses and 417,590 enrollment records demonstrate that the contextual graph can successfully improve analyzing the cross-college course enrollments, where three of the graph-based features have significantly stronger impacts on prediction accuracy than the others. Besides, the empirical results also indicate that the student’s course preference is the most important factor in predicting future course enrollments, which is consistent to the previous studies that acknowledge the course interest is a key point for course recommendations. PMID:29186171

  4. Analyzing cross-college course enrollments via contextual graph mining.

    PubMed

    Wang, Yongzhen; Liu, Xiaozhong; Chen, Yan

    2017-01-01

    The ability to predict what courses a student may enroll in the coming semester plays a pivotal role in the allocation of learning resources, which is a hot topic in the domain of educational data mining. In this study, we propose an innovative approach to characterize students' cross-college course enrollments by leveraging a novel contextual graph. Specifically, different kinds of variables, such as students, courses, colleges and diplomas, as well as various types of variable relations, are utilized to depict the context of each variable, and then a representation learning algorithm node2vec is applied to extracting sophisticated graph-based features for the enrollment analysis. In this manner, the relations between any pair of variables can be measured quantitatively, which enables the variable type to transform from nominal to ratio. These graph-based features are examined by the random forest algorithm, and experiments on 24,663 students, 1,674 courses and 417,590 enrollment records demonstrate that the contextual graph can successfully improve analyzing the cross-college course enrollments, where three of the graph-based features have significantly stronger impacts on prediction accuracy than the others. Besides, the empirical results also indicate that the student's course preference is the most important factor in predicting future course enrollments, which is consistent to the previous studies that acknowledge the course interest is a key point for course recommendations.

  5. Solving a Hamiltonian Path Problem with a bacterial computer

    PubMed Central

    Baumgardner, Jordan; Acker, Karen; Adefuye, Oyinade; Crowley, Samuel Thomas; DeLoache, Will; Dickson, James O; Heard, Lane; Martens, Andrew T; Morton, Nickolaus; Ritter, Michelle; Shoecraft, Amber; Treece, Jessica; Unzicker, Matthew; Valencia, Amanda; Waters, Mike; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Eckdahl, Todd T

    2009-01-01

    Background The Hamiltonian Path Problem asks whether there is a route in a directed graph from a beginning node to an ending node, visiting each node exactly once. The Hamiltonian Path Problem is NP complete, achieving surprising computational complexity with modest increases in size. This challenge has inspired researchers to broaden the definition of a computer. DNA computers have been developed that solve NP complete problems. Bacterial computers can be programmed by constructing genetic circuits to execute an algorithm that is responsive to the environment and whose result can be observed. Each bacterium can examine a solution to a mathematical problem and billions of them can explore billions of possible solutions. Bacterial computers can be automated, made responsive to selection, and reproduce themselves so that more processing capacity is applied to problems over time. Results We programmed bacteria with a genetic circuit that enables them to evaluate all possible paths in a directed graph in order to find a Hamiltonian path. We encoded a three node directed graph as DNA segments that were autonomously shuffled randomly inside bacteria by a Hin/hixC recombination system we previously adapted from Salmonella typhimurium for use in Escherichia coli. We represented nodes in the graph as linked halves of two different genes encoding red or green fluorescent proteins. Bacterial populations displayed phenotypes that reflected random ordering of edges in the graph. Individual bacterial clones that found a Hamiltonian path reported their success by fluorescing both red and green, resulting in yellow colonies. We used DNA sequencing to verify that the yellow phenotype resulted from genotypes that represented Hamiltonian path solutions, demonstrating that our bacterial computer functioned as expected. Conclusion We successfully designed, constructed, and tested a bacterial computer capable of finding a Hamiltonian path in a three node directed graph. This proof-of-concept experiment demonstrates that bacterial computing is a new way to address NP-complete problems using the inherent advantages of genetic systems. The results of our experiments also validate synthetic biology as a valuable approach to biological engineering. We designed and constructed basic parts, devices, and systems using synthetic biology principles of standardization and abstraction. PMID:19630940

  6. Statistical Methods in Physical Oceanography: Proceedings of ’Aha Huliko’a Hawaiian Winter Workshop Held in Manoa, Hawaii on January 12-15, 1993

    DTIC Science & Technology

    1993-11-01

    field X(t) at time 1. Ti. is the set of all times when both pi and pi have been observed and ni. is the number of elements in T Definition Eq. (22) is...termed contour analysis, for melding of oceanic data and for space-time interpolation of gappy frontal data sets . The key elements of contour analysis...plane and let fl(1) be the set of all straight lines intersecting F. Directly measuring the number of intersections between a random element W E 11(F) and

  7. Finite plateau in spectral gap of polychromatic constrained random networks

    NASA Astrophysics Data System (ADS)

    Avetisov, V.; Gorsky, A.; Nechaev, S.; Valba, O.

    2017-12-01

    We consider critical behavior in the ensemble of polychromatic Erdős-Rényi networks and regular random graphs, where network vertices are painted in different colors. The links can be randomly removed and added to the network subject to the condition of the vertex degree conservation. In these constrained graphs we run the Metropolis procedure, which favors the connected unicolor triads of nodes. Changing the chemical potential, μ , of such triads, for some wide region of μ , we find the formation of a finite plateau in the number of intercolor links, which exactly matches the finite plateau in the network algebraic connectivity (the value of the first nonvanishing eigenvalue of the Laplacian matrix, λ2). We claim that at the plateau the spontaneously broken Z2 symmetry is restored by the mechanism of modes collectivization in clusters of different colors. The phenomena of a finite plateau formation holds also for polychromatic networks with M ≥2 colors. The behavior of polychromatic networks is analyzed via the spectral properties of their adjacency and Laplacian matrices.

  8. High Productivity Computing Systems Analysis and Performance

    DTIC Science & Technology

    2005-07-01

    cubic grid Discrete Math Global Updates per second (GUP/S) RandomAccess Paper & Pencil Contact Bob Lucas (ISI) Multiple Precision none...can be found at the web site. One of the HPCchallenge codes, RandomAccess, is derived from the HPCS discrete math benchmarks that we released, and...Kernels Discrete Math … Graph Analysis … Linear Solvers … Signal Processi ng Execution Bounds Execution Indicators 6 Scalable Compact

  9. Venous tree separation in the liver: graph partitioning using a non-ising model.

    PubMed

    O'Donnell, Thomas; Kaftan, Jens N; Schuh, Andreas; Tietjen, Christian; Soza, Grzegorz; Aach, Til

    2011-01-01

    Entangled tree-like vascular systems are commonly found in the body (e.g., in the peripheries and lungs). Separation of these systems in medical images may be formulated as a graph partitioning problem given an imperfect segmentation and specification of the tree roots. In this work, we show that the ubiquitous Ising-model approaches (e.g., Graph Cuts, Random Walker) are not appropriate for tackling this problem and propose a novel method based on recursive minimal paths for doing so. To motivate our method, we focus on the intertwined portal and hepatic venous systems in the liver. Separation of these systems is critical for liver intervention planning, in particular when resection is involved. We apply our method to 34 clinical datasets, each containing well over a hundred vessel branches, demonstrating its effectiveness.

  10. Threshold-based epidemic dynamics in systems with memory

    NASA Astrophysics Data System (ADS)

    Bodych, Marcin; Ganguly, Niloy; Krueger, Tyll; Mukherjee, Animesh; Siegmund-Schultze, Rainer; Sikdar, Sandipan

    2016-11-01

    In this article we analyze an epidemic dynamics model (SI) where we assume that there are k susceptible states, that is a node would require multiple (k) contacts before it gets infected. In specific, we provide a theoretical framework for studying diffusion rate in complete graphs and d-regular trees with extensions to dense random graphs. We observe that irrespective of the topology, the diffusion process could be divided into two distinct phases: i) the initial phase, where the diffusion process is slow, followed by ii) the residual phase where the diffusion rate increases manifold. In fact, the initial phase acts as an indicator for the total diffusion time in dense graphs. The most remarkable lesson from this investigation is that such a diffusion process could be controlled and even contained if acted upon within its initial phase.

  11. Solving Set Cover with Pairs Problem using Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Cao, Yudong; Jiang, Shuxian; Perouli, Debbie; Kais, Sabre

    2016-09-01

    Here we consider using quantum annealing to solve Set Cover with Pairs (SCP), an NP-hard combinatorial optimization problem that plays an important role in networking, computational biology, and biochemistry. We show an explicit construction of Ising Hamiltonians whose ground states encode the solution of SCP instances. We numerically simulate the time-dependent Schrödinger equation in order to test the performance of quantum annealing for random instances and compare with that of simulated annealing. We also discuss explicit embedding strategies for realizing our Hamiltonian construction on the D-wave type restricted Ising Hamiltonian based on Chimera graphs. Our embedding on the Chimera graph preserves the structure of the original SCP instance and in particular, the embedding for general complete bipartite graphs and logical disjunctions may be of broader use than that the specific problem we deal with.

  12. On a phase diagram for random neural networks with embedded spike timing dependent plasticity.

    PubMed

    Turova, Tatyana S; Villa, Alessandro E P

    2007-01-01

    This paper presents an original mathematical framework based on graph theory which is a first attempt to investigate the dynamics of a model of neural networks with embedded spike timing dependent plasticity. The neurons correspond to integrate-and-fire units located at the vertices of a finite subset of 2D lattice. There are two types of vertices, corresponding to the inhibitory and the excitatory neurons. The edges are directed and labelled by the discrete values of the synaptic strength. We assume that there is an initial firing pattern corresponding to a subset of units that generate a spike. The number of activated externally vertices is a small fraction of the entire network. The model presented here describes how such pattern propagates throughout the network as a random walk on graph. Several results are compared with computational simulations and new data are presented for identifying critical parameters of the model.

  13. Auxiliary Parameter MCMC for Exponential Random Graph Models

    NASA Astrophysics Data System (ADS)

    Byshkin, Maksym; Stivala, Alex; Mira, Antonietta; Krause, Rolf; Robins, Garry; Lomi, Alessandro

    2016-11-01

    Exponential random graph models (ERGMs) are a well-established family of statistical models for analyzing social networks. Computational complexity has so far limited the appeal of ERGMs for the analysis of large social networks. Efficient computational methods are highly desirable in order to extend the empirical scope of ERGMs. In this paper we report results of a research project on the development of snowball sampling methods for ERGMs. We propose an auxiliary parameter Markov chain Monte Carlo (MCMC) algorithm for sampling from the relevant probability distributions. The method is designed to decrease the number of allowed network states without worsening the mixing of the Markov chains, and suggests a new approach for the developments of MCMC samplers for ERGMs. We demonstrate the method on both simulated and actual (empirical) network data and show that it reduces CPU time for parameter estimation by an order of magnitude compared to current MCMC methods.

  14. Emergence of cooperation in non-scale-free networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Zhou, Shi; Wang, Wenting

    2014-06-01

    Evolutionary game theory is one of the key paradigms behind many scientific disciplines from science to engineering. Previous studies proposed a strategy updating mechanism, which successfully demonstrated that the scale-free network can provide a framework for the emergence of cooperation. Instead, individuals in random graphs and small-world networks do not favor cooperation under this updating rule. However, a recent empirical result shows the heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma. In this paper, we propose a strategy updating rule with payoff memory. We observe that the random graphs and small-world networks can provide even better frameworks for cooperation than the scale-free networks in this scenario. Our observations suggest that the degree heterogeneity may be neither a sufficient condition nor a necessary condition for the widespread cooperation in complex networks. Also, the topological structures are not sufficed to determine the level of cooperation in complex networks.

  15. SAR-based change detection using hypothesis testing and Markov random field modelling

    NASA Astrophysics Data System (ADS)

    Cao, W.; Martinis, S.

    2015-04-01

    The objective of this study is to automatically detect changed areas caused by natural disasters from bi-temporal co-registered and calibrated TerraSAR-X data. The technique in this paper consists of two steps: Firstly, an automatic coarse detection step is applied based on a statistical hypothesis test for initializing the classification. The original analytical formula as proposed in the constant false alarm rate (CFAR) edge detector is reviewed and rewritten in a compact form of the incomplete beta function, which is a builtin routine in commercial scientific software such as MATLAB and IDL. Secondly, a post-classification step is introduced to optimize the noisy classification result in the previous step. Generally, an optimization problem can be formulated as a Markov random field (MRF) on which the quality of a classification is measured by an energy function. The optimal classification based on the MRF is related to the lowest energy value. Previous studies provide methods for the optimization problem using MRFs, such as the iterated conditional modes (ICM) algorithm. Recently, a novel algorithm was presented based on graph-cut theory. This method transforms a MRF to an equivalent graph and solves the optimization problem by a max-flow/min-cut algorithm on the graph. In this study this graph-cut algorithm is applied iteratively to improve the coarse classification. At each iteration the parameters of the energy function for the current classification are set by the logarithmic probability density function (PDF). The relevant parameters are estimated by the method of logarithmic cumulants (MoLC). Experiments are performed using two flood events in Germany and Australia in 2011 and a forest fire on La Palma in 2009 using pre- and post-event TerraSAR-X data. The results show convincing coarse classifications and considerable improvement by the graph-cut post-classification step.

  16. Benchmarking Measures of Network Controllability on Canonical Graph Models

    NASA Astrophysics Data System (ADS)

    Wu-Yan, Elena; Betzel, Richard F.; Tang, Evelyn; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-03-01

    The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős-Rényi, regular, small-world, random geometric, Barábasi-Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical underpinnings of the relationship between graph topology and control, as well as efforts to design networks with specific control profiles.

  17. Rate Change Graph Technology: Absolute Value Point Methodology

    NASA Astrophysics Data System (ADS)

    Strickland, Ken; Duvernois, Michael

    2011-10-01

    Absolute Value Point Methodology (AVPM) is a new theoretical tool for science research centered on Rate Change Graph Technology (RCGT). The modeling techniques of AVPM surpass conventional methods by extending the geometrical rules of mathematics. Exact geometrical structures of matter and energy become clearer revealing new ways to compile advanced data. RCGT mechanics is realized from geometrical intersections that are the result of plotting changing value vs. changing geometry. RCGT methods ignore size and value to perform an objective analysis in geometry. Value and size are then re-introduced back into the analytical system for a clear and concise solution. Available AVPM applications reveal that a massive amount of data from the Big Bang to vast super-clusters is untouched by human thought. Once scientists learn to design tools from RCGT Mechanics, new and formidable approaches to experimentation and theory may lead to new discoveries. In the creation of AVPM, it has become apparent there is a particle-world that exists between strings and our familiar universe. These unrealized particles in their own nature exhibit inflation like properties and may be the progenitor of the implements of our universe. Thus space, time, energy, motion, space-time and gravity are born from its existence and decay. This announcement will be the beginning of many new ideas from the study of RCGT mechanics.

  18. Next generation safety performance monitoring at signalized intersections using connected vehicle technology.

    DOT National Transportation Integrated Search

    2014-08-01

    Crash-based safety evaluation is often hampered by randomness, lack of timeliness, and rarity of crash : occurrences. This is particularly the case for technology-driven safety improvement projects that are : frequently updated or replaced by newer o...

  19. Evolutionary games on cycles with strong selection

    NASA Astrophysics Data System (ADS)

    Altrock, P. M.; Traulsen, A.; Nowak, M. A.

    2017-02-01

    Evolutionary games on graphs describe how strategic interactions and population structure determine evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times under strong selection and show that there are coexistence games in which fixation occurs in time polynomial in population size. Depending on the underlying game, we observe inherence of demographic noise even under strong selection if the process is driven by random death before selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong selection can remove demographic noise almost entirely.

  20. A comparison of two ambulatory blood pressure monitors worn at the same time.

    PubMed

    Kallem, Radhakrishna R; Meyers, Kevin E C; Sawinski, Deirdre L; Townsend, Raymond R

    2013-05-01

    There are limited data in the literature comparing two simultaneously worn ambulatory blood pressure (BP) monitoring (ABPM) devices. The authors compared BPs from two monitors (Mobil-O-Graph [I.E.M., Stolberg, Germany] and Spacelabs 90207 [Spacelabs Medical, Issequah, WA]). In the nonrandomized component of the study, simultaneous 8-hour BP and heart rate data were measured by Mobil-O-Graph, consistently applied to the nondominant arm, and Spacelabs to the dominant arm on 12 untreated adults. Simultaneous 8-hour BP and heart data were obtained by the same monitors randomly assigned to a dominant or nondominant arm on 12 other untreated adults. Oscillometric BP profiles were obtained in the dominant and nondominant arms of the above 24 patients using an Accutorr (Datascope, Mahwah, NJ) device. The Spacelabs monitor recorded a 10.2-mm Hg higher systolic pressure in the nonrandomized (P=.0016) and a 7.9-mm Hg higher systolic pressure in the randomized studies (P=.00008) compared with the Mobil-O-Graph. The mean arterial pressures were 1 mm Hg to 2 mm Hg different between monitors in the two studies, and heart rates were nearly identical. Our observations, if confirmed in larger cohorts, support the concern that ABPM device manufacturers consider developing normative databases for their devices. ©2013 Wiley Periodicals, Inc.

  1. Takeover times for a simple model of network infection.

    PubMed

    Ottino-Löffler, Bertrand; Scott, Jacob G; Strogatz, Steven H

    2017-07-01

    We study a stochastic model of infection spreading on a network. At each time step a node is chosen at random, along with one of its neighbors. If the node is infected and the neighbor is susceptible, the neighbor becomes infected. How many time steps T does it take to completely infect a network of N nodes, starting from a single infected node? An analogy to the classic "coupon collector" problem of probability theory reveals that the takeover time T is dominated by extremal behavior, either when there are only a few infected nodes near the start of the process or a few susceptible nodes near the end. We show that for N≫1, the takeover time T is distributed as a Gumbel distribution for the star graph, as the convolution of two Gumbel distributions for a complete graph and an Erdős-Rényi random graph, as a normal for a one-dimensional ring and a two-dimensional lattice, and as a family of intermediate skewed distributions for d-dimensional lattices with d≥3 (these distributions approach the convolution of two Gumbel distributions as d approaches infinity). Connections to evolutionary dynamics, cancer, incubation periods of infectious diseases, first-passage percolation, and other spreading phenomena in biology and physics are discussed.

  2. Entanglement guarantees emergence of cooperation in quantum prisoner's dilemma games on networks.

    PubMed

    Li, Angsheng; Yong, Xi

    2014-09-05

    It was known that cooperation of evolutionary prisoner's dilemma games fails to emerge in homogenous networks such as random graphs. Here we proposed a quantum prisoner's dilemma game. The game consists of two players, in which each player has three choices of strategy: cooperator (C), defector (D) and super cooperator (denoted by Q). We found that quantum entanglement guarantees emergence of a new cooperation, the super cooperation of the quantum prisoner's dilemma games, and that entanglement is the mechanism of guaranteed emergence of cooperation of evolutionary prisoner's dilemma games on networks. We showed that for a game with temptation b, there exists a threshold arccos √b/b for a measurement of entanglement, beyond which, (super) cooperation of evolutionary quantum prisoner's dilemma games is guaranteed to quickly emerge, giving rise to stochastic convergence of the cooperations, that if the entanglement degree γ is less than the threshold arccos √b/b, then the equilibrium frequency of cooperations of the games is positively correlated to the entanglement degree γ, and that if γ is less than arccos √b/b and b is beyond some boundary, then the equilibrium frequency of cooperations of the games on random graphs decreases as the average degree of the graphs increases.

  3. Takeover times for a simple model of network infection

    NASA Astrophysics Data System (ADS)

    Ottino-Löffler, Bertrand; Scott, Jacob G.; Strogatz, Steven H.

    2017-07-01

    We study a stochastic model of infection spreading on a network. At each time step a node is chosen at random, along with one of its neighbors. If the node is infected and the neighbor is susceptible, the neighbor becomes infected. How many time steps T does it take to completely infect a network of N nodes, starting from a single infected node? An analogy to the classic "coupon collector" problem of probability theory reveals that the takeover time T is dominated by extremal behavior, either when there are only a few infected nodes near the start of the process or a few susceptible nodes near the end. We show that for N ≫1 , the takeover time T is distributed as a Gumbel distribution for the star graph, as the convolution of two Gumbel distributions for a complete graph and an Erdős-Rényi random graph, as a normal for a one-dimensional ring and a two-dimensional lattice, and as a family of intermediate skewed distributions for d -dimensional lattices with d ≥3 (these distributions approach the convolution of two Gumbel distributions as d approaches infinity). Connections to evolutionary dynamics, cancer, incubation periods of infectious diseases, first-passage percolation, and other spreading phenomena in biology and physics are discussed.

  4. Generating subtour elimination constraints for the TSP from pure integer solutions.

    PubMed

    Pferschy, Ulrich; Staněk, Rostislav

    2017-01-01

    The traveling salesman problem ( TSP ) is one of the most prominent combinatorial optimization problems. Given a complete graph [Formula: see text] and non-negative distances d for every edge, the TSP asks for a shortest tour through all vertices with respect to the distances d. The method of choice for solving the TSP to optimality is a branch and cut approach . Usually the integrality constraints are relaxed first and all separation processes to identify violated inequalities are done on fractional solutions . In our approach we try to exploit the impressive performance of current ILP-solvers and work only with integer solutions without ever interfering with fractional solutions. We stick to a very simple ILP-model and relax the subtour elimination constraints only. The resulting problem is solved to integer optimality, violated constraints (which are trivial to find) are added and the process is repeated until a feasible solution is found. In order to speed up the algorithm we pursue several attempts to find as many relevant subtours as possible. These attempts are based on the clustering of vertices with additional insights gained from empirical observations and random graph theory. Computational results are performed on test instances taken from the TSPLIB95 and on random Euclidean graphs .

  5. The influence of graphic format on breast cancer risk communication.

    PubMed

    Schapira, Marilyn M; Nattinger, Ann B; McAuliffe, Timothy L

    2006-09-01

    Graphic displays can enhance quantitative risk communication. However, empiric data regarding the effect of graphic format on risk perception is lacking. We evaluate the effect of graphic format elements on perceptions of risk magnitude and perceived truth of data. Preferences for format also were assessed. Participants (254 female primary care patients) viewed a series of hypothetical risk communications regarding the lifetime risk of breast cancer. Identical numeric risk information was presented using different graphic formats. Risk was perceived to be of lower magnitude when communicated with a bar graph as compared with a pictorial display (p < 0.0001), or with consecutively versus randomly highlighted symbols in a pictorial display (p = 0.0001). Data were perceived to be more true when presented with random versus consecutive highlights in a pictorial display (p < 0.01). A pictorial display was preferred to a bar graph format for the presentation of breast cancer risk estimates alone (p = 0.001). When considering breast cancer risk in comparison to heart disease, stroke, and osteoporosis, however, bar graphs were preferred pictorial displays (p < 0.001). In conclusion, elements of graphic format used to convey quantitative risk information effects key domains of risk perception. One must be cognizant of these effects when designing risk communication strategies.

  6. Structural crashworthiness; International Symposium, 1st, University of Liverpool, Liverpool, England, September 14-16, 1983, Invited Lectures

    NASA Astrophysics Data System (ADS)

    Jones, N.; Wierzbicki, T.

    The application of solid, structural, and experimental mechanics to predict the crumpling behavior and energy absorption of thin-walled structures under quasi-static compression and various dynamic crash loadings is examined in reviews of current research. Both fundamental aspects and specific problems in the design of crashworthy aircraft, automobiles, railroad cars, ships, and offshore installations are considered. Topics discussed include laterally compressed metal tubes as impact-energy absorbers, crushing behavior of plate intersections, axial crushing of fiber-reinforced composite tubes, finite-element analysis of structural crashworthiness in the automotive and aerospace industries, crash behavior of aircraft fuselage structures, aircraft crash analysis, ship collisions, and structural damage in airship and rolling-stock collisions. Photographs, graphs, drawings, and diagrams are provided.

  7. Experimental quantum annealing: case study involving the graph isomorphism problem.

    PubMed

    Zick, Kenneth M; Shehab, Omar; French, Matthew

    2015-06-08

    Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N(2) to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers.

  8. Experimental quantum annealing: case study involving the graph isomorphism problem

    PubMed Central

    Zick, Kenneth M.; Shehab, Omar; French, Matthew

    2015-01-01

    Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N2 to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers. PMID:26053973

  9. Dynamic Uncertain Causality Graph for Knowledge Representation and Probabilistic Reasoning: Directed Cyclic Graph and Joint Probability Distribution.

    PubMed

    Zhang, Qin

    2015-07-01

    Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology.

  10. A DAG Scheduling Scheme on Heterogeneous Computing Systems Using Tuple-Based Chemical Reaction Optimization

    PubMed Central

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977

  11. A DAG scheduling scheme on heterogeneous computing systems using tuple-based chemical reaction optimization.

    PubMed

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.

  12. Quantum Optimization of Fully Connected Spin Glasses

    NASA Astrophysics Data System (ADS)

    Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim

    2015-07-01

    Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.

  13. Tensor Spectral Clustering for Partitioning Higher-order Network Structures.

    PubMed

    Benson, Austin R; Gleich, David F; Leskovec, Jure

    2015-01-01

    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.

  14. Tensor Spectral Clustering for Partitioning Higher-order Network Structures

    PubMed Central

    Benson, Austin R.; Gleich, David F.; Leskovec, Jure

    2016-01-01

    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms. PMID:27812399

  15. Interrelations between random walks on diagrams (graphs) with and without cycles.

    PubMed

    Hill, T L

    1988-05-01

    Three topics are discussed. A discrete-state, continuous-time random walk with one or more absorption states can be studied by a presumably new method: some mean properties, including the mean time to absorption, can be found from a modified diagram (graph) in which each absorption state is replaced by a one-way cycle back to the starting state. The second problem is a random walk on a diagram (graph) with cycles. The walk terminates on completion of the first cycle. This walk can be replaced by an equivalent walk on a modified diagram with absorption. This absorption diagram can in turn be replaced by another modified diagram with one-way cycles back to the starting state, just as in the first problem. The third problem, important in biophysics, relates to a long-time continuous walk on a diagram with cycles. This diagram can be transformed (in two steps) to a modified, more-detailed, diagram with one-way cycles only. Thus, the one-way cycle fluxes of the original diagram can be found from the state probabilities of the modified diagram. These probabilities can themselves be obtained by simple matrix inversion (the probabilities are determined by linear algebraic steady-state equations). Thus, a simple method is now available to find one-way cycle fluxes exactly (previously Monte Carlo simulation was required to find these fluxes, with attendant fluctuations, for diagrams of any complexity). An incidental benefit of the above procedure is that it provides a simple proof of the one-way cycle flux relation Jn +/- = IIn +/- sigma n/sigma, where n is any cycle of the original diagram.

  16. An Automated Method for Identifying Inconsistencies within Diagrammatic Software Requirements Specifications

    NASA Technical Reports Server (NTRS)

    Zhang, Zhong

    1997-01-01

    The development of large-scale, composite software in a geographically distributed environment is an evolutionary process. Often, in such evolving systems, striving for consistency is complicated by many factors, because development participants have various locations, skills, responsibilities, roles, opinions, languages, terminology and different degrees of abstraction they employ. This naturally leads to many partial specifications or viewpoints. These multiple views on the system being developed usually overlap. From another aspect, these multiple views give rise to the potential for inconsistency. Existing CASE tools do not efficiently manage inconsistencies in distributed development environment for a large-scale project. Based on the ViewPoints framework the WHERE (Web-Based Hypertext Environment for requirements Evolution) toolkit aims to tackle inconsistency management issues within geographically distributed software development projects. Consequently, WHERE project helps make more robust software and support software assurance process. The long term goal of WHERE tools aims to the inconsistency analysis and management in requirements specifications. A framework based on Graph Grammar theory and TCMJAVA toolkit is proposed to detect inconsistencies among viewpoints. This systematic approach uses three basic operations (UNION, DIFFERENCE, INTERSECTION) to study the static behaviors of graphic and tabular notations. From these operations, subgraphs Query, Selection, Merge, Replacement operations can be derived. This approach uses graph PRODUCTIONS (rewriting rules) to study the dynamic transformations of graphs. We discuss the feasibility of implementation these operations. Also, We present the process of porting original TCM (Toolkit for Conceptual Modeling) project from C++ to Java programming language in this thesis. A scenario based on NASA International Space Station Specification is discussed to show the applicability of our approach. Finally, conclusion and future work about inconsistency management issues in WHERE project will be summarized.

  17. Image analysis of oronasal fistulas in cleft palate patients acquired with an intraoral camera.

    PubMed

    Murphy, Tania C; Willmot, Derrick R

    2005-01-01

    The aim of this study was to examine the clinical technique of using an intraoral camera to monitor the size of residual oronasal fistulas in cleft lip-cleft palate patients, to assess its repeatability on study casts and patients, and to compare its use with other methods. Seventeen plaster study casts of cleft palate patients with oronasal fistulas obtained from a 5-year series of 160 patients were used. For the clinical study, 13 patients presenting in a clinic prospectively over a 1-year period were imaged twice by the camera. The area of each fistula on each study cast was measured in the laboratory first using a previously described graph paper and caliper technique and second with the intraoral camera. Images were imported into a computer and subjected to image enhancement and area measurement. The camera was calibrated by imaging a standard periodontal probe within the fistula area. The measurements were repeated using a double-blind technique on randomly renumbered casts to assess the repeatability of measurement of the methods. The clinical images were randomly and blindly numbered and subjected to image enhancement and processing in the same way as for the study casts. Area measurements were computed. Statistical analysis of repeatability of measurement using a paired sample t test showed no significant difference between measurements, indicating a lack of systematic error. An intraclass correlation coefficient of 0.97 for the graph paper and 0.84 for the camera method showed acceptable random error between the repeated records for each of the two methods. The graph paper method remained slightly more repeatable. The mean fistula area of the study casts between each method was not statistically different when compared with a paired samples t test (p = 0.08). The methods were compared using the limits of agreement technique, which showed clinically acceptable repeatability. The clinical study of repeated measures showed no systematic differences when subjected to a t test (p = 0.109) and little random error with an intraclass correlation coefficient of 0.98. The fistula size seen in the clinical study ranged from 18.54 to 271.55 mm. Direct measurements subsequently taken on 13 patients in the clinic without study models showed a wide variation in the size of residual fistulas presenting in a multidisciplinary clinic. It was concluded that an intraoral camera method could be used in place of the previous graph paper method and could be developed for clinical and scientific purposes. This technique may offer advantages over the graph paper method, as it facilitates easy visualization of oronasal fistulas and objective fistulas size determination and permits easy storage of data in clinical records.

  18. graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture.

    PubMed

    Chung, Dongjun; Kim, Hang J; Zhao, Hongyu

    2017-02-01

    Genome-wide association studies (GWAS) have identified tens of thousands of genetic variants associated with hundreds of phenotypes and diseases, which have provided clinical and medical benefits to patients with novel biomarkers and therapeutic targets. However, identification of risk variants associated with complex diseases remains challenging as they are often affected by many genetic variants with small or moderate effects. There has been accumulating evidence suggesting that different complex traits share common risk basis, namely pleiotropy. Recently, several statistical methods have been developed to improve statistical power to identify risk variants for complex traits through a joint analysis of multiple GWAS datasets by leveraging pleiotropy. While these methods were shown to improve statistical power for association mapping compared to separate analyses, they are still limited in the number of phenotypes that can be integrated. In order to address this challenge, in this paper, we propose a novel statistical framework, graph-GPA, to integrate a large number of GWAS datasets for multiple phenotypes using a hidden Markov random field approach. Application of graph-GPA to a joint analysis of GWAS datasets for 12 phenotypes shows that graph-GPA improves statistical power to identify risk variants compared to statistical methods based on smaller number of GWAS datasets. In addition, graph-GPA also promotes better understanding of genetic mechanisms shared among phenotypes, which can potentially be useful for the development of improved diagnosis and therapeutics. The R implementation of graph-GPA is currently available at https://dongjunchung.github.io/GGPA/.

  19. National occupant protection use survey : controlled intersection detailed study

    DOT National Transportation Integrated Search

    1997-02-01

    In late 1994, NHTSA conducted the first National Occupant Protection Use Survey : (NOPUS). Shoulder belt use was observed at a random sample of sites across the : country for drivers and right-front passengers of cars and light trucks. In one : porti...

  20. Ant-inspired density estimation via random walks.

    PubMed

    Musco, Cameron; Su, Hsin-Hao; Lynch, Nancy A

    2017-10-03

    Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks.

  1. Development of a real-time prediction model of driver behavior at intersections using kinematic time series data.

    PubMed

    Tan, Yaoyuan V; Elliott, Michael R; Flannagan, Carol A C

    2017-09-01

    As connected autonomous vehicles (CAVs) enter the fleet, there will be a long period when these vehicles will have to interact with human drivers. One of the challenges for CAVs is that human drivers do not communicate their decisions well. Fortunately, the kinematic behavior of a human-driven vehicle may be a good predictor of driver intent within a short time frame. We analyzed the kinematic time series data (e.g., speed) for a set of drivers making left turns at intersections to predict whether the driver would stop before executing the turn. We used principal components analysis (PCA) to generate independent dimensions that explain the variation in vehicle speed before a turn. These dimensions remained relatively consistent throughout the maneuver, allowing us to compute independent scores on these dimensions for different time windows throughout the approach to the intersection. We then linked these PCA scores to whether a driver would stop before executing a left turn using the random intercept Bayesian additive regression trees. Five more road and observable vehicle characteristics were included to enhance prediction. Our model achieved an area under the receiver operating characteristic curve (AUC) of 0.84 at 94m away from the center of an intersection and steadily increased to 0.90 by 46m away from the center of an intersection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Automatic lung nodule graph cuts segmentation with deep learning false positive reduction

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Huang, Xia; Tseng, Tzu-Liang Bill; Qian, Wei

    2017-03-01

    To automatic detect lung nodules from CT images, we designed a two stage computer aided detection (CAD) system. The first stage is graph cuts segmentation to identify and segment the nodule candidates, and the second stage is convolutional neural network for false positive reduction. The dataset contains 595 CT cases randomly selected from Lung Image Database Consortium and Image Database Resource Initiative (LIDC/IDRI) and the 305 pulmonary nodules achieved diagnosis consensus by all four experienced radiologists were our detection targets. Consider each slice as an individual sample, 2844 nodules were included in our database. The graph cuts segmentation was conducted in a two-dimension manner, 2733 lung nodule ROIs are successfully identified and segmented. With a false positive reduction by a seven-layer convolutional neural network, 2535 nodules remain detected while the false positive dropped to 31.6%. The average F-measure of segmented lung nodule tissue is 0.8501.

  3. Carbon Nanotubes' Effect on Mitochondrial Oxygen Flux Dynamics: Polarography Experimental Study and Machine Learning Models using Star Graph Trace Invariants of Raman Spectra.

    PubMed

    González-Durruthy, Michael; Monserrat, Jose M; Rasulev, Bakhtiyor; Casañola-Martín, Gerardo M; Barreiro Sorrivas, José María; Paraíso-Medina, Sergio; Maojo, Víctor; González-Díaz, Humberto; Pazos, Alejandro; Munteanu, Cristian R

    2017-11-11

    This study presents the impact of carbon nanotubes (CNTs) on mitochondrial oxygen mass flux ( J m ) under three experimental conditions. New experimental results and a new methodology are reported for the first time and they are based on CNT Raman spectra star graph transform (spectral moments) and perturbation theory. The experimental measures of J m showed that no tested CNT family can inhibit the oxygen consumption profiles of mitochondria. The best model for the prediction of J m for other CNTs was provided by random forest using eight features, obtaining test R-squared ( R ²) of 0.863 and test root-mean-square error (RMSE) of 0.0461. The results demonstrate the capability of encoding CNT information into spectral moments of the Raman star graphs (SG) transform with a potential applicability as predictive tools in nanotechnology and material risk assessments.

  4. Efficient quantum walk on a quantum processor

    PubMed Central

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  5. A novel conductivity mechanism of highly disordered carbon systems based on an investigation of graph zeta function

    NASA Astrophysics Data System (ADS)

    Matsutani, Shigeki; Sato, Iwao

    2017-09-01

    In the previous report (Matsutani and Suzuki, 2000 [21]), by proposing the mechanism under which electric conductivity is caused by the activational hopping conduction with the Wigner surmise of the level statistics, the temperature-dependent of electronic conductivity of a highly disordered carbon system was evaluated including apparent metal-insulator transition. Since the system consists of small pieces of graphite, it was assumed that the reason why the level statistics appears is due to the behavior of the quantum chaos in each granular graphite. In this article, we revise the assumption and show another origin of the Wigner surmise, which is more natural for the carbon system based on a recent investigation of graph zeta function in graph theory. Our method can be applied to the statistical treatment of the electronic properties of the randomized molecular system in general.

  6. Contact replacement for NMR resonance assignment.

    PubMed

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-07-01

    Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein-protein and protein-ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1-2 AA), noise (250-600%) and missings (10-40%). Our algorithm achieves very good overall assignment accuracy, above 80% in alpha-helices, 70% in beta-sheets and 60% in loop regions. Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  7. The correlation of metrics in complex networks with applications in functional brain networks

    NASA Astrophysics Data System (ADS)

    Li, C.; Wang, H.; de Haan, W.; Stam, C. J.; Van Mieghem, P.

    2011-11-01

    An increasing number of network metrics have been applied in network analysis. If metric relations were known better, we could more effectively characterize networks by a small set of metrics to discover the association between network properties/metrics and network functioning. In this paper, we investigate the linear correlation coefficients between widely studied network metrics in three network models (Bárabasi-Albert graphs, Erdös-Rényi random graphs and Watts-Strogatz small-world graphs) as well as in functional brain networks of healthy subjects. The metric correlations, which we have observed and theoretically explained, motivate us to propose a small representative set of metrics by including only one metric from each subset of mutually strongly dependent metrics. The following contributions are considered important. (a) A network with a given degree distribution can indeed be characterized by a small representative set of metrics. (b) Unweighted networks, which are obtained from weighted functional brain networks with a fixed threshold, and Erdös-Rényi random graphs follow a similar degree distribution. Moreover, their metric correlations and the resultant representative metrics are similar as well. This verifies the influence of degree distribution on metric correlations. (c) Most metric correlations can be explained analytically. (d) Interestingly, the most studied metrics so far, the average shortest path length and the clustering coefficient, are strongly correlated and, thus, redundant. Whereas spectral metrics, though only studied recently in the context of complex networks, seem to be essential in network characterizations. This representative set of metrics tends to both sufficiently and effectively characterize networks with a given degree distribution. In the study of a specific network, however, we have to at least consider the representative set so that important network properties will not be neglected.

  8. On finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data types

    PubMed Central

    2014-01-01

    Background Integrating and analyzing heterogeneous genome-scale data is a huge algorithmic challenge for modern systems biology. Bipartite graphs can be useful for representing relationships across pairs of disparate data types, with the interpretation of these relationships accomplished through an enumeration of maximal bicliques. Most previously-known techniques are generally ill-suited to this foundational task, because they are relatively inefficient and without effective scaling. In this paper, a powerful new algorithm is described that produces all maximal bicliques in a bipartite graph. Unlike most previous approaches, the new method neither places undue restrictions on its input nor inflates the problem size. Efficiency is achieved through an innovative exploitation of bipartite graph structure, and through computational reductions that rapidly eliminate non-maximal candidates from the search space. An iterative selection of vertices for consideration based on non-decreasing common neighborhood sizes boosts efficiency and leads to more balanced recursion trees. Results The new technique is implemented and compared to previously published approaches from graph theory and data mining. Formal time and space bounds are derived. Experiments are performed on both random graphs and graphs constructed from functional genomics data. It is shown that the new method substantially outperforms the best previous alternatives. Conclusions The new method is streamlined, efficient, and particularly well-suited to the study of huge and diverse biological data. A robust implementation has been incorporated into GeneWeaver, an online tool for integrating and analyzing functional genomics experiments, available at http://geneweaver.org. The enormous increase in scalability it provides empowers users to study complex and previously unassailable gene-set associations between genes and their biological functions in a hierarchical fashion and on a genome-wide scale. This practical computational resource is adaptable to almost any applications environment in which bipartite graphs can be used to model relationships between pairs of heterogeneous entities. PMID:24731198

  9. A Dynamic Graph Cuts Method with Integrated Multiple Feature Maps for Segmenting Kidneys in 2D Ultrasound Images.

    PubMed

    Zheng, Qiang; Warner, Steven; Tasian, Gregory; Fan, Yong

    2018-02-12

    Automatic segmentation of kidneys in ultrasound (US) images remains a challenging task because of high speckle noise, low contrast, and large appearance variations of kidneys in US images. Because texture features may improve the US image segmentation performance, we propose a novel graph cuts method to segment kidney in US images by integrating image intensity information and texture feature maps. We develop a new graph cuts-based method to segment kidney US images by integrating original image intensity information and texture feature maps extracted using Gabor filters. To handle large appearance variation within kidney images and improve computational efficiency, we build a graph of image pixels close to kidney boundary instead of building a graph of the whole image. To make the kidney segmentation robust to weak boundaries, we adopt localized regional information to measure similarity between image pixels for computing edge weights to build the graph of image pixels. The localized graph is dynamically updated and the graph cuts-based segmentation iteratively progresses until convergence. Our method has been evaluated based on kidney US images of 85 subjects. The imaging data of 20 randomly selected subjects were used as training data to tune parameters of the image segmentation method, and the remaining data were used as testing data for validation. Experiment results demonstrated that the proposed method obtained promising segmentation results for bilateral kidneys (average Dice index = 0.9446, average mean distance = 2.2551, average specificity = 0.9971, average accuracy = 0.9919), better than other methods under comparison (P < .05, paired Wilcoxon rank sum tests). The proposed method achieved promising performance for segmenting kidneys in two-dimensional US images, better than segmentation methods built on any single channel of image information. This method will facilitate extraction of kidney characteristics that may predict important clinical outcomes such as progression of chronic kidney disease. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  10. Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches.

    PubMed

    Crichton, Gamal; Guo, Yufan; Pyysalo, Sampo; Korhonen, Anna

    2018-05-21

    Link prediction in biomedical graphs has several important applications including predicting Drug-Target Interactions (DTI), Protein-Protein Interaction (PPI) prediction and Literature-Based Discovery (LBD). It can be done using a classifier to output the probability of link formation between nodes. Recently several works have used neural networks to create node representations which allow rich inputs to neural classifiers. Preliminary works were done on this and report promising results. However they did not use realistic settings like time-slicing, evaluate performances with comprehensive metrics or explain when or why neural network methods outperform. We investigated how inputs from four node representation algorithms affect performance of a neural link predictor on random- and time-sliced biomedical graphs of real-world sizes (∼ 6 million edges) containing information relevant to DTI, PPI and LBD. We compared the performance of the neural link predictor to those of established baselines and report performance across five metrics. In random- and time-sliced experiments when the neural network methods were able to learn good node representations and there was a negligible amount of disconnected nodes, those approaches outperformed the baselines. In the smallest graph (∼ 15,000 edges) and in larger graphs with approximately 14% disconnected nodes, baselines such as Common Neighbours proved a justifiable choice for link prediction. At low recall levels (∼ 0.3) the approaches were mostly equal, but at higher recall levels across all nodes and average performance at individual nodes, neural network approaches were superior. Analysis showed that neural network methods performed well on links between nodes with no previous common neighbours; potentially the most interesting links. Additionally, while neural network methods benefit from large amounts of data, they require considerable amounts of computational resources to utilise them. Our results indicate that when there is enough data for the neural network methods to use and there are a negligible amount of disconnected nodes, those approaches outperform the baselines. At low recall levels the approaches are mostly equal but at higher recall levels and average performance at individual nodes, neural network approaches are superior. Performance at nodes without common neighbours which indicate more unexpected and perhaps more useful links account for this.

  11. Uncertainties on Networks

    DTIC Science & Technology

    2011-06-03

    distribution, p. The Erdos- Renyi model (E-R model) has been widely used in the past to capture the probability distributions of ADGs (Erdos and Renyi ...experimental data. Journal of the American Statistical Association, 103:778-789. Erdos, R and Renyi , A. (1959). On random graphs, I

  12. The random fractional matching problem

    NASA Astrophysics Data System (ADS)

    Lucibello, Carlo; Malatesta, Enrico M.; Parisi, Giorgio; Sicuro, Gabriele

    2018-05-01

    We consider two formulations of the random-link fractional matching problem, a relaxed version of the more standard random-link (integer) matching problem. In one formulation, we allow each node to be linked to itself in the optimal matching configuration. In the other one, on the contrary, such a link is forbidden. Both problems have the same asymptotic average optimal cost of the random-link matching problem on the complete graph. Using a replica approach and previous results of Wästlund (2010 Acta Mathematica 204 91–150), we analytically derive the finite-size corrections to the asymptotic optimal cost. We compare our results with numerical simulations and we discuss the main differences between random-link fractional matching problems and the random-link matching problem.

  13. Resistance and Security Index of Networks: Structural Information Perspective of Network Security

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-06-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.

  14. Resistance and Security Index of Networks: Structural Information Perspective of Network Security.

    PubMed

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-06-03

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.

  15. Resistance and Security Index of Networks: Structural Information Perspective of Network Security

    PubMed Central

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-01-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks. PMID:27255783

  16. Fatigue strength reduction model: RANDOM3 and RANDOM4 user manual, appendix 2

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    The FORTRAN programs RANDOM3 and RANDOM4 are documented. They are based on fatigue strength reduction, using a probabilistic constitutive model. They predict the random lifetime of an engine component to reach a given fatigue strength. Included in this user manual are details regarding the theoretical backgrounds of RANDOM3 and RANDOM4. Appendix A gives information on the physical quantities, their symbols, FORTRAN names, and both SI and U.S. Customary units. Appendix B and C include photocopies of the actual computer printout corresponding to the sample problems. Appendices D and E detail the IMSL, Version 10(1), subroutines and functions called by RANDOM3 and RANDOM4 and SAS/GRAPH(2) programs that can be used to plot both the probability density functions (p.d.f.) and the cumulative distribution functions (c.d.f.).

  17. Concise biomarker for spatial-temporal change in three-dimensional ultrasound measurement of carotid vessel wall and plaque thickness based on a graph-based random walk framework: Towards sensitive evaluation of response to therapy.

    PubMed

    Chiu, Bernard; Chen, Weifu; Cheng, Jieyu

    2016-12-01

    Rapid progression in total plaque area and volume measured from ultrasound images has been shown to be associated with an elevated risk of cardiovascular events. Since atherosclerosis is focal and predominantly occurring at the bifurcation, biomarkers that are able to quantify the spatial distribution of vessel-wall-plus-plaque thickness (VWT) change may allow for more sensitive detection of treatment effect. The goal of this paper is to develop simple and sensitive biomarkers to quantify the responsiveness to therapies based on the spatial distribution of VWT-Change on the entire 2D carotid standardized map previously described. Point-wise VWT-Changes computed for each patient were reordered lexicographically to a high-dimensional data node in a graph. A graph-based random walk framework was applied with the novel Weighted Cosine (WCos) similarity function introduced, which was tailored for quantification of responsiveness to therapy. The converging probability of each data node to the VWT regression template in the random walk process served as a scalar descriptor for VWT responsiveness to treatment. The WCos-based biomarker was 14 times more sensitive than the mean VWT-Change in discriminating responsive and unresponsive subjects based on the p-values obtained in T-tests. The proposed framework was extended to quantify where VWT-Change occurred by including multiple VWT-Change distribution templates representing focal changes at different regions. Experimental results show that the framework was effective in classifying carotid arteries with focal VWT-Change at different locations and may facilitate future investigations to correlate risk of cardiovascular events with the location where focal VWT-Change occurs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Blood pressure variability of two ambulatory blood pressure monitors.

    PubMed

    Kallem, Radhakrishna R; Meyers, Kevin E C; Cucchiara, Andrew J; Sawinski, Deirdre L; Townsend, Raymond R

    2014-04-01

    There are no data on the evaluation of blood pressure (BP) variability comparing two ambulatory blood pressure monitoring monitors worn at the same time. Hence, this study was carried out to compare variability of BP in healthy untreated adults using two ambulatory BP monitors worn at the same time over an 8-h period. An Accutorr device was used to measure office BP in the dominant and nondominant arms of 24 participants.Simultaneous 8-h BP and heart rate data were measured in 24 untreated adult volunteers by Mobil-O-Graph (worn for an additional 16 h after removing the Spacelabs monitor) and Spacelabs with both random (N=12) and nonrandom (N=12) assignment of each device to the dominant arm. Average real variability (ARV), SD, coefficient of variation, and variation independent of mean were calculated for systolic blood pressure, diastolic blood pressure, mean arterial pressure, and pulse pressure (PP). Whether the Mobil-O-Graph was applied to the dominant or the nondominant arm, the ARV of mean systolic (P=0.003 nonrandomized; P=0.010 randomized) and PP (P=0.009 nonrandomized; P=0.005 randomized) remained significantly higher than the Spacelabs device, whereas the ARV of the mean arterial pressure was not significantly different. The average BP readings and ARVs for systolic blood pressure and PP obtained by the Mobil-O-Graph were considerably higher for the daytime than the night-time. Given the emerging interest in the effect of BP variability on health outcomes, the accuracy of its measurement is important. Our study raises concerns about the accuracy of pooling international ambulatory blood pressure monitoring variability data using different devices.

  19. Methods for identifying high collision concentrations for identifying potential safety improvements : development of advanced type 2 safety performance functions.

    DOT National Transportation Integrated Search

    2016-06-30

    This research developed advanced type 2 safety performance functions (SPF) for roadway segments, intersections and ramps on the entire Caltrans network. The advanced type 2 SPFs included geometrics, traffic volume and hierarchical random effects, whi...

  20. Using Graph Components Derived from an Associative Concept Dictionary to Predict fMRI Neural Activation Patterns that Represent the Meaning of Nouns.

    PubMed

    Akama, Hiroyuki; Miyake, Maki; Jung, Jaeyoung; Murphy, Brian

    2015-01-01

    In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF). This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk) and co-occurrence adjustment (degree balance and distribution). We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of) the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.

  1. Machine learning in a graph framework for subcortical segmentation

    NASA Astrophysics Data System (ADS)

    Guo, Zhihui; Kashyap, Satyananda; Sonka, Milan; Oguz, Ipek

    2017-02-01

    Automated and reliable segmentation of subcortical structures from human brain magnetic resonance images is of great importance for volumetric and shape analyses in quantitative neuroimaging studies. However, poor boundary contrast and variable shape of these structures make the automated segmentation a tough task. We propose a 3D graph-based machine learning method, called LOGISMOS-RF, to segment the caudate and the putamen from brain MRI scans in a robust and accurate way. An atlas-based tissue classification and bias-field correction method is applied to the images to generate an initial segmentation for each structure. Then a 3D graph framework is utilized to construct a geometric graph for each initial segmentation. A locally trained random forest classifier is used to assign a cost to each graph node. The max-flow algorithm is applied to solve the segmentation problem. Evaluation was performed on a dataset of T1-weighted MRI's of 62 subjects, with 42 images used for training and 20 images for testing. For comparison, FreeSurfer, FSL and BRAINSCut approaches were also evaluated using the same dataset. Dice overlap coefficients and surface-to-surfaces distances between the automated segmentation and expert manual segmentations indicate the results of our method are statistically significantly more accurate than the three other methods, for both the caudate (Dice: 0.89 +/- 0.03) and the putamen (0.89 +/- 0.03).

  2. Change of Brain Functional Connectivity in Patients With Spinal Cord Injury: Graph Theory Based Approach.

    PubMed

    Min, Yu-Sun; Chang, Yongmin; Park, Jang Woo; Lee, Jong-Min; Cha, Jungho; Yang, Jin-Ju; Kim, Chul-Hyun; Hwang, Jong-Moon; Yoo, Ji-Na; Jung, Tae-Du

    2015-06-01

    To investigate the global functional reorganization of the brain following spinal cord injury with graph theory based approach by creating whole brain functional connectivity networks from resting state-functional magnetic resonance imaging (rs-fMRI), characterizing the reorganization of these networks using graph theoretical metrics and to compare these metrics between patients with spinal cord injury (SCI) and age-matched controls. Twenty patients with incomplete cervical SCI (14 males, 6 females; age, 55±14.1 years) and 20 healthy subjects (10 males, 10 females; age, 52.9±13.6 years) participated in this study. To analyze the characteristics of the whole brain network constructed with functional connectivity using rs-fMRI, graph theoretical measures were calculated including clustering coefficient, characteristic path length, global efficiency and small-worldness. Clustering coefficient, global efficiency and small-worldness did not show any difference between controls and SCIs in all density ranges. The normalized characteristic path length to random network was higher in SCI patients than in controls and reached statistical significance at 12%-13% of density (p<0.05, uncorrected). The graph theoretical approach in brain functional connectivity might be helpful to reveal the information processing after SCI. These findings imply that patients with SCI can build on preserved competent brain control. Further analyses, such as topological rearrangement and hub region identification, will be needed for better understanding of neuroplasticity in patients with SCI.

  3. The use of control charts by laypeople and hospital decision-makers for guiding decision making.

    PubMed

    Schmidtke, K A; Watson, D G; Vlaev, I

    2017-07-01

    Graphs presenting healthcare data are increasingly available to support laypeople and hospital staff's decision making. When making these decisions, hospital staff should consider the role of chance-that is, random variation. Given random variation, decision-makers must distinguish signals (sometimes called special-cause data) from noise (common-cause data). Unfortunately, many graphs do not facilitate the statistical reasoning necessary to make such distinctions. Control charts are a less commonly used type of graph that support statistical thinking by including reference lines that separate data more likely to be signals from those more likely to be noise. The current work demonstrates for whom (laypeople and hospital staff) and when (treatment and investigative decisions) control charts strengthen data-driven decision making. We present two experiments that compare people's use of control and non-control charts to make decisions between hospitals (funnel charts vs. league tables) and to monitor changes across time (run charts with control lines vs. run charts without control lines). As expected, participants more accurately identified the outlying data using a control chart than using a non-control chart, but their ability to then apply that information to more complicated questions (e.g., where should I go for treatment?, and should I investigate?) was limited. The discussion highlights some common concerns about using control charts in hospital settings.

  4. Entropy, complexity, and Markov diagrams for random walk cancer models.

    PubMed

    Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-19

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  5. Analyzing functional brain connectivity by means of commute times: a new approach and its application to track event-related dynamics.

    PubMed

    Dimitriadis, S I; Laskaris, N A; Tzelepi, A; Economou, G

    2012-05-01

    There is growing interest in studying the association of functional connectivity patterns with particular cognitive tasks. The ability of graphs to encapsulate relational data has been exploited in many related studies, where functional networks (sketched by different neural synchrony estimators) are characterized by a rich repertoire of graph-related metrics. We introduce commute times (CTs) as an alternative way to capture the true interplay between the nodes of a functional connectivity graph (FCG). CT is a measure of the time taken for a random walk to setout and return between a pair of nodes on a graph. Its computation is considered here as a robust and accurate integration, over the FCG, of the individual pairwise measurements of functional coupling. To demonstrate the benefits from our approach, we attempted the characterization of time evolving connectivity patterns derived from EEG signals recorded while the subject was engaged in an eye-movement task. With respect to standard ways, which are currently employed to characterize connectivity, an improved detection of event-related dynamical changes is noticeable. CTs appear to be a promising technique for deriving temporal fingerprints of the brain's dynamic functional organization.

  6. Gaussian covariance graph models accounting for correlated marker effects in genome-wide prediction.

    PubMed

    Martínez, C A; Khare, K; Rahman, S; Elzo, M A

    2017-10-01

    Several statistical models used in genome-wide prediction assume uncorrelated marker allele substitution effects, but it is known that these effects may be correlated. In statistics, graphical models have been identified as a useful tool for covariance estimation in high-dimensional problems and it is an area that has recently experienced a great expansion. In Gaussian covariance graph models (GCovGM), the joint distribution of a set of random variables is assumed to be Gaussian and the pattern of zeros of the covariance matrix is encoded in terms of an undirected graph G. In this study, methods adapting the theory of GCovGM to genome-wide prediction were developed (Bayes GCov, Bayes GCov-KR and Bayes GCov-H). In simulated data sets, improvements in correlation between phenotypes and predicted breeding values and accuracies of predicted breeding values were found. Our models account for correlation of marker effects and permit to accommodate general structures as opposed to models proposed in previous studies, which consider spatial correlation only. In addition, they allow incorporation of biological information in the prediction process through its use when constructing graph G, and their extension to the multi-allelic loci case is straightforward. © 2017 Blackwell Verlag GmbH.

  7. Artistic image analysis using graph-based learning approaches.

    PubMed

    Carneiro, Gustavo

    2013-08-01

    We introduce a new methodology for the problem of artistic image analysis, which among other tasks, involves the automatic identification of visual classes present in an art work. In this paper, we advocate the idea that artistic image analysis must explore a graph that captures the network of artistic influences by computing the similarities in terms of appearance and manual annotation. One of the novelties of our methodology is the proposed formulation that is a principled way of combining these two similarities in a single graph. Using this graph, we show that an efficient random walk algorithm based on an inverted label propagation formulation produces more accurate annotation and retrieval results compared with the following baseline algorithms: bag of visual words, label propagation, matrix completion, and structural learning. We also show that the proposed approach leads to a more efficient inference and training procedures. This experiment is run on a database containing 988 artistic images (with 49 visual classification problems divided into a multiclass problem with 27 classes and 48 binary problems), where we show the inference and training running times, and quantitative comparisons with respect to several retrieval and annotation performance measures.

  8. Entropy, complexity, and Markov diagrams for random walk cancer models

    NASA Astrophysics Data System (ADS)

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  9. Learning planar Ising models

    DOE PAGES

    Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael; ...

    2016-12-01

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less

  10. Learning planar Ising models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less

  11. Charting the Replica Symmetric Phase

    NASA Astrophysics Data System (ADS)

    Coja-Oghlan, Amin; Efthymiou, Charilaos; Jaafari, Nor; Kang, Mihyun; Kapetanopoulos, Tobias

    2018-02-01

    Diluted mean-field models are spin systems whose geometry of interactions is induced by a sparse random graph or hypergraph. Such models play an eminent role in the statistical mechanics of disordered systems as well as in combinatorics and computer science. In a path-breaking paper based on the non-rigorous `cavity method', physicists predicted not only the existence of a replica symmetry breaking phase transition in such models but also sketched a detailed picture of the evolution of the Gibbs measure within the replica symmetric phase and its impact on important problems in combinatorics, computer science and physics (Krzakala et al. in Proc Natl Acad Sci 104:10318-10323, 2007). In this paper we rigorise this picture completely for a broad class of models, encompassing the Potts antiferromagnet on the random graph, the k-XORSAT model and the diluted k-spin model for even k. We also prove a conjecture about the detection problem in the stochastic block model that has received considerable attention (Decelle et al. in Phys Rev E 84:066106, 2011).

  12. Solution of the flyby problem for large space debris at sun-synchronous orbits

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Grishko, D. A.; Medvedevskikh, V. V.; Lapshin, V. V.

    2016-05-01

    the paper considers the flyby problem related to large space debris (LSD) objects at low earth orbits. The data on the overall dimensions of known last and upper stages of launch vehicles makes it possible to single out five compact groups of such objects from the NORAD catalog in the 500-2000 km altitude interval. The orbits of objects of each group have approximately the same inclinations. The features of the mutual distribution of the orbital planes of LSD objects in the group are shown in a portrait of the evolution of deviations of the right ascension of ascending nodes (RAAN). In the case of the first three groups (inclinations of 71°, 74°, and 81°), the straight lines of relative RAAN deviations of object orbits barely intersect each other. The fourth (83°) and fifth (97°-100°) LSD groups include a considerable number of objects whose orbits are described by straight lines (diagonals), which intersect other lines many times. The use of diagonals makes it possible to significantly reduce the temporal and total characteristic velocity expenditures required for object flybys, but it complicates determination of the flyby sequence. Diagonal solutions can be obtained using elements of graph theory. A solution to the flyby problem is presented for the case of group 5, formed of LSD objects at sun-synchronous orbits.

  13. Knowledge Guided Evolutionary Algorithms in Financial Investing

    ERIC Educational Resources Information Center

    Wimmer, Hayden

    2013-01-01

    A large body of literature exists on evolutionary computing, genetic algorithms, decision trees, codified knowledge, and knowledge management systems; however, the intersection of these computing topics has not been widely researched. Moving through the set of all possible solutions--or traversing the search space--at random exhibits no control…

  14. The effect of choir formation on the acoustical attributes of the singing voice

    NASA Astrophysics Data System (ADS)

    Atkinson, Debra Sue

    Research shows that many things can influence choral tone and choral blend. Some of these are vowel uniformity, vibrato, choral formation, strategic placement of singers, and spacing between singers. This study sought to determine the effect that changes in choral formation and spacing between singers would have on four randomly selected voices of an ensemble as revealed through long-term average spectra (LTAS) of the individual singers. All members of the ensemble were given the opportunity to express their preferences for each of the choral formations and the four randomly selected choristers were asked specific questions regarding the differences between choral singing and solo singing. The results indicated that experienced singers preferred singing in a mixed-spread choral formation. However, the graphs of the choral excerpts as compared to the solo recordings revealed that the choral graphs for the soprano and bass were very similar to the graphs of their solos, but the graphs of the tenor and the alto were different from their solo graphs. It is obvious from the results of this study that the four selected singers did sing with slightly different techniques in the choral formations than they did while singing their solos. The members of this ensemble were accustomed to singing in many different formations. Therefore, it was easy for them to consciously think about how they sang in each of the four formations (mixed-close, mixed-spread, sectional-close, and sectional-spread) and answer the questionnaire accordingly. This would not be as easy for a group that never changed choral formations. Therefore, the results of this study cannot be generalized to choirs who only sing in sectional formation. As researchers learn more about choral acoustics and the effects of choral singing on the voice, choral conductors will be able to make better decisions about the methods used to achieve their desired choral blend. It is up to the choral conductors to glean the knowledge from the research that is taking place and use it for the betterment of choral music.

  15. Exact moments of the Sachdev-Ye-Kitaev model up to order 1 /N 2

    NASA Astrophysics Data System (ADS)

    García-García, Antonio M.; Jia, Yiyang; Verbaarschot, Jacobus J. M.

    2018-04-01

    We analytically evaluate the moments of the spectral density of the q-body Sachdev-Ye-Kitaev (SYK) model, and obtain order 1 /N 2 corrections for all moments, where N is the total number of Majorana fermions. To order 1 /N, moments are given by those of the weight function of the Q-Hermite polynomials. Representing Wick contractions by rooted chord diagrams, we show that the 1 /N 2 correction for each chord diagram is proportional to the number of triangular loops of the corresponding intersection graph, with an extra grading factor when q is odd. Therefore the problem of finding 1 /N 2 corrections is mapped to a triangle counting problem. Since the total number of triangles is a purely graph-theoretic property, we can compute them for the q = 1 and q = 2 SYK models, where the exact moments can be obtained analytically using other methods, and therefore we have solved the moment problem for any q to 1 /N 2 accuracy. The moments are then used to obtain the spectral density of the SYK model to order 1 /N 2. We also obtain an exact analytical result for all contraction diagrams contributing to the moments, which can be evaluated up to eighth order. This shows that the Q-Hermite approximation is accurate even for small values of N.

  16. Ant-inspired density estimation via random walks

    PubMed Central

    Musco, Cameron; Su, Hsin-Hao

    2017-01-01

    Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks. PMID:28928146

  17. Schramm-Loewner evolution and Liouville quantum gravity.

    PubMed

    Duplantier, Bertrand; Sheffield, Scott

    2011-09-23

    We show that when two boundary arcs of a Liouville quantum gravity random surface are conformally welded to each other (in a boundary length-preserving way) the resulting interface is a random curve called the Schramm-Loewner evolution. We also develop a theory of quantum fractal measures (consistent with the Knizhnik-Polyakov-Zamolochikov relation) and analyze their evolution under conformal welding maps related to Schramm-Loewner evolution. As an application, we construct quantum length and boundary intersection measures on the Schramm-Loewner evolution curve itself.

  18. The Value of Information in Distributed Decision Networks

    DTIC Science & Technology

    2016-03-04

    formulation, and then we describe the various results at- tained. 1 Mathematical description of Distributed Decision Network un- der Information...Constraints We now define a mathematical framework for networks. Let G = (V,E) be an undirected random network (graph) drawn from a known distribution pG, 1

  19. Visual texture perception via graph-based semi-supervised learning

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Dong, Junyu; Zhong, Guoqiang

    2018-04-01

    Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.

  20. Information Retrieval and Graph Analysis Approaches for Book Recommendation.

    PubMed

    Benkoussas, Chahinez; Bellot, Patrice

    2015-01-01

    A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments.

  1. Statistical properties of multi-theta polymer chains

    NASA Astrophysics Data System (ADS)

    Uehara, Erica; Deguchi, Tetsuo

    2018-04-01

    We study statistical properties of polymer chains with complex structures whose chemical connectivities are expressed by graphs. The multi-theta curve of m subchains with two branch points connected by them is one of the simplest graphs among those graphs having closed paths, i.e. loops. We denoted it by θm , and for m  =  2 it is given by a ring. We derive analytically the pair distribution function and the scattering function for the θm -shaped polymer chains consisting of m Gaussian random walks of n steps. Surprisingly, it is shown rigorously that the mean-square radius of gyration for the Gaussian θm -shaped polymer chain does not depend on the number m of subchains if each subchain has the same fixed number of steps. For m  =  3 we show the Kratky plot for the theta-shaped polymer chain consisting of hard cylindrical segments by the Monte-Carlo method including reflection at trivalent vertices.

  2. Continuum Limit of Total Variation on Point Clouds

    NASA Astrophysics Data System (ADS)

    García Trillos, Nicolás; Slepčev, Dejan

    2016-04-01

    We consider point clouds obtained as random samples of a measure on a Euclidean domain. A graph representing the point cloud is obtained by assigning weights to edges based on the distance between the points they connect. Our goal is to develop mathematical tools needed to study the consistency, as the number of available data points increases, of graph-based machine learning algorithms for tasks such as clustering. In particular, we study when the cut capacity, and more generally total variation, on these graphs is a good approximation of the perimeter (total variation) in the continuum setting. We address this question in the setting of Γ-convergence. We obtain almost optimal conditions on the scaling, as the number of points increases, of the size of the neighborhood over which the points are connected by an edge for the Γ-convergence to hold. Taking of the limit is enabled by a transportation based metric which allows us to suitably compare functionals defined on different point clouds.

  3. Information Retrieval and Graph Analysis Approaches for Book Recommendation

    PubMed Central

    Benkoussas, Chahinez; Bellot, Patrice

    2015-01-01

    A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments. PMID:26504899

  4. Performance of a cavity-method-based algorithm for the prize-collecting Steiner tree problem on graphs

    NASA Astrophysics Data System (ADS)

    Biazzo, Indaco; Braunstein, Alfredo; Zecchina, Riccardo

    2012-08-01

    We study the behavior of an algorithm derived from the cavity method for the prize-collecting steiner tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks, networks, and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the dhea solver, a branch and cut integer linear programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two postprocessing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases.

  5. Mesoscopic description of random walks on combs

    NASA Astrophysics Data System (ADS)

    Méndez, Vicenç; Iomin, Alexander; Campos, Daniel; Horsthemke, Werner

    2015-12-01

    Combs are a simple caricature of various types of natural branched structures, which belong to the category of loopless graphs and consist of a backbone and branches. We study continuous time random walks on combs and present a generic method to obtain their transport properties. The random walk along the branches may be biased, and we account for the effect of the branches by renormalizing the waiting time probability distribution function for the motion along the backbone. We analyze the overall diffusion properties along the backbone and find normal diffusion, anomalous diffusion, and stochastic localization (diffusion failure), respectively, depending on the characteristics of the continuous time random walk along the branches, and compare our analytical results with stochastic simulations.

  6. Computational Models for Belief Revision, Group Decision-Making and Cultural Shifts

    DTIC Science & Technology

    2010-10-25

    34social" networks; the green numbers are pseudo-trees or artificial (non-social) constructions. The dashed blue line indicates the range of Erdos- Renyi ...non-social networks such as Erdos- Renyi random graphs or the more passive non-cognitive spreading of disease or information flow, As mentioned

  7. Beat the Instructor: An Introductory Forecasting Game

    ERIC Educational Resources Information Center

    Snider, Brent R.; Eliasson, Janice B.

    2013-01-01

    This teaching brief describes a 30-minute game where student groups compete in-class in an introductory time-series forecasting exercise. The students are challenged to "beat the instructor" who competes using forecasting techniques that will be subsequently taught. All forecasts are graphed prior to revealing the randomly generated…

  8. Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks

    PubMed Central

    Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P.; Gerstein, Mark

    2010-01-01

    The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers’ continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems. PMID:20439753

  9. Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks.

    PubMed

    Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P; Gerstein, Mark

    2010-05-18

    The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers' continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems.

  10. Structure of a randomly grown 2-d network.

    PubMed

    Ajazi, Fioralba; Napolitano, George M; Turova, Tatyana; Zaurbek, Izbassar

    2015-10-01

    We introduce a growing random network on a plane as a model of a growing neuronal network. The properties of the structure of the induced graph are derived. We compare our results with available data. In particular, it is shown that depending on the parameters of the model the system undergoes in time different phases of the structure. We conclude with a possible explanation of some empirical data on the connections between neurons. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Suwunnarat, Suwun; Fleischmann, Ragnar; Schanz, Holger; Kottos, Tsampikos

    2017-01-01

    We employ random matrix theory in order to investigate coherent perfect absorption (CPA) in lossy systems with complex internal dynamics. The loss strength γCPA and energy ECPA, for which a CPA occurs, are expressed in terms of the eigenmodes of the isolated cavity—thus carrying over the information about the chaotic nature of the target—and their coupling to a finite number of scattering channels. Our results are tested against numerical calculations using complex networks of resonators and chaotic graphs as CPA cavities.

  12. A Family-School Intervention for Children with ADHD: Results of a Randomized Clinical Trial

    ERIC Educational Resources Information Center

    Power, Thomas J.; Mautone, Jennifer A.; Soffer, Stephen L.; Clarke, Angela T.; Marshall, Stephen A.; Sharman, Jaclyn; Blum, Nathan J.; Glanzman, Marianne; Elia, Josephine; Jawad, Abbas F.

    2012-01-01

    Objective: Accumulating evidence highlights the importance of using psychosocial approaches to intervention for children with attention-deficit/hyperactivity disorder (ADHD) that target the family and school, as well as the intersection of family and school. This study evaluated the effectiveness of a family-school intervention, Family-School…

  13. Quantum Walk Schemes for Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.

    Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction. The many-particle quantum walk can be viewed as a single quantum walk undergoing perfect state transfer on a larger weighted graph, obtained via equitable partitioning. I extend this formalism to non-simple graphs. Examples of the application of equitable partitioning to the analysis of quantum walks and many-particle quantum systems are discussed.

  14. Using animated computer-generated text and graphics to depict the risks and benefits of medical treatment.

    PubMed

    Tait, Alan R; Voepel-Lewis, Terri; Brennan-Martinez, Colleen; McGonegal, Maureen; Levine, Robert

    2012-11-01

    Conventional print materials for presenting risks and benefits of treatment are often difficult to understand. This study was undertaken to evaluate and compare subjects' understanding and perceptions of risks and benefits presented using animated computerized text and graphics. Adult subjects were randomized to receive identical risk/benefit information regarding taking statins that was presented on an iPad (Apple Corp, Cupertino, Calif) in 1 of 4 different animated formats: text/numbers, pie chart, bar graph, and pictograph. Subjects completed a questionnaire regarding their preferences and perceptions of the message delivery together with their understanding of the information. Health literacy, numeracy, and need for cognition were measured using validated instruments. There were no differences in subject understanding based on the different formats. However, significantly more subjects preferred graphs (82.5%) compared with text (17.5%, P<.001). Specifically, subjects preferred pictographs (32.0%) and bar graphs (31.0%) over pie charts (19.5%) and text (17.5%). Subjects whose preference for message delivery matched their randomly assigned format (preference match) had significantly greater understanding and satisfaction compared with those assigned to something other than their preference. Results showed that computer-animated depictions of risks and benefits offer an effective means to describe medical risk/benefit statistics. That understanding and satisfaction were significantly better when the format matched the individual's preference for message delivery is important and reinforces the value of "tailoring" information to the individual's needs and preferences. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    PubMed

    Jovanović, Stojan; Rotter, Stefan

    2016-06-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  16. Collective Influence Algorithm to find influencers via optimal percolation in massively large social media

    NASA Astrophysics Data System (ADS)

    Morone, Flaviano; Min, Byungjoon; Bo, Lin; Mari, Romain; Makse, Hernán A.

    2016-07-01

    We elaborate on a linear-time implementation of Collective-Influence (CI) algorithm introduced by Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in networks via optimal percolation. The computational complexity of CI is O(N log N) when removing nodes one-by-one, made possible through an appropriate data structure to process CI. We introduce two Belief-Propagation (BP) variants of CI that consider global optimization via message-passing: CI propagation (CIP) and Collective-Immunization-Belief-Propagation algorithm (CIBP) based on optimal immunization. Both identify a slightly smaller fraction of influencers than CI and, remarkably, reproduce the exact analytical optimal percolation threshold obtained in Random Struct. Alg. 21, 397 (2002) for cubic random regular graphs, leaving little room for improvement for random graphs. However, the small augmented performance comes at the expense of increasing running time to O(N2), rendering BP prohibitive for modern-day big-data. For instance, for big-data social networks of 200 million users (e.g., Twitter users sending 500 million tweets/day), CI finds influencers in 2.5 hours on a single CPU, while all BP algorithms (CIP, CIBP and BDP) would take more than 3,000 years to accomplish the same task.

  17. Collective Influence Algorithm to find influencers via optimal percolation in massively large social media.

    PubMed

    Morone, Flaviano; Min, Byungjoon; Bo, Lin; Mari, Romain; Makse, Hernán A

    2016-07-26

    We elaborate on a linear-time implementation of Collective-Influence (CI) algorithm introduced by Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in networks via optimal percolation. The computational complexity of CI is O(N log N) when removing nodes one-by-one, made possible through an appropriate data structure to process CI. We introduce two Belief-Propagation (BP) variants of CI that consider global optimization via message-passing: CI propagation (CIP) and Collective-Immunization-Belief-Propagation algorithm (CIBP) based on optimal immunization. Both identify a slightly smaller fraction of influencers than CI and, remarkably, reproduce the exact analytical optimal percolation threshold obtained in Random Struct. Alg. 21, 397 (2002) for cubic random regular graphs, leaving little room for improvement for random graphs. However, the small augmented performance comes at the expense of increasing running time to O(N(2)), rendering BP prohibitive for modern-day big-data. For instance, for big-data social networks of 200 million users (e.g., Twitter users sending 500 million tweets/day), CI finds influencers in 2.5 hours on a single CPU, while all BP algorithms (CIP, CIBP and BDP) would take more than 3,000 years to accomplish the same task.

  18. Collective Influence Algorithm to find influencers via optimal percolation in massively large social media

    PubMed Central

    Morone, Flaviano; Min, Byungjoon; Bo, Lin; Mari, Romain; Makse, Hernán A.

    2016-01-01

    We elaborate on a linear-time implementation of Collective-Influence (CI) algorithm introduced by Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in networks via optimal percolation. The computational complexity of CI is O(N log N) when removing nodes one-by-one, made possible through an appropriate data structure to process CI. We introduce two Belief-Propagation (BP) variants of CI that consider global optimization via message-passing: CI propagation (CIP) and Collective-Immunization-Belief-Propagation algorithm (CIBP) based on optimal immunization. Both identify a slightly smaller fraction of influencers than CI and, remarkably, reproduce the exact analytical optimal percolation threshold obtained in Random Struct. Alg. 21, 397 (2002) for cubic random regular graphs, leaving little room for improvement for random graphs. However, the small augmented performance comes at the expense of increasing running time to O(N2), rendering BP prohibitive for modern-day big-data. For instance, for big-data social networks of 200 million users (e.g., Twitter users sending 500 million tweets/day), CI finds influencers in 2.5 hours on a single CPU, while all BP algorithms (CIP, CIBP and BDP) would take more than 3,000 years to accomplish the same task. PMID:27455878

  19. Number-Theory in Nuclear-Physics in Number-Theory: Non-Primality Factorization As Fission VS. Primality As Fusion; Composites' Islands of INstability: Feshbach-Resonances?

    NASA Astrophysics Data System (ADS)

    Siegel, Edward

    2011-10-01

    Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility /factor-ization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 × 2]; (4+1)=(fusion)=5; (5 +1)=(fission)=6[=2 × 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 × 4 = 2 × 2 × 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 × 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16,... Could inter-digit Feshbach-resonances exist??? Applications to: quantum-information/computing non-Shore factorization, millennium-problem Riemann-hypotheses proof as Goodkin BEC intersection with graph-theory ``short-cut'' method: Rayleigh(1870)-Polya(1922)-``Anderson'' (1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics;... abound!!!

  20. Number-Theory in Nuclear-Physics in Number-Theory: Non-Primality Factorization As Fission VS. Primality As Fusion; Composites' Islands of INstability: Feshbach-Resonances?

    NASA Astrophysics Data System (ADS)

    Siegel, Edward

    2011-04-01

    Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility /factor-ization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 x 2]; (4+1)=(fusion)=5; (5+1)=(fission)=6[=2 x 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 x 4 = 2 x 2 x 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 x 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16,... Could inter-digit Feshbach-resonances exist??? Applications to: quantum-information and computing non-Shore factorization, millennium-problem Riemann-hypotheses physics-proof as numbers/digits Goodkin Bose-Einstein Condensation intersection with graph-theory ``short-cut'' method: Rayleigh(1870)-Polya(1922)-``Anderson'' (1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics;... abound!!!

  1. Explanation of the computer listings of Faraday factors for INTASAT users

    NASA Technical Reports Server (NTRS)

    Nesterczuk, G.; Llewellyn, S. K.; Bent, R. B.; Schmid, P. E.

    1974-01-01

    Using a simplified form of the Appleton-Hartree formula for the phase refractive index, a relationship was obtained between the Faraday rotation angle along the angular path and the total electron content along the vertical path, intersecting the angular at the height of maximum electron density. Using the second mean value theorem of integration, the function B cosine theta second chi was removed from under the integral sign and replaced by a 'mean' value. The mean value factors were printed on the computer listing for 39 stations receiving signals from the INTASAT satellite during the specified time period. The data is presented by station and date. Graphs are included to demonstrate the variation of the Faraday factor with local time and season, with magnetic latitude, elevation and azimuth angles. Other topics discussed include a description of the bent ionospheric model, the earth's magnetic field model, and the sample computer listing.

  2. GraphCrunch 2: Software tool for network modeling, alignment and clustering.

    PubMed

    Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša

    2011-01-19

    Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an algorithm for clustering nodes within a network based solely on their topological similarities. Using GraphCrunch 2, we demonstrate that eukaryotic and viral PPI networks may belong to different graph model families and show that topology-based clustering can reveal important functional similarities between proteins within yeast and human PPI networks. GraphCrunch 2 is a software tool that implements the latest research on biological network analysis. It parallelizes computationally intensive tasks to fully utilize the potential of modern multi-core CPUs. It is open-source and freely available for research use. It runs under the Windows and Linux platforms.

  3. A graph-theory framework for evaluating landscape connectivity and conservation planning.

    PubMed

    Minor, Emily S; Urban, Dean L

    2008-04-01

    Connectivity of habitat patches is thought to be important for movement of genes, individuals, populations, and species over multiple temporal and spatial scales. We used graph theory to characterize multiple aspects of landscape connectivity in a habitat network in the North Carolina Piedmont (U.S.A). We compared this landscape with simulated networks with known topology, resistance to disturbance, and rate of movement. We introduced graph measures such as compartmentalization and clustering, which can be used to identify locations on the landscape that may be especially resilient to human development or areas that may be most suitable for conservation. Our analyses indicated that for songbirds the Piedmont habitat network was well connected. Furthermore, the habitat network had commonalities with planar networks, which exhibit slow movement, and scale-free networks, which are resistant to random disturbances. These results suggest that connectivity in the habitat network was high enough to prevent the negative consequences of isolation but not so high as to allow rapid spread of disease. Our graph-theory framework provided insight into regional and emergent global network properties in an intuitive and visual way and allowed us to make inferences about rates and paths of species movements and vulnerability to disturbance. This approach can be applied easily to assessing habitat connectivity in any fragmented or patchy landscape.

  4. Entropy, complexity, and Markov diagrams for random walk cancer models

    PubMed Central

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-01-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential. PMID:25523357

  5. Evaluation of the MyWellness Key accelerometer.

    PubMed

    Herrmann, S D; Hart, T L; Lee, C D; Ainsworth, B E

    2011-02-01

    to examine the concurrent validity of the Technogym MyWellness Key accelerometer against objective and subjective physical activity (PA) measures. randomised, cross-sectional design with two phases. The laboratory phase compared the MyWellness Key with the ActiGraph GT1M and the Yamax SW200 Digiwalker pedometer during graded treadmill walking, increasing speed each minute. The free-living phase compared the MyWellness Key with the ActiGraph, Digiwalker, Bouchard Activity cord (BAR) and Global Physical Activity Questionnaire (GPAQ) for seven continuous days. Data were analysed using Spearman rank-order correlation coefficients for all comparisons. laboratory and free-living phases. sixteen participants randomly stratified from 41 eligible respondents by sex (n=8 men; n=8 women) and PA levels (n=4 low, n=8 middle and n=4 high active). there was a strong association between the MyWellness Key and the ActiGraph accelerometer during controlled graded treadmill walking (r=0.91, p<0.01) and in free-living settings (r=0.73-0.76 for light to vigorous PA, respectively, p<0.01). No associations were observed between the MyWellness Key and the BAR and GPAQ (p>0.05). the MyWellness Key has a high concurrent validity with the ActiGraph accelerometer to detect PA in both controlled laboratory and free-living settings.

  6. Scale free effects in world currency exchange network

    NASA Astrophysics Data System (ADS)

    Górski, A. Z.; Drożdż, S.; Kwapień, J.

    2008-11-01

    A large collection of daily time series for 60 world currencies' exchange rates is considered. The correlation matrices are calculated and the corresponding Minimal Spanning Tree (MST) graphs are constructed for each of those currencies used as reference for the remaining ones. It is shown that multiplicity of the MST graphs' nodes to a good approximation develops a power like, scale free distribution with the scaling exponent similar as for several other complex systems studied so far. Furthermore, quantitative arguments in favor of the hierarchical organization of the world currency exchange network are provided by relating the structure of the above MST graphs and their scaling exponents to those that are derived from an exactly solvable hierarchical network model. A special status of the USD during the period considered can be attributed to some departures of the MST features, when this currency (or some other tied to it) is used as reference, from characteristics typical to such a hierarchical clustering of nodes towards those that correspond to the random graphs. Even though in general the basic structure of the MST is robust with respect to changing the reference currency some trace of a systematic transition from somewhat dispersed - like the USD case - towards more compact MST topology can be observed when correlations increase.

  7. Improvement of Automated POST Case Success Rate Using Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Zwack, Matthew R.; Dees, Patrick D.

    2017-01-01

    During early conceptual design of complex systems, concept down selection can have a large impact upon program life-cycle cost. Therefore, any concepts selected during early design will inherently commit program costs and affect the overall probability of program success. For this reason it is important to consider as large a design space as possible in order to better inform the down selection process. For conceptual design of launch vehicles, trajectory analysis and optimization often presents the largest obstacle to evaluating large trade spaces. This is due to the sensitivity of the trajectory discipline to changes in all other aspects of the vehicle design. Small deltas in the performance of other subsystems can result in relatively large fluctuations in the ascent trajectory because the solution space is non-linear and multi-modal [1]. In order to help capture large design spaces for new launch vehicles, the authors have performed previous work seeking to automate the execution of the industry standard tool, Program to Optimize Simulated Trajectories (POST). This work initially focused on implementation of analyst heuristics to enable closure of cases in an automated fashion, with the goal of applying the concepts of design of experiments (DOE) and surrogate modeling to enable near instantaneous throughput of vehicle cases [2]. Additional work was then completed to improve the DOE process by utilizing a graph theory based approach to connect similar design points [3]. The conclusion of the previous work illustrated the utility of the graph theory approach for completing a DOE through POST. However, this approach was still dependent upon the use of random repetitions to generate seed points for the graph. As noted in [3], only 8% of these random repetitions resulted in converged trajectories. This ultimately affects the ability of the random reps method to confidently approach the global optima for a given vehicle case in a reasonable amount of time. With only an 8% pass rate, tens or hundreds of thousands of reps may be needed to be confident that the best repetition is at least close to the global optima. However, typical design study time constraints require that fewer repetitions be attempted, sometimes resulting in seed points that have only a handful of successful completions. If a small number of successful repetitions are used to generate a seed point, the graph method may inherit some inaccuracies as it chains DOE cases from the non-global-optimal seed points. This creates inherent noise in the graph data, which can limit the accuracy of the resulting surrogate models. For this reason, the goal of this work is to improve the seed point generation method and ultimately the accuracy of the resulting POST surrogate model. The work focuses on increasing the case pass rate for seed point generation.

  8. Criterion and Concurrent Validity of the activPAL™ Professional Physical Activity Monitor in Adolescent Females

    PubMed Central

    Dowd, Kieran P.; Harrington, Deirdre M.; Donnelly, Alan E.

    2012-01-01

    Background The activPAL has been identified as an accurate and reliable measure of sedentary behaviour. However, only limited information is available on the accuracy of the activPAL activity count function as a measure of physical activity, while no unit calibration of the activPAL has been completed to date. This study aimed to investigate the criterion validity of the activPAL, examine the concurrent validity of the activPAL, and perform and validate a value calibration of the activPAL in an adolescent female population. The performance of the activPAL in estimating posture was also compared with sedentary thresholds used with the ActiGraph accelerometer. Methodologies Thirty adolescent females (15 developmental; 15 cross-validation) aged 15–18 years performed 5 activities while wearing the activPAL, ActiGraph GT3X, and the Cosmed K4B2. A random coefficient statistics model examined the relationship between metabolic equivalent (MET) values and activPAL counts. Receiver operating characteristic analysis was used to determine activity thresholds and for cross-validation. The random coefficient statistics model showed a concordance correlation coefficient of 0.93 (standard error of the estimate = 1.13). An optimal moderate threshold of 2997 was determined using mixed regression, while an optimal vigorous threshold of 8229 was determined using receiver operating statistics. The activPAL count function demonstrated very high concurrent validity (r = 0.96, p<0.01) with the ActiGraph count function. Levels of agreement for sitting, standing, and stepping between direct observation and the activPAL and ActiGraph were 100%, 98.1%, 99.2% and 100%, 0%, 100%, respectively. Conclusions These findings suggest that the activPAL is a valid, objective measurement tool that can be used for both the measurement of physical activity and sedentary behaviours in an adolescent female population. PMID:23094069

  9. a Framework for AN Automatic Seamline Engine

    NASA Astrophysics Data System (ADS)

    Al-Durgham, M.; Downey, M.; Gehrke, S.; Beshah, B. T.

    2016-06-01

    Seamline generation is a crucial last step in the ortho-image mosaicking process. In particular, it is required to convolute residual geometric and radiometric imperfections that stem from various sources. In particular, temporal differences in the acquired data will cause the scene content and illumination conditions to vary. These variations can be modelled successfully. However, one is left with micro-differences that do need to be considered in seamline generation. Another cause of discrepancies originates from the rectification surface as it will not model the actual terrain and especially human-made objects perfectly. Quality of the image orientation will also contribute to the overall differences between adjacent ortho-rectified images. Our approach takes into consideration the aforementioned differences in designing a seamline engine. We have identified the following essential behaviours of the seamline in our engine: 1) Seamlines must pass through the path of least resistance, i.e., overlap areas with low radiometric differences. 2) Seamlines must not intersect with breaklines as that will lead to visible geometric artefacts. And finally, 3), shorter seamlines are generally favourable; they also result in faster operator review and, where necessary, interactive editing cycles. The engine design also permits alteration of the above rules for special cases. Although our preliminary experiments are geared towards line imaging systems (i.e., the Leica ADS family), our seamline engine remains sensor agnostic. Hence, our design is capable of mosaicking images from various sources with minimal effort. The main idea behind this engine is using graph cuts which, in spirit, is based of the max-flow min-cut theory. The main advantage of using graph cuts theory is that the generated solution is global in the energy minimization sense. In addition, graph cuts allows for a highly scalable design where a set of rules contribute towards a cost function which, in turn, influences the path of minimum resistance for the seamlines. In this paper, the authors present an approach for achieving quality seamlines relatively quickly and with emphasis on generating truly seamless ortho-mosaics.

  10. Fatigue crack growth model RANDOM2 user manual, appendix 1

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    The FORTRAN program RANDOM2 is documented. RANDOM2 is based on fracture mechanics using a probabilistic fatigue crack growth model. It predicts the random lifetime of an engine component to reach a given crack size. Included in this user manual are details regarding the theoretical background of RANDOM2, input data, instructions and a sample problem illustrating the use of RANDOM2. Appendix A gives information on the physical quantities, their symbols, FORTRAN names, and both SI and U.S. Customary units. Appendix B includes photocopies of the actual computer printout corresponding to the sample problem. Appendices C and D detail the IMSL, Ver. 10(1), subroutines and functions called by RANDOM2 and a SAS/GRAPH(2) program that can be used to plot both the probability density function (p.d.f.) and the cumulative distribution function (c.d.f.).

  11. Cavity master equation for the continuous time dynamics of discrete-spin models.

    PubMed

    Aurell, E; Del Ferraro, G; Domínguez, E; Mulet, R

    2017-05-01

    We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.

  12. Cavity master equation for the continuous time dynamics of discrete-spin models

    NASA Astrophysics Data System (ADS)

    Aurell, E.; Del Ferraro, G.; Domínguez, E.; Mulet, R.

    2017-05-01

    We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.

  13. Relaxation dynamics of maximally clustered networks

    NASA Astrophysics Data System (ADS)

    Klaise, Janis; Johnson, Samuel

    2018-01-01

    We study the relaxation dynamics of fully clustered networks (maximal number of triangles) to an unclustered state under two different edge dynamics—the double-edge swap, corresponding to degree-preserving randomization of the configuration model, and single edge replacement, corresponding to full randomization of the Erdős-Rényi random graph. We derive expressions for the time evolution of the degree distribution, edge multiplicity distribution and clustering coefficient. We show that under both dynamics networks undergo a continuous phase transition in which a giant connected component is formed. We calculate the position of the phase transition analytically using the Erdős-Rényi phenomenology.

  14. Diagnostic Value of Run Chart Analysis: Using Likelihood Ratios to Compare Run Chart Rules on Simulated Data Series

    PubMed Central

    Anhøj, Jacob

    2015-01-01

    Run charts are widely used in healthcare improvement, but there is little consensus on how to interpret them. The primary aim of this study was to evaluate and compare the diagnostic properties of different sets of run chart rules. A run chart is a line graph of a quality measure over time. The main purpose of the run chart is to detect process improvement or process degradation, which will turn up as non-random patterns in the distribution of data points around the median. Non-random variation may be identified by simple statistical tests including the presence of unusually long runs of data points on one side of the median or if the graph crosses the median unusually few times. However, there is no general agreement on what defines “unusually long” or “unusually few”. Other tests of questionable value are frequently used as well. Three sets of run chart rules (Anhoej, Perla, and Carey rules) have been published in peer reviewed healthcare journals, but these sets differ significantly in their sensitivity and specificity to non-random variation. In this study I investigate the diagnostic values expressed by likelihood ratios of three sets of run chart rules for detection of shifts in process performance using random data series. The study concludes that the Anhoej rules have good diagnostic properties and are superior to the Perla and the Carey rules. PMID:25799549

  15. Conformational analysis by intersection: CONAN.

    PubMed

    Smellie, Andrew; Stanton, Robert; Henne, Randy; Teig, Steve

    2003-01-15

    As high throughput techniques in chemical synthesis and screening improve, more demands are placed on computer assisted design and virtual screening. Many of these computational methods require one or more three-dimensional conformations for molecules, creating a demand for a conformational analysis tool that can rapidly and robustly cover the low-energy conformational spaces of small molecules. A new algorithm of intersection is presented here, which quickly generates (on average <0.5 seconds/stereoisomer) a complete description of the low energy conformational space of a small molecule. The molecule is first decomposed into nonoverlapping nodes N (usually rings) and overlapping paths P with conformations (N and P) generated in an offline process. In a second step the node and path data are combined to form distinct conformers of the molecule. Finally, heuristics are applied after intersection to generate a small representative collection of conformations that span the conformational space. In a study of approximately 97,000 randomly selected molecules from the MDDR, results are presented that explore these conformations and their ability to cover low-energy conformational space. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 24: 10-20, 2003

  16. Invasion Percolation and Global Optimization

    NASA Astrophysics Data System (ADS)

    Barabási, Albert-László

    1996-05-01

    Invasion bond percolation (IBP) is mapped exactly into Prim's algorithm for finding the shortest spanning tree of a weighted random graph. Exploring this mapping, which is valid for arbitrary dimensions and lattices, we introduce a new IBP model that belongs to the same universality class as IBP and generates the minimal energy tree spanning the IBP cluster.

  17. The Effects of Observation Errors on the Attack Vulnerability of Complex Networks

    DTIC Science & Technology

    2012-11-01

    more detail, to construct a true network we select a topology (erdos- renyi (Erdos & Renyi , 1959), scale-free (Barabási & Albert, 1999), small world...Efficiency of Scale-Free Networks: Error and Attack Tolerance. Physica A, Volume 320, pp. 622-642. 6. Erdos, P. & Renyi , A., 1959. On Random Graphs, I

  18. Latin and Magic Squares

    ERIC Educational Resources Information Center

    Emanouilidis, Emanuel

    2005-01-01

    Latin squares have existed for hundreds of years but it wasn't until rather recently that Latin squares were used in other areas such as statistics, graph theory, coding theory and the generation of random numbers as well as in the design and analysis of experiments. This note describes Latin and diagonal Latin squares, a method of constructing…

  19. Latin and Cross Latin Squares

    ERIC Educational Resources Information Center

    Emanouilidis, Emanuel

    2008-01-01

    Latin squares were first introduced and studied by the famous mathematician Leonhard Euler in the 1700s. Through the years, Latin squares have been used in areas such as statistics, graph theory, coding theory, the generation of random numbers as well as in the design and analysis of experiments. Recently, with the international popularity of…

  20. [Environmental Education Units.

    ERIC Educational Resources Information Center

    Minneapolis Independent School District 275, Minn.

    Two of these three pamphlets describe methods of teaching young elementary school children the principles of sampling. Tiles of five colors are added to a tub and children sample these randomly; using the tiles as units for a graph, they draw a representation of the population. Pooling results leads to a more reliable sample. Practice is given in…

  1. Collective dynamics of 'small-world' networks.

    PubMed

    Watts, D J; Strogatz, S H

    1998-06-04

    Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

  2. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems

    NASA Astrophysics Data System (ADS)

    Takabe, Satoshi; Hukushima, Koji

    2016-05-01

    Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α -uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α =2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c =e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c =1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α ≥3 , minimum vertex covers on α -uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c =e /(α -1 ) where the replica symmetry is broken.

  3. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems.

    PubMed

    Takabe, Satoshi; Hukushima, Koji

    2016-05-01

    Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α-uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α=2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c=e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c=1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α≥3, minimum vertex covers on α-uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c=e/(α-1) where the replica symmetry is broken.

  4. An Examination of Ohio Principals' Attitudes toward Technology and First Amendment Law: Implications for Leadership

    ERIC Educational Resources Information Center

    Gooden, Mark A.

    2012-01-01

    Principals have acknowledged the challenges with remaining current on issues in the law. A unique challenge for principals is the intersection of students' First Amendment rights in the school context and the legal issues surrounding student-created webpages. Using a randomly selected sample of Ohio high school secondary principals, I investigated…

  5. Examination of the reliability of the crash modification factors using empirical Bayes method with resampling technique.

    PubMed

    Wang, Jung-Han; Abdel-Aty, Mohamed; Wang, Ling

    2017-07-01

    There have been plenty of studies intended to use different methods, for example, empirical Bayes before-after methods, to get accurate estimation of CMFs. All of them have different assumptions toward crash count if there was no treatment. Additionally, another major assumption is that multiple sites share the same true CMF. Under this assumption, the CMF at an individual intersection is randomly drawn from a normally distributed population of CMFs at all intersections. Since CMFs are non-zero values, the population of all CMFs might not follow normal distributions, and even if it does, the true mean of CMFs at some intersections may be different from that at others. Therefore, a bootstrap method based on before-after empirical Bayes theory was proposed to estimate CMFs, but it did not make distributional assumptions. This bootstrap procedure has the added benefit of producing a measure of CMF stability. Furthermore, based on the bootstrapped CMF, a new CMF precision rating method was proposed to evaluate the reliability of CMFs. This study chose 29 urban four-legged intersections as treated sites, and their controls were changed from stop-controlled to signal-controlled. Meanwhile, 124 urban four-legged stop-controlled intersections were selected as reference sites. At first, different safety performance functions (SPFs) were applied to five crash categories, and it was found that each crash category had different optimal SPF form. Then, the CMFs of these five crash categories were estimated using the bootstrap empirical Bayes method. The results of the bootstrapped method showed that signalization significantly decreased Angle+Left-Turn crashes, and its CMF had the highest precision. While, the CMF for Rear-End crashes was unreliable. For KABCO, KABC, and KAB crashes, their CMFs were proved to be reliable for the majority of intersections, but the estimated effect of signalization may be not accurate at some sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Markov random fields and graphs for uncertainty management and symbolic data fusion in an urban scene interpretation

    NASA Astrophysics Data System (ADS)

    Moissinac, Henri; Maitre, Henri; Bloch, Isabelle

    1995-11-01

    An image interpretation method is presented for the automatic processing of aerial pictures of a urban landscape. In order to improve the picture analysis, some a priori knowledge extracted from a geographic map is introduced. A coherent graph-based model of the city is built, starting with the road network. A global uncertainty management scheme has been designed in order to evaluate the final confidence we can have in the final results. This model and the uncertainty management tend to reflect the hierarchy of the available data and the interpretation levels. The symbolic relationships linking the different kinds of elements are taken into account while propagating and combining the confidence measures along the interpretation process.

  7. Efficient Graph Based Assembly of Short-Read Sequences on Hybrid Core Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sczyrba, Alex; Pratap, Abhishek; Canon, Shane

    2011-03-22

    Advanced architectures can deliver dramatically increased throughput for genomics and proteomics applications, reducing time-to-completion in some cases from days to minutes. One such architecture, hybrid-core computing, marries a traditional x86 environment with a reconfigurable coprocessor, based on field programmable gate array (FPGA) technology. In addition to higher throughput, increased performance can fundamentally improve research quality by allowing more accurate, previously impractical approaches. We will discuss the approach used by Convey?s de Bruijn graph constructor for short-read, de-novo assembly. Bioinformatics applications that have random access patterns to large memory spaces, such as graph-based algorithms, experience memory performance limitations on cache-based x86more » servers. Convey?s highly parallel memory subsystem allows application-specific logic to simultaneously access 8192 individual words in memory, significantly increasing effective memory bandwidth over cache-based memory systems. Many algorithms, such as Velvet and other de Bruijn graph based, short-read, de-novo assemblers, can greatly benefit from this type of memory architecture. Furthermore, small data type operations (four nucleotides can be represented in two bits) make more efficient use of logic gates than the data types dictated by conventional programming models.JGI is comparing the performance of Convey?s graph constructor and Velvet on both synthetic and real data. We will present preliminary results on memory usage and run time metrics for various data sets with different sizes, from small microbial and fungal genomes to very large cow rumen metagenome. For genomes with references we will also present assembly quality comparisons between the two assemblers.« less

  8. Generic patterns in the evolution of urban water networks: Evidence from a large Asian city

    NASA Astrophysics Data System (ADS)

    Krueger, Elisabeth; Klinkhamer, Christopher; Urich, Christian; Zhan, Xianyuan; Rao, P. Suresh C.

    2017-03-01

    We examine high-resolution urban infrastructure data using every pipe for the water distribution network (WDN) and sanitary sewer network (SSN) in a large Asian city (≈4 million residents) to explore the structure as well as the spatial and temporal evolution of these infrastructure networks. Network data were spatially disaggregated into multiple subnets to examine intracity topological differences for functional zones of the WDN and SSN, and time-stamped SSN data were examined to understand network evolution over several decades as the city expanded. Graphs were generated using a dual-mapping technique (Hierarchical Intersection Continuity Negotiation), which emphasizes the functional attributes of these networks. Network graphs for WDNs and SSNs are characterized by several network topological metrics, and a double Pareto (power-law) model approximates the node-degree distributions of both water infrastructure networks (WDN and SSN), across spatial and hierarchical scales relevant to urban settings, and throughout their temporal evolution over several decades. These results indicate that generic mechanisms govern the networks' evolution, similar to those of scale-free networks found in nature. Deviations from the general topological patterns are indicative of (1) incomplete establishment of network hierarchies and functional network evolution, (2) capacity for growth (expansion) or densification (e.g., in-fill), and (3) likely network vulnerabilities. We discuss the implications of our findings for the (re-)design of urban infrastructure networks to enhance their resilience to external and internal threats.

  9. Heterogeneous information-based artificial stock market

    NASA Astrophysics Data System (ADS)

    Pastore, S.; Ponta, L.; Cincotti, S.

    2010-05-01

    In this paper, an information-based artificial stock market is considered. The market is populated by heterogeneous agents that are seen as nodes of a sparsely connected graph. Agents trade a risky asset in exchange for cash. Besides the amount of cash and assets owned, each agent is characterized by a sentiment. Moreover, agents share their sentiments by means of interactions that are identified by the graph. Interactions are unidirectional and are supplied with heterogeneous weights. The agent's trading decision is based on sentiment and, consequently, the stock price process depends on the propagation of information among the interacting agents, on budget constraints and on market feedback. A central market maker (clearing house mechanism) determines the price process at the intersection of the demand and supply curves. Both closed- and open-market conditions are considered. The results point out the validity of the proposed model of information exchange among agents and are helpful for understanding the role of information in real markets. Under closed market conditions, the interaction among agents' sentiments yields a price process that reproduces the main stylized facts of real markets, e.g. the fat tails of the returns distributions and the clustering of volatility. Within open-market conditions, i.e. with an external cash inflow that results in asset price inflation, also the unitary root stylized fact is reproduced by the artificial stock market. Finally, the effects of model parameters on the properties of the artificial stock market are also addressed.

  10. Modeling Passive Propagation of Malwares on the WWW

    NASA Astrophysics Data System (ADS)

    Chunbo, Liu; Chunfu, Jia

    Web-based malwares host in websites fixedly and download onto user's computers automatically while users browse. This passive propagation pattern is different from that of traditional viruses and worms. A propagation model based on reverse web graph is proposed. In this model, propagation of malwares is analyzed by means of random jump matrix which combines orderness and randomness of user browsing behaviors. Explanatory experiments, which has single or multiple propagation sources respectively, prove the validity of the model. Using this model, people can evaluate the hazardness of specified websites and take corresponding countermeasures.

  11. Bus Stops and Pedestrian-Motor Vehicle Collisions in Lima, Peru: A Matched Case-Control Study

    PubMed Central

    Quistberg, D. Alex; Koepsell, Thomas D.; Johnston, Brian D.; Boyle, Linda Ng; Miranda, J. Jaime; Ebel, Beth E.

    2015-01-01

    Objective To evaluate the relationship between bus stop characteristics and pedestrian-motor vehicle collisions. Design Matched case-control study where the units of study were pedestrian crossing. Setting Random sample of 11 police commissaries in Lima, Peru. Data collection occurred from February, 2011 to September, 2011. Participants 97 intersection cases representing 1,134 collisions and 40 mid-block cases representing 469 collisions that occurred between October, 2010 and January, 2011 and their matched controls. Main Exposures Presence of a bus stop and specific bus stop characteristics. Main Outcome Occurrence of a pedestrian-motor vehicle collision. Results Intersections with bus stops were three times more likely to have a pedestrian-vehicle collision (OR 3.28, 95% CI 1.53-7.03), relative to intersections without bus stops. Both formal and informal bus stops were associated with a higher odds of a collision at intersections (OR 6.23, 95% CI 1.76-22.0 and OR 2.98, 1.37-6.49). At mid-block sites, bus stops on a bus-dedicated transit lane were also associated with collision risk (OR 2.36, 95% CI 1.02-5.42). All bus stops were located prior to the intersection, contrary to practices in most high income countries. Conclusions In urban Lima, the presence of a bus stop was associated with a three-fold increase in risk of a pedestrian collision. The highly competitive environment among bus companies may provide an economic incentive for risky practices such as dropping off passengers in the middle of traffic and jockeying for position with other buses. Bus stop placement should be considered to improve pedestrian safety. PMID:24357516

  12. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    PubMed

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quantum Graphical Models and Belief Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leifer, M.S.; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo Ont., N2L 2Y5; Poulin, D.

    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markovmore » Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described.« less

  14. Comparison of Decisions Quality of Heuristic Methods with Limited Depth-First Search Techniques in the Graph Shortest Path Problem

    NASA Astrophysics Data System (ADS)

    Vatutin, Eduard

    2017-12-01

    The article deals with the problem of analysis of effectiveness of the heuristic methods with limited depth-first search techniques of decision obtaining in the test problem of getting the shortest path in graph. The article briefly describes the group of methods based on the limit of branches number of the combinatorial search tree and limit of analyzed subtree depth used to solve the problem. The methodology of comparing experimental data for the estimation of the quality of solutions based on the performing of computational experiments with samples of graphs with pseudo-random structure and selected vertices and arcs number using the BOINC platform is considered. It also shows description of obtained experimental results which allow to identify the areas of the preferable usage of selected subset of heuristic methods depending on the size of the problem and power of constraints. It is shown that the considered pair of methods is ineffective in the selected problem and significantly inferior to the quality of solutions that are provided by ant colony optimization method and its modification with combinatorial returns.

  15. Statistical mechanics of the vertex-cover problem

    NASA Astrophysics Data System (ADS)

    Hartmann, Alexander K.; Weigt, Martin

    2003-10-01

    We review recent progress in the study of the vertex-cover problem (VC). The VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits a coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping the VC to a hard-core lattice gas, and then applying techniques such as the replica trick or the cavity approach. Using these methods, the phase diagram of the VC could be obtained exactly for connectivities c < e, where the VC is replica symmetric. Recently, this result could be confirmed using traditional mathematical techniques. For c > e, the solution of the VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for the VC. Finally, we describe recent results for the VC when studied on other ensembles of finite- and infinite-dimensional graphs.

  16. Superpixel-based graph cuts for accurate stereo matching

    NASA Astrophysics Data System (ADS)

    Feng, Liting; Qin, Kaihuai

    2017-06-01

    Estimating the surface normal vector and disparity of a pixel simultaneously, also known as three-dimensional label method, has been widely used in recent continuous stereo matching problem to achieve sub-pixel accuracy. However, due to the infinite label space, it’s extremely hard to assign each pixel an appropriate label. In this paper, we present an accurate and efficient algorithm, integrating patchmatch with graph cuts, to approach this critical computational problem. Besides, to get robust and precise matching cost, we use a convolutional neural network to learn a similarity measure on small image patches. Compared with other MRF related methods, our method has several advantages: its sub-modular property ensures a sub-problem optimality which is easy to perform in parallel; graph cuts can simultaneously update multiple pixels, avoiding local minima caused by sequential optimizers like belief propagation; it uses segmentation results for better local expansion move; local propagation and randomization can easily generate the initial solution without using external methods. Middlebury experiments show that our method can get higher accuracy than other MRF-based algorithms.

  17. Modelling Chemical Reasoning to Predict and Invent Reactions.

    PubMed

    Segler, Marwin H S; Waller, Mark P

    2017-05-02

    The ability to reason beyond established knowledge allows organic chemists to solve synthetic problems and invent novel transformations. Herein, we propose a model that mimics chemical reasoning, and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180 000 randomly selected binary reactions. The data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-)discovering novel transformations (even including transition metal-catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph and because each single reaction prediction is typically achieved in a sub-second time frame, the model can be used as a high-throughput generator of reaction hypotheses for reaction discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Improving graph-based OCT segmentation for severe pathology in retinitis pigmentosa patients

    NASA Astrophysics Data System (ADS)

    Lang, Andrew; Carass, Aaron; Bittner, Ava K.; Ying, Howard S.; Prince, Jerry L.

    2017-03-01

    Three dimensional segmentation of macular optical coherence tomography (OCT) data of subjects with retinitis pigmentosa (RP) is a challenging problem due to the disappearance of the photoreceptor layers, which causes algorithms developed for segmentation of healthy data to perform poorly on RP patients. In this work, we present enhancements to a previously developed graph-based OCT segmentation pipeline to enable processing of RP data. The algorithm segments eight retinal layers in RP data by relaxing constraints on the thickness and smoothness of each layer learned from healthy data. Following from prior work, a random forest classifier is first trained on the RP data to estimate boundary probabilities, which are used by a graph search algorithm to find the optimal set of nine surfaces that fit the data. Due to the intensity disparity between normal layers of healthy controls and layers in various stages of degeneration in RP patients, an additional intensity normalization step is introduced. Leave-one-out validation on data acquired from nine subjects showed an average overall boundary error of 4.22 μm as compared to 6.02 μm using the original algorithm.

  19. Re-inventing Willis

    NASA Astrophysics Data System (ADS)

    Simkin, M. V.; Roychowdhury, V. P.

    2011-05-01

    Scientists often re-invent things that were long known. Here we review these activities as related to the mechanism of producing power law distributions, originally proposed in 1922 by Yule to explain experimental data on the sizes of biological genera, collected by Willis. We also review the history of re-invention of closely related branching processes, random graphs and coagulation models.

  20. A Quantitative Methodology for Vetting Dark Network Intelligence Sources for Social Network Analysis

    DTIC Science & Technology

    2012-06-01

    first algorithm by Erdös and Rényi (Erdös & Renyi , 1959). This earliest algorithm suffers from the fact that its degree distribution is not scale...Fundamental Media Understanding. Norderstedt: atpress. Erdös, P., & Renyi , A. (1959). On random graphs. Publicationes Mathematicae , 6, 290- 297. Erdös, P

  1. Using Performance Feedback and Goal Setting to Improve Elementary Students' Writing Fluency: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Koenig, Elizabeth A.; Eckert, Tanya L.; Hier, Bridget O.

    2016-01-01

    Although performance feedback interventions successfully lead to improvements in students' performance, research suggests that the combination of feedback and goal setting leads to greater performance than either component alone and that graphing performance in relation to a goal can lead to improvements in academic performance. The goal of the…

  2. Optimum target sizes for a sequential sawing process

    Treesearch

    H. Dean Claxton

    1972-01-01

    A method for solving a class of problems in random sequential processes is presented. Sawing cedar pencil blocks is used to illustrate the method. Equations are developed for the function representing loss from improper sizing of blocks. A weighted over-all distribution for sawing and drying operations is developed and graphed. Loss minimizing changes in the control...

  3. On the degree distribution of horizontal visibility graphs associated with Markov processes and dynamical systems: diagrammatic and variational approaches

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas

    2014-09-01

    Dynamical processes can be transformed into graphs through a family of mappings called visibility algorithms, enabling the possibility of (i) making empirical time series analysis and signal processing and (ii) characterizing classes of dynamical systems and stochastic processes using the tools of graph theory. Recent works show that the degree distribution of these graphs encapsulates much information on the signals' variability, and therefore constitutes a fundamental feature for statistical learning purposes. However, exact solutions for the degree distributions are only known in a few cases, such as for uncorrelated random processes. Here we analytically explore these distributions in a list of situations. We present a diagrammatic formalism which computes for all degrees their corresponding probability as a series expansion in a coupling constant which is the number of hidden variables. We offer a constructive solution for general Markovian stochastic processes and deterministic maps. As case tests we focus on Ornstein-Uhlenbeck processes, fully chaotic and quasiperiodic maps. Whereas only for certain degree probabilities can all diagrams be summed exactly, in the general case we show that the perturbation theory converges. In a second part, we make use of a variational technique to predict the complete degree distribution for special classes of Markovian dynamics with fast-decaying correlations. In every case we compare the theory with numerical experiments.

  4. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.

    PubMed

    Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R

    2012-01-01

    In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.

  5. Network discovery with DCM

    PubMed Central

    Friston, Karl J.; Li, Baojuan; Daunizeau, Jean; Stephan, Klaas E.

    2011-01-01

    This paper is about inferring or discovering the functional architecture of distributed systems using Dynamic Causal Modelling (DCM). We describe a scheme that recovers the (dynamic) Bayesian dependency graph (connections in a network) using observed network activity. This network discovery uses Bayesian model selection to identify the sparsity structure (absence of edges or connections) in a graph that best explains observed time-series. The implicit adjacency matrix specifies the form of the network (e.g., cyclic or acyclic) and its graph-theoretical attributes (e.g., degree distribution). The scheme is illustrated using functional magnetic resonance imaging (fMRI) time series to discover functional brain networks. Crucially, it can be applied to experimentally evoked responses (activation studies) or endogenous activity in task-free (resting state) fMRI studies. Unlike conventional approaches to network discovery, DCM permits the analysis of directed and cyclic graphs. Furthermore, it eschews (implausible) Markovian assumptions about the serial independence of random fluctuations. The scheme furnishes a network description of distributed activity in the brain that is optimal in the sense of having the greatest conditional probability, relative to other networks. The networks are characterised in terms of their connectivity or adjacency matrices and conditional distributions over the directed (and reciprocal) effective connectivity between connected nodes or regions. We envisage that this approach will provide a useful complement to current analyses of functional connectivity for both activation and resting-state studies. PMID:21182971

  6. On Learning Cluster Coefficient of Private Networks

    PubMed Central

    Wang, Yue; Wu, Xintao; Zhu, Jun; Xiang, Yang

    2013-01-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as clustering coefficient or modularity often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we treat a graph statistics as a function f and develop a divide and conquer approach to enforce differential privacy. The basic procedure of this approach is to first decompose the target computation f into several less complex unit computations f1, …, fm connected by basic mathematical operations (e.g., addition, subtraction, multiplication, division), then perturb the output of each fi with Laplace noise derived from its own sensitivity value and the distributed privacy threshold εi, and finally combine those perturbed fi as the perturbed output of computation f. We examine how various operations affect the accuracy of complex computations. When unit computations have large global sensitivity values, we enforce the differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We illustrate our approach by using clustering coefficient, which is a popular statistics used in social network analysis. Empirical evaluations on five real social networks and various synthetic graphs generated from three random graph models show the developed divide and conquer approach outperforms the direct approach. PMID:24429843

  7. Evaluation of a novel brachial cuff-based oscillometric method for estimating central systolic pressure in hemodialysis patients.

    PubMed

    Sarafidis, Pantelis A; Georgianos, Panagiotis I; Karpetas, Antonios; Bikos, Athanasios; Korelidou, Linda; Tersi, Maria; Divanis, Dimitrios; Tzanis, Georgios; Mavromatidis, Konstantinos; Liakopoulos, Vassilios; Zebekakis, Pantelis E; Lasaridis, Anastasios; Protogerou, Athanase D

    2014-01-01

    Elevated wave reflections and arterial stiffness, as well as ambulatory blood pressure (BP) are independent predictors of cardiovascular risk in end-stage-renal-disease. This study is the first to evaluate in hemodialysis patients the validity of a new ambulatory oscillometric device (Mobil-O-Graph, IEM, Germany), which estimates aortic BP, augmentation index (AIx) and pulse wave velocity (PWV). Aortic SBP (aSBP), heart rate-adjusted AIx (AIx(75)) and PWV measured with Mobil-O-Graph were compared with the values from the most widely used tonometric device (Sphygmocor, ArtCor, Australia) in 73 hemodialysis patients. Measurements were made in a randomized order after 10 min of rest in the supine position at least 30 min before a dialysis session. Brachial BP (mercury sphygmomanometer) was used for the calibration of Sphygmocor's waveform. Sphygmocor-derived aSBP and AIx(75) did not differ from the relevant Mobil-O-Graph measurements (aSBP: 136.3 ± 19.6 vs. 133.5 ± 19.3 mm Hg, p = 0.068; AIx(75): 28.4 ± 9.3 vs. 30.0 ± 11.8%, p = 0.229). The small difference in aSBP is perhaps explained by a relevant difference in brachial SBP used for calibration (146.9 ± 20.4 vs. 145.2 ± 19.9 mm Hg, p = 0.341). Sphygmocor PWV was higher than Mobil-O-Graph PWV (10.3 ± 3.4 vs. 9.5 ± 2.1 m/s, p < 0.01). All 3 parameters estimated by Mobil-O-Graph showed highly significant (p < 0.001) correlations with the relevant measurements of Sphygmocor (aSBP, r = 0.770; AIx(75), r = 0.400; PWV, r = 0.739). The Bland-Altman Plots for aSBP and AIx(75) showed acceptable agreement between the two devices and no evidence of systemic bias for PWV. As in other populations, acceptable agreement between Mobil-O-Graph and Sphygmocor was evident for aSBP and AIx(75) in hemodialysis patients; PWV was slightly underestimated by Mobil-O-Graph. © 2014 S. Karger AG, Basel.

  8. The Amordad database engine for metagenomics.

    PubMed

    Behnam, Ehsan; Smith, Andrew D

    2014-10-15

    Several technical challenges in metagenomic data analysis, including assembling metagenomic sequence data or identifying operational taxonomic units, are both significant and well known. These forms of analysis are increasingly cited as conceptually flawed, given the extreme variation within traditionally defined species and rampant horizontal gene transfer. Furthermore, computational requirements of such analysis have hindered content-based organization of metagenomic data at large scale. In this article, we introduce the Amordad database engine for alignment-free, content-based indexing of metagenomic datasets. Amordad places the metagenome comparison problem in a geometric context, and uses an indexing strategy that combines random hashing with a regular nearest neighbor graph. This framework allows refinement of the database over time by continual application of random hash functions, with the effect of each hash function encoded in the nearest neighbor graph. This eliminates the need to explicitly maintain the hash functions in order for query efficiency to benefit from the accumulated randomness. Results on real and simulated data show that Amordad can support logarithmic query time for identifying similar metagenomes even as the database size reaches into the millions. Source code, licensed under the GNU general public license (version 3) is freely available for download from http://smithlabresearch.org/amordad andrewds@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. A Dynamic Bayesian Network Model for the Production and Inventory Control

    NASA Astrophysics Data System (ADS)

    Shin, Ji-Sun; Takazaki, Noriyuki; Lee, Tae-Hong; Kim, Jin-Il; Lee, Hee-Hyol

    In general, the production quantities and delivered goods are changed randomly and then the total stock is also changed randomly. This paper deals with the production and inventory control using the Dynamic Bayesian Network. Bayesian Network is a probabilistic model which represents the qualitative dependence between two or more random variables by the graph structure, and indicates the quantitative relations between individual variables by the conditional probability. The probabilistic distribution of the total stock is calculated through the propagation of the probability on the network. Moreover, an adjusting rule of the production quantities to maintain the probability of a lower limit and a ceiling of the total stock to certain values is shown.

  10. Mass media influence spreading in social networks with community structure

    NASA Astrophysics Data System (ADS)

    Candia, Julián; Mazzitello, Karina I.

    2008-07-01

    We study an extension of Axelrod's model for social influence, in which cultural drift is represented as random perturbations, while mass media are introduced by means of an external field. In this scenario, we investigate how the modular structure of social networks affects the propagation of mass media messages across a society. The community structure of social networks is represented by coupled random networks, in which two random graphs are connected by intercommunity links. Considering inhomogeneous mass media fields, we study the conditions for successful message spreading and find a novel phase diagram in the multidimensional parameter space. These findings show that social modularity effects are of paramount importance for designing successful, cost-effective advertising campaigns.

  11. Topology polymorphism graph for lung tumor segmentation in PET-CT images.

    PubMed

    Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Eberl, Stefan; Yin, Yong; Feng, Dagan; Fulham, Michael

    2015-06-21

    Accurate lung tumor segmentation is problematic when the tumor boundary or edge, which reflects the advancing edge of the tumor, is difficult to discern on chest CT or PET. We propose a 'topo-poly' graph model to improve identification of the tumor extent. Our model incorporates an intensity graph and a topology graph. The intensity graph provides the joint PET-CT foreground similarity to differentiate the tumor from surrounding tissues. The topology graph is defined on the basis of contour tree to reflect the inclusion and exclusion relationship of regions. By taking into account different topology relations, the edges in our model exhibit topological polymorphism. These polymorphic edges in turn affect the energy cost when crossing different topology regions under a random walk framework, and hence contribute to appropriate tumor delineation. We validated our method on 40 patients with non-small cell lung cancer where the tumors were manually delineated by a clinical expert. The studies were separated into an 'isolated' group (n = 20) where the lung tumor was located in the lung parenchyma and away from associated structures / tissues in the thorax and a 'complex' group (n = 20) where the tumor abutted / involved a variety of adjacent structures and had heterogeneous FDG uptake. The methods were validated using Dice's similarity coefficient (DSC) to measure the spatial volume overlap and Hausdorff distance (HD) to compare shape similarity calculated as the maximum surface distance between the segmentation results and the manual delineations. Our method achieved an average DSC of 0.881 ± 0.046 and HD of 5.311 ± 3.022 mm for the isolated cases and DSC of 0.870 ± 0.038 and HD of 9.370 ± 3.169 mm for the complex cases. Student's t-test showed that our model outperformed the other methods (p-values <0.05).

  12. A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models

    PubMed Central

    Rolls, David A.; Wang, Peng; McBryde, Emma; Pattison, Philippa; Robins, Garry

    2015-01-01

    We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a “hidden population”. In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model) and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure. PMID:26555701

  13. Resolution of ranking hierarchies in directed networks.

    PubMed

    Letizia, Elisa; Barucca, Paolo; Lillo, Fabrizio

    2018-01-01

    Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit.

  14. Resolution of ranking hierarchies in directed networks

    PubMed Central

    Barucca, Paolo; Lillo, Fabrizio

    2018-01-01

    Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit. PMID:29394278

  15. Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Aziz, H M Abdul; Young, Stan

    Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections.more » In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.« less

  16. Intersection crash prediction modeling with macro-level data from various geographic units.

    PubMed

    Lee, Jaeyoung; Abdel-Aty, Mohamed; Cai, Qing

    2017-05-01

    There have been great efforts to develop traffic crash prediction models for various types of facilities. The crash models have played a key role to identify crash hotspots and evaluate safety countermeasures. In recent, many macro-level crash prediction models have been developed to incorporate highway safety considerations in the long-term transportation planning process. Although the numerous macro-level studies have found that a variety of demographic and socioeconomic zonal characteristics have substantial effects on traffic safety, few studies have attempted to coalesce micro-level with macro-level data from existing geographic units for estimating crash models. In this study, the authors have developed a series of intersection crash models for total, severe, pedestrian, and bicycle crashes with macro-level data for seven spatial units. The study revealed that the total, severe, and bicycle crash models with ZIP-code tabulation area data performs the best, and the pedestrian crash models with census tract-based data outperforms the competing models. Furthermore, it was uncovered that intersection crash models can be drastically improved by only including random-effects for macro-level entities. Besides, the intersection crash models are even further enhanced by including other macro-level variables. Lastly, the pedestrian and bicycle crash modeling results imply that several macro-level variables (e.g., population density, proportions of specific age group, commuters who walk, or commuters using bicycle, etc.) can be a good surrogate exposure for those crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications.

    PubMed

    Karyotis, Vasileios; Tsitseklis, Konstantinos; Sotiropoulos, Konstantinos; Papavassiliou, Symeon

    2018-04-15

    In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan-Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.

  18. Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications

    PubMed Central

    Sotiropoulos, Konstantinos

    2018-01-01

    In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan–Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing. PMID:29662043

  19. Best response game of traffic on road network of non-signalized intersections

    NASA Astrophysics Data System (ADS)

    Yao, Wang; Jia, Ning; Zhong, Shiquan; Li, Liying

    2018-01-01

    This paper studies the traffic flow in a grid road network with non-signalized intersections. The nature of the drivers in the network is simulated such that they play an iterative snowdrift game with other drivers. A cellular automata model is applied to study the characteristics of the traffic flow and the evolution of the behaviour of the drivers during the game. The drivers use best-response as their strategy to update rules. Three major findings are revealed. First, the cooperation rate in simulation experiences staircase-shaped drop as cost to benefit ratio r increases, and cooperation rate can be derived analytically as a function of cost to benefit ratio r. Second, we find that higher cooperation rate corresponds to higher average speed, lower density and higher flow. This reveals that defectors deteriorate the efficiency of traffic on non-signalized intersections. Third, the system experiences more randomness when the density is low because the drivers will not have much opportunity to update strategy when the density is low. These findings help to show how the strategy of drivers in a traffic network evolves and how their interactions influence the overall performance of the traffic system.

  20. A ray tracing model for leaf bidirectional scattering studies

    NASA Technical Reports Server (NTRS)

    Brakke, T. W.; Smith, J. A.

    1987-01-01

    A leaf is modeled as a deterministic two-dimensional structure consisting of a network of circular arcs designed to represent the internal morphology of major species. The path of an individual ray through the leaf is computed using geometric optics. At each intersection of the ray with an arc, the specular reflected and transmitted rays are calculated according to the Snell and Fresnel equations. Diffuse scattering is treated according to Lambert's law. Absorption is also permitted but requires a detailed knowledge of the spectral attenuation coefficients. An ensemble of initial rays are chosen for each incident direction with the initial intersection points on the leaf surface selected randomly. The final equilibrium state after all interactions then yields the leaf bidirectional reflectance and transmittance distributions. The model also yields the internal two dimensional light gradient profile of the leaf.

  1. Altering Public University Admission Standards to Preserve White Group Position in the United States: Results from a Laboratory Experiment

    ERIC Educational Resources Information Center

    Samson, Frank L.

    2013-01-01

    This study identifies a theoretical mechanism that could potentially affect public university admissions standards in a context of demographic change. I explore how demographic changes at a prestigious public university in the United States affect individuals' evaluations of college applications. Responding to a line graph that randomly displays a…

  2. Random graph models for dynamic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Moore, Cristopher; Newman, Mark E. J.

    2017-10-01

    Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.

  3. Random Evolution of Idiotypic Networks: Dynamics and Architecture

    NASA Astrophysics Data System (ADS)

    Brede, Markus; Behn, Ulrich

    The paper deals with modelling a subsystem of the immune system, the so-called idiotypic network (INW). INWs, conceived by N.K. Jerne in 1974, are functional networks of interacting antibodies and B cells. In principle, Jernes' framework provides solutions to many issues in immunology, such as immunological memory, mechanisms for antigen recognition and self/non-self discrimination. Explaining the interconnection between the elementary components, local dynamics, network formation and architecture, and possible modes of global system function appears to be an ideal playground of statistical mechanics. We present a simple cellular automaton model, based on a graph representation of the system. From a simplified description of idiotypic interactions, rules for the random evolution of networks of occupied and empty sites on these graphs are derived. In certain biologically relevant parameter ranges the resultant dynamics leads to stationary states. A stationary state is found to correspond to a specific pattern of network organization. It turns out that even these very simple rules give rise to a multitude of different kinds of patterns. We characterize these networks by classifying `static' and `dynamic' network-patterns. A type of `dynamic' network is found to display many features of real INWs.

  4. RANDOMNESS of Numbers DEFINITION(QUERY:WHAT? V HOW?) ONLY Via MAXWELL-BOLTZMANN CLASSICAL-Statistics(MBCS) Hot-Plasma VS. Digits-Clumping Log-Law NON-Randomness Inversion ONLY BOSE-EINSTEIN QUANTUM-Statistics(BEQS) .

    NASA Astrophysics Data System (ADS)

    Siegel, Z.; Siegel, Edward Carl-Ludwig

    2011-03-01

    RANDOMNESS of Numbers cognitive-semantics DEFINITION VIA Cognition QUERY: WHAT???, NOT HOW?) VS. computer-``science" mindLESS number-crunching (Harrel-Sipser-...) algorithmics Goldreich "PSEUDO-randomness"[Not.AMS(02)] mea-culpa is ONLY via MAXWELL-BOLTZMANN CLASSICAL-STATISTICS(NOT FDQS!!!) "hot-plasma" REPULSION VERSUS Newcomb(1881)-Weyl(1914;1916)-Benford(1938) "NeWBe" logarithmic-law digit-CLUMPING/ CLUSTERING NON-Randomness simple Siegel[AMS Joint.Mtg.(02)-Abs. # 973-60-124] algebraic-inversion to THE QUANTUM and ONLY BEQS preferentially SEQUENTIALLY lower-DIGITS CLUMPING/CLUSTERING with d = 0 BEC, is ONLY VIA Siegel-Baez FUZZYICS=CATEGORYICS (SON OF TRIZ)/"Category-Semantics"(C-S), latter intersection/union of Lawvere(1964)-Siegel(1964)] category-theory (matrix: MORPHISMS V FUNCTORS) "+" cognitive-semantics'' (matrix: ANTONYMS V SYNONYMS) yields Siegel-Baez FUZZYICS=CATEGORYICS/C-S tabular list-format matrix truth-table analytics: MBCS RANDOMNESS TRUTH/EMET!!!

  5. Random walk in degree space and the time-dependent Watts-Strogatz model

    NASA Astrophysics Data System (ADS)

    Casa Grande, H. L.; Cotacallapa, M.; Hase, M. O.

    2017-01-01

    In this work, we propose a scheme that provides an analytical estimate for the time-dependent degree distribution of some networks. This scheme maps the problem into a random walk in degree space, and then we choose the paths that are responsible for the dominant contributions. The method is illustrated on the dynamical versions of the Erdős-Rényi and Watts-Strogatz graphs, which were introduced as static models in the original formulation. We have succeeded in obtaining an analytical form for the dynamics Watts-Strogatz model, which is asymptotically exact for some regimes.

  6. Random walk in degree space and the time-dependent Watts-Strogatz model.

    PubMed

    Casa Grande, H L; Cotacallapa, M; Hase, M O

    2017-01-01

    In this work, we propose a scheme that provides an analytical estimate for the time-dependent degree distribution of some networks. This scheme maps the problem into a random walk in degree space, and then we choose the paths that are responsible for the dominant contributions. The method is illustrated on the dynamical versions of the Erdős-Rényi and Watts-Strogatz graphs, which were introduced as static models in the original formulation. We have succeeded in obtaining an analytical form for the dynamics Watts-Strogatz model, which is asymptotically exact for some regimes.

  7. Modeling of contact tracing in social networks

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev S.; Huerta, Ramón

    2003-07-01

    Spreading of certain infections in complex networks is effectively suppressed by using intelligent strategies for epidemic control. One such standard epidemiological strategy consists in tracing contacts of infected individuals. In this paper, we use a recently introduced generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse random networks which incorporates an additional (traced) state. We describe a deterministic mean-field description which yields quantitative agreement with stochastic simulations on random graphs. We also discuss the role of contact tracing in epidemics control in small-world and scale-free networks. Effectiveness of contact tracing grows as the rewiring probability is reduced.

  8. The REH theory of protein and nucleic acid divergence - A retrospective update. [Random Evolutionary Hits

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1978-01-01

    The random evolutionary hits (REH) theory of evolutionary divergence, originally proposed in 1972, is restated with attention to certain aspects of the theory that have caused confusion. The theory assumes that natural selection and stochastic processes interact and that natural selection restricts those codon sites which may fix mutations. The predicted total number of fixed nucleotide replacements agrees with data for cytochrome c, a-hemoglobin, beta-hemoglobin, and myoglobin. The restatement analyzes the magnitude of possible sources of errors and simplifies calculational methodology by supplying polynomial expressions to replace tables and graphs.

  9. Central Limit Theorems for Linear Statistics of Heavy Tailed Random Matrices

    NASA Astrophysics Data System (ADS)

    Benaych-Georges, Florent; Guionnet, Alice; Male, Camille

    2014-07-01

    We show central limit theorems (CLT) for the linear statistics of symmetric matrices with independent heavy tailed entries, including entries in the domain of attraction of α-stable laws and entries with moments exploding with the dimension, as in the adjacency matrices of Erdös-Rényi graphs. For the second model, we also prove a central limit theorem of the moments of its empirical eigenvalues distribution. The limit laws are Gaussian, but unlike the case of standard Wigner matrices, the normalization is the one of the classical CLT for independent random variables.

  10. Conducting Causal Effects Studies in Science Education: Considering Methodological Trade-Offs in the Context of Policies Affecting Research in Schools

    ERIC Educational Resources Information Center

    Taylor, Joseph; Kowalski, Susan; Wilson, Christopher; Getty, Stephen; Carlson, Janet

    2013-01-01

    This paper focuses on the trade-offs that lie at the intersection of methodological requirements for causal effect studies and policies that affect how and to what extent schools engage in such studies. More specifically, current federal funding priorities encourage large-scale randomized studies of interventions in authentic settings. At the same…

  11. Network Analysis in Disorders of Consciousness: Four Problems and One Proposed Solution (Exponential Random Graph Models)

    PubMed Central

    Dell'Italia, John; Johnson, Micah A.; Vespa, Paul M.; Monti, Martin M.

    2018-01-01

    In recent years, the study of the neural basis of consciousness, particularly in the context of patients recovering from severe brain injury, has greatly benefited from the application of sophisticated network analysis techniques to functional brain data. Yet, current graph theoretic approaches, as employed in the neuroimaging literature, suffer from four important shortcomings. First, they require arbitrary fixing of the number of connections (i.e., density) across networks which are likely to have different “natural” (i.e., stable) density (e.g., patients vs. controls, vegetative state vs. minimally conscious state patients). Second, when describing networks, they do not control for the fact that many characteristics are interrelated, particularly some of the most popular metrics employed (e.g., nodal degree, clustering coefficient)—which can lead to spurious results. Third, in the clinical domain of disorders of consciousness, there currently are no methods for incorporating structural connectivity in the characterization of functional networks which clouds the interpretation of functional differences across groups with different underlying pathology as well as in longitudinal approaches where structural reorganization processes might be operating. Finally, current methods do not allow assessing the dynamics of network change over time. We present a different framework for network analysis, based on Exponential Random Graph Models, which overcomes the above limitations and is thus particularly well suited for clinical populations with disorders of consciousness. We demonstrate this approach in the context of the longitudinal study of recovery from coma. First, our data show that throughout recovery from coma, brain graphs vary in their natural level of connectivity (from 10.4 to 14.5%), which conflicts with the standard approach of imposing arbitrary and equal density thresholds across networks (e.g., time-points, subjects, groups). Second, we show that failure to consider the interrelation between network measures does lead to spurious characterization of both inter- and intra-regional brain connectivity. Finally, we show that Separable Temporal ERGM can be employed to describe network dynamics over time revealing the specific pattern of formation and dissolution of connectivity that accompany recovery from coma. PMID:29946293

  12. A Bayesian Approach to Real-Time Earthquake Phase Association

    NASA Astrophysics Data System (ADS)

    Benz, H.; Johnson, C. E.; Earle, P. S.; Patton, J. M.

    2014-12-01

    Real-time location of seismic events requires a robust and extremely efficient means of associating and identifying seismic phases with hypothetical sources. An association algorithm converts a series of phase arrival times into a catalog of earthquake hypocenters. The classical approach based on time-space stacking of the locus of possible hypocenters for each phase arrival using the principal of acoustic reciprocity has been in use now for many years. One of the most significant problems that has emerged over time with this approach is related to the extreme variations in seismic station density throughout the global seismic network. To address this problem we have developed a novel, Bayesian association algorithm, which looks at the association problem as a dynamically evolving complex system of "many to many relationships". While the end result must be an array of one to many relations (one earthquake, many phases), during the association process the situation is quite different. Both the evolving possible hypocenters and the relationships between phases and all nascent hypocenters is many to many (many earthquakes, many phases). The computational framework we are using to address this is a responsive, NoSQL graph database where the earthquake-phase associations are represented as intersecting Bayesian Learning Networks. The approach directly addresses the network inhomogeneity issue while at the same time allowing the inclusion of other kinds of data (e.g., seismic beams, station noise characteristics, priors on estimated location of the seismic source) by representing the locus of intersecting hypothetical loci for a given datum as joint probability density functions.

  13. Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction.

    PubMed

    Arikan, Murat; Preiner, Reinhold; Wimmer, Michael

    2016-02-01

    With the enormous advances of the acquisition technology over the last years, fast processing and high-quality visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials. However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by an order of magnitude.

  14. An overview of quality control practices in Ontario with particular reference to cholesterol analysis.

    PubMed

    Krishnan, S; Webb, S; Henderson, A R; Cheung, C M; Nazir, D J; Richardson, H

    1999-03-01

    The Laboratory Proficiency Testing Program (LPTP) assesses the analytical performance of all licensed laboratories in Ontario. The LPTP Enzymes, Cardiac Markers, and Lipids Committee conducted a "Patterns of Practice" survey to assess the in-house quality control (QC) practices of laboratories in Ontario using cholesterol as the QC paradigm. The survey was questionnaire-based seeking information on statistical calculations, software rules, review process and data retention, and so on. Copies of the in-house cholesterol QC graphs were requested. A total of 120 of 210 laboratories were randomly chosen to receive the questionnaires during 1995 and 1996; 115 laboratories responded, although some did not answer all questions. The majority calculate means and standard deviations (SD) every month, using anywhere from 4 to >100 data points. 65% use a fixed mean and SD, while 17% use means calculated from the previous month. A few use a floating or cumulative mean. Some laboratories that do not use fixed means use a fixed SD. About 90% use some form of statistical quality control rules. The most common rules used to detect random error are 1(3s)/R4s while 2(2s)/4(1s)/10x are used for systematic errors. About 20% did not assay any QC at levels >5.5 mmol/L. Quality control data are reviewed daily (technologists), weekly and monthly (supervisors/directors). Most laboratories retain their QC records for up to 3 years on paper and magnetic media. On some QC graphs the mean and SD, QC product lot number, or reference to action logs are not apparent. Quality control practices in Ontario are, therefore, disappointing. Improvement is required in the use of clinically appropriate concentrations of QC material and documentation on QC graphs.

  15. Local Neighbourhoods for First-Passage Percolation on the Configuration Model

    NASA Astrophysics Data System (ADS)

    Dereich, Steffen; Ortgiese, Marcel

    2018-04-01

    We consider first-passage percolation on the configuration model. Once the network has been generated each edge is assigned an i.i.d. weight modeling the passage time of a message along this edge. Then independently two vertices are chosen uniformly at random, a sender and a recipient, and all edges along the geodesic connecting the two vertices are coloured in red (in the case that both vertices are in the same component). In this article we prove local limit theorems for the coloured graph around the recipient in the spirit of Benjamini and Schramm. We consider the explosive regime, in which case the random distances are of finite order, and the Malthusian regime, in which case the random distances are of logarithmic order.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Elsasser, Robert; Friedrich, Tobias

    A Randon Geometric Graph (RGG) is constructed by distributing n nodes uniformly at random in the unit square and connecting two nodes if their Euclidean distance is at most r, for some prescribed r. They analyze the following randomized broadcast algorithm on RGGs. At the beginning, there is only one informed node. Then in each round, each informed node chooses a neighbor uniformly at random and informs it. They prove that this algorithm informs every node in the largest component of a RGG in {Omicron}({radical}n/r) rounds with high probability. This holds for any value of r larger than the criticalmore » value for the emergence of a giant component. In particular, the result implies that the diameter of the giant component is {Theta}({radical}n/r).« less

  17. Random Walks on Cartesian Products of Certain Nonamenable Groups and Integer Lattices

    NASA Astrophysics Data System (ADS)

    Vishnepolsky, Rachel

    A random walk on a discrete group satisfies a local limit theorem with power law exponent \\alpha if the return probabilities follow the asymptotic law. P{ return to starting point after n steps } ˜ Crhonn-alpha.. A group has a universal local limit theorem if all random walks on the group with finitely supported step distributions obey a local limit theorem with the same power law exponent. Given two groups that obey universal local limit theorems, it is not known whether their cartesian product also has a universal local limit theorem. We settle the question affirmatively in one case, by considering a random walk on the cartesian product of a nonamenable group whose Cayley graph is a tree, and the integer lattice. As corollaries, we derive large deviations estimates and a central limit theorem.

  18. Perceptual approaches to finding features in data

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.

    2013-03-01

    Electronic imaging applications hinge on the ability to discover features in data. For example, doctors examine diagnostic images for tumors, broken bones and changes in metabolic activity. Financial analysts explore visualizations of market data to find correlations, outliers and interaction effects. Seismologists look for signatures in geological data to tell them where to drill or where an earthquake may begin. These data are very diverse, including images, numbers, graphs, 3-D graphics, and text, and are growing exponentially, largely through the rise in automatic data collection technologies such as sensors and digital imaging. This paper explores important trends in the art and science of finding features in data, such as the tension between bottom-up and top-down processing, the semantics of features, and the integration of human- and algorithm-based approaches. This story is told from the perspective of the IS and T/SPIE Conference on Human Vision and Electronic Imaging (HVEI), which has fostered research at the intersection between human perception and the evolution of new technologies.

  19. A Robust False Matching Points Detection Method for Remote Sensing Image Registration

    NASA Astrophysics Data System (ADS)

    Shan, X. J.; Tang, P.

    2015-04-01

    Given the influences of illumination, imaging angle, and geometric distortion, among others, false matching points still occur in all image registration algorithms. Therefore, false matching points detection is an important step in remote sensing image registration. Random Sample Consensus (RANSAC) is typically used to detect false matching points. However, RANSAC method cannot detect all false matching points in some remote sensing images. Therefore, a robust false matching points detection method based on Knearest- neighbour (K-NN) graph (KGD) is proposed in this method to obtain robust and high accuracy result. The KGD method starts with the construction of the K-NN graph in one image. K-NN graph can be first generated for each matching points and its K nearest matching points. Local transformation model for each matching point is then obtained by using its K nearest matching points. The error of each matching point is computed by using its transformation model. Last, L matching points with largest error are identified false matching points and removed. This process is iterative until all errors are smaller than the given threshold. In addition, KGD method can be used in combination with other methods, such as RANSAC. Several remote sensing images with different resolutions and terrains are used in the experiment. We evaluate the performance of KGD method, RANSAC + KGD method, RANSAC, and Graph Transformation Matching (GTM). The experimental results demonstrate the superior performance of the KGD and RANSAC + KGD methods.

  20. The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans

    PubMed Central

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2015-01-01

    Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets. PMID:26266953

  1. The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans.

    PubMed

    Striegel, Deborah A; Hara, Manami; Periwal, Vipul

    2015-08-01

    Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets.

  2. Large fluctuations in anti-coordination games on scale-free graphs

    NASA Astrophysics Data System (ADS)

    Sabsovich, Daniel; Mobilia, Mauro; Assaf, Michael

    2017-05-01

    We study the influence of the complex topology of scale-free graphs on the dynamics of anti-coordination games (e.g. snowdrift games). These reference models are characterized by the coexistence (evolutionary stable mixed strategy) of two competing species, say ‘cooperators’ and ‘defectors’, and, in finite systems, by metastability and large-fluctuation-driven fixation. In this work, we use extensive computer simulations and an effective diffusion approximation (in the weak selection limit) to determine under which circumstances, depending on the individual-based update rules, the topology drastically affects the long-time behavior of anti-coordination games. In particular, we compute the variance of the number of cooperators in the metastable state and the mean fixation time when the dynamics is implemented according to the voter model (death-first/birth-second process) and the link dynamics (birth/death or death/birth at random). For the voter update rule, we show that the scale-free topology effectively renormalizes the population size and as a result the statistics of observables depend on the network’s degree distribution. In contrast, such a renormalization does not occur with the link dynamics update rule and we recover the same behavior as on complete graphs.

  3. Statistical mechanics of high-density bond percolation

    NASA Astrophysics Data System (ADS)

    Timonin, P. N.

    2018-05-01

    High-density (HD) percolation describes the percolation of specific κ -clusters, which are the compact sets of sites each connected to κ nearest filled sites at least. It takes place in the classical patterns of independently distributed sites or bonds in which the ordinary percolation transition also exists. Hence, the study of series of κ -type HD percolations amounts to the description of classical clusters' structure for which κ -clusters constitute κ -cores nested one into another. Such data are needed for description of a number of physical, biological, and information properties of complex systems on random lattices, graphs, and networks. They range from magnetic properties of semiconductor alloys to anomalies in supercooled water and clustering in biological and social networks. Here we present the statistical mechanics approach to study HD bond percolation on an arbitrary graph. It is shown that the generating function for κ -clusters' size distribution can be obtained from the partition function of the specific q -state Potts-Ising model in the q →1 limit. Using this approach we find exact κ -clusters' size distributions for the Bethe lattice and Erdos-Renyi graph. The application of the method to Euclidean lattices is also discussed.

  4. Extracting data from figures with software was faster, with higher interrater reliability than manual extraction.

    PubMed

    Jelicic Kadic, Antonia; Vucic, Katarina; Dosenovic, Svjetlana; Sapunar, Damir; Puljak, Livia

    2016-06-01

    To compare speed and accuracy of graphical data extraction using manual estimation and open source software. Data points from eligible graphs/figures published in randomized controlled trials (RCTs) from 2009 to 2014 were extracted by two authors independently, both by manual estimation and with the Plot Digitizer, open source software. Corresponding authors of each RCT were contacted up to four times via e-mail to obtain exact numbers that were used to create graphs. Accuracy of each method was compared against the source data from which the original graphs were produced. Software data extraction was significantly faster, reducing time for extraction for 47%. Percent agreement between the two raters was 51% for manual and 53.5% for software data extraction. Percent agreement between the raters and original data was 66% vs. 75% for the first rater and 69% vs. 73% for the second rater, for manual and software extraction, respectively. Data extraction from figures should be conducted using software, whereas manual estimation should be avoided. Using software for data extraction of data presented only in figures is faster and enables higher interrater reliability. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Finite-size scaling of clique percolation on two-dimensional Moore lattices

    NASA Astrophysics Data System (ADS)

    Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong

    2018-05-01

    Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.

  6. Distributed-Memory Fast Maximal Independent Set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanewala Appuhamilage, Thejaka Amila J.; Zalewski, Marcin J.; Lumsdaine, Andrew

    The Maximal Independent Set (MIS) graph problem arises in many applications such as computer vision, information theory, molecular biology, and process scheduling. The growing scale of MIS problems suggests the use of distributed-memory hardware as a cost-effective approach to providing necessary compute and memory resources. Luby proposed four randomized algorithms to solve the MIS problem. All those algorithms are designed focusing on shared-memory machines and are analyzed using the PRAM model. These algorithms do not have direct efficient distributed-memory implementations. In this paper, we extend two of Luby’s seminal MIS algorithms, “Luby(A)” and “Luby(B),” to distributed-memory execution, and we evaluatemore » their performance. We compare our results with the “Filtered MIS” implementation in the Combinatorial BLAS library for two types of synthetic graph inputs.« less

  7. Network Analysis Tools: from biological networks to clusters and pathways.

    PubMed

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  8. A Bayesian method for inferring transmission chains in a partially observed epidemic.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef M.; Ray, Jaideep

    2008-10-01

    We present a Bayesian approach for estimating transmission chains and rates in the Abakaliki smallpox epidemic of 1967. The epidemic affected 30 individuals in a community of 74; only the dates of appearance of symptoms were recorded. Our model assumes stochastic transmission of the infections over a social network. Distinct binomial random graphs model intra- and inter-compound social connections, while disease transmission over each link is treated as a Poisson process. Link probabilities and rate parameters are objects of inference. Dates of infection and recovery comprise the remaining unknowns. Distributions for smallpox incubation and recovery periods are obtained from historicalmore » data. Using Markov chain Monte Carlo, we explore the joint posterior distribution of the scalar parameters and provide an expected connectivity pattern for the social graph and infection pathway.« less

  9. A New Random Walk for Replica Detection in WSNs.

    PubMed

    Aalsalem, Mohammed Y; Khan, Wazir Zada; Saad, N M; Hossain, Md Shohrab; Atiquzzaman, Mohammed; Khan, Muhammad Khurram

    2016-01-01

    Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical.

  10. A New Random Walk for Replica Detection in WSNs

    PubMed Central

    Aalsalem, Mohammed Y.; Saad, N. M.; Hossain, Md. Shohrab; Atiquzzaman, Mohammed; Khan, Muhammad Khurram

    2016-01-01

    Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical. PMID:27409082

  11. Analyzing Evolving Social Network 2 (EVOLVE2)

    DTIC Science & Technology

    2015-04-01

    Facebook friendship graph. We simulated two different interaction models: one-to-one and one-to-many interactions . Both types of models revealed...to an unbiased random walk on the reweighed “ interaction graph” W with entries wij = αiAijαj . The generalized Laplacian framework is flexible enough...Information Intelligence Systems & Analysis Division Information Directorate This report is published in the interest of scientific and technical

  12. Search and Pursuit with Unmanned Aerial Vehicles in Road Networks

    DTIC Science & Technology

    2013-11-01

    production volume in each area for use in consumer electronics. Simultaneously, a shift in defense strategy towards unmanned vehicles, particularly...Vöcking. Randomized pursuit-evasion in graphs. Combinatorics, Probability and Computing, 12:225–244, May 2003. [3] AeroVironment Inc. Raven Product Data...Ali and Mubarak Shah. COCOA - tracking in aerial imagery. In SPIE Airborne Intelligence, Surveillance, Reconnaissance Systems and Applications, 2006

  13. Enhancements and Algorithms for Avionic Information Processing System Design Methodology.

    DTIC Science & Technology

    1982-06-16

    programming algorithm is enhanced by incorporating task precedence constraints and hardware failures. Stochastic network methods are used to analyze...allocations in the presence of random fluctuations. Graph theoretic methods are used to analyze hardware designs, and new designs are constructed with...There, spatial dynamic programming (SDP) was used to solve a static, deterministic software allocation problem. Under the current contract the SDP

  14. Enhanced Vaccine Control of Epidemics in Adaptive Networks

    DTIC Science & Technology

    2010-04-29

    than random vaccination 32. When vaccine is very limited, outbreaks can be minimized by fragmenting the network via a graph partitioning strategy...Although an outbreak could transiently decrease network connectivity in a real social network, long term reductions in average connectivity are...37, cholera and typhoid fever 35, as well as pertussis 38. Although not all of the above diseases currently possess a vaccine, research is ongo

  15. Evaluation of Intersection Traffic Control Measures through Simulation

    NASA Astrophysics Data System (ADS)

    Asaithambi, Gowri; Sivanandan, R.

    2015-12-01

    Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.

  16. Intrinsic Information Processing and Energy Dissipation in Stochastic Input-Output Dynamical Systems

    DTIC Science & Technology

    2015-07-09

    Crutchfield. Information Anatomy of Stochastic Equilibria, Entropy , (08 2014): 0. doi: 10.3390/e16094713 Virgil Griffith, Edwin Chong, Ryan James...Christopher Ellison, James Crutchfield. Intersection Information Based on Common Randomness, Entropy , (04 2014): 0. doi: 10.3390/e16041985 TOTAL: 5 Number...Learning Group Seminar, Complexity Sciences Center, UC Davis. Korana Burke and Greg Wimsatt (UCD), reviewed PRL “Measurement of Stochastic Entropy

  17. NON-Shor Factorization Via BEQS BEC: Watkins Number-Theory ``Pure''-Mathematics U With Statistical-Physics; Benford Log-Law Inversion to ONLY BEQS digit d=0 BEC!!!

    NASA Astrophysics Data System (ADS)

    Lyons, M.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Weiss-Page-Holthaus[Physica A,341,586(04); http://arxiv.org/abs/cond-mat/0403295] number-FACTORIZATION VIA BEQS BEC VS.(?) Shor-algorithm, strongly-supporting Watkins' [www.secamlocal.ex.ac.uk/people/staff/mrwatkin/] Intersection of number-theory "pure"-maths WITH (Statistical)-Physics, as Siegel[AMS Joint.Mtg.(02)-Abs.973-60-124] Benford logarithmic-law algebraic-INVERSION to ONLY BEQS with d=0 digit P (d = 0) > = oogapFULBEC ! ! ! SiegelRiemann - hypothesisproofviaRayleigh [ Phil . Trans . CLXI (1870) ] - Polya [ Math . Ann . (21) ] - [ Random - WalksElectric - Nets . , MAA (81) ] - nderson [ PRL (58) ] - localization - Siegel [ Symp . Fractals , MRSFallMtg . (89) - 5 - papers ! ! ! ] FUZZYICS = CATEGORYICS : [ LOCALITY ]- MORPHISM / CROSSOVER / AUTMATHCAT / DIM - CAT / ANTONYM- > (GLOBALITY) FUNCTOR / SYNONYM / concomitancetonoise = / Fluct . - Dissip . theorem / FUNCTOR / SYNONYM / equivalence / proportionalityto = > generalized - susceptibilitypower - spectrum [ FLAT / FUNCTIONLESS / WHITE ]- MORPHISM / CROSSOVER / AUTMATHCAT / DIM - CAT / ANTONYM- > HYPERBOLICITY/ZIPF-law INEVITABILITY) intersection with ONLY BEQS BEC).

  18. The potential of clustering methods to define intersection test scenarios: Assessing real-life performance of AEB.

    PubMed

    Sander, Ulrich; Lubbe, Nils

    2018-04-01

    Intersection accidents are frequent and harmful. The accident types 'straight crossing path' (SCP), 'left turn across path - oncoming direction' (LTAP/OD), and 'left-turn across path - lateral direction' (LTAP/LD) represent around 95% of all intersection accidents and one-third of all police-reported car-to-car accidents in Germany. The European New Car Assessment Program (Euro NCAP) have announced that intersection scenarios will be included in their rating from 2020; however, how these scenarios are to be tested has not been defined. This study investigates whether clustering methods can be used to identify a small number of test scenarios sufficiently representative of the accident dataset to evaluate Intersection Automated Emergency Braking (AEB). Data from the German In-Depth Accident Study (GIDAS) and the GIDAS-based Pre-Crash Matrix (PCM) from 1999 to 2016, containing 784 SCP and 453 LTAP/OD accidents, were analyzed with principal component methods to identify variables that account for the relevant total variances of the sample. Three different methods for data clustering were applied to each of the accident types, two similarity-based approaches, namely Hierarchical Clustering (HC) and Partitioning Around Medoids (PAM), and the probability-based Latent Class Clustering (LCC). The optimum number of clusters was derived for HC and PAM with the silhouette method. The PAM algorithm was both initiated with random start medoid selection and medoids from HC. For LCC, the Bayesian Information Criterion (BIC) was used to determine the optimal number of clusters. Test scenarios were defined from optimal cluster medoids weighted by their real-life representation in GIDAS. The set of variables for clustering was further varied to investigate the influence of variable type and character. We quantified how accurately each cluster variation represents real-life AEB performance using pre-crash simulations with PCM data and a generic algorithm for AEB intervention. The usage of different sets of clustering variables resulted in substantially different numbers of clusters. The stability of the resulting clusters increased with prioritization of categorical over continuous variables. For each different set of cluster variables, a strong in-cluster variance of avoided versus non-avoided accidents for the specified Intersection AEB was present. The medoids did not predict the most common Intersection AEB behavior in each cluster. Despite thorough analysis using various cluster methods and variable sets, it was impossible to reduce the diversity of intersection accidents into a set of test scenarios without compromising the ability to predict real-life performance of Intersection AEB. Although this does not imply that other methods cannot succeed, it was observed that small changes in the definition of a scenario resulted in a different avoidance outcome. Therefore, we suggest using limited physical testing to validate more extensive virtual simulations to evaluate vehicle safety. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Stereotypes of Black American Women Related to Sexuality and Motherhood.

    PubMed

    Rosenthal, Lisa; Lobel, Marci

    2016-09-01

    Intersectionality theorists and researchers suggest the importance of examining unique stereotypes associated with intersecting group identities. We focus on the unique stereotypes of Black women in the United States related to sexuality and motherhood. In an online experimental study, 435 undergraduates from a Northeastern U.S. university were randomly assigned to one of the four conditions in which they viewed a photograph and read a description of a target young woman. The target's race (Black vs. White) and pregnancy status (pregnant vs. no pregnancy information) were varied. A Black female target (pregnant or not) was perceived more negatively on items related to historically rooted societal stereotypes about sexual activity, sexual risk, motherhood status, and socioeconomic status than was a White female target, but there were no differences on items unrelated to societal stereotypes. A Black target described as pregnant was also perceived as more likely to be a single mother and to need public assistance than was a White target described as pregnant. Current findings, along with evidence that societal stereotypes have damaging effects, underscore the importance of diversifying images of Black women and increasing awareness of how stereotypes affect perceptions of Black women. Findings also highlight the value of research employing intersectionality to understand stereotypes.

  20. Stereotypes of Black American Women Related to Sexuality and Motherhood

    PubMed Central

    Rosenthal, Lisa; Lobel, Marci

    2016-01-01

    Intersectionality theorists and researchers suggest the importance of examining unique stereotypes associated with intersecting group identities. We focus on the unique stereotypes of Black women in the United States related to sexuality and motherhood. In an online experimental study, 435 undergraduates from a Northeastern U.S. university were randomly assigned to one of the four conditions in which they viewed a photograph and read a description of a target young woman. The target’s race (Black vs. White) and pregnancy status (pregnant vs. no pregnancy information) were varied. A Black female target (pregnant or not) was perceived more negatively on items related to historically rooted societal stereotypes about sexual activity, sexual risk, motherhood status, and socioeconomic status than was a White female target, but there were no differences on items unrelated to societal stereotypes. A Black target described as pregnant was also perceived as more likely to be a single mother and to need public assistance than was a White target described as pregnant. Current findings, along with evidence that societal stereotypes have damaging effects, underscore the importance of diversifying images of Black women and increasing awareness of how stereotypes affect perceptions of Black women. Findings also highlight the value of research employing intersectionality to understand stereotypes. PMID:27821904

Top