Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films.
Duan, Zonghui; Wang, Shuai; Yi, Ningbo; Gu, Zhiyuan; Gao, Yisheng; Song, Qinghai; Xiao, Shumin
2017-06-21
Lasing actions in organo-lead halide perovskite films have been heavily studied in the past few years. However, due to the disordered nature of synthesized perovskite films, the lasing actions are usually understood as random lasers that are formed by multiple scattering. Herein, we demonstrate the miscellaneous lasing actions in organo-lead halide perovskite films. In addition to the random lasers, we show that a single or a few perovskite microparticles can generate laser emissions with their internal resonances instead of multiple scattering among them. We experimentally observed and numerically confirmed whispering gallery (WG)-like microlasers in polygon shaped and other deformed microparticles. Meanwhile, owing to the nature of total internal reflection and the novel shape of the nanoparticle, the size of the perovskite WG laser can be significantly decreased to a few hundred nanometers. Thus, wavelength-scale lead halide perovskite lasers were realized for the first time. All of these laser behaviors are complementary to typical random lasers in perovskite film and will help the understanding of lasing actions in complex lead halide perovskite systems.
Random lasing actions in self-assembled perovskite nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Shuai; Sun, Wenzhao; Li, Jiankai; Gu, Zhiyuan; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai
2016-05-01
Solution-based perovskite nanoparticles have been intensively studied in the past few years due to their applications in both photovoltaic and optoelectronic devices. Here, based on the common ground between solution-based perovskite and random lasers, we have studied the mirrorless lasing actions in self-assembled perovskite nanoparticles. After synthesis from a solution, discrete lasing peaks have been observed from optically pumped perovskites without any well-defined cavity boundaries. We have demonstrated that the origin of the random lasing emissions is the scattering between the nanostructures in the perovskite microplates. The obtained quality (Q) factors and thresholds of random lasers are around 500 and 60 μJ/cm2, respectively. Both values are comparable to the conventional perovskite microdisk lasers with polygon-shaped cavity boundaries. From the corresponding studies on laser spectra and fluorescence microscope images, the lasing actions are considered random lasers that are generated by strong multiple scattering in random gain media. In additional to conventional single-photon excitation, due to the strong nonlinear effects of perovskites, two-photon pumped random lasers have also been demonstrated for the first time. We believe this research will find its potential applications in low-cost coherent light sources and biomedical detection.
Random laser action in bovine semen
NASA Astrophysics Data System (ADS)
Smuk, Andrei; Lazaro, Edgar; Olson, Leif P.; Lawandy, N. M.
2011-03-01
Experiments using bovine semen reveal that the addition of a high-gain water soluble dye results in random laser action when excited by a Q-switched, frequency doubled, Nd:Yag laser. The data shows that the linewidth collapse of the emission is correlated to the sperm count of the individual samples, potentially making this a rapid, low sample volume approach to count determination.
Phase seeding of a terahertz quantum cascade laser
Oustinov, Dimitri; Jukam, Nathan; Rungsawang, Rakchanok; Madéo, Julien; Barbieri, Stefano; Filloux, Pascal; Sirtori, Carlo; Marcadet, Xavier; Tignon, Jérôme; Dhillon, Sukhdeep
2010-01-01
The amplification of spontaneous emission is used to initiate laser action. As the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase-resolved detection of the laser field. Here, we demonstrate how the carrier phase can be fixed in a semiconductor laser: a quantum cascade laser (QCL). This is performed by injection seeding a QCL with coherent terahertz pulses, which forces laser action to start on a fixed phase. This permits the emitted laser field to be synchronously sampled with a femtosecond laser beam, and measured in the time domain. We observe the phase-resolved buildup of the laser field, which can give insights into the laser dynamics. In addition, as the electric field oscillations are directly measured in the time domain, QCLs can now be used as sources for time-domain spectroscopy. PMID:20842195
Stretchable Random Lasers with Tunable Coherent Loops.
Sun, Tzu-Min; Wang, Cih-Su; Liao, Chi-Shiun; Lin, Shih-Yao; Perumal, Packiyaraj; Chiang, Chia-Wei; Chen, Yang-Fang
2015-12-22
Stretchability represents a key feature for the emerging world of realistic applications in areas, including wearable gadgets, health monitors, and robotic skins. Many optical and electronic technologies that can respond to large strain deformations have been developed. Laser plays a very important role in our daily life since it was discovered, which is highly desirable for the development of stretchable devices. Herein, stretchable random lasers with tunable coherent loops are designed, fabricated, and demonstrated. To illustrate our working principle, the stretchable random laser is made possible by transferring unique ZnO nanobrushes on top of polydimethylsiloxane (PDMS) elastomer substrate. Apart from the traditional gain material of ZnO nanorods, ZnO nanobrushes were used as optical gain materials so they can serve as scattering centers and provide the Fabry-Perot cavity to enhance laser action. The stretchable PDMS substrate gives the degree of freedom to mechanically tune the coherent loops of the random laser action by changing the density of ZnO nanobrushes. It is found that the number of laser modes increases with increasing external strain applied on the PDMS substrate due to the enhanced possibility for the formation of coherent loops. The device can be stretched by up to 30% strain and subjected to more than 100 cycles without loss in laser action. The result shows a major advance for the further development of man-made smart stretchable devices.
Random lasing action in a polydimethylsiloxane wrinkle induced disordered structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Zhenhua; Wu, Leilei; Zhu, Shu
This paper presents a chip-scale random lasing action utilizing polydimethylsiloxane (PDMS) wrinkles with random periods as disordered medium. Nanoscale wrinkles with long range disorder structures are formed on the oxidized surface of a PDMS slab and confirmed by atomic force microscopy. Light multiply scattered at each PDMS wrinkle-dye interfaces is optically amplified in the presence of pump gain. The shift of laser emission wavelength when pumping at different regions indicates the randomness of the winkle period. In addition, a relatively low threshold of about 27 μJ/mm{sup 2} is realized, which is comparable with traditional optofluidic dye laser. This is due tomore » the unique sinusoidal Bragg-grating-like random structure. Contrast to conventional microfluidic dye laser that inevitably requires the accurate design and implementation of microcavity to provide optical feedback, the convenience in both fabrication and operation makes PDMS wrinkle based random laser a promising underlying element in lab-on-a-chip systems and integrated microfluidic networks.« less
Random lasers for lab-on-chip applications
NASA Astrophysics Data System (ADS)
Giehl, J. M.; Butzbach, F.; Jorge, K. C.; Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I.; Wetter, N. U.
2016-04-01
Random lasers are laser sources in which the feedback is provided by scattering instead of reflection and which, for this reason, do not require surfaces with optical finish such as mirrors. The investigation of such lasing action in a large variety of disordered materials is a subject of high interest with very important applications such as threedimensional and speckle-free imaging, detection of cancer tissue and photonic coding and encryption. However, potential applications require optimization of random laser performance especially with respect to optical efficiency and directionality or brightness. This work demonstrates such an optimization procedure with the goal of achieving a random laser with sufficient efficiency and brightness in order to be used in practical applications. Two random lasers are demonstrated, one solid and on liquid, that fulfil directionality and efficiency requirements. The first one consists of a neodymium doped powder laser with a record slope efficiency of 1.6%. The second one is a liquid random laser injected into a HC-ARROW waveguide which uses a microchannel connected to a much larger reservoir in order to achieve the necessary directionality. Both devices can be produced by low cost fabricating technologies and easily integrated into next-generation, lab-on-chip devices used for in-situ determination of infectious tropical diseases, which is the main goal of this project.
Deng, Changmin; He, Qingguo; He, Chao; Shi, Liqi; Cheng, Jiangong; Lin, Tong
2010-04-08
We have first demonstrated that a random laser action generated by a hybrid film composed of a semiconducting organic polymer (SOP) and TiO(2) nanoparticles can be used to detect 2,4,6-trinitrotoluene (TNT) vapors. The hybrid film was fabricated by spin-casting SOP solution dispersed with nanosized TiO(2) particles on quartz glass. The SOP in the hybrid film functioned as both the gain medium and the sensory transducer. A random lasing action was observed with a certain pump power when the size (diameter of 50 nm) and concentration (8.9 x 10(12)/cm(3)) of TiO(2) nanoparticles were optimized. Measurements of fluorescence quenching behavior of the hybrid film in TNT vapor atmosphere (10 ppb) showed that attenuated lasing in optically pumped hybrid film displayed a sensitivity to vapors of explosives more than 20 times higher than was observed from spontaneous emission. This phenomenon has been explained with the four-level laser model. Since the sensory transducer used in the hybrid polymer/nanoparticles system could be replaced by other functional materials, the concept developed could be extended to more general domains of chemical or environment detection.
Nestor, Mark; Andriessen, Anneke; Berman, Brian; Katz, Bruce E; Gilbert, Dore; Goldberg, David J; Gold, Michael H; Kirsner, Robert S; Lorenc, Paul Z
2017-08-01
Non-thermal laser therapy in dermatology, is a growing field in medical technology by which therapeutic effects are achieved by exposing tissues to specific wavelengths of light. The purpose of this review was to gain a better understanding of the science behind non-thermal laser and the evidence supporting its use in dermatology. A group of dermatologists and surgeons recently convened to review the evidence supporting the use of non-thermal laser for body sculpting, improving the appearance of cellulite, and treating onychomycosis. The use of non-thermal laser for body sculpting is supported by three randomized, double-blind, sham-controlled studies (N = 161), one prospective open-label study (N = 54), and two retrospective studies (N = 775). Non-thermal laser application for improving the appearance of cellulite is supported by one randomized, double-blind, sham-controlled study (N = 38). The use of non-thermal laser for the treatment of onychomycosis is supported by an analysis of three non-randomized, open-label studies demonstrating clinical improvement of nails (N = 292). Non-thermal laser is steadily moving into mainstream medical practice, such as dermatology. Although present studies have demonstrated the safety and efficacy of non-thermal laser for body sculpting, cellulite reduction and onychomycosis treatment, studies demonstrating the efficacy of non-thermal laser as a stand-alone procedure are still inadequate.
Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.
El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K
2011-01-15
We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.
Multi-photon excited coherent random laser emission in ZnO powders
NASA Astrophysics Data System (ADS)
Tolentino Dominguez, Christian; Gomes, Maria De A.; Macedo, Zélia S.; de Araújo, Cid B.; Gomes, Anderson S. L.
2014-11-01
We report the observation and analysis of anti-Stokes coherent random laser (RL) emission from zinc oxide (ZnO) powders excited by one-, two- or three-photon femtosecond laser radiation. The ZnO powders were produced via a novel proteic sol-gel, low-cost and environmentally friendly route using coconut water in the polymerization step of the metal precursor. One- and two-photon excitation at 354 nm and 710 nm, respectively, generated single-band emissions centred at about 387 nm. For three-photon excitation, the emission spectra showed a strong ultraviolet (UV) band (380-396 nm) attributed to direct three-photon absorption from the valence band to the conduction band. The presence of an intensity threshold and a bandwidth narrowing of the UV band from about 20 to 4 nm are clear evidence of RL action. The observation of multiple sub-nanometre narrow peaks in the emission spectra for excitation above the RL threshold is consistent with random lasing by coherent feedback.
Random lasing in dye-doped polymer dispersed liquid crystal film
NASA Astrophysics Data System (ADS)
Wu, Rina; Shi, Rui-xin; Wu, Xiaojiao; Wu, Jie; Dai, Qin
2016-09-01
A dye-doped polymer-dispersed liquid crystal film was designed and fabricated, and random lasing action was studied. A mixture of laser dye, nematic liquid crystal, chiral dopant, and PVA was used to prepare the dye-doped polymer-dispersed liquid crystal film by means of microcapsules. Scanning electron microscopy analysis showed that most liquid crystal droplets in the polymer matrix ranged from 30 μm to 40 μm, the size of the liquid crystal droplets was small. Under frequency doubled 532 nm Nd:YAG laser-pumped optical excitation, a plurality of discrete and sharp random laser radiation peaks could be measured in the range of 575-590 nm. The line-width of the lasing peak was 0.2 nm and the threshold of the random lasing was 9 mJ. Under heating, the emission peaks of random lasing disappeared. By detecting the emission light spot energy distribution, the mechanism of radiation was found to be random lasing. The random lasing radiation mechanism was then analyzed and discussed. Experimental results indicated that the size of the liquid crystal droplets is the decisive factor that influences the lasing mechanism. The surface anchor role can be ignored when the size of the liquid crystal droplets in the polymer matrix is small, which is beneficial to form multiple scattering. The transmission path of photons is similar to that in a ring cavity, providing feedback to obtain random lasing output. Project supported by the National Natural Science Foundation of China (Grant No. 61378042), the Colleges and Universities in Liaoning Province Outstanding Young Scholars Growth Plans, China (Grant No. LJQ2015093), and Shenyang Ligong University Laser and Optical Information of Liaoning Province Key Laboratory Open Funds, China.
Meyer-Hamme, Gesa; Friedemann, Thomas; Greten, Henry Johannes; Plaetke, Rosemarie; Gerloff, Christian; Schroeder, Sven
2018-04-13
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus with significant clinical sequelae that can affect a patient's quality of life. Metabolic and microvascular factors are responsible for nerve damage, causing loss of nerve function, numbness, painful sensory symptoms, and muscle weakness. Therapy is limited to anti-convulsant or anti-depressant drugs for neuropathic pain and paresthesia. However, reduced sensation, balance and gait problems are insufficiently covered by this treatment. Previous data suggests that acupuncture, which has been in use in Traditional Chinese Medicine for many years, may potentially complement the treatment options for peripheral neuropathy. Nevertheless, more objective data on clinical outcome is necessary to generally recommend acupuncture to the public. We developed a study design for a prospective, randomized (RCT), placebo-controlled, partially double-blinded trial for investigating the effect of acupuncture on DPN as determined by nerve conduction studies (NCS) with the sural sensory nerve action potential amplitude as the primary outcome. The sural sensory nerve conduction velocity, tibial motor nerve action potential amplitude, tibial motor nerve conduction velocity, the neuropathy deficit score, neuropathy symptom score, and numeric rating scale questionnaires are defined as secondary outcomes. One hundred and eighty patients with type 2 diabetes mellitus will be randomized into three groups (needle acupuncture, verum laser acupuncture, and placebo laser acupuncture). We hypothesize that needle and laser acupuncture have beneficial effects on electrophysiological parameters and clinical and subjective symptoms in relation to DPN in comparison with placebo. The ACUDIN trial aims at investigating whether classical needle acupuncture and/or laser acupuncture are efficacious in the treatment of DPN. For the purpose of an objective parameter, NCS were chosen as outcome measures. Acupuncture treatment may potentially improve patients' quality of life and reduce the socio-economic burden caused by DPN. German Clinical Trial Register (DRKS), No. DRKS00008562 , trial search portal of the WHO ( http://apps.who.int/trialsearch/ ).
White random lasing in mixture of ZnSe, CdS and CdSSe micropowders
NASA Astrophysics Data System (ADS)
Alyamani, A. Y.; Leanenia, M. S.; Alanazi, L. M.; Aljohani, M. M.; Aljariwi, A. A.; Rzheutski, M. V.; Lutsenko, E. V.; Yablonskii, G. P.
2016-03-01
Room temperature random lasing with white light emission in a mixture of AIIBVI semiconductor powders was achieved for the first time. The scattering gain media was formed by the mixture of closely packed active micron sized crystallites of ZnSe, CdS, CdSSe semiconductors. The micropowders were produced by grinding bulk crystals of each compound. Optical excitation was performed by 10-nanosecond pulses of tuned Ti:Al2O3-laser at 390 nm. The lasing in the mixture of semiconductor powders was achieved simultaneously at four wavelengths in blue, green, yellow and red spectral regions after exceeding the threshold excitation power density. A drastic integral intensity increase, spectrum narrowing and appearance of mode structure accompanied the laser action. ZnSe crystallites produce the laser light at about 460 nm while CdS particles - at about 520 nm. Two types of CdSSe semiconductor micropowders with different sulfur content lase at 580 nm and 660 nm. The threshold excitation power densities for all laser lines in the emission spectrum are approximately the same of about 0.9 MW/cm2. The sum of the emission spectrum of the mixture of the micropowders forms white light with high brightness. Lasing is due to an appearance of random feedback for amplified radiation in the active medium of closely packed light scattering crystallites. The presented results may find their applications for visualization systems, lighting technology, data transmission, medicine as biosensors and in identification systems. The key feature of random lasers is low cost of its production and possibility to be deposited on any type of surface.
NASA Astrophysics Data System (ADS)
Xu, Caixia; Zhang, Jingwen; Xu, Long; Ma, Xinyan; Zhao, Hua
2017-06-01
To pinpoint the driving forces behind the random lasing in Nd3+ doped lanthanum lead zirconate titanate (Nd:PLZT) ceramic plates, a combinatorial cavity with two gain media (Nd:YVO4 and Nd:PLZT) was used to study the switching feature between conventional lasing and random lasing oscillations. The complex laser output dynamics observed hinted that the photo-induced charge accumulation on the plate surface and the grain boundaries of Nd:PLZT is responsible for the lasing action switching, which was confirmed by a series of experiments, including strong electro-induced scattering, remarkable photoinduced currents, and light transmission reduction, along with measured single-pass-gain over the theoretical limit. It was found that the charge accumulation results in optical energy storage and nonuniform refractive index and hence strong scattering, which give rise to the random walks and weak localization of photons and long lasting lasing action and mode switching.
Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang
2014-10-23
Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.
Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang
2014-01-01
Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices. PMID:25338507
NASA Astrophysics Data System (ADS)
Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang
2014-10-01
Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.
From coagulation to enucleation: the use of lasers in surgery for benign prostatic hyperplasia.
Wilson, Liam C; Gilling, Peter J
2005-09-01
The application of lasers for the treatment of benign prostatic hyperplasia has evolved over the past 15 years. Early-generation neodymium:yttrium aluminum garnet lasers were used to coagulate and ablate prostatic tissue, but significant postoperative irritative symptoms and high reoperation rates meant that this approach did not seriously challenge the status quo for long. Ablative techniques have recently become popular again with the marketing of the newer-generation, higher-power potassium titanyl phosphate and holmium lasers. Although short-term data are encouraging, there are no comparative trials of significant duration, so it is not yet possible to draw conclusions with regard to efficacy and durability. The holmium laser can also be used as an incisional and dissecting tool that allows resection or enucleation of whole lobes of the prostate, mimicking the action of the index finger in open prostatectomy. The safety, efficacy, durability and cost-effectiveness of the holmium laser have been shown in well-designed randomized controlled trials.
Kubsik, Anna; Klimkiewicz, Robert; Janczewska, Katarzyna; Klimkiewicz, Paulina; Jankowska, Agnieszka; Woldańska-Okońska, Marta
2016-01-01
Multiple sclerosis is one of the most common neurological disorders. It is a chronic inflammatory demyelinating disease of the CNS, whose etiology is not fully understood. Application of new rehabilitation methods are essential to improve functional status. The material studied consisted of 120 patients of both sexes (82 women and 38 men) aged 21-81 years. The study involved patients with a diagnosis of multiple sclerosis. The aim of the study was to evaluate the effect of laser radiation and other therapies on the functional status of patients with multiple sclerosis. Patients were randomly divided into four treatment groups. The evaluation was performed three times - before the start of rehabilitation, immediately after rehabilitation (21 days of treatment) and subsequent control - 30 days after the patients leave the clinic. The following tests were performed for all patients to assess functional status: Expanded Disability Status Scale (EDSS) of Kurtzke and Barthel Index. Results of all testing procedures show that the treatment methods are improving the functional status of patients with multiple sclerosis, with the significant advantage of the synergistic action of laser and magneto stimulation. The combination of laser and magneto stimulation significantly confirmed beneficial effect on quality of life. The results of these studies present new scientific value and are improved compared to program of rehabilitation of patients with multiple sclerosis by laser radiation which was previously used. This study showed that synergic action of laser radiation and magneto stimulation has a beneficial effect on improving functional status, and thus improves the quality of life of patients with multiple sclerosis. The effects of all methods of rehabilitation are persisted after cessation of treatment applications, with a particular advantage of the synergistic action of laser radiation and magneto stimulation, which indicates the possibility to elicitation in these methods the phenomenon of the biological hysteresis.
Ultraviolet random lasing action from highly disordered n-AlN/p-GaN heterojunction.
Yang, H Y; Yu, S F; Wong, J I; Cen, Z H; Liang, H K; Chen, T P
2011-05-01
Room-temperature random lasing is achieved from an n-AlN/p-GaN heterojunction. The highly disordered n-AlN layer, which was deposited on p-GaN:Mg layer via radio frequency magnetron sputtering, acts as a scattering medium to sustain coherent optical feedback. The p-GaN:Mg layer grown on sapphire provides optical amplification to the scattered light propagating along the heterojunction. Hence, lasing peaks of line width less than 0.4 nm are emerged from the emission spectra at round 370 nm for the heterojunction under forward bias larger than 5.1 V. Lasing characteristics of the heterojunction are in agreement with the behavior of random lasers.
Lekwuttikarn, Ramrada; Tempark, Therdpong; Chatproedprai, Susheera; Wananukul, Siriwan
2017-08-01
The high prevalence of acne vulgaris in teenagers has increased comorbidities. Lasers offer alternative options for acne treatment because they have rapid action, low systemic adverse effects, and do not require everyday treatment. To study the efficacy and patients' satisfaction of 595-nm pulse dye laser (PDL) treatment of acne vulgaris and acne erythema in adolescents and early adulthood, we designed a blocked-randomized, split-faced 595-nm PDL (fluence 8 J/cm 3 pulse duration 10 ms, spot size 7 mm, 2 session every 2 weeks) study in patients with mild to moderate acne by comparing the laser-treated and non-treated side. The acne lesion counts, acne erythema grading, and acne severity grading were evaluated at baseline and 2, 4, and 8 weeks. Thirty patients were recruited. The results showed no statistically significant difference except the papule count at week 4 which was -1.828 on the treated side and 0.103 on the non-treated side of the face, P-value 0.0018. There was no statistically significant difference of acne severity grading and acne erythema grading between both sides of the face. The mean scores of patients' satisfaction on the laser-treated side were 75, 81, and 81%, respectively. The PDL treatment in this study reveals no significant improvement in acne therapy; however, the patients were satisfied with this laser treatment. © 2017 The International Society of Dermatology.
Theoretical study and design of third-order random fiber laser
NASA Astrophysics Data System (ADS)
Xie, Zhaoxin; Shi, Wei; Fu, Shijie; Sheng, Quan; Yao, Jianquan
2018-02-01
We present result of achieving a random fiber laser at a working wavelength of 1178nm while pumping at 1018nm. The laser power is realized by 200m long cavity which includes three high reflectivity fiber Bragg gratings. This simple and efficient random fiber laser could provide a novel approach to realize low-threshold and high-efficiency 1178nm long wavelength laser. We theoretically analyzed the laser power in random fiber lasers at different pump power by changing three high reflectivity fiber Bragg gratings. We also calculated the forward and backward power of 1st-order stokes, 2nd-order stokes, 3rd-order stokes. With the theoretical analysis, we optimize the cavity's reflectivity to get higher laser power output. The forward random laser exhibits larger gain, the backward random laser has lower gain. By controlling the value of angle-cleaved end fiber's reflectivity to 3×10-7, when the high reflectivity increases from 0.01 to 0.99, the laser power increases, using this proposed configuration, the 1178nm random laser can be generated easily and stably.
Coherent random lasing from liquid waveguide gain channels with biological scatters
NASA Astrophysics Data System (ADS)
Zhang, Hong; Feng, Guoying; Wang, Shutong; Yang, Chao; Yin, Jiajia; Zhou, Shouhuan
2014-12-01
A unidirectional coherent random laser based on liquid waveguide gain channels with biological scatters is demonstrated. The optical feedback of the random laser is provided by both light scattering and waveguide confinement. This waveguide-scattering-feedback scheme not only reduces the pump threshold but also makes the output of random laser directional. The threshold of our random laser is about 11 μJ. The emission spectra can be sensitively tuned by changing pump position due to the micro/nano-scale randomness of butterfly wings. It shows the potential applications of optofluidic random lasers for bio-chemical sensors on-chip.
High power tunable mid-infrared optical parametric oscillator enabled by random fiber laser.
Wu, Hanshuo; Wang, Peng; Song, Jiaxin; Ye, Jun; Xu, Jiangming; Li, Xiao; Zhou, Pu
2018-03-05
Random fiber laser, as a kind of novel fiber laser that utilizes random distributed feedback as well as Raman gain, has become a research focus owing to its advantages of wavelength flexibility, modeless property and output stability. Herein, a tunable optical parametric oscillator (OPO) enabled by a random fiber laser is reported for the first time. By exploiting a tunable random fiber laser to pump the OPO, the central wavelength of idler light can be continuously tuned from 3977.34 to 4059.65 nm with stable temporal average output power. The maximal output power achieved is 2.07 W. So far as we know, this is the first demonstration of a continuous-wave tunable OPO pumped by a tunable random fiber laser, which could not only provide a new approach for achieving tunable mid-infrared (MIR) emission, but also extend the application scenarios of random fiber lasers.
Random lasing from Rhodamine 6G doped ethanediol solution based on the cicada wing nanocones
NASA Astrophysics Data System (ADS)
Zhang, Hua; Feng, Guoying; Zhang, Hong; Yang, Chao; Yin, Jiajia; Dai, Shenyu; Zhou, Shouhuan
2016-06-01
Random lasing from Rhdomaine 6G (Rh6G) doped ethanediol solution based on the cicada wing nanostructures as scatterers has been demonstrated. The optical positive feedback of the random laser is provided by these nanocones on the cicada wing, where the scale of the nanocones and the distance between them is about 150 nm and 200 nm, respectively. Al-coated reflector has been introduced to reduce the loss of the pump energy from the bottom, and moreover lower the laser threshold, which is about 126.0 μJ/pulse. Due to the liquid gain medium, the lifetime of this random laser is longer than conventional random lasers. This random laser shows the potential applications in biological random laser and photonic devices.
Zhang, Hanwei; Zhou, Pu; Wang, Xiong; Du, Xueyuan; Xiao, Hu; Xu, Xiaojun
2015-06-29
Two kinds of hundred-watt-level random distributed feedback Raman fiber have been demonstrated. The optical efficiency can reach to as high as 84.8%. The reported power and efficiency of the random laser is the highest one as we know. We have also demonstrated that the developed random laser can be further used to pump a Ho-doped fiber laser for mid-infrared laser generation. Finally, 23 W 2050 nm laser is achieved. The presented laser can obtain high power output efficiently and conveniently and opens a new direction for high power laser sources at designed wavelength.
Laser action in chromium-activated forsterite for near infrared excitation
NASA Technical Reports Server (NTRS)
Petricevic, V.; Gayen, S. K.; Alfano, R. R.
1988-01-01
This paper reports on laser action in chromium-doped forsterite (Cr:Mg2SiO4) for 1064-nm excitation of the crystal's double-hump absorption band spanning the 850-1200-nm wavelength range. The cavity arrangement used for obtaining laser action in Cr:Mg2SiO2 was similar to that described by Petricevic et al. (1988). The fundamental and second harmonic emissions from a Q-switched Nd:YAG laser operating at a 10-Hz repetition rate were used for excitation of the NIR and visible bands, respectively. Pulsed laser action was readily observed for both the 1064-nm and 532-nm pumping at or above the respective thresholds. The laser parameters of the 532-nm and 1064-nm excitations were similar, indicating that the IR band is responsible for laser action for both excitations.
de Matos, Christiano J S; de S Menezes, Leonardo; Brito-Silva, Antônio M; Martinez Gámez, M A; Gomes, Anderson S L; de Araújo, Cid B
2007-10-12
We investigate the effects of two-dimensional confinement on the lasing properties of a classical random laser system operating in the incoherent feedback (diffusive) regime. A suspension of 250 nm rutile (TiO2) particles in a rhodamine 6G solution was inserted into the hollow core of a photonic crystal fiber generating the first random fiber laser and a novel quasi-one-dimensional random laser geometry. A comparison with similar systems in bulk format shows that the random fiber laser presents an efficiency that is at least 2 orders of magnitude higher.
Expression of DMP-1 in the human pulp tissue using low level laser therapy
NASA Astrophysics Data System (ADS)
Lourenço Neto, Natalino; Teixeira Marques, Nádia Carolina; Fernandes, Ana Paula; Oliveira Rodini, Camila; Cruvinel Silva, Thiago; Moreira Machado, Maria Aparecida Andrade; Marchini Oliveira, Thais
2015-09-01
This study aimed to evaluate the effects of low-level laser therapy (LLLT) on DMP-1 expression in pulp tissue repair of human primary teeth. Twenty mandibular primary molars were randomly assigned into the following groups: Group I—Buckley’s Formocresol (FC); Group II—Calcium Hydroxide (CH); Group III—LLLT + CH and Group IV—LLLT + Zinc oxide/Eugenol. The teeth at the regular exfoliation period were extracted for histological analysis and immunolocalization of DMP-1. Descriptive analysis was performed on the dentin pulp complex. Histopathological assessment showed internal resorption in group FC. Groups CH and LLLT + CH provided better pulpal repair due to the absence of inflammation and the formation of hard tissue barrier. These two groups presented odontoblastic layer expressing DMP-1. According to this study, low level laser therapy preceding the use of calcium hydroxide exhibited satisfactory bio-inductive activity on pulp tissue repair of human primary teeth. However, other histological and cellular studies are needed to confirm the laser tissue action and efficacy.
Fiber-Type Random Laser Based on a Cylindrical Waveguide with a Disordered Cladding Layer.
Zhang, Wei Li; Zheng, Meng Ya; Ma, Rui; Gong, Chao Yang; Yang, Zhao Ji; Peng, Gang Ding; Rao, Yun Jiang
2016-05-25
This letter reports a fiber-type random laser (RL) which is made from a capillary coated with a disordered layer at its internal surface and filled with a gain (laser dye) solution in the core region. This fiber-type optical structure, with the disordered layer providing randomly scattered light into the gain region and the cylindrical waveguide providing confinement of light, assists the formation of random lasing modes and enables a flexible and efficient way of making random lasers. We found that the RL is sensitive to laser dye concentration in the core region and there exists a fine exponential relationship between the lasing intensity and particle concentration in the gain solution. The proposed structure could be a fine platform of realizing random lasing and random lasing based sensing.
NASA Astrophysics Data System (ADS)
Al-Shenqiti, A.; Oldham, J.
2003-12-01
The purpose of this study was to investigate the efficacy of LLLT in the treatment of trigger points (TrPs) that are associated with rotator cuff tendonitis. A double-blind randomized controlled trail was conducted. Sixty patients were randomly allocated to one of two groups: sham or laser therapy. The laser (Excel, Omega Universal Technologies Ltd, London, UK) parameters used were a wavelength of 820 nm, a power output of 100 mW, a frequency of 5000 Hz (modulated) and energy density of 32 J/cm2. The two groups received a course of 12 treatment sessions for four weeks (3 sessions per week). Pain, functional activities (as measured using the Shoulder Pain and Disability Index, SPADI), pressure pain threshold (PPT) and range of motion (ROM) were assessed pre and post treatment, with a three month follow-up assessment. Significant improvements in pain (p < 0.001) were observed for the laser group (6 cm median improvement on a 10 cm VAS) compared to the sham group (2 cm median improvement) immediately post treatment. The improvements in the laser group continued post treatment with a 7 cm median improvement observed at three month follow-up. Similar between group differences were observed for ROM (p < 0.01), functional activities (p <= 0.001) and PPT (p <= 0.05). The findings of the current study suggested that LLLT is effective in treating patients with TrPs associated with rotator cuff tendonitis, when using the parameters described. However, the mechanism of its action is not yet clear, and will require further investigation.
Effects of laser-magnetic blood irradiation in vivo
NASA Astrophysics Data System (ADS)
Zalesskaya, Galina; Ulaschik, Vladimir; Kuchinsky, Andrej; Galay, Olga
2007-06-01
Laser-magnetic field action on blood in vivo was studied within a range 440-650 nm. The primary mechanisms of laser-magnetic blood irradiation in vivo were studied at (1) laser and non-laser irradiation with light of various wavelengths, (2) autohemo-magnetic-therapy, (3) multicolored over-vein irradiation of the blood, (4) the laser-magnetic field actions. Hemoglobin is considered as primary photoacceptor of radiation. The dependence of effectiveness of laser action on light wavelength was compared with known action spectra for blood photostimulation. Magnetic field enhancement of the laser- induced reactions was discussed as result of magnetic field influence on ferromagnetic hem inclusions and on a structure of hemoglobin peptide chains. Hemoglobin oxygenation or deoxygenation processes were analyzed as a first stage of the therapeutic effects depending on a preceding hemoglobin oxygenation degree at pathological state. The laser- magnetic irradiation causes tendency to the normalization of these process. It is proposed that the secondary reactions are initiated by reversible structural changes of erythrocytes membrane caused the strong hemoglobin absorption.
Single-mode SOA-based 1kHz-linewidth dual-wavelength random fiber laser.
Xu, Yanping; Zhang, Liang; Chen, Liang; Bao, Xiaoyi
2017-07-10
Narrow-linewidth multi-wavelength fiber lasers are of significant interests for fiber-optic sensors, spectroscopy, optical communications, and microwave generation. A novel narrow-linewidth dual-wavelength random fiber laser with single-mode operation, based on the semiconductor optical amplifier (SOA) gain, is achieved in this work for the first time, to the best of our knowledge. A simplified theoretical model is established to characterize such kind of random fiber laser. The inhomogeneous gain in SOA mitigates the mode competition significantly and alleviates the laser instability, which are frequently encountered in multi-wavelength fiber lasers with Erbium-doped fiber gain. The enhanced random distributed feedback from a 5km non-uniform fiber provides coherent feedback, acting as mode selection element to ensure single-mode operation with narrow linewidth of ~1kHz. The laser noises are also comprehensively investigated and studied, showing the improvements of the proposed random fiber laser with suppressed intensity and frequency noises.
A random Q-switched fiber laser
Tang, Yulong; Xu, Jianqiu
2015-01-01
Extensive studies have been performed on random lasers in which multiple-scattering feedback is used to generate coherent emission. Q-switching and mode-locking are well-known routes for achieving high peak power output in conventional lasers. However, in random lasers, the ubiquitous random cavities that are formed by multiple scattering inhibit energy storage, making Q-switching impossible. In this paper, widespread Rayleigh scattering arising from the intrinsic micro-scale refractive-index irregularities of fiber cores is used to form random cavities along the fiber. The Q-factor of the cavity is rapidly increased by stimulated Brillouin scattering just after the spontaneous emission is enhanced by random cavity resonances, resulting in random Q-switched pulses with high brightness and high peak power. This report is the first observation of high-brightness random Q-switched laser emission and is expected to stimulate new areas of scientific research and applications, including encryption, remote three-dimensional random imaging and the simulation of stellar lasing. PMID:25797520
Transition from nonresonant to resonant random lasers by the geometrical confinement of disorder.
Ghofraniha, N; Viola, I; Zacheo, A; Arima, V; Gigli, G; Conti, C
2013-12-01
We report on a transition in random lasers that is induced by the geometrical confinement of the emitting material. Different dye doped paper devices with controlled geometry are fabricated by soft lithography and show two distinguished behaviors in the stimulated emission: in the absence of boundary constraints, the energy threshold decreases for larger laser volumes showing the typical trend of diffusive nonresonant random lasers, while when the same material is lithographed into channels, the walls act as cavity and the resonant behavior typical of standard lasers is observed. The experimental results are consistent with the general theories of random and standard lasers and a clear phase diagram of the transition is reported.
Jimenez-Villar, Ernesto; Mestre, Valdeci; de Oliveira, Paulo C; de Sá, Gilberto F
2013-12-21
There has been growing interest in scattering media in recent years, due to their potential applications as solar collectors, photocatalyzers, random lasers and other novel optical devices. Here, we have introduced a novel core-shell scattering medium for a random laser composed of TiO2@Silica nanoparticles. Higher efficiency, lower laser threshold and long photobleaching lifetime in random lasers were demonstrated. This has introduced a new method or parameter (fraction of absorbed pumping), which opens a new avenue to characterize and study the scattering media. Optical chemical and colloidal stabilities were combined by coating a suitable silica shell onto TiO2 nanoparticles.
Silva, Daniela Conceição Gomes Gonçalves e; Plapler, Helio; da Costa, Mateus Matiuzzi; Silva, Silvio Romero Gonçalves e; de Sá, Maria da Conceição Aquino; Silva, Benedito Sávio Lima e
2013-01-01
BACKGROUND Laser therapy is a low cost, non-invasive procedure with good healing results. Doubts exist as to whether laser therapy action on microorganisms can justify research aimed at investigating its possible effects on bacteria-infected wounds. OBJECTIVE To assess the effect of low intensity laser on the rate of bacterial contamination in infected wounds in the skin of rats. METHODS An experimental study using 56 male Wistar rats. The animals were randomly divided into eight groups of seven each. Those in the "infected" groups were infected by Staphylococcus aureus MRSA in the dorsal region. Red laser diode (AlGaInP) 658nm, 5J/cm2 was used to treat the animals in the "treated" groups in scan for 3 consecutive days. Samples were drawn before inoculating bacteria and following laser treatment. For statistical analysis we used the nonparametric Wilcoxon (paired data) method with a significance level of p <0.05. RESULTS The statistical analysis of median values showed that the groups submitted to laser treatment had low bacterial proliferation. CONCLUSION The laser (AlGaInP), with a dose of 5J/cm2 in both intact skin and in wounds of rats infected with Staphylococcus aureus MRSA, is shown to reduce bacterial proliferation. PMID:23539003
Short infrared laser pulses block action potentials in neurons
NASA Astrophysics Data System (ADS)
Walsh, Alex J.; Tolstykh, Gleb P.; Martens, Stacey L.; Ibey, Bennett L.; Beier, Hope T.
2017-02-01
Short infrared laser pulses have many physiological effects on cells including the ability to stimulate action potentials in neurons. Here we show that short infrared laser pulses can also reversibly block action potentials. Primary rat hippocampal neurons were transfected with the Optopatch2 plasmid, which contains both a blue-light activated channel rhodopsin (CheRiff) and a red-light fluorescent membrane voltage reporter (QuasAr2). This optogenetic platform allows robust stimulation and recording of action potential activity in neurons in a non-contact, low noise manner. For all experiments, QuasAr2 was imaged continuously on a wide-field fluorescent microscope using a Krypton laser (647 nm) as the excitation source and an EMCCD camera operating at 1000 Hz to collect emitted fluorescence. A co-aligned Argon laser (488 nm, 5 ms at 10Hz) provided activation light for CheRiff. A 200 mm fiber delivered infrared light locally to the target neuron. Reversible action potential block in neurons was observed following a short infrared laser pulse (0.26-0.96 J/cm2; 1.37-5.01 ms; 1869 nm), with the block persisting for more than 1 s with exposures greater than 0.69 J/cm2. Action potential block was sustained for 30 s with the short infrared laser pulsed at 1-7 Hz. Full recovery of neuronal activity was observed 5-30s post-infrared exposure. These results indicate that optogenetics provides a robust platform for the study of action potential block and that short infrared laser pulses can be used for non-contact, reversible action potential block.
Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers
NASA Astrophysics Data System (ADS)
Hu, Jun; Xu, Hebing; Li, Chao
2018-03-01
Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.
Narrow-band generation in random distributed feedback fiber laser.
Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V
2013-07-15
Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.
The Nuts and Bolts of Low-level Laser (Light) Therapy
Chung, Hoon; Dai, Tianhong; Sharma, Sulbha K.; Huang, Ying-Ying; Carroll, James D.; Hamblin, Michael R.
2011-01-01
Soon after the discovery of lasers in the 1960s it was realized that laser therapy had the potential to improve wound healing and reduce pain, inflammation and swelling. In recent years the field sometimes known as photobiomodulation has broadened to include light-emitting diodes and other light sources, and the range of wavelengths used now includes many in the red and near infrared. The term “low level laser therapy” or LLLT has become widely recognized and implies the existence of the biphasic dose response or the Arndt-Schulz curve. This review will cover the mechanisms of action of LLLT at a cellular and at a tissular level and will summarize the various light sources and principles of dosimetry that are employed in clinical practice. The range of diseases, injuries, and conditions that can be benefited by LLLT will be summarized with an emphasis on those that have reported randomized controlled clinical trials. Serious life-threatening diseases such as stroke, heart attack, spinal cord injury, and traumatic brain injury may soon be amenable to LLLT therapy. PMID:22045511
The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra
Antenucci, Fabrizio; Crisanti, Andrea; Leuzzi, Luca
2015-01-01
The behavior of a newly introduced overlap parameter, measuring the correlation between intensity fluctuations of waves in random media, is analyzed in different physical regimes, with varying amount of disorder and non-linearity. This order parameter allows to identify the laser transition in random media and describes its possible glassy nature in terms of emission spectra data, the only data so far accessible in random laser measurements. The theoretical analysis is performed in terms of the complex spherical spin-glass model, a statistical mechanical model describing the onset and the behavior of random lasers in open cavities. Replica Symmetry Breaking theory allows to discern different kinds of randomness in the high pumping regime, including the most complex and intriguing glassy randomness. The outcome of the theoretical study is, eventually, compared to recent intensity fluctuation overlap measurements demonstrating the validity of the theory and providing a straightforward interpretation of qualitatively different spectral behaviors in different random lasers. PMID:26616194
Brownian motion properties of optoelectronic random bit generators based on laser chaos.
Li, Pu; Yi, Xiaogang; Liu, Xianglian; Wang, Yuncai; Wang, Yongge
2016-07-11
The nondeterministic property of the optoelectronic random bit generator (RBG) based on laser chaos are experimentally analyzed from two aspects of the central limit theorem and law of iterated logarithm. The random bits are extracted from an optical feedback chaotic laser diode using a multi-bit extraction technique in the electrical domain. Our experimental results demonstrate that the generated random bits have no statistical distance from the Brownian motion, besides that they can pass the state-of-the-art industry-benchmark statistical test suite (NIST SP800-22). All of them give a mathematically provable evidence that the ultrafast random bit generator based on laser chaos can be used as a nondeterministic random bit source.
Gold nanoparticle-based plasmonic random fiber laser
NASA Astrophysics Data System (ADS)
Hu, Zhijia; Liang, Yunyun; Xie, Kang; Gao, Pengfei; Zhang, Douguo; Jiang, Haiming; Shi, Fan; Yin, Leicheng; Gao, Jiangang; Ming, Hai; Zhang, Qijin
2015-03-01
We have reported the realization of a plasmonic random fiber laser based on the localized surface plasmonic resonance of gold nanoparticles (NPs) in the liquid core optical fiber. The liquid core material contains a dispersive solution of gold NPs and laser dye pyrromethene 597 in toluene. It was experimentally proved that the fluorescence quenching of the dye is restrained in the optical fiber, which is considered one of the main sources of loss in the traditional laser system. Meanwhile, the random lasing can be more easily obtained in the random laser system with more overlap between the plasmonic resonance of the gold NPs and the photoluminescence spectrum of the dye molecules.
Suppression of thermal frequency noise in erbium-doped fiber random lasers.
Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang
2014-02-15
Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6 Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.
Narrowband random lasing in a Bismuth-doped active fiber
Lobach, Ivan A.; Kablukov, Sergey I.; Skvortsov, Mikhail I.; Podivilov, Evgeniy V.; Melkumov, Mikhail A.; Babin, Sergey A.; Dianov, Evgeny M.
2016-01-01
Random fiber lasers operating via the Rayleigh scattering (RS) feedback attract now a great deal of attention as they generate a high-quality unidirectional laser beam with the efficiency and performance comparable and even exceeding those of fiber lasers with conventional cavities. Similar to other random lasers, both amplification and random scattering are distributed here along the laser medium being usually represented by a kilometers-long passive fiber with Raman gain. However, it is hardly possible to utilize normal gain in conventional active fibers as they are usually short and RS is negligible. Here we report on the first demonstration of the RS-based random lasing in an active fiber. This became possible due to the implementation of a new Bi-doped fiber with an increased amplification length and RS coefficient. The realized Bi-fiber random laser generates in a specific spectral region (1.42 μm) exhibiting unique features, in particular, a much narrower linewidth than that in conventional cavity of the same length, in agreement with the developed theory. Lasers of this type have a great potential for applications as Bi-doped fibers with different host compositions enable laser operation in an extremely broad range of wavelengths, 1.15–1.78 μm. PMID:27435232
Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers
Yao, B. C.; Rao, Y. J.; Wang, Z. N.; Wu, Y.; Zhou, J. H.; Wu, H.; Fan, M. Q.; Cao, X. L.; Zhang, W. L.; Chen, Y. F.; Li, Y. R.; Churkin, D.; Turitsyn, S.; Wong, C. W.
2015-01-01
Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses. PMID:26687730
Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers.
Yao, B C; Rao, Y J; Wang, Z N; Wu, Y; Zhou, J H; Wu, H; Fan, M Q; Cao, X L; Zhang, W L; Chen, Y F; Li, Y R; Churkin, D; Turitsyn, S; Wong, C W
2015-12-21
Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses.
Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold.
Lee, Chia-Rong; Lin, Jia-De; Huang, Bo-Yuang; Lin, Shih-Hung; Mo, Ting-Shan; Huang, Shuan-Yu; Kuo, Chie-Tong; Yeh, Hui-Chen
2011-01-31
This investigation elucidates for the first time electrically controllable random lasers below the threshold voltage in dye-doped liquid crystal (DDLC) cells with and without adding an azo-dye. Experimental results show that the lasing intensities and the energy thresholds of the random lasers can be decreased and increased, respectively, by increasing the applied voltage below the Fréedericksz transition threshold. The below-threshold-electric-controllability of the random lasers is attributable to the effective decrease of the spatial fluctuation of the orientational order and thus of the dielectric tensor of LCs by increasing the electric-field-aligned order of LCs below the threshold, thereby increasing the diffusion constant and decreasing the scattering strength of the fluorescence photons in their recurrent multiple scattering. This can result in the decrease in the lasing intensity of the random lasers and the increase in their energy thresholds. Furthermore, the addition of an azo-dye in DDLC cell can induce the range of the working voltage below the threshold for the control of the random laser to reduce.
Sutton, J A; Gillin, W P; Grattan, T J; Clarke, G D; Kilminster, S G
2002-01-01
Aims To discover whether a new infra-red laser method could detect a change in pain threshold after as mild an analgesic as paracetamol and whether an effervescent liquid formulation produced a faster onset of action than tablets. Methods This double-blind, placebo controlled randomized study used a portable, infra-red laser to measure ‘first pain’ thresholds on the nondominant forearm in 12 normal volunteers before and after 1 g of paracetamol or placebo. The mean of six recordings was determined three times before dosing, the first being used as a familiarization procedure, and 14 times after dosing. Results We detected a small (2%), statistically significant difference in pain threshold between a liquid formulation of paracetamol and placebo at 30 and 60 min (P = 0.004 and P = 0.001), but not between tablets and placebo. Liquid also increased the threshold significantly compared with tablets at 60 min (P = 0.01). Conclusions To detect such a small increase in pain threshold requires a highly consistent measure and the coefficient of variation was 2% for the study overall, surprisingly low for a subjective phenomenon. The reasons for this include minimizing reflectance by blacking the skin, using a nonhairy site, averaging six data points at each sample time and controlling closely the ambient conditions and the subjects’ preparation for studies. PMID:11849194
Laser therapy of infectious diseases: results and mechanism of therapeutic action
NASA Astrophysics Data System (ADS)
Ovsiannikov, Victor; Sologub, T.; Pustashova, N.; Kuznetsov, N.; Masterova, O.; Rakhmanova, A.; Sizova, N.; Karpushina, I. A.
2001-10-01
We used laser therapies for viral hepatitis since 1993 and for HIV-patients since 1995. For these purposes we developed the special infrared laser and proposed some schemes of laser action on organism. Our laser works in pulse-periodical regime on the wavelength 890 nm with an average power of laser radiation (10 divided by 60) mW. All laser action was produced transcutaneous only. We did not observe any side effects or negative results from laser therapy with our laser. The treatment of viral hepatitis was produced by means of irradiation a blood in cubital veins, liver and thymus (breast bone area). Laser therapy was produced both on the usual base and disintoxical therapies. More than 300 viral hepatitis patients had received the laser treatment and for the most of them it gave a positive results. The treatment of HIV-patients was produced by means of irradiation six areas of their organism, which are responsible for immune system work. All our HIV-patients (25 men) who received laser treatment live up to now.
Turbulence hierarchy in a random fibre laser
González, Iván R. Roa; Lima, Bismarck C.; Pincheira, Pablo I. R.; Brum, Arthur A.; Macêdo, Antônio M. S.; Vasconcelos, Giovani L.; de S. Menezes, Leonardo; Raposo, Ernesto P.; Gomes, Anderson S. L.; Kashyap, Raman
2017-01-01
Turbulence is a challenging feature common to a wide range of complex phenomena. Random fibre lasers are a special class of lasers in which the feedback arises from multiple scattering in a one-dimensional disordered cavity-less medium. Here we report on statistical signatures of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture of two distributions with exponentially decaying tails near the threshold and a mixture of distributions with stretched-exponential tails above threshold. All distributions are well described by a hierarchical stochastic model that incorporates Kolmogorov’s theory of turbulence, which includes energy cascade and the intermittence phenomenon. Our findings have implications for explaining the remarkably challenging turbulent behaviour in photonics, using a random fibre laser as the experimental platform. PMID:28561064
Laser positioning of four-quadrant detector based on pseudo-random sequence
NASA Astrophysics Data System (ADS)
Tang, Yanqin; Cao, Ercong; Hu, Xiaobo; Gu, Guohua; Qian, Weixian
2016-10-01
Nowadays the technology of laser positioning based on four-quadrant detector has the wide scope of the study and application areas. The main principle of laser positioning is that by capturing the projection of the laser spot on the photosensitive surface of the detector, and then calculating the output signal from the detector to obtain the coordinates of the spot on the photosensitive surface of the detector, the coordinate information of the laser spot in the space with respect to detector system which reflects the spatial position of the target object is calculated effectively. Given the extensive application of FPGA technology and the pseudo-random sequence has the similar correlation of white noise, the measurement process of the interference, noise has little effect on the correlation peak. In order to improve anti-jamming capability of the guided missile in tracking process, when the laser pulse emission, the laser pulse period is pseudo-random encoded which maintains in the range of 40ms-65ms so that people of interfering can't find the exact real laser pulse. Also, because the receiver knows the way to solve the pseudo-random code, when the receiver receives two consecutive laser pulses, the laser pulse period can be decoded successfully. In the FPGA hardware implementation process, around each laser pulse arrival time, the receiver can open a wave door to get location information contained the true signal. Taking into account the first two consecutive pulses received have been disturbed, so after receiving the first laser pulse, it receives all the laser pulse in the next 40ms-65ms to obtain the corresponding pseudo-random code.
The random walk of a drilling laser beam
NASA Technical Reports Server (NTRS)
Anthony, T. R.
1980-01-01
The disregistry of holes drilled with a pulse laser beam in 330-micron-thick single-crystal silicon-on-sapphire wafers is examined. The exit positions of the holes were displaced from the hole entrance positions on the opposing face of the wafer, and this random displacement increased with the number of laser pulses required. A model in which the bottom of the drill hole experiences small random displacements during each laser pulse is used to describe the experimental observations. It is shown that the average random displacement caused by each pulse is only a few percent of the hole diameter and can be reduced by using as few laser pulses as necessary while avoiding the cracking and spalling of the wafer that occur with a hole drilled with a single pulse.
Color speckle in laser displays
NASA Astrophysics Data System (ADS)
Kuroda, Kazuo
2015-07-01
At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).
Mie resonances to tailor random lasers
NASA Astrophysics Data System (ADS)
García, P. D.; Ibisate, M.; Sapienza, R.; Wiersma, D. S.; López, C.
2009-07-01
In this paper, we present an optical characterization of photonic glass-based random lasers. We show how the resonant behavior of diffuse light transport through such systems can tailor the lasing emission when a gain medium is added to the glass. A DNA-based organic dye is used as gain medium. The resonances in the transport mean-free path influence the lasing wavelength of the random laser. The laser wavelength is therefore controlled by the sphere diameter. Furthermore, the existence of Mie resonances reduces the necessary pump energy to reach the lasing threshold.
Experimental study of a quantum random-number generator based on two independent lasers
NASA Astrophysics Data System (ADS)
Sun, Shi-Hai; Xu, Feihu
2017-12-01
A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.
Random distributed feedback fiber laser at 2.1 μm.
Jin, Xiaoxi; Lou, Zhaokai; Zhang, Hanwei; Xu, Jiangming; Zhou, Pu; Liu, Zejin
2016-11-01
We demonstrate a random distributed feedback fiber laser at 2.1 μm. A high-power pulsed Tm-doped fiber laser operating at 1.94 μm with a temporal duty ratio of 30% was employed as a pump laser to increase the equivalent incident pump power. A piece of 150 m highly GeO2-doped silica fiber that provides a strong Raman gain and random distributed feedbacks was used to act as the gain medium. The maximum output power reached 0.5 W with the optical efficiency of 9%, which could be further improved by more pump power and optimized fiber length. To the best of our knowledge, this is the first demonstration of random distributed feedback fiber laser at 2 μm band based on Raman gain.
The effects of Nd2O3 concentration in the laser emission of TeO2-ZnO glasses
NASA Astrophysics Data System (ADS)
Moreira, L. M.; Anjos, V.; Bell, M. J. V.; Ramos, C. A. R.; Kassab, L. R. P.; Doualan, D. J. L.; Camy, P.; Moncorgé, R.
2016-08-01
The present work reports the modification introduced by different Nd2O3 concentration on optical properties and the laser operation of Nd3+ doped (TeO2-ZnO) bulk tellurite glass. The spectroscopic data are analyzed within the Judd Ofelt formalism framework and the results are compared to the fluorescence lifetime and emission measurements to derive values for the quantum efficiency and the stimulated emission cross section of the considered 4F3/2 → 4I11/2 infrared laser transition around 1062.5 nm. Continuous-wave laser action is achieved with this bulk tellurite glass by pumping the sample inside a standard plan-concave mirror laser cavity with different output couplers. It is possible to observe coherent emission only for the lower concentration (0.5%(wt.) of Nd2 O3). Also laser action could only be observed for this sample with threshold pump power of 73 mW associated with a laser slope efficiency of 8% for an output coupler transmission of 4% indicating that TeO2-ZnO are potential materials for laser action. The results presented in this work together with those previously reported with higher concentration (1.0% (wt) of Nd2O3) determine the adequate Nd2O3 concentration for laser action and guide the correct experimental procedure for TeO2-ZnO glasses preparation.
NASA Technical Reports Server (NTRS)
Kwon, Jin H.; Lee, Ja H.
1989-01-01
The far-field beam pattern and the power-collection efficiency are calculated for a multistage laser-diode-array amplifier consisting of about 200,000 5-W laser diode arrays with random distributions of phase and orientation errors and random diode failures. From the numerical calculation it is found that the far-field beam pattern is little affected by random failures of up to 20 percent of the laser diodes with reference of 80 percent receiving efficiency in the center spot. The random differences in phases among laser diodes due to probable manufacturing errors is allowed to about 0.2 times the wavelength. The maximum allowable orientation error is about 20 percent of the diffraction angle of a single laser diode aperture (about 1 cm). The preliminary results indicate that the amplifier could be used for space beam-power transmission with an efficiency of about 80 percent for a moderate-size (3-m-diameter) receiver placed at a distance of less than 50,000 km.
NASA Astrophysics Data System (ADS)
Ye, Lihua; Wang, Yan; Feng, Yangyang; Liu, Bo; Gu, Bing; Cui, Yiping; Lu, Yanqing
2018-03-01
By changing the doping concentration of the chiral agent to adjust the relative position of the reflection band of cholesteric liquid crystals and the fluorescence emission spectrum of the dye, photonic band-edge and random lasing were observed, respectively. The reflection band of the cholesteric phase liquid crystal can also be controlled by adjusting the temperature: the reflection band is blue-shifted with increasing temperature, and a reversible switch from photonic band-edge to random lasing is obtained. Furthermore, the laser line width can be thermally adjusted from 1.1 nm (at 27 °C) to 4.6 nm (at 32.1 °C). A thermally tunable polarization state of a random laser from dual cells was observed, broadening the field of application liquid crystal random lasers.
Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Kim, Kap-Joong; Kim, Jong-Hoi; Youn, Chun Ju
2017-08-21
Most polarization-based BB84 quantum key distribution (QKD) systems utilize multiple lasers to generate one of four polarization quantum states randomly. However, random bit generation with multiple lasers can potentially open critical side channels that significantly endangers the security of QKD systems. In this paper, we show unnoticed side channels of temporal disparity and intensity fluctuation, which possibly exist in the operation of multiple semiconductor laser diodes. Experimental results show that the side channels can enormously degrade security performance of QKD systems. An important system issue for the improvement of quantum bit error rate (QBER) related with laser driving condition is further addressed with experimental results.
Applications of laser in ischemic heart disease in China
NASA Astrophysics Data System (ADS)
Chen, Mingzhe; Zhang, Yongzhen
1999-09-01
Current data demonstrate that laser coronary angioplasty is most useful in complex lesions not well suited for percutaneous transluminal coronary angioplasty (PTCA). It is not `stand-alone' procedure, and should be considered an adjunct to PTCA or stenting. To date, there are not data supporting reduction of restenosis. Direct myocardial revascularization (DMR), either transmyocardial revascularization (TMR) or percutaneous (catheter-based) myocardial revascularization (PMR), uses laser to create channels between ischemic myocardium and left ventricular cavity. Candidates include patients with chronic, severe, refractory angina and those unable to undergo angioplasty or bypass surgery because conduits or acceptable target vessels are lacking. Although the mechanisms of action of DMR have not yet been clearly elucidated, but several theories have been proposed, including channel patency, angiogenesis, and denervation. TMR, typically requiring open thoracotomy, is effective for improving myocardial perfusion and reducing angina. Pilot studies demonstrate that clinical application of PMR is feasible and safe and effective for decreasing angina. Late sequelae also remain to be determined. An ongoing randomized clinical trial is comparing PMR with conventional medical therapy in patients with severe, refractory angina and disease unamenable to angioplasty or bypass surgery.
Resonance energy transfer process in nanogap-based dual-color random lasing
NASA Astrophysics Data System (ADS)
Shi, Xiaoyu; Tong, Junhua; Liu, Dahe; Wang, Zhaona
2017-04-01
The resonance energy transfer (RET) process between Rhodamine 6G and oxazine in the nanogap-based random systems is systematically studied by revealing the variations and fluctuations of RET coefficients with pump power density. Three working regions stable fluorescence, dynamic laser, and stable laser are thus demonstrated in the dual-color random systems. The stable RET coefficients in fluorescence and lasing regions are generally different and greatly dependent on the donor concentration and the donor-acceptor ratio. These results may provide a way to reveal the energy distribution regulars in the random system and to design the tunable multi-color coherent random lasers for colorful imaging.
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-01-01
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-07-15
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.
Experimental basis of laser therapy in pharynx pathology
NASA Astrophysics Data System (ADS)
Toropova, Lyudmila A.; Fedyukovich, Lyudmila V.; Egorova, Alla B.
1998-07-01
Membrane-damaging action of laser irradiation comparing with membranotoxic activity of model xenobiotics (Novocain and Acrylamide) has been evaluated in our experiments using Rosette-Forming Ability test (RFA) on rat blood lymphocytes, thymocytes, splenocytes for the assessment of membrane- mediated and receptor-mediated immune cells interactions. Infra-red laser irradiation (80 and 1500 Hz, 0.89 mkM) in vivo induced 2-fold increase of lymphocytes capable to form specific rosettes with xenogenous erythrocytes. T-lymphocytes were greatly sensitive to the laser influence. Acute laser exposure (128 sec) induced changes similar to Novocain action (1/2 LD50). Five-fold increase of the laser exposure time (especially for low frequency regime) resulted in more prominent changes in intercellular communication which were found to be similar to the action of Acrylamide (1/2 LD50). B-lymphocytes and splenocytes have been assumed as target cells for the action of laser with the frequency of 1500 Hz. Course application of IR or He-Ne laser induced decrease of RFA for all immune cells tested, and for blood lymphocytes, respectively. Thus, laser-induced changes in immune cells interaction may be connected with reversible injury of cell surface membrane followed by the dysregulation of cellular communication. Based on experimental data, the optimal regime of IR laserotherapy (0.89 and 0.63 micrometer) was chosen for the treatment of 200 patients with chronic decompensated tonsillitis. Efficiency of laser application was confirmed by cytological analysis of lacunes, laserodopplerofluometria, vegetative nervous system evaluation etc. and was found to be dependent on membranotropic activity of laser irradiation.
Measuring milk fat content by random laser emission
NASA Astrophysics Data System (ADS)
Abegão, Luis M. G.; Pagani, Alessandra A. C.; Zílio, Sérgio C.; Alencar, Márcio A. R. C.; Rodrigues, José J.
2016-10-01
The luminescence spectra of milk containing rhodamine 6G are shown to exhibit typical signatures of random lasing when excited with 532 nm laser pulses. Experiments carried out on whole and skim forms of two commercial brands of UHT milk, with fat volume concentrations ranging from 0 to 4%, presented lasing threshold values dependent on the fat concentration, suggesting that a random laser technique can be developed to monitor such important parameter.
Measuring milk fat content by random laser emission.
Abegão, Luis M G; Pagani, Alessandra A C; Zílio, Sérgio C; Alencar, Márcio A R C; Rodrigues, José J
2016-10-12
The luminescence spectra of milk containing rhodamine 6G are shown to exhibit typical signatures of random lasing when excited with 532 nm laser pulses. Experiments carried out on whole and skim forms of two commercial brands of UHT milk, with fat volume concentrations ranging from 0 to 4%, presented lasing threshold values dependent on the fat concentration, suggesting that a random laser technique can be developed to monitor such important parameter.
Nonradiative relaxation and laser action in tunable solid state laser crystals
NASA Technical Reports Server (NTRS)
Petricevic, V.; Gayen, S. K.; Alfano, R. R.
1989-01-01
Room-temperature pulsed laser action was obtained in chromium-activated forsterite (Cr:Mg2SiO4) for both 532 and 1064 nm pumping. Free running laser emission in both cases is centered at 1235 nm and has a bandwidth of approximately 30 nm. Slope efficiency as high as 22 percent was measured. Using different sets of output mirrors and a single birefrigent plate as the intracavity wavelength selecting element tunability over the 1167 to 1268 nm spectral range was demonstrated. Continuous wave laser operation at room temperature was obtained for 1064 nm pumping from a CW Nd:YAG laser. The output power slope efficiency is 6.8 percent. The gain cross section is estimated to be 1.1 x 10 to the 19th sq cm. Spectroscopic studies suggest that the laser action is due to a center other than the trivalent chromium (Cr 3+), presumably the tetravalent chromium (Cr 4+) in a tetrahedrally coordinated site.
NASA Astrophysics Data System (ADS)
Okishev, Andrey V.; Zuegel, Jonathan D.
2006-12-01
Intracavity-pumped Raman laser action in a fiber-laser pumped, single-resonant, continuous-wave (cw) MgO:PPLN optical parametric oscillator with a high-Q linear resonator has been observed for the first time to our knowledge. Experimental results of this phenomenon investigation will be discussed.
NASA Astrophysics Data System (ADS)
Yuvchenko, S. A.; Ushakova, E. V.; Pavlova, M. V.; Alonova, M. V.; Zimnyakov, D. A.
2018-04-01
We consider the practical realization of a new optical probe method of the random media which is defined as the reference-free path length interferometry with the intensity moments analysis. A peculiarity in the statistics of the spectrally selected fluorescence radiation in laser-pumped dye-doped random medium is discussed. Previously established correlations between the second- and the third-order moments of the intensity fluctuations in the random interference patterns, the coherence function of the probe radiation, and the path difference probability density for the interfering partial waves in the medium are confirmed. The correlations were verified using the statistical analysis of the spectrally selected fluorescence radiation emitted by a laser-pumped dye-doped random medium. Water solution of Rhodamine 6G was applied as the doping fluorescent agent for the ensembles of the densely packed silica grains, which were pumped by the 532 nm radiation of a solid state laser. The spectrum of the mean path length for a random medium was reconstructed.
Optical parametric oscillation in a random poly-crystalline medium: ZnSe ceramic
NASA Astrophysics Data System (ADS)
Ru, Qitian; Kawamori, Taiki; Lee, Nathaniel; Chen, Xuan; Zhong, Kai; Mirov, Mike; Vasilyev, Sergey; Mirov, Sergey B.; Vodopyanov, Konstantin L.
2018-02-01
We demonstrate an optical parametric oscillator (OPO) based on random phase matching in a polycrystalline χ(2) material, ZnSe. The subharmonic OPO utilized a 1.5-mm-long polished ZnSe ceramic sample placed at the Brewster's angle and was synchronously pumped by a Kerr-lens mode-locked Cr:ZnS laser with a central wavelength of 2.35 μm, a pulse duration of 62 fs, and a repetition frequency of 79 MHz. The OPO had a 90-mW pump threshold, and produced an ultrabroadband spectrum spanning 3-7.5 μm. The observed pump depletion was as high as 79%. The key to success in achieving the OPO action was choosing the average grain size of the ZnSe ceramic to be close to the coherence length ( 100 μm) for our 3-wave interaction. This is the first OPO that uses random polycrystalline material with quadratic nonlinearity and the first OPO based on ZnSe. Very likely, random phase matching in ZnSe and similar random polycrystalline materials (ZnS, CdS, CdSe, GaP) represents a viable route for generating few-cycle pulses and multi-octave frequency combs, thanks to a very broadband nonlinear response.
Multiwavelength ytterbium-Brillouin random Rayleigh feedback fiber laser
NASA Astrophysics Data System (ADS)
Wu, Han; Wang, Zinan; Fan, Mengqiu; Li, Jiaqi; Meng, Qingyang; Xu, Dangpeng; Rao, Yunjiang
2018-03-01
In this letter, we experimentally demonstrate the multiwavelength ytterbium-Brillouin random fiber laser for the first time, in the half-open cavity formed by a fiber loop mirror and randomly distributed Rayleigh mirrors. With a cladding-pumped ytterbium-doped fiber and a long TrueWave fiber, the narrow linewidth Brillouin pump can generate multiple Brillouin Stokes lines with hybrid ytterbium-Brillouin gain. Up to six stable channels with a spacing of about 0.06 nm are obtained. This work extends the operation wavelength of the multiwavelength Brillouin random fiber laser to the 1 µm band, and has potential in various applications.
Acupuncture for alcohol withdrawal: a randomized controlled trial.
Trümpler, François; Oez, Suzan; Stähli, Peter; Brenner, Hans Dieter; Jüni, Peter
2003-01-01
Previous trials on acupuncture in alcohol addiction were in outpatients and focused on relapse prevention. Rates of dropout were high and interpretation of results difficult. We compared auricular laser and needle acupuncture with sham laser stimulation in reducing the duration of alcohol withdrawal. Inpatients undergoing alcohol withdrawal were randomly allocated to laser acupuncture (n = 17), needle acupuncture (n = 15) or sham laser stimulation (n = 16). Attempts were made to blind patients, therapists and outcome assessors, but this was not feasible for needle acupuncture. The duration of withdrawal symptoms (as assessed using a nurse-rated scale) was the primary outcome; the duration of sedative prescription was the secondary outcome. Patients randomized to laser and sham laser had identical withdrawal symptom durations (median 4 days). Patients randomized to needle stimulation had a shorter duration of withdrawal symptoms (median 3 days; P = 0.019 versus sham intervention), and tended to have a shorter duration of sedative use, but these differences diminished after adjustment for baseline differences. The data from this pilot trial do not suggest a relevant benefit of auricular laser acupuncture for alcohol withdrawal. A larger trial including adequate sham interventions is needed, however, to reliably determine the effectiveness of any type of auricular acupuncture in this condition.
Nearly-octave wavelength tuning of a continuous wave fiber laser
Zhang, Lei; Jiang, Huawei; Yang, Xuezong; Pan, Weiwei; Cui, Shuzhen; Feng, Yan
2017-01-01
The wavelength tunability of conventional fiber lasers are limited by the bandwidth of gain spectrum and the tunability of feedback mechanism. Here a fiber laser which is continuously tunable from 1 to 1.9 μm is reported. It is a random distributed feedback Raman fiber laser, pumped by a tunable Yb doped fiber laser. The ultra-wide wavelength tunability is enabled by the unique property of random distributed feedback Raman fiber laser that both stimulated Raman scattering gain and Rayleigh scattering feedback are available at any wavelength. The dispersion property of the gain fiber is used to control the spectral purity of the laser output. PMID:28198414
Cautionary note concerning the CuSO4 X-ray laser. [alternative to lasing action
NASA Technical Reports Server (NTRS)
Billman, K. W.; Mark, H.
1973-01-01
For the so far unconfirmed lasing action claimed by Kepros et al. (1972) to have been obtained by focusing a 1.06-micron radiation of a q-switched Nd(3+) glass laser to a small cylindrical volume inside a CuSO4-doped gelatin medium supported between two glass plates, an alternate explanation is proposed that does not depend on the assumption of laser action in copper. The proposed explanation shows how collimated X-ray beams might be created under the experimental conditions described by Kepros et al.
Lobach, Ivan A; Kablukov, Sergey I; Babin, Sergey A
2017-09-15
We report on, to the best of our knowledge, the first demonstration of a linearly polarized cascaded Raman fiber laser based on a simple half-open cavity with a broadband composite reflector and random distributed feedback in a polarization-maintaining phosphosilicate fiber with a zero dispersion wavelength at ∼1400 nm. Pumped by a 1080 nm Yb-doped fiber laser, the random laser delivers more than 8 W at 1262 nm and 9 W at 1515 nm with a polarization extinction ratio of 27 dB. The generation linewidths amount to about 1 and 3 nm, respectively, being almost independent of power, in correspondence with the theory of a cascaded random fiber lasing.
Dopamine sensing and measurement using threshold and spectral measurements in random lasers.
Wan Ismail, Wan Zakiah; Liu, Guozhen; Zhang, Kai; Goldys, Ewa M; Dawes, Judith M
2016-01-25
We developed a novel dopamine sensing and measurement technique based on aggregation of gold nanoparticles in random lasers. Dopamine combined with copper ions triggers the aggregation of gold nanoparticles and thus affects the performance of random lasers. Dopamine sensing can be achieved using four parameters which are sensitive to the presence of dopamine, that is emission peak shift, emission linewidth, signal-to-noise ratio (peak emission intensity / noise) and random lasing threshold. The dopamine is most sensitively detected by a change in the emission linewidth with a limit of detection of 1 × 10(-7) M, as well as by an increase in the lasing threshold. The dopamine concentration from 1 × 10(-7) M to 1 × 10(-2) M can be determined by calibrating with the laser threshold.
All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings.
Zhang, W L; Ma, R; Tang, C H; Rao, Y J; Zeng, X P; Yang, Z J; Wang, Z N; Gong, Y; Wang, Y S
2015-07-01
An all-optical method to control the lasing modes of Er-doped random fiber lasers (RFLs) is proposed and demonstrated. In the RFL, an Er-doped fiber (EDF) recoded with randomly separated fiber Bragg gratings (FBG) is used as the gain medium and randomly distributed reflectors, as well as the controllable element. By combining random feedback of the FBG array and Fresnel feedback of a cleaved fiber end, multi-mode coherent random lasing is obtained with a threshold of 14 mW and power efficiency of 14.4%. Moreover, a laterally-injected control light is used to induce local gain perturbation, providing additional gain for certain random resonance modes. As a result, active mode selection of the RFL is realized by changing locations of the laser cavity that is exposed to the control light.
Common causes of injury and legal action in laser surgery.
Jalian, H Ray; Jalian, Chris A; Avram, Mathew M
2013-02-01
To identify common causes of legal action, injuries, claims, and decisions related to medical professional liability claims stemming from cutaneous laser surgery. Search of online public legal documents using a national database. Frequency and nature of cases, including year of litigation, location and certification of provider, injury sustained, cause of legal action, verdict, and indemnity payment. From 1985 to 2012, the authors identified 174 cases related to injury stemming from cutaneous laser surgery. The incidence of litigation related to laser surgery shows an increasing trend, with peak occurrence in 2010. Laser hair removal was the most common litigated procedure. Nonphysician operators accounted for a substantial subset of these cases, with their physician supervisors named as defendants, despite not performing the procedure. Plastic surgery was the specialty most frequently litigated against. Of the preventable causes of action, the most common was failure to obtain an informed consent. Of the 120 cases with public decisions, 61 (50.8%) resulted in decisions in favor of the plaintiff. The mean indemnity payment was $380 719. Claims related to cutaneous laser surgery are increasing and result in indemnity payments that exceed the previously reported average across all medical specialties. Nonphysicians performing these procedures will be held to a standard of care corresponding to an individual with appropriate training; thus, physicians are ultimately responsible for the actions of their nonphysician agents.
Kubsik, Anna; Klimkiewicz, Robert; Klimkiewicz, Paulina; Janczewska, Katarzyna; Jankowska, Agnieszka; Łukasiak, Adam; Woldańska-Okońska, Marta
2016-04-01
Multiple sclerosis is one of the most common demyelinating disease of the CNS connected with the autoimmune action. The effect of the disease is progressive disability, and one of the symptoms is pain. In relieving pain in the course of MS physical procedures and exercises of physiotherapy are used. The aim of the study was assessment of the pain in patients with the multiple sclerosis after applying laser radiation, magnetostimulation and kinesiotherapy. The studied material was consisted of 120 patients with multiple sclerosis of both sexes (82 women and 38 men) aged 21-81 years. Patients were randomly divided into 4 treatment groups and the assesment was performed three times. In the first group laser therapy, in the group II laser and magnetostimulation, in the third group kinesiotherapy, in the fourth group magnetostimulation was used. The same program of physiotherapy in all groups was used. All patients were performed the following tests to assess of the pain: The Laitinen Modified Questionnaire Indicators of Pain of and the Visual- Analogue Scale (VAS). In all treatment groups was observed tends to decrease a result of a point in The Laitinen Modified Questionnaire Indicators of Pain and the Visual-Analogue Scale (VAS). Correlation between groups demonstrated statistically significant result on the level p<0.05 in the group where the laser treatment was applied towards group II assessed with parameter of the Questionnaire of Pain according to Laitinen, as well as towards group II and III assessed with parameter - of the Visual Analogue Scale (VAS). The good result, i.e. the reduction of the spot value, after the III examination towards the preliminary examination were got in the group II. Laser radiation is an effective method which has an analgesisc action. The combination of laser radiation and magnetostimulation reduces pain in patients with multiple sclerosis, and also allows to maintain a therapeutic effect even after the cessation of the application of these procedures, which indicates the possibility to elicitation the biological phenomenon of hysteresis in these methods. © 2016 MEDPRESS.
NASA Astrophysics Data System (ADS)
Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.
2016-10-01
A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.
Investigation of the low-level modulated light action
NASA Astrophysics Data System (ADS)
Antonov, Sergei N.; Sotnikov, V. N.; Koreneva, L. G.
1994-07-01
Now there exists no clear complete knowledge about mechanisms and pathways by which low level laser bioactivation works. Modulated laser light action has been investigated two new ways: dynamical infrared thermography and computing image of living brain. These ways permit observation in real time laser action on peripheral blood flow, reflex reactions to functional probes, thermoregulation mechanisms as well as brain electrical activity changes of humans. We have designed a universal apparatus which produced all regimes of the output laser light. It has a built-in He-Ne laser with an acousto-optic modulator and an infrared GaAs laser. The device provided spatial combination of both the light beams and permitted us to irradiate an object both separately and simultaneously. This research shows that the most effective frequencies range from several to dozens of hertz. The duty factor and frequency scanning are also important. On the basis of these results in Russian clinics new treatment methods using modulated light are applied in practical neurology, gynecology, etc.
Cascaded Raman lasing in a PM phosphosilicate fiber with random distributed feedback
NASA Astrophysics Data System (ADS)
Lobach, Ivan A.; Kablukov, Sergey I.; Babin, Sergey A.
2018-02-01
We report on the first demonstration of a linearly polarized cascaded Raman fiber laser based on a simple half-open cavity with a broadband composite reflector and random distributed feedback in a polarization maintaining phosphosilicate fiber operating beyond zero dispersion wavelength ( 1400 nm). With increasing pump power from a Yb-doped fiber laser at 1080 nm, the random laser generates subsequently 8 W at 1262 nm and 9 W at 1515 nm with polarization extinction ratio of 27 dB. The generation linewidths amount to about 1 nm and 3 nm, respectively, being almost independent of power, in correspondence with the theory of a cascaded random lasing.
Progress to a Gallium-Arsenide Deep-Center Laser
Pan, Janet L.
2009-01-01
Although photoluminescence from gallium-arsenide (GaAs) deep-centers was first observed in the 1960s, semiconductor lasers have always utilized conduction-to-valence-band transitions. Here we review recent materials studies leading to the first GaAs deep-center laser. First, we summarize well-known properties: nature of deep-center complexes, Franck-Condon effect, photoluminescence. Second, we describe our recent work: insensitivity of photoluminescence with heating, striking differences between electroluminescence and photoluminescence, correlation between transitions to deep-states and absence of bandgap-emission. Room-temperature stimulated-emission from GaAs deep-centers was observed at low electrical injection, and could be tuned from the bandgap to half-the-bandgap (900–1,600 nm) by changing the electrical injection. The first GaAs deep-center laser was demonstrated with electrical injection, and exhibited a threshold of less than 27 mA/cm2 in continuous-wave mode at room temperature at the important 1.54 μm fiber-optic wavelength. This small injection for laser action was explained by fast depopulation of the lower state of the optical transition (fast capture of free holes onto deep-centers), which maintains the population inversion. The evidence for laser action included: superlinear L-I curve, quasi-Fermi level separations satisfying Bernard-Duraffourg’s criterion, optical gains larger than known significant losses, clamping of the optical-emission from lossy modes unable to reach laser action, pinning of the population distribution during laser action.
Inverse four-wave-mixing and self-parametric amplification effect in optical fibre
Turitsyn, Sergei K.; Bednyakova, Anastasia E.; Fedoruk, Mikhail P.; Papernyi, Serguei B.; Clements, Wallace R.L.
2015-01-01
An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics. PMID:26345290
Electron Spectrum of Nonlinear Cold Emission from a Metal under the Action of a Laser Shot
NASA Astrophysics Data System (ADS)
Golovinskii, P. A.; Mikhin, E. A.
2017-12-01
The nonlinear emission of electrons from a metal under the action of a femtosecond moderate-intensity laser pulse (laser shot) has been studied. A theoretical model of the process has been constructed based on the 1D nonstationary Schrödinger equation in the vacuum half-space with given boundary conditions for the electron wavefunction. This equation has been solved using the Laplace transformation. It has been assumed that the states of free electrons in a metal, which are described by the Sommerfeld theory of metals, are insignificantly influenced by the laser field. The energy spectrum of emitted electrons has been obtained, and its dependence on the parameters of the lased shot has been found. The calculated spectrum of nonlinear electron emission from a tungsten nanotip under the action of a 6.5-fs-long laser shot generating a field of 9.26 V/nm agrees with the experimental data.
Current and long-term technologies of laser therapy
NASA Astrophysics Data System (ADS)
Ulashcyk, Vladimir S.; Volotovskaya, Anna V.
2007-06-01
Laser therapy, using low-energy laser radiation, is being more and more applied. The most applied technology is transcutaneous radiation of tissues by laser radiation. Originally, a direct action on a pathological site was mostly used, but recently more attention is given to reflexogenic areas, acupuncture points, and endocrine organ projection sites. The development of light-conductive engineering made it possible to practically apply intraorgan laser therapy. This technology is widely spread in gynecology, otorhinolaryngology, urology, gastroenterology, etc. Close to it are different versions of intratissue laser therapy (intraosteal, periosteal, myofascial). A special kind of laser therapy is laser hemotherapy. Depending on the techniques and protocol of its application, there are extracorporeal, intravascular, and supravenous ways of action. According to our comparative investigations, supravenous hemotherapy by its therapeutic efficacy and major medicinal effects can be well compared with intravascular laser hemotherapy. With good prospects and efficiency is laser therapy as a combination of laser and other physical factors. Magnetolaser therapy has been scientifically substantiated and practically applied so far. Theoretically and experimentally substantiated is a combined application of laser radiation and physical factors such as ultrasound, direct current field, vacuum, cryotherapy, etc. Experimental research and few so far clinical observations are indicative of prospects of a complex application of laser radiation and drugs. To improve light absorption, laser radiation is combined with different dyes. Photodynamic therapy, originally used in oncology, is applied today in treating different diseases. We showed a possibility of using a number of drugs possessing simultaneously photosensitizing properties to this end. Laser radiation significantly influences pharmacokinetics and pharmacodynamics of drugs, which gives reason to practically implement laser technologies, based on pharmacomodulating action of laser radiation, to practical medicine.
Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.
Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W
2014-01-27
We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.
Development of Novel Composite and Random Materials for Nonlinear Optics and Lasers
NASA Technical Reports Server (NTRS)
Noginov, Mikhail
2002-01-01
A qualitative model explaining sharp spectral peaks in emission of solid-state random laser materials with broad-band gain is proposed. The suggested mechanism of coherent emission relies on synchronization of phases in an ensemble of emitting centers, via time delays provided by a network of random scatterers, and amplification of spontaneous emission that supports the spontaneously organized coherent state. Laser-like emission from powders of solid-state luminophosphors, characterized by dramatic narrowing of the emission spectrum and shortening of emission pulses above the threshold, was first observed by Markushev et al. and further studied by a number of research groups. In particular, it has been shown that when the pumping energy significantly exceeds the threshold, one or several narrow emission lines can be observed in broad-band gain media with scatterers, such as films of ZnO nanoparticles, films of pi-conjugated polymers or infiltrated opals. The experimental features, commonly observed in various solid-state random laser materials characterized by different particle sizes, different values of the photon mean free path l*, different indexes of refraction, etc.. can be described as follows. (Liquid dye random lasers are not discussed here.)
NASA Astrophysics Data System (ADS)
Nikitin, V. N.; Chemodanov, V. B.
2018-02-01
The degree of stability of a laser system for surface scanning with nonlinear multiplicative crosstalks is discussed. To determine its stability, the action functional is introduced, which is defined on the set of virtual (achievable) trajectories. The action functional is a measure of external action, which should be applied to a system to move it along a predetermined trial trajectory in the state space.The degree of stability of the system depends on the minimum value of the action functional which is reached on the extreme trajectory transferring the laser scanning system from equilibrium to the limit of the normal operation range. Numerical methods are proposed for calculating the degree of stability.
NASA Astrophysics Data System (ADS)
Vasil'chenko, Zh V.; Azharonok, V. V.; Filatova, I. I.; Shimanovich, V. D.; Golubev, V. S.; Zabelin, A. M.
1996-09-01
Emission spectroscopy methods were used in an investigation of thermodynamic parameters of a surface plasma formed by the action of cw CO2 laser radiation of (2-5)×106 W cm-2 intensity on stainless steel in a protective He or Ar atmosphere. The spatiotemporal structure and pulsation characteristics of the plasma plume were used to determine the fields of the plasma electron density and temperature.
Ray tracing method for simulation of laser beam interaction with random packings of powders
NASA Astrophysics Data System (ADS)
Kovalev, O. B.; Kovaleva, I. O.; Belyaev, V. V.
2018-03-01
Selective laser sintering is a technology of rapid manufacturing of a free form that is created as a solid object by selectively fusing successive layers of powder using a laser. The motivation of this study is due to the currently insufficient understanding of the processes and phenomena of selective laser melting of powders whose time scales differ by orders of magnitude. To construct random packings from mono- and polydispersed solid spheres, the algorithm of their generation based on the discrete element method is used. A numerical method of ray tracing is proposed that is used to simulate the interaction of laser radiation with a random bulk packing of spherical particles and to predict the optical properties of the granular layer, the extinction and absorption coefficients, depending on the optical properties of a powder material.
Scott, Andrew; Kotecha, Aachal; Bunce, Catey; Balidis, Miltos; Garway-Heath, David F; Miller, Michael H; Wormald, Richard
2011-03-01
To test the hypothesis that neodymium:yttrium-aluminum-garnet (Nd:YAG) laser peripheral iridotomy (LPI) significantly reduces the incidence of conversion from pigment dispersion syndrome (PDS) with ocular hypertension (OHT) to pigmentary glaucoma (PG). Prospective, randomized, controlled 3-year trial. One hundred sixteen eyes of 116 patients with PDS and OHT. Patients were assigned randomly either to Nd:YAG LPI or to a control group (no laser). The primary outcome measure was conversion to PG within 3 years, based on full-threshold visual field (VF) analysis using the Ocular Hypertension Treatment Study criteria. Secondary outcome measures were whether eyes required topical antiglaucoma medications during the study period and the time to conversion or medication. Fifty-seven patients were randomized to undergo laser treatment and 59 were randomized to no laser (controls). Age, gender, spherical equivalent refraction, and intraocular pressure at baseline were similar between groups. Outcome data were available for 105 (90%) of recruited subjects, 52 in the laser treatment group and 53 in the no laser treatment group. Patients were followed up for a median of 35.9 months (range, 10-36 months) in the laser arm and 35.9 months (range, 1-36 months) in the control arm. Eight eyes (15%) in the laser group and 3 eyes (6%) in the control group converted to glaucoma in the study period. The proportion of eyes started on medical treatment was similar in the 2 groups: 8 eyes (15%) in the laser group and 9 eyes (17%) in the control group. Survival analyses showed no evidence of any difference in time to VF progression or commencement of topical therapy between the 2 groups. Cataract extraction was performed on 1 patient in the laser group and in 1 patient in the control group during the study period (laser eye at 18 months; control eye at 34 months). This study suggests that there was no benefit of Nd:YAG LPI in preventing progression from PDS with OHT to PG within 3 years of follow-up. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Nilforoushzadeh, Mohammad Ali; Naieni, Farahnaz Fatemi; Siadat, Amir Hossein; Rad, Leila
2011-11-01
Laser systems that are commonly used for the treatment of hirsutism include the ruby laser (694 nm), the diode laser (800 nm), the alexandrite laser (755 nm) and the Nd:YAG laser (1084 nm). The diode laser and alexandrite laser are considered effective in treatment of hirsutism in dark-skinned patients. The response of hairs to these laser systems is variable and not complete. In this study, we compared the efficacy of these two laser systems for permanent hair removal. This was a randomized, controlled clinical trial that was performed with women of the age range 15-45 years old. After obtaining informed consent, the samples were randomized into two groups using random allocation software. The first group was treated with alexandrite laser alone (four sessions, two months apart). The second group was treated sequentially with diode laser for the first two sessions and alexandrite laser for the next two sessions. Overall, 111 patients (57 patients in the alexandrite laser group and 54 patients in the sequential diode-alexandrite laser group) were evaluated. There was no significant difference regarding mean of hair reduction between the two groups during the courses of treatment. Except for the first session, there was no significant difference regarding percent of patient satisfaction between the two groups (P value >0.05). Comparison between the two groups showed no significant difference one month, three months and six months after the last treatment (P value >0.05). Regarding the results of our study, there is no significant difference between sequential treatment with diode and alexandrite lasers versus alexandrite laser alone in the treatment of hirsutism. We suggest that in further studies, the efficacy of sequential treatment with other laser systems is evaluated against single treatment methods.
High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth
Babin, Sergey A.; Zlobina, Ekaterina A.; Kablukov, Sergey I.; Podivilov, Evgeniy V.
2016-01-01
Random Raman lasers attract now a great deal of attention as they operate in non-active turbid or transparent scattering media. In the last case, single mode fibers with feedback via Rayleigh backscattering generate a high-quality unidirectional laser beam. However, such fiber lasers have rather poor spectral and polarization properties, worsening with increasing power and Stokes order. Here we demonstrate a linearly-polarized cascaded random Raman lasing in a polarization-maintaining fiber. The quantum efficiency of converting the pump (1.05 μm) into the output radiation is almost independent of the Stokes order, amounting to 79%, 83%, and 77% for the 1st (1.11 μm), 2nd (1.17 μm) and 3rd (1.23 μm) order, respectively, at the polarization extinction ratio >22 dB for all orders. The laser bandwidth grows with increasing order, but it is almost independent of power in the 1–10 W range, amounting to ~1, ~2 and ~3 nm for orders 1–3, respectively. So, the random Raman laser exhibits no degradation of output characteristics with increasing Stokes order. A theory adequately describing the unique laser features has been developed. Thus, a full picture of the cascaded random Raman lasing in fibers is shown. PMID:26940082
Paris, Lambert; Marc, Isabelle; Charlot, Benoit; Dumas, Michel; Valmier, Jean; Bardin, Fabrice
2017-01-01
This work focuses on the optical stimulation of dorsal root ganglion (DRG) neurons through infrared laser light stimulation. We show that a few millisecond laser pulse at 1875 nm induces a membrane depolarization, which was observed by the patch-clamp technique. This stimulation led to action potentials firing on a minority of neurons beyond an energy threshold. A depolarization without action potential was observed for the majority of DRG neurons, even beyond the action potential energy threshold. The use of ruthenium red, a thermal channel blocker, stops the action potential generation, but has no effects on membrane depolarization. Local temperature measurements reveal that the depolarization amplitude is sensitive to the amplitude of the temperature rise as well as to the time rate of change of temperature, but in a way which may not fully follow a photothermal capacitive mechanism, suggesting that more complex mechanisms are involved. PMID:29082085
Giannelli, Marco; Formigli, Lucia; Bani, Daniele
2014-04-01
The use of lasers in periodontology is a matter of debate, mainly because of the lack of consensual therapeutic protocols. In this randomized, split-mouth trial, the clinical efficacy of two different photoablative dental lasers, erbium:yttrium-aluminum-garnet (Er:YAG) and diode, for the treatment of gingival hyperpigmentation is compared. Twenty-one patients requiring treatment for mild-to-severe gingival hyperpigmentation were enrolled. Maxillary or mandibular left or right quadrants were randomly subjected to photoablative deepithelialization with either Er:YAG or diode laser. Masked clinical assessments of each laser quadrant were made at admission and days 7, 30, and 180 postoperatively by an independent observer. Histologic examination was performed before and soon after treatment and 6 months after irradiation. Patients also compiled a subjective evaluation questionnaire. Both diode and Er:YAG lasers gave excellent results in gingival hyperpigmentation. However, Er:YAG laser induced deeper gingival tissue injury than diode laser, as judged by bleeding at surgery, delayed healing, and histopathologic analysis. The use of diode laser showed additional advantages compared to Er:YAG in terms of less postoperative discomfort and pain. This study highlights the efficacy of diode laser for photoablative deepithelialization of hyperpigmented gingiva. It is suggested that this laser can represent an effective and safe therapeutic option for gingival photoablation.
Rotundo, Roberto; Nieri, Michele; Cairo, Francesco; Franceschi, Debora; Mervelt, Jana; Bonaccini, Daniele; Esposito, Marco; Pini-Prato, Giovanpaolo
2010-06-01
This split-mouth, randomized, clinical trial aimed to evaluate the efficacy of erbium-doped:yttrium-aluminium-garnet (Er:YAG) laser application in non-surgical periodontal treatment. A total of 27 patients underwent four modalities of non-surgical therapy: supragingival debridement; scaling and root planing (SRP)+Er:YAG laser; Er:YAG laser; and SRP. Each strategy was randomly assigned and performed in one of the four quadrants. Clinical outcomes were evaluated at 3 and 6 months. Subjective benefits of patients have been evaluated by means of questionnaires. Six months after therapy, Er:YAG laser showed no statistical difference in clinical attachment gain with respect to supragingival scaling [0.15 mm (95% CI -0.16; 0.46)], while SRP showed a greater attachment gain than the supragingival scaling [0.37 mm (95% CI 0.05; 0.68)]. No difference resulted between Er:YAG laser+SRP and SRP alone [0.05 mm (95% CI -0.25; 0.36)]. The adjunctive use of Er:YAG laser to conventional SRP did not reveal a more effective result than SRP alone. Furthermore, the sites treated with Er:YAG laser showed similar results of the sites treated with supragingival scaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashitkov, Sergei I; Komarov, P S; Ovchinnikov, A V
An interferometric method is developed and realised using a frequency-modulated pulse for diagnosing a dynamics of fast deformations with a spatial and temporal resolution under the action of a single laser pulse. The dynamics of a free surface of a submicron-thick aluminium film is studied under an action of the ultrashort compression pulse with the amplitude of up to 14 GPa, excited by a femtosecond laser heating of the target surface layer. The spallation strength of aluminium was determined at a record high deformation rate of 3 Multiplication-Sign 10{sup 9} s{sup -1}. (extreme light fields and their applications)
Residual anastomoses in twin-twin transfusion syndrome after laser: the Solomon randomized trial.
Slaghekke, Femke; Lewi, Liesbeth; Middeldorp, Johanna M; Weingertner, Anne Sophie; Klumper, Frans J; Dekoninck, Philip; Devlieger, Roland; Lanna, Mariano M; Deprest, Jan; Favre, Romain; Oepkes, Dick; Lopriore, Enrico
2014-09-01
Residual anastomoses after fetoscopic laser surgery for twin-to-twin transfusion syndrome (TTTS) may lead to severe postoperative complications, including recurrent TTTS and twin anemia-polycythemia sequence (TAPS). A novel technique (Solomon technique) using laser coagulation of the entire vascular equator was recently investigated in a randomized controlled trial (Solomon trial) and compared with the Standard selective laser technique. The aim of this secondary analysis was to evaluate the occurrence and characteristics of residual anastomoses in placentas included in the Solomon trial. International multicenter randomized controlled trial in TTTS, randomized 1:1 ratio to either the Solomon laser technique or Standard laser technique. At time of laser, surgeons recorded whether they considered the procedure to be complete. Placental dye injection was performed after birth in the participating centers to evaluate the presence of residual anastomoses. A total of 151 placentas were included in the study. The percentage of placentas with residual anastomoses in the Solomon group and Standard group was 19% (14/74) and 34% (26/77), respectively (P = .04). The percentage of placentas with residual anastomoses in the subgroup of cases where the procedure was recorded as complete was 8/65 (12%) and 22/69 (32%) in the Solomon group and Standard group, respectively (P < .01). The Solomon laser technique reduces the risk of residual anastomoses. However, careful follow-up remains essential also after the Solomon technique, as complete dichorionization is not always achieved. Copyright © 2014 Mosby, Inc. All rights reserved.
Esmat, Samia M; Elramly, Amany Z; Abdel Halim, Dalia M; Gawdat, Heba I; Taha, Hanaa I
2014-12-01
Xanthelasma palpebrarum (XP) is a common cosmetic concern. Although there is a wide range of therapeutic modalities for XP, there is no general consensus on the optimal treatment for such condition. Compare the efficacy and safety of super pulsed (SP) and fractional CO2 lasers in the treatment of XP. This prospective randomized comparative clinical study included 20 adult patients with bilateral and symmetrical XP lesions. Xanthelasma palpebrarum lesions were randomly assigned to treatment by either single session of ablative SP CO2 laser or 3 to 5 sessions of ablative fractional CO2 laser with monthly intervals. All patients were assessed using digital photography and optical coherence tomography images. Xanthelasma palpebrarum lesions on both sides were successfully removed with significant improvement in size, color, and thickness. Although lesions treated by SP CO2 laser showed significantly better improvement regarding color and thickness of the lesions, downtime and patient satisfaction were significantly better for lesions treated with fractional CO2 laser. Scarring and recurrence were significantly higher in lesions treated by SP CO2 laser. Ablative fractional CO2 laser is an effective and safe therapeutic option for XP with significantly shorter downtime and higher patient satisfaction compared with SP CO2 laser.
NASA Astrophysics Data System (ADS)
Khairullina, Alphiya Y.; Oleinik, Tatiana V.
1995-01-01
Our previous works concerned with the development of methods for studying blood and action of low-intensity laser radiation on blood and erythrocyte suspensions had shown the light- scattering methods gave a large body of information on a medium studied due to the methodological relationship between irradiation processes and techniques for investigations. Detail analysis of spectral diffuse reflectivities and transmissivities of optically thick blood layers, spectral absorptivities calculated on this basis over 600 - 900 nm, by using different approximations, for a pathological state owing to hypoxia testifies to the optical significance of not only hemoglobin derivatives but also products of hemoglobin decomposition. Laser action on blood is specific and related to an initial state of blood absorption due to different composition of chromoproteids. This work gives the interpretation of spectral observations. Analysis of spectral dependencies of the exinction coefficient e, mean cosine m of phase function, and parameter Q equals (epsilon) (1-(mu) )H/(lambda) (H - hematocrit) testifies to decreasing the relative index of refraction of erythrocytes and to morphological changes during laser action under pathology owing to hypoxia. The possibility to obtain physical and chemical information on the state of blood under laser action in vivo is shown to be based on the method proposed by us for calculating multilayered structures modeling human organs and on the technical implementation of this method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuzhakov, A V; Sviridov, A P; Shcherbakov, E M
2014-01-31
The optical properties of costal cartilage and their variation under the action of laser radiation with the wavelength 1.56 μm are studied. The laser action regime corresponds to that used for changing the cartilage shape. The dynamics of the passed scattered laser radiation was studied by means of the optical fibre system, and the optical properties of the cartilage tissue (on the basis of Monte Carlo modelling of light propagation) – using the setup with two integrating spheres. Under the influence of radiation, the characteristics of which corresponded to those used for the cartilage shape correction, no essential changes inmore » the optical parameters were found. The results obtained in the course of studying the dynamics of optical signals in the process of costal cartilage irradiation can be used for developing control systems, providing the safety and efficiency of laser medical technologies. (biophotonics)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korotkevich, Alexander O.; Lushnikov, Pavel M., E-mail: plushnik@math.unm.edu; Landau Institute for Theoretical Physics, 2 Kosygin Str., Moscow 119334
2015-01-15
We developed a linear theory of backward stimulated Brillouin scatter (BSBS) of a spatially and temporally random laser beam relevant for laser fusion. Our analysis reveals a new collective regime of BSBS (CBSBS). Its intensity threshold is controlled by diffraction, once cT{sub c} exceeds a laser speckle length, with T{sub c} the laser coherence time. The BSBS spatial gain rate is approximately the sum of that due to CBSBS, and a part which is independent of diffraction and varies linearly with T{sub c}. The CBSBS spatial gain rate may be reduced significantly by the temporal bandwidth of KrF-based laser systemsmore » compared to the bandwidth currently available to temporally smoothed glass-based laser systems.« less
Li, Xiao-Zhou; Li, Song-Sui; Zhuang, Jun-Ping; Chan, Sze-Chun
2015-09-01
A semiconductor laser with distributed feedback from a fiber Bragg grating (FBG) is investigated for random bit generation (RBG). The feedback perturbs the laser to emit chaotically with the intensity being sampled periodically. The samples are then converted into random bits by a simple postprocessing of self-differencing and selecting bits. Unlike a conventional mirror that provides localized feedback, the FBG provides distributed feedback which effectively suppresses the information of the round-trip feedback delay time. Randomness is ensured even when the sampling period is commensurate with the feedback delay between the laser and the grating. Consequently, in RBG, the FBG feedback enables continuous tuning of the output bit rate, reduces the minimum sampling period, and increases the number of bits selected per sample. RBG is experimentally investigated at a sampling period continuously tunable from over 16 ns down to 50 ps, while the feedback delay is fixed at 7.7 ns. By selecting 5 least-significant bits per sample, output bit rates from 0.3 to 100 Gbps are achieved with randomness examined by the National Institute of Standards and Technology test suite.
Transmyocardial laser revascularization
NASA Astrophysics Data System (ADS)
Aretz, H. Thomas
1996-09-01
Transmyocardial laser revascularization (TMR) for the treatment of medically unresponsive angina pectoris has been shown to be clinically effective. The mechanism of its action, however, is not quite understood. Over the last five years my collaborators and I have conducted a variety of in vivo and in vitro studies using different animal models, lasers and experimental protocols. The results seem to indicate that the mechanism of action of TMR is related to neovascularization rather than chronically patent channels, as originally proposed.
Narrow line width dual wavelength semiconductor optical amplifier based random fiber laser
NASA Astrophysics Data System (ADS)
Shawki, Heba A.; Kotb, Hussein E.; Khalil, Diaa
2018-02-01
A novel narrow line-width Single longitudinal mode (SLM) dual wavelength random fiber laser of 20 nm separation between wavelengths of 1530 and 1550 nm is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 Km length as distributed mirrors, and a semiconductor optical amplifier (SOA) as the optical amplification medium. Two optical bandpass filters are used for the two wavelengths selectivity, and two Faraday Rotator mirrors are used to stabilize the two lasing wavelengths against fiber random birefringence. The optical signal to noise ratio (OSNR) was measured to be 38 dB. The line-width of the laser was measured to be 13.3 and 14 KHz at 1530 and 1550 nm respectively, at SOA pump current of 370 mA.
de Oliveira, Adriano Rodrigues; Vanin, Adriane Aver; De Marchi, Thiago; Antonialli, Fernanda Colella; Grandinetti, Vanessa dos Santos; de Paiva, Paulo Roberto Vicente; Albuquerque Pontes, Gianna Móes; Santos, Larissa Aline; Aleixo Junior, Ivo de Oliveira; de Carvalho, Paulo de Tarso Camillo; Bjordal, Jan Magnus; Leal-Junior, Ernesto Cesar Pinto
2014-02-27
Recent studies involving phototherapy applied prior to exercise have demonstrated positive results regarding the attenuation of muscle fatigue and the expression of biochemical markers associated with recovery. However, a number of factors remain unknown, such as the ideal dose and application parameters, mechanisms of action and long-term effects on muscle recovery. The aims of the proposed project are to evaluate the long-term effects of low-level laser therapy on post-exercise musculoskeletal recovery and identify the best dose andapplication power/irradiation time. A double-blind, randomized, placebo-controlled clinical trial with be conducted. After fulfilling the eligibility criteria, 28 high-performance athletes will be allocated to four groups of seven volunteers each. In phase 1, the laser power will be 200 mW and different doses will be tested: Group A (2 J), Group B (6 J), Group C (10 J) and Group D (0 J). In phase 2, the best dose obtained in phase 1 will be used with the same distribution of the volunteers, but with different powers: Group A (100 mW), Group B (200 mW), Group C (400 mW) and Group D (0 mW). The isokinetic test will be performed based on maximum voluntary contraction prior to the application of the laser and after the eccentric contraction protocol, which will also be performed using the isokinetic dynamometer. The following variables related to physical performance will be analyzed: peak torque/maximum voluntary contraction, delayed onset muscle soreness (algometer), biochemical markers of muscle damage, inflammation and oxidative stress. Our intention, is to determine optimal laser therapy application parameters capable of slowing down the physiological muscle fatigue process, reducing injuries or micro-injuries in skeletal muscle stemming from physical exertion and accelerating post-exercise muscle recovery. We believe that, unlike drug therapy, LLLT has a biphasic dose-response pattern. The protocol for this study is registered with the Protocol Registry System, ClinicalTrials.gov identifier NCT01844271.
NASA Astrophysics Data System (ADS)
Majumdar, Arun K.; Land, Phillip; Siegenthaler, John
2014-10-01
New results for characterizing laser intensity fluctuation statistics of a laser beam transmitted through a random air-water interface relevant to underwater communications are presented. A laboratory watertank experiment is described to investigate the beam wandering effects of the transmitted beam. Preliminary results from the experiment provide information about histograms of the probability density functions of intensity fluctuations for different wind speeds measured by a CMOS camera for the transmitted beam. Angular displacements of the centroids of the fluctuating laser beam generates the beam wander effects. This research develops a probabilistic model for optical propagation at the random air-water interface for a transmission case under different wind speed conditions. Preliminary results for bit-error-rate (BER) estimates as a function of fade margin for an on-off keying (OOK) optical communication through the air-water interface are presented for a communication system where a random air-water interface is a part of the communication channel.
NASA Astrophysics Data System (ADS)
Popov, S. M.; Butov, O. V.; Chamorovski, Y. K.; Isaev, V. A.; Mégret, P.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.
2018-06-01
We report on random lasing observed with 100-m-long fiber comprising an array of weak FBGs inscribed in the fiber core and uniformly distributed over the fiber length. Extended fluctuation-free oscilloscope traces highlight power dynamics typical for lasing. An additional piece of Er-doped fiber included into the laser cavity enables a stable laser generation with a linewidth narrower than 10 kHz.
Amplification of anharmonicities in multiphoton vibrational action spectra.
Calvo, F; Parneix, P
2012-01-16
The influence of one or several infrared laser pulses on the stability of bare and argon-tagged sodium chloride clusters is investigated theoretically by a combination of computational methods involving explicit molecular dynamics and properly calibrated unimolecular rate theories. The fragmentation spectra obtained by varying the laser frequency in the far-IR range is compared to the linear absorption spectrum resulting from the dipole moment autocorrelation function. Under appropriate laser field parameters, the action spectra are found to resemble the absorption spectra quite accurately in terms of positions, line widths, and even relative intensities. However, the action spectra exhibit residual and systematic redshifts of a few percent, which are partly due to the finite spectral bandwidth but are amplified by the progressive heating by the laser. A quantitative analysis suggests that these anharmonicity effects should generally arise upon multiple photon absorption. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser
NASA Astrophysics Data System (ADS)
Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun
2017-01-01
Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.
Hybrid Multilayered Plasmonic Nanostars for Coherent Random Lasing.
Munkhbat, Battulga; Ziegler, Johannes; Pöhl, Hannes; Wörister, Christian; Sivun, Dmitry; Scharber, Markus C; Klar, Thomas A; Hrelescu, Calin
2016-10-20
Here, we report that hybrid multilayered plasmonic nanostars can be universally used as feedback agents for coherent random lasing in polar or nonpolar solutions containing gain material. We show that silver-enhancement of gold nanostars reduces the pumping threshold for coherent random lasing substantially for both a typical dye (R6G) and a typical fluorescent polymer (MEH-PPV). Further, we reveal that the lasing intensity and pumping threshold of random lasers based on silver-enhanced gold nanostars are not influenced by the silica coating, in contrast to gold nanostar-based random lasers, where silica-coated gold nanostars support only amplified spontaneous emission but no coherent random lasing.
NASA Astrophysics Data System (ADS)
Matsumoto, Kouhei; Kasuya, Yuki; Yumoto, Mitsuki; Arai, Hideaki; Sato, Takashi; Sakamoto, Shuichi; Ohkawa, Masashi; Ohdaira, Yasuo
2018-02-01
Not so long ago, pseudo random numbers generated by numerical formulae were considered to be adequate for encrypting important data-files, because of the time needed to decode them. With today's ultra high-speed processors, however, this is no longer true. So, in order to thwart ever-more advanced attempts to breach our system's protections, cryptologists have devised a method that is considered to be virtually impossible to decode, and uses what is a limitless number of physical random numbers. This research describes a method, whereby laser diode's frequency noise generate a large quantities of physical random numbers. Using two types of photo detectors (APD and PIN-PD), we tested the abilities of two types of lasers (FP-LD and VCSEL) to generate random numbers. In all instances, an etalon served as frequency discriminator, the examination pass rates were determined using NIST FIPS140-2 test at each bit, and the Random Number Generation (RNG) speed was noted.
NASA Astrophysics Data System (ADS)
Min'ko, L. Ya; Chumakou, A. N.; Bosak, N. A.
1990-11-01
A study was made of the interaction of a series of periodic laser (λ = 1.06 μm) pulses with a number of materials (aluminum, copper, graphite, ebonite) in air at laser radiation power densities q = 107-109 W/cm2 and repetition frequencies f<=50 kHz. The radiation was concentrated in spots of ~ 10 - 2 cm2 area. Efficient formation of plasma as a result of laser erosion (q > 2 × 108 W/cm2, f>=5 kHz) was observed. A screening layer of an air plasma created by the first pulse of the series was expelled from the interaction zone and this was followed by erosion plasma formation under conditions of slight screening of the target during the action of the subsequent laser pulses.
Stochastic epidemic outbreaks: why epidemics are like lasers
NASA Astrophysics Data System (ADS)
Schwartz, Ira B.; Billings, Lora
2004-05-01
Many diseases, such as childhood diseases, dengue fever, and West Nile virus, appear to oscillate randomly as a function of seasonal environmental or social changes. Such oscillations appear to have a chaotic bursting character, although it is still uncertain how much is due to random fluctuations. Such bursting in the presence of noise is also observed in driven lasers. In this talk, I will show how noise can excite random outbreaks in simple models of seasonally driven outbreaks, as well as lasers. The models for both population dynamics will be shown to share the same class of underlying topology, which plays a major role in the cause of observed stochastic bursting.
Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain
Lubatsch, Andreas; Frank, Regine
2015-01-01
We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes. PMID:26593237
Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain.
Lubatsch, Andreas; Frank, Regine
2015-11-23
We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes.
Raunest, J; Löhnert, J
1990-01-01
A new operative technique in arthroscopic treatment of chondromalacia using ultraviolet laser systems is introduced. The postoperative results are evaluated in a prospective and randomized clinical trial. One hundred and forty patients stage II or III chondromalacia according to Outerbridge were randomly assigned to arthroscopic operation using either laser or mechanical instruments. After a 6-month follow-up period the clinical results were compared, guided by a specially designed modification of the Lysholm scoring scale. In the short-term follow-up laser surgery gave superior results in regard to reducing pain (P less than 0.05) and leading to a lower incidence of reactive synovitis (P less than 0.01). No difference was found in respect of disability and functional impairment. Our results lead to the conclusion that arthroscopic laser application seems to be a successful procedure in the treatment of degenerative cartilage disorders, providing precise ablation of tissue without significant thermal damage to the remaining cartilage.
Chemical lasers: a comprehensive literature survey.
Arnold, S J; Rojeska, H
1973-02-01
A bibliography of chemical laser publications covering the period 1964 through 1971 has been compiled. The chronologically listed references are followed by tables showing the chemical systems exhibiting laser action and by an alphabetical author index.
Chemical Lasers: A Comprehensive Literature Survey,
A bibliography of chemical laser publications covering the period 1964 through 1971 has been compiled. The chronologically listed references are followed by tables showing the chemical systems exhibiting laser action and by an alphabetical author index . (Author)
Shedding light: laser physics and mechanism of action.
De Felice, E
2010-02-01
Lasers have affected health care in many ways. Clinical applications have been found in a number of medical and surgical specialities. In particular, applications of laser technology in phlebology has made it essential for vein physicians to obtain a fundamental knowledge of laser physics, laser operation and also to be well versed in laser safety procedures. This article reviews recommended text books and current literature to detail the basics of laser physics and its application to venous disease. Laser safety and laser side effects are also discussed.
Wavelength dependence of laser-induced retinal injury
NASA Astrophysics Data System (ADS)
Lund, David J.; Edsall, Peter; Stuck, Bruce E.
2005-04-01
The threshold for laser-induced retinal damage is dependent primarily upon the laser wavelength and the exposure duration. The study of the wavelength dependence of the retinal damage threshold has been greatly enhanced by the availability of tunable lasers. The Optical Parametric Oscillator (OPO), capable of providing useful pulse energy throughout a tuning range from 400 nm to 2200 nm, made it possible to determine the wavelength dependence of laser-induced retinal damage thresholds for q-switched pulses throughout the visible and NIR spectrum. Studies using the a tunable TI:Saph laser and several fixed-wavelength lasers yielded threshold values for 0.1 s exposures from 440 nm to 1060 nm. Laser-induced retinal damage for these exposure durations results from thermal conversion of the incident laser irradiation and an action spectrum for thermal retinal damage was developed based on the wavelength dependent transmission and absorption of ocular tissue and chromatic aberration of the eye optics. Long (1-1000s) duration exposures to visible laser demonstrated the existence of non-thermal laser-induced retinal damage mechanisms having a different action spectrum. This paper will present the available data for the wavelength dependence of laser-induced thermal retinal damage and compare this data to the maximum permissible exposure levels (MPEs) provided by the current guidelines for the safe use of lasers.
Physical layer one-time-pad data encryption through synchronized semiconductor laser networks
NASA Astrophysics Data System (ADS)
Argyris, Apostolos; Pikasis, Evangelos; Syvridis, Dimitris
2016-02-01
Semiconductor lasers (SL) have been proven to be a key device in the generation of ultrafast true random bit streams. Their potential to emit chaotic signals under conditions with desirable statistics, establish them as a low cost solution to cover various needs, from large volume key generation to real-time encrypted communications. Usually, only undemanding post-processing is needed to convert the acquired analog timeseries to digital sequences that pass all established tests of randomness. A novel architecture that can generate and exploit these true random sequences is through a fiber network in which the nodes are semiconductor lasers that are coupled and synchronized to central hub laser. In this work we show experimentally that laser nodes in such a star network topology can synchronize with each other through complex broadband signals that are the seed to true random bit sequences (TRBS) generated at several Gb/s. The potential for each node to access real-time generated and synchronized with the rest of the nodes random bit streams, through the fiber optic network, allows to implement an one-time-pad encryption protocol that mixes the synchronized true random bit sequence with real data at Gb/s rates. Forward-error correction methods are used to reduce the errors in the TRBS and the final error rate at the data decoding level. An appropriate selection in the sampling methodology and properties, as well as in the physical properties of the chaotic seed signal through which network locks in synchronization, allows an error free performance.
Application of laser Doppler velocimeter to chemical vapor laser system
NASA Technical Reports Server (NTRS)
Gartrell, Luther R.; Hunter, William W., Jr.; Lee, Ja H.; Fletcher, Mark T.; Tabibi, Bagher M.
1993-01-01
A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity.
Visibility and aerosol measurement by diode-laser random-modulation CW lidar
NASA Technical Reports Server (NTRS)
Takeuchi, N.; Baba, H.; Sakurai, K.; Ueno, T.; Ishikawa, N.
1986-01-01
Examples of diode laser (DL) random-modulation continuous wave (RM-CW) lidar measurements are reported. The ability of the measurement of the visibility, vertical aerosol profile, and the cloud ceiling height is demonstrated. Although the data shown here were all measured at night time, the daytime measurement is, of course, possible. For that purpose, accurate control of the laser frequency to the center frequency of a narrow band filter is required. Now a new system with a frequency control is under construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitriev, A K; Konovalov, A N; Ul'yanov, V A
2015-12-31
The autodyne signal arising in an Er fibre laser in the course of evaporating biological models of different types is studied and the possibility of recognising the biotissue type using the method of autodyne detection of the backscattered Doppler signal is assessed. In the experiments we modelled the process of surgical intervention using the contact (hole perforation with the Er laser fibre) and noncontact (surface evaporation with the focused radiation) regimes of impact on different biological models. The amplitude – frequency characteristic of the autodyne detection for the Er fibre laser is measured and the initial spectra of the backscatteredmore » Doppler signal arising under the action of laser radiation on the samples of biological models are obtained. The experiments have shown that the spectra of the backscattered Doppler signal, arising in the course of the contact and noncontact action of the Er fibre laser on different biological models, demonstrate clear-cut distinctions. (control of laser radiation parameters)« less
CO2 laser versus cold steel margin analysis following endoscopic excision of glottic cancer
2014-01-01
Objective To compare the suitability of CO2 laser with steel instruments for margin excision in transoral laser microsurgery. Methods Prospective randomized blinded study. Patients with glottic cancer undergoing laser resection were randomized to margin excision by either steel instruments or CO2 laser. Margins were analyzed for size, interpretability and degree of artifact by a pathologist who was blinded to technique. Results 45 patients were enrolled in the study with 226 total margins taken. 39 margins taken by laser had marked artifact and 0 were uninterpretable. 20 margins taken by steel instruments had marked artifact, and 2 were uninterpretable. Controlling for margin size, the laser technique was associated with increasing degrees of margin artifact (p = 0.210), but there was no difference in crude rates of uninterpretability (p = 0.24). Conclusion Laser margin excision is associated with a greater degree of artifact than steel instrument excision, but was not associated with higher rate of uninterpretability. PMID:24502856
Development of a solid state laser of Nd:YLF
NASA Astrophysics Data System (ADS)
Doamaralneto, R.
The CW laser action was obtained at room temperature of a Nd:YLF crystal in an astigmatically compensated cavity, pumped by an argon laser. This laser was completely projected, constructed and characterized in our laboratories. It initiates a broader project on laser development that will have several applications like nuclear fusion, industry, medicine, telemetry, etc. Throught the study of the optical properties of the Nd:YLF crystal, laser operation was predicted using a small volume gain medium on the mentioned cavity, pumped by an Ar 514,5 nm laser line. To obtain the laser action at polarizations sigma (1,053 (MU)m) and (PI) (1.047 (MU)m) an active medium was prepared which was a crystalline plate with a convenient crystallographic orientation. The laser characterization is in reasonable agreement with the initial predictions. For a 3.5% output mirror transmission, the oscillation threshold is about 0.15 W incident on the crystal, depending upon the sample used. For 1 W of incident pump light, the output power is estimated to be 12 mw, which corresponds to almost 1.5% slope efficiency. The versatile arrangement is applicable to almost all optically pumped solid state laser materials.
Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement.
Gao, Song; Zhang, Liang; Xu, Yanping; Lu, Ping; Chen, Liang; Bao, Xiaoyi
2016-12-12
A one-end pumping Brillouin random fiber laser (BRFL) based on a 5-km tapered fiber (TF) is demonstrated. The enhanced Rayleigh scattering and the increased power density from tapering in the TF provide good directionality and a high degree of coherent feedback. Both the transmitting and TF enhanced Rayleigh scattered pump lights formed effective bi-direction pumping for the Brillouin gain in the standing cavity configuration in the distributed way as the gain and random feedback in the same fiber. The linewidth of the laser shows ~1.17 kHz while the relative intensity noise (RIN) has been verified to be suppressed comparing with that of the two-end pumping of the standard single mode fiber (SMF). Furthermore, utilizing the proposed laser, a high-resolution (~kHz) linewidth measurement method is demonstrated without long delay fiber (>100km) and extra frequency shifter thanks to the acoustic frequency shift from fiber itself.
NASA Astrophysics Data System (ADS)
Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun
2018-03-01
In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.
Multi-peak structure of generation spectrum of random distributed feedback fiber Raman lasers.
Vatnik, I D; Zlobina, E A; Kablukov, S I; Babin, S A
2017-02-06
We study spectral features of the generation of random distributed feedback fiber Raman laser arising from two-peak shape of the Raman gain spectral profile realized in the germanosilicate fibers. We demonstrate that number of peaks can be calculated using power balance model considering different subcomponents within each Stokes component.
Random laser illumination: an ideal source for biomedical polarization imaging?
NASA Astrophysics Data System (ADS)
Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.
2016-03-01
Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.
NASA Astrophysics Data System (ADS)
Kellogg, D. A.; Holonyak, N.
2001-04-01
Data are presented on coupled ten-stripe AlGaAs-GaAs-InGaAs quantum well heterostructure (QWH) lasers recoupled stochastically at the cleaved end mirrors. Recoupling of neighboring elements of a ten-stripe laser is accomplished by the scattering (random feedback) afforded by applying ˜10-μm-diam Al powder or 0.3 μm α-Al2O3 polishing compound in microscopy immersion oil or in epoxy at the cleaved ends (mirrors). Data on QWH samples with the end mirrors coated with the scatterer (Al or Al2O3 powder in "liquid") exhibit spectral and far-field broadening, as well as increased laser threshold because of the reduced cavity Q. Single mode operation is possible with the conventional evanescent wave coupling of the ten-stripe QWH and is destroyed, even the laser operation itself, with the scattering recoupling (dephasing) at the end mirrors, which is reversible (removable). The narrow ten-stripe QWH laser with strong end-mirror scattering, a long amplifier with random feedback, indicates that a photopumped III-V or II-VI powder (a random "wall" cavity) has little or no merit.
NASA Astrophysics Data System (ADS)
Land, Phillip; Majumdar, Arun K.
2016-05-01
This paper describes a new concept of mitigating signal distortions caused by random air-water interface using an adaptive optics (AO) system. This is the first time the concept of using an AO for mitigating the effects of distortions caused mainly by a random air-water interface is presented. We have demonstrated the feasibility of correcting the distortions using AO in a laboratory water tank for investigating the propagation effects of a laser beam through an airwater interface. The AO system consisting of a fast steering mirror, deformable mirror, and a Shack-Hartmann Wavefront Sensor for mitigating surface water distortions has a unique way of stabilizing and aiming a laser onto an object underneath the water. Essentially the AO system mathematically takes the complex conjugate of the random phase caused by air-water interface allowing the laser beam to penetrate through the water by cancelling with the complex conjugates. The results show the improvement of a number of metrics including Strehl ratio, a measure of the quality of optical image formation for diffraction limited optical system. These are the first results demonstrating the feasibility of developing a new sensor system such as Laser Doppler Vibrometer (LDV) utilizing AO for mitigating surface water distortions.
Imaging in laser spectroscopy by a single-pixel camera based on speckle patterns
NASA Astrophysics Data System (ADS)
Žídek, K.; Václavík, J.
2016-11-01
Compressed sensing (CS) is a branch of computational optics able to reconstruct an image (or any other information) from a reduced number of measurements - thus significantly saving measurement time. It relies on encoding the detected information by a random pattern and consequent mathematical reconstruction. CS can be the enabling step to carry out imaging in many time-consuming measurements. The critical step in CS experiments is the method to invoke encoding by a random mask. Complex devices and relay optics are commonly used for the purpose. We present a new approach of creating the random mask by using laser speckles from coherent laser light passing through a diffusor. This concept is especially powerful in laser spectroscopy, where it does not require any complicated modification of the current techniques. The main advantage consist in the unmatched simplicity of the random pattern generation and a versatility of the pattern resolution. Unlike in the case of commonly used random masks, here the pattern fineness can be adjusted by changing the laser spot size being diffused. We demonstrate the pattern tuning together with the connected changes in the pattern statistics. In particular, the issue of patterns orthogonality, which is important for the CS applications, is discussed. Finally, we demonstrate on a set of 200 acquired speckle patterns that the concept can be successfully employed for single-pixel camera imaging. We discuss requirements on detector noise for the image reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huo, Wen Yi; Zhao, Yiqing; Zheng, Wudi
2014-11-15
The random radiation asymmetry in the octahedral spherical hohlraum [K. Lan et al., Phys. Plasmas 21, 0 10704 (2014)] arising from the power imbalance, pointing accuracy of laser quads, and the assemblage accuracy of capsule is investigated by using the 3-dimensional view factor model. From our study, for the spherical hohlraum, the random radiation asymmetry arising from the power imbalance of the laser quads is about half of that in the cylindrical hohlraum; the random asymmetry arising from the pointing error is about one order lower than that in the cylindrical hohlraum; and the random asymmetry arising from the assemblage errormore » of capsule is about one third of that in the cylindrical hohlraum. Moreover, the random radiation asymmetry in the spherical hohlraum is also less than the amount in the elliptical hohlraum. The results indicate that the spherical hohlraum is more insensitive to the random variations than the cylindrical hohlraum and the elliptical hohlraum. Hence, the spherical hohlraum can relax the requirements to the power imbalance and pointing accuracy of laser facility and the assemblage accuracy of capsule.« less
Lasers in the treatment of ischemic heart disease in China
NASA Astrophysics Data System (ADS)
Zhang, Yongzhen; Chen, Mingzhe
2000-10-01
Myocardial revascularization by laser is a new treatment modality for chronic, severe, refractory angina in the patients with coronary heart disease that is not amenable to angioplasty (PTCA) or bypass surgery (CABG). Transmyocardial revascularization (TMR), typically requiring open thoracotomy, uses laser to create channels that would directly carry blood from left ventricular cavity into the ischemic myocardium. Current data indicate that TMR may provide these patients with improvement in angina severity, quality of life, and myocardial perfusion. The greatest potential future use of TMR is as an adjunct to CABG in patients with disease that prevents bypass grafting due to lack of distal targets or a conduit. Recently, as percutaneous (catheter-based) myocardial revascularization (PMR) has been developed with laser technology that permits the creation of channels from the endocardial surface of the left ventricle. The early results with PMR seem encouraging. Randomized clinical trial has demonstrated symptomatic improvement and increased exercise capacity. The risk: benefit ratio for PMR appears to be much more favorable than that for TMR. The mechanisms of action of them have not yet been clearly elucidated, and several theories have been proposed, including channel patency, angiogenesis, denervation, and placebo effect. The challenge of TMR/PMR is related to improvement of perioperative outcomes and long-term survival without worsening of left ventricular function. In future, it may be feasible to combine TMR/PMR with intramyocardial delivery of angiogenic growth factors to induce further new blood vessel formation.
Monolayer semiconductor nanocavity lasers with ultralow thresholds.
Wu, Sanfeng; Buckley, Sonia; Schaibley, John R; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong
2015-04-02
Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.
Monolayer semiconductor nanocavity lasers with ultralow thresholds
NASA Astrophysics Data System (ADS)
Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G.; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong
2015-04-01
Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.
Zhou, Bing Rong; Lu, Yan; Permatasari, Felicia; Huang, He; Li, Jin; Liu, Juan; Zhang, Jia An; Luo, Dan; Xu, Yang
2016-11-01
To evaluate the efficacy of fractional carbon dioxide (CO2) laser combined with luliconazole 1% cream for the treatment of onychomycosis and to compare it with that of fractional CO2 laser alone. This was a randomized, parallel group, 2-arm, positive-controlled, single-center, superiority trial with a 1:2 allocation ratio. Sixty patients with clinical and mycological diagnosis of onychomycosis were enrolled from the Dermatology Department of the First Affiliated Hospital of Nanjing Medical University in Nanjing, China from March 2015 to May 2015. Patients were randomized following simple randomization procedures (computerized random number generator) into 2 groups; L group only received 12 sessions of laser treatment at 2-week interval for 6 months, while L + D group received 12 sessions of laser treatment at 2-week interval combined with luliconazole 1% cream once daily for 6 months. This was not a blind trial. The main outcome measures were the clinical efficacy rate (CER) assessed from the percentage of fully and >60% normal-appearing nails and the mycological clearance rate (MCR) assessed from the percentage of nails with negative fungal microscopy. There were no changes to trial outcome measures after the trial commenced. A total of 60 patients (N = 233 nails) completed treatments and follow-up, and were randomized and divided into 2 groups: L group (31 patients, N = 108 nails) and L + D group (29 patients, N = 115 nails). The CER and MCR of L + D group were 69.6% and 57.4%, respectively. L + D group showed significantly higher CER (69.6% vs 50.9%; χ = 8.1, P = 0.004) and MCR (57.4% vs 38.9%; χ = 7.6, P = 0.006) compared with those in L group. Some patients experienced mild pain during laser treatment, but there was no bleeding or oozing during or after treatment. There were no adverse effects reported during the observation period. Fractional CO2 laser treatment combined with 1% luliconazole cream for 6 months was an effective and safe method for the treatment of onychomycosis, and had a higher efficacy than fractional CO2 laser treatment alone.
Lorgeou, A; Perrillat, Y; Gral, N; Lagrange, S; Lacour, J-P; Passeron, T
2018-02-01
Q-switched nanosecond lasers demonstrated their efficacy in treating most types of tattoos, but complete disappearance is not always achieved even after performing numerous laser sessions. Picosecond lasers are supposed to be more efficient in clearing tattoos than nanosecond lasers, but prospective comparative data remain limited. To compare on different types of tattoos the efficacy of a nanosecond laser with two types of picosecond lasers. We conducted a prospective randomized study performed from December 2014 to June 2016 on adult patients with all types of tattoos. The tattoos were divided into two halves of equal size. After randomization, half of the tattoo was treated with a picosecond laser and the other half with a nanosecond laser. The evaluation was performed on standardized pictures performed before treatment and 2 months after the last session, by two physicians, not involved in the treatment, blinded on the type of treatments received. The main end point was a clearance above 75% of the tattoos. A total of 49 patients were included. Professional tattoos represented 85.7%, permanent make-up 8.2% and non-professional tattoo 6.1%. The majority were black or blue and 10.2% were polychromatic. No patient was lost during follow-up. A reduction of 75% or more of the colour intensity was obtained for 33% of the tattoos treated with the picosecond lasers compared to 14% with the nanosecond laser (P = 0.008). An improvement superior to 75% was obtained in 34% monochromic black or blue tattoos with the picosecond lasers compared to 9% for the nanosecond laser. Only one of the five polychromic tattoos achieved more than 75% of improvement with the two types of laser. Our results show a statistically significant superiority of the picosecond lasers compared to the nanosecond laser for tattoo clearance. However, they do not show better efficacy for polychromic tattoos and the difference in terms of side-effects was also minimal with a tendency of picosecond lasers to be less painful. © 2017 European Academy of Dermatology and Venereology.
The laser radiation action on the crystal formation processes in the biological fluids
NASA Astrophysics Data System (ADS)
Malov, Alexander N.; Vaichas, Andrey A.; Novikova, Evgeniya A.
2016-11-01
The results of an experimental study of the laser radiation effect on the crystal`s formation in the volume of biological fluids that are complex multi-component solutions have been discussing. Are investigated white and natural bile in vitro. The qualitative changes were observed. Thus, at the bottom of the cell in which bile is not exposed to the laser radiation, the crystals are formed. In the irradiated bile gallstone has a thin layer of a homogeneous viscous colloidal liquid with very small, visible in polarized light crystalline formations was got. Irradiated laser bile's gallstone was covered evenly white deposit without surface defect unlike gallstone in bile without radiation exposure. A possible mechanism to explain the laser radiation action on the mineral formation in biological fluids and also practical application of this effect have been suggesting too.
NASA Astrophysics Data System (ADS)
Uglov, A. A.; Smurov, I. Yu; Gus'kov, A. G.; Aksenov, L. V.
1990-08-01
A theoretical study is reported of melting and thermocapillary convection under the action of laser radiation with a nonmonotonic spatial distribution of the power density. An analysis is made of changes in the geometry of the molten bath with time. The transition from a nonmonotonic boundary of a melt, corresponding to the spatial distribution of the radiation, to a monotonic one occurs in a time of the order of 1 ms when the power density of laser radiation is 105 W/cm2. The vortex structure of the flow in the molten bath is governed by the spatial distribution of the laser radiation in such a way that each local power density maximum corresponds to two vortices with oppositely directed velocity components.
Laser materials for the 0.67-microns to 2.5-microns range
NASA Technical Reports Server (NTRS)
Toda, Minoru; Zamerowski, Thomas J.; Ladany, Ivan; Martinelli, Ramon U.
1987-01-01
Basic requirements for obtaining injection laser action in III-V semiconductors are discussed briefly. A detailed review is presented of materials suitable for lasers emitting at 0.67, 1.44, 1.93, and 2.5 microns. A general approach to the problem is presented, based on curves of materials properties published by Sasaki et al. It is also shown that these curves, although useful, may need correction in certain ranges. It is deduced that certain materials combinations, either proposed in the literature or actually tried, are not appropriate for double heterostructure lasers, because the refractive index of the cladding material is higher than the index of the active material, thus resulting in no waveguiding, and high threshold currents. Recommendations are made about the most promising approach to the achievement of laser action in the four wavelengths mentioned above.
Szukalski, Adam; Ayadi, Awatef; Haupa, Karolina; El-Ghayoury, Abdelkrim; Sahraoui, Bouchta; Mysliwiec, Jaroslaw
2018-03-30
We describe herein the synthesis and characterization of a thiophene-based donor-acceptor system, namely (E)-2-(4-nitrostyryl)-5-phenylthiophene (Th-pNO 2 ), which was prepared under Horner-Wadsworth-Emmons conditions. The UV/Vis absorption bands, including the intramolecular charge transfer (ICT) band, were fully assigned using DFT and TD-DFT computations. The results of both efficient third-order nonlinear optical properties and light-amplification phenomena are presented. Investigations of photoinduced birefringence (PIB) in optical Kerr effect (OKE) experiments showed a great potential for this particular compound as an efficient, fully reversible, and fast optical switch. Time constants for the observed trans-cis-trans molecular transitions are in the range of microseconds and give a competitive experimental result for the well-known and exploited azobenzene derivatives. Random lasing (RL) investigations confirmed that this organic system is potentially useful to achieve strong light enhancement, observed as a multimode lasing action. Both RL and OKE measurements indicate that this material is a representative of thiophene derivatives, which can be utilized to fabricate fast all-optical switches or random lasers (light amplifiers). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhancement of Electron Acceleration in Laser Wakefields by Random Fields
NASA Astrophysics Data System (ADS)
Tataronis, J. A.; Petržílka, V.
1999-11-01
There is increasing evidence that intense laser pulses can accelerate electrons to high energies. The energy appears to increase with the distance over which the electrons are accelerated. This is difficult to explain by electron trapping in a single wakefield wave.^1 We demonstrate that enhanced electron acceleration can arise in inhomogeneous laser wakefields through the effects of spontaneously excited random fields. This acceleration mechanism is analogous to fast electron production by random fields near rf antennae in fusion devices and helicon plasma sources.^2 Electron acceleration in a transverse laser wave due to random field effects was recently found.^3 In the present study we solve numerically the governing equations of an ensemble of test electrons in a longitudinal electric wakefield perturbed by random fields. [1pt] Supported by the Czech grant IGA A1043701 and the U.S. DOE under grant No. DE-FG02-97ER54398. [1pt] 1. A. Pukhov and J. Meyer-ter-Vehn, in Superstrong Fields in Plasmas, AIP Conf. Proc. 426, p. 93 (1997). 2. V. Petržílka, J. A. Tataronis, et al., in Proc. Varenna - Lausanne Fusion Theory Workshop, p. 95 (1998). 3. J. Meyer-ter-Vehn and Z. M. Sheng, Phys. Plasmas 6, 641 (1999).
[Laservaporization of the prostate: current status of the greenlight and diode laser].
Rieken, M; Bachmann, A; Gratzke, C
2013-03-01
In the last decade laser vaporization of the prostate has emerged as a safe and effective alternative to transurethral resection of the prostate (TURP). This was facilitated in particular by the introduction of photoselective vaporization of the prostate (PVP) with a 532 nm 80 W KTP laser in 2002. Prospective randomized trials comparing PVP and TURP with a maximum follow-up of 3 years mostly demonstrated comparable functional results. Cohort studies showed a safe application of PVP in patients under oral anticoagulation and with large prostates. Systems from various manufacturers with different maximum power output and wavelengths are now available for diode laser vaporization of the prostate. Prospective randomized trials comparing diode lasers and TURP are not yet available. In cohort studies and comparative studies PVP diode lasers are characterized by excellent hemostatic properties but functional results vary greatly with some studies reporting high reoperation rates.
Shah, Parag K; Narendran, V; Kalpana, N
2011-01-01
To compare structural and functional outcome and time efficiency between standard spot sized conventional pulsed mode diode laser and continuous mode large spot transpupillary thermotherapy (LS TTT) for treatment of high risk prethreshold retinopathy of prematurity (ROP). Ten eyes of five preterm babies having bilateral symmetrical high risk prethreshold ROP were included in this study. One eye of each baby was randomized to get either standard spot sized conventional pulsed mode diode laser or continuous mode LS TTT. There was no significant difference between structural or functional outcome in either group. The mean time taken for conventional diode laser was 20.07 minutes, while that for LS TTT was 12.3 minutes. LS TTT was 40% more time efficient than the conventional laser. It may be better suited for the very small fragile premature infants as it is quicker than the conventional laser.
Stochastic Epidemic Outbreaks, or Why Epidemics Behave Like Lasers
NASA Astrophysics Data System (ADS)
Schwartz, Ira; Billings, Lora; Bollt, Erik; Carr, Thomas
2004-03-01
Many diseases, such childhood diseases, dengue fever, and West Nile virus, appear to oscillate randomly as a function of seasonal environmental or social changes. Such oscillations appear to have a chaotic bursting character, although it is still uncertain how much is due to random fluctuations. Such bursting in the presence of noise is also observed in driven lasers. In this talk, I will show how noise can excite random outbreaks in simple models of seasonally driven outbreaks, as well as lasers. The models for both population dynamics will be shown to share the same class of underlying topology, which plays a major role in the cause of observed stochastic bursting. New tools for predicting stcohastic outbreaks will be presented.
Osman, Mai Abdel Raouf; Kassab, Ahmed Nazmi
2017-08-01
A verrucous epidermal nevus (VEN) is a skin disorder that has been treated using different treatment modalities with varying results. Ablative lasers such as carbon dioxide laser (CO 2 ) and erbium:yttrium-aluminum-garnet (Er:YAG) laser have been considered as the gold standard for the treatment of epidermal nevi. To evaluate and compare the efficacy, postoperative wound healing and side effects of pulsed CO 2 laser and Er:YAG laser for the treatment of verrucous epidermal nevi. Twenty patients with localized VEN were randomly divided into two groups. Group 1 was administered CO 2 laser and group 2 underwent Er:YAG laser treatment. A blinded physician evaluated the photographs and dermoscopic photomicrographs for the efficacy and possible side effects. All patients received one treatment session and were followed up over a 6-month period. Both lasers induced noticeable clinical improvement, but there were no significant differences between two lasers in treatment response, patient satisfaction, duration of erythema and side effects. The average time to re-epithelialization was 13.5 days with CO 2 and 7.9 days with Er:YAG laser (p< .0005). No scarring was observed in Er:YAG laser group and no lesional recurrence was detected in CO 2 laser group since treatment. Apart from re-epithelialization, both lasers showed equivalent outcomes with respect to treatment response, patient satisfaction, side effects and complications.
Laser action by optically depumping lower states
Krupke, William F.
1977-01-01
A method and apparatus for obtaining laser action between an upper energy level and a lower energy level of a gaseous medium, which comprises populating the upper energy level to some degree (short of achieving a conventional inverted population) by any suitable pumping means, and thereafter establishing an inverted population by transiently and selectively depumping the lower energy level such as by exposing the medium to an intense source of radiation which selectively causes the transformation of the lower energy level species to some other energy level. Thus, a thermally pumped/optically depumped gas laser system is produced.
Laser action by optically depumping lower states
Krupke, W.F.
1975-11-26
A method and apparatus are described for obtaining laser action between an upper energy level and a lower energy level of a gaseous medium. The upper energy level is populated to some degree (short of achieving a conventional inverted population) by any suitable pumping means, and an inverted population is established by transiently and selectively depumping the lower energy level. The depumping may be done by exposing the medium to an intense source of radiation which selectively causes the transformation of the lower energy level species to some other energy level. Thus, a thermally pumped/optically depumped gas laser system is produced.
Near 16 micron CO.sub.2 laser system
Krupke, William F.
1977-01-01
Method and apparatus for inducing laser action in CO.sub.2 at a wavelength of 16 microns involving the transition between the 02.sup.0 0 and 01.sup.1 0 states. The population inversion between these two states is achieved by pumping to the 00.sup.0 1 level, suppressing the usual 10.6 micron transition to the 10.sup.0 0 level and encouraging the 9.6 micron transition, thereby populating the 02.sup.0 0 level, as the principal prerequisite for 16 micron laser action between the 02.sup.0 0 and 01.sup.1 0 levels.
Schoenewolf, Nicola L; Hafner, Jürg; Dummer, Reinhard; Bogdan Allemann, Inja
2015-04-01
Lentigines solares (LS) on the dorsum of hands are often esthetically disturbing. Q-switched ruby laser treatment is highly effective in the treatment of these lesions. Ablative fractional photothermolysis may be a suitable alternative. We compared the Q-switched ruby laser with ablative CO2 fractional photothermolysis for the treatment of solar lentigines. To evaluate the efficacy and side-effects of 694nm Q-switched ruby laser (Sinon) with the ablative 10,600nm CO2 fractional laser (Quantel Excel O2) in an intra-individual side-to-side comparison in the treatment of LS on the dorsum of hands. Eleven patients were included in the study. The hands of each patient were randomized for treatment with the two laser systems. Three treatment sessions were scheduled at weeks 0, 4 and 8. Evaluations by patients, treating physician and blinded experts were scheduled at weeks 0, 4, 8, 16 and 24. The Q-switched ruby laser was significantly more efficacious than the ablative CO2 fractional laser for removing LS on the dorsum of hands (p = 0.01). In this first study on this topic, the Q-switched ruby laser was superior to the ablative CO2 fractional laser in the treatment of lentigines solares on the dorsum of hands.
Update on the use of diode laser in the management of benign prostate obstruction in 2014.
Lusuardi, Lukas; Mitterberger, Michael; Hruby, Stephan; Kunit, Thomas; Kloss, Birgit; Engelhardt, Paul F; Sieberer, Manuela; Janetschek, Günter
2015-04-01
To determine the status quo in respect of various diode lasers and present the techniques in use, their results and complications. We assess how these compare with transurethral resection of the prostate and other types of laser in randomized controlled trials (RCTs). When adequate RCTs were not available, case studies and reports were evaluated. Laser for the treatment of benign prostatic hyperplasia (BPH) has aroused the interest and curiosity of urologists as well as patients. The patient associates the term laser with a successful and modern procedure. The journey that started with coagulative necrosis of prostatic adenoma based on neodymium: yttrium-aluminum-garnet (Nd:YAG) laser has culminated in endoscopic "enucleation" with holmium laser. Diode laser is being used in urology for about 10 years now. Various techniques have been employed to relieve bladder outlet obstruction due to BPH. The diode laser scenario is marked by a diversity of surgical techniques and wavelengths. We summarize the current published literature in respect of functional results and complications. More randomized controlled studies are needed to determine the position and the ideal technique of diode laser treatment for BPH.
Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E
2014-06-10
The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.
Laser-induced rocket force on a microparticle in a complex (dusty) plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosenko, V.; Ivlev, A. V.; Morfill, G. E.
2010-12-15
The interaction of a focused powerful laser beam with micron-sized melamine formaldehyde (MF) particles was studied experimentally. The microspheres had a thin palladium coating on their surface and were suspended in a radio frequency argon plasma as a single layer (plasma crystal). A particle hit by the laser beam usually accelerated in the direction of the laser beam, consistent with the radiation pressure force mechanism. However, random-direction acceleration up to the speeds on the order 1 m/s was sometimes observed. Rocket-force mechanism is proposed to account for the random-direction acceleration. Similar, but much less pronounced, effect was also observed formore » MF particles without palladium coating.« less
Elman, Michael J.; Aiello, Lloyd Paul; Beck, Roy W.; Bressler, Neil M.; Bressler, Susan B.; Edwards, Allison R.; Ferris, Frederick L.; Friedman, Scott M.; Glassman, Adam R.; Miller, Kellee M.; Scott, Ingrid U.; Stockdale, Cynthia R.; Sun, Jennifer K.
2010-01-01
Objective Evaluate intravitreal 0.5 mg ranibizumab or 4 mg triamcinolone combined with focal/grid laser compared with focal/grid laser alone for treatment of diabetic macular edema (DME). Design Multicenter, randomized clinical trial. Participants A total of 854 study eyes of 691 participants with visual acuity (approximate Snellen equivalent) of 20/32 to 20/320 and DME involving the fovea. Methods Eyes were randomized to sham injection + prompt laser (n=293), 0.5 mg ranibizumab + prompt laser (n=187), 0.5 mg ranibizumab + deferred (≥24 weeks) laser (n=188), or 4 mg triamcinolone + prompt laser (n=186). Retreatment followed an algorithm facilitated by a web-based, real-time data-entry system. Main Outcome Measures Best-corrected visual acuity and safety at 1 year. Results The 1-year mean change (±standard deviation) in the visual acuity letter score from baseline was significantly greater in the ranibizumab + prompt laser group (+9±11, P<0.001) and ranibizumab + deferred laser group (+9±12, P<0.001) but not in the triamcinolone + prompt laser group (+4±13, P=0.31) compared with the sham + prompt laser group (+3±13). Reduction in mean central subfield thickness in the triamcinolone + prompt laser group was similar to both ranibizumab groups and greater than in the sham + prompt laser group. In the subset of pseudophakic eyes at baseline (n=273), visual acuity improvement in the triamcinolone + prompt laser group appeared comparable to that in the ranibizumab groups. No systemic events attributable to study treatment were apparent. Three eyes (0.8%) had injection-related endophthalmitis in the ranibizumab groups, whereas elevated intraocular pressure and cataract surgery were more frequent in the triamcinolone + prompt laser group. Two-year visual acuity outcomes were similar to 1-year outcomes. Conclusions Intravitreal ranibizumab with prompt or deferred laser is more effective through at least 1 year compared with prompt laser alone for the treatment of DME involving the central macula. Ranibizumab as applied in this study, although uncommonly associated with endophthalmitis, should be considered for patients with DME and characteristics similar to those in this clinical trial. In pseudophakic eyes, intravitreal triamcinolone + prompt laser seems more effective than laser alone but frequently increases the risk of intraocular pressure elevation. PMID:20427088
Elman, Michael J; Aiello, Lloyd Paul; Beck, Roy W; Bressler, Neil M; Bressler, Susan B; Edwards, Allison R; Ferris, Frederick L; Friedman, Scott M; Glassman, Adam R; Miller, Kellee M; Scott, Ingrid U; Stockdale, Cynthia R; Sun, Jennifer K
2010-06-01
Evaluate intravitreal 0.5 mg ranibizumab or 4 mg triamcinolone combined with focal/grid laser compared with focal/grid laser alone for treatment of diabetic macular edema (DME). Multicenter, randomized clinical trial. A total of 854 study eyes of 691 participants with visual acuity (approximate Snellen equivalent) of 20/32 to 20/320 and DME involving the fovea. Eyes were randomized to sham injection + prompt laser (n=293), 0.5 mg ranibizumab + prompt laser (n=187), 0.5 mg ranibizumab + deferred (> or =24 weeks) laser (n=188), or 4 mg triamcinolone + prompt laser (n=186). Retreatment followed an algorithm facilitated by a web-based, real-time data-entry system. Best-corrected visual acuity and safety at 1 year. The 1-year mean change (+/-standard deviation) in the visual acuity letter score from baseline was significantly greater in the ranibizumab + prompt laser group (+9+/-11, P<0.001) and ranibizumab + deferred laser group (+9+/-12, P<0.001) but not in the triamcinolone + prompt laser group (+4+/-13, P=0.31) compared with the sham + prompt laser group (+3+/-13). Reduction in mean central subfield thickness in the triamcinolone + prompt laser group was similar to both ranibizumab groups and greater than in the sham + prompt laser group. In the subset of pseudophakic eyes at baseline (n=273), visual acuity improvement in the triamcinolone + prompt laser group appeared comparable to that in the ranibizumab groups. No systemic events attributable to study treatment were apparent. Three eyes (0.8%) had injection-related endophthalmitis in the ranibizumab groups, whereas elevated intraocular pressure and cataract surgery were more frequent in the triamcinolone + prompt laser group. Two-year visual acuity outcomes were similar to 1-year outcomes. Intravitreal ranibizumab with prompt or deferred laser is more effective through at least 1 year compared with prompt laser alone for the treatment of DME involving the central macula. Ranibizumab as applied in this study, although uncommonly associated with endophthalmitis, should be considered for patients with DME and characteristics similar to those in this clinical trial. In pseudophakic eyes, intravitreal triamcinolone + prompt laser seems more effective than laser alone but frequently increases the risk of intraocular pressure elevation. Copyright 2010 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
A Compact Multiphoton 3D Imaging System for Recording Fast Neuronal Activity
Vučinić, Dejan; Sejnowski, Terrence J.
2007-01-01
We constructed a simple and compact imaging system designed specifically for the recording of fast neuronal activity in a 3D volume. The system uses an Yb:KYW femtosecond laser we designed for use with acousto-optic deflection. An integrated two-axis acousto-optic deflector, driven by digitally synthesized signals, can target locations in three dimensions. Data acquisition and the control of scanning are performed by a LeCroy digital oscilloscope. The total cost of construction was one order of magnitude lower than that of a typical Ti:sapphire system. The entire imaging apparatus, including the laser, fits comfortably onto a small rig for electrophysiology. Despite the low cost and simplicity, the convergence of several new technologies allowed us to achieve the following capabilities: i) full-frame acquisition at video rates suitable for patch clamping; ii) random access in under ten microseconds with dwelling ability in the nominal focal plane; iii) three-dimensional random access with the ability to perform fast volume sweeps at kilohertz rates; and iv) fluorescence lifetime imaging. We demonstrate the ability to record action potentials with high temporal resolution using intracellularly loaded potentiometric dye di-2-ANEPEQ. Our design proffers easy integration with electrophysiology and promises a more widespread adoption of functional two-photon imaging as a tool for the study of neuronal activity. The software and firmware we developed is available for download at http://neurospy.org/ under an open source license. PMID:17684546
Bichromatic random laser from a powder of rhodamine-doped sub-micrometer silica particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbosa-Silva, Renato; Silva, Andrea F.; Brito-Silva, Antonio M.
2014-01-28
We studied the random laser (RL) bichromatic emission (BCE) from a powder consisting of silica particles infiltrated with Rhodamine 640 (Rh640) molecules. The BCE is attributed to Rh640 monomers and dimers. Because of the efficient monomer-dimer energy transfer, we observed RL wavelength switching from ≈ 620 nm to ≈650 nm and the control of the emitted wavelength was made by changing only the excitation laser intensity. None of external parameters such as excitation laser spot size or radiation detector position was changed as in previous experiments. Two laser thresholds associated either to monomers or dimers were clearly observed. Moreover, an effect analogmore » to frequency-pulling among two coupled oscillators was identified measuring the RL spectra as a function of the excitation laser intensity. A wavelength shift, Δλ, was measured between the monomer and dimer resonance wavelengths, changing only the excitation laser intensity. The maximum value of Δλ ≈ 16 cm{sup −1} was obtained for laser pulses of 7 ns with 30 μJ.« less
Distributed Feedback Laser Based on Single Crystal Perovskite
NASA Astrophysics Data System (ADS)
Sun, Shang; Xiao, Shumin; Song, Qinghai
2017-06-01
We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.
Control of generation regimes of ring chip laser under the action of the stationary magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aulova, T V; Kravtsov, Nikolai V; Lariontsev, E G
2013-05-31
We consider realisation of different generation regimes in an autonomous ring chip laser, which is a rather complicated problem. We offer and demonstrate a simple and effective method for controlling the radiation dynamics of a ring Nd:YAG chip laser when it is subjected to a stationary magnetic field producing both frequency and substantial amplitude nonreciprocities. The amplitude and frequency nonreciprocities of a ring cavity, arising under the action of this magnetic field, change when the magnet is moved with respect to the active element of the chip laser. Some self-modulation and stationary generation regimes as well as the regime ofmore » beatings and dynamic chaos regime are experimentally realised. Temporal and spectral characteristics of radiation are studied and conditions for the appearance of the generation regime are found. (control of laser radiation parameters)« less
NASA Astrophysics Data System (ADS)
Moshari, Amirabbas; Vatanpour, Mehdi; Zakershahrak, Mehrsa
2016-03-01
Introduction: LLLT in oral cavity believed to reduce pain after endodontic surgery and wisdom tooth removal, to accelerate wound healing and to have an anti-inflammatory and regenerative effect. The aim of this systematic review therefore was to assess the proof available for the efficacy of low-level laser treatment in reducing pain and swelling after endodontic surgery. Methods: The PubMed service of the U.S. National Library of Medicine was searched with applicable search strategies. No language restriction was applied. The last electronic search was accomplished on August 31, 2015. All randomized clinical trials on the efficiency of low-level laser treatment in reducing pain and swelling after endodontic surgery was considered for the Meta-analysis. Quality consideration of the included randomized clinical trials was appraised according to CONSORT guidelines. Results: Only two randomized clinical trials were attained. These studies clarified that laser treatment could reduce pain and swelling, but the results were not significant. Conclusions: Low-level laser therapy can be advantageous for the reduction of postoperative pain but there is no strong confirmation for its efficiency. Its clinical utility and applicability relating to endodontic surgery, Along with the optimal energy dosage and the number of laser treatments needed after surgery, still, demand further research and experiment.
Camposeo, Andrea; Del Carro, Pompilio; Persano, Luana; Cyprych, Konrad; Szukalski, Adam; Sznitko, Lech; Mysliwiec, Jaroslaw; Pisignano, Dario
2014-10-28
Room-temperature nanoimprinted, DNA-based distributed feedback (DFB) laser operation at 605 nm is reported. The laser is made of a pure DNA host matrix doped with gain dyes. At high excitation densities, the emission of the untextured dye-doped DNA films is characterized by a broad emission peak with an overall line width of 12 nm and superimposed narrow peaks, characteristic of random lasing. Moreover, direct patterning of the DNA films is demonstrated with a resolution down to 100 nm, enabling the realization of both surface-emitting and edge-emitting DFB lasers with a typical line width of <0.3 nm. The resulting emission is polarized, with a ratio between the TE- and TM-polarized intensities exceeding 30. In addition, the nanopatterned devices dissolve in water within less than 2 min. These results demonstrate the possibility of realizing various physically transient nanophotonics and laser architectures, including random lasing and nanoimprinted devices, based on natural biopolymers.
Human dental enamel and dentin structural effects after Er:YAG laser irradiation.
Lima, Darlon Martíns; Tonetto, Mateus Rodrigues; de Mendonça, Adriano Augusto Melo; Elossais, André Afif; Saad, José Roberto Cury; de Andrade, Marcelo Ferrarezi; Pinto, Shelon Cristina Souza; Bandéca, Matheus Coelho
2014-05-01
Ideally projected to be applied on soft tissues, infrared lasers were improved by restorative dentistry to be used in hard dental tissues cavity preparations--namely enamel and dentin. This paper evidentiates the relevant aspects of infrared Erbium laser's action mechanism and its effects, and characterizes the different effects deriving from the laser's beams emission. The criteria for use and selection of optimal parameters for the correct application of laser systems and influence of supporting factors on the process, such as water amount and its presence in the ablation process, protection exerted by the plasma shielding and structural factors, which are indispensable in dental tissues cavity preparation related to restorative technique, are subordinated to optical modifications caused by the interaction of the energy dissipated by these laser light emission systems in the targeted tissue substrate. Differences in the action of infrared Erbium laser system in regard to the nature of the ablation process and variations on the morphological aspects observed in the superficial structure of the target tissue irradiated, may be correlated to the structural optical modifications of the substrate produced by an interaction of the energy propagated by laser systems.
NASA Astrophysics Data System (ADS)
Jones, Guilford, II; Huang, Zhennian; Pacheco, Dennis P., Jr.; Russell, Jeffrey A.
2004-07-01
Tunable solid-state dye lasers operating in the blue-green spectral region are attractive for a variety of applications. An important consideration in assessing the viability of this technology is the service life of the gain medium, which is presently limited by dye photodegradation. In this study, solid polymeric samples consisting of the coumarin dye C540A in modified PMMA were subjected to controlled photodegradation tests. The excitation laser was a flashlamp-pumped dye laser operating at 440 nm with a pulse duration of 1 μs. A complementary set of data was obtained for dye in solution phase for comparison purposes. Photophysical properties of C540A in water solution of polymethacrylic acid (PMAA) have been investigated with a view to assess the suitability of the sequestering polymer (PMAA) as an effective additive to facilitate use of a water medium for highly efficient blue-green dye lasers. Lasing action of C540A in aqueous PMAA has been realized using flashlamp-pumped laser system, yielding excellent laser efficiencies superior to that achieved in ethanolic solutions with the same dye. Laser characterization of dye in media included measurement of laser threshold, slope efficiency, pulse duration and output wavelength.
Laser-Induced Modification Of Energy Bands Of Transparent Solids
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2010-10-01
Laser-induced variations of electron energy bands of transparent solids significantly affect the initial stages of laser-induced ablation (LIA) influencing rates of ionization and light absorption by conduction-band electrons. We analyze fast variations with characteristic duration in femto-second time domain that include: 1) switching electron functions from bonding to anti-bonding configuration due to laser-induced ionization; 2) laser-driven oscillations of electrons in quasi-momentum space; and 3) direct distortion of the inter-atomic potential by electric field of laser radiation. Among those effects, the latter two have zero delay and reversibly modify band structure taking place from the beginning of laser action. They are of special interest due to their strong influence on the initial stage and threshold of laser ablation. The oscillations modify the electron-energy bands by adding pondermotive potential. The direct action of radiation's electric field leads to high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the forbidden-energy bands. FKE provides decrease of the effective band gap while the electron oscillations lead either to monotonous increase or oscillatory variations of the gap. We analyze the competition between those two opposite trends and their role in initiating LIA.
Advances in high power linearly polarized fiber laser and its application
NASA Astrophysics Data System (ADS)
Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin
2017-10-01
Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.
In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesnikov, A S; Kolesnikova, E A; Popov, A P
2014-07-31
Dehydration of muscle tissue in vitro under the action of biologically compatible hyperosmotic agents is studied using a laser terahertz spectrometer in the frequency range from 0.25 to 2.5 THz. Broadband terahertz absorption and reflection spectra of the bovine skeletal muscle tissue were obtained under the action of glycerol, polyethylene glycol with the molecular weight 600 (PEG-600), and propylene glycol. The presented results are proposed for application in developing the methods of image contrast enhancement and increasing the depth of biological tissue probing with terahertz radiation. (laser biophotonics)
ERIC Educational Resources Information Center
Dickinson, Dale F.
1978-01-01
Intense radiation at microwave frequencies is emitted by certain nebular regions and stellar atmospheres. It is generated by maser action, which does for microwaves what laser action does for light. Describes in detail the types of masers and their action. (Author/MA)
Recent development on high-power tandem-pumped fiber laser
NASA Astrophysics Data System (ADS)
Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian
2016-11-01
High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.
Automated vision occlusion-timing instrument for perception-action research.
Brenton, John; Müller, Sean; Rhodes, Robbie; Finch, Brad
2018-02-01
Vision occlusion spectacles are a highly valuable instrument for visual-perception-action research in a variety of disciplines. In sports, occlusion spectacles have enabled invaluable knowledge to be obtained about the superior capability of experts to use visual information to guide actions within in-situ settings. Triggering the spectacles to occlude a performer's vision at a precise time in an opponent's action or object flight has been problematic, due to experimenter error in using a manual buttonpress approach. This article describes a new laser curtain wireless trigger for vision occlusion spectacles that is portable and fast in terms of its transmission time. The laser curtain can be positioned in a variety of orientations to accept a motion trigger, such as a cricket bowler's arm that distorts the lasers, which then activates a wireless signal for the occlusion spectacles to change from transparent to opaque, which occurs in only 8 ms. Results are reported from calculations done in an electronics laboratory, as well as from tests in a performance laboratory with a cricket bowler and a baseball pitcher, which verified this short time delay before vision occlusion. In addition, our results show that occlusion consistently occurred when it was intended-that is, near ball release and during mid-ball-flight. Only 8% of the collected data trials were unusable. The laser curtain improves upon the limitations of existing vision occlusion spectacle triggers, indicating that it is a valuable instrument for perception-action research in a variety of disciplines.
NASA Astrophysics Data System (ADS)
Hansen, Christopher S.; Kirk, Benjamin B.; Blanksby, Stephen J.; O'Hair, Richard. A. J.; Trevitt, Adam J.
2013-06-01
UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag2 + is compared with a literature spectrum as a further benchmark.
Operation of Ho:YAG ultrafast laser inscribed waveguide lasers.
McDaniel, Sean; Thorburn, Fiona; Lancaster, Adam; Stites, Ronald; Cook, Gary; Kar, Ajoy
2017-04-20
We report fabrication and operation of multi-watt level waveguide lasers utilizing holmium-doped yttrium aluminum garnet (Ho:YAG). The waveguides were fabricated using ultrafast laser inscription, which relies on a chirped pulse ytterbium fiber laser to create depressed cladding structures inside the material. A variety of waveguides were created inside the Ho:YAG samples. We demonstrate output powers of ∼2 W from both a single-mode 50 μm waveguide laser and a multimode 80 μm waveguide laser. In addition, laser action from a co-doped Yb:Ho:YAG sample under in-band pumping conditions was demonstrated.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... Laser Illumination of Aircraft AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice and... collection covers the reporting of unauthorized illumination of aircraft by lasers. DATES: Written comments.... Title: Reporting of Laser Illumination of Aircraft. Form Numbers: Advisory Circular 70-2. Type of Review...
[INVITED] On the mechanisms of single-pulse laser-induced backside wet etching
NASA Astrophysics Data System (ADS)
Tsvetkov, M. Yu.; Yusupov, V. I.; Minaev, N. V.; Akovantseva, A. A.; Timashev, P. S.; Golant, K. M.; Chichkov, B. N.; Bagratashvili, V. N.
2017-02-01
Laser-induced backside wet etching (LIBWE) of a silicate glass surface at interface with a strongly absorbing aqueous dye solution is studied. The process of crater formation and the generated optoacoustic signals under the action of single 5 ns laser pulses at the wavelength of 527 nm are investigated. The single-pulse mode is used to avoid effects of incubation and saturation of the etched depth. Significant differences in the mechanisms of crater formation in the ;soft; mode of laser action (at laser fluencies smaller than 150-170 J/cm2) and in the ;hard; mode (at higher laser fluencies) are observed. In the ;soft; single-pulse mode, LIBWE produces accurate craters with the depth of several hundred nanometers, good shape reproducibility and smooth walls. Estimates of temperature and pressure of the dye solution heated by a single laser pulse indicate that these parameters can significantly exceed the corresponding critical values for water. We consider that chemical etching of glass surface (or molten glass) by supercritical water, produced by laser heating of the aqueous dye solution, is the dominant mechanism responsible for the formation of crater in the ;soft; mode. In the ;hard; mode, the produced craters have ragged shape and poor pulse-to-pulse reproducibility. Outside the laser exposed area, cracks and splits are formed, which provide evidence for the shock induced glass fracture. By measuring the amplitude and spectrum of the generated optoacoustic signals it is possible to conclude that in the ;hard; mode of laser action, intense hydrodynamic processes induced by the formation and cavitation collapse of vapor-gas bubbles at solid-liquid interface are leading to the mechanical fracture of glass. The LIBWE material processing in the ;soft; mode, based on chemical etching in supercritical fluids (in particular, supercritical water) is very promising for structuring of optical materials.
Ghabraei, Sholeh; Chiniforush, Nasim; Bolhari, Behnam; Aminsobhani, Mohsen; Khosarvi, Abbas
2018-01-01
Introduction: Achieving appropriate anesthesia in patients with symptomatic irreversible pulpitis in mandibular molars during endodontic treatment is always one of the most challenging aspects. Photobiomodulation (PBM) has been used in dentistry due to its anti-inflammatory properties and regenerative effects. This study evaluates the effects of PBM in the depth of anesthesia in inferior alveolar nerve block. Methods: In this randomized clinical trial, 44 patients requiring endodontic treatment in lower molar, left or right were selected, half of them were randomly treated with PBM therapy. Laser irradiation by 980 nm diode laser with a single dose (15 J/cm2, for 20 seconds) before anesthesia was performed at the buccal aspect. Inferior alveolar nerve block was performed once. Success was defined as no or mild pain (no need for any supplemental injection), based on the visual analogue scale during access cavity preparation. Results were evaluated using SPSS software. Results: The results of this study showed that the necessity for supplemental injection was lower in the group receiving laser than in the group without laser (P = 0.033). The mean pain intensity during dentin cutting was lower in the group receiving laser than in the group without laser (P = 0.031). Also, the mean pain intensity during pulp dropping was lower in the group receiving laser, than the group without laser (P = 0.021). Conclusion: Based on the results of this study, it seems that the application of PBM before anesthesia is effective on increasing depth of anesthesia. PMID:29399304
Handheld laser scanner automatic registration based on random coding
NASA Astrophysics Data System (ADS)
He, Lei; Yu, Chun-ping; Wang, Li
2011-06-01
Current research on Laser Scanner often focuses mainly on the static measurement. Little use has been made of dynamic measurement, that are appropriate for more problems and situations. In particular, traditional Laser Scanner must Keep stable to scan and measure coordinate transformation parameters between different station. In order to make the scanning measurement intelligently and rapidly, in this paper ,we developed a new registration algorithm for handleheld laser scanner based on the positon of target, which realize the dynamic measurement of handheld laser scanner without any more complex work. the double camera on laser scanner can take photograph of the artificial target points to get the three-dimensional coordinates, this points is designed by random coding. And then, a set of matched points is found from control points to realize the orientation of scanner by the least-square common points transformation. After that the double camera can directly measure the laser point cloud in the surface of object and get the point cloud data in an unified coordinate system. There are three major contributions in the paper. Firstly, a laser scanner based on binocular vision is designed with double camera and one laser head. By those, the real-time orientation of laser scanner is realized and the efficiency is improved. Secondly, the coding marker is introduced to solve the data matching, a random coding method is proposed. Compared with other coding methods,the marker with this method is simple to match and can avoid the shading for the object. Finally, a recognition method of coding maker is proposed, with the use of the distance recognition, it is more efficient. The method present here can be used widely in any measurement from small to huge obiect, such as vehicle, airplane which strengthen its intelligence and efficiency. The results of experiments and theory analzing demonstrate that proposed method could realize the dynamic measurement of handheld laser scanner. Theory analysis and experiment shows the method is reasonable and efficient.
Surface transmission enhancement of ZnS via continuous-wave laser microstructuring
NASA Astrophysics Data System (ADS)
Major, Kevin J.; Florea, Catalin M.; Poutous, Menelaos K.; Busse, Lynda E.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.
2014-03-01
Fresnel reflectivity at dielectric boundaries between optical components, lenses, and windows is a major issue for the optics community. The most common method to reduce the index mismatch and subsequent surface reflection is to apply a thin film or films of intermediate indices to the optical materials. More recently, surface texturing or roughening has been shown to approximate a stepwise refractive index thin-film structure, with a gradient index of refraction transition from the bulk material to the surrounding medium. Short-pulse laser ablation is a recently-utilized method to produce such random anti-reflective structured surfaces (rARSS). Typically, high-energy femtosecond pulsed lasers are focused on the surface of the desired optical material to produce periodic or quasi-periodic assemblies of nanostructures which provide reduced surface reflection. This technique is being explored to generate a variety of structures across multiple optical materials. However, femtosecond laser systems are relatively expensive and more difficult to maintain. We present here a low power and low-cost alternative to femtosecond laser ablation, demonstrating random antireflective structures on the surface of Cleartran ZnS windows produced with a continuous-wave laser. In particular, we find that irradiation with a low-powered (<10 mW), defocused, CW 325nm-wavelength laser produces a random surface with significant roughness on ZnS substrates. The transmission through the structured ZnS windows is shown to increase by up to 9% across a broad wavelength range from the visible to the near-infrared.
Torkzaban, Parviz; Kasraei, Shahin; Torabi, Sara; Farhadian, Maryam
2018-02-01
Low-level laser therapy (LLLT) is a non-invasive modality to promote osteoblastic activity and tissue healing. The aim of this study was to evaluate the efficacy of LLLT for improvement of dental implant stability. This randomized controlled clinical trial was performed on 80 dental implants placed in 19 patients. Implants were randomly divided into two groups (n = 40). Seven sessions of LLLT (940 nm diode laser) were scheduled for the test group implants during 2 weeks. Laser was irradiated to the buccal and palatal sides. The same procedure was performed for the control group implants with laser hand piece in "off" mode. Implant stability was measured by Osstell Mentor device in implant stability quotient (ISQ) value immediately after surgery and 10 days and 3, 6, and 12 weeks later. Repeated measures ANOVA was used to compare the mean ISQ values (implant stability) in the test and control groups. Statistical test revealed no significant difference in the mean values of implant stability between the test and control groups over time (P = 0.557). Although the mean values of implant stability changed significantly in both groups over time (P < 0.05). Although the trend of reduction in stability was slower in the laser group in the first weeks and increased from the 6th to 12th week, LLLT had no significant effect on dental implant stability.
Laser action in chromium-doped forsterite
NASA Technical Reports Server (NTRS)
Petricevic, V.; Gayen, S. K.; Alfano, R. R.; Yamagishi, Kiyoshi; Anzai, H.
1988-01-01
This paper reports on pulsed laser operation obtained in chromium-activated forsterite Cr(3+):Mg2SiO4 at room temperature. The spectrum of the free-running laser peaks at 1235 nm and a bandwidth of about 22 nm. The spectral range of the laser emission is expected to extend from 850 to 1300, provided the parasitic impurity absorption may be minimized by improved crystal growth techique.
Alqualo-Costa, Renata; Thomé, Gustavo R; Perracini, Mônica R; Liebano, Richard E
2018-05-03
The aim of this study is to investigate the effects of low-level laser therapy and interferential current (IFC) on pain intensity, central sensitization, muscle strength and functional capacity in patients with knee osteoarthritis. Participants will be patients aged between 50 and 80 years, with knee osteoarthritis, pain intensity ranging from 3 to 8 points (0-10 scale), Lequesne Algofunctional Index ranging from 5 to 15 points, and Kellgren & Lawrence grade ≥2. A total of 168 patients will be randomly allocated into four groups as follows: active IFC + laser sham (G1), IFC sham + active laser (G2), active IFC + laser (G3) and IFC + laser sham (G4). Evaluators will be blinded to group allocation. Primary outcomes will be pain at rest and during movement measured with the visual analog pain scale. Clinical Trials Registry (NCT02898025. Registered on 20 April 2016).
Subthreshold diode laser micropulse photocoagulation for the treatment of diabetic macular edema.
Sivaprasad, Sobha; Dorin, Giorgio
2012-03-01
Diabetic macular edema (DME) is a sight-threatening complication of diabetic retinopathy, the leading cause of visual loss in the working-age population in the industrialized and emerging world. The standard of care for DME is focal/grid laser photocoagulation, which is proven effective in reducing the risk of vision loss, but inherently destructive and associated with tissue damage and collateral effects. Subthreshold diode laser micropulse photocoagulation is a nondestructive tissue-sparing laser procedure, which, in randomized controlled trials for the treatment of DME, has been found equally effective as conventional photocoagulation. Functional and anatomical outcomes from four independent randomized controlled trials provide level one evidence that vision stabilization/improvement and edema resolution/reduction can be elicited with less or no retinal damage, and with fewer or no complications. This review describes the principles of subthreshold diode laser micropulse photocoagulation, its treatment modalities and clinical outcomes in the context of standard laser treatments and of emerging nonlaser therapies for DME.
Direct generation of all-optical random numbers from optical pulse amplitude chaos.
Li, Pu; Wang, Yun-Cai; Wang, An-Bang; Yang, Ling-Zhen; Zhang, Ming-Jiang; Zhang, Jian-Zhong
2012-02-13
We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.
Random laser in biological tissues impregnated with a fluorescent anticancer drug
NASA Astrophysics Data System (ADS)
Lahoz, F.; Martín, I. R.; Urgellés, M.; Marrero-Alonso, J.; Marín, R.; Saavedra, C. J.; Boto, A.; Díaz, M.
2015-04-01
We have demonstrated that chemically modified anticancer drugs can provide random laser (RL) when infiltrated in a biological tissue. A fluorescent biomarker has been covalently bound to tamoxifen, which is one of the most frequently used drugs for breast cancer therapy. The light emitted by the drug-dye composite is scattered in tissue, which acts as a gain medium. Both non-coherent and coherent RL regimes have been observed. Moreover, the analysis of power Fourier transforms of coherent RL spectra indicates that the tissues show a dominant random laser cavity length of about 18 µm, similar to the average size of single cells. These results show that RL could be obtained from other drugs, if properly marked with a fluorescent tag, which could be appealing for new forms of combined opto-chemical therapies.
High power gas laser - Applications and future developments
NASA Technical Reports Server (NTRS)
Hertzberg, A.
1977-01-01
Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.
Simpson, Jennifer L; Melia, Michele; Yang, Michael B; Buffenn, Angela N; Chiang, Michael F; Lambert, Scott R
2012-04-01
To evaluate the role of cryotherapy in the current treatment of retinopathy of prematurity (ROP). Literature searches of PubMed and the Cochrane Library were conducted on December 2, 2009, for articles published after 1984. The searches included all languages and retrieved 187 relevant citations. Thirteen articles were deemed relevant to the assessment question and were rated according to the strength of evidence. Four articles reported results from 2 large multicenter randomized clinical trials, and the remaining 9 articles reported results of 3 small randomized trials that directly compared cryotherapy and laser. Neither of the multicenter randomized clinical trials was a direct comparison of cryotherapy with laser. These studies were used to evaluate the comparative trials based on treatment criteria, study populations, and clinical results. Higher percentages of poor structural and functional outcomes generally were seen in eyes treated with cryotherapy compared with eyes undergoing laser treatment. Higher rates of systemic complications and myopia also were identified after treatment with cryotherapy. Despite a relative paucity of level I evidence directly comparing cryotherapy and laser treatment for threshold ROP, the literature suggests that neonatal facilities should gain access to laser technology and laser-trained ophthalmic staff to achieve better outcomes for treatment of the disease. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Iyer, Vijay; Saggau, Peter
2003-10-01
In laser-scanning microscopy, acousto-optic (AO) deflection provides a means to quickly position a laser beam to random locations throughout the field-of-view. Compared to conventional laser-scanning using galvanometer-driven mirrors, this approach increases the frame rate and signal-to-noise ratio, and reduces time spent illuminating sites of no interest. However, random-access AO scanning has not yet been combined with multi-photon microscopy, primarily because the femtosecond laser pulses employed are subject to significant amounts of both spatial and temporal dispersion upon propagation through common AO materials. Left uncompensated, spatial dispersion reduces the microscope"s spatial resolution while temporal dispersion reduces the multi-photon excitation efficacy. In previous work, we have demonstrated, 1) the efficacy of a single diffraction grating scheme which reduces the spatial dispersion at least 3-fold throughout the field-of-view, and 2) the use of a novel stacked-prism pre-chirper for compensating the temporal dispersion of a pair of AODs using a shorter mechanical path length (2-4X) than standard prism-pair arrangements. In this work, we demonstrate for the first time the use of these compensation approaches with a custom-made large-area slow-shear TeO2 AOD specifically suited for the development of a high-resolution 2-D random-access AO scanning multi-photon laser-scanning microscope (AO-MPLSM).
Zane, Cristina; Facchinetti, Elena; Arisi, Mariachiara; Ortel, Bernhard; Calzavara-Pinton, Piergiacomo
2017-07-01
Pulsed CO2 laser is a treatment of superficial basal cell carcinoma (sBCC) although robust clinical evidence has not been reported so far. The authors investigated efficacy, safety, time to wound healing, cosmetic outcome, patient satisfaction, and cost-effectiveness ratio of pulsed CO2 laser in comparison to cryotherapy and surgery. BCCs of the trunk and extremities were randomized to one of the treatments. After 90 days, efficacy and cosmetic outcome were assessed. Patients recorded the time to complete healing of the wound and scored their overall satisfaction. Two hundred forty patients were randomized. After 3 months, complete remission (CR) rate with pulsed CO2 laser was 78.8%. This was significantly lower than surgery, whereas the CR rate with cryotherapy was not significantly different. Cosmetic result was better with surgery. High satisfaction was reported by 65.0% of patients treated with CO2 ablation. Time of wound healing was significantly shorter with CO2 laser. In comparison to cryotherapy, pulsed CO2 laser showed no statistically significant difference in efficacy, cosmetic outcome, and patient satisfaction. Time to healing was shorter; the cost and cost-effectiveness ratio were similar. Surgery had the greatest efficacy rate. The main limitation of this study was the short duration of follow-up (3 months).
Min, Seong U K; Choi, Yu Sung; Lee, Dong Hun; Yoon, Mi Young; Suh, Dae Hun
2009-11-01
Nonablative laser is gaining popularity because of the low risk of complications, especially in patients with darker skin. To compare the efficacy and safety of a long-pulse neodymium-doped yttrium aluminium garnet (Nd:YAG) laser and a combined 585/1,064-nm laser for the treatment of acne scars. Nineteen patients with mild to moderate atrophic acne scars received four long-pulse Nd:YAG laser or combined 585/1,064-nm laser treatment sessions at fortnightly intervals. Treatments were administered randomly in a split-face manner. Acne scars showed mild to moderate improvement, with significant Echelle d'évaluation clinique des cicatrices d'acné (ECCA) score reductions, after both treatments. Although intermodality differences were not significant, combined 585/1,064-nm laser was more effective for deep boxcar scars. In patients with combined 585/1,064-nm laser-treated sides that improved more than long-pulse Nd:YAG laser-treated sides, ECCA scores were significantly lower for combined 585/1,064-nm laser treatment. Histologic evaluations revealed significantly greater collagen deposition, although there was no significant difference between the two modalities. Patient satisfaction scores concurred with physicians' evaluations. Both lasers ameliorated acne scarring with minimal downtime. In light of this finding, optimal outcomes might be achieved when laser treatment types are chosen after considering individual scar type and response.
George, E.V.; Schipper, J.F.
Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a T configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.
George, E. Victor; Schipper, John F.
1985-01-01
Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.
Hybrid mode-locked erbium-doped all-fiber soliton laser with a distributed polarizer.
Chernykh, D S; Krylov, A A; Levchenko, A E; Grebenyukov, V V; Arutunyan, N R; Pozharov, A S; Obraztsova, E D; Dianov, E M
2014-10-10
A soliton-type erbium-doped all-fiber ring laser hybrid mode-locked with a co-action of arc-discharge single-walled carbon nanotubes (SWCNTs) and nonlinear polarization evolution (NPE) is demonstrated. For the first time, to the best of our knowledge, boron nitride-doped SWCNTs were used as a saturable absorber for passive mode-locking initiation. Moreover, the NPE was introduced through the implementation of the short-segment polarizing fiber. Owing to the NPE action in the laser cavity, significant pulse length shortening as well as pulse stability improvement were observed as compared with a SWCNTs-only mode-locked laser. The shortest achieved pulse width of near transform-limited solitons was 222 fs at the output average power of 9.1 mW and 45.5 MHz repetition frequency, corresponding to the 0.17 nJ pulse energy.
The influence of the Tbeta level upon fluorescence and laser properties of aromatic compounds.
Nijegorodov, N; Winkoun, D P; Nkoma, J S
2004-07-01
The fluorescence and laser properties of seven specially chosen aromatic compounds are studied at 293 degrees C. The quantum yield of fluorescence, gamma, decay times, tauf, of the deaerated and non-deaerated solutions are measured. The oscillator strength, fe, fluorescence rate constants, kf, natural lifetimes, tauT0, and intersystem crossing rate constants, kST, are calculated. Some laser parameters are calculated or measured experimentally. It is found that the position of the Tbeta level plays an important role in the fluorescence and laser properties of aromatic compounds. If the Tbeta level is situated below the Sp level, it decreases the quantum yield of fluorescence and the decay time and increases the threshold of laser action. If, due to some structural changes of a molecule, the Tbeta level is situated higher than the Sp level, then the quantum yield of fluorescence and the decay times are increasing and the threshold of laser action is decreasing. Such influence of the position of the Tbeta level upon fluorescence and laser properties of aromatic compound is explained by the fact that the Sp level mixes with the Tbeta level more readily than with other taupipi* levels.
Laser-induced lipolysis on adipose cells
NASA Astrophysics Data System (ADS)
Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.
2004-10-01
Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.
Dorin, Giorgio
2004-01-01
Laser photocoagulation is a photo-thermal therapy validated by landmark studies and commonly accepted as the standard of care for various retinal diseases. Although its mechanism of action is still not completely understood, it is normally administered with visible endpoints, true intra-retinal burns that cause chorioretinal scars, which, with time, evolve into expanding areas of atrophy. New hypotheses on the mechanism of action of laser photocoagulation suggest that its therapeutic benefits derive from biologic activities that cannot be inducted within the "burned" area of photocoagulation necrosis, but that occur in the adjacent surrounding areas affected by a lower, sub-lethal, photo-thermal elevation. Thus, the iatrogenic chorioretinal damage caused by visible endpoint photocoagulation may be redundant and an equally effective laser therapy could be administered with minimum intensity photocoagulation (MIP) using laser protocols aiming to create only non-lethal photo-thermal elevations with no intraoperative visible endpoint. It is the purpose of this paper to review laser techniques and clinical protocols that have been utilized to administer retina-sparing MIP treatments that hold the promise of healing the retina while minimizing the iatrogenic harm.
Comparison on electrically pumped random laser actions of hydrothermal and sputtered ZnO films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Canxing; Jiang, Haotian; Li, Yunpeng
2013-10-07
Random lasing (RL) in polycrystalline ZnO films is an intriguing research subject. Here, we have comparatively investigated electrically pumped RL behaviors of two metal-insulator-semiconductor structured devices using the hydrothermal and sputtered ZnO films as the semiconductor components, i.e., the light-emitting layers, respectively. It is demonstrated that the device using the hydrothermal ZnO film exhibits smaller threshold current and larger output optical power of the electrically pumped RL. The morphological characterization shows that the hydrothermal ZnO film is somewhat porous and is much rougher than the sputtered one, suggesting that in the former stronger multiple light scattering can occur. Moreover, themore » photoluminescence characterization indicates that there are fewer defects in the hydrothermal ZnO film than in the sputtered one, which means that the photons can pick up larger optical gain through stimulated emission in the hydrothermal ZnO film. Therefore, it is believed that the stronger multiple light scattering and larger optical gain contribute to the improved performance of the electrically pumped RL from the device using the hydrothermal ZnO film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdeev, A V; Bashkin, A S; Katorgin, Boris I
2011-07-31
The possibility of clearing hazardous near-Earth space debris using a spaceborne laser station with a large autonomous cw chemical HF laser is substantiated and the requirements to its characteristics (i.e., power and divergence of laser radiation, pulse duration in the repetitively pulsed regime, repetition rate and total time of laser action on space debris, necessary to remove them from the orbits of the protected spacecrafts) are determined. The possibility of launching the proposed spaceborne laser station to the orbit with the help of a 'Proton-M' carrier rocket is considered. (laser applications)
Noh, Tai Kyung; Chung, Bo Young; Yeo, Un Cheol; Chang, SeoYoun; Lee, Mi Woo; Chang, Sung Eun
2015-12-01
Q-switched (QS) 532-nm lasers are widely used to treat solar lentigines. To compare the efficacy and safety of 660-nm and 532-nm QS neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers in the treatment for lentigines in Asians. The halves of each face (randomly chosen) of 8 Korean Fitzpatrick Skin Type III-IV women with facial solar lentigines were treated with either 660-nm or 532-nm lasers. Pigmentation was measured objectively using a profilometric skin analysis tool and subjectively using the pigmentation area and severity index (PSI) score, global assessment of the aesthetic improvement scale (GAIS), and a patient satisfaction score at Weeks 4 and 8. Seven patients completed the study. No significant differences were found in the PSI, GAIS, patient satisfaction score, and melanin average score between the lasers. The melanin average level was significantly reduced by the 660-nm laser but not the 532-nm laser at Week 8 compared with the baseline. Both 660-nm and 532-nm QS Nd:YAG lasers effectively reduce pigmentation for up to 8 weeks with high patient satisfaction. The new 660-nm laser therefore increases the treatment options for lentigines in Asian skin.
NASA Technical Reports Server (NTRS)
Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.
1977-01-01
The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.
Cengiz, Esra; Yilmaz, Hasan Guney
2016-03-01
The purpose of this randomized clinical study was to evaluate the efficiency of erbium, chromium-doped:yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser irradiation combined with a resin-based tricalcium silicate material and calcium hydroxide in direct pulp capping for a 6-month follow-up period. A total of 60 teeth of 60 patients between the ages of 18 and 41 years were recruited for this study. Sixty permanent vital teeth without symptoms and radiographic changes were randomly assigned to the following 4 groups (n = 15): Gr CH, the exposed area was sealed with calcium hydroxide (CH) paste; Gr laser CH, the treated area was sealed with CH paste after Er,Cr:YSGG laser irradiation at an energy level of 0.5 W without water and with 45% air; Gr TheraCal, TheraCal LC (Bisco, Schaumburg, IL) was applied directly to the exposed pulp; and Gr Laser TheraCal, TheraCal LC was applied after irradiation with an Er,Cr:YSGG laser. At the 1-week and 1-, 3-, and 6-month recall examinations, the loss of vitality, spontaneous pain, reactions to thermal stimuli and percussion, and radiographic changes were considered as failure. The success rates in the CH and TheraCal groups were 73.3% and 66.6%, respectively. These rates did not reveal any significant difference. In both laser groups, success rates were 100%. The Er,Cr:YSGG laser-irradiated TheraCal and Er,Cr:YSGG laser-irradiated CH groups showed statistically higher success rates than the TheraCal and CH groups, respectively. Er,Cr:YSGG laser irradiation at 0.5 W without water combined with pulp capping agents can be recommended for direct pulp therapy. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Elhosary, Eman Abdelfatah Mohamed; Ewidea, Mahmoud Mohamed; Ahmed, Hamada Ahmed Hamada; El Khatib, Ayman
2018-02-01
[Purpose] To compare the effect of aerobic exercises versus laser acupuncture in treatment of postmenopausal hot flushes. [Subjects and Methods] This study was designed as single blind randomized controlled trial. A total of 48 postmenopausal women complained of hot flushes. Their ages ranged between 45 to 55 years and were randomly assigned into 2 equal groups: group (A), which received an aerobic exercises, and group (B), which received laser acupuncture. Both groups recieved 3 sessions per week for two months. The level of follicular stimulating hormone, lutelizing hormone, and hot flushes dairy card were assessed the severity of hot flahes before and after treatment program. [Results] There were Significant reduction in FSH, LH, and menopausal daily hot flush scale in group A compared with group B at the post treatment. [Conclusion] Eight week program of an aerobic exercises yields improvement in FSH, LH, and decrease in severity of hot flushes assessed by hot flush dairy card than laser acupuncture in the treatment of postmenopausal hot flashes.
Disorder-induced localization of excitability in an array of coupled lasers
NASA Astrophysics Data System (ADS)
Lamperti, M.; Perego, A. M.
2017-10-01
We report on the localization of excitability induced by disorder in an array of coupled semiconductor lasers with a saturable absorber. Through numerical simulations we show that the exponential localization of excitable waves occurs if a certain critical amount of randomness is present in the coupling coefficients among the lasers. The results presented in this Rapid Communication demonstrate that disorder can induce localization in lattices of excitable nonlinear oscillators, and can be of interest in the study of photonics-based random networks, neuromorphic systems, and, by analogy, in biology, in particular, in the investigation of the collective dynamics of neuronal cell populations.
Precise laser gyroscope for autonomous inertial navigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, A G; Molchanov, A V; Izmailov, E A
2015-01-31
Requirements to gyroscopes of strapdown inertial navigation systems for aircraft application are formulated. The construction of a ring helium – neon laser designed for autonomous navigation is described. The processes that determine the laser service life and the relation between the random error of the angular velocity measurement and the surface relief features of the cavity mirrors are analysed. The results of modelling one of the promising approaches to processing the laser gyroscope signals are presented. (laser gyroscopes)
Chen, Guohai; Tzekov, Radouil; Li, Wensheng; Jiang, Fangzheng; Mao, Sihong; Tong, Yuhua
2016-11-01
To evaluate the relative efficacy of subthreshold micropulse diode laser versus conventional laser photocoagulation for the treatment of diabetic macular edema. A comprehensive literature search was conducted to find relevant randomized controlled trials (RCTs). Efficacy estimates were determined by comparing weighted mean differences of the mean change of best-corrected visual acuity and central macular thickness from baseline. Six RCTs were selected for this meta-analysis, including 398 eyes (203 eyes in the subthreshold micropulse diode laser group and 195 eyes in the conventional laser group). Subthreshold micropulse diode laser was superior to conventional laser in terms of mean change of logMAR best-corrected visual acuity at 3, 9, and 12 months after treatment (P = 0.02; P = 0.04, and P = 0.03, respectively), and it showed a similar trend at 6 months (P = 0.05). Although, there was no significant difference in terms of mean change in central macular thickness from baseline to 3, 6, 9, or 12 months (P = 0.80; P = 0.20; P = 0.88, and P = 0.86, respectively). Subthreshold micropulse diode laser treatment resulted in better visual acuity compared with conventional laser, although the differences before 12 months are likely to be too small to be of clinical relevance and may be dependent on baseline best-corrected visual acuity. The two types of treatment seem to have similar anatomical outcome.
Chen, Haiting; Liu, Yu; Niu, Guangzeng; Ma, Jingxue
2018-05-01
Meta-analysis of randomized controlled trials (RCTs) which compared excimer laser refractive surgery and phakic intraocular lenses (PIOLs) for the treatment of myopia and astigmatism. An electronic literature search was performed using the PubMed, EBSCO, CNKI, and Cochrane Library database to identify prospective RCTs which compared excimer laser refractive surgery and PIOL with a follow-up time of at least 12 months. Efficacy, accuracy, safety outcomes, and complications were analyzed by standardized mean difference, risk ratio, and the pooled estimates according to a fixed effect model or random effect model. This review included 5 RCTs with a sum of 405 eyes. The range of myopia was 6.0 to 20.0 D with up to 4.0 D of astigmatism. The PIOL group was more likely to achieve a spherical equivalence within±1.0 D of target refraction at 12 months postoperatively (P=0.009), and was less likely to lose one or more lines of best spectacle corrected visual acuity than the LASER group (P=0.002). On the whole, there is no significant difference in efficacy and complications between the two kinds of surgeries. This meta-analysis indicated that PIOLs were safer and more accurate within 12 months of follow-up compared with excimer laser surgical for refractive errors.
Random fiber laser based on artificially controlled backscattering fibers.
Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong
2018-01-10
The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.
NASA Astrophysics Data System (ADS)
Martignago, C. C. S. M.; Tim, C. R.; Assis, L.; Neve, L. M. G.; Bossini, P. S.; Renno, A. C.; Avó, L. R. S.; Liebano, R. E.; Parizotto, N. A.
2018-02-01
Objective: to identify the best low intensity laser photobiomodulation application site to increase the viability of the cutaneous flap in rats. Methods: 18 male rats (Rattus norvegicus: var. Albinus, Rodentia Mammalia) were randomly distributed into 3 groups (n = 6). Group I (GI) was submitted to simulated laser photobiomodulation, group II (GII) was submitted to the laser photobiomodulation at three points in the flap cranial base, and group III (GIII) was submitted to laser photobiomodulation at twelve points distributed along the flap. All groups were irradiated with an Indium, Galium, Aluminum and Phosphorus diode laser (InGaAlP), 660 nm, with power of 50 mW, total energy of 12 J in continuous emission mode. The treatment started immediately after performing the cranial base random skin flap (dimension of 10X4 cm2 ) and reapplied every 24 hours, with a total of 5 applications. The animals were euthanized after the evaluation of the percentage of necrosis area and the material was collected for histological analysis on the 7th postoperative day. Results: GII animals presented a statistically significant decrease for the necrosis area when compared to the other groups, and a statistically significant increase in the quantification of collagen when compared to the control. We did not observe a statistical difference between the TGFβ and FGF expression in the different groups evaluated. Conclusion: the application of laser photobiomodulation at three points of the flap cranial base was more effective than at twelve points regarding the reduction of necrosis area.
Broccoletti, Roberto; Cafaro, Adriana; Gambino, Alessio; Romagnoli, Ercole; Arduino, Paolo Giacomo
2015-12-01
The aim of this prospective study was to estimate the effects of Erbium substituted: Yttrium Aluminium Garnet (Er:YAG) laser, compared with traditional scalpel, on the early postoperative sequelae of nondysplastic oral lesion removal. There is limited evidence that laser surgery could exhibit advantages over scalpel in oral mucosal surgery. The investigators studied a cohort of 344 patients; 394 lesions were randomized and treated. Outcome statistically evaluated variables were: age, gender, the site and size of investigated lesions, visual analogue score (VAS) of pain, the Oral Health Impact Profile questionnaire (OHIP-14) and the Quality of Life test (QOL), and number of analgesics taken in the 1st week after surgery. Significant differences were found if considering the surgical time, VAS, and QOL and OHIP-14 questionnaires; regarding those data, the Er:YAG laser appeared to be faster and less painful than traditional scalpel (p < 0.05). For bigger lesions, patients statistically took more painkillers if they had undergone traditional surgery. Considering the site of the treated lesions, Er:YAG laser was less painful, especially in the gingiva and palate (p < 0.05). This is the first randomized controlled surgical trial reported for the management of nondysplastic oral lesions with the use of an Er:YAG laser. With many limitations, the present report identifies significant difference in the immediate postoperative surgical period between the two treatments, meaning that the Er:YAG laser seemed to be less painful, and better accepted by patients, than traditional scalpel.
Pavlović, M D; Adamič, M; Nenadić, D
2015-12-01
Diode lasers are the most commonly used treatment modalities for unwanted hair reduction. Only a few controlled clinical trials but not a single randomized controlled trial (RCT) compared the impact of various laser parameters, especially radiant exposure, onto efficacy, tolerability and safety of laser hair reduction. To compare the safety, tolerability and mid-term efficacy of fixed, low and incremental radiant exposures of diode lasers (800 nm) for axillary hair removal, we conducted an intrapatient, left-to-right, patient- and assessor-blinded and controlled trial. Diode laser (800 nm) treatments were evaluated in 39 study participants (skin type II-III) with unwanted axillary hairs. Randomization and allocation to split axilla treatments were carried out by a web-based randomization tool. Six treatments were performed at 4- to 6-week intervals with study subjects blinded to the type of treatment. Final assessment of hair reduction was conducted 6 months after the last treatment by means of blinded 4-point clinical scale using photographs. The primary endpoint was reduction in hair growth, and secondary endpoints were patient-rated tolerability and satisfaction with the treatment, treatment-related pain and adverse effects. Excellent reduction in axillary hairs (≥ 76%) at 6-month follow-up visit after receiving fixed, low and incremental radiant exposure diode laser treatments was obtained in 59% and 67% of study participants respectively (Z value: 1.342, P = 0.180). Patients reported lower visual analogue scale (VAS) pain score on the fixed (4.26) than on the incremental radiant exposure side (5.64) (P < 0.0003). The only side-effect was mild and transient erythema. Subjects better tolerated the fixed, low radiant exposure protocol (P = 0.03). The majority of the study participants were satisfied with both treatments. Both low and incremental radiant exposures produced similar hair reduction and high and comparable patient satisfaction. However, low radiant exposure diode laser treatments were less painful and better tolerated. © 2015 European Academy of Dermatology and Venereology.
Microprocessor-Controlled Laser Balancing System
NASA Technical Reports Server (NTRS)
Demuth, R. S.
1985-01-01
Material removed by laser action as part tested for balance. Directed by microprocessor, laser fires appropriate amount of pulses in correct locations to remove necessary amount of material. Operator and microprocessor software interact through video screen and keypad; no programing skills or unprompted system-control decisions required. System provides complete and accurate balancing in single load-and-spinup cycle.
Sugavanam, S; Yan, Z; Kamynin, V; Kurkov, A S; Zhang, L; Churkin, D V
2014-02-10
Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting sub-nanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves.
Kanter, Ido; Butkovski, Maria; Peleg, Yitzhak; Zigzag, Meital; Aviad, Yaara; Reidler, Igor; Rosenbluh, Michael; Kinzel, Wolfgang
2010-08-16
Random bit generators (RBGs) constitute an important tool in cryptography, stochastic simulations and secure communications. The later in particular has some difficult requirements: high generation rate of unpredictable bit strings and secure key-exchange protocols over public channels. Deterministic algorithms generate pseudo-random number sequences at high rates, however, their unpredictability is limited by the very nature of their deterministic origin. Recently, physical RBGs based on chaotic semiconductor lasers were shown to exceed Gbit/s rates. Whether secure synchronization of two high rate physical RBGs is possible remains an open question. Here we propose a method, whereby two fast RBGs based on mutually coupled chaotic lasers, are synchronized. Using information theoretic analysis we demonstrate security against a powerful computational eavesdropper, capable of noiseless amplification, where all parameters are publicly known. The method is also extended to secure synchronization of a small network of three RBGs.
Multi-parameter fiber optic sensors based on fiber random grating
NASA Astrophysics Data System (ADS)
Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi
2017-04-01
Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.
640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser
NASA Astrophysics Data System (ADS)
Zhang, Limeng; Pan, Biwei; Chen, Guangcan; Guo, Lu; Lu, Dan; Zhao, Lingjuan; Wang, Wei
2017-04-01
An ultra-fast physical random number generator is demonstrated utilizing a photonic integrated device based broadband chaotic source with a simple post data processing method. The compact chaotic source is implemented by using a monolithic integrated dual-mode amplified feedback laser (AFL) with self-injection, where a robust chaotic signal with RF frequency coverage of above 50 GHz and flatness of ±3.6 dB is generated. By using 4-least significant bits (LSBs) retaining from the 8-bit digitization of the chaotic waveform, random sequences with a bit-rate up to 640 Gbit/s (160 GS/s × 4 bits) are realized. The generated random bits have passed each of the fifteen NIST statistics tests (NIST SP800-22), indicating its randomness for practical applications.
Robati, Reza M; Asadi, Elmira; Shafiee, Anoosh; Namazi, Nastaran; Talebi, Atefeh
2018-04-01
There are different modalities for hand rejuvenation. Fractional Er:YAG laser and long pulse Nd:YAG laser were introduced for treating hand wrinkles. We plan to compare fractional Er:YAG laser and long pulse Nd:YAG laser in a randomized controlled double-blind design with multiple sessions and larger sample size in comparison with previous studies. Thirty-three participants with hand wrinkles entered this study. They were randomly allocated to undergo three monthly laser treatments on each hand, one with a fractional Er:YAG laser and the other with a long pulse Nd:YAG laser. The evaluations included assessment of clinical improvement determined by two independent dermatologists not enrolled in the treatment along with measuring skin biomechanical property of hands using a sensitive biometrologic device with the assessment of cutaneous resonance running time (CRRT). Moreover, potential side effects and patients' satisfaction have been documented at baseline, 1 month after each treatment, and 3 months after the final treatment session. Clinical evaluation revealed both modalities significantly reduce hand wrinkles (p value < 0.05), with no significant difference between two lasers. Mean CRRT values also decreased significantly after the laser treatment compared to those of the baseline in both laser groups. There was no serious persistent side effect after both laser treatments. Both fractional Er:YAG and long pulse Nd:YAG lasers show substantial clinical improvement of hand skin wrinkles with no serious side effects. However, combination treatment by these lasers along with the other modalities such as fat transfer could lead to better outcomes in hand rejuvenation. IRCT2016032020468N4.
Pulsed Nd:YAG laser selective ablation of surface enamel caries: II. Histology and clinical trials
NASA Astrophysics Data System (ADS)
Harris, David M.; Goodis, Harold E.; White, Joel M.; Arcoria, Charles J.; Simon, James; Burkart, John; Yessik, Michael J.; Myers, Terry D.
2000-03-01
High intensity infrared light from the pulsed Nd:YAG dental laser is absorbed by pigmented carious enamel and not absorbed by normal enamel. Therefore, this system is capable of selective removal of surface enamel caries. Safety and efficacy of the clinical procedure was evaluated in two sets of clinical trials at three dental schools. Carious lesions were randomized to drill or laser treatment. Pulp vitality, surface condition, preparations and restorations were evaluated by blinded evaluators. In Study 1 surface caries were removed from 104 third molars scheduled for extraction. One week post-treatment teeth were extracted and the pulp was examined histologically. In Study 2 90 patients with 422 lesions on 376 teeth were randomized to laser or drill and followed for six months. There were no adverse events and both clinical and histological evaluations of pulp vitality showed no abnormalities. Caries were removed in all conditions. A significantly greater number of preparations in the drill groups vs. laser groups entered dentin (drill equals 11, laser equals 1, p less than 0.001). This indicates that the more conservative laser treatment removed the caries but not the sound enamel below the lesion.
Electrically driven deep ultraviolet MgZnO lasers at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suja, Mohammad; Bashar, Sunayna Binte; Debnath, Bishwajit
Semiconductor lasers in the deep ultraviolet (UV) range have numerous potential applications ranging from water purification and medical diagnosis to high-density data storage and flexible displays. Nevertheless, very little success was achieved in the realization of electrically driven deep UV semiconductor lasers to date. Here, we report the fabrication and characterization of deep UV MgZnO semiconductor lasers. These lasers are operated with continuous current mode at room temperature and the shortest wavelength reaches 284 nm. The wide bandgap MgZnO thin films with various Mg mole fractions were grown on c-sapphire substrate using radio-frequency plasma assisted molecular beam epitaxy. Metal-semiconductor-metal (MSM)more » random laser devices were fabricated using lithography and metallization processes. Besides the demonstration of scalable emission wavelength, very low threshold current densities of 29-33 A/cm 2 are achieved. Furthermore, numerical modeling reveals that impact ionization process is responsible for the generation of hole carriers in the MgZnO MSM devices. The interaction of electrons and holes leads to radiative excitonic recombination and subsequent coherent random lasing.« less
Electrically driven deep ultraviolet MgZnO lasers at room temperature
Suja, Mohammad; Bashar, Sunayna Binte; Debnath, Bishwajit; ...
2017-06-01
Semiconductor lasers in the deep ultraviolet (UV) range have numerous potential applications ranging from water purification and medical diagnosis to high-density data storage and flexible displays. Nevertheless, very little success was achieved in the realization of electrically driven deep UV semiconductor lasers to date. Here, we report the fabrication and characterization of deep UV MgZnO semiconductor lasers. These lasers are operated with continuous current mode at room temperature and the shortest wavelength reaches 284 nm. The wide bandgap MgZnO thin films with various Mg mole fractions were grown on c-sapphire substrate using radio-frequency plasma assisted molecular beam epitaxy. Metal-semiconductor-metal (MSM)more » random laser devices were fabricated using lithography and metallization processes. Besides the demonstration of scalable emission wavelength, very low threshold current densities of 29-33 A/cm 2 are achieved. Furthermore, numerical modeling reveals that impact ionization process is responsible for the generation of hole carriers in the MgZnO MSM devices. The interaction of electrons and holes leads to radiative excitonic recombination and subsequent coherent random lasing.« less
NASA Astrophysics Data System (ADS)
Konov, Vitalii I.; Pimenov, S. M.; Prokhorov, A. M.; Chapliev, N. I.
1988-02-01
A scanning electron microscope was used with a pulse-periodic CO2 laser to discover the laws governing the correlation of the modified microrelief of metal surfaces, subjected to the action of multiple laser pulses, with the emission of charged particles and the luminescence of the irradiated zone. It was established that the influence of sorption and laser-induced desorption on the emission signals may be manifested differently depending on the regime of current generation in the "target-vacuum chamber" circuit.
Solvent-free fluidic organic dye lasers.
Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles
2013-05-06
We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.
NASA Astrophysics Data System (ADS)
Naidu, S. V. L. G.; Subapriya, S.; Yeoh, C. N.; Soosai, S.; Shalini, V.; Harwant, S.
2005-11-01
The aim of this study was to assess the effects of low output laser therapy as an adjuvant treatment in grade 1 diabetic foot ulcers. Methods: Sixteen patients were randomly divided equally into two groups. Group A had daily dressing only, while group B had low output laser therapy instituted five days a week in addition to daily dressing. Serial measurement of the ulcer was done weekly using digital photography and analyzed. Results: The rate of healing in group A was 10.42 mm2/week, and in group B was 66.14mm2/week. The difference in the rate of healing was statistically significant, p<0.05. Conclusion: Laser therapy as an adjuvant treatment accelerates diabetic ulcer healing by six times in a six week period.
Oliveira Sierra, Simone; Melo Deana, Alessandro; Mesquita Ferrari, Raquel Agnelli; Maia Albarello, Priscilla; Bussadori, Sandra Kalil; Santos Fernandes, Kristianne Porta
2013-11-06
Low-level laser therapy (LLLT) has been shown to modulate the inflammatory process without adverse effects , by reducing pain and swelling and promoting the repair of damaged tissues. Because pain, swelling and muscle spasm are complications found in virtually all patients following oral surgery for the removal of impacted teeth, this model has been widely used to evaluate the effects of LLLT on the inflammatory process involving bone and, connective tissue and the muscles involved in mastication. After meeting the eligibility criteria, 60 patients treated at a Specialty Dental Center for the removal of impacted lower third molars will be randomly divided into five groups according to the type of laser therapy used at the end of surgery (intraoral irradiation with 660 nm laser; extraoral irradiation with 660 nm laser; intraoral irradiation with 808 nm laser; extraoral irradiation with 808 nm laser and no irradiation). To ensure that patients are blinded to the type of treatment they are receiving, the hand piece of the laser apparatus will be applied both intraorally and extraorally to all participants, but the device will be turned on only at the appropriate time, as determined by the randomization process. At 2 and 7 days after surgery, the patients will be evaluated by three blinded evaluators who will measure of swelling, mouth opening (muscle spasm evaluation) and pain (using two different pain scales). The 14-item Oral Health Impact Profile (OHIP-14) will be used to assess QOL. All data will be analyzed with respect to the normality of distribution using the Shapiro-Wilk test. Statistically significant differences between the experimental groups will be determined using analysis of variance, followed by a suitable post hoc test, when necessary. The significance level will be set at α = 0.05. The lack of standardization in studies with regard to the samples, methods and LLLT parameters complicates the determination of the actual effect of laser therapy on this model. The present study aims to provide a randomized, controlled, double-blind trial to compare four different LLLT parameters in relation to the outcomes of pain, swelling and muscle spasm following surgery for the extraction of impacted third molars and evaluate the effects os surgery on patients' quality os life (QOL). Brazilian Registry of Clinical Trials - Rebec (RBR-6XSB5H).
2014-01-01
Background Type 2 diabetes, also known non-insulin-dependent diabetes, is the most prevalent type of the disease and involves defects in the secretion and action of insulin. The aim of the proposed study is to evaluate the efficacy of pre-exercise low-level laser therapy (LLLT) on muscle performance of the quadriceps femoris in individuals with type 2 diabetes. Methods/Design A double-blind, randomized, controlled clinical trial will be carried out in two treatment phases. In the first phase, quadriceps muscle performance will be evaluated using an isokinetic dynamometer and the levels of creatine kinase and lactate dehydrogenase (biochemical markers of muscle damage) will be determined. The participants will then be allocated to four LLLT groups through a randomization process using opaque envelopes: Group A (4 Joules), Group B (6 Joules), Group C (8 Joules) and Group D (0 Joules; placebo). Following the administration of LLLT, the participants will be submitted to an isokinetic eccentric muscle fatigue protocol involving the quadriceps muscle bilaterally. Muscle performance and biochemical markers of muscle damage will be evaluated again immediately after as well as 24 and 48 hours after the experimental protocol. One week after the last evaluation the second phase will begin, during which Groups A, B and C will receive the LLLT protocol that achieved the best muscle performance in phase 1 for a period of 4 weeks. At the end of this period, muscle performance will be evaluated again. The protocol for this study is registered with the World Health Organization under Universal Trial Number U1111-1146-7109. Discussion The purpose of this randomized clinical trial is to evaluate the efficacy of pre-exercise LLLT on the performance of the quadriceps muscle (peak torque, total muscle work, maximum power and fatigue index – normalized by body mass) in individuals with DM-2. The study will support the practice of evidence-based to the use of LLLT in improving muscle performance in Individuals with DM-2. Data will be published after the study is completed. PMID:24716713
Gomes, Cid André Fidelis de Paula; Leal-Junior, Ernesto Cesar Pinto; Biasotto-Gonzalez, Daniela Aparecida; El-Hage, Yasmin; Politti, Fabiano; Gonzalez, Tabajara de Oliveira; Dibai-Filho, Almir Vieira; de Oliveira, Adriano Rodrigues; Frigero, Marcelo; Antonialli, Fernanda Colella; Vanin, Adriane Aver; de Tarso Camillo de Carvalho, Paulo
2014-04-09
Type 2 diabetes, also known non-insulin-dependent diabetes, is the most prevalent type of the disease and involves defects in the secretion and action of insulin. The aim of the proposed study is to evaluate the efficacy of pre-exercise low-level laser therapy (LLLT) on muscle performance of the quadriceps femoris in individuals with type 2 diabetes. A double-blind, randomized, controlled clinical trial will be carried out in two treatment phases. In the first phase, quadriceps muscle performance will be evaluated using an isokinetic dynamometer and the levels of creatine kinase and lactate dehydrogenase (biochemical markers of muscle damage) will be determined. The participants will then be allocated to four LLLT groups through a randomization process using opaque envelopes: Group A (4 Joules), Group B (6 Joules), Group C (8 Joules) and Group D (0 Joules; placebo). Following the administration of LLLT, the participants will be submitted to an isokinetic eccentric muscle fatigue protocol involving the quadriceps muscle bilaterally. Muscle performance and biochemical markers of muscle damage will be evaluated again immediately after as well as 24 and 48 hours after the experimental protocol. One week after the last evaluation the second phase will begin, during which Groups A, B and C will receive the LLLT protocol that achieved the best muscle performance in phase 1 for a period of 4 weeks. At the end of this period, muscle performance will be evaluated again. The protocol for this study is registered with the World Health Organization under Universal Trial Number U1111-1146-7109. The purpose of this randomized clinical trial is to evaluate the efficacy of pre-exercise LLLT on the performance of the quadriceps muscle (peak torque, total muscle work, maximum power and fatigue index - normalized by body mass) in individuals with DM-2. The study will support the practice of evidence-based to the use of LLLT in improving muscle performance in Individuals with DM-2. Data will be published after the study is completed.
Rodanant, Nuttawut; Friberg, Thomas R; Cheng, Lingyun; Aurora, Ajay; Bartsch, Dirk; Toyoguchi, Mitsuko; Corbin, Patricia S; El-Bradey, Mohamed H; Freeman, William R
2002-10-01
To determine the predictors of drusen reduction in eyes with nonexudative age-related macular degeneration (ARMD) treated with subthreshold infrared (810 nm) diode laser macular grid photocoagulation. Additionally, to determine the relationship of laser-induced drusen reduction and best-corrected visual acuity (BCVA) 18 months after laser treatment. Randomized controlled clinical trial. Fifty patients (100 eyes) with bilateral nonexudative ARMD were enrolled at two centers. One eye of each patient was randomized to the observation; the other eye was treated with 48 subthreshold (invisible end point) applications of infrared (810 nm) diode laser in a macular grid pattern. The eyes that received subthreshold laser treatment were compared with the eyes that received no treatment. The baseline fundus characteristics (number, size, and distribution of drusen, as well as focal hyperpigmentation) from two macula areas (central 1500 micro diameter, pericentral 1500 micro ring area) on stereo color photographs, the number of laser-induced lesions, and the area of laser induced retinal pigment epithelial (RPE) lesions on fluorescein angiography 3 months after treatment were studied as predictors of major drusen reduction (> or = 50% drusen reduction from baseline) 18 months after laser treatment. BCVA at baseline and 18 months later was compared in observation eyes and in laser-treated eyes. Eighteen months after randomization, 24 (48%) of 50 eyes treated with subthreshold laser had major drusen reduction compared with three (6%) of 50 observation eyes (P =.00001). At 3 months post-treatment in laser-treated eyes with major drusen reduction, the mean number of laser-induced lesions on fluorescein angiography was 30.7 and the mean area of RPE change was 0.81 mm(2) compared with 14.8 laser-induced lesions and 0.35 mm(2) area of RPE change in eyes without major drusen reduction (P =.0001 and P =.0003, respectively). At baseline, fundus characteristics were not significantly different between observation eyes and laser-treated eyes or between the major drusen reduction group and the nonmajor drusen reduction group. At 18 months after treatment, BCVA was not significantly different in laser-treated eyes and in observation eyes. Subthreshold infrared (810 nm) diode laser macular grid photocoagulation in eyes with nonexudative ARMD significantly reduced drusen 18 months after laser treatment. Both the number of subthreshold laser lesions and the area of RPE changes visible on fluorescein angiography 3 months after treatment appeared to be predictors for major drusen reduction 18 months after treatment. However, it remains to be determined whether laser-induced drusen reduction is beneficial for visual acuity or reduces the incidence of choroidal neovascularization (CNV) in eyes with nonexudative ARMD.
Kozak, Igor; Luttrull, Jeffrey K.
2014-01-01
Medicinal lasers are a standard source of light to produce retinal tissue photocoagulation to treat retinovascular disease. The Diabetic Retinopathy Study and the Early Treatment Diabetic Retinopathy Study were large randomized clinical trials that have shown beneficial effect of retinal laser photocoagulation in diabetic retinopathy and have dictated the standard of care for decades. However, current treatment protocols undergo modifications. Types of lasers used in treatment of retinal diseases include argon, diode, dye and multicolor lasers, micropulse lasers and lasers for photodynamic therapy. Delivery systems include contact lens slit-lamp laser delivery, indirect ophthalmocope based laser photocoagulation and camera based navigated retinal photocoagulation with retinal eye-tracking. Selective targeted photocoagulation could be a future alternative to panretinal photocoagulation. PMID:25892934
Biophotonics of the interaction of low-intensity laser radiation with blood erythrocytes
NASA Astrophysics Data System (ADS)
Asimov, M. M.; Asimov, R. M.; Batyan, A. N.; Trusevich, M. O.; Rubinov, A. N.
2013-06-01
We have studied experimentally how optical radiation affects the neutralization of the toxic action of heavy metals and harmful chemical compounds (ecotoxicants) on the oxygen-transport function of blood erythrocytes. It has been found that the optical radiation has a stabilizing effect and prevents lowering the erythrocyte concentration in the presence of phenol and heavy metals in blood. We have studied the neutralization efficiency of the toxic action of ecotoxicants in relation to the laser irradiation time. The obtained data on the effect of the laser radiation on the thermal denaturation of hemoglobin and erythrocytes yield the scientific substantiation to the development of the optical method for the use in medicine upon drawing and conserving donor blood. We have shown that the obtained data can be used in medicine for improving the reliability of conditions of conservation and storage of donor blood, as well as for preventing the toxic action of harmful chemical compounds in the environment.
1990-02-14
of the present results to be in the tens of uJ/cm’. f) Comparatively high laser damage thresholds , due to the innate properties of the polymers used. g...number of interface systems switched in this mode as well. Intrinsic laser - induced polymer switching and nonlinear optical effects in these polymers...Effective Laser Shields Essential functional attributes of functional laser filters are ns or sub-ns risetimes, broad-band action (across the visible, near-IR
[The interauricular laser therapy of rheumatoid arthritis].
Sidorov, V D; Mamiliaeva, D R; Gontar', E V; Reformatskaia, S Iu
1999-01-01
Investigations have proved the ability of interauricular low-intensity infrared laser therapy (0.89 nm, 7.6 J/cm) to produce anti-inflammatory, immunomodulating action in patients with rheumatoid arthritis. The method has selective, pathogenetically directed immunomodulating effect the mechanism of which is similar to that of basic antirheumatic drugs and of intravenous laser radiation of blood. This laser therapy can be used as an alternative to intravenous blood radiation being superior as a noninvasive method. Interauricular laser therapy can potentiate the effects of nonsteroid anti-inflammatory drugs, cytostatics and diminish their side effects.
Phoenix Laser Beam in Action on Mars
2008-09-30
The Surface Stereo Imager camera aboard NASA Phoenix Mars Lander acquired a series of images of the laser beam in the Martian night sky. Bright spots in the beam are reflections from ice crystals in the low level ice-fog.
Lasing in strongly scattering dielectric microstructures
NASA Astrophysics Data System (ADS)
Florescu, Lucia
In the first part of this thesis, a detailed analysis of lasing in random multiple-light-scattering media with gain is presented. Random laser emission is analyzed using a time-dependent diffusion model for light propagating in the medium containing active atoms. We demonstrate the effects of scatterers to narrow the emission spectral linewidth and to shorten the emitted pulse duration at a specific threshold pump intensity. This threshold pump intensity decreases with scatterer density and excitation spot diameter, in excellent agreement with experimental results. The coherence properties of the random laser are studied using a generalized master equation. The random laser medium is treated as a collection of low quality-factor cavities, coupled by random photon diffusion. Laser-like coherence, on average, is demonstrated above a specific pumping threshold. We demonstrate that with stronger scattering, the pumping threshold for the transition from chaotic to isotropic coherent light emission decreases and enhanced optical coherence for the emitted light is achieved above threshold. The second part of this thesis presents a study of lasing in photonic crystals (PCs). The emission from an incoherently pumped atomic system in interaction with the electro-magnetic reservoir of a PC is analyzed using a set of generalized semiclassical Maxwell-Bloch equations. We demonstrate that the photonic band edge facilitates the enhancement of stimulated emission and the reduction of internal losses, leading to an important lowering of the laser threshold. In addition, an increase of the laser output at a photonic band edge is demonstrated. We next develop a detailed quantum theory of a coherently pumped two-level atom in a photonic band gap material, coupled to both a multi-mode wave-guide channel and a high-quality micro-cavity embedded within the PC. The cavity field characteristics are highly distinct from that of a corresponding high-Q cavity in ordinary vacuum. We demonstrate enhanced, inversionless, and nearly coherent light generation when the photon density of states (DOS) jump between the Mollow spectral components of atomic resonance fluorescence is large. In the case of a vanishing photon DOS on the lower Mollow sideband and no dipolar dephasing, the emitted photon statistics is Poissonian and the cavity field exhibits quadrature coherence.
Introducing therapeutic lasers in the hospitals and treatment rooms in Romania
NASA Astrophysics Data System (ADS)
Siposan, Dan G.; Manastireanu, Dan I.
2005-11-01
Background: Presently, there is no unanimous consensus regarding the methods to introduce laser therapy, on a large scale, into a medical assistance system. These methods may vary from one country to another, depending on some factors. Although, there are some compulsory stages that must be reached. Purpose: This paper's purpose is to present the necessary stages, in our opinion, to successfully introduce laser therapy in hospitals and treatment rooms in our country. They include, among others: an information of the public at large, by brochures or other informative materials, on therapeutic lasers' action; the introducing in high level medicine schools of courses on the biological action of low-level lasers; laboratory studies on action mechanisms of low level laser radiation on live tissues; establishing the more objective methods of patients' assessment; obtaining approval from the Bioethics Committee for clinical studies on volunteers, according to current legislation. Materials and methods: There had been done a preliminary clinical study on volunteers (over 100 in number), using mainly subjective methods of evaluation. The patients have been also monitored also after the treatment, during one to six months. We present briefly a method of monitoring and objective assessment, by optical means, for laser therapy results, which we intend to use in the near future. Results:-There are presented the stages we reached till now. In the preliminary clinical study we have treated patients with various pathologies: skin diseases, dental, surgical and neuralgic pathology etc. We observed an amelioration or total remission on the most patients and also a good mood after the treatments. There are presented a few cases with significant results. Discussion and conclusion: We estimate the success rate of our treatments with over 60 percents. We hope this study shall be useful for the purpose mentioned in the paper's title. In a country where living standard is low, laser therapy may be a viable alternative to the methods of conservative medicine, characterized by large costs and with a series of shortcomings.
Vinekar, Anand; Jayadev, Chaitra; Mangalesh, Shwetha; Kumar, Anupama Kiran; Bauer, Noel; Capone, Antonio; Trese, Michael; Shetty, Bhujang
2015-10-01
To compare single versus 2-session laser photoablation for flat neovascularization in cases with Zone 1 aggressive posterior retinopathy of prematurity. Twenty-nine Asian Indian infants with aggressive posterior retinopathy of prematurity were randomized; each eye received 1 of 2 methods (29 each in Group A or B) proposed by the PHOTO-ROP group. Group A underwent single session laser to the avascular retina underlying the flat neovascularization by direct laser over the fronds. Group B underwent laser in 2 sessions; first, laser was delivered to the avascular periphery up to the flat neovascularization and 7 days later to the avascular bed exposed by the retraction of the fronds. Outcome and complications between the two groups were compared. Mean birthweight and gestational ages were 1,276 g and 30.1 weeks, respectively. All eyes showed favorable outcome at a minimum 12-month follow-up. Hemorrhages after laser (41.4% vs. 17.2%, P < 0.001) were more common in the single laser group. Large hemorrhages (>1 disk diameter) seen in Group A took longer than 8 weeks to resolve and developed focal fibrosis. This study demonstrates that the two-staged laser procedure produces fewer and smaller hemorrhages and no fibrosis compared with a single session. Both methods have comparable favorable outcomes in Asian Indian infants.
Lin, Mu-Lien; Wu, Hung-Chien; Shih, Yong-Sheng; Chiu, I-Ting; Chen, Chao-Yi
2017-01-01
Objectives Chronic nonspecific lower back pain (LBP) is a common disease. Insufficient data is currently available to conclusively confirm the analgesic effects of laser acupuncture on LBP. This study evaluated the effectiveness of laser acupuncture plus Chinese cupping in LBP treatment. Methods Patients with chronic nonspecific LBP were enrolled for a randomized controlled trial and assigned to the laser acupuncture group (laser acupuncture plus Chinese cupping) and control group (sham laser plus Chinese cupping). Laser acupuncture (808 nm; 40 mW; 20 Hz; 15 J/cm2) and Chinese cupping were applied on the Weizhong (BL40) and Ashi acupoints for 5 consecutive days. Plasma cortisol levels were assessed before and after the 5-day treatment session. The visual analog scale (VAS) scores were recorded at baseline and throughout the 5-day treatment session. Results After the treatment session, the plasma cortisol levels and VAS scores decreased significantly in both groups. In the laser acupuncture group, the VAS scores decreased significantly on days 4 and 5, and an enhanced reduction in VAS scores was observed. Conclusion Laser acupuncture plus Chinese cupping at the Weizhong (BL40) and Ashi acupoints effectively reduced pain and inflammation in chronic nonspecific LBP. This therapy could be a suitable option for LBP treatment in clinical settings. PMID:28848615
Lin, Mu-Lien; Wu, Jih-Huah; Lin, Chi-Wan; Su, Chuan-Tsung; Wu, Hung-Chien; Shih, Yong-Sheng; Chiu, I-Ting; Chen, Chao-Yi; Chang, Wen-Dien
2017-01-01
Chronic nonspecific lower back pain (LBP) is a common disease. Insufficient data is currently available to conclusively confirm the analgesic effects of laser acupuncture on LBP. This study evaluated the effectiveness of laser acupuncture plus Chinese cupping in LBP treatment. Patients with chronic nonspecific LBP were enrolled for a randomized controlled trial and assigned to the laser acupuncture group (laser acupuncture plus Chinese cupping) and control group (sham laser plus Chinese cupping). Laser acupuncture (808 nm; 40 mW; 20 Hz; 15 J/cm 2 ) and Chinese cupping were applied on the Weizhong (BL40) and Ashi acupoints for 5 consecutive days. Plasma cortisol levels were assessed before and after the 5-day treatment session. The visual analog scale (VAS) scores were recorded at baseline and throughout the 5-day treatment session. After the treatment session, the plasma cortisol levels and VAS scores decreased significantly in both groups. In the laser acupuncture group, the VAS scores decreased significantly on days 4 and 5, and an enhanced reduction in VAS scores was observed. Laser acupuncture plus Chinese cupping at the Weizhong (BL40) and Ashi acupoints effectively reduced pain and inflammation in chronic nonspecific LBP. This therapy could be a suitable option for LBP treatment in clinical settings.
Gain competition in dual wavelength quantum cascade lasers.
Geiser, Markus; Pflügl, Christian; Belyanin, Alexey; Wang, Qi Jie; Yu, Nanfang; Edamura, Tadanaka; Yamanishi, Masamichi; Kan, Hirofumi; Fischer, Milan; Wittmann, Andreas; Faist, Jérôme; Capasso, Federico
2010-05-10
We investigated dual wavelength mid-infrared quantum cascade lasers based on heterogeneous cascades. We found that due to gain competition laser action tends to start in higher order lateral modes. The mid-infrared mode with the lower threshold current reduces population inversion for the second laser with the higher threshold current due to stimulated emission. We developed a rate equation model to quantitatively describe mode interactions due to mutual gain depletion. (c) 2010 Optical Society of America.
Potential Characteristics and Applications of X-Ray Lasers,
1982-01-01
useful to determine X-ray laser action. It is also possible to employ spectroscopy of the relevant levels to determine a population inversion, even if...Double-pulse heating of KCI cryst:is with a Nd laser was employed at the Spectroscopy Institute in Mosco.,. Elton !n;J Dixon ascribed the erission of...inversions were attributed to charge exchange which o-tjrred when ions from laser -heated plasmas expanded into a low-pressure (1-10 Torr) ’ ffer gas in
Seeing Atoms and Molecules in Action with an Electron 'Eye' | Berkeley Lab
, also called "electron guns," that can drive advanced X-ray lasers known as "free form of X-ray light. Free-electron lasers have opened new frontiers in studying materials and chemistry that you can look at with an X-ray free-electron laser, but with an electron eye." He added, "
Mordon, S; Michaud, T
2009-10-01
Lasers emit a coherent and monochromatic light beam, whereas pulsed lights produce a polychromatic light whose bandwidth is selected by adapted filters. The skin's chromophores are made up of water, hemoglobin, and melanin, to which must be added the exogenous pigments of tattoos. Each chromophore has its specific absorption spectrum. Lasers' main mechanisms of action are the photothermal effect and the photomechanical effect.
Michaud, T; Mordon, S
2008-02-01
Lasers emit a coherent and monochromatic light beam, whereas pulsed lights produce a polychromatic light whose bandwidth is selected by adapted filters. The skin's chromophores are made up of water, hemoglobin, and melanin, to which must be added the exogenous pigments of tattoos. Each chromophore has its specific absorption spectrum. Lasers' main mechanisms of action are the photothermal effect and the photomechanical effect.
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.
2018-04-01
We study the influence of a nonstationary nonlinear response of a medium on self-compression of soliton-like laser pulses in active fibres with a finite gain bandwidth. Based on the variational approach, we qualitatively analyse the self-action of the wave packet in the system under consideration in order to classify the main evolution regimes and to determine the minimum achievable laser pulse duration during self-compression. The existence of stable soliton-type structures is shown in the framework of the parabolic approximation of the gain profile (in the approximation of the Gnizburg – Landau equation). An analysis of the self-action of laser pulses in the framework of the nonlinear Schrödinger equation with a sign-constant gain profile demonstrate a qualitative change in the dynamics of the wave field in the case of a nonstationary nonlinear response that shifts the laser pulse spectrum from the amplification region and stops the pulse compression. Expressions for a minimum duration of a soliton-like laser pulse are obtained as a function of the problem parameters, which are in good agreement with the results of numerical simulation.
Comparing the effect of diode laser against acyclovir cream for the treatment of herpes labialis.
Honarmand, Marieh; Farhadmollashahi, Leila; Vosoughirahbar, Ehsan
2017-06-01
Recently alternative therapies such as the use of diode laser therapy have been introduced for recurrent herpes labial infection. The aim of this study was to evaluate the effectiveness of diode laser for treatment of recurrent herpes labialis. This was single-blind randomized clinical trial to evaluate the efficacy of diode laser for the treatment of recurrent herpes labial. In total, 60 patients whit recurrent herpes simplex labialis were selected and randomly divided in to three groups. 20 patients received treatment whit diode laser (at a wavelength of 870 nm, energy density 4.5 j/cm2), 20 patients were treated with acyclovir cream 5%, 20 patients received treatment with laser-off (placebo). The end point was lesions crusting. Data analyzed by Tukey HSD Test and One-way ANOVA (at a significance level of 0.05) in SPSS-20 software. The mean length of recovery time (day) in the laser, off laser, and acyclovir groups was 2.20±0.41, 4.30±1.03, and 3.4±1.142, respectively. There is a significant difference between three groups in this regard ( P <0.0001). The mean duration of pain (day) was 1.35±0.74, 2.65±1.27, and 2.30±0.92 for laser, off laser, and acyclovir groups, respectively ( P <0.0001). Treatment with diode laser reduced the length of recovery time and pain severity faster than treatment with acyclovir cream. Key words: Recurrent herpes labial, Acyclovir, Low level laser therapy.
Study on a novel laser target detection system based on software radio technique
NASA Astrophysics Data System (ADS)
Song, Song; Deng, Jia-hao; Wang, Xue-tian; Gao, Zhen; Sun, Ji; Sun, Zhi-hui
2008-12-01
This paper presents that software radio technique is applied to laser target detection system with the pseudo-random code modulation. Based on the theory of software radio, the basic framework of the system, hardware platform, and the implementation of the software system are detailed. Also, the block diagram of the system, DSP circuit, block diagram of the pseudo-random code generator, and soft flow diagram of signal processing are designed. Experimental results have shown that the application of software radio technique provides a novel method to realize the modularization, miniaturization and intelligence of the laser target detection system, and the upgrade and improvement of the system will become simpler, more convenient, and cheaper.
Tomsk Cardiology Center program on lasers in cardiovascular: first results
NASA Astrophysics Data System (ADS)
Gordov, Eugeni P.; Karpov, Rostislav S.; Dudko, Victor A.; Shipulin, Vladimir M.
1994-12-01
Recent progress in biomedical optics resulted in increased activity in this area at a number of different centers. Reported are the first results of the program directed to incorporate at Tomsk Cardiology Center experience gained in Tomsk optical profile research institutions in areas of light-matter interaction, high resolution spectroscopy, laser physics and relevant software and their usage in cardiac therapy, surgery, and diagnostics. To coordinate research work in this direction the special unit-laboratory of laser medicine is organized at the Center. Laboratory activity goes in the following directions: study of spectral properties of vessel walls in norm and atherosclerosis, comparative study of different wavelength laser radiation action on normal and atherosclerotically damaged tissues, novel approach to intravascular imaging, and usage of high sensitive laser spectroscopy for early diagnosis of cardiac diseases. The spectroscopic study of AP and normal tissue is aimed at understanding of differences in internal energy structures and ways of energy migration which are of critical importance for reaching selective laser action on normal and deceased tissues. To compare thermal, mechanical, and photo-chemical variations of tissues caused by laser radiation the XeCl excimer laser with Raman shifting cell and Nd:YAG laser with second, third, and fourth harmonic converters are employed. Fine influence of pulse duration, intensity, and repetition rates on AP removal is considered in laboratory experiments with vessel samples. Preliminary results on theoretical consideration for determination of spectroscopically detectable markers of some cardiac diseases are reported as well.
Asokan, Sharath; John, Baby; Priya, Geetha; Kumar, S
2017-01-01
Aim To evaluate the antimicrobial efficacy of diode laser, triphala, and sodium hypochlorite (NaOCl) against Enterococc-cus faecalis contaminated primary root canals. Materials and methods Forty-nine single-rooted human primary teeth were reduced up to cemento-enamel junction and biomechanically prepared. After sterilization, five teeth were selected as negative controls and remaining teeth were inoculated with E. faecalis. The teeth were then randomly divided into four groups. The first group was irradiated with diode laser, the second group was irrigated with sodium hypochlorite, and the third group with triphala solution. The fourth group served as the positive control. The antimicrobial efficacy was tested by collecting transfer fluid saline from the canals and counting the colony forming units (CFUs) of viable E. faecalis on agar plates. The Mann-Whitney test was used to analyze the results, using Statistical Package for the Social Sciences software version 19. Results The results showed that mean bacterial CFU were 8.00 ± 7.87 for laser, 58.60 ± 16.63 for triphala, and 69.80 ± 19.57 for NaOCl. Laser group showed significant reduction in the colony count compared to the other groups. Triphala group showed better antibacterial activity than NaOCl, but the difference was not statistically significant. Conclusion Laser was most effective against E. faecalis and triphala can be used as an alternative disinfectant to NaOCl in primary root canals. How to cite this article Thomas S, Asokan S, John B, Priya G, Kumar S. Comparison of Antimicrobial Efficacy of Diode Laser, Triphala, and Sodium Hypochlorite in Primary Root Canals: A Randomized Controlled Trial. Int J Clin Pediatr Dent 2017;10(1):14-17. PMID:28377648
Shalaby, S M; Bosseila, M; Fawzy, M M; Abdel Halim, D M; Sayed, S S; Allam, R S H M
2016-11-01
Morphea is a rare fibrosing skin disorder that occurs as a result of abnormal homogenized collagen synthesis. Fractional ablative laser resurfacing has been used effectively in scar treatment via abnormal collagen degradation and induction of healthy collagen synthesis. Therefore, fractional ablative laser can provide an effective modality in treatment of morphea. The study aimed at evaluating the efficacy of fractional carbon dioxide laser as a new modality for the treatment of localized scleroderma and to compare its results with the well-established method of UVA-1 phototherapy. Seventeen patients with plaque and linear morphea were included in this parallel intra-individual comparative randomized controlled clinical trial. Each with two comparable morphea lesions that were randomly assigned to either 30 sessions of low-dose (30 J/cm 2 ) UVA-1 phototherapy (340-400 nm) or 3 sessions of fractional CO 2 laser (10,600 nm-power 25 W). The response to therapy was then evaluated clinically and histopathologically via validated scoring systems. Immunohistochemical analysis of TGF-ß1 and MMP1 was done. Patient satisfaction was also assessed. Wilcoxon signed rank test for paired (matched) samples and Spearman rank correlation equation were used as indicated. Comparing the two groups, there was an obvious improvement with fractional CO 2 laser that was superior to that of low-dose UVA-1 phototherapy. Statistically, there was a significant difference in the clinical scores (p = 0.001), collagen homogenization scores (p = 0.012), and patient satisfaction scores (p = 0.001). In conclusion, fractional carbon dioxide laser is a promising treatment modality for cases of localized morphea, with proved efficacy of this treatment on clinical and histopathological levels.
Ramalho, Karen Müller; de Souza, Lárissa Marcondes Paladini; Tortamano, Isabel Peixoto; Adde, Carlos Alberto; Rocha, Rodney Garcia; de Paula Eduardo, Carlos
2016-12-01
This randomized placebo-blind study aimed to evaluate the effect of laser phototherapy (LPT) on pain caused by symptomatic irreversible pulpitis (SIP). Sixty patients diagnosed with SIP were randomly assigned to treatment groups (n = 15): G1 (control), G2 (laser placebo-sham irradiation), G3 (laser irradiation at 780 nm, 40 mW, 4 J/cm 2 ), and G4 (laser irradiation at 780 nm, 40 mW, 40 J/cm 2 ). Spontaneous pain was recorded using a VAS score before (T0), immediately after (T1), and 15 min after treatment (T2). Local anesthetics failure during emergency endodontic treatment was also assessed. There was no pain difference in T1 and T2 between the experimental laser groups (G3 and G4) and the placebo group (G2). The 4-J/cm 2 (G3) irradiation resulted in significant increase in the local anesthetics failure in lower jar teeth. This effect could be suggested as consequence of the LPT improvement in local circulation and vasodilatation that would result in the increase of local anesthetic agent absorption. The application of 780-nm diode laser irradiation, at 4 and 40 J/cm 2 , showed no effect in reducing the pain in SIP in comparison to the placebo group. The fluence of 4 J/cm 2 showed a negative effect in local anesthetics, resulting in significant increase of complimentary local anesthesia during emergency endodontic treatment. This work provides evidence of the consequence of LPT application on teeth with symptomatic irreversible pulpitis. LPT should be avoided in teeth with pain due to irreversible pulpitis.
Gur, Ali; Cosut, Abdulkadir; Sarac, Aysegul Jale; Cevik, Remzi; Nas, Kemal; Uyar, Asur
2003-01-01
A prospective, double-blind, randomized, and controlled trial was conducted in patients with knee osteoarthritis (OA) to evaluate the efficacy of infrared low-power Gallium-Arsenide (Ga-As) laser therapy (LPLT) and compared two different laser therapy regimes. Ninety patients were randomly assigned to three treatment groups by one of the nontreating authors by drawing 1 of 90 envelopes labeled 'A' (Group I: actual LPLT consisted of 5 minutes, 3 J total dose + exercise; 30 patients), 'B' (Group II: actual LPLT consisted of 3 minutes, 2 J total dose + exercise; 30 patients), and 'C' (Group III: placebo laser group + exercise; 30 patients). All patients received a total of 10 treatments, and exercise therapy program was continued during study (14 weeks). Subjects, physician, and data analysts were unaware of the code for active or placebo laser until the data analysis was complete. All patients were evaluated with respect to pain, degree of active knee flexion, duration of morning stiffness, painless walking distance and duration, and the Western Ontario and Mc Master Universities Osteoarthritis Index (WOMAC) at week 0, 6, 10, and 14. Statistically significant improvements were indicated in respect to all parameters such as pain, function, and quality of life (QoL) measures in the post-therapy period compared to pre-therapy in both active laser groups (P < 0.01). Improvements in all parameters of the Group I and in parameters, such as pain and WOMAC of the Group II, were more statistically significant when compared with placebo laser group (P < 0.05). Our study demonstrated that applications of LPLT in different dose and duration have not affected results and both therapy regimes were a safe and effective method in treatment of knee OA. Copyright 2003 Wiley-Liss, Inc.
Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao
2016-07-15
We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilizedmore » interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.« less
Microstructure formation on liquid metal surface under pulsed action
NASA Astrophysics Data System (ADS)
Genin, D. E.; Beloplotov, D. V.; Panchenko, A. N.; Tarasenko, V. F.
2018-04-01
Experimental study and theoretical analysis of growth of microstructures (microtowers) on liquid metals by fs laser pulses have been carried out. Theoretical analysis has been performed on the basis of the two-temperature model. Compared to ns laser pulses, in fs irradiation regimes the heat-affected zone is strongly localized resulting in much larger temperatures and temperature gradients. In the experimental irradiation regimes, the surface temperature of liquid metals studied may reach or even exceed a critical level that culminates in phase explosion or direct atomization of a metal surface layer. However, before explosive ablation starts, a stress wave with an amplitude up to several GPa is formed which demolishes oxide covering. Moreover, at high laser fluences laser-induced breakdown is developed in oxide layer covering the metal surface that leads to destruction/ablation of oxide without damaging metal underneath. An overall scenario of microstructure growth with fs laser pulses is similar to that obtained for ns irradiation regimes though the growth threshold is lower due to smaller heat-conduction losses. Also we managed to obtain microstructures formation by the action of spark discharge.
Flexible random lasers with tunable lasing emissions.
Lee, Ya-Ju; Chou, Chun-Yang; Yang, Zu-Po; Nguyen, Thi Bich Hanh; Yao, Yung-Chi; Yeh, Ting-Wei; Tsai, Meng-Tsan; Kuo, Hao-Chun
2018-04-19
In this study, we experimentally demonstrated a flexible random laser fabricated on a polyethylene terephthalate (PET) substrate with a high degree of tunability in lasing emissions. Random lasing oscillation arises mainly from the resonance coupling between the emitted photons of gain medium (Rhodamine 6G, R6G) and the localized surface plasmon (LSP) of silver nanoprisms (Ag NPRs), which increases the effective cross-section for multiple light scattering, thus stimulating the lasing emissions. More importantly, it was found that the random lasing wavelength is blue-shifted monolithically with the increase in bending strains exerted on the PET substrate, and a maximum shift of ∼15 nm was achieved in the lasing wavelength, when a 50% bending strain was exerted on the PET substrate. Such observation is highly repeatable and reversible, and this validates that we can control the lasing wavelength by simply bending the flexible substrate decorated with the Ag NPRs. The scattering spectrum of the Ag NPRs was obtained using a dark-field microscope to understand the mechanism for the dependence of the wavelength shift on the exerted bending strains. As a result, we believe that the experimental demonstration of tunable lasing emissions based on the revealed structure is expected to open up a new application field of random lasers.
Biomedical effects of low-power laser controlled by electroacupuncture
NASA Astrophysics Data System (ADS)
Kalenchits, Nadezhda I.; Nicolaenko, Andrej A.; Shpilevoj, Boris N.
1997-12-01
The methods and technical facilities of testing the biomedical effects caused by the influence of low-power laser radiation in the process of laser therapy are presented. Described studies have been conducted by means of the complex of fireware facilities consisting of the system of electroacupuncture diagnostics (EA) and a system of laser therapy on the basis of multichannel laser and magneto-laser devices. The task of laser therapy was concluded in undertaking acupuncture anaesthetization, achievement of antioedemic and dispersional actions, raising tone of musculus and nervous system, normalization of immunity factors under the control of system EA. The 82 percent to 95 percent agreement of the result of an electroacupuncture diagnostics with clinical diagnoses were achieved.
[Magneto-laser therapy of chronic gastritis in children and adolescents].
Zviagin, A A; Nikolaenko, E A
2008-01-01
The efficiency of transcutaneous magneto-laser treatment as a component of combined therapy of chronic gastritis in children and adolescents (aged 5-17 years) was compared with that of pharmacotherapy and low-intensity laser therapy. The patients were allocated to three groups of 25 persons each. Patients of group 1 were given only drug therapy, those in group 2 were treated with pharmaceuticals and low-intensity laser therapy. The patients comprising group 3 were subjected to the action of magneto-laser radiation. Magneto-laser therapy was shown to result in a significantly more expressed improvement of clinical and morphological characteristics of the patients compared with pharmacotherapy alone. There was no significant difference between effects of magneto-laser and low-intensity laser radiation.
Ramezani, Alireza; Entezari, Morteza; Shahbazi, Mohammad Mehdi; Semnani, Yosef; Nikkhah, Homayoun; Yaseri, Mehdi
2017-04-01
To evaluate the analgesic effect of topical sodium diclofenac 0.1% before retinal laser photocoagulation for diabetic retinopathy. Diabetic patients who were candidates for peripheral laser photocoagulation were included in a randomized, placebo-controlled, intraindividual, two-period, and crossover clinical trial. At the first session and based on randomization, one eye received topical sodium diclofenac 0.1% and the other eye received an artificial tear drop (as placebo) three times before laser treatment. At the second session, eyes were given the alternate drug. Patients scored their pain using visual analogue scale (max, 10 cm) at both sessions. Patients and the surgeon were blinded to the drops given. Difference of pain level was the main outcome measure. A total of 200 eyes of 100 patients were enrolled. Both treatments were matched regarding the applied laser. Pain sensation based on visual analogue scale was 5.6 ± 3.0 in the treated group and 5.5 ± 3.0 in the control group. The calculated treatment effect was 0.15 (95% confidence interval, -0.27 to 0.58; p = 0.486). The estimated period effect was 0.24 ( p = 0.530) and the carryover effect was not significant ( p = 0.283). Pretreatment with topical sodium diclofenac 0.1% does not have any analgesic effect during peripheral retinal laser photocoagulation in diabetic patients.
Active illuminated space object imaging and tracking simulation
NASA Astrophysics Data System (ADS)
Yue, Yufang; Xie, Xiaogang; Luo, Wen; Zhang, Feizhou; An, Jianzhu
2016-10-01
Optical earth imaging simulation of a space target in orbit and it's extraction in laser illumination condition were discussed. Based on the orbit and corresponding attitude of a satellite, its 3D imaging rendering was built. General simulation platform was researched, which was adaptive to variable 3D satellite models and relative position relationships between satellite and earth detector system. Unified parallel projection technology was proposed in this paper. Furthermore, we denoted that random optical distribution in laser-illuminated condition was a challenge for object discrimination. Great randomicity of laser active illuminating speckles was the primary factor. The conjunction effects of multi-frame accumulation process and some tracking methods such as Meanshift tracking, contour poid, and filter deconvolution were simulated. Comparison of results illustrates that the union of multi-frame accumulation and contour poid was recommendable for laser active illuminated images, which had capacities of high tracking precise and stability for multiple object attitudes.
Time-resolved dynamics of granular matter by random laser emission
NASA Astrophysics Data System (ADS)
Folli, Viola; Ghofraniha, Neda; Puglisi, Andrea; Leuzzi, Luca; Conti, Claudio
2013-07-01
Because of the huge commercial importance of granular systems, the second-most used material in industry after water, intersecting the industry in multiple trades, like pharmacy and agriculture, fundamental research on grain-like materials has received an increasing amount of attention in the last decades. In photonics, the applications of granular materials have been only marginally investigated. We report the first phase-diagram of a granular as obtained by laser emission. The dynamics of vertically-oscillated granular in a liquid solution in a three-dimensional container is investigated by employing its random laser emission. The granular motion is function of the frequency and amplitude of the mechanical solicitation, we show how the laser emission allows to distinguish two phases in the granular and analyze its spectral distribution. This constitutes a fundamental step in the field of granulars and gives a clear evidence of the possible control on light-matter interaction achievable in grain-like system.
Development of deep-ultraviolet metal vapor lasers
NASA Astrophysics Data System (ADS)
Sabotinov, Nikola V.
2004-06-01
Deep ultraviolet laser generation is of great interest in connection with both the development of new industrial technologies and applications in medicine, biology, chemistry, etc. The development of metal vapor UV lasers oscillating in the pulsed mode with high pulse repetition frequencies and producing high average output powers is of particular interest for microprocessing of polymers, photolithography and fluorescence applications. At present, metal vapor lasers generate deep-UV radiation on the base of two methods. The first method is non-linear conversion of powerful laser generation from the visible region into the deep ultraviolet region. The second method is direct UV laser action on ion and atomic transitions of different metals.
Erickson, G.F.
1988-04-13
A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.
Duncan, David B.
1992-01-01
An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.
Photochemical mechanisms of biological action of low-intensity laser irradiation
NASA Astrophysics Data System (ADS)
Klebanov, Gennady I.; Poltanov, Evgeny A.
2004-08-01
Low-intensity laser irradiation (LILI) is effectively used in clinical practice but the mechanisms of its stimulating action are still far from being understood completely and considered in the scientific literature only hypothetically. The main effects of LILI proved both in clinics and in experiments are bactericidal effect, vasodilatation, improved microcirculation, formation and growth of new microvessels, acceleration of wound healing, relieving of pain syndrome. We put forward a free radical conception underlying these effects. In this paper the experimental evidences of this conception is considered.
Aaltonen, Leena-Maija; Rautiainen, Noora; Sellman, Jaana; Saarilahti, Kauko; Mäkitie, Antti; Rihkanen, Heikki; Laranne, Jussi; Kleemola, Leenamaija; Wigren, Tuija; Sala, Eeva; Lindholm, Paula; Grenman, Reidar; Joensuu, Heikki
2014-10-01
Early laryngeal cancer is usually treated with either transoral laser surgery or radiation therapy. The quality of voice achieved with these treatments has not been compared in a randomized trial. Male patients with carcinoma limited to 1 mobile vocal cord (T1aN0M0) were randomly assigned to receive either laser surgery (n=32) or external beam radiation therapy (n=28). Surgery consisted of tumor excision with a CO2 laser with the patient under general anaesthesia. External beam radiation therapy to the larynx was delivered to a cumulative dose of 66 Gy in 2-Gy daily fractions over 6.5 weeks. Voice quality was assessed at baseline and 6 and 24 months after treatment. The main outcome measures were expert-rated voice quality on a grade, roughness, breathiness, asthenia, and strain (GRBAS) scale, videolaryngostroboscopic findings, and the patients' self-rated voice quality and its impact on activities of daily living. Overall voice quality between the groups was rated similar, but voice was more breathy and the glottal gap was wider in patients treated with laser surgery than in those who received radiation therapy. Patients treated with radiation therapy reported less hoarseness-related inconvenience in daily living 2 years after treatment. Three patients in each group had local cancer recurrence within 2 years from randomization. Radiation therapy may be the treatment of choice for patients whose requirements for voice quality are demanding. Overall voice quality was similar in both treatment groups, however, indicating a need for careful consideration of patient-related factors in the choice of a treatment option. Copyright © 2014 Elsevier Inc. All rights reserved.
Alshelleh, Mohammad; Inamdar, Sumant; McKinley, Matthew; Stewart, Molly; Novak, Jeffrey S; Greenberg, Ronald E; Sultan, Keith; Devito, Bethany; Cheung, Mary; Cerulli, Maurice A; Miller, Larry S; Sejpal, Divyesh V; Vegesna, Anil K; Trindade, Arvind J
2018-02-02
Volumetric laser endomicroscopy (VLE) is a new wide-field advanced imaging technology for Barrett's esophagus (BE). No data exist on incremental yield of dysplasia detection. Our aim is to report the incremental yield of dysplasia detection in BE using VLE. This is a retrospective study from a prospectively maintained database from 2011 to 2017 comparing the dysplasia yield of 4 different surveillance strategies in an academic BE tertiary care referral center. The groups were (1) random biopsies (RB), (2) Seattle protocol random biopsies (SP), (3) VLE without laser marking (VLE), and (4) VLE with laser marking (VLEL). A total of 448 consecutive patients (79 RB, 95 SP, 168 VLE, and 106 VLEL) met the inclusion criteria. After adjusting for visible lesions, the total dysplasia yield was 5.7%, 19.6%, 24.8%, and 33.7%, respectively. When compared with just the SP group, the VLEL group had statistically higher rates of overall dysplasia yield (19.6% vs 33.7%, P = .03; odds ratio, 2.1, P = .03). Both the VLEL and VLE groups had statistically significant differences in neoplasia (high-grade dysplasia and intramucosal cancer) detection compared with the SP group (14% vs 1%, P = .001 and 11% vs 1%, P = .003). A surveillance strategy involving VLEL led to a statistically significant higher yield of dysplasia and neoplasia detection compared with a standard random biopsy protocol. These results support the use of VLEL for surveillance in BE in academic centers. Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaltonen, Leena-Maija, E-mail: leena-maija.aaltonen@hus.fi; Rautiainen, Noora; Sellman, Jaana
Objective: Early laryngeal cancer is usually treated with either transoral laser surgery or radiation therapy. The quality of voice achieved with these treatments has not been compared in a randomized trial. Methods and Materials: Male patients with carcinoma limited to 1 mobile vocal cord (T1aN0M0) were randomly assigned to receive either laser surgery (n=32) or external beam radiation therapy (n=28). Surgery consisted of tumor excision with a CO{sub 2} laser with the patient under general anaesthesia. External beam radiation therapy to the larynx was delivered to a cumulative dose of 66 Gy in 2-Gy daily fractions over 6.5 weeks. Voice quality wasmore » assessed at baseline and 6 and 24 months after treatment. The main outcome measures were expert-rated voice quality on a grade, roughness, breathiness, asthenia, and strain (GRBAS) scale, videolaryngostroboscopic findings, and the patients' self-rated voice quality and its impact on activities of daily living. Results: Overall voice quality between the groups was rated similar, but voice was more breathy and the glottal gap was wider in patients treated with laser surgery than in those who received radiation therapy. Patients treated with radiation therapy reported less hoarseness-related inconvenience in daily living 2 years after treatment. Three patients in each group had local cancer recurrence within 2 years from randomization. Conclusions: Radiation therapy may be the treatment of choice for patients whose requirements for voice quality are demanding. Overall voice quality was similar in both treatment groups, however, indicating a need for careful consideration of patient-related factors in the choice of a treatment option.« less
1984-04-01
axis laser gyro sensor assembly (1, 24) in a single Zerodur structure using interleaved laser paths to reduce net size/weight. If advances in mirror ...laser gyros, special design considerations - associated with mechanically dithered laaer gyros, the state-of-the-art in magnetic mirror and...from the lasing action of a helium-noon gas discharge within the optical cavity. The reflecting surfaces are die- lectric mirrors designed to
2.3 µm laser potential of TeO2 based glasses
NASA Astrophysics Data System (ADS)
Denker, B. I.; Dorofeev, V. V.; Galagan, B. I.; Motorin, S. E.; Sverchkov, S. E.
2017-09-01
Tm3+ doped TeO2-based well-dehydrated glasses were synthesized and investigated. The analysis of their spectral and relaxation properties have showed that these glasses can be a suitable host for bulk and fiber lasers emitting at ~2.3 µm wavelength (3H4-3H5 Tm3+ transition). Laser action in the bulk glass sample was demonstrated.
Shahnaz, Aysan; Jamali, Raika; Mohammadi, Farnush; Khorsand, Afshin; Moslemi, Neda; Fekrazad, Reza
2018-01-01
The aim of this preliminary randomized clinical trial was to compare: (1) post-operative morbidity after application of laser or scalpel incision for flap advancement during implant surgery and bone grafting and (2) implant survival rate following flap advancement with laser or scalpel incision after 6 months of loading. Eighteen patients who were scheduled for dental implant placement and simultaneous bone grafting were randomly assigned to test or control groups. Diode laser (810 nm, 2 W, pulse interval 200 μs; pulse length 100 μs, 400-μm initiated fiber tip), or scalpel (control) was used to sever the periosteum to create a tension-free flap. Visual analogue scale (VAS) pain score, rate of nonsteroid anti-inflammatory drug (NSAID) consumption, intensity of swelling, and ecchymosis were measured for the six postsurgical days. Six months after loading, implant survival was assessed. VAS pain score (during the first four postoperative days), rate of NSAID consumption (during the first three postoperative days), and intensity of swelling (during the first five postoperative days) were significantly lower in the test group compared to the control group (All P values < 0.05). One patient in the control group experienced ecchymosis. All implants were successful in function. Application of laser for performing periosteal releasing incision reduced the incidence and severity of postoperative morbidity of the patients undergone implant surgery in conjunction with bone augmentation procedure. We did not find any detrimental effect of laser incision on the implant survival within 6 months of loading.
Slot, Dagmar E; Timmerman, Mark F; Versteeg, Paula A; van der Velden, Ubele; van der Weijden, Fridus A
2012-12-01
Various laser systems are currently available for intra-oral use. Neodymium:Yttrium-Aluminium Garnet lasers(Nd:YAG) have been approved by the US Food and Drug Administration for soft tissue treatment in the oral cavity. The aim of this study was to test whether the use of a water-cooled Nd:YAG laser during a maintenance care programme as an adjunct to supragingival and subgingival debridement (scaling and root planing, SRP) with hand and ultrasonic instruments results in clinical improvement compared with SRP alone. This study was an examiner-blind, randomized and controlled clinical trial using a split-mouth design. Thirty subjects were selected, originally diagnosed with moderate to severe generalized periodontitis, following a periodontal maintenance care programme (PMC). Immediately after SRP in two randomly assigned contra-lateral quadrants, all pockets ≥5 mm were additionally treated with a Nd:YAG laser (1064 nm, 4W, 250-μsec pulse). Clinical assessments [probing pocket depth PPD, bleeding on pocket probing (BOPP)] were performed pre-treatment and at 6 months. Based on these assessments, the periodontal inflamed surface area (PISA) was calculated. At 6 months, the clinical parameters had significantly improved for both regimens. No statistically significant differences between treatment modalities were observed for PPD and BOPP scores at any time. PISA scores supported these findings. In residual pockets ≥5 mm, treated in a PMC, the adjunctive use of an Nd:YAG laser does not provide a clinically significant additional advantage. © 2012 John Wiley & Sons A/S.
Haedersdal, Merete; Erlendsson, Andrés M; Paasch, Uwe; Anderson, R Rox
2016-05-01
Ablative fractional lasers enhance uptake of topical therapeutics and the concept of fractional laser-assisted drug delivery has now been taken into clinical practice. We systematically reviewed preclinical data and clinical evidence for fractional lasers to enhance drug uptake and improve clinical efficacy. We searched PubMed and Embase databases; 34 articles met the inclusion criteria. Studies were categorized into experimental preclinical studies and clinical trials, the latter graded according to level of evidence. All preclinical trials (n = 16) documented enhanced topical drug uptake into skin after ablative fractional laser treatment. Clinical evidence encompassed 18 studies, of which 9 were randomized controlled trials and 2 were controlled trials, examining neoplastic lesions, photodamaged skin, scars, onychomycosis, and topical anesthetics. The highest level of evidence was reached for actinic keratoses treated with methylaminolevulinate for photodynamic therapy (level IB, 5 randomized controlled trials), substantiating superior and long-lasting efficacy versus conventional photodynamic therapy. No adverse events were reported, but ablative fractional laser-assisted drug delivery implies risks of systemic drug absorption, especially when performed over large skin areas. Fractional laser-assisted drug delivery is beneficial in enhancing preclinical and clinical outcomes for certain skin conditions. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Lianfeng; Yan, Biao; Guo, Lijie; Gu, Dongdong
2018-04-01
A newly transient mesoscopic model with a randomly packed powder-bed has been proposed to investigate the heat and mass transfer and laser process quality between neighboring tracks during selective laser melting (SLM) AlSi12 alloy by finite volume method (FVM), considering the solid/liquid phase transition, variable temperature-dependent properties and interfacial force. The results apparently revealed that both the operating temperature and resultant cooling rate were obviously elevated by increasing the laser power. Accordingly, the resultant viscosity of liquid significantly reduced under a large laser power and was characterized with a large velocity, which was prone to result in a more intensive convection within pool. In this case, the sufficient heat and mass transfer occurred at the interface between the previously fabricated tracks and currently building track, revealing a strongly sufficient spreading between the neighboring tracks and a resultant high-quality surface without obvious porosity. By contrast, the surface quality of SLM-processed components with a relatively low laser power notably weakened due to the limited and insufficient heat and mass transfer at the interface of neighboring tracks. Furthermore, the experimental surface morphologies of the top surface were correspondingly acquired and were in full accordance to the calculated results via simulation.
Passi, Deepak; Pal, Uma Shankar; Mohammad, Shadab; Singh, Rakesh Kumar; Mehrotra, Divya; Singh, Geeta; Kumar, Manoj; Chellappa, Arul A L; Gupta, Chandan
2013-01-01
The aim of this study was to assess the feasibility of Er: YAG laser in bone cutting for removal of impacted lower third molar teeth and compare its outcomes with that of surgical bur. The study comprised 40 subjects requiring removal of impacted mandibular third molar, randomly categorized into two equal groups of 20 each, who had their impacted third molar removed either using Er: YAG laser or surgical bur as per their group, using standard methodology of extraction of impacted teeth. Clinical parameters like pain, bleeding, time taken for bone cutting, postoperative swelling, trismus, wound healing and complications were compared for both groups. Clinical parameters like pain, bleeding and swelling were lower in laser group than bur group, although the difference was statistically not significant. However, postoperative swelling showed significant difference in the two groups. Laser group required almost double the time taken for bone cutting with bur. Trismus persisted for a longer period in laser group. Wound healing and complications were assessed clinically and there was no significant difference in both the groups. Based on the results of our study, the possibility of bone cutting using lasers is pursued, the osteotomy is easily performed and the technique is better suited to minimally invasive surgical procedures. The use of Er: YAG laser may be considered as an alternative tool to surgical bur, specially in anxious patients.
Influence of the heat transfer on the thermoelastic response of metals on heating by the laser pulse
NASA Astrophysics Data System (ADS)
Sudenkov, Y. V.; Zimin, B. A.; Sventitskaya, V. E.
2018-05-01
The paper presents an analysis of the effect of the heat transfer process in metals on the parameters of thermal stresses under pulsed laser action. The dynamic problem of thermoelasticity is considered as a two-stage process. The first stage is determined by the time of action of the radiation pulse. The second stage is caused by the dynamics of the heat transfer process after the end of the laser pulse. For showing the continuity of thermoelastic and thermoelectric processes, the analysis of the electronic mechanism for the propagation of heat in metals and the results of experimental studies of these processes are presented. The results of the experiments demonstrate the high sensitivity of the parameters of thermoelastic and thermoelectric pulses to the microstructure of metals.
Li, Xiao-xin; Tao, Yong
2012-12-01
Idiopathic choroidal neovascularization (ICNV) affects young patients and thus may have a significant impact on vision and life quality over a patient's lifespan. This study was designed to compare the visual outcome and retinal pigment epithelium (RPE) damage after photodynamic therapy (PDT) with small laser spot and PDT with standard laser spot for idiopathic choroidal neovascularization (ICNV). This was a randomized controlled study. Fifty-two patients with ICNV were enrolled and randomly divided into a study group (small laser spot PDT, n = 27) and a control group (standard laser spot PDT, n = 25). Best corrected visual acuity (BCVA), optic coherence tomography (OCT) and fluorescein angiography (FA) findings were the main measurements. The patients were followed up 1 week, 1, 3, 6, 9 months and 1 year after PDT. BCVA improvement was statistically significantly higher in the study group than the control group at 6-month ((25.53 ± 15.01) letters vs. (14.71 ± 11.66) letters, P = 0.025) and 9-month follow-ups ((27.53 ± 17.78) letters vs. (15.59 ± 12.21) letters, P = 0.039). At 3- and 6-month follow-ups, the quadrants of RPE damage between the two groups varied significantly (P < 0.001 and P = 0.023, respectively). In each follow-up, the number of cases with decreased or unchanged leakage of choroidal neovascularization by FA and reduced subretinal fluid by OCT did not vary significantly between the two groups. Ten cases (37.0%) in the study group and eight cases (32.0%) in the control group suffered from recurrent CNV (P = 0.703). Better visual improvements, less RPE damage, a similar recurrent rate of CNV and change of subretinal fluid were observed in the small laser spot PDT group than in the standard laser spot PDT group for ICNV.
NASA Astrophysics Data System (ADS)
Banakh, V. A.; Marakasov, D. A.
2008-04-01
An algorithm for the wind profile recovery from spatiotemporal spectra of a laser beam reflected in a turbulent atmosphere is presented. The cases of a spherical wave incident on a diffuse reflector of finite size and a spatially limited beam reflected from an infinite random surface are considered.
Robati, Reza M; Asadi, Elmira
2017-02-01
Ablative fractional lasers were introduced for treating facial rhytides. Few studies have compared fractional CO 2 and Er:YAG lasers on cutaneous photodamages by a split trial. The aim of the present study was to compare these modalities in a randomized controlled double-blind split-face design with multiple sessions and larger sample size compared to previous studies done before. Forty patients with facial wrinkles were enrolled. Patients were randomly assigned to receive three monthly treatments on each side of the face, one with a fractional CO 2 and one with a fractional Er:YAG laser. The evaluations included investigating clinical outcome determined by two independent dermatologists not enrolled in the treatment along with measuring skin biomechanical property of cheeks using a sensitive biometrologic device with the assessment of cutaneous resonance running time (CRRT). Moreover, possible side effects and patients' satisfaction have been recorded at baseline, 1 month after each treatment, and 3 months after the last treatment session. Clinical assessment showed both modalities significantly reduce facial wrinkles (p value < 0.05), with no appreciable difference between two lasers. Mean CRRT values also decreased significantly after the laser treatment compared to the baseline in both laser groups. There was no serious long-standing adverse effect after both laser treatments, but the discomfort was more pronounced by the participants after CO 2 laser treatment. According to the present study, both fractional CO 2 and fractional Er:YAG lasers show considerable clinical improvement of facial skin wrinkles with no serious adverse effects, but post-treatment discomfort seems to be lower with Er:YAG laser.
González-Saldivar, Gerardo; Rojas-Juárez, Sergio; Espinosa-Soto, Itzel; Sánchez-Ramos, Jorge; Jaurieta-Hinojosa, Noel; Ramírez-Estudillo, Abel
2017-11-01
Panretinal photocoagulation (PRP) is the mainstay therapy for proliferative diabetic retinopathy. Pain during and after its application is a complication that affects patients' therapeutic adherence. This study aimed to compare pain perception and patient preference for the 577-nm yellow laser (YL-577) (LIGHTL as 577; LIGHTMED, San Clemente, CA) and the conventional 532-nm green laser (GL-532) (Purepoint Laser; Alcon, Fort Worth, TX) with PRP. A total of 92 patient eyes with proliferative diabetic retinopathy treated with PRP were randomly assigned to receive both GL-532 and YL-577 (184 eyes) - one on each eye, with the order of application randomized, as well. Afterward, verbal rapid answer and visual analogue scale (VAS) scores for pain perception and patient preference were evaluated. VAS score was 7 ± 2 for the GL-532 group compared to 5 ± 3 in the YL-577 group (P = .001). Overall, 75% of the patients preferred YL-577 therapy if they were to receive a second PRP session. The use of YL-577 as an alternative approach for PRP reduces pain perception and is preferred by patients. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:902-905.]. Copyright 2017, SLACK Incorporated.
Tian, He; Chen, Hong-Yu; Ren, Tian-Ling; Li, Cheng; Xue, Qing-Tang; Mohammad, Mohammad Ali; Wu, Can; Yang, Yi; Wong, H-S Philip
2014-06-11
Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications.
Effectiveness of laser sources for contactless sampling of explosives
NASA Astrophysics Data System (ADS)
Akmalov, Artem E.; Chistyakov, Alexander A.; Kotkovskii, Gennadii E.
2016-05-01
A mass-spectrometric study of photo processes initiated by ultraviolet (UV) laser radiation in explosives adsorbed on metal and dielectric substrates has been performed. A calibrated quadrupole mass spectrometer was used to determine a value of activation energy of desorption and a quantity of explosives desorbed by laser radiation. A special vacuumoptical module was elaborated and integrated into a vacuum mass-spectrometric system to focus the laser beam on a sample. It has been shown that the action of nanosecond laser radiation set at q= 107 - 108 W/cm2, λ=266 nm on adsorbed layers of molecules of trinitrotoluene (TNT ) and pentaerytritoltetranitrate (PETN) leads not only to an effective desorption, but also to the non-equilibrium dissociation of molecules with the formation of nitrogen oxide NO. The cyclotrimethylenetrinitramine (RDX) dissociation products are observed only at high laser intensities (q> 109 W/cm2) thus indicating the thermal nature of dissociation, whereas desorption of RDX is observed even at q> 107 W/cm2 from all substrates. Desorption is not observed for cyclotetramethylenetetranitramine (HMX) under single pulse action: the dissociation products NO and NO2 are registered only, whereas irradiation at 10Hz is quite effective for HMX desorption. The results clearly demonstrate a high efficiency of nanosecond laser radiation with λ = 266 nm, q ~ 107 - 108 W/cm2, Epulse= 1mJ for desorption of molecules of explosives from various surfaces.
Bhargava, Rahul; Kumar, Prachi; Sharma, Shiv Kumar; Kaur, Avinash
2015-01-01
To compare surgical peeling and aspiration and neodymium yttrium garnet laser capsulotomy for pearl form of posterior capsule opacification (PCO). A prospective, randomized, double blind, study was done at Rotary Eye Hospital, Maranda, Palampur, India, Santosh Medical College Hospital, Ghaziabad, India and Laser Eye Clinic, Noida India. Consecutive patients with pearl form of PCO following surgery, phacoemulsification, manual small incision cataract surgery and conventional extracapsular cataract extraction (ECCE) for age related cataract, were randomized to have peeling and aspiration or neodymium yttrium garnet laser capsulotomy. Corrected distance visual acuity (CDVA), intra-operative and post-operative complications were compared. A total of 634 patients participated in the study, and 314 (49.5%) patients were randomized to surgical peeling and aspiration group and 320 (50.5%) to the Nd:YAG laser group. The mean pre-procedural logMAR CDVA in peeling and neodymium: yttrium-aluminium-garnet (Nd:YAG) laser group was 0.80±0.25 and 0.86±0.22, respectively. The mean final CDVA in peeling group (0.22±0.23) was comparable to Nd:YAG group (0.24±0.28; t test, P=0.240). There was a significant improvement in vision after both the procedures (P<0.001). A slightly higher percentage of patients in Nd:YAG laser group (283/88.3%) than in peeling group (262/83.4%) had a CDVA of 0.5 (20/63) or better at 9mo (P<0.001). On the contrary, patients having CDVA worse than 1.00 (20/200) was also significantly higher in Nd:YAG laser group as compared to peeling group (25/7.7% vs 15/4.7%, respectively). On application of ANCOVA, there was less than 0.001% risk that PCO thickness and total laser energy had no effect on rate of complications in Nd:YAG laser group and less than 0.001 % risk that PCO thickness had no effect on complications in peeling group respectively. Sum of square analysis suggests that in the Nd:YAG laser group, thick PCO had a stronger impact on complications (Fischer test probability, Pr<0.0001) than thin PCO and total laser energy (Fischer test probability, Pr<0.002), respectively; similarly, in peeling group, thick PCO and preoperative vision had a stronger effect on complications than thin PCO, respectively (Fischer test probability, Pr<0.001).The rate of complications like uveitis (P=0.527) and cystoid macular edema (P=0.068), did not differ significantly between both the groups. However, intraocular pressure spikes (P=0.046) and retinal detachment (P<0.001) were significantly higher in Nd:YAG laser group as compared to peeling group. Retinal detachment was more common in patients having degenerative myopia (7/87.5%, P<0.001). Recurrence of pearls was the most common cause of reduction of vision in the peeling group (24/7.6%, P<0.001). There is no alternative to Nd:YAG laser capsulotomy for fibrous subtype of PCO. For pearl form of PCO, both techniques are comparable with regard to visual outcomes. Nd:YAG laser capsulotomy has a higher incidence of IOP spikes and retinal detachment whereas recurrence of pearls may occur after successful peeling and aspiration. When posterior capsulotomy is needed in patients with retinal degenerations, retinopathies and pre-existing retinal breaks, the clinician should be cautious about increased risks of possible complications of Nd:YAG laser capsulotomy.
Bhargava, Rahul; Kumar, Prachi; Sharma, Shiv Kumar; Kaur, Avinash
2015-01-01
AIM To compare surgical peeling and aspiration and neodymium yttrium garnet laser capsulotomy for pearl form of posterior capsule opacification (PCO). METHODS A prospective, randomized, double blind, study was done at Rotary Eye Hospital, Maranda, Palampur, India, Santosh Medical College Hospital, Ghaziabad, India and Laser Eye Clinic, Noida India. Consecutive patients with pearl form of PCO following surgery, phacoemulsification, manual small incision cataract surgery and conventional extracapsular cataract extraction (ECCE) for age related cataract, were randomized to have peeling and aspiration or neodymium yttrium garnet laser capsulotomy. Corrected distance visual acuity (CDVA), intra-operative and post-operative complications were compared. RESULTS A total of 634 patients participated in the study, and 314 (49.5%) patients were randomized to surgical peeling and aspiration group and 320 (50.5%) to the Nd:YAG laser group. The mean pre-procedural logMAR CDVA in peeling and neodymium: yttrium-aluminium-garnet (Nd:YAG) laser group was 0.80±0.25 and 0.86±0.22, respectively. The mean final CDVA in peeling group (0.22±0.23) was comparable to Nd:YAG group (0.24±0.28; t test, P=0.240). There was a significant improvement in vision after both the procedures (P<0.001). A slightly higher percentage of patients in Nd:YAG laser group (283/88.3%) than in peeling group (262/83.4%) had a CDVA of 0.5 (20/63) or better at 9mo (P<0.001). On the contrary, patients having CDVA worse than 1.00 (20/200) was also significantly higher in Nd:YAG laser group as compared to peeling group (25/7.7% vs 15/4.7%, respectively). On application of ANCOVA, there was less than 0.001% risk that PCO thickness and total laser energy had no effect on rate of complications in Nd:YAG laser group and less than 0.001 % risk that PCO thickness had no effect on complications in peeling group respectively. Sum of square analysis suggests that in the Nd:YAG laser group, thick PCO had a stronger impact on complications (Fischer test probability, Pr<0.0001) than thin PCO and total laser energy (Fischer test probability, Pr<0.002), respectively; similarly, in peeling group, thick PCO and preoperative vision had a stronger effect on complications than thin PCO, respectively (Fischer test probability, Pr<0.001).The rate of complications like uveitis (P=0.527) and cystoid macular edema (P=0.068), did not differ significantly between both the groups. However, intraocular pressure spikes (P=0.046) and retinal detachment (P<0.001) were significantly higher in Nd:YAG laser group as compared to peeling group. Retinal detachment was more common in patients having degenerative myopia (7/87.5%, P<0.001). Recurrence of pearls was the most common cause of reduction of vision in the peeling group (24/7.6%, P<0.001). CONCLUSION There is no alternative to Nd:YAG laser capsulotomy for fibrous subtype of PCO. For pearl form of PCO, both techniques are comparable with regard to visual outcomes. Nd:YAG laser capsulotomy has a higher incidence of IOP spikes and retinal detachment whereas recurrence of pearls may occur after successful peeling and aspiration. When posterior capsulotomy is needed in patients with retinal degenerations, retinopathies and pre-existing retinal breaks, the clinician should be cautious about increased risks of possible complications of Nd:YAG laser capsulotomy. PMID:26086014
Havel, Miriam; Sroka, Ronald; Englert, Elsa; Stelter, Klaus; Leunig, Andreas; Betz, Christian S
2012-09-01
The need for reduction of post-tonsillectomy hemorrhage has led to promotion of tonsillotomy techniques for tonsil tissue reduction in obstructive tonsillar hypertrophy. This trial compares ablative tissue effects using 1,470 nm diode laser and carbon dioxide laser for tonsillotomy in an intraindividual design. 21 children aged 3-13 years (mean age 6.3 years) underwent laser tonsillotomy for obstructive tonsillar hypertrophy in this double blind, prospective, randomized, clinical feasibility trial. In each of the blinded patients, tonsillotomy was performed using fiber guided 1,470 nm diode laser (contact mode, 15 W power) on the one side and carbon dioxide laser (12 W power) on the other side. An independent, blinded physician documented clinical presentation and patients' symptoms preoperatively and on Days 1, 3, 7, 14, and 21 post-operatively using standardized questionnaire including VAS for each side separately. The mean duration of operative treatment was 2.7 min using 1,470 nm laser and 4.9 min using carbon dioxide laser respectively. Intraoperative bleeding and the frequency of bipolar forceps use for intraoperative bleeding control was significantly less using 1,470 nm diode laser system. There was no difference in post-operative pain scores between the carbon dioxide laser treated and the 1,470 nm fiber guided diode laser treated side. No infections, hemorrhages or other complications occurred in the course of the 3 weeks post-operative period. A fiber-guided 1,470 nm diode laser system offers an efficient and safe method for tonsillotomy as treatment of obstructive tonsillar hypertrophy. Compared to our standard practice (carbon dioxide laser), 1,470 nm laser application provides comparable tissue ablation effects with less intraoperative bleeding and shorter operation time. Copyright © 2012 Wiley Periodicals, Inc.
Multiwave low-laser therapy in the pain treatment
NASA Astrophysics Data System (ADS)
Moldovan, Corneliu I.; Antipa, Ciprian; Bratila, Florin; Brukner, Ion; Vasiliu, Virgil V.
1995-03-01
Sixteen patients with knee pain, 17 patients with low back pain and 23 patients with vertebral pain were randomly allocated to multiwave laser therapy (MWL). The MWL was performed through an original method by a special designed laser system. The stimulation parameters adaptably optimized in a closed loop by measuring the reflected laser radiation. A control group of 11 patients was conventionally treated with a single infrared laser system. All patients were assessed by single observer using a visual analogue scale in a controlled trial. Our results indicate that the treatment with different laser wavelengths, different output power and frequencies, simultaneously applied through optic-fibers, has significant effects on the pain when compared with the common low laser therapy.
Suter, Valerie G A; Altermatt, Hans Jörg; Bornstein, Michael M
2017-04-01
This study was conducted in order to compare clinical and histopathological outcomes for excisional biopsies when using pulsed CO 2 laser versus Er:YAG laser. Patients (n = 32) with a fibrous hyperplasia in the buccal mucosa were randomly allocated to the CO 2 (140 Hz, 400 μs, 33 mJ) or the Er:YAG laser (35 Hz, 297 μs, 200 mJ) group. The duration of excision, intraoperative bleeding and methods to stop the bleeding, postoperative pain (VAS; ranging 0-100), the use of analgesics, and the width of the thermal damage zone (μm) were recorded and compared between the two groups. The median duration of the intervention was 209 s, and there was no significant difference between the two methods. Intraoperative bleeding occurred in 100% of the excisions with Er:YAG and 56% with CO 2 laser (p = 0.007). The median thermal damage zone was 74.9 μm for CO 2 and 34.0 μm for Er:YAG laser (p < 0.0001). The median VAS score on the evening after surgery was 5 for the CO 2 laser and 3 for the Er:YAG group. To excise oral soft tissue lesions, CO 2 and Er:YAG lasers are both valuable tools with a short time of intervention and postoperative low pain. More bleeding occurs with the Er:YAG than CO 2 laser, but the lower thermal effect of Er:YAG laser seems advantageous for histopathological evaluation.
Grade, Stéphane; Badets, Arnaud; Pesenti, Mauro
2017-05-01
Numerical magnitude and specific grasping action processing have been shown to interfere with each other because some aspects of numerical meaning may be grounded in sensorimotor transformation mechanisms linked to finger grip control. However, how specific these interactions are to grasping actions is still unknown. The present study tested the specificity of the number-grip relationship by investigating how the observation of different closing-opening stimuli that might or not refer to prehension-releasing actions was able to influence a random number generation task. Participants had to randomly produce numbers after they observed action stimuli representing either closure or aperture of the fingers, the hand or the mouth, or a colour change used as a control condition. Random number generation was influenced by the prior presentation of finger grip actions, whereby observing a closing finger grip led participants to produce small rather than large numbers, whereas observing an opening finger grip led them to produce large rather than small numbers. Hand actions had reduced or no influence on number production; mouth action influence was restricted to opening, with an overproduction of large numbers. Finally, colour changes did not influence number generation. These results show that some characteristics of observed finger, hand and mouth grip actions automatically prime number magnitude, with the strongest effect for finger grasping. The findings are discussed in terms of the functional and neural mechanisms shared between hand actions and number processing, but also between hand and mouth actions. The present study provides converging evidence that part of number semantics is grounded in sensory-motor mechanisms.
NASA Astrophysics Data System (ADS)
Popov, V. N.; Cherepanov, A. N.
2017-09-01
Numerical evaluation of the laser-pulse modification of a metal layer with refractory nano-size particles was done. The modes of the laser-pulse action promoting creation of the flows for homogeneous distribution of modifying particles in the melt were determined for various amounts of the surface-active admixture in the metal.
Random noise can help to improve synchronization of excimer laser pulses.
Mingesz, Róbert; Barna, Angéla; Gingl, Zoltán; Mellár, János
2016-02-01
Recently, we have reported on a compact microcontroller-based unit developed to accurately synchronize excimer laser pulses (Mingesz et al. 2012 Fluct. Noise Lett. 11, 1240007 (doi:10.1142/S021947751240007X)). We have shown that dithering based on random jitter noise plus pseudorandom numbers can be used in the digital control system to radically reduce the long-term drift of the laser pulse from the trigger and to improve the accuracy of the synchronization. In this update paper, we present our new experimental results obtained by the use of the delay-controller unit to tune the timing of a KrF excimer laser as an addition to our previous numerical simulation results. The hardware was interfaced to the laser using optical signal paths in order to reduce sensitivity to electromagnetic interference and the control algorithm tested by simulations was applied in the experiments. We have found that the system is able to reduce the delay uncertainty very close to the theoretical limit and performs well in real applications. The simple, compact and flexible system is universal enough to also be used in various multidisciplinary applications.
Single bead near-infrared random laser based on silica-gel infiltrated with Rhodamine 640
NASA Astrophysics Data System (ADS)
Moura, André L.; Barbosa-Silva, Renato; Dominguez, Christian T.; Pecoraro, Édison; Gomes, Anderson S. L.; de Araújo, Cid B.
2018-04-01
Photoluminescence properties of single bead silica-gel (SG) embedded with a laser-dye were studied aiming at the operation of near-infrared (NIR) Random Lasers (RLs). The operation of RLs in the NIR spectral region is especially important for biological applications since the optical radiation has deep tissue penetration with negligible damage. Since laser-dyes operating in the NIR have poor stability and are poor emitters, ethanol solutions of Rhodamine 640 (Rh640) infiltrated in SG beads were used. The Rh640 concentrations in ethanol varied from 10-5 to 10-2 M and the excitation at 532 nm was made by using a 7 ns pulsed laser. The proof-of-principle RL scheme herein presented was adopted in order to protect the dye-molecules from the environment and to favor formation of aggregates. The RL emission from ≈650 nm to 720 nm, beyond the typical Rh640 monomer and dimer wavelengths emissions range, was attributed to the trade-off between reabsorption and reemission processes along the light pathways inside the SG bead and the contribution of Rh640 aggregates.
The new platinum-based anticancer agent LA-12 induces retinol binding protein 4 in vivo
2011-01-01
Background The initial pharmacokinetic study of a new anticancer agent (OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum (IV) (LA-12) was complemented by proteomic screening of rat plasma. The objective of the study was to identify new LA-12 target proteins that serve as markers of LA-12 treatment, response and therapy monitoring. Methods Proteomic profiles were measured by surface-enhanced laser desorption-ionization time-of-flight mass spectrometry (SELDI-TOF MS) in 72 samples of rat plasma randomized according to LA-12 dose and time from administration. Correlation of 92 peak clusters with platinum concentration was evaluated using Spearman correlation analysis. Results We identified Retinol-binding protein 4 (RBP4) whose level correlated with LA-12 level in treated rats. Similar results were observed in randomly selected patients involved in Phase I clinical trials. Conclusions RBP4 induction is in agreement with known RBP4 regulation by amantadine and cisplatin. Since retinol metabolism is disrupted in many cancers and inversely associates with malignancy, these data identify a potential novel mechanism for the action of LA-12 and other similar anti-cancer drugs. PMID:22040120
Barisic, Marin; Aguiar, Paulo; Geley, Stephan; Maiato, Helder
2014-12-01
Accurate chromosome segregation during cell division in metazoans relies on proper chromosome congression at the equator. Chromosome congression is achieved after bi-orientation to both spindle poles shortly after nuclear envelope breakdown, or by the coordinated action of motor proteins that slide misaligned chromosomes along pre-existing spindle microtubules. These proteins include the minus-end-directed kinetochore motor dynein, and the plus-end-directed motors CENP-E at kinetochores and chromokinesins on chromosome arms. However, how these opposite and spatially distinct activities are coordinated to drive chromosome congression remains unknown. Here we used RNAi, chemical inhibition, kinetochore tracking and laser microsurgery to uncover the functional hierarchy between kinetochore and arm-associated motors, exclusively required for congression of peripheral polar chromosomes in human cells. We show that dynein poleward force counteracts chromokinesins to prevent stabilization of immature/incorrect end-on kinetochore-microtubule attachments and random ejection of polar chromosomes. At the poles, CENP-E becomes dominant over dynein and chromokinesins to bias chromosome ejection towards the equator. Thus, dynein and CENP-E at kinetochores drive congression of peripheral polar chromosomes by preventing arm-ejection forces mediated by chromokinesins from working in the wrong direction.
Protein conformational modulation by photons: a mechanism for laser treatment effects.
Liebert, Ann D; Bicknell, Brian T; Adams, Roger D
2014-03-01
Responsiveness to low-level laser treatment (LLTT) at a wavelength of 450-910 nm has established it as an effective treatment of medical, veterinary and dental chronic pain, chronic inflammation conditions (arthritis and macular degeneration), wound repair, and lymphoedema, yet the mechanisms underlying the effectiveness of LLLT remain unclear. However, there is now sufficient evidence from recent research to propose an integrated model of LLLT action. The hypothesis presented in this paper is that external applications of photons (through laser at an appropriate dose) modulates the nervous system through an integrated mechanism. This stimulated mechanism involves protein-to-protein interaction, where two or more proteins bind together to facilitate molecular processes, including modification of proteins by members of SUMO (small ubiquitin-related modifier proteins) and also protein phosphorylation and tyrosination. SUMO has been shown to have a role in multiple nuclear and perinuclear targets, including ion channels, and in the maintenance of telomeres and the post-translational modification of genes. The consequence of laser application in treatment, therefore, can be seen as influencing the transmission of neural information via an integrated and rapid modulation of ion channels, achieved through both direct action on photo-acceptors (such as cytochrome c-oxidase) and through indirect modulation via enzymes, including tyrosine hydroxylase (TH), tyrosine kinases and tyrosine kinase receptors. This exogenous action then facilitates an existing photonic biomodulation mechanism within the body, and initiates ion channel modulation both in the periphery and the central nervous system (CNS). Evidence indicates that the ion channel modulation functions predominately through the potassium channels, including two pore leak channels (K2P), which act as signal integrators from the periphery to the cortex. Photonic action also transforms SUMOylation processes at the cell membrane, nucleus and telomeres via signalling processes from the mitochondria (which is the main target of laser absorption) to these targets. Under the hypothesis, these observed biological effects would play a part in the bystander effect, the abscopal effect, and other systemic effects observed with the application of low level laser (LLLT). The implications of the hypothesis are important in that they point to mechanisms that can account for the effectiveness of laser in the treatment and prevention of inflammatory diseases, chronic pain and neurodegenerative disorders. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Campochiaro, Peter A; Hafiz, Gulnar; Mir, Tahreem A; Scott, Adrienne W; Solomon, Sharon; Zimmer-Galler, Ingrid; Sodhi, Akrit; Duh, Elia; Ying, Howard; Wenick, Adam; Shah, Syed Mahmood; Do, Diana V; Nguyen, Quan D; Kherani, Saleema; Sophie, Raafay
2015-07-01
To determine whether scatter and grid laser photocoagulation (laser) adds benefit to ranibizumab injections in patients with macular edema from retinal vein occlusion (RVO) and to compare 0.5-mg with 2.0-mg ranibizumab. Randomized, double-masked, controlled clinical trial. Thirty-nine patients with central RVO (CRVO) and 42 with branch RVO (BRVO). Subjects were randomized to 0.5 mg or 2.0 mg ranibizumab every 4 weeks for 24 weeks and re-randomized to pro re nata ranibizumab plus laser or ranibizumab alone. Mean change from baseline best-corrected visual acuity (BCVA) at week 24 for BCVA at weeks 48, 96, and 144 for second randomization. Mean improvement from baseline BCVA at week 24 was 15.5 and 15.8 letters in the 0.5-mg and 2.0-mg CRVO groups, and 12.1 and 14.6 letters in the 0.5-mg and 2.0-mg BRVO groups. For CRVO, but not BRVO, there was significantly greater reduction from baseline mean central subfield thickness (CST) in the 2.0-mg versus 0.5-mg group (396.1 vs. 253.5 μm; P = 0.03). For the second randomization in CRVO patients, there was no significant difference from week 24 BCVA in the ranibizumab plus laser versus the ranibizumab only groups at week 48 (-3.3 vs. 0.0 letters), week 96 (+0.69 vs. -1.6 letters), or week 144 (+0.4 vs. -6.7 letters), and a significant increase from week 24 mean CST at week 48 (+94.7 vs. +15.2 μm; P = 0.05) but not weeks 96 or 144. For BRVO, there was a significant reduction from week 24 mean BCVA in ranibizumab plus laser versus ranibizumab at week 48 (-7.5 vs. +2.8; P < 0.01) and week 96 (-2.0 vs. +4.8; P < 0.03), but not week 144, and there were no differences in mean CST change from week 24 at weeks 48, 96, or 144. Laser failed to increase edema resolution or to reduce the ranibizumab injections between weeks 24 and 144. In patients with macular edema resulting from RVO, there was no short-term clinically significant benefit from monthly injections of 2.0-mg versus 0.5-mg ranibizumab injections and no long-term benefit in BCVA, resolution of edema, or number of ranibizumab injections obtained by addition of laser treatment to ranibizumab. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Laser generation in opal-like single-crystal and heterostructure photonic crystals
NASA Astrophysics Data System (ADS)
Kuchyanov, A. S.; Plekhanov, A. I.
2016-11-01
This study describes the laser generation of a 6Zh rhodamine in artificial opals representing single-crystal and heterostructure films. The spectral and angular properties of emission and the threshold characteristics of generation are investigated. In the case where the 6Zh rhodamine was in a bulk opal, the so-called random laser generation was observed. In contrast to this, the laser generation caused by a distributed feedback inside the structure of the photonic bandgap was observed in photonic-crystal opal films.
Grzech-Leśniak, K; Sculean, A; Gašpirc, Boris
2018-05-15
The objective of this study was to evaluate the microbiological and clinical outcomes following nonsurgical treatment by either scaling and root planing, combination of Nd:YAG and Er:YAG lasers, or by Er:YAG laser treatment alone. The study involved 60 patients with generalized chronic periodontitis, randomly assigned into one of three treatment groups of 20 patients. The first group received scaling and root planing by hand instruments (SRP group), the second group received Er:YAG laser treatment alone (Er group), and the third group received combined treatment with Nd:YAG and Er:YAG lasers (NdErNd group). Microbiological samples, taken from the periodontal pockets at baseline and 6 months after treatments, were assessed with PET Plus tests. The combined NdErNd laser (93.0%), followed closely by Er:YAG laser (84.9%), treatment resulted in the highest reduction of all bacteria count after 6 months, whereas SRP (46.2%) failed to reduce Treponema denticola, Peptostreptococcus micros, and Capnocytophaga gingivalis. Full-mouth plaque and bleeding on probing scores dropped after 6 months and were the lowest in both laser groups. The combination of NdErNd resulted in higher probing pocket depth reduction and gain of clinical attachment level (1.99 ± 0.23 mm) compared to SRP (0.86 ± 0.13 mm) or Er:YAG laser alone (0.93 ± 0.20 mm) in 4-6 mm-deep pockets. Within their limits, the present results provide support for the combination of Nd:YAG and Er:YAG lasers to additionally improve the microbiological and clinical outcomes of nonsurgical periodontal therapy in patients with moderate to severe chronic periodontitis.
Hydrocarbon-Fueled Scramjet Research at Hypersonic Mach Numbers
2005-03-31
oxide O atomic oxygen 02 molecular oxygen OH hydroxyl radical ppm parts per million PD photodiode PLLF planar laser-induced fluorescence PMT...photomultiplier tube RAM random access memory RANS Reynolds-averaged Navier-Stokes RET rotational energy transfer TDLAS tunable diode laser absorption...here extend this knowledge base to flight at Mach 11.5. Griffiths (2004) used a tunable diode laser absorption spectroscopy ( TDLAS ) system to measure
Biophysical basis of low-power-laser effects
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1996-06-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These actions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation for some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
1998-07-01
Russia)"Laser refractometry of biological media" Tuesday, July 7 Chairs: S. Gonchukov (Russia) and D. Sliney (USA) A. Priezzhev (Moscow, Russia) 11.00...application to the evaluation of blood flow. Optics and Laser Technology, Vol.23, No.4, p.205, 1991. LASER REFRACTOMETRY OF BIOLOGICAL MEDIA S.A. Gonchukov...measuring (fast-action). Refractometry is a classical technique. The sensitivity of traditional measuring is usually 10-4-10-7. That’s no bad. But
Laser-filamentation-induced condensation and snow formation in a cloud chamber.
Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan
2012-04-01
Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation.
De Marchi, Thiago; Schmitt, Vinicius Mazzochi; Danúbia da Silva Fabro, Carla; da Silva, Larissa Lopes; Sene, Juliane; Tairova, Olga; Salvador, Mirian
2017-05-01
Recent studies suggest the prophylactic use of low-powered laser/light has ergogenic effects on athletic performance and postactivity recovery. Manufacturers of high-powered lasers/light devices claim that these can produce the same clinical benefits with increased power and decreased irradiation time; however, research with high-powered lasers is lacking. To evaluate the magnitude of observed phototherapeutic effects with 3 commercially available devices. Randomized double-blind placebo-controlled study. Laboratory. Forty healthy untrained male participants. Participants were randomized into 4 groups: placebo, high-powered continuous laser/light, low-powered continuous laser/light, or low-powered pulsed laser/light (comprising both lasers and light-emitting diodes). A single dose of 180 J or placebo was applied to the quadriceps. Maximum voluntary contraction, delayed-onset muscle soreness (DOMS), and creatine kinase (CK) activity from baseline to 96 hours after the eccentric exercise protocol. Maximum voluntary contraction was maintained in the low-powered pulsed laser/light group compared with placebo and high-powered continuous laser/light groups in all time points (P < .05). Low-powered pulsed laser/light demonstrated less DOMS than all groups at all time points (P < .05). High-powered continuous laser/light did not demonstrate any positive effects on maximum voluntary contraction, CK activity, or DOMS compared with any group at any time point. Creatine kinase activity was decreased in low-powered pulsed laser/light compared with placebo (P < .05) and high-powered continuous laser/light (P < .05) at all time points. High-powered continuous laser/light resulted in increased CK activity compared with placebo from 1 to 24 hours (P < .05). Low-powered pulsed laser/light demonstrated better results than either low-powered continuous laser/light or high-powered continuous laser/light in all outcome measures when compared with placebo. The increase in CK activity using the high-powered continuous laser/light compared with placebo warrants further research to investigate its effect on other factors related to muscle damage.
Evaluation of the analgesic effect of low-power optical radiation in acute inflammatory process
NASA Astrophysics Data System (ADS)
Ferreira, Denise M.; Zangaro, Renato A.; Cury, Yara; Frigo, Lucio; Barbosa, Daniella G.; da Silva Melo, Milene; Munin, Egberto
2004-07-01
Many research works have explored the use of the low power laser as a tool for the control of inflammatory processes. The anti-inflammatory effect of low power optical radiation and its ability to induce analgesia has been reported for different experimental conditions. Many published works are very qualitative in nature. In this work the action of low power laser radiation on acute inflammatory process is evaluated. The time evolution of rat paw edema and pain induced by carrageenan was experimentally monitored. A 632.8 nm He-Ne laser was used for the treatment. The laser treatment, at a dosage of 2,5 J/cm2, was applied at the first, second and third hour after the induction of the inflammation. A hydroplethysmometer was used for the evaluation of the inflammation. The measurement of pain sensitivity was performed according to the method described by Randall and Selito, (1957). The laser treatment was capable of inhibiting the carrageenan-induced hyperalgesia by 49% (p<0,001) at the second hour after the induction, as compared to the non-treated group. At the fourth hour (peak of the carrageenan action on hyperalgesia) and at the sixth hour, the achieved inhibition was 49% (p<0,001) and 61% (p<0,001), respectively. In the treated groups, the edema evolution was inhibited by 38% (p<0,01), at the second hour after induction, as compared to the non-treated groups. At the fourth hour (peak of the carrageenan action on leakage) and at sixth hour the achieved inhibition was 35% (p<0,01) and 30% (p<0,05) respectively.
NASA Astrophysics Data System (ADS)
Arutyunyan, R. V.; Baranov, V. Yu; Bobkov, I. V.; Bol'shov, Leonid A.; Dolgov, V. A.; Kanevskiĭ, M. F.; Malyuta, D. D.; Mezhevov, V. S.
1988-03-01
A report is given of the influence of low-threshold surface optical breakdown, occurring under the action of short (~ 5-μs) radiation pulses from a CO2 laser, on the process of the laser drilling of metals. Data are given on the difference between the interaction of radiation pulses having the same duration but differing in shape. A study was made of the influence of the pressure of the atmosphere surrounding a target on the results of laser drilling of metals. A theoretical explanation is given of the experimental results.
Spatio-temporal Theory of Lasing Action in Optically-Pumped Rotationally Excited Molecular Gases
2011-04-11
17. A. E. Siegman , Lasers (Univ. Science Books, 1986). 18. R. Bansal (ed.), Handbook of Engineering Electromagnetics (Marcel Dekker, Inc., 2004). 19... laser emission from optically-pumped rota- tionally excited molecular gases confined in a metallic cavity. To this end, we have developed a...the operation of this class of lasers . The effect on the main lasing features of the spatial variation of the electric field intensity and the ohmic
Fiber distributed feedback laser
NASA Technical Reports Server (NTRS)
Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)
1976-01-01
Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.
Effect of H-wave polarization on laser radar detection of partially convex targets in random media.
El-Ocla, Hosam
2010-07-01
A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.
Passi, Deepak; Pal, Uma Shankar; Mohammad, Shadab; Singh, Rakesh Kumar; Mehrotra, Divya; Singh, Geeta; Kumar, Manoj; Chellappa, Arul A.L.; Gupta, Chandan
2013-01-01
Background The aim of this study was to assess the feasibility of Er: YAG laser in bone cutting for removal of impacted lower third molar teeth and compare its outcomes with that of surgical bur. Materials & methods The study comprised 40 subjects requiring removal of impacted mandibular third molar, randomly categorized into two equal groups of 20 each, who had their impacted third molar removed either using Er: YAG laser or surgical bur as per their group, using standard methodology of extraction of impacted teeth. Clinical parameters like pain, bleeding, time taken for bone cutting, postoperative swelling, trismus, wound healing and complications were compared for both groups. Observation & result Clinical parameters like pain, bleeding and swelling were lower in laser group than bur group, although the difference was statistically not significant. However, postoperative swelling showed significant difference in the two groups. Laser group required almost double the time taken for bone cutting with bur. Trismus persisted for a longer period in laser group. Wound healing and complications were assessed clinically and there was no significant difference in both the groups. Conclusion Based on the results of our study, the possibility of bone cutting using lasers is pursued, the osteotomy is easily performed and the technique is better suited to minimally invasive surgical procedures. The use of Er: YAG laser may be considered as an alternative tool to surgical bur, specially in anxious patients. PMID:25737885
Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring
NASA Astrophysics Data System (ADS)
Martínez de Mendívil, Jon; del Hoyo, Jesús; Solís, Javier; Lifante, Ginés
2016-12-01
Ridge waveguide lasers have been fabricated on Nd3+ doped LiNbO3 crystals. The fs-laser writing technique was used to define ridge structures on a gradient-index planar waveguide fabricated by Zn-diffusion. This planar waveguide was formed in a z-cut LiNbO3 substrate homogeneously doped with a 0.23% of Nd3+ ions. To obtain lateral light confinement, the surface was then micromachined using a multiplexed femtosecond laser writing beam, forming the ridge structures. By butting two mirrors at the channel waveguide end-facets, forming a waveguide laser cavity, TM-polarized laser action at 1085 nm was achieved by end-fire TM-pumping at 815 nm. The waveguide laser shows a threshold of 31 mW, with a 7% of slope efficiency.
Restorative retinal laser therapy: Present state and future directions.
Chhablani, Jay; Roh, Young Jung; Jobling, Andrew I; Fletcher, Erica L; Lek, Jia Jia; Bansal, Pooja; Guymer, Robyn; Luttrull, Jeffrey K
Because of complications and side effects, conventional laser therapy has taken a back seat to drugs in the treatment of macular diseases. Despite this, research on new laser modalities remains active. In particular, various approaches are being pursued to preserve and improve retinal structure and function. These include micropulsing, various exposure titration algorithms, and real-time temperature feedback control of short-pulse continuous wave lasers, and ultra-short-pulse nanosecond lasers. Some of these approaches are at the preclinical stage of development, whereas others are available for clinical use. Cell biology is providing important insights into the mechanisms of action of retinal laser treatment. We outline the technological bases of current laser platforms, their basic science, therapeutic concepts, clinical experience, and future directions for retinal laser treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
212-Angstrom neonlike zinc laser of LULI
NASA Astrophysics Data System (ADS)
Jamelot, Gerard; Jaegle, Pierre; Rus, Bedrich; Carillon, Antoine; Klisnick, Annie; Nantel, Marc; Sebban, Stephane; Albert, F.; Zeitoun, Philippe; Plankl, E.; Sirgand, A.; Lewis, Ciaran L. S.; MacPhee, Andrew G.; Tallents, Gregory J.; Krishnan, J.; Holden, M.
1995-09-01
The main feature of x-ray laser research at LULI is the development of a saturated laser at 212 angstrom with a relatively small pump laser of 0.4 kJ in 600 ps. The laser works with the 3p- 3s J equals O yields 1 transition of neon-like zinc, by using the double-pass of amplified radiation in the active medium. Plasma parameters (temperature, density, homogeneity), and x-ray laser emission properties (intensity, pointing angle, divergence, and coherence) have been studied. Lasing action needs the main laser pulse to be preceded by a ten-prepulse train (contrast ratio less than 103) due to the remnant oscillator. The effect of a single prepulse was investigated as a function of contrast ratio and delay between the prepulse and the main pulse.
NASA Astrophysics Data System (ADS)
Yao, Shunchun; Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping; Lu, Jidong
2015-08-01
The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment.
Uppal, S; Nadig, S; Jones, C; Nicolaides, A R; Coatesworth, A P
2004-06-01
The aim of this study was to compare laser palatoplasty with uvulectomy with punctate palatal diathermy as treatment modalities for snoring. The study design was a prospective, single-blind, randomized-controlled trial. Eighty-three patients entered the trial. After a mean follow-up period of more than 18 months there was no statistically significant difference between the two groups regarding the patient perception of benefit from surgery or the subjective improvement in snoring. However, there was a statistically significant difference in the degree of pain in the immediate postoperative period (mean difference = 22.14, 95% CI = 7.98-36.31, P = 0.003), with the pain being worse in the laser palatoplasty group. Relative risk of complications for laser palatoplasty was 1.42 (95% CI = 0.93-2.17). The snoring scores and Glasgow Benefit Inventory scores decreased with time in both the groups but there was no statistically significant difference between the two groups.
Ip, David
2015-12-01
The current study evaluates whether the addition of low-level laser therapy into standard conventional physical therapy in elderly with bilateral symptomatic tri-compartmental knee arthritis can successfully postpone the need for joint replacement surgery. A prospective randomized cohort study of 100 consecutive unselected elderly patients with bilateral symptomatic knee arthritis with each knee randomized to receive either treatment protocol A consisting of conventional physical therapy or protocol B which is the same as protocol A with added low-level laser therapy. The mean follow-up was 6 years. Treatment failure was defined as breakthrough pain which necessitated joint replacement surgery. After a follow-up of 6 years, patients clearly benefited from treatment with protocol B as only one knee needed joint replacement surgery, while nine patients treated with protocol A needed surgery (p < 0.05). We conclude low-level laser therapy should be incorporated into standard conservative treatment protocol for symptomatic knee arthritis.
Monolayer semiconductor nanocavity lasers with ultralow thresholds
Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; ...
2015-03-16
Engineering the electromagnetic environment of a nanoscale light emitter by a photonic cavity can significantly enhance its spontaneous emission rate through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter 1–5, providing the ultimate low-threshold laser system with small footprint, low power consumption and ultrafast modulation. A state-of-the-art ultra-low threshold nanolaser has been successfully developed though embedding quantum dots into photonic crystal cavity (PhCC) 6–8. However, several core challenges impede the practical applications of this architecture, including the random positions and compositional fluctuations of the dots 7, extreme difficulty in currentmore » injection8, and lack of compatibility with electronic circuits 7,8. Here, we report a new strategy to lase, where atomically thin crystalline semiconductor, i.e., a tungsten-diselenide (WSe 2) monolayer, is nondestructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PhCC. A new type of continuous-wave nanolaser operating in the visible regime is achieved with an optical pumping threshold as low as 27 nW at 130 K, similar to the value achieved in quantum dot PhCC lasers 7. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within 1 nm of the PhCC surface. The surface-gain geometry allows unprecedented accessibilities to multi-functionalize the gain, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.« less
Dippel, Eric J; Makam, Prakash; Kovach, Richard; George, Jon C; Patlola, Raghotham; Metzger, D Christopher; Mena-Hurtado, Carlos; Beasley, Robert; Soukas, Peter; Colon-Hernandez, Pedro J; Stark, Matthew A; Walker, Craig
2015-01-01
The purpose of this study was to evaluate the safety and efficacy of excimer laser atherectomy (ELA) with adjunctive percutaneous transluminal angioplasty (PTA) versus PTA alone for treating patients with chronic peripheral artery disease with femoropopliteal bare nitinol in-stent restenosis (ISR). Femoropopliteal stenting has shown superiority to PTA for lifestyle-limiting claudication and critical limb ischemia, although treating post-stenting artery reobstruction, or ISR, remains challenging. The multicenter, prospective, randomized, controlled EXCITE ISR (EXCImer Laser Randomized Controlled Study for Treatment of FemoropopliTEal In-Stent Restenosis) trial was conducted across 40 U.S. centers. Patients with Rutherford Class 1 to 4 and lesions of target lesion length ≥4 cm, vessel diameter 5 to 7 mm were enrolled and randomly divided into ELA + PTA and PTA groups by a 2:1 ratio. The primary efficacy endpoint was target lesion revascularization (TLR) at 6-month follow up. The primary safety endpoint was major adverse event (death, amputation, or TLR) at 30 days post-procedure. Study enrollment was stopped at 250 patients due to early efficacy demonstrated at a prospectively-specified interim analysis. A total of 169 ELA + PTA subjects (62.7% male; mean age 68.5 ± 9.8 years) and 81 PTA patients (61.7% male; mean age 67.8 ± 10.3 years) were enrolled. Mean lesion length was 19.6 ± 12.0 cm versus 19.3 ± 11.9 cm, and 30.5% versus 36.8% of patients exhibited total occlusion. ELA + PTA subjects demonstrated superior procedural success (93.5% vs. 82.7%; p = 0.01) with significantly fewer procedural complications. ELA + PTA and PTA subject 6-month freedom from TLR was 73.5% versus 51.8% (p < 0.005), and 30-day major adverse event rates were 5.8% versus 20.5% (p < 0.001), respectively. ELA + PTA was associated with a 52% reduction in TLR (hazard ratio: 0.48; 95% confidence interval: 0.31 to 0.74). The EXCITE ISR trial is the first large, prospective, randomized study to demonstrate superiority of ELA + PTA versus PTA alone for treating femoropopliteal ISR. (Randomized Study of Laser and Balloon Angioplasty Versus Balloon Angioplasty to Treat Peripheral In-stent Restenosis [EXCITE ISR]; NCT01330628). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
López-Jornet, Pía
2013-01-01
Objective: The aim of this study was to compare conventional surgery with carbon dioxide (CO2) laser in patients with oral leukoplakia, and to evaluate the postoperative pain and swelling. Study design: A total of 48 patients (27 males and 21 females) with a mean age of 53.7 ± 11.7 years and diagnosed with oral leukoplakia were randomly assigned to receive treatment either with conventional surgery using a cold knife or with a CO2 laser technique. A visual analog scale (VAS) was used to score pain and swelling at different postoperative time points. Results: Pain and swelling reported by the patients was greater with the conventional cold knife than with the CO2 laser, statistically significant differences for pain and swelling were observed between the two techniques during the first three days after surgery. Followed by a gradual decrease over one week. In neither group was granuloma formation observed, and none of the patients showed malignant transformation during the period of follow-up. Conclusions: The CO2 laser causes only minimal pain and swelling, thus suggesting that it may be an alternative method to conventional surgery in treating patients with oral leukoplakia. Key words:Oral leukoplakia, treatment, laser surgery, cold knife, pain, swelling. PMID:23229239
Lara-Domínguez, Maria D; Arjona-Berral, Jose E; Dios-Palomares, Rafaela; Castelo-Branco, Camil
2016-01-01
To compare the resection of endometrial polyps with two different devices: the Versapoint biopolar electrode and the Diode Laser. One hundred and two patients diagnosed with endometrial polyps were randomly assigned to undergo hysteroscopic polypectomy: one group (n = 52) performed with Versapoint bipolar electrode through a 5Fr working channel and the other group with Biolitec Diode Laser (n = 50) using a specific fiber for polyps in a 7Fr working channel. All cases were managed on an outpatient basis, without anesthesia and using a rigid 30(o) hysteroscope and saline solution as a distention medium. Complete resection rate, operative time, complications, intraoperative pain and relapse rate after three months. Intraoperative pain and polyp resection time was similar in both groups. Upon second look hysteroscopy at 3-month, a higher percentage of women of the Versapoint group presented polyp relapse (32.6 versus 2.2%, p = 0.001). Elimination of the polyp after incomplete resection was higher in the Laser group. A significantly higher number of patients in the Laser group considered the procedure to be highly recommendable (p = 0.02). Polypectomy with Diode Laser resulted in fewer relapses and a higher procedure satisfaction rate as compared to Versapoint.
Karsai, Syrus; Czarnecka, Agnieszka; Jünger, Michael; Raulin, Christian
2010-02-01
Ablative fractional lasers were introduced for treating facial rhytides in an attempt to achieve results comparable to traditional ablative resurfacing but with fewer side effects. However, there is conflicting evidence on how well this goal has generally been achieved as well as on the comparative value of fractional CO(2) and Er:YAG lasers. The present study compares these modalities in a randomized controlled double-blind split-face study design. Twenty-eight patients were enrolled and completed the entire study. Patients were randomly assigned to receive a single treatment on each side of the peri-orbital region, one with a fractional CO(2) and one with a fractional Er:YAG laser. The evaluation included the profilometric measurement of wrinkle depth, the Fitzpatrick wrinkle score (both before and 3 months after treatment) as well as the assessment of side effects and patient satisfaction (1, 3, 6 days and 3 months after treatment). Both modalities showed a roughly equivalent effect. Wrinkle depth and Fitzpatrick score were reduced by approximately 20% and 10%, respectively, with no appreciable difference between lasers. Side effects and discomfort were slightly more pronounced after Er:YAG treatment in the first few days, but in the later course there were more complaints following CO(2) laser treatment. Patient satisfaction was fair and the majority of patients would have undergone the treatment again without a clear preference for either method. According to the present study, a single ablative fractional treatment session has an appreciable yet limited effect on peri-orbital rhytides. When fractional CO(2) and Er:YAG lasers are used in such a manner that there are comparable post-operative healing periods, comparable cosmetic improvement occurs. Multiple sessions may be required for full effect, which cancels out the proposed advantage of fractional methods, that is, fewer side effects and less down time.
Sobouti, Farhad; Khatami, Maziar; Chiniforush, Nasim; Rakhshan, Vahid; Shariati, Mahsa
2015-01-01
Pain is the most common complication of orthodontic treatment. Low-level laser therapy (LLLT) has been suggested as a new analgesic treatment free of the adverse effects of analgesic medications. However, it is not studied thoroughly, and the available studies are quite controversial. Moreover, helium neon (He-Ne) laser has not been assessed before. This split-mouth placebo-controlled randomized clinical trial was performed on 16 male and 14 female orthodontic patients requiring bilateral upper canine retraction. The study was performed at a private clinic in Sari, Iran, in 2014. It was single blind: patients, orthodontist, and personnel were blinded of the allocations, but the laser operator (periodontist) was not blinded. Once canine retractor was activated, a randomly selected maxillary quarter received a single dose of He-Ne laser irradiation (632.8 nm, 10 mw, 6 j/cm(2) density). The other quarter served as the placebo side, treated by the same device but powered off. In the first, second, fourth, and seventh days, blinded patients rated their pain sensed on each side at home using visual analog scale (VAS) questionnaires. There was no harm identified during or after the study. Pain changes were analyzed using two- and one-way repeated-measures ANOVA, Bonferroni, and t-test (α = 0.01, β > 0.99). This trial was not registered. It was self-funded by the authors. Sixteen males and 11 females remained in the study (aged 12-21). Average pain scores sensed in all 4 intervals on control and laser sides were 4.06 ± 2.85 and 2.35 ± 1.77, respectively (t-test P < 0.0001). One-way ANOVA showed significant pain declines over time, in each group (P < 0.0001). Two-way ANOVA showed significant effects for LLLT (P < 0.0001) and time (P = <0.0001). Single-dose He-Ne laser therapy might reduce orthodontic pain caused by retracting maxillary canines.
Faghihi, Gita; Nouraei, Saeid; Asilian, Ali; Keyvan, Shima; Abtahi-Naeini, Bahareh; Rakhshanpour, Mehrdad; Nilforoushzadeh, Mohammad Ali; Hosseini, Sayed Mohsen
2015-01-01
Background: A number of treatments for reducing the appearance of acne scars are available, but general guidelines for optimizing acne scar treatment do not exist. The aim of this study was to compare the clinical effectiveness and side effects of fractional carbon dioxide (CO2) laser resurfacing combined with punch elevation with fractional CO2 laser resurfacing alone in the treatment of atrophic acne scars. Materials and Methods: Forty-two Iranian subjects (age range 18–55) with Fitzpatrick skin types III to IV and moderate to severe atrophic acne scars on both cheeks received randomized split-face treatments: One side received fractional CO2 laser treatment and the other received one session of punch elevation combined with two sessions of laser fractional CO2 laser treatment, separated by an interval of 1 month. Two dermatologists independently evaluated improvement in acne scars 4 and 16 weeks after the last treatment. Side effects were also recorded after each treatment. Results: The mean ± SD age of patients was 23.4 ± 2.6 years. Clinical improvement of facial acne scarring was assessed by two dermatologists blinded to treatment conditions. No significant difference in evaluation was observed 1 month after treatment (P = 0.56). Their evaluation found that fractional CO2 laser treatment combined with punch elevation had greater efficacy than that with fractional CO2 laser treatment alone, assessed 4 months after treatment (P = 0.02). Among all side effects, coagulated crust formation and pruritus at day 3 after fractional CO2 laser treatment was significant on both treatment sides (P < 0.05). Conclusion: Concurrent use of fractional laser skin resurfacing with punch elevation offers a safe and effective approach for the treatment of acne scarring. PMID:26538695
Vayvay, Emre Serdar; Tok, Damla; Turgut, Elif; Tunay, Volga Bayrakci
2016-01-01
Conservative treatments have been proved to be effective to control pain and optimize function in fibromyalgia, however there is need for scientific evidence to make better clinical application across various physiotherapy applications. The aim of this study was to investigate the effects of Laser and taping applications on pain, flexibility, anxiety, depression, functional status and quality of life in patients with fibromyalgia syndrome. Forty-five female patients with fibromyalgia syndrome were included to the study and randomly allocated into three treatment groups; Laser (n= 15), placebo Laser (n= 15), and taping applications (n= 15). Visual analogue scale for pain intensity, trunk flexibility, Fibromyalgia Impact Questionnaire for functional status, Short Form 36 Questionnaire for quality of life and health status, and Beck Depression Inventory for anxiety level were evaluated before and after three weeks interventions. There were decreased pain severity in activity (p= 0.028), anxiety level (p= 0.01) and improved general health status, quality of life (p= 0.01) found at Laser group, whereas there were increased trunk flexibility, flexion (p= 0.03), extension (p= 0.02) found at taping group. After interventions, there were decreased pain severity for whole groups at night for Laser group (p= 0.04), placebo Laser group (p= 0.001), taping group (p= 0.01) and improved functional status found for Laser group (p= 0.001), placebo Laser group (p= 0.001), taping group (p= 0.01). Kinesiotape application had a similar effect on parameters in FMS patient, so this method could be preferred instead of Laser application for rehabilitation program.
Siposan, Dan Georgel
2011-01-01
Studying the behavior of living organisms under the action of some physical or chemical factors (corpuscular or electromagnetic radiation, magnetic or electric field, sound waves, salinity, stimulants etc.) is enjoying major interest nowadays.(1,2)) The main goal is to understand the mechanisms of action of these factors on biological tissues, and use this knowledge for applications in biology and medicine. A special place in modern medicine is occupied by the therapeutic applications of laser radiation. In the current study we are attempting to determine whether the therapeutic lasers used in medicine have the potential to produce changes of some morphological and physiological parameters of plants. If these changes actually occur, the next task is to determine whether they are due to laser action on water used for watering by changing its properties, or by the direct action of laser radiation on the plants cells. Matcrials and Mcthods: We used as samples two groups of wheat seeds, planted in cotton. In the first group we only irradiated irrigation water, while in the second group only plants. We used as sources of radiation lasers and LEDs, with wavelengths between 455 nm and 850 nm. Power density was P = 50 mW/cm(2) for all samples, the exposure time ranged between 1s and 80s, and energy density (or fluence) between 0 and 4J/cm(2). We measured modifications of some morphological and physiological parameters (the biomass quantity, germination rate of seeds, number and height of the seedlings etc.) as a function of fluence. When only irrigation water was irradiated, we have found for all wavelength used a strong inhibitory effect on germination (between 30% and 50% for samples grown in the ground and between 13% and 40% for those grown in cotton). Regarding the other parameters determined, a stimulating effect, but less pronounced than if the plant was only irradiated, was noticed. When only plant was irradiated, the effects are altered depending on the wavelength and fluence. Although apparently different, plant and animal cells have some similar characteristics, the differences between them not being essential, involving mainly the quantitative aspect. In these circumstances the study of the monochromatic radiation effects on plants is useful to characterize the action of those radiations on the animal and human tissues. Studies on plants exhibit a series of advantages: they are cheap, easily reproduced and suitable for producing good statistics etc. It can also be verified as to which extent the laws of classic photobiology show modifications when low level lasers are utilized.
Laser techniques in conservation in Europe
NASA Astrophysics Data System (ADS)
Salimbeni, Renzo
2005-06-01
The state of the art of laser techniques employed in conservation of cultural heritage is continuously growing in Europe. Many research projects organised at the European level have contributed to this achievement, being complementary to the development carried out at national level. The COST Action G7 is playing its unique role since the year 2000 in promoting the experimentation, comparing the experiences and disseminating best practices. This role has been particularly effective for monitoring of the results of many short-term research projects completed along the G7 Action lifetime. After that several laser cleaning techniques have been followed and evaluated it appears now clear an evolution of the systems, a specialization of the cleaning task, the achievement of side-effect free procedures. The validation of these advanced cleaning techniques has been extensive and diffused in many European countries, especially for stone and metals. Laser-based diagnostics have also specialised their tasks toward material analysis, defects detection and multidimensional documentation. Laser and optical methods successfully monitor deterioration effects. In many European countries interdisciplinary networks are managing the experimentation of these techniques giving them a sound scientific approach, but also a technology transfer to end-users. So doing the appreciation for these techniques is growing in all the conservation institutions involved at national level, disseminating a positive evaluation about the benefits provided by laser techniques in conservation. Several laser systems became products for the activity of professional restorers and their increasing sales demonstrate a growing utilisation throughout all Europe.
Random fiber lasers based on artificially controlled backscattering fibers
NASA Astrophysics Data System (ADS)
Chen, Daru; Wang, Xiaoliang; She, Lijuan; Qiang, Zexuan; Yu, Zhangwei
2017-10-01
The random fiber laser (RFL) which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previous RFLs are based on distributed feedback of Rayleigh scattering amplified through stimulated Raman/Brillouin scattering effect in single mode fibers, which required long-distance (tens of kilometers) single mode fibers and high threshold up to watt-level due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open cavity RFL based on a segment of a artificially controlled backscattering SMF(ACB-SMF) with a length of 210m, 310m or 390m. A fiber Bragg grating with the central wavelength of 1530nm and a segment of ACB-SMF forms the half-open cavity. The proposed RFL achieves the threshold of 25mW, 30mW and 30mW, respectively. Random lasing at the wavelength of 1530nm and the extinction ratio of 50dB is achieved when a segment of 5m EDF is pumped by a 980nm LD in the RFL. Another half-open cavity RFL based on a segment of a artificially controlled backscattering EDF(ACBS-EDF) is also demonstrated without an ACB-SMF. The 3m ACB-EDF is fabricated by using the femtosecond laser with pulse energy of 0.34mJ which introduces about 50 reflectors in the EDF. Random lasing at the wavelength of 1530nm is achieved with the output power of 7.5mW and the efficiency of 1.88%. Two novel RFLs with much short cavities have been achieved with low threshold and high efficiency.
PHOTONICS AND NANOTECHNOLOGY Laser nanostructuring of materials surfaces
NASA Astrophysics Data System (ADS)
Zavestovskaya, I. N.
2010-12-01
This paper reviews results of experimental and theoretical studies of surface micro- and nanostructuring of metals and other materials irradiated directly by short and ultrashort laser pulses. Special attention is paid to direct laser action involving melting of the material (with or without ablation), followed by ultrarapid surface solidification, which is an effective approach to producing surface nanostructures. Theoretical analysis of recrystallisation kinetics after irradiation by ultrashort laser pulses makes it possible to determine the volume fraction of crystallised phase and the average size of forming crystalline structures as functions of laser treatment regime and thermodynamic properties of the material. The present results can be used to optimise pulsed laser treatment regime in order to ensure control nanostructuring of metal surfaces.
Position and mode dependent optical detection back-action in cantilever beam resonators
NASA Astrophysics Data System (ADS)
Larsen, T.; Schmid, S.; Dohn, S.; Sader, J. E.; Boisen, A.; Villanueva, L. G.
2017-03-01
Optical detection back-action in cantilever resonant or static detection presents a challenge when striving for state-of-the-art performance. The origin and possible routes for minimizing optical back-action have received little attention in literature. Here, we investigate the position and mode dependent optical back-action on cantilever beam resonators. A high power heating laser (100 µW) is scanned across a silicon nitride cantilever while its effect on the first three resonance modes is detected via a low-power readout laser (1 µW) positioned at the cantilever tip. We find that the measured effect of back-action is not only dependent on position but also the shape of the resonance mode. Relevant silicon nitride material parameters are extracted by fitting finite element (FE) simulations to the temperature-dependent frequency response of the first three modes. In a second round of simulations, using the extracted parameters, we successfully fit the FEM results with the measured mode and position dependent back-action. From the simulations, we can conclude that the observed frequency tuning is due to temperature induced changes in stress. Effects of changes in material properties and dimensions are negligible. Finally, different routes for minimizing the effect of this optical detection back-action are described, allowing further improvements of cantilever-based sensing in general.
Iatrakis, G; Peitsidou, A; Papandonopolos, L; Nikolopoulou, MK; Papadopoulos, L; Vladareanu, R
2010-01-01
This is a prospective study to assess a complementary treatment for genital warts after laser vaporization. 62 patients were enrolled in two randomized groups: A1: laser vaporization alone. A2: laser vaporization, followed with Pidotimod plus vitamin C for 2 and 1/2 months. The latter treatment shortened the time of warts remission and marginally decreased the rate of the warts' recurrence: 81% versus 67% (N.S.). Despite the non–significant difference, this complementary treatment seems to have some efficiency. PMID:20945819
An Acousto-Optical Sensor with High Angular Resolution
Kaloshin, Gennady; Lukin, Igor
2012-01-01
The paper introduces a new laser interferometry-based sensor for diagnosis of random media by means of high accuracy angle measurements and describes the results of its development and testing. Theoretical calculations of the dependence of the range of the laser interferometer on laser beam parameters, device geometry, and atmospheric turbulence characteristics are reported. It is demonstrated that at moderate turbulence intensities corresponding to those observed most frequently in turbulent atmosphere at moderate latitudes and with low interference contrast values, the performance range of the laser interferometer-based device exceeds 5 km. PMID:22737034
High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.
Lauterborn, W; Judt, A; Schmitz, E
1993-01-01
A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.
Los Alamos Laser Eye Investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odom, C. R.
2005-01-01
A student working in a laser laboratory at Los Alamos National Laboratory sustained a serious retinal injury to her left eye when she attempted to view suspended particles in a partially evacuated target chamber. The principle investigator was using the white light from the flash lamp of a Class 4 Nd:YAG laser to illuminate the particles. Since the Q-switch was thought to be disabled at the time of the accident, the principal investigator assumed it would be safe to view the particles without wearing laser eye protection. The Laboratory Director appointed a team to investigate the accident and to reportmore » back to him the events and conditions leading up to the accident, equipment malfunctions, safety management causal factors, supervisory and management action/inaction, adequacy of institutional processes and procedures, emergency and notification response, effectiveness of corrective actions and lessons learned from previous similar events, and recommendations for human and institutional safety improvements. The team interviewed personnel, reviewed documents, and characterized systems and conditions in the laser laboratory during an intense six week investigation. The team determined that the direct and primary failures leading to this accident were, respectively, the principle investigator's unsafe work practices and the institution's inadequate monitoring of worker performance. This paper describes the details of the investigation, the human and institutional failures, and the recommendations for improving the laser safety program.« less
Wang, Fei; Toselli, Italo; Korotkova, Olga
2016-02-10
An optical system consisting of a laser source and two independent consecutive phase-only spatial light modulators (SLMs) is shown to accurately simulate a generated random beam (first SLM) after interaction with a stationary random medium (second SLM). To illustrate the range of possibilities, a recently introduced class of random optical frames is examined on propagation in free space and several weak turbulent channels with Kolmogorov and non-Kolmogorov statistics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Il'ina, I V; Ovchinnikov, A V; Sitnikov, D S
We have studied the efficiency of microsurgery of a cell membrane in mesenchymal stem cells and the posterior cell viability under the localised short-time action of femtosecond IR laser pulses aimed at noncontact delivery of specified substances into the cells. (extreme light fields and their applications)
NASA Astrophysics Data System (ADS)
Moura, André L.; Jerez, Vladimir; Maia, Lauro J. Q.; Gomes, Anderson S. L.; de Araújo, Cid B.
2015-09-01
Random lasers (RLs) based on neodymium ions (Nd3+) doped crystalline powders rely on multiple light scattering to sustain laser oscillation. Although Stokes and anti-Stokes Nd3+ RLs have been demonstrated, the optical gain obtained up to now was possibly not large enough to produce self-frequency conversion. Here we demonstrate self-frequency upconversion from Nd3+ doped YAl3(BO3)4 monocrystals excited at 806 nm, in resonance with the Nd3+ transition 4I9/2 → 4F5/2. Besides the observation of the RL emission at 1062 nm, self-converted second-harmonic at 531 nm, and self-sum-frequency generated emission at 459 nm due to the RL and the excitation laser at 806 nm, are reported. Additionally, second-harmonic of the excitation laser at 403 nm was generated. These results exemplify the first multi-wavelength source of radiation owing to nonlinear optical effect in a Nd3+ doped crystalline powder RL. Contrary to the RLs based on dyes, this multi-wavelength light source can be used in photonic devices due to the large durability of the gain medium.
Pulse Compression Techniques for Laser Generated Ultrasound
NASA Technical Reports Server (NTRS)
Anastasi, R. F.; Madaras, E. I.
1999-01-01
Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.
Features and dosimetry of laser-inflicted retina injuries induced by short laser pulses
NASA Astrophysics Data System (ADS)
Pustovalov, Victor K.
1996-04-01
Energy absorption, heat transfer, thermodenaturation under the action of laser radiation pulse on pigmented spherical granules in heterogeneous laminated biotissues are investigated on the base of mathematical simulation. The possibility of selective interaction between short radiation pulses and pigmented retina biotissues is noted which results in the formation of thermodenaturation microregions inside and near the melanosomes. These denaturation microregions can originate in the eye biotissue under laser radiation intensities less than about 2 - 4 times the threshold ones determined ophthalmoscopically. These microdamages can appear without being detected by the standard ophthalmoscopical methods.
Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers.
Sazegari, Vahid; Milani, Mohammad Reza Jafari; Jafari, Ahmad Khayat
2010-12-20
We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.
Generation of radicals in hard biological tissues under the action of laser radiation
NASA Astrophysics Data System (ADS)
Sviridov, Alexander P.; Bagratashvili, Victor N.; Sobol, Emil N.; Omelchenko, Alexander I.; Lunina, Elena V.; Zhitnev, Yurii N.; Markaryan, Galina L.; Lunin, Valerii V.
2002-07-01
The formation of radicals upon UV and IR laser irradiation of some biological tissues and their components was studied by the EPR technique. The radical decay kinetics in body tissue specimens after their irradiation with UV light were described by various models. By the spin trapping technique, it was shown that radicals were not produced during IR laser irradiation of cartilaginous tissue. A change in optical absorption spectra and the dynamics of optical density of cartilaginous tissue, fish scale, and a collagen film under exposure to laser radiation in an air, oxygen, and nitrogen atmosphere was studied.
Principles of laser surgery. Advantages and disadvantages.
Ballow, E B
1992-07-01
An attempt has been made in this article to present an honest and accurate state-of-art narrative of laser surgery for pedal conditions. The theory of operation, physiologic effects and procedural comparisons have been presented regarding those procedures and lasers that are available for use by podiatric surgeons and others treating the foot and leg. Although some information described within this article is anecdotal, it is elaborated with representative expert material from the scientific literature. Overall, a sound theoretic understanding of the mode of action of lasers and extensive training and experience is encouraged when engaging in this exciting discipline of surgery.
ICESat-2 laser Nd:YVO4 amplifier
NASA Astrophysics Data System (ADS)
Sawruk, Nicholas W.; Burns, Patrick M.; Edwards, Ryan E.; Litvinovitch, Viatcheslav; Martin, Nigel; Witt, Greg; Fakhoury, Elias; Iskander, John; Pronko, Mark S.; Troupaki, Elisavet; Bay, Michael M.; He, Charles C.; Wang, Liqin L.; Cavanaugh, John F.; Farrokh, Babak; Salem, Jonathan A.; Baker, Eric
2018-02-01
We report on the cause and corrective actions of three amplifier crystal fractures in the space-qualified laser systems used in NASA Goddard Space Flight Center's (GSFC) Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). The ICESat-2 lasers each contain three end-pumped Nd:YVOO4 amplifier stages. The crystals are clamped between two gold plated copper heat spreaders with an indium foil thermal interface material, and the crystal fractures occurred after multiple years of storage and over a year of operational run-time. The primary contributors are high compressive loading of the NdYVO4 crystals at the beginning of life, a time dependent crystal stress caused by an intermetallic reaction of the gold plating and indium, and slow crack growth resulting in a reduction in crystal strength over time. An updated crystal mounting scheme was designed, analyzed, fabricated and tested. Thee fracture slab failure analysis, finite-element modeling and corrective actions are presented.
A review of the mechanism of action of lasers and photodynamic therapy for onychomycosis.
Bhatta, Anil Kumar; Keyal, Uma; Wang, Xiuli; Gellén, Emese
2017-02-01
Onychomycosis is one of the most common diseases in the field of dermatology. It refers to the fungal infection of the nail plate or nail bed with high incidence in the general population. The available treatment options for onychomycosis have limited use due to side effects, drug interactions, and contraindications, which necessitates the application of an alternative treatment for onychomycosis. In the recent years, lasers and photodynamic therapy (PDT) have been recognized as alternative treatment options. Most of the previous studies have found them to be safe and effective treatment modalities in this indication; however, the results varied greatly and the in vitro and in vivo outcomes are contradictory. In the present review, studies related to the mechanism of action of lasers and PDT for the treatment of onychomycosis will be discussed, with a focus on to find explanation to the contradictory results.
Lateral cavity photonic crystal surface emitting lasers with ultralow threshold and large power
NASA Astrophysics Data System (ADS)
Wang, Yufei; Qu, Hongwei; Zhou, Wenjun; Jiang, Bin; Zhang, Jianxin; Qi, Aiyi; Liu, Lei; Fu, Feiya; Zheng, Wanhua
2012-03-01
The Bragg diffraction condition of surface-emitting lasing action is analyzed and Γ2-1 mode is chosen for lasing. Two types of lateral cavity photonic crystal surface emitting lasers (LC-PCSELs) based on the PhC band edge mode lateral resonance and vertical emission to achieve electrically driven surface emitting laser without distributed Bragg reflectors in the long wavelength optical communication band are designed and fabricated. Deep etching techniques, which rely on the active layer being or not etched through, are adopted to realize the LC-PCSELs on the commercial AlGaInAs/InP multi-quantum-well (MQW) epitaxial wafer. 1553.8 nm with ultralow threshold of 667 A/cm2 and 1575 nm with large power of 1.8 mW surface emitting lasing actions are observed at room temperature, providing potential values for mass production with low cost of electrically driven PCSELs.
Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues
NASA Astrophysics Data System (ADS)
Baum, O. I.; Zheltov, G. I.; Omelchenko, A. I.; Romanov, G. S.; Romanov, O. G.; Sobol, E. N.
2013-08-01
This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atanasov, Petar A., E-mail: paatanas@ie.bas.bg; Nedyalkov, Nikolay N.; Valova, Eugenia I.
We present an experimental analysis on surface structuring of polydimethylsiloxane films with UV (263 nm) femtosecond laser pulses, in air. Laser processed areas are analyzed by optical microscopy, SEM, and μ-Raman spectroscopy. The laser-treated sample shows the formation of a randomly nanostructured surface morphology. μ-Raman spectra, carried out at both 514 and 785 nm excitation wavelengths, prior and after laser treatment allow evidencing the changes in the sample structure. The influence of the laser fluence on the surface morphology is studied. Finally, successful electro-less metallization of the laser-processed sample is achieved, even after several months from the laser-treatment contrary to previous observationmore » with nanosecond pulses. Our findings address the effectiveness of fs-laser treatment and chemical metallization of polydimethylsiloxane films with perspective technological interest in micro-fabrication devices for MEMS and nano-electromechanical systems.« less
1976-09-01
1 dB into 50 ohm load, output VSWR less than 1.5. Phase variation relative to the optical pulse train less than +A.5 Rod Temperature...design of the PSQM laser. All phases of design, mechanical, electronic and optical , borrowed heavily from the EFM lamp pumped laser...opnical power input change for the germanium device is twice that for the silicon device, its random phase noise for a typical in- put of 1 mW optical
Improved dense trajectories for action recognition based on random projection and Fisher vectors
NASA Astrophysics Data System (ADS)
Ai, Shihui; Lu, Tongwei; Xiong, Yudian
2018-03-01
As an important application of intelligent monitoring system, the action recognition in video has become a very important research area of computer vision. In order to improve the accuracy rate of the action recognition in video with improved dense trajectories, one advanced vector method is introduced. Improved dense trajectories combine Fisher Vector with Random Projection. The method realizes the reduction of the characteristic trajectory though projecting the high-dimensional trajectory descriptor into the low-dimensional subspace based on defining and analyzing Gaussian mixture model by Random Projection. And a GMM-FV hybrid model is introduced to encode the trajectory feature vector and reduce dimension. The computational complexity is reduced by Random Projection which can drop Fisher coding vector. Finally, a Linear SVM is used to classifier to predict labels. We tested the algorithm in UCF101 dataset and KTH dataset. Compared with existed some others algorithm, the result showed that the method not only reduce the computational complexity but also improved the accuracy of action recognition.
NASA Astrophysics Data System (ADS)
Ye, Jun; Xu, Jiangming; Song, Jiaxin; Wu, Hanshuo; Zhang, Hanwei; Wu, Jian; Zhou, Pu
2018-06-01
Through high-fidelity numerical modeling and careful system-parameter design, we demonstrate the spectral manipulation of a hundred-watt-level high-power random fiber laser (RFL) by employing a watt-level tunable optical filter. Consequently, a >100-W RFL with the spectrum-agile property is achieved. The central wavelength can be continuously tuned with a range of ∼20 nm, and the tuning range of the full width at half maximum linewidth, which is closely related to the central wavelength, covers ∼1.1 to ∼2.7 times of the minimum linewidth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haglund, R.F.; Tolk, N.H.
The Medical Free Electron Laser Program was awarded to develop, construct and operate a free-electron laser facility dedicated to biomedical and materials studies, with particular emphases on: fundamental studies of absorption and localization of electromagnetic energy on and near material surfaces, especially through electronic and other selective, non-statistical processes; non-thermal photon-materials interactions (e.g., electronic bond-breaking or vibrational energy transfer) in physical and biological materials as well as in long-wavelength biopolymer dynamics; development of FEL-based methods to study drug action and to characterize biomolecular properties and metabolic processes in biomembranes; clinical applications in otolaryngology, neurosurgery, ophthalmology and radiology stressing the usemore » of the laser for selective laser-tissue, laser-cellular and laser-molecule interactions in both therapeutic and diagnostic modalities.« less
NASA Astrophysics Data System (ADS)
Dorin, Bryce; Parkinson, Patrick; Scully, Patricia
2018-04-01
The development of cost-effective electrical packaging for randomly distributed micro/nano-scale devices is a widely recognized challenge for fabrication technologies. Three-dimensional direct laser writing (DLW) has been proposed as a solution to this challenge, and has enabled the creation of rapid and low resistance graphitic wires within commercial polyimide substrates. In this work, we utilize the DLW technique to electrically contact three fully encapsulated and randomly positioned light-emitting diodes (LEDs) in a one-step process. The resolution of the contacts is in the order of 20 μ m, with an average circuit resistance of 29 ± 18 kΩ per LED contacted. The speed and simplicity of this technique is promising to meet the needs of future microelectronics and device packaging.
Application of laser speckle to randomized numerical linear algebra
NASA Astrophysics Data System (ADS)
Valley, George C.; Shaw, Thomas J.; Stapleton, Andrew D.; Scofield, Adam C.; Sefler, George A.; Johannson, Leif
2018-02-01
We propose and simulate integrated optical devices for accelerating numerical linear algebra (NLA) calculations. Data is modulated on chirped optical pulses and these propagate through a multimode waveguide where speckle provides the random projections needed for NLA dimensionality reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobar, Antonio S.; Ocampo, Arcelia F. M.; Hernandez, Maria G. H.
2010-05-31
The purpose of this study was to evaluate the compound nerve action potential amplitude and latency measured to determine the degree of myelination and the number of fibers stimulated in a model of stimulated frog sciatic nerve laser at 810 nm as perioperative treatment after injury. It used 30 bullfrogs (Rana catesbeiana) to obtain 60 sciatic nerves forming four groups, groups 1 and 2 worked with nerves in vitro, were dissected in humid chambers for placing isolated organ, was recorded on compound nerve action potential, the second group laser was applied at 24, 48, 72, 96 and 120 hours andmore » at the same time were placed in 10% formalin. Groups 3 and 4 are worked in vivo localizing the nerve and causing damage through compression, occurred over the compound nerve action potential to assess the degree of myelination and the number of fibers stimulated, the group 4 was applied to 810 nm laser (500 Hz, 10 J, 200 mW) after injury, after 48 hours, three frogs were sacrificed by introducing the nerves in 10% formalin. The latency recorded by stimulating the sciatic nerve of frog to 0.5 mA and 100 ms in groups 1 and 2 show significant differences (p<0.001 and p<000) as in the amplitude (p<000 and p<000). Groups 3 and 4, which was stimulated at 100 mA and 100 ms latency showed no statistically significant difference (p>000), as to the extent, if any statistically significant difference. (p<0.001 and p<0.000). The laser produces a favorable response in the treatment of paresthesia (post-traumatic neuropathy).« less
NASA Astrophysics Data System (ADS)
Escobar, Antonio S.; Ocampo, Arcelia F. M.; Hernández, María G. H.; Jasso, José L. C.; Lira, Maricela O. F.; Flores, Mariana A.; Balderrama, Vicente L.
2010-05-01
The purpose of this study was to evaluate the compound nerve action potential amplitude and latency measured to determine the degree of myelination and the number of fibers stimulated in a model of stimulated frog sciatic nerve laser at 810 nm as perioperative treatment after injury. It used 30 bullfrogs (Rana catesbeiana) to obtain 60 sciatic nerves forming four groups, groups 1 and 2 worked with nerves in vitro, were dissected in humid chambers for placing isolated organ, was recorded on compound nerve action potential, the second group laser was applied at 24, 48, 72, 96 and 120 hours and at the same time were placed in 10% formalin. Groups 3 and 4 are worked in vivo localizing the nerve and causing damage through compression, occurred over the compound nerve action potential to assess the degree of myelination and the number of fibers stimulated, the group 4 was applied to 810 nm laser (500 Hz, 10 J, 200 mW) after injury, after 48 hours, three frogs were sacrificed by introducing the nerves in 10% formalin. The latency recorded by stimulating the sciatic nerve of frog to 0.5 mA and 100 ms in groups 1 and 2 show significant differences (p<0.001 and p<000) as in the amplitude (p<000 and p<000). Groups 3 and 4, which was stimulated at 100 mA and 100 ms latency showed no statistically significant difference (p>000), as to the extent, if any statistically significant difference. (p<0.001 and p<0.000). The laser produces a favorable response in the treatment of paresthesia (post-traumatic neuropathy).
Random Sequence for Optimal Low-Power Laser Generated Ultrasound
NASA Astrophysics Data System (ADS)
Vangi, D.; Virga, A.; Gulino, M. S.
2017-08-01
Low-power laser generated ultrasounds are lately gaining importance in the research world, thanks to the possibility of investigating a mechanical component structural integrity through a non-contact and Non-Destructive Testing (NDT) procedure. The ultrasounds are, however, very low in amplitude, making it necessary to use pre-processing and post-processing operations on the signals to detect them. The cross-correlation technique is used in this work, meaning that a random signal must be used as laser input. For this purpose, a highly random and simple-to-create code called T sequence, capable of enhancing the ultrasound detectability, is introduced (not previously available at the state of the art). Several important parameters which characterize the T sequence can influence the process: the number of pulses Npulses , the pulse duration δ and the distance between pulses dpulses . A Finite Element FE model of a 3 mm steel disk has been initially developed to analytically study the longitudinal ultrasound generation mechanism and the obtainable outputs. Later, experimental tests have shown that the T sequence is highly flexible for ultrasound detection purposes, making it optimal to use high Npulses and δ but low dpulses . In the end, apart from describing all phenomena that arise in the low-power laser generation process, the results of this study are also important for setting up an effective NDT procedure using this technology.
Koldaş Doğan, Şebnem; Ay, Saime; Evcik, Deniz
2017-01-01
The purpose of this study was to compare the effectiveness of two different laser therapy regimens on pain, lumbar range of motions (ROM) and functional capacity in patients with chronic low back pain (CLBP). Forty nine patients with CLBP were randomly assigned into two groups. Group 1 (n= 20) received hot-pack + laser therapy 1 (wavelength of 850 nm Gallium-Aluminum-Arsenide (Ga-Al-As) laser); group 2 (n= 29) received hot-pack + laser therapy 2 (wavelength of 650 nm Helyum-Neon (He-Ne), 785 ve 980 nm Gal-Al-As combined plaque laser) for 15 sessions. Pain severity, patient's and physician's global assessments were evaluated with visual analogue scale (VAS). Modified Schober test, right and left lateral flexion measurements were done. Modified Oswestry Disability Questionnaire (MODQ) was used for evaluation of functional disability. Measurements were done before and after the treatment. After treatment there were statistically significant improvements in pain severity, patient's and physician's global assessment, ROM and MODQ scores in both groups (P< 0.05). After the treatment there were statistically significant differences between the groups in lateral flexion measurements and MODQ scores (P< 0.05) except in pain severity, Modified Schober test, patient's and physician's global assessments (P> 0.05) in favor of those patients who received combined plaque laser therapy (group 2). Laser therapy applied with combined He-Ne and Ga-Al-As provides more improvements in lateral flexion measurements and disability of the patients, however no superiority of the two different laser devices to one another were detected on pain severity.
Dogan, Sebnem Koldas; AY, Saime; Evcik, Deniz
2010-01-01
OBJECTIVES: Conflicting results were reported about the effectiveness of Low level laser therapy on musculoskeletal disorders. The aim of this study was to investigate the effectiveness of 850‐nm gallium arsenide aluminum (Ga‐As‐Al) laser therapy on pain, range of motion and disability in subacromial impingement syndrome. METHODS: A total of 52 patients (33 females and 19 males with a mean age of 53.59±11.34 years) with subacromial impingement syndrome were included. The patients were randomly assigned into two groups. Group I (n = 30, laser group) received laser therapy (5 joule/cm2 at each point over maximum 5‐6 painful points for 1 minute). Group II (n = 22, placebo laser group) received placebo laser therapy. Initially cold pack (10 minutes) was applied to all of the patients. Also patients were given an exercise program including range of motion, stretching and progressive resistive exercises. The therapy program was applied 5 times a week for 14 sessions. Pain severity was assessed by using visual analogue scale. Range of motion was measured by goniometer. Disability was evaluated by using Shoulder Pain and Disability Index. RESULTS: In group I, statistically significant improvements in pain severity, range of motion except internal and external rotation and SPADI scores were observed compared to baseline scores after the therapy (p<0.05). In Group II, all parameters except range of motion of external rotation were improved (p<0.05). However, no significant differences were recorded between the groups (p>0.05). CONCLUSIONS: The Low level laser therapy seems to have no superiority over placebo laser therapy in reducing pain severity, range of motion and functional disability. PMID:21120304
Yu, Charles Q; Manche, Edward E
2015-04-01
To compare laser in situ keratomileusis (LASIK) outcomes between 2 femtosecond lasers for flap creation in the treatment of myopia up to 1 year. University eye clinic. Prospective randomized eye-to-eye study. Consecutive myopic patients were treated with wavefront-guided LASIK. One eye had a flap created by the Intralase FS 60 kHz femtosecond laser, and the fellow eye was treated with the Intralase iFS 150 kHz femtosecond laser. Eyes were randomized according to ocular dominance. Evaluations included measurement of uncorrected distance visual acuity (UDVA), corrected distance visual acuity, contrast sensitivity and wavefront aberrometry. The study enrolled 122 eyes of 61 patients. The mean preoperative spherical equivalent refraction was -4.62 diopters (D) ± 2.32 (SD) and -4.66 ± 2.30 D in the 150 kHz group and 60 kHz group, respectively. Patients preferred the 150 kHz laser to the 60 kHz laser intraoperatively (52.5% versus 26.2%) (P = .005). One week postoperatively, UDVA was 20/16 or better in 85.2% in the 150 kHz group and 70.5% in the 60 kHz group; the difference was statistically significant (P < .05). At 12 months, there were no significant differences in refractive outcomes or higher-order aberrations between the 2 groups. Flap creation with the 150 kHz system and the 60 kHz system resulted in excellent LASIK outcomes. Intraoperatively, patients preferred the 150 kHz system, which yielded better UDVA in the early postoperative period. There were no significant differences at 1 year between the 2 laser systems. Proprietary or commercial disclosures are listed after the references. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Kroon, Marije W; Wind, Bas S; Beek, Johan F; van der Veen, J P Wietze; Nieuweboer-Krobotová, Ludmila; Bos, Jan D; Wolkerstorfer, Albert
2011-03-01
Various treatments are currently available for melasma. However, results are often disappointing. We sought to assess the efficacy and safety of nonablative 1550-nm fractional laser therapy and compare results with those obtained with triple topical therapy (the gold standard). Twenty female patients with moderate to severe melasma and Fitzpatrick skin types II to V were treated either with nonablative fractional laser therapy or triple topical therapy (hydroquinone 5%, tretinoin 0.05%, and triamcinolone acetonide 0.1% cream) once daily for 8 weeks in a randomized controlled observer-blinded study. Laser treatment was performed every 2 weeks for a total of 4 times. Physician Global Assessment was assessed at 3 weeks, 3 months, and 6 months after the last treatment. Physician Global Assessment improved (P < .001) in both groups at 3 weeks. There was no difference in Physician Global Assessment between the two groups. Mean treatment satisfaction and recommendation were significantly higher in the laser group at 3 weeks (P < .05). However, melasma recurred in 5 patients in both groups after 6 months. Side effects in the laser group were erythema, burning sensation, facial edema, and pain; in the triple group side effects were erythema, burning, and scaling. Limitations were: small number of patients; only one set of laser parameters; and a possible difference in motivation between groups. Nonablative fractional laser therapy is safe and comparable in efficacy and recurrence rate with triple topical therapy. It may be a useful alternative treatment option for melasma when topical bleaching is ineffective or not tolerated. Different laser settings and long-term maintenance treatment should be tested in future studies. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Spectrally resolved far-fields of terahertz quantum cascade lasers.
Brandstetter, Martin; Schönhuber, Sebastian; Krall, Michael; Kainz, Martin A; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M; Strasser, Gottfried; Unterrainer, Karl
2016-10-31
We demonstrate a convenient and fast method to measure the spectrally resolved far-fields of multimode terahertz quantum cascade lasers by combining a microbolometer focal plane array with an FTIR spectrometer. Far-fields of fundamental TM0 and higher lateral order TM1 modes of multimode Fabry-Pérot type lasers have been distinguished, which very well fit to the results obtained by a 3D finite-element simulation. Furthermore, multimode random laser cavities have been investigated, analyzing the contribution of each single laser mode to the total far-field. The presented method is thus an important tool to gain in-depth knowledge of the emission properties of multimode laser cavities at terahertz frequencies, which become increasingly important for future sensing applications.
NASA Astrophysics Data System (ADS)
Tabirian, Anna Murazian
This dissertation describes a series of experiments and theoretical studies, which led to the development of two new solid state laser systems: efficient, room temperature mid-infrared solid state laser at 3.9 μm in Ho 3+ doped BaY2F8 and visible Pr:LiYF4 laser at 640 mn for holography. The 3.9 μm laser wavelength matches the peak of mid-IR atmospheric transmission window, which makes it very important for multiple applications such as remote sensing, imaging, IR countermeasures, eye-safe lidars and environmental agent detection. We present the results of spectroscopic evaluations and numerical modeling of energy transfer processes between rare earth ions of Ho3+ doped in two host laser materials: BaY2F8 and LiYF 4. The 3.9 μm laser is based on transition with upper laser lifetime considerably shorter than lower level lifetime, which in general leads to self-terminating laser action in the cw mode or at high repetition rates. Therefore, three different pumping and lasing schemes, that could allow overcoming these limitations have been suggested and studied. First, cascade laser action at 1.4 μm and 3.9 μm was achieved with low thresholds and near-theoretical quantum efficiency in Ho3+ doped BaY2F8 pumped at 532 nm by a Q- switched frequency doubled Nd:YAG laser. Next, the feasibility of achieving 3.9 μm laser with cw resonant cascade pumping at 750 mn by a Ti:Sapphire laser was studied. New energy transfer process, such as upconversion from terminal level of the 3.9 μm laser was observed in high concentration Ho3+ doped BaY2F 8. Finally, we proposed to use high-energy flashlamp pumped tunable Cr:LiSAF laser operating in long pulse regime for the direct pumping of the upper level of the 3.9 μm laser. Pulsed laser oscillation at 3.9 μm is demonstrated in Ho3+ doped BaY2F8 with low threshold of 3 mJ and a slope efficiency of 14.5% with maximal energy of 30 mJ. The second part of the thesis describes the design and the development of the visible Pr:LiYF4 laser for holography at 640 nm resonantly pumped by the frequency-doubled flashlamp pumped tunable Cr:LiSAF laser at 444 nm.
Leavitt, Matt; Charles, Glenn; Heyman, Eugene; Michaels, David
2009-01-01
The use of low levels of visible or near infrared light for reducing pain, inflammation and oedema, promoting healing of wounds, deeper tissue and nerves, and preventing tissue damage has been known for almost 40 years since the invention of lasers. The HairMax LaserComb is a hand-held Class 3R lower level laser therapy device that contains a single laser module that emulates 9 beams at a wavelength of 655 nm (+/-5%). The device uses a technique of parting the user's hair by combs that are attached to the device. This improves delivery of distributed laser light to the scalp. The combs are designed so that each of the teeth on the combs aligns with a laser beam. By aligning the teeth with the laser beams, the hair can be parted and the laser energy delivered to the scalp of the user without obstruction by the individual hairs on the scalp. The primary aim of the study was to assess the safety and effectiveness of the HairMax LaserComb laser phototherapy device in the promotion of hair growth and in the cessation of hair loss in males diagnosed with androgenetic alopecia (AGA). This double-blind, sham device-controlled, multicentre, 26-week trial randomized male patients with Norwood-Hamilton classes IIa-V AGA to treatment with the HairMax LaserComb or the sham device (2 : 1). The sham device used in the study was identical to the active device except that the laser light was replaced by a non-active incandescent light source. Of the 110 patients who completed the study, subjects in the HairMax LaserComb treatment group exhibited a significantly greater increase in mean terminal hair density than subjects in the sham device group (p < 0.0001). Consistent with this evidence for primary effectiveness, significant improvements in overall hair regrowth were demonstrated in terms of patients' subjective assessment (p < 0.015) at 26 weeks over baseline. The HairMax LaserComb was well tolerated with no serious adverse events reported and no statistical difference in adverse effects between the study groups. The results of this study suggest that the HairMax LaserComb is an effective, well tolerated and safe laser phototherapy device for the treatment of AGA in males.
Sixth International Workshop on Laser Physics (LPHYS 97) Volume 8, No. 1
1998-01-01
solution of the problem concerning the action of an ultrashort laser pulse on an elementary molecular sys- tem—molecular hydrogen ion H2—is of...2 summarize the dynamics of the system for a peak pulse intensity / = 1.3 x 1016 W/cm2. First, Fig. 2a shows the Coulomb explosion of a molecule. It...Ionization of He in Intense Laser Fields A. Becker and F H. M. Faisal 69 Coulomb Correction to the Volkov Solution J. Bauer 76 Photoelectron
Optofluidic lens actuated by laser-induced solutocapillary forces
NASA Astrophysics Data System (ADS)
Malyuk, A. Yu.; Ivanova, N. A.
2017-06-01
We demonstrate an adaptive liquid lens controlled by laser-induced solutocapillary forces. The liquid droplet serving as a lens is formed in a thin layer of binary liquid mixture by surface tension driven flows caused by the thermal action of laser irradiation. The shape of droplet, its aperture and the focal length are reversibly changed without hysteresis by varying the intensity of the laser beam. The focal length variation range of the droplet-lens lies in between infinity (a flat layer) to 15 mm (a curved interface). The droplet-lens is capable to adjust the in-plane lateral position in response to a displacement of the laser beam. The proposed laser controlled droplet-lens will enable to develop smart liquid optical devices, which can imitate the accommodation reflex and pupillary light reflex of the eye.
Vallone, Francesco; Benedicenti, Stefano; Sorrenti, Eugenio; Schiavetti, Irene; Angiero, Francesca
2014-09-01
Low back pain is a common, highly debilitating condition, whose severity is variable. This study evaluated the efficacy of treatment with Ga-Al-As diode laser (980 nm) with a large diameter spot (32 cm(2)), in association with exercise therapy, in reducing pain. The present study aimed to evaluate the pain reduction efficacy of treatment with the Ga-Al-As diode laser (980 nm) in combination with exercise therapy, in patients with chronic low back pain (CLBP). This study evaluated 100 patients with CLBP (mean age 60 years) who were randomly assigned to two groups. The laser plus exercises group (Laser+EX: 50 patients) received low-level laser therapy (LLLT) with a diode laser, 980 nm, with a specific handpiece [32 cm(2) irradiation spot size, power 20 W in continuous wave (CW), fluence 37.5J/cm(2), total energy per point 1200 J] thrice weekly, and followed a daily exercise schedule for 3 weeks (5 days/week). The exercises group (EX: 50 patients) received placebo laser therapy plus daily exercises. The outcome was evaluated on the visual analogue pain scale (VAS), before and after treatment. At the end of the 3 week period, the Laser+EX group showed a significantly greater decrease in pain than did the EX group. There was a significant difference between the two groups, with average Δ VAS scores of 3.96 (Laser+EX group) and 2.23 (EX group). The Student's t test demonstrated a statistically significant difference between the two groups, at p<0.001. This study demonstrated that the use of diode laser (980 nm) with large diameter spot size, in association with exercise therapy, appears to be effective. Such treatment might be considered a valid therapeutic option within rehabilitation programs for nonspecific CLBP.
Biophysical principles of regulatory action of low-intensity laser irradiation
NASA Astrophysics Data System (ADS)
Mostovnikov, Vasili A.; Mostovnikova, Galina R.; Plavski, Vitali Y.; Plavskaja, Ljudmila G.
1996-01-01
The investigations carried out in our group on biological systems of various organization level (enzyme molecules in solution, human and animal cell cultures), allowed us to conclude, that the light-induced changes of spatial structure of cells components form the basis of biological activity (and as a consequence therapeutic effect) of various wavelength low-intensity laser emission. Photophysical mechanism of these changes lies in the reorientation of highregulated anisotropic parts (domains) with the liquid-crystalline type of ordering of the cell components due to the interaction between the electric field and the light induced integral electric dipole of the domain. The mechanism of such reorientation is well established in physics of liquid crystals of nematic type and is known as light induced analogue of Frederix's effect. The following results enable us to draw the conclusion about the determining role of the orientations effects on the biological activity mechanism of low-intensity laser radiation: (1) the possibility of reversible modification of spatial structure and enzyme molecules functional activity under the influence of laser radiation outside the band of their own or admixture absorption; (2) the dependence of biological effect of laser radiation on the functional activity of cells vs. polarization degree of the light with the maximum photobiological effects observed for linear-polarized radiation; (3) the equivalence of a static magnetic field and low-intensity laser radiation in action on functional activity of the cells and the lowering of the laser field intensity for the achieving the definite changes of the cell functional activity in the presence of static magnetic field.
Blood absorption during 970 and 1470 nm laser radiation in vitro.
Shaydakov, E; Ilyukhin, E; Rosukhovskiy, D
2015-10-01
Soon after introduction of water lasers in medical practice for EVLA, less power and energy line density have been used. However, there are no experimental grounds for different energy modes and there is no clear evidence for a difference in the effect of the two wavelengths dealt with in this study. The goal of this study was to evaluate the temperature profile of various laser action modes with testing devices. Three experimental testing devices consisted of cylinders filled with whole donor blood and a set of temperature sensors installed in different positions. We have determined the range of temperatures around the fiber tip of 970 and 1470 nm lasers. The average temperature of 970 nm laser at 1 mm distance along the axis from the fiber tip substantially differed from that of 1470 nm laser, power being equal. Statistically substantial differences were found in endovenous laser ablation simulation in vitro for the 970 nm and 1470 nm laser radiation. Similar temperatures can be reached with 970 nm lasers if power is increased.
Laser surgery: using the carbon dioxide laser.
Wright, V. C.
1982-01-01
In 1917 Einstein theorized tha through an atomic process a unique kind of electromagnetic radiation could be produced by stimulated emission. When such radiation is in the optical or infrared spectrum it is termed laser (light amplification by stimulated emission of radiation) light. A laser, a high-intensity light source, emits a nearly parallel electromagnetic beam of energy at a given wavelength that can be captured by a lens and concentrated in the focal spot. The wavelength determines how the laser will be used. The carbon dioxide laser is now successfully employed for some surgical procedures in gynecology, otorhinolaryngology, neurosurgery, and plastic and general surgery. The CO2 laser beam is directed through the viewing system of an operating microscope or through a hand-held laser component. Its basic action in tissue is thermal vaporization; it causes minimal damage to adjacent tissues. Surgeons require special training in the basic methods and techniques of laser surgery, as well as in the safety standards that must be observed. Images FIG. 5 PMID:7074503
Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers
Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.
1996-07-30
A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.
Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers
Krupke, William F.; Page, Ralph H.; DeLoach, Laura D.; Payne, Stephen A.
1996-01-01
A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.
Alexiades, Macrene
2015-11-01
Fractional laser resurfacing enhances trans-epidermal delivery (TED), however laser penetration depths >250- μm fail to substantively increase drug delivery. Evaluate the safety and efficacy of a novel acoustic pressure wave ultrasound device following fractional ablative Er:YAG 2940-nm laser (FELR) and topical agents for rhytids, melasma, and acne scars. Randomized, blinded, parallel group split-face side-by-side, controlled study evaluating FELR and topical anti-aging and anti-pigment agents to entire face succeeded by ultrasound to randomized side. Fifteen subjects were enrolled to three treatment arms:rhytids, melasma, and acne scars. Two monthly treatments were administered with 1, 3, and 6 month follow-up. Efficacy was assessed by Comprehensive Grading Scale of Rhytids, Laxity, and Photoaging by Investigator and two blinded physician evaluators. Subject assessments, digital photographs, and reflectance spectroscopic analyses were obtained. Rhytid severity was reduced from a mean of 3.25 to 2.60 on the 4-point grading scale. Spectrophotometric analysis demonstrated increases in lightness (L*) and reductions in redness (a*) and pigment (b*), with greater improvements on the ultrasound side as compared to FELR and topicals alone. Moderate erythema post-treatment resolved in 7 days and no serious adverse events were observed. In this randomized, paired split-face clinical study, FELR-facilitated TED of topical anti-aging actives with ultrasound treatment is safe and effective with improvement in rhytids, melasma, and acne scars. Statistically significant greater improvement in pigment levels was observed on the ultrasound side as compared to FELR-TED and topical agents alone.
Optical design for the Laser Astrometric Test of Relativity
NASA Technical Reports Server (NTRS)
Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L., Jr.
2004-01-01
This paper discusses the Laser Astrometric Test of Relativity (LATOR) mission. LATOR is a Michelson-Morley-type experiment designed to test the pure tensor metric nature of gravitation the fundamental postulate of Einstein's theory of general relativity. With its focus on gravity's action on light propagation it complements other tests which rely on the gravitational dynamics of bodies.
Influence of low-power laser radiation on mast cells function and biogenic amines content in stress
NASA Astrophysics Data System (ADS)
Brill, Gregory E.; Dobrovolsky, Gennady A.; Romanova, Tatyana P.; Brill, Alexander G.
1997-06-01
In experiments on white male rats stress was modeled by combined action of immobilization and sound stimulus during 2 h. It was established that stress induced storage of secretory material and accumulation of biogenic amines in mast cells. Preliminary transcutaneous He-Ne laser irradiation prevented stress-induced changes.
Investigation of Hall Effect Thruster Channel Wall Erosion Mechanisms
2016-08-02
pretest height and laser image, c, d) post - test height and laser image. On all the pre-roughened samples, a cell-pattern developed from the random...7.8: Pre and post - test sample microscopy: Fused silica sample SA6 (loaded), 20x, center of exposed surface, a, b) pretest height and laser image, c, d...stress on the surface features developed during plasma erosion. The experiment is also designed specifically to test the SRH. A test fixture is
Review of Current Laser Therapies for the Treatment of Benign Prostatic Hyperplasia
Choi, Benjamin B.
2013-01-01
The gold standard for symptomatic relief of bladder outlet obstruction secondary to benign prostatic hyperplasia has traditionally been a transurethral resection of the prostate (TURP). Over the past decade, however, novel laser technologies that rival the conventional TURP have multiplied. As part of the ongoing quest to minimize complications, shorten hospitalization, improve resection time, and most importantly reduce mortality, laser prostatectomy has continually evolved. Today, there are more variations of laser prostatectomy, each with several differing surgical techniques. Although abundant data are available confirming the safety and feasibility of the various laser systems, future randomized-controlled trials will be necessary to verify which technique is superior. In this review, we describe the most common modalities used to perform a laser prostatectomy, mainly, the holmium laser and the potassium-titanyl-phosphate lasers. We also highlight the physical and clinical characteristics of each technology with a review of the most current and highest-quality literature. PMID:23789041
Dynamic laser piercing of thick section metals
NASA Astrophysics Data System (ADS)
Pocorni, Jetro; Powell, John; Frostevarg, Jan; Kaplan, Alexander F. H.
2018-01-01
Before a contour can be laser cut the laser first needs to pierce the material. The time taken to achieve piercing should be minimised to optimise productivity. One important aspect of laser piercing is the reliability of the process because industrial laser cutting machines are programmed for the minimum reliable pierce time. In this work piercing experiments were carried out in 15 mm thick stainless steel sheets, comparing a stationary laser and a laser which moves along a circular trajectory with varying processing speeds. Results show that circular piercing can decrease the pierce duration by almost half compared to stationary piercing. High speed imaging (HSI) was employed during the piercing process to understand melt behaviour inside the pierce hole. HSI videos show that circular rotation of the laser beam forces melt to eject in opposite direction of the beam movement, while in stationary piercing the melt ejects less efficiently in random directions out of the hole.
Effects of spatial nonuniformity on laser dynamics.
Deych, L I
2005-07-22
Semiclassical equations of lasing dynamics are rederived for a lasing medium in a cavity with a spatially nonuniform dielectric constant. The nonuniformity causes a radiative coupling between modes of the empty cavity, which results in a renormalization of self- and cross-saturation coefficients. Possible manifestations of these effects in random lasers are discussed.
Single mode fibers with antireflective surface structures for high power laser applications
NASA Astrophysics Data System (ADS)
Busse, Lynda E.; Florea, Catalin M.; Shaw, L. Brandon; Aggarwal, Ishwar D.; Sanghera, Jasbinder S.
2014-03-01
We present results for increased transmission of ~99.5% in the near-IR through the end faces of silica single mode fibers by creating a random antireflective microstructure etched into the end face of the fiber. We demonstrate high laser damage thresholds for these fibers with AR structured surfaces.
The statistics of laser returns from cube-corner arrays on satellite
NASA Technical Reports Server (NTRS)
Lehr, C. G.
1973-01-01
A method first presented by Goodman is used to derive an equation for the statistical effects associated with laser returns from satellites having retroreflecting arrays of cube corners. The effect of the distribution on the returns of a satellite-tracking system is illustrated by a computation based on randomly generated numbers.
Comparative study on cw mode versus pulsed mode in AlGaAs-diode lasers
NASA Astrophysics Data System (ADS)
Neckel, Claus P.
2001-04-01
In the last six years AlGaAs-Diodelasers have become more and more popular. Due to their small size, their good electro-optical coupling and delicate glass fibers this type of laser fits into most dental offices. The first diode lasers and still most of the devices still on the market work in a continuos wave mode or in a gated mode up to 50 Hz. Using this setting high temperatures in the tissue are inevitable. In this randomized study we tried to evaluate the difference in clinical cutting efficiency, post operative outcome and the histological findings of the excisional biopsies using a new diode laser Ora-laser Jet 20.
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.;
2013-01-01
We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.
Photonic quasi-crystal terahertz lasers
Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles
2014-01-01
Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1–0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum. PMID:25523102
Photonic quasi-crystal terahertz lasers
NASA Astrophysics Data System (ADS)
Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles
2014-12-01
Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.
Photonic quasi-crystal terahertz lasers.
Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles
2014-12-19
Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of 'defects', which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.
Laser-activated solid protein bands for peripheral nerve repair: an vivo study.
Lauto, A; Trickett, R; Malik, R; Dawes, J M; Owen, E R
1997-01-01
Severed tibial nerves in rats were repaired using a novel technique, utilizing a semiconductor diode-laser-activated protein solder applied longitudinally across the join. Welding was produced by selective laser denaturation of solid solder bands containing the dye indocyanine green. An in vivo study, using 48 adult male Wistar rats, compared conventional microsuture-repaired tibial nerves with laser solder-repaired nerves. Nerve repairs were characterised immediately after surgery and after 3 months. Successful regeneration with average compound muscle action potentials of 2.5 +/- 0.5 mV and 2.7 +/- 0.3 mV (mean and standard deviation) was demonstrated for the laser-soldered nerves and the sutured nerves, respectively. Histopathology confirmed comparable regeneration of axons in laser- and suture-operated nerves. The laser-based nerve repair technique was easier and faster than microsuture repair, minimising manipulation damage to the nerve.
Development of Curie point switching for thin film, random access, memory device
NASA Technical Reports Server (NTRS)
Lewicki, G. W.; Tchernev, D. I.
1967-01-01
Managanese bismuthide films are used in the development of a random access memory device of high packing density and nondestructive readout capability. Memory entry is by Curie point switching using a laser beam. Readout is accomplished by microoptical or micromagnetic scanning.
NASA Astrophysics Data System (ADS)
McLaughlin, David W.
1995-08-01
The principal investigator, together with a post-doctoral fellows Tetsuji Ueda and Xiao Wang, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics and to equations directly relevant to nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals and chaotic, homoclinic, small dispersive, and random behavior of solutions of the nonlinear Schroedinger equation. In project 1, the extremely strong nonlinear response of a continuous wave laser beam in a nematic liquid crystal medium has produced striking undulation and filamentation of the laser beam which has been observed experimentally and explained theoretically. In project 2, qualitative properties of the nonlinear Schroedinger equation (which is the fundamental equation for nonlinear optics) have been identified and studied. These properties include optical shocking behavior in the limit of very small dispersion, chaotic and homoclinic behavior in discretizations of the partial differential equation, and random behavior.
NASA Astrophysics Data System (ADS)
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; Bulanov, S. S.; Gong, Z.; Yan, X. Q.; Kando, M.
2017-04-01
The multiple colliding laser pulse concept formulated by Bulanov et al. (Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motion resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.
Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers
NASA Astrophysics Data System (ADS)
Anderson, Brian; Flores, Angel; Holten, Roger; Ehrenreich, Thomas; Dajani, Iyad
2015-03-01
White noise phase modulation (WNS) and pseudo-random binary sequence phase modulation (PRBS) are effective techniques for mitigation of nonlinear effects such as stimulated Brillouin scattering (SBS); thereby paving the way for higher power narrow linewidth fiber amplifiers. However, detailed studies comparing both coherent beam combination and the SBS suppression of these phase modulation schemes have not been reported. In this study an active fiber cutback experiment is performed comparing the enhancement factor of a PRBS and WNS broadened seed as a function of linewidth and fiber length. Furthermore, two WNS and PRBS modulated fiber lasers are coherently combined to measure and compare the fringe visibility and coherence length as a function of optical path length difference. Notably, the discrete frequency comb of PRBS modulation provides a beam combining re-coherence effect where the lasers periodically come back into phase. Significantly, this may reduce path length matching complexity in coherently combined fiber laser systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.
The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; ...
2017-03-09
The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less
Wave kinetics of random fibre lasers
Churkin, D V.; Kolokolov, I V.; Podivilov, E V.; Vatnik, I D.; Nikulin, M A.; Vergeles, S S.; Terekhov, I S.; Lebedev, V V.; Falkovich, G.; Babin, S A.; Turitsyn, S K.
2015-01-01
Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics. PMID:25645177
Laser Irradiated Foam Targets: Absorption and Radiative Properties
NASA Astrophysics Data System (ADS)
Salvadori, Martina; Luigi Andreoli, Pier; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; di Giorgio, Giorgio; Giulietti, Danilo; Ingenito, Francesco; Gus'kov, Sergey Yu.; Rupasov, Alexander A.
2018-01-01
An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminum targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target.
Ferromagnetic laser-welded Fe78Si13B9 and Co71.5Fe2.5SigMn2Mo1B14ils amorphous foils
NASA Astrophysics Data System (ADS)
Pawlak, Ryszard
1997-10-01
In the paper the results of attempts at laser welding of amorphous ferromagnetic foils on the iron and cobalt base have been presented. The usefulness of this technology for making small magnetic circuits of metallic glass has been demonstrated. The action of laser radiation leading to rendering the structure amorphous and the infraction of a laser beam with an amorphous material have been discussed. Finally, the results of pulsed welding of a pack of amorphous foils and some properties of the welds formed have been discussed.
NASA Astrophysics Data System (ADS)
Costela, A.; García-Moreno, I.; Mallavia, Ricardo; Amat-Guerri, F.; Barroso, J.; Sastre, R.
1998-06-01
We report on the lasing action of two newly synthesized 2-(2'-hydroxyphenyl) benzimidazole derivatives copolymerized with methyl methacrylate. The laser samples were transversely pumped with a N 2 laser at 337 nm. The influence on the proton-transfer laser performance of the distance between the chromophore group and the polymeric main chain and of the rigidity of the polymeric host matrix, were studied. Significant increases in lasing efficiency and photostability are demonstrated for some of the new materials, as compared to those previously obtained with related proton-transfer dyes also covalently bound to methacrylic monomers.
Controlled oxide films formation by nanosecond laser pulses for color marking.
Veiko, Vadim; Odintsova, Galina; Ageev, Eduard; Karlagina, Yulia; Loginov, Anatoliy; Skuratova, Alexandra; Gorbunova, Elena
2014-10-06
A technology of laser-induced coloration of metals by surface oxidation is demonstrated. Each color of the oxide film corresponds to a technologic chromacity coefficient, which takes into account the temperature of the sample after exposure by sequence of laser pulses with nanosecond duration and effective time of action. The coefficient can be used for the calculation of laser exposure regimes for the development of a specific color on the metal. A correlation between the composition of the films obtained on the surface of stainless steel AISI 304 and commercial titanium Grade 2 and its color and chromacity coordinates is shown.
NASA Astrophysics Data System (ADS)
Belski, Alexey I.; Chivanov, Vadym D.
1996-09-01
Spring barley, winter wheat and maize seeds were subjected to the action of He-Ne laser irradiation having a low intensity in the visible region of the spectrum (628-640 nm) in conjunction with magnetic fields. The following results were obtained: laser irradiation with magnetic fields induced activation of the natural plant defence/immune systems gave the harvest crop level increased to about 50- 300 percent; a correlation was established between the rate of the fungal pathogens growth and the stimulation of plant immunity after the seeds had been treated with laser irradiation and magnetic field.
Formation of A Non-detachable Welded Titanium-aluminium Compound by Laser Action
NASA Astrophysics Data System (ADS)
Murzin, Serguei P.
2018-01-01
Progressive in the welding of dissimilar materials is the use of laser technology. With the use of the ROFIN StarWeld Manual Performance laser, an aluminium alloy AK4 and a titanium alloy VT5-1 were welded. Processing regimes have been determined, the realization of which during melting of materials in the zone of thermal influence makes it possible to obtain a homogeneous structure without voids and shells, which indicates a potential sufficiently high serviceability of the welded joint. To create the required power density distribution in the cross section of the laser beam, it is expedient to use diffractive optical elements.
NASA Astrophysics Data System (ADS)
Talbi, A.; Petit, A.; Melhem, A.; Stolz, A.; Boulmer-Leborgne, C.; Gautier, G.; Defforge, T.; Semmar, N.
2016-06-01
In this study, laser induced periodic surface structures were formed on mesoporous silicon by irradiation of Nd:YAG picosecond pulsed laser beam at 266 nm wavelength at 1 Hz repetition rate and with 42 ps pulse duration. The effects of laser processing parameters as laser beam fluence and laser pulse number on the formation of ripples were investigated. Scanning electron microscopy and atomic force microscopy were used to image the surface morphologies and the cross section of samples after laser irradiation. At relatively low fluence ∼20 mJ/cm2, ripples with period close to the laser beam wavelength (266 nm) and with an always controlled orientation (perpendicular to the polarization of ps laser beam) appeared after a large laser pulse number of 12,000. It has been found that an initial random distribution of SiOx nanoparticles is periodically structured with an increase of the laser pulse number. Finally, it is experimentally demonstrated that we formed a 100 nm liquid phase under the protusion zones including the pores in the picosecond regime.
Shah, Chirag P; Heier, Jeffrey S
2017-09-01
Vitreous floaters are common and can worsen visual quality. YAG vitreolysis is an untested treatment for floaters. To evaluate YAG laser vitreolysis vs sham vitreolysis for symptomatic Weiss ring floaters from posterior vitreous detachment. This single-center, masked, sham-controlled randomized clinical trial was performed from March 25, 2015, to August 3, 2016, in 52 eyes of 52 patients (36 cases and 16 controls) treated at a private ophthalmology practice. Patients were randomly assigned to YAG laser vitreolysis or sham YAG (control). Primary 6-month outcomes were subjective change measured from 0% to 100% using a 10-point visual disturbance score, a 5-level qualitative scale, and National Eye Institute Visual Functioning Questionnaire 25 (NEI VFQ-25). Secondary outcomes included objective change assessed by masked grading of color fundus photography and Early Treatment Diabetic Retinopathy Study best-corrected visual acuity. Fifty-two patients (52 eyes; 17 men and 35 women; 51 white and 1 Asian) with symptomatic Weiss rings were enrolled in the study (mean [SD] age, 61.4 [8.0] years for the YAG laser group and 61.1 [6.6] years for the sham group). The YAG laser group reported greater symptomatic improvement (54%) than controls (9%) (difference, 45%; 95% CI, 25%-64%; P < .001). In the YAG laser group, the 10-point visual disturbance score improved by 3.2 vs 0.1 in the sham group (difference, -3.0; 95% CI, -4.3 to -1.7; P < .001). A total of 19 patients (53%) in the YAG laser group reported significantly or completely improved symptoms vs 0 individuals in the sham group (difference, 53%; 95% CI, 36%-69%, P < .001). Compared with sham, NEI VFQ-25 revealed improved general vision (difference, 16.3; 95% CI, 0.9-31.7; P = .04), peripheral vision (difference, 11.6; 95% CI, 0.8-22.4; P = .04), role difficulties (difference, 17.3; 95% CI, 8.0-26.6; P < .001), and dependency (difference, 5.6; 95% CI, 0.5-10.8; P = .03) among the YAG laser group. Best-corrected visual acuity changed by -0.2 letters in the YAG laser group and by -0.6 letters in sham group (difference, 0.4; 95% CI, -6.5 to 5.3; P = .94). No differences in adverse events between groups were identified. YAG laser vitreolysis subjectively improved Weiss ring-related symptoms and objectively improved Weiss ring appearance. Greater confidence in these outcomes may result from larger confirmatory studies of longer duration. clinicaltrials.gov NCT02897583.
NASA Astrophysics Data System (ADS)
Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert; Rybak, Leonid; Levin, Liat; Amitay, Zohar; Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P.
2013-10-01
Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.
Krohn-Dale, Ivar; Bøe, Olav E; Enersen, Morten; Leknes, Knut N
2012-08-01
The objective of this randomized, controlled clinical trial was to compare the clinical and microbiological effects of pocket debridement using erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser with conventional debridement in maintenance patients. Fifteen patients, all smokers, having at least four teeth with residual probing depth (PD) ≥ 5 mm were recruited. Two pockets in two jaw quadrants were randomly assigned to subgingival debridement using an Er:YAG laser (test) or ultrasonic scaler/curette (control) at 3-month intervals. Relative attachment level (RAL), PD, bleeding on probing and dental plaque were recorded at baseline and at 6 and 12 months. Microbiological subgingival samples were taken at the same time points and analysed using a checkerboard DNA-DNA hybridization technique. A significant decrease in PD took place in both treatments from baseline to 12 months (p < 0.01). In the control, the mean initial PD decreased from 5.4 to 4.0 mm at 12 months. For the test, a similar decrease occurred. No significant between-treatment differences were shown at any time point. The mean RAL showed no overall significant inter- or intra-treatment differences (p > 0.05). No significant between-treatment differences were observed in subgingival microbiological composition or total pathogens. The results failed to support that an Er:YAG laser may be superior to conventional debridement in the treatment of smokers with recurring chronic inflammation. This appears to be the first time that repeated Er-YAG laser instrumentation has been compared with mechanical instrumentation of periodontal sites with recurring chronic inflammation over a clinically relevant time period. © 2012 John Wiley & Sons A/S.
Investigation of interaction femtosecond laser pulses with skin and eyes mathematical model
NASA Astrophysics Data System (ADS)
Rogov, P. U.; Smirnov, S. V.; Semenova, V. A.; Melnik, M. V.; Bespalov, V. G.
2016-08-01
We present a mathematical model of linear and nonlinear processes that takes place under the action of femtosecond laser radiation on the cutaneous covering. The study is carried out and the analytical solution of the set of equations describing the dynamics of the electron and atomic subsystems and investigated the processes of linear and nonlinear interaction of femtosecond laser pulses in the vitreous of the human eye, revealed the dependence of the pulse duration on the retina of the duration of the input pulse and found the value of the radiation power density, in which there is a self-focusing is obtained. The results of the work can be used to determine the maximum acceptable energy, generated by femtosecond laser systems, and to develop Russian laser safety standards for femtosecond laser systems.
Formation of various types of nanostructures on germanium surface by nanosecond laser pulses
NASA Astrophysics Data System (ADS)
Mikolutskiy, S. I.; Khasaya, R. R.; Khomich, Yu V.; Yamshchikov, V. A.
2018-03-01
The paper describes the formation of micro- and nanostructures in different parts of irradiation zone on germanium surface by multiple action of nanosecond pulses of ArF-laser. It proposes a simple method using only one laser beam without any optional devices and masks for surface treatment. Hexa- and pentagonal cells with submicron dimensions along the surface were observed in peripheral zone of irradiation spot by atomic-force microscopy. Nanostructures in the form of bulbs with rounded peaks with lateral sizes of 40-120 nm were obtained in peripheral low-intensity region of the laser spot. Considering experimental data on material processing by nanosecond laser pulses, a classification of five main types of surface reliefs formed by nanosecond laser pulses with energy density near or slightly above ablation threshold was proposed.
NASA Astrophysics Data System (ADS)
Ilev, Ilko K.; Waynant, Ronald W.
2001-01-01
We present a novel all-optical-waveguide method for ultraviolet (UV), visible (VIS) and infrared (IR) laser delivery including a lens-free method of laser-to-fiber coupling using a simple uncoated glass hollow taper. Based on the grazing incidence effect, the hollow taper provides a way of direct launching, without any intermediate focusing elements, high power laser radiation into delivery fibers. Because of the mutual action of the nearly parallel laser excitation, the mode coupling process, and mode filtering effect, the hollow taper serves as a mode converter that transforms the highly multimode profile of the input laser emission into a high-quality Gaussian-shaped profile at the taper output. When the grazing incidence effect of the taper is applied to laser delivery, the maintenance of high reflectance coefficients in a wide spectral region allows to utilize the same uncoated hollow taper for laser radiation in the UV, VIS and IR ranges. Applying the experimental hollow-taper based delivery systems, we obtain high laser- to-taper and taper-to-fiber coupling efficiencies.
Protective Effect of 940 nm Laser on Gamma-Irradiated Mice
Efremova, Yulia; Navratil, Leos
2015-01-01
Abstract Objective: The purpose of this study was to investigate the radioprotective features of 940 nm laser on the life span of mice, and absolute counts of blood cells and their proportions in gamma-irradiated mice. Background data: An important feature of laser light is activation of mitotic division and differentiation of cells, which may be useful in activation of hematopoiesis in gamma-irradiated organisms. Materials and methods: Mice were randomly assigned to 11 groups according to the type(s) of influence. Generally, mice were irradiated in three different ways: with laser at different fluences, with gamma irradiation, or by combination of laser at different fluences and gamma irradiation in a different order. Mice were treated with 940 nm laser at 3, 12, or 18 J/cm2 and/or a lethal dose of gamma irradiation (8.7 Gy). Each group was randomly subdivided into two subgroups, in which the life span of the mice and blood cell counts (on 12th and 45th day after gamma irradiation) were analyzed. Results: Laser (940 nm) at a fluence of 3 J/cm2 significantly prolonged the life span of gamma-irradiated mice (p<0.05). In the same group, counts of white blood cells, lymphocytes, and neutrophils were higher on day 12 than in the gamma group. On day 45 after gamma irradiation, some signs of hematopoiesis repair were found in blood. There were no significant differences in counts of erythrocytes, monocytes, neutrophils, or the proportion of neutrophils between this group and the control group. Conclusions: In summary, 940 nm laser at a fluence of 3 J/cm2 demonstrates radioprotective features in an experiment with lethally irradiated mice. Mechanisms responsible for this effect will be investigated in further studies. PMID:25654740
Giannelli, Marco; Formigli, Lucia; Lorenzini, Luca; Bani, Daniele
2012-10-01
Comparing the efficacy of photoablative and photodynamic diode laser in adjunct to scaling -root planing (SRP) and SRP alone for the treatment of chronic periodontitis. Twenty-six patients were studied. Maxillary left or right quadrants were randomly assigned to sham-laser treatment + SRP or laser + SRP. This consisted of photoablative intra/extra-pocket de-epithelization with diode laser (λ = 810 nm), followed by single SRP and multiple photodynamic treatments (once weekly, 4-10 applications, mean ± SD: 3.7 ± 2.4) using diode laser (λ = 635 nm) and 0.3% methylene blue as photosensitizer. The patients were monitored at days 0 and 365 by clinical assessment (probing depth, PD; clinical attachment level, CAL; bleeding on probing, BOP) and at days 0, 15, 30, 45, 60, 75, 90, 365 by cytofluorescence analysis of gingival exfoliative samples taken in proximity of the teeth to be treated (polymorphonuclear leukocytes, PMN; red blood cells, RBC; damaged epithelial cells, DEC; bacteria). At day 365, compared with the control quadrants, the laser + SRP therapy yielded a significant (p < 0.001) reduction in PD (-1.9 mm), CAL (-1.7 mm) and BOP (-33.2% bleeding sites), as well as in bacterial contamination - especially spirochetes - and PMN and RBC shedding in the gingival samples (p < 0.001). Diode laser treatment (photoablation followed by multiple photodynamic cycles) adjunctive to conventional SRP improves healing in chronic periodontitis patients. © 2012 John Wiley & Sons A/S.
Klein, A; Buschmann, M; Babilas, P; Landthaler, M; Bäumler, W
2013-08-01
Telangiectatic leg veins (TLV) represent a common cosmetic problem. Near infrared lasers have been widely used in treatment because of their deeper penetration into the dermis, but with varying degrees of success, particularly because of different vessel diameters. Indocyanine green (ICG)-augmented diode laser treatment (ICG+DL) may present an alternative treatment option. This trial evaluates the efficacy of ICG+DL in the treatment of TLV and compares the safety and efficacy of therapy with the standard treatment, the long-pulsed neodymium-doped yttrium aluminium garnet (Nd:YAG) laser. In a prospective randomized controlled clinical trial, 29 study participants with TLV were treated with a Nd:YAG laser (λem = 1064 nm, 160-240 J cm(-2) , 65-ms pulse duration, 5-mm spot size) and ICG+DL (λem = 810 nm, 60-110 J cm(-2) , 48-87-ms pulse duration, 6-mm spot size; total ICG dose 4 mg kg(-1) ) in a side-by-side comparison in one single treatment setting that included histological examination in four participants. Two blinded investigators and the participants assessed clearance rate, cosmetic appearance and adverse events up to 3 months after treatment. According to both the investigators' and participants' assessment, clearance rates were significantly better after ICG+DL therapy than after Nd:YAG laser treatment (P < 0·05). On a 10-point scale indicating pain during treatment, participants rated ICG+DL therapy to be more painful (6·1 ± 2·0) than Nd:YAG laser (5·4 ± 2·0). ICG+DL therapy represents a new and promising treatment modality for TLV, with high clearance rates and a very good cosmetic outcome after one single treatment session. © 2013 British Association of Dermatologists.
Lee, Su-Young; Jung, Hoi-In; Jung, Bock-Young; Cho, Young-Sik; Kwon, Ho-Keun; Kim, Baek-Il
2015-01-01
The aim of this study was to evaluate the desensitizing effects of a dentifrice containing nano-carbonate apatite (n-CAP) and Er,Cr:YSGG laser in the treatment of dentin hypersensitivity. Most studies of hypersensitivity treatment have been conducted with different methods of professional treatment and self-care in each study. Moreover, clinical studies that compare self-care and professional treatment have not yet been published. Eighty-two patients with dentin hypersensitivity were divided randomly into three groups: (1) a control group with strontium chloride dentifrice (SC), (2) n-CAP dentifrice (n-CAP), and (3) an Er,Cr:YSGG laser (laser) group. The study was conducted for 4 weeks: a treatment period of 2 weeks and a maintenance period of 2 subsequent weeks. The SC and n-CAP groups were instructed to brush their teeth twice a day for 1 min. The laser group visited twice at 1 week intervals for irradiation of the sensitive teeth. The desensitizing effect was evaluated by assessing the tactile sensitivity using the visual analogue scale (VAS), and evaporative air sensitivity was determined using an air blast score (ABS). The n-CAP group and the laser group showed significantly different desensitizing effects in VAS after 4 weeks (69% and 63%, respectively) and a 33% (p<0.05) and 3% (p>0.05) desensitizing effect, respectively, in VAS during the maintenance period. The n-CAP and the laser were effective in reducing dentin hypersensitivity. The laser had a superior desensitizing effect at the initial stage, whereas the n-CAP maintained its effect for a relatively longer time in clinical situations.
[Current view and critic of alternatives to transurethral surgery of prostatic benign prostate].
Rodríguez, José Vicente
2003-11-01
Critical update of transurethral surgery options based on the last decade most relevant bibliography. Comparative study between Incision/TUR of the prostate and alternative techniques, accordingly to data from 30 randomized studies and 28 clinical studies. We evaluate efficiency, retreatment index, morbidity, post operative number of days with catheter, anesthetic requirements, and cost. Data are expressed as percentages resulting from a differential formula in randomized studies and simple percentages or numeric expression for relevant clinical data. Efficiency: all alternative treatments show a symptomatic improvement (> 50%) similar to that achieved by transurethral surgery; post treatment flowmetry percentage increase is inferior in all alternatives except vaporization, holmium laser and prosthesis. Re-Treatment requirements: they were higher in all alternatives except the ablative ones (vaporization and holmium laser). Morbidity: all of them had an operative estimated blood loss inferior to TUR and similar to prostatic incision; contact laser and vaporization had more irritative symptoms than incision, and VLAP and TUMT more than TUR; TUMT and interstitial laser have a higher rate of post operative infection; all alternatives except the ablative ones had lower percentages of urethral stenosis and retrograde ejaculation. Number of days of catheter post operative: it was comparatively longer after vaporization and very long after VLAP, interstitial laser and TUMT. All treatments except TUNA and TUMT require the same anesthesia than transurethral surgery. The cost/benefit has not been sufficiently evaluated, but it is superior with holmium laser, contact laser and vaporization than with transurethral surgery. Based on study data we can accept holmium laser as a real alternative, TUMT in cases when surgery is questioned and intraprostatic prosthesis when it is not possible.
Gorler, Oguzhan; Hubbezoglu, Ihsan; Ulgey, Melih; Zan, Recai; Guner, Kubra
2018-04-01
The aim of this study was to examine the shear bond strength (SBS) of ceromer and nanohybrid composite to direct laser sintered (DLS) Cr-Co and Ni-Cr-based metal infrastructures treated with erbium-doped yttrium aluminum garnet (Er:YAG), neodymium-doped yttrium aluminum garnet (Nd:YAG), and potassium titanyl phosphate (KTP) laser modalities in in vitro settings. Experimental specimens had four sets (n = 32) including two DLS infrastructures with ceromer and nanohybrid composite superstructures and two Ni-Cr-based infrastructures with ceromer and nanohybrid composite superstructures. Of each infrastructure set, the specimens randomized into four treatment modalities (n = 8): no treatment (controls) and Er:YAG, Nd:YAG, and KTP lasers. The infrastructures were prepared in the final dimensions of 7 × 3 mm. Ceromer and nanohybrid composite was applied to the infrastructures after their surface treatments according to randomization. The SBS of specimens was measured to test the efficacy of surface treatments. Representative scanning electron microscopy (SEM) images after laser treatments were obtained. Overall, in current experimental settings, Nd:YAG, KTP, and Er:YAG lasers, in order of efficacy, are effective to improve the bonding of ceromer and nanohybrid composite to the DLS and Ni-Cr-based infrastructures (p < 0.05). Nd:YAG laser is more effective in the DLS/ceromer infrastructures (p < 0.05). KTP laser, as second more effective preparation, is more effective in the DLS/ceromer infrastructures (p < 0.05). SEM findings presented moderate accordance with these findings. The results of this study supported the bonding of ceromer and nanohybrid composite superstructures to the DLS and Ni-Cr-based infrastructures suggesting that laser modalities, in order of success, Nd:YAG, KTP, and Er:YAG, are effective to increase bonding of these structures.
A Fuzzy Logic Based Controller for the Automated Alignment of a Laser-beam-smoothing Spatial Filter
NASA Technical Reports Server (NTRS)
Krasowski, M. J.; Dickens, D. E.
1992-01-01
A fuzzy logic based controller for a laser-beam-smoothing spatial filter is described. It is demonstrated that a human operator's alignment actions can easily be described by a system of fuzzy rules of inference. The final configuration uses inexpensive, off-the-shelf hardware and allows for a compact, readily implemented embedded control system.
Immunomodulating effect of laser therapy in patients with microbial eczema
NASA Astrophysics Data System (ADS)
Dudchenko, Mycola O.; Denisenko, Olga I.
1999-11-01
While examining 90 patients suffering the microbial eczema (ME), we revealed disorders of the immune system in the majority of them (3/4). It was established that the inclusion of percutaneous laser irradiation of the blood in a course of multimodality treatment of patients with ME caused an immunomodulating action which resulted in an improved ME course in these patients.
[Electrophysical effects in combined treatment of neurosensory hypoacusis].
Morenko, V M; Enin, I P
2002-01-01
The authors consider different methods of electrobiophysical impacts on the body in the treatment of neurosensory hypoacusis: laser beam, laser puncture, electrostimulation, magnetotherapy, magnetolasertherapy, electrophoresis, etc. These methods find more and more intensive application in modern medicine. Further success of physiotherapy for neurosensory hypoacusis depends on adequate knowledge about mechanisms of action of each physical method used and introduction of novel techniques.
Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha, Hyungrae; Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826; Bae, Seunghwan
2016-05-02
We report optically pumped room temperature single mode laser that contains a thin film of hybrid perovskite, an emerging photonic material, as gain medium. Two-dimensional square lattice photonic crystal (PhC) backbone structure enables single mode laser operation via a photonic bandedge mode, while a thin film of methyl-ammonium lead iodide (CH{sub 3}NH{sub 3}PbI{sub 3}) spin-coated atop provides optical gain for lasing. Two kinds of bandedge modes, Γ and M, are employed, and both devices laser in single mode at similar laser thresholds of ∼200 μJ/cm{sup 2} in pulse energy density. Polarization dependence measurements reveal a clear difference between the two kindsmore » of bandedge lasers: isotropic for the Γ-point laser and highly anisotropic for the M-point laser. These observations are consistent with expected modal properties, confirming that the lasing actions indeed originate from the corresponding PhC bandedge modes.« less
Thermal and optical modeling of "blackened" tips for diode laser surgery
NASA Astrophysics Data System (ADS)
Belikov, Andrey V.; Skrypnik, Alexei V.; Kurnyshev, Vadim Y.
2016-04-01
This paper presents the results of thermal and optical modeling of "blackened" tips (fiber-optic thermal converter) with different structures: film and volumetric. Film converter is created by laser radiation action on a cork or paper and it is a one-step process. As a result, a carbonized cork or paper adhered to the distal end of the optical fiber absorbs light that leads to heating of the distal end of the optical fiber. We considered the peculiarities of volumetric converters formed by sintering (second step) of the target material transferred to the tip, at irradiating the target with laser radiation (first step). We investigated the interaction between 980 nm laser radiation and converters in the air and water. As a result of experiments and modeling, it was obtain, that converter temperature and power of converter destruction depend on the environment in which it is placed. We found that film converter in the air at average power of laser radiation of 0.30+/-0.05 W is heated to 900+/-50°C and destructed, and volumetric converter in the air at average power of laser radiation of 1.0+/-0.1 W is heated to 1000+/-50°C and destructed at reaching of 4.0+/-0.1 W only. We found that film converter in the water at average power of laser radiation of 1.0+/-0.1 W is heated to 550+/-50°C and destructed at reaching of 4.0+/-0.1 W only. Volumetric converter at average power of laser radiation of4.0+/-0.1 W is heated to 450+/-50°C and is not destructed up to 7.5+/-0.1 W, it is heated to 500+/-50°C in this case. Thus, volumetric converter is more resistant to action of laser heating.
Treatment of deep underlying reticular veins by Nd:Yag laser and IPL source.
Colaiuda, S; Colaiuda, F; Gasparotti, M
2000-10-01
The purpose of this paper is to estimate the efficacy of Nd:Yag laser and IPL combined action for the treatment of deep (up to 5 mm) and large (up to 3 mm in diameter) reticular varicosity of the lower extremity. A group of 38 subjects (2 male and 36 female) aged from 34 to 65 years were treated for deep reticular varicosity of the legs. All patients underwent various clinical analyses in order to evaluate and exclude pre-existing cardiovascular pathology, coagulation disorders as well as pathology due to saphena incontinence. Also, for the first three months they underwent ambulatory specialistic treatments at 21-days intertreatment interval. A reduction of venous network of 80-90% after 2 treatment sessions with Nd:Yag laser was obtained in 84% of subjects. Successive 3 treatment sessions with IPL have achieved complete vanishing of the treated venous network in 36 patients (95%). A combined action of Nd:Yag laser and IPL has demonstrated its particular efficacy in non-invasive treatment of deep and extensive reticolar varicosity of the lower extremity, considering also that it is well tolerated by patients and applicable in each single case on out patient basis.
Potential use of lasers for penetrating keratoplasty.
Thompson, K P; Barraquer, E; Parel, J M; Loertscher, H; Pflugfelder, S; Roussel, T; Holland, S; Hanna, K
1989-07-01
Experimental corneal trephination has been achieved with the 193 nm argon fluoride excimer and 2.9 microns hydrogen fluoride and Er:YAG laser systems. Compared with metal blades and other lasers, the 193 nm excimer laser creates the best quality corneal excision, but has a relatively slow etch rate through the stroma, and its use requires toxic gas. The mid-infrared laser systems trephine the cornea in less than 10 seconds, but cause a 10 microns to 15 microns zone of adjacent stromal damage and create wounds that are approximately 2.5 times larger than wounds made by metal scalpels. The wavelength and laser pulse duration influence the cutting characteristics of the laser. Optical delivery systems using an axicon lens, a rotating slit, and a computer controlled scanning optical system have been developed for penetrating keratoplasty. Selection of the optimal laser system for penetrating keratoplasty must await further experimental studies. Refinements of the laser cavity and delivery system are necessary before clinical studies can begin. A carefully controlled randomized clinical trial comparing laser trephination with conventional mechanical trephines will be necessary to determine the safety and efficacy of a laser trephination system.
Investigation of mode partition noise in Fabry-Perot laser diode
NASA Astrophysics Data System (ADS)
Guo, Qingyi; Deng, Lanxin; Mu, Jianwei; Li, Xun; Huang, Wei-Ping
2014-09-01
Passive optical network (PON) is considered as the most appealing access network architecture in terms of cost-effectiveness, bandwidth management flexibility, scalability and durability. And to further reduce the cost per subscriber, a Fabry-Perot (FP) laser diode is preferred as the transmitter at the optical network units (ONUs) because of its lower cost compared to distributed feedback (DFB) laser diode. However, the mode partition noise (MPN) associated with the multi-longitudinal-mode FP laser diode becomes the limiting factor in the network. This paper studies the MPN characteristics of the FP laser diode using the time-domain simulation of noise-driven multi-mode laser rate equation. The probability density functions are calculated for each longitudinal mode. The paper focuses on the investigation of the k-factor, which is a simple yet important measure of the noise power, but is usually taken as a fitted or assumed value in the penalty calculations. In this paper, the sources of the k-factor are studied with simulation, including the intrinsic source of the laser Langevin noise, and the extrinsic source of the bit pattern. The photon waveforms are shown under four simulation conditions for regular or random bit pattern, and with or without Langevin noise. The k-factors contributed by those sources are studied with a variety of bias current and modulation current. Simulation results are illustrated in figures, and show that the contribution of Langevin noise to the k-factor is larger than that of the random bit pattern, and is more dominant at lower bias current or higher modulation current.
Dukić, Walter; Bago, Ivona; Aurer, Andrej; Roguljić, Marija
2013-08-01
The aim of this randomized clinical study is to evaluate the effect of a 980-nm diode laser as an adjunct to scaling and root planing (SRP) treatment. Thirty-five patients with chronic periodontitis were selected for the split-mouth clinical study. SRP was performed using a sonic device and hand instruments. Quadrants were equally divided between the right and left sides. Teeth were treated with SRP in two control quadrants (control groups [CG]), and the diode laser was used adjunctively with SRP in contralateral quadrants (laser groups [LG]). Diode laser therapy was applied to periodontal pockets on days 1, 3, and 7 after SRP. Baseline data, including approximal plaque index (API), bleeding on probing (BOP), probing depth (PD), and clinical attachment level (CAL), were recorded before the treatment and 6 and 18 weeks after treatment. Changes in PD and CAL were analyzed separately for initially moderate (4 to 6 mm) and deep (7 to 10 mm) pockets. The results were similar for both groups in terms of API, BOP, PD in deep pockets, and CAL. The laser group showed only significant PD gain in moderate pockets during the baseline to 18-week (P <0.05) and 6- to 18- week (P <0.05) periods, whereas no difference was found between LG and CG in the remaining clinical parameters (P >0.05). The present study indicates that, compared to SRP alone, multiple adjunctive applications of a 980-nm diode laser with SRP showed PD improvements only in moderate periodontal pockets (4 to 6 mm).
Calheiros, Andrea Paiva Corsetti; Moreira, Maria Stella; Gonçalves, Flávia; Aranha, Ana Cecília Correa; Cunha, Sandra Ribeiro; Steiner-Oliveira, Carolina; Eduardo, Carlos de Paula; Ramalho, Karen Müller
2017-08-01
Analyze the effect of photobiomodulation in the prevention of tooth sensitivity after in-office dental bleaching. Tooth sensitivity is a common clinical consequence of dental bleaching. Therapies for prevention of sensitivity have been investigated in literature. This study was developed as a randomized, placebo blind clinical trial. Fifty patients were selected (n = 10) and randomly divided into five groups: (1) control, (2) placebo, (3) laser before bleaching, (4) laser after bleaching, and (5) laser before and after bleaching. Irradiation was performed perpendicularly, in contact, on each tooth during 10 sec per point in two points. The first point was positioned in the middle of the tooth crown and the second in the periapical region. Photobiomodulation was applied using the following parameters: 780 nm, 40 mW, 10 J/cm 2 , 0.4 J per point. Pain was analyzed before, immediately after, and seven subsequent days after bleaching. Patients were instructed to report pain using the scale: 0 = no tooth sensitivity, 1 = gentle sensitivity, 2 = moderate sensitivity, 3 = severe sensitivity. There were no statistical differences between groups at any time (p > 0.05). More studies, with others parameters and different methods of tooth sensitivity analysis, should be performed to complement the results found. Within the limitation of the present study, the laser parameters of photobiomodulation tested in the present study were not efficient in preventing tooth sensitivity after in-office bleaching.
Laser-induced generation of surface periodic structures in media with nonlinear diffusion
NASA Astrophysics Data System (ADS)
Zhuravlev, V. M.; Zolotovskii, I. O.; Korobko, D. A.; Morozov, V. M.; Svetukhin, V. V.; Yavtushenko, I. O.; Yavtushenko, M. S.
2017-12-01
A model of fast formation of high-contrast periodic structure appearing on a semiconductor surface under action of laser radiation is proposed. The process of growing a surface structure due to the interaction surface plasmon- polaritons excited on nonequilibrium electrons with incident laser radiation are considered in the framework of a medium with nonlinear diffusion of nonequilibrium carriers (defects). A resonance effect of superfast pico- and subpicosecond amplification of the plasmon-polariton structure generated on the surface, the realization of which can result in a high-contrast defect lattice.
NASA Astrophysics Data System (ADS)
Tate, Lloyd P.; Weddle, Diann L.; Correa, Maria T.
1993-07-01
Three medical lasers, Argon, CO2, and Nd:YAG, were studied at power outputs of 5 watts, 5 watts, and 40 watts respectively. Laser irradiation was directed at the pharyngeal mucosa of sagittally split horses heads in a randomized fashion. Areas irradiated were measured immediately using hand held calipers, and after being prepared for microscopic examination to determine width and depth of penetration into the mucosa. The results indicated that tissue destruction produced by the CO2 laser was predictable compared to the Nd:YAG laser. The Argon laser, between 1 and 6 seconds of exposure, produced only superficial photoablation of mucosal tissue which did not extend into the muscular layer. The conclusion of this in vitro investigation was that the Argon laser irradiation applied transendoscopically may be a reasonable substitute for surgery and electrocautery commonly used to treat follicular lymphoid hyperplasia, a respiratory disease of young horses.
NASA Astrophysics Data System (ADS)
Bai, Yafeng; Tian, Ye; Zhang, Zhijun; Cao, Lihua; Liu, Jiansheng
2018-03-01
The combined action of corrugation and Weibel instabilities was experimentally observed in the interaction between energetic electrons and a laser-irradiated insulated target. The energetic electron beam, driven by an ultrashort laser pulse, splits into filaments with a diameter of ˜10 μm while traversing an insulated target, owing to the corrugation instability. The filaments continued to split into thinner filaments owing to the Weibel instability if a preplasma was induced by a heating beam on the rear side of the target. When the time delay between the heating beam and electron beam was larger than 1 ps, a merging of the current filaments was observed. The characteristic filamentary structures disappeared when the time delay between the two beams was larger than 3 ps. A simplified model was developed to analyze this process; the obtained results were in good agreement with the experiment. Two-dimensional particle-in-cell simulations supported our analysis and reproduced the filamentation of the electron beam inside the plasma.
Pavan, Andrea; Boyce, Matthew; Ghin, Filippo
2016-10-01
Playing action video games enhances visual motion perception. However, there is psychophysical evidence that action video games do not improve motion sensitivity for translational global moving patterns presented in fovea. This study investigates global motion perception in action video game players and compares their performance to that of non-action video game players and non-video game players. Stimuli were random dot kinematograms presented in the parafovea. Observers discriminated the motion direction of a target random dot kinematogram presented in one of the four visual quadrants. Action video game players showed lower motion coherence thresholds than the other groups. However, when the task was performed at threshold, we did not find differences between groups in terms of distributions of reaction times. These results suggest that action video games improve visual motion sensitivity in the near periphery of the visual field, rather than speed response. © The Author(s) 2016.
Double Blind Test For Bio-Stimulation Effects On Pain Relief By Diode Laser
NASA Astrophysics Data System (ADS)
Saeki, Norio; Sembokuya, Iwajiro; Arakawa, Kazuo; Fujimasa, Iwao; Mabuchi, Kunihiko; Abe, Yuusuke; Atsumi, Kazuhiko
1989-09-01
The bio-stimulation effect of semiconductor laser on therapeutic pain relief was investigated by conducting a double blind test performed on more than one hundred patient subjects suffering from various neualgia. A compact laser therapeutic equipment with two laser probes each having 60 mW power was developed and utilized for the experiment. Each probe was driven by either the active or the dummy source selected randomly, and its results were stored in the memory for statistical processing. The therapeutic treatments including active and dummy treatments were performed on 102 subjects. The pain relief effects were confirmed for 85.5% of the subjects.
Kazmi, S M Shams; Richards, Lisa M; Schrandt, Christian J; Davis, Mitchell A; Dunn, Andrew K
2015-01-01
Laser speckle contrast imaging (LSCI) provides a rapid characterization of cortical flow dynamics for functional monitoring of the microcirculation. The technique stems from interactions of laser light with moving particles. These interactions encode the encountered Doppler phenomena within a random interference pattern imaged in widefield, known as laser speckle. Studies of neurovascular function and coupling with LSCI have benefited from the real-time characterization of functional dynamics in the laboratory setting through quantification of perfusion dynamics. While the technique has largely been relegated to acute small animal imaging, its scalability is being assessed and characterized for both chronic and clinical neurovascular imaging. PMID:25944593
Research of laser echo signal simulator
NASA Astrophysics Data System (ADS)
Xu, Rui; Shi, Rui; Wang, Xin; Li, Zhou
2015-11-01
Laser echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR. System model and time series model of laser echo signal simulator are established. Some influential factors which could induce fixed error and random error on the simulated return signals are analyzed, and then these system insertion errors are analyzed quantitatively. Using this theoretical model, the simulation system is investigated experimentally. The results corrected by subtracting fixed error indicate that the range error of the simulated laser return signal is less than 0.25m, and the distance range that the system can simulate is from 50m to 20km.
Multifractality of laser beam spatial intensity in a turbulent medium
NASA Astrophysics Data System (ADS)
Barille, Régis; Lapenna, Paolo
2006-05-01
We present the results of a laser beam passing through a turbulent medium. First we measure the geometric parameters and the spatial coherence of the beam as a function of wind velocities. A multifractal detrended fluctuation analysis algorithm is applied to determine the multifractal scaling behavior of the intensity patterns. The measurements are fitted with models used in the analysis of river runoff records. We show the surprising result that the multifractality decreases when the spatial coherence of the laser is decreased. Universal scaling properties could be applied to the spatial characterization of a laser propagating in a turbulent medium or random medium.
Two-photon transitions driven by a combination of diode and femtosecond lasers.
Moreno, Marco P; Nogueira, Giovana T; Felinto, Daniel; Vianna, Sandra S
2012-10-15
We report on the combined action of a cw diode laser and a train of ultrashort pulses when each of them drives one step of the 5S-5P-5D two-photon transition in rubidium vapor. The fluorescence from the 6P(3/2) state is detected for a fixed repetition rate of the femtosecond laser while the cw-laser frequency is scanned over the rubidium D(2) lines. This scheme allows for a velocity selective spectroscopy in a large spectral range including the 5D(3/2) and 5D(5/2) states. The results are well described in a simplified frequency domain picture, considering the interaction of each velocity group with the cw laser and a single mode of the frequency comb.
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2017-08-01
Starting with the quantum-like paradigm on application of quantum information and probability outside of physics we proceed to the social laser model describing Stimulated Amplification of Social Actions (SASA). The basic components of social laser are the quantum information field carrying information excitations and the human gain medium. The aim of this note is to analyze constraints on these components making possible SASA. The soical laser model can be used to explain the recent wave of color revolutions as well as such “unpredictable events” as Brexit and election of Donald Trump as the president of the United States of America. The presented quantum-like model is not only descriptive. We shall list explicitly conditions for creation of social laser.
Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A
2008-10-01
A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.
Controlling dispersion forces between small particles with artificially created random light fields
Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan
2015-01-01
Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir–Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems. PMID:26096622
Laser blood saving campaign and world federation of societies for laser medicine and surgery
NASA Astrophysics Data System (ADS)
Ohshiro, Toshio
2004-09-01
Blood Saving Campaign is a campaign to lessen the risk of intra- and post-operative blood transfusion by decreasing the amount of blood loss during surgery and at the same time will lessen the risk of transmission of blood born diseases. The blood saved can be used to treat those afflicted with diseases such as hemophilia and aplastic anemia where blood transfusion is imperative for the survival of the patient. At the 7th forum of WFSLMS held in Germany 2003, the steering committee has evolved to an organizing committee of WFSLMS. The aim of WFSLMS is to contribute to the health and welfare of mankind through the merit of minimum tissue damage and high efficacy of hemostasis in laser medicine. Therefore we also organized a Laser Blood Saving Campaign (Laser B-SAC) committee within WFSLMS at the same congress. The methods of laser blood saving are divided into 4 categories. 1. Surgical Laser Treatment (HLLT). 2. Non-surgical Laser Therapy (LLLT). 3. Laser Treatment with Newly Developed Laser Machines. 4. Laser Treatment with Newly Developed Techniques. I will mention on the History of B-SAC, Action Plan of B-SAC and so on.
NASA Astrophysics Data System (ADS)
Chen, Minghua; Xin, Lijun; Zhou, Qi; He, Lijia; Wu, Fufa
2018-01-01
The coupling effect between a laser and arc plasma was studied in situations in which the laser acts at the positive and negative waveforms of the arc discharge during the laser-arc hybrid welding of magnesium alloy. Using the methods of direct observation, high speed imaging, and spectral analysis, the surface status of weld seams, weld penetration depths, plasma behavior, and spectral characteristics of welding plasma were investigated, respectively. Results show that, as compared with the laser pulse acting at the negative waveform of the arc plasma discharge, a better weld seam formation can be achieved when the laser pulse acts at the positive waveform of the arc discharge. At the same time, the radiation intensity of Mg atoms in the arc plasma increases significantly. However, the weld penetration depth is weaker. The findings show that when the laser pulse is acting at the negative waveform of the arc plasma discharge, the position of the arc plasma discharge on the workpiece can be restrained by the laser action point, which improves the energy density of the welding arc.
Femtosecond laser-induced periodic surface structure on the Ti-based nanolayered thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrović, Suzana M.; Gaković, B.; Peruško, D.
2013-12-21
Laser-induced periodic surface structures (LIPSSs) and chemical composition changes of Ti-based nanolayered thin films (Al/Ti, Ni/Ti) after femtosecond (fs) laser pulses action were studied. Irradiation is performed using linearly polarized Ti:Sapphire fs laser pulses of 40 fs pulse duration and 800 nm wavelength. The low spatial frequency LIPSS (LSFL), oriented perpendicular to the laser polarization with periods slightly lower than the irradiation wavelength, was typically formed at elevated laser fluences. On the contrary, high spatial frequency LIPSS (HSFL) with uniform period of 155 nm, parallel to the laser light polarization, appeared at low laser fluences, as well as in themore » wings of the Gaussian laser beam distribution for higher used fluence. LSFL formation was associated with the material ablation process and accompanied by the intense formation of nanoparticles, especially in the Ni/Ti system. The composition changes at the surface of both multilayer systems in the LSFL area indicated the intermixing between layers and the substrate. Concentration and distribution of all constitutive elements in the irradiated area with formed HSFLs were almost unchanged.« less
Modification of narrow ablating capillaries under the influence of multiple femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Gubin, K. V.; Lotov, K. V.; Trunov, V. I.; Pestryakov, E. V.
2016-09-01
Powerful femtosecond laser pulses that propagate through narrow ablating capillaries cause modification of capillary walls, which is studied experimentally and theoretically. At low intensities, the laser-induced periodic surface structures and porous coating composed of sub-micron particles appear on the walls. At higher intensities, the surface is covered by deposited droplets of the size up to 10 μm. In both cases, the ablated material forms a solid plug that completely blocks the capillary after several hundreds or thousands of pulses. The suggested theoretical model indicates that the plug formation is a universal effect. It must take place in any narrow tube subject to ablation under the action of short laser pulses.
Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies
Kushibiki, Toshihiro; Hirasawa, Takeshi; Okawa, Shinpei; Ishihara, Miya
2015-01-01
Low reactive level laser therapy (LLLT) is mainly focused on the activation of intracellular or extracellular chromophore and the initiation of cellular signaling by using low power lasers. Over the past forty years, it was realized that the laser therapy had the potential to improve wound healing and reduce pain and inflammation. In recent years, the term LLLT has become widely recognized in the field of regenerative medicine. In this review, we will describe the mechanisms of action of LLLT at a cellular level and introduce the application to mesenchymal stem cells and mesenchymal stromal cells (MSCs) therapies. Finally, our recent research results that LLLT enhanced the MSCs differentiation to osteoblast will also be described. PMID:26273309
Laser-phased-array beam steering based on crystal fiber
NASA Astrophysics Data System (ADS)
Yang, Deng-cai; Zhao, Si-si; Wang, Da-yong; Wang, Zhi-yong; Zhang, Xiao-fei
2011-06-01
Laser-phased-array system provides an elegant means for achieving the inertial-free, high-resolution, rapid and random beam steering. In laser-phased-array system, phase controlling is the most important factor that impacts the system performance. A novel scheme is provided in this paper, the beam steering is accomplished by using crystal fiber array, the difference length between adjacent fiber is fixed. The phase difference between adjacent fiber decides the direction of the output beam. When the wavelength of the input fiber laser is tuned, the phase difference between the adjacent elements has changed. Therefore, the laser beam direction has changed and the beam steering has been accomplished. In this article, based on the proposed scheme, the steering angle of the laser beam is calculated and analyzed theoretically. Moreover, the far-field steering beam quality is discussed.
Hsieh, Meng-Chien; Wu, Yi-Chia; Huang, Shu-Hung; Kuo, Yur-Ren; Lee, Su-Shin
2018-02-01
Nd:YAG laser has been used extensively for its versatility in treating many common aesthetic problems, but numerous adverse effects are often complained by recipients of Nd:YAG laser. This study introduces the ANT1 soybean extract cream, which was formulated to alleviate adverse effects after laser therapy. This study explores whether ANT1 enhances the repair mechanism of the postlaser skin, decreases laser-induced complication, and shortens recovery time. The study also aims to pinpoint the ANT1 concentration that is most effective in improving the skin condition after Nd-YAG laser therapy. This study was a single-center, randomized, double-blind, placebo-controlled trial. Patients eligible for the study were Asian women, aged 25 to 40 years, who were free of dermatological diseases and allergic reaction. There were a total of 45 subjects. Each subject received a session of Nd-YAG laser therapy every 2 weeks, totaling 3 sessions. Facial skin assessment was achieved via VISIA complexion analysis. VISIA complexion analysis quantitatively assessed the skin condition and tracked the recovery progress of each subject at baseline, immediately after all 3 laser sessions, and a week after the final laser treatment. Skin condition was evaluated by VISIA complexion analysis. Skin condition was recorded in aspects of pigmented spots, wrinkles, texture, pores, and red area. After Nd-YAG laser therapy, postlaser inflammation was observed in all subjects. Throughout the laser sessions and the outpatient follow-up clinic, the adverse effects of laser therapy, such as redness, spots, wrinkles, pores, and textures, decreased with the use of ANT1 cream. There has been a marked effect in wrinkle reduction in the patients who received a higher concentration of ANT1 cream (P ≤ 0.05). Statistically significant improvement in spots and pores is also seen (P ≤ 0.05). Through this study, the results suggest that the application of ANT1 soybean extract cream ameliorates the complications and enhances the cosmetic effects of Nd-YAG laser therapy. A higher concentration of the ANT1 cream significantly reduces wrinkles and redness after laser. All in all, this study proves that the ANT1 soy extract cream may be a useful addition to postlaser care for an overall enhancement in skin condition and recovery.
Laser Cooling the Diatomic Molecule CaH
NASA Astrophysics Data System (ADS)
Velasquez, Joe, III; Di Rosa, Michael
2014-06-01
To laser-cool a species, a closed (or nearly closed) cycle is required to dissipate translational energy through many directed laser-photon absorption and subsequent randomly-directed spontaneous emission events. Many atoms lend themselves to such a closed-loop cooling cycle. Attaining laser-cooled molecular species is challenging because of their inherently complex internal structure, yet laser-cooling molecules could lead to studies in interesting chemical dynamics among other applications. Typically, laser-cooled atoms are assembled into molecules through photoassociation or Feschbach resonance. CaH is one of a few molecules whose internal structure is quite atom-like, allowing a nearly closed cycle without the need for many repumping lasers. We will also present our work-to-date on laser cooling this molecule. We employ traditional pulsed atomic/molecular beam techniques with a laser vaporization source to generate species with well-defined translational energies over a narrow range of velocity. In this way, we can apply laser-cooling to most species in the beam along a single dimension (the beam's axis). This project is funded by the LDRD program of the Los Alamos National Laboratory.
Action of pulse-periodic and continuous IR radiation on light-controlled vanadium dioxide mirrors
NASA Astrophysics Data System (ADS)
Danilov, Oleg B.; Sidorov, Aleksandr I.; Titterton, David H.; Tul'skii, Stanislav A.; Yachnev, Igor L.; Zhevlakov, Aleksandr P.
2001-03-01
The results of an experimental research of action of the intensive mid IR-range pulse-periodic laser radiation on VO2-mirrors are represented. The damage thresholds of VO2-mirrors are defined for pulse-periodic and continuous radiation and the analysis of the mechanism of their destruction is carried out. The results of numerical simulation of dynamics of switching of VO2-mirrors under the action of pulse-periodic radiation are presented.
Laser-assisted hair removal for facial hirsutism in women: A review of evidence.
Lee, Chun-Man
2018-06-01
Poly cystic ovarian syndrome (PCOS) has been described as the common diagnosis for hirsutism in women. Facial hirsutism is by far the most distressing symptom of hyperandrogenism in women with PCOS. A statistically significant improvement in psychological well-being has been reported in patients with PCOS allocated for laser-assisted hair removal. The theory of selective photothermolysis has revolutionized laser hair removal in that it is effective and safe, when operated by sufficiently trained and experienced professionals. Long-pulsed ruby (694 nm), long-pulsed alexandrite (755 nm), diode (800-980 nm), and long-pulsed Nd:YAG (1064 nm) are commercially available laser devices for hair removal most widely studied. This article will introduce the fundamentals and mechanism of action of lasers in hair removal, in a contemporary literature review looking at medium to long term efficacy and safety profiles of various laser hair removal modalities most widely commercially available to date.
Piezoelectric-nanowire-enabled power source for driving wireless microelectronics.
Xu, Sheng; Hansen, Benjamin J; Wang, Zhong Lin
2010-10-19
Harvesting energy from irregular/random mechanical actions in variable and uncontrollable environments is an effective approach for powering wireless mobile electronics to meet a wide range of applications in our daily life. Piezoelectric nanowires are robust and can be stimulated by tiny physical motions/disturbances over a range of frequencies. Here, we demonstrate the first chemical epitaxial growth of PbZr(x)Ti(1-x)O(3) (PZT) nanowire arrays at 230 °C and their application as high-output energy converters. The nanogenerators fabricated using a single array of PZT nanowires produce a peak output voltage of ~0.7 V, current density of 4 μA cm(-2) and an average power density of 2.8 mW cm(-3). The alternating current output of the nanogenerator is rectified, and the harvested energy is stored and later used to light up a commercial laser diode. This work demonstrates the feasibility of using nanogenerators for powering mobile and even personal microelectronics.
Synthesis, characterization and bioimaging of fluorescent labeled polyoxometalates.
Geisberger, Georg; Gyenge, Emina Besic; Hinger, Doris; Bösiger, Peter; Maake, Caroline; Patzke, Greta R
2013-07-21
A fluorescent labeled Wells-Dawson type POM ({P2W17O61Fluo}) was newly synthesized and characterized by a wide range of analytical methods. {P2W17O61Fluo} was functionalized with fluorescein amine through a stable amide bond, and its long time stability was verified by UV/vis spectroscopic techniques at physiologically relevant pH values. No significant impact on the cell viability or morphology of HeLa cells was observed for POM concentrations up to 100 μg mL(-1). Cellular uptake of fluorescent {P2W17O61Fluo} was monitored by confocal laser scanning microscopy. POM uptake occurs mainly after prolonged incubation times of 24 h resulting in different intracellular patterns, i.e. randomly distributed over the entire cytoplasm, or aggregated in larger clusters. This direct monitoring strategy for the interaction of POMs with cells opens up new pathways for elucidating their unknown mode of action on the way to POM-based drug development.
Coherent random lasing controlled by Brownian motion of the active scatterer
NASA Astrophysics Data System (ADS)
Liang, Shuofeng; Yin, Leicheng; Zhang, ZhenZhen; Xia, Jiangying; Xie, Kang; Zou, Gang; Hu, Zhijia; Zhang, Qijin
2018-05-01
The stability of the scattering loop is fundamental for coherent random lasing in a dynamic scattering system. In this work, fluorescence of DPP (N, N-di [3-(isobutyl polyhedral oligomeric silsesquioxanes) propyl] perylene diimide) is scattered to produce RL and we realize the transition from incoherent RL to coherent RL by controlling the Brownian motion of the scatterers (dimer aggregates of DPP) and the stability of scattering loop. To produce coherent random lasers, the loop needs to maintain a stable state within the loop-stable time, which can be determined through controlled Brownian motion of scatterers in the scattering system. The result shows that the loop-stable time is within 5.83 × 10‑5 s to 1.61 × 10‑4 s based on the transition from coherent to incoherent random lasing. The time range could be tuned by finely controlling the viscosity of the solution. This work not only develops a method to predict the loop-stable time, but also develops the study between Brownian motion and random lasers, which opens the road to a variety of novel interdisciplinary investigations involving modern statistical mechanics and disordered photonics.
Minimal-post-processing 320-Gbps true random bit generation using physical white chaos.
Wang, Anbang; Wang, Longsheng; Li, Pu; Wang, Yuncai
2017-02-20
Chaotic external-cavity semiconductor laser (ECL) is a promising entropy source for generation of high-speed physical random bits or digital keys. The rate and randomness is unfortunately limited by laser relaxation oscillation and external-cavity resonance, and is usually improved by complicated post processing. Here, we propose using a physical broadband white chaos generated by optical heterodyning of two ECLs as entropy source to construct high-speed random bit generation (RBG) with minimal post processing. The optical heterodyne chaos not only has a white spectrum without signature of relaxation oscillation and external-cavity resonance but also has a symmetric amplitude distribution. Thus, after quantization with a multi-bit analog-digital-convertor (ADC), random bits can be obtained by extracting several least significant bits (LSBs) without any other processing. In experiments, a white chaos with a 3-dB bandwidth of 16.7 GHz is generated. Its entropy rate is estimated as 16 Gbps by single-bit quantization which means a spectrum efficiency of 96%. With quantization using an 8-bit ADC, 320-Gbps physical RBG is achieved by directly extracting 4 LSBs at 80-GHz sampling rate.
Kurlaev, P P; Chernova, O L; Kirgizova, S B
2000-01-01
The suppressive action of oxytocin, heliumneon radiation and ultrahigh-frequency electromagnetic waves (UHF-therapy) on the persistence properties of S. aureus has been experimentally established. The effectiveness of the therapeutic actions under study in the treatment of patients with the prognosticated unfavorable course of purulent inflammatory diseases of soft tissues has been shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uryupin, S A; Frolov, A A
We have developed a theory of generation of low-frequency radiation and surface waves under the pondermotive action of a femtosecond laser pulse irradiating a conductor along the normal and focused by a cylindrical lens. It is shown that for the chosen focusing method and specified values of laser pulse duration and flux density it is possible to significantly increase the total energy of both surface waves and low-frequency radiation. (terahertz radiation)
Heat-Pipe Bismuth Laser; Examination of Laser Action at 4722A in Bismuth Vapor
1976-11-01
11, 15(1975). of Type 6p 3 -6p 2 7s in the Bismuth Atomic Spectrum in Intermediate Coupling," Acta Physica Polonica A47, 231(1975). 19. A.N. Nesmeyanov...Calculated Transit n Probabilities and Lifetimes for the First Excited Configuration np (n+l)s in the Neutral As, Sb and Bi Atoms, " Physica Scripta
Efficacy of fractional lasers in treating alopecia: a literature review.
Perper, Marina; Aldahan, Adam S; Fayne, Rachel A; Emerson, Christopher P; Nouri, Keyvan
2017-11-01
Hair loss stemming from different types of alopecia, such as androgenic alopecia and alopecia areata, negatively affects over half the population and, in many circumstances, causes serious psychosocial distress. Current treatment options for alopecia, such as minoxidil, anthralin, and intralesional corticosteroids, vary efficacy and side effect profiles. It is known that low-level laser/light therapies (LLLT), or photobiomodulations, such as the US FDA-cleared HairMax Lasercomb®, He-Ne laser, and excimer laser, are relatively affordable, user-friendly, safe, and effective forms of treatment for hair loss. While less is known about the effectiveness of fractional lasers for combating hair loss, research suggests that by creating microscopic thermal injury zones, fractional lasers may cause an increase in hair growth from a wound healing process, making them potential therapeutic options for alopecia. A literature review was performed to evaluate the effectiveness of fractional lasers on hair regrowth. The specific fractional laser therapies include the 1550-nm nonablative fractional erbium-glass laser, the ablative fractional 2940-nm erbium:YAG laser, and the ablative fractional CO 2 fractional laser. Additional randomized controlled trials are necessary to further evaluate the effectiveness of the lasers, as well as to establish appropriate parameters and treatment intervals.
Emamectin benzoate: new insecticide against Helicoverpa armigera.
Fanigliulo, A; Sacchetti, M
2008-01-01
Emamectin benzoate is a new insecticide of Syngenta Crop Protection, with a new mechanism of action and a strong activity against Lepidoptera as well as with and a high selectivity on useful organisms. This molecule acts if swallowed and has some contact action. It penetrates leaf tissues (translaminar activity) and forms a reservoir within the leaf. The mechanism of action is unique in the panorama of insecticides. In facts, it inhibits muscle contraction, causing a continuous flow of chlorine ions in the GABA and H-Glutamate receptor sites. During 2006 and 2007, experimentation was performed by the Bioagritest test facility, according to EPPO guidelines and Principles of Good Experimental Practice (GEP), aiming at establishing the biological efficacy and the selectivity of Emamectin benzoate on industry tomato against Helicoverpa armigera (Lepidoptera: Noctuidoe). The study was performed in Tursi-Policoro (Matera), southern Italy. Experimental design consisted in random blocks, in 4 repetitions. A dosage of 1.5 Kg/ha of the formulate was compared with two commercial formulates: Spinosad 0.2 kg/ha (Laser, Dow Agrosciences Italia) and Indoxacarb 0.125 kg/ha (Steward EC insecticide, Dupont). Three foliage applications were applied every 8 days. The severity of damage induced by H. armigera was evaluated on fruits. Eventual phytotoxic effects were also evaluated. Climatic conditions were optimal for Lepidoptera development, so that the percentage of fruits attacked in 2007 at the first scouting was 68.28%. Emamectin benzoate has shown, in two years of testing, a high control of H. armigera if compared with the standards Indoxacarb and Spinosad. No effect of phytotoxicity was noticed on fruits.
Action of a 904-nm diode laser in orthopedics and traumatology: a clinical study on 447 cases
NASA Astrophysics Data System (ADS)
Tam, Giuseppe
2001-10-01
Objective: The evidence in medical literature is that a beneficial analgesic effect can only be obtained by employing laser radiation of relatively low power density and wavelengths which are able to penetrate tissue. For this reason the semiconductor, or laser diode (GaAs, 904 nm), is the most appropriate choice in pain-reduction therapy. Summary Background Data: Low power laser (or LLL) acts on the Prostaglandins synthesis, increases the endorphins synthesis in the Rolando gelatinous substance and in the dorsal horn of the spinal cord. The L-Arginine, which is the classic substrate of nitric oxide, carries on vasodilatory and anti- inflammatory action. Methods: Treatment was carried out on 447 cases and 435 patients (250 women and 185 men) between 20th May 1987 and 31st December 1999. The patients, whose age ranged from 25 to 70, were suffering from rheumatic, degenerative and traumatic pathologies as well as cutaneous ulcers. The majority of patients had been seen by orthopaedists and rheumatologists and had undergone x-ray, ultrasound scan, etc. All patients had previously received drug-based treatment and/or physiotherapy, with poor results. Two thirds were experiencing acute symptomatic pain, while the others presented a chronic pathology with recurrent crises. We used a pulsed IR diode laser, GaAs emitting at 904 nm. Frequency of treatment: 1 application per day for 5 consecutive days, followed by a 2-day interval. The percentage reduction in symptoms or improvement in functional status were determined on the basis of objective analysis as it happens in the Legal and Insurance Medicine field. Results: Very good results were achieved especially with cases of symptomatic osteoarthritis of the cervical vertebrae, with sport-related injuries, epicondylitis, osteoarthritis of the knee, periarthritis and with cutaneous ulcers. The beneficial action of the LLLT in the latter pathology is linked to the increase in collagen and to fibroblast proliferation. The total relief of the pain was achieved in 80% of acute and 65% of chronic cases. Conclusions: Treatment with 904 nm IR diode laser has substantially reduced the symptoms as well as improved the quality of life of the patient, thus postponing the need for surgery.
Assessment of Low-Level Laser Therapy Effects After Extraction of Impacted Lower Third Molar Surgery
Raiesian, Shahrokh; Khani, Mehdi; Khiabani, Kazem; Hemmati, Ershad; Pouretezad, Mohammad
2017-01-01
Introduction: The aim of this study was to assess the effect of low-level laser therapy (LLLT) on pain, swelling and maximum mouth opening in patients undergoing third molar surgery. Methods: A prospective, randomized double-blind study was undertaken on 44 patients at the Dental School, Ahvaz Jundishapur University of Medical Sciences, in 2015. A low-level laser was randomly applied on one of the two sides after surgery of 15 patients. The experimental side received 18 J/cm2 of energy density, wavelength of 980 nm, and output power of 1.8 W. On the control side, a hand-piece was applied intra-orally, but laser was not activated. In addition, in order to evaluate trismus, 13 patients were treated by unilateral laser therapy and 16 patients did not receive laser therapy at all. The laser was administered intraorally on two points of vestibular and lingual sides at 1 cm from the surgery site, and extraorally at the emergence of the masseter muscle, immediately after surgery, and repeated 24 hours later. The pain, swelling and maximum mouth opening (MMO) were compared between the two groups at 24 hours and a week after surgery. Results: The mean score of pain 24 hours after surgery in the laser therapy group (2.3 ± 3.5) was significantly lower than the mean score of pain in the drug therapy (4.19 ± 3.09) (P = 0.036). Moreover, the mean score of pain at one week after surgery in the laser therapy group (0.13 ± 2.33) was significantly lower than the drug therapy group (1.43 ± 2.45) (P = 0.046). The amount of swelling according to different measurements did not significantly differ between the two groups neither at 24 hours nor at 1 week after surgery. Conclusion: Our findings showed that LLLT was useful in reducing pain and could slightly reduce swelling compared to drug therapy in impacted third molar surgery. PMID:28912943
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ruixuan; Meng, Xuan; Takayanagi, Shinya
2014-04-14
Ion irradiation and short-pulsed laser irradiation can be used to form nanostructures on the surfaces of substrates. This work investigates the synergistic effects of ion and nanosecond-pulsed laser co-irradiation on surface nanostructuring of Au thin films deposited under vacuum on SiO{sub 2} glass substrates. Gold nanoparticles are randomly formed on the surface of the substrate after nanosecond-pulsed laser irradiation under vacuum at a wavelength of 532 nm with a repetition rate of 10 Hz and laser energy density of 0.124 kJ/m{sup 2}. Gold nanoparticles are also randomly formed on the substrate after 100-keV Ar{sup +} ion irradiation at doses of upmore » to 3.8 × 10{sup 15} ions/cm{sup 2}, and nearly all of these nanoparticles are fully embedded in the substrate. With increasing ion irradiation dose (number of incident laser pulses), the mean diameter of the Au nanoparticles decreases (increases). However, Au nanoparticles are only formed in a periodic surface arrangement after co-irradiation with 6000 laser pulses and 3.8 × 10{sup 15} ions/cm{sup 2}. The periodic distance is ∼540 nm, which is close to the wavelength of the nanosecond-pulsed laser, and the mean diameter of the Au nanoparticles remains at ∼20 nm with a relatively narrow distribution. The photoabsorption peaks of the ion- or nanosecond-pulsed laser-irradiated samples clearly correspond to the mean diameter of Au nanoparticles. Conversely, the photoabsorption peaks for the co-irradiated samples do not depend on the mean nanoparticle diameter. This lack of dependence is likely caused by the periodic nanostructure formed on the surface by the synergistic effects of co-irradiation.« less
32 CFR 651.10 - Actions requiring environmental analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engineering, laser testing, and electromagnetic pulse generation. (i) Leases, easements, permits, licenses, or... documentation before approving such requests. (l) Projects involving chemical weapons/munitions. ...
Gerbasi, David; Shapiro, Moshe; Brumer, Paul
2006-02-21
Enantiomeric control of 1,3 dimethylallene in a collisional environment is examined. Specifically, our previous "laser distillation" scenario wherein three perpendicular linearly polarized light fields are applied to excite a set of vib-rotational eigenstates of a randomly oriented sample is considered. The addition of internal conversion, dissociation, decoherence, and collisional relaxation mimics experimental conditions and molecular decay processes. Of greatest relevance is internal conversion which, in the case of dimethylallene, is followed by molecular dissociation. For various rates of internal conversion, enantiomeric control is maintained in this scenario by a delicate balance between collisional relaxation of excited dimethylallene that enhances control and collisional dephasing, which diminishes control.
Coherent diffractive imaging using randomly coded masks
Seaberg, Matthew H.; d'Aspremont, Alexandre; Turner, Joshua J.
2015-12-07
We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. As a result, the experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-raymore » synchrotron and even free electron laser experiments.« less
Coherent diffractive imaging using randomly coded masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaberg, Matthew H., E-mail: seaberg@slac.stanford.edu; Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025; D'Aspremont, Alexandre
2015-12-07
We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even freemore » electron laser experiments.« less
Casanova, D; Alliez, A; Baptista, C; Gonelli, D; Lemdjadi, Z; Bohbot, S
2017-08-01
Laser therapies are used prophylactically for excessive scar formation. The Laser-Assisted Skin Healing treatment induces a controlled heat stress that promotes tissue regeneration. This comparative trial is the first to evaluate the performance of a new automated 1210-nm laser system, compatible with all Fitzpatrick scale phototypes. Forty women undergoing bilateral breast reduction were enrolled in this double-blinded randomized controlled trial. The horizontal sutured incision of one breast was treated with the portable 1210-nm laser while in the operating theatre. The other breast was used as the study control. Objective measurements, subjective clinical assessments and safety evaluation were carried out over 1 year by both clinicians and patients. Six weeks following surgery, better overall appearance and modified OSAS scores were reported for the laser-treated scars when compared to the control group (p = 0.024 and p = 0.079). This supports an early effect of the laser treatment during the inflammatory stage of the healing process. After a post-treatment period of 6 months, there continued to be a strong tendency in favour of the laser treatment based on the subjective scores and corroborated by the objective improvement of the treated scar volume (p = 0.038). At 1 year, the laser-treated scars continued to improve compared to the control ones in terms of volume (p = 0.004), surface (p = 0.017) and roughness (p = 0.002), and these comparatively better results were strengthened with the blind expression of patients' preference for their laser-treated scar (p = 0.025). This new 1210-nm laser treatment, used as a single session performed immediately after surgery, provides significant objective and subjective improvements in scar appearance. These data can be useful when preparing patients to undergo their surgical procedure. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Yilmaz, Hasan Guney; Kurtulmus-Yilmaz, Sevcan; Cengiz, Esra
2011-11-01
The aim of this clinical study was to evaluate and compare the desensitizing effects of a gallium?aluminum?arsenide (GaAlAs) laser and sodium fluoride (NaF) varnish on dentine hypersensitivity (DH) in periodontal maintenance patients. The use of lasers opens a new dimension in the treatment of DH. Forty-eight patients with 244 teeth affected by DH were included in the trial. To be included in the study, the subjects had to have 4 or more hypersensitive teeth at different quadrants. Selected teeth were randomly assigned to a GaAlAs laser group, placebo laser group, NaF varnish group, or a placebo NaF varnish group. Laser therapy was performed at 8.5?J/cm(2) energy density. In the placebo laser group, the same laser without laser emission was used. In the NaF varnish group, the varnish was painted at the cervical region of the teeth. In the placebo NaF varnish group, the same treatment procedures were performed with a saline solution. DH was assessed with a visual analog scale (VAS); immediately, at 1 week, and at 1, 3, and 6 months after treatments. Intra-group time-dependent data were analyzed by Friedman's test, and Wilcoxon's rank sum test was used to evaluate the differences within groups. GaAlAs laser and NaF varnish treatments resulted in a significant reduction in the VAS scores immediately after treatments that were maintained throughout the study when compared to the baseline and placebo treatments. In the NaF group, there was a significant increase in the VAS scores at 3 and 6 months compared to at 1 week and 1 month. The placebo treatments showed no significant changes in VAS scores throughout the study period. Within the limits of the study, GaAlAs laser irradiation was effective in the treatment of DH, and it is a more comfortable and faster procedure than traditional DH treatment.
Diverse effects of a 445 nm diode laser on isometric contraction of the rat aorta
Park, Sang Woong; Shin, Kyung Chul; Park, Hyun Ji; Lee, In Wha; Kim, Hyung-Sik; Chung, Soon-Cheol; Kim, Ji-Sun; Jun, Jae-Hoon; Kim, Bokyung; Bae, Young Min
2015-01-01
The usefulness of visible lasers in treating vascular diseases is controversial. It is probable that multiple effects of visible lasers on blood vessels and their unclear mechanisms have hampered the usefulness of this therapy. Therefore, elucidating the precise actions and mechanisms of the effects of lasers on blood vessels would provide insight into potential biomedical applications. Here, using organ chamber isometric contraction measurements, western blotting, patch-clamp, and en face immunohistochemistry, we showed that a 445 nm diode laser contracted rat aortic rings, both by activating endothelial nitric oxide synthase and by increasing oxidative stress. In addition to the effects on the endothelium, the laser also directly relaxed and contracted vascular smooth muscle by inhibiting L-type Ca2+ channels and by activating protein tyrosine kinases, respectively. Thus, we conclude that exposure to 445 nm laser might contract and dilate blood vessels in the endothelium and smooth muscle via distinct mechanisms. PMID:26417517
Alfawal, Alaa M H; Hajeer, Mohammad Y; Ajaj, Mowaffak A; Hamadah, Omar; Brad, Bassel
2018-02-17
To evaluate the effectiveness of two minimally invasive surgical procedures in the acceleration of canine retraction: piezocision and laser-assisted flapless corticotomy (LAFC). Trial design: A single-centre randomized controlled trial with a compound design (two-arm parallel-group design and a split-mouth design for each arm). 36 Class II division I patients (12 males, 24 females; age range: 15 to 27 years) requiring first upper premolars extraction followed by canine retraction. piezocision group (PG; n = 18) and laser-assisted flapless corticotomy group (LG; n = 18). A split-mouth design was applied for each group where the flapless surgical intervention was randomly allocated to one side and the other side served as a control side. the rate of canine retraction (primary outcome), anchorage loss and canine rotation, which were assessed at 1, 2, 3 and 4 months following the onset of canine retraction. Also the duration of canine retraction was recorded. Random sequence: Computer-generated random numbers. Allocation concealment: sequentially numbered, opaque, sealed envelopes. Blinding: Single blinded (outcomes' assessor). Seventeen patients in each group were enrolled in the statistical analysis. The rate of canine retraction was significantly greater in the experimental side than in the control side in both groups by two-fold in the first month and 1.5-fold in the second month (p < 0.001). Also the overall canine retraction duration was significantly reduced in the experimental side as compared with control side in both groups about 25% (p ≤ 0.001). There were no significant differences between the experimental and the control sides regarding loss of anchorage and upper canine rotation in both groups (p > 0.05). There were no significant differences between the two flapless techniques regarding the studied variables during all evaluation times (p > 0.05). Piezocision and laser-assisted flapless corticotomy appeared to be effective treatment methods for accelerating canine retraction without any significant untoward effect on anchorage or canine rotation during rapid retraction. ClinicalTrials.gov (Identifier: NCT02606331 ).
Ackermann, Roland; Kammel, Robert; Merker, Marina; Kamm, Andreas; Tünnermann, Andreas; Nolte, Stefan
2013-01-01
Optical side-effects of fs-laser treatment in refractive surgery are investigated by means of a model eye. We show that rainbow glare is the predominant perturbation, which can be avoided by randomly distributing laser spots within the lens. For corneal applications such as fs-LASIK, even a regular grid with spot-to-spot distances of ~3 µm is sufficient to minimize rainbow glare perception. Contrast sensitivity is affected, when the lens is treated with large 3D-patterns. PMID:23413236
ERIC Educational Resources Information Center
Hedeker, Donald; And Others
1996-01-01
Methods are proposed and described for estimating the degree to which relations among variables vary at the individual level. As an example, M. Fishbein and I. Ajzen's theory of reasoned action is examined. This article illustrates the use of empirical Bayes methods based on a random-effects regression model to estimate individual influences…
Hypnotic clever hands: Agency and automatic responding.
Polito, Vince; Barnier, Amanda J; Connors, Michael H
2018-06-01
The Clever Hands task (Wegner, Fuller, & Sparrow, 2003) is a behavioral illusion in which participants make responses to a trivia quiz for which they have no sense of agency. Sixty high hypnotizable participants completed two versions of the Clever Hands task. Quiz One was a replication of the original study. Quiz Two was a hypnotic adaptation using three suggestions that were based on clinical disruptions to the sense of agency. The suggestions were for: random responding, thought insertion, and alien control. These suggestions led to differences in accuracy (action production) and estimates of accuracy (action projection). Specifically, whereas the random responding suggestion had little effect, the two clinically based suggestions had opposite impacts on action production: the thought insertion suggestion led to an increase in the rate of correct responses (although participants still believed they were responding randomly); while the alien control suggestion led to a reduction in the rate of correct answers and a pattern of results that more closely approximated randomness. Contrary to theoretical accounts that claim that hypnosis affects executive monitoring rather than executive control, this result indicates that specific hypnotic suggestions can also influence the implicit processes involved in action production. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Laser Stimulation of Single Auditory Nerve Fibers
Littlefield, Philip D.; Vujanovic, Irena; Mundi, Jagmeet; Matic, Agnella Izzo; Richter, Claus-Peter
2011-01-01
Objectives/Hypothesis One limitation with cochlear implants is the difficulty stimulating spatially discrete spiral ganglion cell groups because of electrode interactions. Multipolar electrodes have improved on this some, but also at the cost of much higher device power consumption. Recently, it has been shown that spatially selective stimulation of the auditory nerve is possible with a mid-infrared laser aimed at the spiral ganglion via the round window. However, these neurons must be driven at adequate rates for optical radiation to be useful in cochlear implants. We herein use single-fiber recordings to characterize the responses of auditory neurons to optical radiation. Study Design In vivo study using normal-hearing adult gerbils. Methods Two diode lasers were used for stimulation of the auditory nerve. They operated between 1.844 μm and 1.873 μm, with pulse durations of 35 μs to 1,000 μs, and at repetition rates up to 1,000 pulses per second (pps). The laser outputs were coupled to a 200-μm-diameter optical fiber placed against the round window membrane and oriented toward the spiral ganglion. The auditory nerve was exposed through a craniotomy, and recordings were taken from single fibers during acoustic and laser stimulation. Results Action potentials occurred 2.5 ms to 4.0 ms after the laser pulse. The latency jitter was up to 3 ms. Maximum rates of discharge averaged 97 ± 52.5 action potentials per second. The neurons did not strictly respond to the laser at stimulation rates over 100 pps. Conclusions Auditory neurons can be stimulated by a laser beam passing through the round window membrane and driven at rates sufficient for useful auditory information. Optical stimulation and electrical stimulation have different characteristics; which could be selectively exploited in future cochlear implants. Level of Evidence Not applicable. PMID:20830761
Amaral, M B F; de Ávila, J M S; Abreu, M H G; Mesquita, R A
2015-11-01
Fibrous hyperplasia is treated by surgical incision using a scalpel, together with removal of the source of chronic trauma. However, scalpel techniques do not provide the haemostasis that is necessary when dealing with highly vascular tissues. Diode laser surgery can be used in the management of oral tissues due to its high absorption by water and haemoglobin, and has provided good results in both periodontal surgery and oral lesions. The aim of the present study was to compare the effects of diode laser surgery to those of the conventional technique in patients with fibrous hyperplasia. A randomized clinical trial was performed in which surgical and postoperative evaluations were analyzed. On comparison of the laser-treated (study group) patients to those treated with a scalpel (control group), significant differences were observed in the duration of surgery and the use of analgesic medications. Over a 3-week period, clinical healing of the postoperative wound was significantly faster in the control group as compared to the study group. In conclusion, diode laser surgery proved to be more effective and less invasive when compared to scalpel surgery in the management of fibrous hyperplasia. However, wound healing proved to be faster when using scalpel surgery. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Sicilia, Alberto; Cuesta-Frechoso, Susana; Suárez, Alfonso; Angulo, Jorge; Pordomingo, Armando; De Juan, Pablo
2009-08-01
To evaluate the immediate efficacy in the reduction of dentine hypersensitivity (DH) when applying an 810 nm diode laser (DL), and a 10% potassium nitrate bioadhesive gel (NK10%). Forty-five consecutive periodontal maintenance patients of both sexes, with a DH >or= 2 on the verbal rating scale (VRS) in one or more teeth, were randomly allocated into three equal groups: 15 patients received DL and placebo gel; 15 patients were tested with a placebo laser and NK10%; and the remaining 15 received a placebo laser and placebo gel. The DH was evaluated at the start of the study, 15 and 30 min. after the laser application, and on days 2, 4, 7, 14, 30 and 60 by a blind examiner. After 15 min., observations showed a reduction in DH after an evaporative stimulus (ES) of 36.9% (0.86), three times greater than that of the control group (0.23) (p=0.008). After 14 days, this effect was even greater [DL 71.7% (1.67)/NK10% 36.3% (1.73)/control 28.1% (0.73); p=0.004], and lasted until day 60 [65.7% (1.53)/30.4% (0.73)/25.8% (0.67); p=0.01]. The DL and NK10% gel were proven effective in the treatment of DH. A significantly greater immediate response was observed with DL.
Vaghardoost, Reza; Momeni, Mahnoush; Kazemikhoo, Nooshafarin; Mokmeli, Soheila; Dahmardehei, Mostafa; Ansari, Fereshteh; Nilforoushzadeh, Mohammad Ali; Sabr Joo, Parisa; Mey Abadi, Sara; Naderi Gharagheshlagh, Soheila; Sassani, Saeed
2018-04-01
Skin graft is a standard therapeutic technique in patients with deep ulcers, but managing donor site after grafting is very important. Although several modern dressings are available to enhance the comfort of donor site, using techniques that accelerate wound healing may enhance patient satisfaction. Low-level laser therapy (LLLT) has been used in several medical fields, including healing of diabetic, surgical, and pressure ulcers, but there is not any report of using this method for healing of donor site in burn patients. The protocols and informed consent were reviewed according to Medical Ethics Board of Shahid Beheshti University of Medical Sciences (IR.SBMU.REC.1394.363) and Iranian Registry of Clinical Trials (IRCT2016020226069N2). Eighteen donor sites in 11 patients with grade 3 burn ulcer were selected. Donor areas were divided into 2 parts, for laser irradiation and control randomly. Laser area was irradiated by a red, 655-nm laser light, 150 mW, 2 J/cm 2 , on days 0 (immediately after surgery), 3, 5, and 7. Dressing and other therapeutic care for both sites were the same. The patients and the person who analyzed the results were blinded. The size of donor site reduced in both groups during the 7-day study period (P < 0.01) and this reduction was significantly greater in the laser group (P = 0.01). In the present study, for the first time, we evaluate the effects of LLLT on the healing process of donor site in burn patients. The results showed that local irradiation of red laser accelerates wound healing process significantly.
Matarese, Giovanni; Ramaglia, Luca; Cicciù, Marco; Cordasco, Giancarlo; Isola, Gaetano
2017-12-01
The aim of this study was to investigate and compare the clinical, microbial, and inflammatory effects of a diode laser as an adjunct to scaling and root planing (SRP) versus SRP alone for the treatment of generalized aggressive periodontitis (GAgP). Using a split-mouth design, 31 patients with GAgP were enrolled in the study. The maxillary right and left quadrants were randomly assigned to SRP+diode laser or SRP alone. Patients were examined on a regular basis for clinical, microbiological, and inflammatory mediator changes over a 1-year period. Clinical attachment level (CAL) was the primary outcome variable chosen. In addition, subgingival biofilm samples and gingival crevicular fluid (GCF) inflammatory mediators were analyzed at each follow-up session. Compared to baseline, both treatments demonstrated an improvement in periodontal parameters at 1 year. However, SRP+diode laser produced a significant improvement in probing depth (PD; 2.56 ± 0.44 vs. 3.36 ± 0.51 mm, p < 0.05) and CAL (3.47 ± 0.25 vs. 4.11 ± 0.26 mm, p < 0.05) values compared to SRP alone. Similarly, in the SRP+diode laser group, the bacteria of orange complex group were significantly reduced at 30 and 60 days compared to SRP alone. Moreover, SRP+diode laser determined a reduction in mean GCF level of interleukin (IL)-1β and IL-1β/IL-10 ratio at 15 and 30 days compared to SRP alone (p < 0.05). At 1 year, SRP+diode laser yielded a significant reduction in some clinical parameters, while microbial and inflammatory mediator changes were not significantly reduced compared to SRP alone.
Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets.
Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza
2017-01-01
Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice.
Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets
Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza
2017-01-01
Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice. PMID:28912939
Cury, Vivian; Moretti, Ana Iochabel Soares; Assis, Lívia; Bossini, Paulo; de Souza Crusca, Jaqueline; Neto, Carlos Benatti; Fangel, Renan; de Souza, Heraldo Possolo; Hamblin, Michael R; Parizotto, Nivaldo Antonio
2013-01-01
It is known that low level laser therapy is able to improve skin flap viability by increasing angiogenesis. However, the mechanism for new blood vessel formation is not completely understood. Here, we investigated the effects of 660 nm and 780 nm lasers at fluences of 30 and 40 J/cm2 on three important mediators activated during angiogenesis. Sixty male Wistar rats were used and randomly divided into five groups with twelve animals each. Groups were distributed as follows: skin flap surgery non-irradiated group as a control; skin flap surgery irradiated with 660 nm laser at a fluence of 30 or 40 J/cm2 and skin flap surgery irradiated with 780 nm laser at a fluence of 30 or 40 J/cm2. The random skin flap was performed measuring 10 × 4 cm, with a plastic sheet interposed between the flap and the donor site. Laser irradiation was performed on 24 points covering the flap and surrounding skin immediately after the surgery and for 7 consecutive days thereafter. Tissues were collected, and the number of vessels, angiogenesis markers (vascular endothelial growth factor, VEGF and hypoxia inducible factor, HIF-1α) and a tissue remodeling marker (matrix metalloproteinase, MMP-2) were analyzed. LLLT increased an angiogenesis, HIF-1α and VEGF expression and decrease MMP-2 activity. These phenomena were dependent on the fluences, and wavelengths used. In this study we showed that LLLT may improve the healing of skin flaps by enhancing the amount of new vessels formed in the tissue. Both 660 nm and 780 nm lasers were able to modulate VEGF secretion, MMP-2 activity and HIF-1α expression in a dose dependent manner. PMID:23831843
Warning: This keyboard will deconstruct--the role of the keyboard in skilled typewriting.
Crump, Matthew J C; Logan, Gordon D
2010-06-01
Skilled actions are commonly assumed to be controlled by precise internal schemas or cognitive maps. We challenge these ideas in the context of skilled typing, where prominent theories assume that typing is controlled by a well-learned cognitive map that plans finger movements without feedback. In two experiments, we demonstrate that online physical interaction with the keyboard critically mediates typing skill. Typists performed single-word and paragraph typing tasks on a regular keyboard, a laser-projection keyboard, and two deconstructed keyboards, made by removing successive layers of a regular keyboard. Averaged over the laser and deconstructed keyboards, response times for the first keystroke increased by 37%, the interval between keystrokes increased by 120%, and error rate increased by 177%, relative to those of the regular keyboard. A schema view predicts no influence of external motor feedback, because actions could be planned internally with high precision. We argue that the expert knowledge mediating action control emerges during online interaction with the physical environment.
Random bits, true and unbiased, from atmospheric turbulence
Marangon, Davide G.; Vallone, Giuseppe; Villoresi, Paolo
2014-01-01
Random numbers represent a fundamental ingredient for secure communications and numerical simulation as well as to games and in general to Information Science. Physical processes with intrinsic unpredictability may be exploited to generate genuine random numbers. The optical propagation in strong atmospheric turbulence is here taken to this purpose, by observing a laser beam after a 143 km free-space path. In addition, we developed an algorithm to extract the randomness of the beam images at the receiver without post-processing. The numbers passed very selective randomness tests for qualification as genuine random numbers. The extracting algorithm can be easily generalized to random images generated by different physical processes. PMID:24976499
Bullen, A; Patel, S S; Saggau, P
1997-07-01
The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.
Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers.
Hu, Han-Wen; Haider, Golam; Liao, Yu-Ming; Roy, Pradip Kumar; Ravindranath, Rini; Chang, Huan-Tsung; Lu, Cheng-Hsin; Tseng, Chang-Yang; Lin, Tai-Yung; Shih, Wei-Heng; Chen, Yang-Fang
2017-11-01
A stretchable, flexible, and bendable random laser system capable of lasing in a wide range of spectrum will have many potential applications in next- generation technologies, such as visible-spectrum communication, superbright solid-state lighting, biomedical studies, fluorescence, etc. However, producing an appropriate cavity for such a wide spectral range remains a challenge owing to the rigidity of the resonator for the generation of coherent loops. 2D materials with wrinkled structures exhibit superior advantages of high stretchability and a suitable matrix for photon trapping in between the hill and valley geometries compared to their flat counterparts. Here, the intriguing functionalities of wrinkled reduced graphene oxide, single-layer graphene, and few-layer hexagonal boron nitride, respectively, are utilized to design highly stretchable and wearable random laser devices with ultralow threshold. Using methyl-ammonium lead bromide perovskite nanocrystals (PNC) to illustrate the working principle, the lasing threshold is found to be ≈10 µJ cm -2 , about two times less than the lowest value ever reported. In addition to PNC, it is demonstrated that the output lasing wavelength can be tuned using different active materials such as semiconductor quantum dots. Thus, this study is very useful for the future development of high-performance wearable optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bullen, A; Patel, S S; Saggau, P
1997-01-01
The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging. Images FIGURE 6 PMID:9199810
Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses
NASA Astrophysics Data System (ADS)
Veiko, Vadim; Karlagina, Yulia; Moskvin, Mikhail; Mikhailovskii, Vladimir; Odintsova, Galina; Olshin, Pavel; Pankin, Dmitry; Romanov, Valery; Yatsuk, Roman
2017-09-01
In this work, we studied a method of laser-induced coloration of metals, where small-scale spatially periodic structures play a key role in the process of color formation. The formation of such structures on a surface of AISI 304 stainless steel was demonstrated for the 1.06 μm fiber laser with nanosecond duration of pulses and random (elliptical) polarization. The color of the surface depends on the period, height and orientation of periodic surface structures. Adjustment of the polarization of the laser radiation or change of laser incidence angle can be used to control the orientation of the structures. The formation of markings that change their color under the different viewing angles becomes possible. The potential application of the method is metal product protection against falsification.
In Vitro UV-Visible Spectroscopy Study of Yellow Laser Irradiation on Human Blood
NASA Astrophysics Data System (ADS)
Fuad, Siti Sakinah Mohd; Suardi, N.; Mustafa, I. S.
2018-04-01
This experimental study was performed to investigate the effect of low level yellow laser of 589nm wavelength with various laser irradiation time. Human blood samples with random diseases are irradiated with yellow laser of power density of 450mW/cm2 from 10 minutes to 60 minutes at 10 minutes intervals. The morphology of the red blood cell were also observed for different irradiation time. The result shows that there is a significant different in the absorption of light with varying laser irradiation time (p<0.01). The maximum absorption recorded at 40 minutes of irradiation at 340nm peak. Blood smear of the samples reveals that there are observable changes in the morphology of the red blood cell at 40 minutes and 60 minutes of irradiation.
Schomacker, Kevin T.; Basilavecchio, Lisa D.; Plugis, Jessica M.; Bhawalkar, Jayant D.
2015-01-01
Background and Objectives Although nanosecond‐domain lasers have been the mainstay of laser tattoo removal for decades, recent disruptive innovations in laser design have introduced a new class of commercial Q‐switched lasers that generate picosecond‐domain pulses. Study A picosecond‐domain, Nd:YAG laser with a KTP frequency‐doubling crystal was used to treat 31 decorative tattoos in 21 subjects. Safety and effectiveness were determined by blinded evaluation of digital images in this prospective clinical study. Results The average clearance overall as evaluated by blinded observers evaluating randomized digital photographs was 79 ± 0.9% (mean ± sem) after an average of 6.5 treatments. Of the 31 tattoos completing treatment, 6 had evidence of mild hyper‐ or hypo‐pigmentation by evaluation of photographs. Conclusion The 350 picosecond, 532 nm, and 450 picosecond 1,064 nm Nd:YAG laser is safe and effective for removing decorative tattoos. Lasers Surg. Med. 47:542–548, 2015. © 2015 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. PMID:26175187
Controllable lasing performance in solution-processed organic-inorganic hybrid perovskites.
Kao, Tsung Sheng; Chou, Yu-Hsun; Hong, Kuo-Bin; Huang, Jiong-Fu; Chou, Chun-Hsien; Kuo, Hao-Chung; Chen, Fang-Chung; Lu, Tien-Chang
2016-11-03
Solution-processed organic-inorganic perovskites are fascinating due to their remarkable photo-conversion efficiency and great potential in the cost-effective, versatile and large-scale manufacturing of optoelectronic devices. In this paper, we demonstrate that the perovskite nanocrystal sizes can be simply controlled by manipulating the precursor solution concentrations in a two-step sequential deposition process, thus achieving the feasible tunability of excitonic properties and lasing performance in hybrid metal-halide perovskites. The lasing threshold is at around 230 μJ cm -2 in this solution-processed organic-inorganic lead-halide material, which is comparable to the colloidal quantum dot lasers. The efficient stimulated emission originates from the multiple random scattering provided by the micro-meter scale rugged morphology and polycrystalline grain boundaries. Thus the excitonic properties in perovskites exhibit high correlation with the formed morphology of the perovskite nanocrystals. Compared to the conventional lasers normally serving as a coherent light source, the perovskite random lasers are promising in making low-cost thin-film lasing devices for flexible and speckle-free imaging applications.
Kinetic model of mass transfer through gas liquid interface in laser surface alloying
NASA Astrophysics Data System (ADS)
Gnedovets, A. G.; Portnov, O. M.; Smurov, I.; Flamant, G.
1997-02-01
In laser surface alloying from gas atmosphere neither surface concentration nor the flux of the alloying elements are known beforehand. They should be determined from the combined solution of heat and mass transfer equations with an account for the kinetics of interaction of a gas with a melt. Kinetic theory description of mass transfer through the gas-liquid interface is applied to the problem of laser surface alloying of iron from the atmosphere of molecular nitrogen. The activation nature of gas molecules dissociation at the surface is considered. It is shown that under pulsed-periodic laser action the concentration profiles of the alloying element have maxima situated close to the surface of the metal. The efficiency of surface alloying increases steeply under laser-plasma conditions which results in the formation of highly supersaturated gas solutions in the metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuchina, E S; Petrov, P O; Kozina, K V
The effect of NIR laser radiation (808 nm) and gold nanorods on the cells of two strains of Staphylococcus aureus, one of them being methicillin-sensitive and the other being methicillinresistant, is studied. Nanorods having the dimensions 10 × 44 nm with the absorption maximum in the NIR spectral region, functionalised with human immunoglobulins IgA and IgG, are synthesised. It is shown that the use of nanoparticles in combination with NIR irradiation leads to killing up to 97% of the population of microorganisms. (laser biophotonics)
Krupke, W.F.
1975-10-31
A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.
Studies of copper and gold vapour lasers
NASA Astrophysics Data System (ADS)
Clark, Graeme Lawrence
The work described in this thesis covers various aspects of pulsed copper and gold vapour lasers. The work is divided into four main parts : a computer model of the kinetics of the copper vapour laser discharge; construction and characterization of a copper vapour laser and a gold vapour laser system (to be used for photodynamic cancer treatment); analysis of the thermal processes occurring in the various forms of thermal insulation used in these lasers; and studies of the use of metal walls to confine a discharge plasma. The results of this work were combined in the design of the first copper vapour laser to use metal rather than an electrically insulating ceramic material for confinement of the discharge plasma. Laser action in copper vapour has been achieved in a number of metal-walled designs, with continuous lengths of metal ranging from 30 mm, in a segmented design, to 400 mm, where the discharge plasma was confined by two molybdenum tubes of this length. A theoretical explanation of the behaviour of plasmas in metal-walled discharge vessels is described.
Fiber-coupled three-micron pulsed laser source for CFRP laser treatment
NASA Astrophysics Data System (ADS)
Nyga, Sebastian; Blass, David; Katzy, Veronika; Westphalen, Thomas; Jungbluth, Bernd; Hoffmann, Hans-Dieter
2018-02-01
We present a laser source providing up to 18 W and 1.5 mJ at a wavelength of 3 μm. The output is generated by frequency conversion of randomly polarized multimode radiation at 1064 nm of an Nd:YAG laser in a two-stage conversion setup. The frequency converter comprises an optical parametric oscillator and a subsequent optical parametric amplifier using PPLN as nonlinear medium in both stages. To implement fiber-based beam delivery for materials processing, we coupled the output at 3 μm to a multimode ZrF4-fiber. This source was then used to remove epoxy resin from the surface of CFRP samples.
Experimental aspects concerning the laser action on the living tissue
NASA Astrophysics Data System (ADS)
Ciuchita, Tavi; Antipa, Ciprian; Stanescu, Constantin S.; Anghel, Sorin; Calugareanu, Mircea
2001-06-01
The paper presents some experimental methods of the treatment and investigation aspects and results concerning the interaction of the low energy laser (LEL) with living tissue in the treatment of some skin diseases: lichen ruber planus (LP) and infectious finger pulpits (IFP), scalp alopecia (SA) and crural ulcers (CU). We concluded that LEL therapy is a useful complementary method in the treatments of these skin diseases .
Quantum Electronics in the UK. A National-Survey Conference.
1985-10-30
flashlamp pumped chromium action, including transitions in dopants doped gadolinium /scandium/gallium garnet which have not previously shown laser lasers...frac- factors that limit performance. They ture. The Southampton scientists fabri - concluded that excited state absorption, cated the fibers by a...topics such as transverse power on the long wavelength side of a switching waves and cross-talk of bista- Fabry -Perot resonance peak at 844 nm, ble
Environmental Assessment for Airborne Laser Debris Management Vandenberg Air Force Base, California
2008-07-01
hazardous waste management, water resources, air quality, and biological resources. Based on the analysis of the Proposed Action and No-Action...aesthetics, hazardous materials management, soils and geology, noise, cultural resources, and environmental justice. The resources analyzed in more detail...include: health and safety, hazardous waste management, water resources, air quality, and biological resources. Environmental Effects Under the
Quantum-dot saturable absorber and Kerr-lens mode-locked Yb:KGW laser with >450 kW of peak power.
Akbari, R; Zhao, H; Fedorova, K A; Rafailov, E U; Major, A
2016-08-15
The hybrid action of quantum-dot saturable absorber and Kerr-lens mode locking in a diode-pumped Yb:KGW laser was demonstrated. Using a quantum-dot saturable absorber with a 0.7% (0.5%) modulation depth, the mode-locked laser delivered 90 fs (93 fs) pulses with 3.2 W (2.9 W) of average power at the repetition rate of 77 MHz, corresponding to 462 kW (406 kW) of peak power and 41 nJ (38 nJ) of pulse energy. To the best of our knowledge, this represents the highest average and peak powers generated to date from quantum-dot saturable absorber-based mode-locked lasers.
Esnal, I; Duran-Sampedro, G; Agarrabeitia, A R; Bañuelos, J; García-Moreno, I; Macías, M A; Peña-Cabrera, E; López-Arbeloa, I; de la Moya, S; Ortiz, M J
2015-03-28
Linking amino and hydroxycoumarins to BODIPYs through the amino or hydroxyl group lets the easy construction of unprecedented photostable coumarin-BODIPY hybrids with broadened and enhanced absorption in the UV spectral region, and outstanding wavelength-tunable laser action within the green-to-red spectral region (∼520-680 nm). These laser dyes allow the generation of a valuable tunable UV (∼260-350 nm) laser source by frequency doubling, which is essential to study accurately the photochemistry of biological molecules under solar irradiation. The tunability is achieved by selecting the substitution pattern of the hybrid. Key factors are the linking heteroatom (nitrogen vs. oxygen), the number of coumarin units joined to the BODIPY framework and the involved linking positions.
Modal gain characteristics of a 2 μm InGaSb/AlGaAsSb passively mode-locked quantum well laser
NASA Astrophysics Data System (ADS)
Li, Xiang; Wang, Hong; Qiao, Zhongliang; Guo, Xin; Ng, Geok Ing; Zhang, Yu; Niu, Zhichuan; Tong, Cunzhu; Liu, Chongyang
2017-12-01
Passive mode locking with a fundamental repetition rate at ˜18.46 GHz is demonstrated in a two-section InGaSb/AlGaAsSb quantum well laser emitting at 2 μm. Modal gain characteristics of the laser are investigated by performing the Hakki-Paoli method to gain better insight into the impact of the absorber bias voltage (Va) on the light output. The lasing action moves to longer wavelengths markedly with increasing negative Va. The light output contains more longitudinal modes in the mode locking regime if the gain bandwidth is larger at a certain Va. Our findings provide guidelines for output characteristics of the mode-locked laser.
[Laser therapy and famotidine in complex restorative treatment of primary chronic gastroduodenitis].
Filimonov, R M; Musaeva, O M
2003-01-01
Primary chronic gastroduodenitis (PCG) is one of the most frequent diseases of the gastrointestinal tract. Timely and efficient treatment of patients with PCG promotes ulcer prevention. In this connection, an urgent problem of restorative medicine is to develop medical programs with active introduction of pharmacophysiotherapeutic complexes, in particular, laser therapy and anti-secretory preparation (famotidine) that increase therapeutic efficacy of treatment of this disease. To this end, we give results of treatment of 50 patients with primary chronic gastroduodenitis (26 having undergone laser therapy only, and 24 having had a combination of laser therapy and famotidine), which demonstrated that the complex action method has a more adequate effect on pathogenetic components in this disease than monotherapy.
Revision of the criterion to avoid electron heating during laser aided plasma diagnostics (LAPD)
NASA Astrophysics Data System (ADS)
Carbone, E. A. D.; Palomares, J. M.; Hübner, S.; Iordanova, E.; van der Mullen, J. J. A. M.
2012-01-01
A criterion is given for the laser fluency (in J/m2) such that, when satisfied, disturbance of the plasma by the laser is avoided. This criterion accounts for laser heating of the electron gas intermediated by electron-ion (ei) and electron-atom (ea) interactions. The first heating mechanism is well known and was extensively dealt with in the past. The second is often overlooked but of importance for plasmas of low degree of ionization. It is especially important for cold atmospheric plasmas, plasmas that nowadays stand in the focus of attention. The new criterion, based on the concerted action of both ei and ea interactions is validated by Thomson scattering experiments performed on four different plasmas.
NASA Technical Reports Server (NTRS)
Borenstein, M.
1972-01-01
A classical model for laser action is discussed, in which an active medium consisting of anharmonic oscillators interacts with an electromagnetic field in a resonant cavity. Comparison with the case of a medium consisting of harmonic oscillators shows the significance of nonlinearities for producing self-sustained oscillations in the radiation field. A theoretical model is presented for the pressure dependence of the intensity of a gas laser, in which only velocity-changing collisions with foreign gas atoms are included. A collision model for hard sphere, repulsive interactions was derived. Collision theory was applied to a third-order expansion of the polarization in powers of the cavity electric field (weak signal theory).
Bischel, William K. [Menlo Park, CA; Jacobs, Ralph R. [Livermore, CA; Prosnitz, Donald [Hamden, CT; Rhodes, Charles K. [Palo Alto, CA; Kelly, Patrick J. [Fort Lewis, WA
1979-02-20
Method and apparatus for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH.sub.3) or methyl fluoride (CH.sub.3 F) is optically pumped by a pair of CO.sub.2 lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level.
Bischel, W.K.; Jacobs, R.R.; Prosnitz, D.P.; Rhodes, C.K.; Kelly, P.J.
1979-02-20
Method and apparatus are disclosed for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH[sub 3]) or methyl fluoride (CH[sub 3]F) is optically pumped by a pair of CO[sub 2] lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level. 3 figs.
NASA Astrophysics Data System (ADS)
Spanemberg, Juliana Cassol; López, José López; de Figueiredo, Maria Antonia Zancanaro; Cherubini, Karen; Salum, Fernanda Gonçalves
2015-09-01
The aim of the present study was to assess the effect of low-level laser therapy (LLLT) in the treatment of burning mouth syndrome (BMS). A diode laser was used in 78 BMS patients who were randomly assigned into four groups: IR1W, n=20 (830 nm, 100 mW, 5 J, 176 J/cm2, 50 s, LLLT weekly sessions, 10 sessions); IR3W, n=20 (830 nm, 100 mW, 5 J, 176 J/cm2, 50 s, three LLLT weekly sessions, 9 sessions); red laser, n=19 (685 nm, 35 mW, 2 J, 72 J/cm2, 58 s, three LLLT weekly sessions, 9 sessions); and control-group (CG), n=19. Symptoms were assessed at the end of the treatment and eight weeks later; quality of life related to oral health was assessed using the Oral Health Impact Profile (OHIP-14). Statistical analysis was carried out using repeated measures analysis of variance followed by the posthoc Tukey test. There was significant reduction of the symptoms in all groups at the end of the treatment, which was maintained in the follow-up. The scores of the IR1W and IR3W laser groups differed significantly from those of the CG. There was also a decrease in the OHIP-14 scores in the four groups. The IR3W laser group scores differed significantly from those of the CG. LLLT reduces the symptoms of BMS and may be an alternative therapeutic strategy for the relief of symptoms in patients with BMS.
Kellesarian, Sergio Varela; Malignaggi, Vanessa Ros; Majoka, Hasham Abdullah; Al-Kheraif, Abdulaziz A; Kellesarian, Tammy Varela; Romanos, Georgios E; Javed, Fawad
2017-06-01
The aim of the present systematic review was to assess the efficacy of laser-assisted (low level laser therapy [LLLT], high intensity laser therapy [HILT], or antimicrobial photodynamic therapy [aPDT]) scaling and root planing (SRP) compared with SRP alone on the expression of inflammatory cytokines in the gingival crevicular (GCF) of patients with chronic periodontitis (CP). In order to address the focused question: "What is the efficacy of SRP with and without laser and/or aPDT on the expression of pro-inflammatory cytokines in the GCF of patients with CP?" an electronic search without time or language restrictions was conducted up to and including February 2017 in indexed databases using various key words. Twenty-two randomized control trials were included in the present systematic review. Nine studies and six studies assessed the efficacy of LLLT and HILT, as adjunct to SRP, respectively. Seven studies assessed the efficacy of aPDT as adjunct to SRP on down-regulating the expression of pro-inflammatory cytokines in the GCF among patients with CP. The outcomes of the studies included based upon the reduction in the levels of pro-inflammatory cytokines were inconsistent. The role of laser-assisted SRP on the expression of pro-inflammatory cytokines in the GCF of patients with CP remains unclear. Further long term and well-designed randomized clinical trials are needed in this regard. Copyright © 2017 Elsevier B.V. All rights reserved.