Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors
NASA Astrophysics Data System (ADS)
Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay
2017-11-01
Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α , the appropriate FRCG model has the effective range d =b2/N =α2/N , for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.
Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors.
Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay
2017-11-01
Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.
Convergence in High Probability of the Quantum Diffusion in a Random Band Matrix Model
NASA Astrophysics Data System (ADS)
Margarint, Vlad
2018-06-01
We consider Hermitian random band matrices H in d ≥slant 1 dimensions. The matrix elements H_{xy}, indexed by x, y \\in Λ \\subset Z^d, are independent, uniformly distributed random variable if |x-y| is less than the band width W, and zero otherwise. We update the previous results of the converge of quantum diffusion in a random band matrix model from convergence of the expectation to convergence in high probability. The result is uniformly in the size |Λ| of the matrix.
On Connected Diagrams and Cumulants of Erdős-Rényi Matrix Models
NASA Astrophysics Data System (ADS)
Khorunzhiy, O.
2008-08-01
Regarding the adjacency matrices of n-vertex graphs and related graph Laplacian we introduce two families of discrete matrix models constructed both with the help of the Erdős-Rényi ensemble of random graphs. Corresponding matrix sums represent the characteristic functions of the average number of walks and closed walks over the random graph. These sums can be considered as discrete analogues of the matrix integrals of random matrix theory. We study the diagram structure of the cumulant expansions of logarithms of these matrix sums and analyze the limiting expressions as n → ∞ in the cases of constant and vanishing edge probabilities.
Unifying model for random matrix theory in arbitrary space dimensions
NASA Astrophysics Data System (ADS)
Cicuta, Giovanni M.; Krausser, Johannes; Milkus, Rico; Zaccone, Alessio
2018-03-01
A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension d , and for arbitrary values of the lattice coordination number Z , are shown and discussed. As a function of these two parameters (and their ratio Z /d ), the most studied models in random matrix theory (Erdos-Renyi graphs, effective medium, and replicas) can be reproduced in the various limits of block dimensionality d . Remarkably, the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is reproduced exactly in the limit of infinite size of the blocks, or d →∞ , which clarifies the physical meaning of space dimension in these models. We feel that the approximate results for d =3 provided by our method may have many potential applications in the future, from the vibrational spectrum of glasses and elastic networks to wave localization, disordered conductors, random resistor networks, and random walks.
Chaos and random matrices in supersymmetric SYK
NASA Astrophysics Data System (ADS)
Hunter-Jones, Nicholas; Liu, Junyu
2018-05-01
We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.
Gravitational lensing by eigenvalue distributions of random matrix models
NASA Astrophysics Data System (ADS)
Martínez Alonso, Luis; Medina, Elena
2018-05-01
We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.
QCD-inspired spectra from Blue's functions
NASA Astrophysics Data System (ADS)
Nowak, Maciej A.; Papp, Gábor; Zahed, Ismail
1996-02-01
We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether through symmetries or models. In terms of the Blue's functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter.
Symmetry Transition Preserving Chirality in QCD: A Versatile Random Matrix Model
NASA Astrophysics Data System (ADS)
Kanazawa, Takuya; Kieburg, Mario
2018-06-01
We consider a random matrix model which interpolates between the chiral Gaussian unitary ensemble and the Gaussian unitary ensemble while preserving chiral symmetry. This ensemble describes flavor symmetry breaking for staggered fermions in 3D QCD as well as in 4D QCD at high temperature or in 3D QCD at a finite isospin chemical potential. Our model is an Osborn-type two-matrix model which is equivalent to the elliptic ensemble but we consider the singular value statistics rather than the complex eigenvalue statistics. We report on exact results for the partition function and the microscopic level density of the Dirac operator in the ɛ regime of QCD. We compare these analytical results with Monte Carlo simulations of the matrix model.
Random matrix ensembles for many-body quantum systems
NASA Astrophysics Data System (ADS)
Vyas, Manan; Seligman, Thomas H.
2018-04-01
Classical random matrix ensembles were originally introduced in physics to approximate quantum many-particle nuclear interactions. However, there exists a plethora of quantum systems whose dynamics is explained in terms of few-particle (predom-inantly two-particle) interactions. The random matrix models incorporating the few-particle nature of interactions are known as embedded random matrix ensembles. In the present paper, we provide a brief overview of these two ensembles and illustrate how the embedded ensembles can be successfully used to study decoherence of a qubit interacting with an environment, both for fermionic and bosonic embedded ensembles. Numerical calculations show the dependence of decoherence on the nature of the environment.
NASA Astrophysics Data System (ADS)
Méndez-Bermúdez, J. A.; Gopar, Victor A.; Varga, Imre
2010-09-01
We study numerically scattering and transport statistical properties of the one-dimensional Anderson model at the metal-insulator transition described by the power-law banded random matrix (PBRM) model at criticality. Within a scattering approach to electronic transport, we concentrate on the case of a small number of single-channel attached leads. We observe a smooth crossover from localized to delocalized behavior in the average-scattering matrix elements, the conductance probability distribution, the variance of the conductance, and the shot noise power by varying b (the effective bandwidth of the PBRM model) from small (b≪1) to large (b>1) values. We contrast our results with analytic random matrix theory predictions which are expected to be recovered in the limit b→∞ . We also compare our results for the PBRM model with those for the three-dimensional (3D) Anderson model at criticality, finding that the PBRM model with bɛ[0.2,0.4] reproduces well the scattering and transport properties of the 3D Anderson model.
Universality in chaos: Lyapunov spectrum and random matrix theory.
Hanada, Masanori; Shimada, Hidehiko; Tezuka, Masaki
2018-02-01
We propose the existence of a new universality in classical chaotic systems when the number of degrees of freedom is large: the statistical property of the Lyapunov spectrum is described by random matrix theory. We demonstrate it by studying the finite-time Lyapunov exponents of the matrix model of a stringy black hole and the mass-deformed models. The massless limit, which has a dual string theory interpretation, is special in that the universal behavior can be seen already at t=0, while in other cases it sets in at late time. The same pattern is demonstrated also in the product of random matrices.
Universality in chaos: Lyapunov spectrum and random matrix theory
NASA Astrophysics Data System (ADS)
Hanada, Masanori; Shimada, Hidehiko; Tezuka, Masaki
2018-02-01
We propose the existence of a new universality in classical chaotic systems when the number of degrees of freedom is large: the statistical property of the Lyapunov spectrum is described by random matrix theory. We demonstrate it by studying the finite-time Lyapunov exponents of the matrix model of a stringy black hole and the mass-deformed models. The massless limit, which has a dual string theory interpretation, is special in that the universal behavior can be seen already at t =0 , while in other cases it sets in at late time. The same pattern is demonstrated also in the product of random matrices.
The feasibility and stability of large complex biological networks: a random matrix approach.
Stone, Lewi
2018-05-29
In the 70's, Robert May demonstrated that complexity creates instability in generic models of ecological networks having random interaction matrices A. Similar random matrix models have since been applied in many disciplines. Central to assessing stability is the "circular law" since it describes the eigenvalue distribution for an important class of random matrices A. However, despite widespread adoption, the "circular law" does not apply for ecological systems in which density-dependence operates (i.e., where a species growth is determined by its density). Instead one needs to study the far more complicated eigenvalue distribution of the community matrix S = DA, where D is a diagonal matrix of population equilibrium values. Here we obtain this eigenvalue distribution. We show that if the random matrix A is locally stable, the community matrix S = DA will also be locally stable, providing the system is feasible (i.e., all species have positive equilibria D > 0). This helps explain why, unusually, nearly all feasible systems studied here are locally stable. Large complex systems may thus be even more fragile than May predicted, given the difficulty of assembling a feasible system. It was also found that the degree of stability, or resilience of a system, depended on the minimum equilibrium population.
NASA Astrophysics Data System (ADS)
Olekhno, N. A.; Beltukov, Y. M.
2018-05-01
Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric and other two-component nanocomposites. In the present work, the spectral properties of resonances in random networks are studied within the framework of the random matrix theory. We have shown that the appropriate ensemble of random matrices for the considered problem is the Jacobi ensemble (the MANOVA ensemble). The obtained analytical expressions for the density of states in such resonant networks show a good agreement with the results of numerical simulations in a wide range of metal filling fractions 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altmeyer, Michaela; Guterding, Daniel; Hirschfeld, P. J.
2016-12-21
In the framework of a multiorbital Hubbard model description of superconductivity, a matrix formulation of the superconducting pairing interaction that has been widely used is designed to treat spin, charge, and orbital fluctuations within a random phase approximation (RPA). In terms of Feynman diagrams, this takes into account particle-hole ladder and bubble contributions as expected. It turns out, however, that this matrix formulation also generates additional terms which have the diagrammatic structure of vertex corrections. Furthermore we examine these terms and discuss the relationship between the matrix-RPA superconducting pairing interaction and the Feynman diagrams that it sums.
Random matrices and the New York City subway system
NASA Astrophysics Data System (ADS)
Jagannath, Aukosh; Trogdon, Thomas
2017-09-01
We analyze subway arrival times in the New York City subway system. We find regimes where the gaps between trains are well modeled by (unitarily invariant) random matrix statistics and Poisson statistics. The departure from random matrix statistics is captured by the value of the Coulomb potential along the subway route. This departure becomes more pronounced as trains make more stops.
Spectral statistics of random geometric graphs
NASA Astrophysics Data System (ADS)
Dettmann, C. P.; Georgiou, O.; Knight, G.
2017-04-01
We use random matrix theory to study the spectrum of random geometric graphs, a fundamental model of spatial networks. Considering ensembles of random geometric graphs we look at short-range correlations in the level spacings of the spectrum via the nearest-neighbour and next-nearest-neighbour spacing distribution and long-range correlations via the spectral rigidity Δ3 statistic. These correlations in the level spacings give information about localisation of eigenvectors, level of community structure and the level of randomness within the networks. We find a parameter-dependent transition between Poisson and Gaussian orthogonal ensemble statistics. That is the spectral statistics of spatial random geometric graphs fits the universality of random matrix theory found in other models such as Erdős-Rényi, Barabási-Albert and Watts-Strogatz random graphs.
Aspects géométriques et intégrables des modèles de matrices aléatoires
NASA Astrophysics Data System (ADS)
Marchal, Olivier
2010-12-01
This thesis deals with the geometric and integrable aspects associated with random matrix models. Its purpose is to provide various applications of random matrix theory, from algebraic geometry to partial differential equations of integrable systems. The variety of these applications shows why matrix models are important from a mathematical point of view. First, the thesis will focus on the study of the merging of two intervals of the eigenvalues density near a singular point. Specifically, we will show why this special limit gives universal equations from the Painlevé II hierarchy of integrable systems theory. Then, following the approach of (bi) orthogonal polynomials introduced by Mehta to compute partition functions, we will find Riemann-Hilbert and isomonodromic problems connected to matrix models, making the link with the theory of Jimbo, Miwa and Ueno. In particular, we will describe how the hermitian two-matrix models provide a degenerate case of Jimbo-Miwa-Ueno's theory that we will generalize in this context. Furthermore, the loop equations method, with its central notions of spectral curve and topological expansion, will lead to the symplectic invariants of algebraic geometry recently proposed by Eynard and Orantin. This last point will be generalized to the case of non-hermitian matrix models (arbitrary beta) paving the way to "quantum algebraic geometry" and to the generalization of symplectic invariants to "quantum curves". Finally, this set up will be applied to combinatorics in the context of topological string theory, with the explicit computation of an hermitian random matrix model enumerating the Gromov-Witten invariants of a toric Calabi-Yau threefold.
Disentangling giant component and finite cluster contributions in sparse random matrix spectra.
Kühn, Reimer
2016-04-01
We describe a method for disentangling giant component and finite cluster contributions to sparse random matrix spectra, using sparse symmetric random matrices defined on Erdős-Rényi graphs as an example and test bed. Our methods apply to sparse matrices defined in terms of arbitrary graphs in the configuration model class, as long as they have finite mean degree.
Zero-inflated count models for longitudinal measurements with heterogeneous random effects.
Zhu, Huirong; Luo, Sheng; DeSantis, Stacia M
2017-08-01
Longitudinal zero-inflated count data arise frequently in substance use research when assessing the effects of behavioral and pharmacological interventions. Zero-inflated count models (e.g. zero-inflated Poisson or zero-inflated negative binomial) with random effects have been developed to analyze this type of data. In random effects zero-inflated count models, the random effects covariance matrix is typically assumed to be homogeneous (constant across subjects). However, in many situations this matrix may be heterogeneous (differ by measured covariates). In this paper, we extend zero-inflated count models to account for random effects heterogeneity by modeling their variance as a function of covariates. We show via simulation that ignoring intervention and covariate-specific heterogeneity can produce biased estimates of covariate and random effect estimates. Moreover, those biased estimates can be rectified by correctly modeling the random effects covariance structure. The methodological development is motivated by and applied to the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study, the largest clinical trial of alcohol dependence performed in United States with 1383 individuals.
Complex Langevin simulation of a random matrix model at nonzero chemical potential
NASA Astrophysics Data System (ADS)
Bloch, J.; Glesaaen, J.; Verbaarschot, J. J. M.; Zafeiropoulos, S.
2018-03-01
In this paper we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass is inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling solves the convergence problems as was shown before in the literature.
A Deep Stochastic Model for Detecting Community in Complex Networks
NASA Astrophysics Data System (ADS)
Fu, Jingcheng; Wu, Jianliang
2017-01-01
Discovering community structures is an important step to understanding the structure and dynamics of real-world networks in social science, biology and technology. In this paper, we develop a deep stochastic model based on non-negative matrix factorization to identify communities, in which there are two sets of parameters. One is the community membership matrix, of which the elements in a row correspond to the probabilities of the given node belongs to each of the given number of communities in our model, another is the community-community connection matrix, of which the element in the i-th row and j-th column represents the probability of there being an edge between a randomly chosen node from the i-th community and a randomly chosen node from the j-th community. The parameters can be evaluated by an efficient updating rule, and its convergence can be guaranteed. The community-community connection matrix in our model is more precise than the community-community connection matrix in traditional non-negative matrix factorization methods. Furthermore, the method called symmetric nonnegative matrix factorization, is a special case of our model. Finally, based on the experiments on both synthetic and real-world networks data, it can be demonstrated that our algorithm is highly effective in detecting communities.
On the equilibrium state of a small system with random matrix coupling to its environment
NASA Astrophysics Data System (ADS)
Lebowitz, J. L.; Pastur, L.
2015-07-01
We consider a random matrix model of interaction between a small n-level system, S, and its environment, a N-level heat reservoir, R. The interaction between S and R is modeled by a tensor product of a fixed n× n matrix and a N× N Hermitian random matrix. We show that under certain ‘macroscopicity’ conditions on R, the reduced density matrix of the system {{ρ }S}=T{{r}R}ρ S\\cup R(eq), is given by ρ S(c)˜ exp \\{-β {{H}S}\\}, where HS is the Hamiltonian of the isolated system. This holds for all strengths of the interaction and thus gives some justification for using ρ S(c) to describe some nano-systems, like biopolymers, in equilibrium with their environment (Seifert 2012 Rep. Prog. Phys. 75 126001). Our results extend those obtained previously in (Lebowitz and Pastur 2004 J. Phys. A: Math. Gen. 37 1517-34) (Lebowitz et al 2007 Contemporary Mathematics (Providence RI: American Mathematical Society) pp 199-218) for a special two-level system.
Semiclassical matrix model for quantum chaotic transport with time-reversal symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novaes, Marcel, E-mail: marcel.novaes@gmail.com
2015-10-15
We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.
Exploring multicollinearity using a random matrix theory approach.
Feher, Kristen; Whelan, James; Müller, Samuel
2012-01-01
Clustering of gene expression data is often done with the latent aim of dimension reduction, by finding groups of genes that have a common response to potentially unknown stimuli. However, what is poorly understood to date is the behaviour of a low dimensional signal embedded in high dimensions. This paper introduces a multicollinear model which is based on random matrix theory results, and shows potential for the characterisation of a gene cluster's correlation matrix. This model projects a one dimensional signal into many dimensions and is based on the spiked covariance model, but rather characterises the behaviour of the corresponding correlation matrix. The eigenspectrum of the correlation matrix is empirically examined by simulation, under the addition of noise to the original signal. The simulation results are then used to propose a dimension estimation procedure of clusters from data. Moreover, the simulation results warn against considering pairwise correlations in isolation, as the model provides a mechanism whereby a pair of genes with `low' correlation may simply be due to the interaction of high dimension and noise. Instead, collective information about all the variables is given by the eigenspectrum.
Bi-dimensional null model analysis of presence-absence binary matrices.
Strona, Giovanni; Ulrich, Werner; Gotelli, Nicholas J
2018-01-01
Comparing the structure of presence/absence (i.e., binary) matrices with those of randomized counterparts is a common practice in ecology. However, differences in the randomization procedures (null models) can affect the results of the comparisons, leading matrix structural patterns to appear either "random" or not. Subjectivity in the choice of one particular null model over another makes it often advisable to compare the results obtained using several different approaches. Yet, available algorithms to randomize binary matrices differ substantially in respect to the constraints they impose on the discrepancy between observed and randomized row and column marginal totals, which complicates the interpretation of contrasting patterns. This calls for new strategies both to explore intermediate scenarios of restrictiveness in-between extreme constraint assumptions, and to properly synthesize the resulting information. Here we introduce a new modeling framework based on a flexible matrix randomization algorithm (named the "Tuning Peg" algorithm) that addresses both issues. The algorithm consists of a modified swap procedure in which the discrepancy between the row and column marginal totals of the target matrix and those of its randomized counterpart can be "tuned" in a continuous way by two parameters (controlling, respectively, row and column discrepancy). We show how combining the Tuning Peg with a wise random walk procedure makes it possible to explore the complete null space embraced by existing algorithms. This exploration allows researchers to visualize matrix structural patterns in an innovative bi-dimensional landscape of significance/effect size. We demonstrate the rational and potential of our approach with a set of simulated and real matrices, showing how the simultaneous investigation of a comprehensive and continuous portion of the null space can be extremely informative, and possibly key to resolving longstanding debates in the analysis of ecological matrices. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
QCD dirac operator at nonzero chemical potential: lattice data and matrix model.
Akemann, Gernot; Wettig, Tilo
2004-03-12
Recently, a non-Hermitian chiral random matrix model was proposed to describe the eigenvalues of the QCD Dirac operator at nonzero chemical potential. This matrix model can be constructed from QCD by mapping it to an equivalent matrix model which has the same symmetries as QCD with chemical potential. Its microscopic spectral correlations are conjectured to be identical to those of the QCD Dirac operator. We investigate this conjecture by comparing large ensembles of Dirac eigenvalues in quenched SU(3) lattice QCD at a nonzero chemical potential to the analytical predictions of the matrix model. Excellent agreement is found in the two regimes of weak and strong non-Hermiticity, for several different lattice volumes.
Kaye, T.N.; Pyke, David A.
2003-01-01
Population viability analysis is an important tool for conservation biologists, and matrix models that incorporate stochasticity are commonly used for this purpose. However, stochastic simulations may require assumptions about the distribution of matrix parameters, and modelers often select a statistical distribution that seems reasonable without sufficient data to test its fit. We used data from long-term (5a??10 year) studies with 27 populations of five perennial plant species to compare seven methods of incorporating environmental stochasticity. We estimated stochastic population growth rate (a measure of viability) using a matrix-selection method, in which whole observed matrices were selected at random at each time step of the model. In addition, we drew matrix elements (transition probabilities) at random using various statistical distributions: beta, truncated-gamma, truncated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held constant at their observed mean values. Two methods of constraining stage-specific survival to a??100% were also compared. Different methods of incorporating stochasticity and constraining matrix column sums interacted in their effects and resulted in different estimates of stochastic growth rate (differing by up to 16%). Modelers should be aware that when constraining stage-specific survival to 100%, different methods may introduce different levels of bias in transition element means, and when this happens, different distributions for generating random transition elements may result in different viability estimates. There was no species effect on the results and the growth rates derived from all methods were highly correlated with one another. We conclude that the absolute value of population viability estimates is sensitive to model assumptions, but the relative ranking of populations (and management treatments) is robust. Furthermore, these results are applicable to a range of perennial plants and possibly other life histories.
ERIC Educational Resources Information Center
Cheung, Mike W.-L.; Cheung, Shu Fai
2016-01-01
Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…
Complex Langevin simulation of a random matrix model at nonzero chemical potential
Bloch, Jacques; Glesaaen, Jonas; Verbaarschot, Jacobus J. M.; ...
2018-03-06
In this study we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass ismore » inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling solves the convergence problems as was shown before in the literature.« less
Complex Langevin simulation of a random matrix model at nonzero chemical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloch, Jacques; Glesaaen, Jonas; Verbaarschot, Jacobus J. M.
In this study we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass ismore » inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling solves the convergence problems as was shown before in the literature.« less
Holmes, John B; Dodds, Ken G; Lee, Michael A
2017-03-02
An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.
Significance Testing in Confirmatory Factor Analytic Models.
ERIC Educational Resources Information Center
Khattab, Ali-Maher; Hocevar, Dennis
Traditionally, confirmatory factor analytic models are tested against a null model of total independence. Using randomly generated factors in a matrix of 46 aptitude tests, this approach is shown to be unlikely to reject even random factors. An alternative null model, based on a single general factor, is suggested. In addition, an index of model…
Partial transpose of random quantum states: Exact formulas and meanders
NASA Astrophysics Data System (ADS)
Fukuda, Motohisa; Śniady, Piotr
2013-04-01
We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.
NASA Astrophysics Data System (ADS)
Tanimoto, Jun
2016-11-01
Inspired by the commonly observed real-world fact that people tend to behave in a somewhat random manner after facing interim equilibrium to break a stalemate situation whilst seeking a higher output, we established two models of the spatial prisoner's dilemma. One presumes that an agent commits action errors, while the other assumes that an agent refers to a payoff matrix with an added random noise instead of an original payoff matrix. A numerical simulation revealed that mechanisms based on the annealing of randomness due to either the action error or the payoff noise could significantly enhance the cooperation fraction. In this study, we explain the detailed enhancement mechanism behind the two models by referring to the concepts that we previously presented with respect to evolutionary dynamic processes under the names of enduring and expanding periods.
Statistical analysis of effective singular values in matrix rank determination
NASA Technical Reports Server (NTRS)
Konstantinides, Konstantinos; Yao, Kung
1988-01-01
A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.
A random matrix approach to credit risk.
Münnix, Michael C; Schäfer, Rudi; Guhr, Thomas
2014-01-01
We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided.
A Random Matrix Approach to Credit Risk
Guhr, Thomas
2014-01-01
We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided. PMID:24853864
Finding a Hadamard matrix by simulated annealing of spin vectors
NASA Astrophysics Data System (ADS)
Bayu Suksmono, Andriyan
2017-05-01
Reformulation of a combinatorial problem into optimization of a statistical-mechanics system enables finding a better solution using heuristics derived from a physical process, such as by the simulated annealing (SA). In this paper, we present a Hadamard matrix (H-matrix) searching method based on the SA on an Ising model. By equivalence, an H-matrix can be converted into a seminormalized Hadamard (SH) matrix, whose first column is unit vector and the rest ones are vectors with equal number of -1 and +1 called SH-vectors. We define SH spin vectors as representation of the SH vectors, which play a similar role as the spins on Ising model. The topology of the lattice is generalized into a graph, whose edges represent orthogonality relationship among the SH spin vectors. Starting from a randomly generated quasi H-matrix Q, which is a matrix similar to the SH-matrix without imposing orthogonality, we perform the SA. The transitions of Q are conducted by random exchange of {+, -} spin-pair within the SH-spin vectors that follow the Metropolis update rule. Upon transition toward zeroth energy, the Q-matrix is evolved following a Markov chain toward an orthogonal matrix, at which the H-matrix is said to be found. We demonstrate the capability of the proposed method to find some low-order H-matrices, including the ones that cannot trivially be constructed by the Sylvester method.
NASA Astrophysics Data System (ADS)
Duan, Xueyang
The objective of this dissertation is to develop forward scattering models for active microwave remote sensing of natural features represented by layered media with rough interfaces. In particular, soil profiles are considered, for which a model of electromagnetic scattering from multilayer rough surfaces with or without buried random media is constructed. Starting from a single rough surface, radar scattering is modeled using the stabilized extended boundary condition method (SEBCM). This method solves the long-standing instability issue of the classical EBCM, and gives three-dimensional full wave solutions over large ranges of surface roughnesses with higher computational efficiency than pure numerical solutions, e.g., method of moments (MoM). Based on this single surface solution, multilayer rough surface scattering is modeled using the scattering matrix approach and the model is used for a comprehensive sensitivity analysis of the total ground scattering as a function of layer separation, subsurface statistics, and sublayer dielectric properties. The buried inhomogeneities such as rocks and vegetation roots are considered for the first time in the forward scattering model. Radar scattering from buried random media is modeled by the aggregate transition matrix using either the recursive transition matrix approach for spherical or short-length cylindrical scatterers, or the generalized iterative extended boundary condition method we developed for long cylinders or root-like cylindrical clusters. These approaches take the field interactions among scatterers into account with high computational efficiency. The aggregate transition matrix is transformed to a scattering matrix for the full solution to the layered-medium problem. This step is based on the near-to-far field transformation of the numerical plane wave expansion of the spherical harmonics and the multipole expansion of plane waves. This transformation consolidates volume scattering from the buried random medium with the scattering from layered structure in general. Combined with scattering from multilayer rough surfaces, scattering contributions from subsurfaces and vegetation roots can be then simulated. Solutions of both the rough surface scattering and random media scattering are validated numerically, experimentally, or both. The experimental validations have been carried out using a laboratory-based transmit-receive system for scattering from random media and a new bistatic tower-mounted radar system for field-based surface scattering measurements.
Entanglement spectrum of random-singlet quantum critical points
NASA Astrophysics Data System (ADS)
Fagotti, Maurizio; Calabrese, Pasquale; Moore, Joel E.
2011-01-01
The entanglement spectrum (i.e., the full distribution of Schmidt eigenvalues of the reduced density matrix) contains more information than the conventional entanglement entropy and has been studied recently in several many-particle systems. We compute the disorder-averaged entanglement spectrum in the form of the disorder-averaged moments TrρAα̲ of the reduced density matrix ρA for a contiguous block of many spins at the random-singlet quantum critical point in one dimension. The result compares well in the scaling limit with numerical studies on the random XX model and is also expected to describe the (interacting) random Heisenberg model. Our numerical studies on the XX case reveal that the dependence of the entanglement entropy and spectrum on the geometry of the Hilbert space partition is quite different than for conformally invariant critical points.
Random Matrix Approach to Quantum Adiabatic Evolution Algorithms
NASA Technical Reports Server (NTRS)
Boulatov, Alexei; Smelyanskiy, Vadier N.
2004-01-01
We analyze the power of quantum adiabatic evolution algorithms (Q-QA) for solving random NP-hard optimization problems within a theoretical framework based on the random matrix theory (RMT). We present two types of the driven RMT models. In the first model, the driving Hamiltonian is represented by Brownian motion in the matrix space. We use the Brownian motion model to obtain a description of multiple avoided crossing phenomena. We show that the failure mechanism of the QAA is due to the interaction of the ground state with the "cloud" formed by all the excited states, confirming that in the driven RMT models. the Landau-Zener mechanism of dissipation is not important. We show that the QAEA has a finite probability of success in a certain range of parameters. implying the polynomial complexity of the algorithm. The second model corresponds to the standard QAEA with the problem Hamiltonian taken from the Gaussian Unitary RMT ensemble (GUE). We show that the level dynamics in this model can be mapped onto the dynamics in the Brownian motion model. However, the driven RMT model always leads to the exponential complexity of the algorithm due to the presence of the long-range intertemporal correlations of the eigenvalues. Our results indicate that the weakness of effective transitions is the leading effect that can make the Markovian type QAEA successful.
Data-driven probability concentration and sampling on manifold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soize, C., E-mail: christian.soize@univ-paris-est.fr; Ghanem, R., E-mail: ghanem@usc.edu
2016-09-15
A new methodology is proposed for generating realizations of a random vector with values in a finite-dimensional Euclidean space that are statistically consistent with a dataset of observations of this vector. The probability distribution of this random vector, while a priori not known, is presumed to be concentrated on an unknown subset of the Euclidean space. A random matrix is introduced whose columns are independent copies of the random vector and for which the number of columns is the number of data points in the dataset. The approach is based on the use of (i) the multidimensional kernel-density estimation methodmore » for estimating the probability distribution of the random matrix, (ii) a MCMC method for generating realizations for the random matrix, (iii) the diffusion-maps approach for discovering and characterizing the geometry and the structure of the dataset, and (iv) a reduced-order representation of the random matrix, which is constructed using the diffusion-maps vectors associated with the first eigenvalues of the transition matrix relative to the given dataset. The convergence aspects of the proposed methodology are analyzed and a numerical validation is explored through three applications of increasing complexity. The proposed method is found to be robust to noise levels and data complexity as well as to the intrinsic dimension of data and the size of experimental datasets. Both the methodology and the underlying mathematical framework presented in this paper contribute new capabilities and perspectives at the interface of uncertainty quantification, statistical data analysis, stochastic modeling and associated statistical inverse problems.« less
Agarwal, Jayant P; Mendenhall, Shaun D; Anderson, Layla A; Ying, Jian; Boucher, Kenneth M; Liu, Ting; Neumayer, Leigh A
2015-01-01
Recent literature has focused on the advantages and disadvantages of using acellular dermal matrix in breast reconstruction. Many of the reported data are from low level-of-evidence studies, leaving many questions incompletely answered. The present randomized trial provides high-level data on the incidence and severity of complications in acellular dermal matrix breast reconstruction between two commonly used types of acellular dermal matrix. A prospective randomized trial was conducted to compare outcomes of immediate staged tissue expander breast reconstruction using either AlloDerm or DermaMatrix. The impact of body mass index, smoking, diabetes, mastectomy type, radiation therapy, and chemotherapy on outcomes was analyzed. Acellular dermal matrix biointegration was analyzed clinically and histologically. Patient satisfaction was assessed by means of preoperative and postoperative surveys. Logistic regression models were used to identify predictors of complications. This article reports on the study design, surgical technique, patient characteristics, and preoperative survey results, with outcomes data in a separate report. After 2.5 years, we successfully enrolled and randomized 128 patients (199 breasts). The majority of patients were healthy nonsmokers, with 41 percent of patients receiving radiation therapy and 49 percent receiving chemotherapy. Half of the mastectomies were prophylactic, with nipple-sparing mastectomy common in both cancer and prophylactic cases. Preoperative survey results indicate that patients were satisfied with their premastectomy breast reconstruction education. Results from the Breast Reconstruction Evaluation Using Acellular Dermal Matrix as a Sling Trial will assist plastic surgeons in making evidence-based decisions regarding acellular dermal matrix-assisted tissue expander breast reconstruction. Therapeutic, II.
Money creation process in a random redistribution model
NASA Astrophysics Data System (ADS)
Chen, Siyan; Wang, Yougui; Li, Keqiang; Wu, Jinshan
2014-01-01
In this paper, the dynamical process of money creation in a random exchange model with debt is investigated. The money creation kinetics are analyzed by both the money-transfer matrix method and the diffusion method. From both approaches, we attain the same conclusion: the source of money creation in the case of random exchange is the agents with neither money nor debt. These analytical results are demonstrated by computer simulations.
Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.
Saccenti, Edoardo; Timmerman, Marieke E
2017-03-01
Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.
Modeling cometary photopolarimetric characteristics with Sh-matrix method
NASA Astrophysics Data System (ADS)
Kolokolova, L.; Petrov, D.
2017-12-01
Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.
Embedded random matrix ensembles from nuclear structure and their recent applications
NASA Astrophysics Data System (ADS)
Kota, V. K. B.; Chavda, N. D.
Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with k-body random interactions and its relation to the Sachdev-Ye-Kitaev (SYK) model for majorana fermions.
Localized motion in random matrix decomposition of complex financial systems
NASA Astrophysics Data System (ADS)
Jiang, Xiong-Fei; Zheng, Bo; Ren, Fei; Qiu, Tian
2017-04-01
With the random matrix theory, we decompose the multi-dimensional time series of complex financial systems into a set of orthogonal eigenmode functions, which are classified into the market mode, sector mode, and random mode. In particular, the localized motion generated by the business sectors, plays an important role in financial systems. Both the business sectors and their impact on the stock market are identified from the localized motion. We clarify that the localized motion induces different characteristics of the time correlations for the stock-market index and individual stocks. With a variation of a two-factor model, we reproduce the return-volatility correlations of the eigenmodes.
NASA Astrophysics Data System (ADS)
O'Malley, D.; Le, E. B.; Vesselinov, V. V.
2015-12-01
We present a fast, scalable, and highly-implementable stochastic inverse method for characterization of aquifer heterogeneity. The method utilizes recent advances in randomized matrix algebra and exploits the structure of the Quasi-Linear Geostatistical Approach (QLGA), without requiring a structured grid like Fast-Fourier Transform (FFT) methods. The QLGA framework is a more stable version of Gauss-Newton iterates for a large number of unknown model parameters, but provides unbiased estimates. The methods are matrix-free and do not require derivatives or adjoints, and are thus ideal for complex models and black-box implementation. We also incorporate randomized least-square solvers and data-reduction methods, which speed up computation and simulate missing data points. The new inverse methodology is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. Inversion results based on series of synthetic problems with steady-state and transient calibration data are presented.
NASA Astrophysics Data System (ADS)
Latré, S.; Desplentere, F.; De Pooter, S.; Seveno, D.
2017-10-01
Nanoscale materials showing superior thermal properties have raised the interest of the building industry. By adding these materials to conventional construction materials, it is possible to decrease the total thermal conductivity by almost one order of magnitude. This conductivity is mainly influenced by the dispersion quality within the matrix material. At the industrial scale, the main challenge is to control this dispersion to reduce or even eliminate thermal bridges. This allows to reach an industrially relevant process to balance out the high material cost and their superior thermal insulation properties. Therefore, a methodology is required to measure and describe these nanoscale distributions within the inorganic matrix material. These distributions are either random or normally distributed through thickness within the matrix material. We show that the influence of these distributions is meaningful and modifies the thermal conductivity of the building material. Hence, this strategy will generate a thermal model allowing to predict the thermal behavior of the nanoscale particles and their distributions. This thermal model will be validated by the hot wire technique. For the moment, a good correlation is found between the numerical results and experimental data for a randomly distributed form of nanoparticles in all directions.
Simplified equation for Young's modulus of CNT reinforced concrete
NASA Astrophysics Data System (ADS)
Chandran, RameshBabu; Gifty Honeyta A, Maria
2017-12-01
This research investigation focuses on finite element modeling of carbon nanotube (CNT) reinforced concrete matrix for three grades of concrete namely M40, M60 and M120. Representative volume element (RVE) was adopted and one-eighth model depicting the CNT reinforced concrete matrix was simulated using FEA software ANSYS17.2. Adopting random orientation of CNTs, with nine fibre volume fractions from 0.1% to 0.9%, finite element modeling simulations replicated exactly the CNT reinforced concrete matrix. Upon evaluations of the model, the longitudinal and transverse Young's modulus of elasticity of the CNT reinforced concrete was arrived. The graphical plots between various fibre volume fractions and the concrete grade revealed simplified equation for estimating the young's modulus. It also exploited the fact that the concrete grade does not have significant impact in CNT reinforced concrete matrix.
Tensor Decompositions for Learning Latent Variable Models
2012-12-08
and eigenvectors of tensors is generally significantly more complicated than their matrix counterpart (both algebraically [Qi05, CS11, Lim05] and...The reduction First, let W ∈ Rd×k be a linear transformation such that M2(W,W ) = W M2W = I where I is the k × k identity matrix (i.e., W whitens ...approximate the whitening matrix W ∈ Rd×k from second-moment matrix M2 ∈ Rd×d. To do this, one first multiplies M2 by a random matrix R ∈ Rd×k′ for some k′ ≥ k
Time series, correlation matrices and random matrix models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinayak; Seligman, Thomas H.
2014-01-08
In this set of five lectures the authors have presented techniques to analyze open classical and quantum systems using correlation matrices. For diverse reasons we shall see that random matrices play an important role to describe a null hypothesis or a minimum information hypothesis for the description of a quantum system or subsystem. In the former case various forms of correlation matrices of time series associated with the classical observables of some system. The fact that such series are necessarily finite, inevitably introduces noise and this finite time influence lead to a random or stochastic component in these time series.more » By consequence random correlation matrices have a random component, and corresponding ensembles are used. In the latter we use random matrices to describe high temperature environment or uncontrolled perturbations, ensembles of differing chaotic systems etc. The common theme of the lectures is thus the importance of random matrix theory in a wide range of fields in and around physics.« less
Conditional random matrix ensembles and the stability of dynamical systems
NASA Astrophysics Data System (ADS)
Kirk, Paul; Rolando, Delphine M. Y.; MacLean, Adam L.; Stumpf, Michael P. H.
2015-08-01
Random matrix theory (RMT) has found applications throughout physics and applied mathematics, in subject areas as diverse as communications networks, population dynamics, neuroscience, and models of the banking system. Many of these analyses exploit elegant analytical results, particularly the circular law and its extensions. In order to apply these results, assumptions must be made about the distribution of matrix elements. Here we demonstrate that the choice of matrix distribution is crucial. In particular, adopting an unrealistic matrix distribution for the sake of analytical tractability is liable to lead to misleading conclusions. We focus on the application of RMT to the long-standing, and at times fractious, ‘diversity-stability debate’, which is concerned with establishing whether large complex systems are likely to be stable. Early work (and subsequent elaborations) brought RMT to bear on the debate by modelling the entries of a system’s Jacobian matrix as independent and identically distributed (i.i.d.) random variables. These analyses were successful in yielding general results that were not tied to any specific system, but relied upon a restrictive i.i.d. assumption. Other studies took an opposing approach, seeking to elucidate general principles of stability through the analysis of specific systems. Here we develop a statistical framework that reconciles these two contrasting approaches. We use a range of illustrative dynamical systems examples to demonstrate that: (i) stability probability cannot be summarily deduced from any single property of the system (e.g. its diversity); and (ii) our assessment of stability depends on adequately capturing the details of the systems analysed. Failing to condition on the structure of dynamical systems will skew our analysis and can, even for very small systems, result in an unnecessarily pessimistic diagnosis of their stability.
Stability and dynamical properties of material flow systems on random networks
NASA Astrophysics Data System (ADS)
Anand, K.; Galla, T.
2009-04-01
The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.
Inflation with a graceful exit in a random landscape
NASA Astrophysics Data System (ADS)
Pedro, F. G.; Westphal, A.
2017-03-01
We develop a stochastic description of small-field inflationary histories with a graceful exit in a random potential whose Hessian is a Gaussian random matrix as a model of the unstructured part of the string landscape. The dynamical evolution in such a random potential from a small-field inflation region towards a viable late-time de Sitter (dS) minimum maps to the dynamics of Dyson Brownian motion describing the relaxation of non-equilibrium eigenvalue spectra in random matrix theory. We analytically compute the relaxation probability in a saddle point approximation of the partition function of the eigenvalue distribution of the Wigner ensemble describing the mass matrices of the critical points. When applied to small-field inflation in the landscape, this leads to an exponentially strong bias against small-field ranges and an upper bound N ≪ 10 on the number of light fields N participating during inflation from the non-observation of negative spatial curvature.
Horizon in random matrix theory, the Hawking radiation, and flow of cold atoms.
Franchini, Fabio; Kravtsov, Vladimir E
2009-10-16
We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connection between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.
The fast algorithm of spark in compressive sensing
NASA Astrophysics Data System (ADS)
Xie, Meihua; Yan, Fengxia
2017-01-01
Compressed Sensing (CS) is an advanced theory on signal sampling and reconstruction. In CS theory, the reconstruction condition of signal is an important theory problem, and spark is a good index to study this problem. But the computation of spark is NP hard. In this paper, we study the problem of computing spark. For some special matrixes, for example, the Gaussian random matrix and 0-1 random matrix, we obtain some conclusions. Furthermore, for Gaussian random matrix with fewer rows than columns, we prove that its spark equals to the number of its rows plus one with probability 1. For general matrix, two methods are given to compute its spark. One is the method of directly searching and the other is the method of dual-tree searching. By simulating 24 Gaussian random matrixes and 18 0-1 random matrixes, we tested the computation time of these two methods. Numerical results showed that the dual-tree searching method had higher efficiency than directly searching, especially for those matrixes which has as much as rows and columns.
NASA Astrophysics Data System (ADS)
Warchoł, Piotr
2018-06-01
The public transportation system of Cuernavaca, Mexico, exhibits random matrix theory statistics. In particular, the fluctuation of times between the arrival of buses on a given bus stop, follows the Wigner surmise for the Gaussian unitary ensemble. To model this, we propose an agent-based approach in which each bus driver tries to optimize his arrival time to the next stop with respect to an estimated arrival time of his predecessor. We choose a particular form of the associated utility function and recover the appropriate distribution in numerical experiments for a certain value of the only parameter of the model. We then investigate whether this value of the parameter is otherwise distinguished within an information theoretic approach and give numerical evidence that indeed it is associated with a minimum of averaged pairwise mutual information.
NASA Astrophysics Data System (ADS)
Antoniuk, Oleg; Sprik, Rudolf
2010-03-01
We developed a random matrix model to describe the statistics of resonances in an acoustic cavity with broken time-reversal invariance. Time-reversal invariance braking is achieved by connecting an amplified feedback loop between two transducers on the surface of the cavity. The model is based on approach [1] that describes time- reversal properties of the cavity without a feedback loop. Statistics of eigenvalues (nearest neighbor resonance spacing distributions and spectral rigidity) has been calculated and compared to the statistics obtained from our experimental data. Experiments have been performed on aluminum block of chaotic shape confining ultrasound waves. [1] Carsten Draeger and Mathias Fink, One-channel time- reversal in chaotic cavities: Theoretical limits, Journal of Acoustical Society of America, vol. 105, Nr. 2, pp. 611-617 (1999)
Random Matrix Theory and the Anderson Model
NASA Astrophysics Data System (ADS)
Bellissard, Jean
2004-08-01
This paper is devoted to a discussion of possible strategies to prove rigorously the existence of a metal-insulator Anderson transition for the Anderson model in dimension d≥3. The possible criterions used to define such a transition are presented. It is argued that at low disorder the lowest order in perturbation theory is described by a random matrix model. Various simplified versions for which rigorous results have been obtained in the past are discussed. It includes a free probability approach, the Wegner n-orbital model and a class of models proposed by Disertori, Pinson, and Spencer, Comm. Math. Phys. 232:83-124 (2002). At last a recent work by Magnen, Rivasseau, and the author, Markov Process and Related Fields 9:261-278 (2003) is summarized: it gives a toy modeldescribing the lowest order approximation of Anderson model and it is proved that, for d=2, its density of states is given by the semicircle distribution. A short discussion of its extension to d≥3 follows.
Cluster structure in the correlation coefficient matrix can be characterized by abnormal eigenvalues
NASA Astrophysics Data System (ADS)
Nie, Chun-Xiao
2018-02-01
In a large number of previous studies, the researchers found that some of the eigenvalues of the financial correlation matrix were greater than the predicted values of the random matrix theory (RMT). Here, we call these eigenvalues as abnormal eigenvalues. In order to reveal the hidden meaning of these abnormal eigenvalues, we study the toy model with cluster structure and find that these eigenvalues are related to the cluster structure of the correlation coefficient matrix. In this paper, model-based experiments show that in most cases, the number of abnormal eigenvalues of the correlation matrix is equal to the number of clusters. In addition, empirical studies show that the sum of the abnormal eigenvalues is related to the clarity of the cluster structure and is negatively correlated with the correlation dimension.
Modeling Passive Propagation of Malwares on the WWW
NASA Astrophysics Data System (ADS)
Chunbo, Liu; Chunfu, Jia
Web-based malwares host in websites fixedly and download onto user's computers automatically while users browse. This passive propagation pattern is different from that of traditional viruses and worms. A propagation model based on reverse web graph is proposed. In this model, propagation of malwares is analyzed by means of random jump matrix which combines orderness and randomness of user browsing behaviors. Explanatory experiments, which has single or multiple propagation sources respectively, prove the validity of the model. Using this model, people can evaluate the hazardness of specified websites and take corresponding countermeasures.
NASA Astrophysics Data System (ADS)
González, C.; Segurado, J.; LLorca, J.
2004-07-01
The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. "Exact" results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.
Random density matrices versus random evolution of open system
NASA Astrophysics Data System (ADS)
Pineda, Carlos; Seligman, Thomas H.
2015-10-01
We present and compare two families of ensembles of random density matrices. The first, static ensemble, is obtained foliating an unbiased ensemble of density matrices. As criterion we use fixed purity as the simplest example of a useful convex function. The second, dynamic ensemble, is inspired in random matrix models for decoherence where one evolves a separable pure state with a random Hamiltonian until a given value of purity in the central system is achieved. Several families of Hamiltonians, adequate for different physical situations, are studied. We focus on a two qubit central system, and obtain exact expressions for the static case. The ensemble displays a peak around Werner-like states, modulated by nodes on the degeneracies of the density matrices. For moderate and strong interactions good agreement between the static and the dynamic ensembles is found. Even in a model where one qubit does not interact with the environment excellent agreement is found, but only if there is maximal entanglement with the interacting one. The discussion is started recalling similar considerations for scattering theory. At the end, we comment on the reach of the results for other convex functions of the density matrix, and exemplify the situation with the von Neumann entropy.
A Gaussian random field model for similarity-based smoothing in Bayesian disease mapping.
Baptista, Helena; Mendes, Jorge M; MacNab, Ying C; Xavier, Miguel; Caldas-de-Almeida, José
2016-08-01
Conditionally specified Gaussian Markov random field (GMRF) models with adjacency-based neighbourhood weight matrix, commonly known as neighbourhood-based GMRF models, have been the mainstream approach to spatial smoothing in Bayesian disease mapping. In the present paper, we propose a conditionally specified Gaussian random field (GRF) model with a similarity-based non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping. The model, named similarity-based GRF, is motivated for modelling disease mapping data in situations where the underlying small area relative risks and the associated determinant factors do not vary systematically in space, and the similarity is defined by "similarity" with respect to the associated disease determinant factors. The neighbourhood-based GMRF and the similarity-based GRF are compared and accessed via a simulation study and by two case studies, using new data on alcohol abuse in Portugal collected by the World Mental Health Survey Initiative and the well-known lip cancer data in Scotland. In the presence of disease data with no evidence of positive spatial correlation, the simulation study showed a consistent gain in efficiency from the similarity-based GRF, compared with the adjacency-based GMRF with the determinant risk factors as covariate. This new approach broadens the scope of the existing conditional autocorrelation models. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Marchal, O.; Cafasso, M.
2011-04-01
In this paper, we show that the double-scaling-limit correlation functions of a random matrix model when two cuts merge with degeneracy 2m (i.e. when y ~ x2m for arbitrary values of the integer m) are the same as the determinantal formulae defined by conformal (2m, 1) models. Our approach follows the one developed by Bergère and Eynard in (2009 arXiv:0909.0854) and uses a Lax pair representation of the conformal (2m, 1) models (giving a Painlevé II integrable hierarchy) as suggested by Bleher and Eynard in (2003 J. Phys. A: Math. Gen. 36 3085). In particular we define Baker-Akhiezer functions associated with the Lax pair in order to construct a kernel which is then used to compute determinantal formulae giving the correlation functions of the double-scaling limit of a matrix model near the merging of two cuts.
Horizon in Random Matrix Theory, the Hawking Radiation, and Flow of Cold Atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franchini, Fabio; Kravtsov, Vladimir E.
2009-10-16
We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connectionmore » between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.« less
Jackson, Dan; White, Ian R; Riley, Richard D
2013-01-01
Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213
Bayesian estimation of Karhunen–Loève expansions; A random subspace approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhary, Kenny; Najm, Habib N.
One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less
Bayesian estimation of Karhunen–Loève expansions; A random subspace approach
Chowdhary, Kenny; Najm, Habib N.
2016-04-13
One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less
An information hidden model holding cover distributions
NASA Astrophysics Data System (ADS)
Fu, Min; Cai, Chao; Dai, Zuxu
2018-03-01
The goal of steganography is to embed secret data into a cover so no one apart from the sender and intended recipients can find the secret data. Usually, the way the cover changing was decided by a hidden function. There were no existing model could be used to find an optimal function which can greatly reduce the distortion the cover suffered. This paper considers the cover carrying secret message as a random Markov chain, taking the advantages of a deterministic relation between initial distributions and transferring matrix of the Markov chain, and takes the transferring matrix as a constriction to decrease statistical distortion the cover suffered in the process of information hiding. Furthermore, a hidden function is designed and the transferring matrix is also presented to be a matrix from the original cover to the stego cover. Experiment results show that the new model preserves a consistent statistical characterizations of original and stego cover.
NASA Astrophysics Data System (ADS)
Torres-Herrera, E. J.; García-García, Antonio M.; Santos, Lea F.
2018-02-01
We study numerically and analytically the quench dynamics of isolated many-body quantum systems. Using full random matrices from the Gaussian orthogonal ensemble, we obtain analytical expressions for the evolution of the survival probability, density imbalance, and out-of-time-ordered correlator. They are compared with numerical results for a one-dimensional-disordered model with two-body interactions and shown to bound the decay rate of this realistic system. Power-law decays are seen at intermediate times, and dips below the infinite time averages (correlation holes) occur at long times for all three quantities when the system exhibits level repulsion. The fact that these features are shared by both the random matrix and the realistic disordered model indicates that they are generic to nonintegrable interacting quantum systems out of equilibrium. Assisted by the random matrix analytical results, we propose expressions that describe extremely well the dynamics of the realistic chaotic system at different time scales.
Free Vibration of Uncertain Unsymmetrically Laminated Beams
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Goyal, Vijay K.
2001-01-01
Monte Carlo Simulation and Stochastic FEA are used to predict randomness in the free vibration response of thin unsymmetrically laminated beams. For the present study, it is assumed that randomness in the response is only caused by uncertainties in the ply orientations. The ply orientations may become random or uncertain during the manufacturing process. A new 16-dof beam element, based on the first-order shear deformation beam theory, is used to study the stochastic nature of the natural frequencies. Using variational principles, the element stiffness matrix and mass matrix are obtained through analytical integration. Using a random sequence a large data set is generated, containing possible random ply-orientations. This data is assumed to be symmetric. The stochastic-based finite element model for free vibrations predicts the relation between the randomness in fundamental natural frequencies and the randomness in ply-orientation. The sensitivity derivatives are calculated numerically through an exact formulation. The squared fundamental natural frequencies are expressed in terms of deterministic and probabilistic quantities, allowing to determine how sensitive they are to variations in ply angles. The predicted mean-valued fundamental natural frequency squared and the variance of the present model are in good agreement with Monte Carlo Simulation. Results, also, show that variations between plus or minus 5 degrees in ply-angles can affect free vibration response of unsymmetrically and symmetrically laminated beams.
Accounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory.
Sztepanacz, Jacqueline L; Blows, Mark W
2017-07-01
The distribution of genetic variance in multivariate phenotypes is characterized by the empirical spectral distribution of the eigenvalues of the genetic covariance matrix. Empirical estimates of genetic eigenvalues from random effects linear models are known to be overdispersed by sampling error, where large eigenvalues are biased upward, and small eigenvalues are biased downward. The overdispersion of the leading eigenvalues of sample covariance matrices have been demonstrated to conform to the Tracy-Widom (TW) distribution. Here we show that genetic eigenvalues estimated using restricted maximum likelihood (REML) in a multivariate random effects model with an unconstrained genetic covariance structure will also conform to the TW distribution after empirical scaling and centering. However, where estimation procedures using either REML or MCMC impose boundary constraints, the resulting genetic eigenvalues tend not be TW distributed. We show how using confidence intervals from sampling distributions of genetic eigenvalues without reference to the TW distribution is insufficient protection against mistaking sampling error as genetic variance, particularly when eigenvalues are small. By scaling such sampling distributions to the appropriate TW distribution, the critical value of the TW statistic can be used to determine if the magnitude of a genetic eigenvalue exceeds the sampling error for each eigenvalue in the spectral distribution of a given genetic covariance matrix. Copyright © 2017 by the Genetics Society of America.
An Alternative Method for Computing Mean and Covariance Matrix of Some Multivariate Distributions
ERIC Educational Resources Information Center
Radhakrishnan, R.; Choudhury, Askar
2009-01-01
Computing the mean and covariance matrix of some multivariate distributions, in particular, multivariate normal distribution and Wishart distribution are considered in this article. It involves a matrix transformation of the normal random vector into a random vector whose components are independent normal random variables, and then integrating…
Spectra of random networks in the weak clustering regime
NASA Astrophysics Data System (ADS)
Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen; Rodrigues, Francisco A.
2018-03-01
The asymptotic behavior of dynamical processes in networks can be expressed as a function of spectral properties of the corresponding adjacency and Laplacian matrices. Although many theoretical results are known for the spectra of traditional configuration models, networks generated through these models fail to describe many topological features of real-world networks, in particular non-null values of the clustering coefficient. Here we study effects of cycles of order three (triangles) in network spectra. By using recent advances in random matrix theory, we determine the spectral distribution of the network adjacency matrix as a function of the average number of triangles attached to each node for networks without modular structure and degree-degree correlations. Implications to network dynamics are discussed. Our findings can shed light in the study of how particular kinds of subgraphs influence network dynamics.
Akkoç, Betül; Arslan, Ahmet; Kök, Hatice
2016-06-01
Gender is one of the intrinsic properties of identity, with performance enhancement reducing the cluster when a search is performed. Teeth have durable and resistant structure, and as such are important sources of identification in disasters (accident, fire, etc.). In this study, gender determination is accomplished by maxillary tooth plaster models of 40 people (20 males and 20 females). The images of tooth plaster models are taken with a lighting mechanism set-up. A gray level co-occurrence matrix of the image with segmentation is formed and classified via a Random Forest (RF) algorithm by extracting pertinent features of the matrix. Automatic gender determination has a 90% success rate, with an applicable system to determine gender from maxillary tooth plaster images. Copyright © 2016 Elsevier Ltd. All rights reserved.
Free Fermions and the Classical Compact Groups
NASA Astrophysics Data System (ADS)
Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil
2018-06-01
There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.
A random matrix approach to language acquisition
NASA Astrophysics Data System (ADS)
Nicolaidis, A.; Kosmidis, Kosmas; Argyrakis, Panos
2009-12-01
Since language is tied to cognition, we expect the linguistic structures to reflect patterns that we encounter in nature and are analyzed by physics. Within this realm we investigate the process of lexicon acquisition, using analytical and tractable methods developed within physics. A lexicon is a mapping between sounds and referents of the perceived world. This mapping is represented by a matrix and the linguistic interaction among individuals is described by a random matrix model. There are two essential parameters in our approach. The strength of the linguistic interaction β, which is considered as a genetically determined ability, and the number N of sounds employed (the lexicon size). Our model of linguistic interaction is analytically studied using methods of statistical physics and simulated by Monte Carlo techniques. The analysis reveals an intricate relationship between the innate propensity for language acquisition β and the lexicon size N, N~exp(β). Thus a small increase of the genetically determined β may lead to an incredible lexical explosion. Our approximate scheme offers an explanation for the biological affinity of different species and their simultaneous linguistic disparity.
NASA Astrophysics Data System (ADS)
Schaffrin, Burkhard; Felus, Yaron A.
2008-06-01
The multivariate total least-squares (MTLS) approach aims at estimating a matrix of parameters, Ξ, from a linear model ( Y- E Y = ( X- E X ) · Ξ) that includes an observation matrix, Y, another observation matrix, X, and matrices of randomly distributed errors, E Y and E X . Two special cases of the MTLS approach include the standard multivariate least-squares approach where only the observation matrix, Y, is perturbed by random errors and, on the other hand, the data least-squares approach where only the coefficient matrix X is affected by random errors. In a previous contribution, the authors derived an iterative algorithm to solve the MTLS problem by using the nonlinear Euler-Lagrange conditions. In this contribution, new lemmas are developed to analyze the iterative algorithm, modify it, and compare it with a new ‘closed form’ solution that is based on the singular-value decomposition. For an application, the total least-squares approach is used to estimate the affine transformation parameters that convert cadastral data from the old to the new Israeli datum. Technical aspects of this approach, such as scaling the data and fixing the columns in the coefficient matrix are investigated. This case study illuminates the issue of “symmetry” in the treatment of two sets of coordinates for identical point fields, a topic that had already been emphasized by Teunissen (1989, Festschrift to Torben Krarup, Geodetic Institute Bull no. 58, Copenhagen, Denmark, pp 335-342). The differences between the standard least-squares and the TLS approach are analyzed in terms of the estimated variance component and a first-order approximation of the dispersion matrix of the estimated parameters.
The wasteland of random supergravities
NASA Astrophysics Data System (ADS)
Marsh, David; McAllister, Liam; Wrase, Timm
2012-03-01
We show that in a general {N} = {1} supergravity with N ≫ 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kähler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-Widom law governing fluctuations of extreme eigenvalues, we determine the probability P of a large fluctuation in which all the eigenvalues become positive. Strong eigenvalue repulsion makes this extremely unlikely: we find P ∝ exp(- c N p ), with c, p being constants. For generic critical points we find p ≈ 1 .5, while for approximately-supersymmetric critical points, p ≈ 1 .3. Our results have significant implications for the counting of de Sitter vacua in string theory, but the number of vacua remains vast.
Fast Kalman Filter for Random Walk Forecast model
NASA Astrophysics Data System (ADS)
Saibaba, A.; Kitanidis, P. K.
2013-12-01
Kalman filtering is a fundamental tool in statistical time series analysis to understand the dynamics of large systems for which limited, noisy observations are available. However, standard implementations of the Kalman filter are prohibitive because they require O(N^2) in memory and O(N^3) in computational cost, where N is the dimension of the state variable. In this work, we focus our attention on the Random walk forecast model which assumes the state transition matrix to be the identity matrix. This model is frequently adopted when the data is acquired at a timescale that is faster than the dynamics of the state variables and there is considerable uncertainty as to the physics governing the state evolution. We derive an efficient representation for the a priori and a posteriori estimate covariance matrices as a weighted sum of two contributions - the process noise covariance matrix and a low rank term which contains eigenvectors from a generalized eigenvalue problem, which combines information from the noise covariance matrix and the data. We describe an efficient algorithm to update the weights of the above terms and the computation of eigenmodes of the generalized eigenvalue problem (GEP). The resulting algorithm for the Kalman filter with Random walk forecast model scales as O(N) or O(N log N), both in memory and computational cost. This opens up the possibility of real-time adaptive experimental design and optimal control in systems of much larger dimension than was previously feasible. For a small number of measurements (~ 300 - 400), this procedure can be made numerically exact. However, as the number of measurements increase, for several choices of measurement operators and noise covariance matrices, the spectrum of the (GEP) decays rapidly and we are justified in only retaining the dominant eigenmodes. We discuss tradeoffs between accuracy and computational cost. The resulting algorithms are applied to an example application from ray-based travel time tomography.
A stochastic Markov chain model to describe lung cancer growth and metastasis.
Newton, Paul K; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila A; Nieva, Jorge; Kuhn, Peter
2012-01-01
A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novaes, Marcel
2015-06-15
We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
2013-12-14
population covariance matrix with application to array signal processing; and 5) a sample covariance matrix for which a CLT is studied on linear...Applications , (01 2012): 1150004. doi: Walid Hachem, Malika Kharouf, Jamal Najim, Jack W. Silverstein. A CLT FOR INFORMATION- THEORETIC STATISTICS...for Multi-source Power Estimation, (04 2010) Malika Kharouf, Jamal Najim, Jack W. Silverstein, Walid Hachem. A CLT FOR INFORMATION- THEORETIC
Forecasting extinction risk with nonstationary matrix models.
Gotelli, Nicholas J; Ellison, Aaron M
2006-02-01
Matrix population growth models are standard tools for forecasting population change and for managing rare species, but they are less useful for predicting extinction risk in the face of changing environmental conditions. Deterministic models provide point estimates of lambda, the finite rate of increase, as well as measures of matrix sensitivity and elasticity. Stationary matrix models can be used to estimate extinction risk in a variable environment, but they assume that the matrix elements are randomly sampled from a stationary (i.e., non-changing) distribution. Here we outline a method for using nonstationary matrix models to construct realistic forecasts of population fluctuation in changing environments. Our method requires three pieces of data: (1) field estimates of transition matrix elements, (2) experimental data on the demographic responses of populations to altered environmental conditions, and (3) forecasting data on environmental drivers. These three pieces of data are combined to generate a series of sequential transition matrices that emulate a pattern of long-term change in environmental drivers. Realistic estimates of population persistence and extinction risk can be derived from stochastic permutations of such a model. We illustrate the steps of this analysis with data from two populations of Sarracenia purpurea growing in northern New England. Sarracenia purpurea is a perennial carnivorous plant that is potentially at risk of local extinction because of increased nitrogen deposition. Long-term monitoring records or models of environmental change can be used to generate time series of driver variables under different scenarios of changing environments. Both manipulative and natural experiments can be used to construct a linking function that describes how matrix parameters change as a function of the environmental driver. This synthetic modeling approach provides quantitative estimates of extinction probability that have an explicit mechanistic basis.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Stratt, Richard M.
2018-05-01
Surprisingly long-ranged intermolecular correlations begin to appear in isotropic (orientationally disordered) phases of liquid crystal forming molecules when the temperature or density starts to close in on the boundary with the nematic (ordered) phase. Indeed, the presence of slowly relaxing, strongly orientationally correlated, sets of molecules under putatively disordered conditions ("pseudo-nematic domains") has been apparent for some time from light-scattering and optical-Kerr experiments. Still, a fully microscopic characterization of these domains has been lacking. We illustrate in this paper how pseudo-nematic domains can be studied in even relatively small computer simulations by looking for order-parameter tensor fluctuations much larger than one would expect from random matrix theory. To develop this idea, we show that random matrix theory offers an exact description of how the probability distribution for liquid-crystal order parameter tensors converges to its macroscopic-system limit. We then illustrate how domain properties can be inferred from finite-size-induced deviations from these random matrix predictions. A straightforward generalization of time-independent random matrix theory also allows us to prove that the analogous random matrix predictions for the time dependence of the order-parameter tensor are similarly exact in the macroscopic limit, and that relaxation behavior of the domains can be seen in the breakdown of the finite-size scaling required by that random-matrix theory.
NASA Astrophysics Data System (ADS)
Roubinet, D.; Russian, A.; Dentz, M.; Gouze, P.
2017-12-01
Characterizing and modeling hydrodynamic reactive transport in fractured rock are critical challenges for various research fields and applications including environmental remediation, geological storage, and energy production. To this end, we consider a recently developed time domain random walk (TDRW) approach, which is adapted to reproduce anomalous transport behaviors and capture heterogeneous structural and physical properties. This method is also very well suited to optimize numerical simulations by memory-shared massive parallelization and provide numerical results at various scales. So far, the TDRW approach has been applied for modeling advective-diffusive transport with mass transfer between mobile and immobile regions and simple (theoretical) reactions in heterogeneous porous media represented as single continuum domains. We extend this approach to dual-continuum representations considering a highly permeable fracture network embedded into a poorly permeable rock matrix with heterogeneous geochemical reactions occurring in both geological structures. The resulting numerical model enables us to extend the range of the modeled heterogeneity scales with an accurate representation of solute transport processes and no assumption on the Fickianity of these processes. The proposed model is compared to existing particle-based methods that are usually used to model reactive transport in fractured rocks assuming a homogeneous surrounding matrix, and is used to evaluate the impact of the matrix heterogeneity on the apparent reaction rates for different 2D and 3D simple-to-complex fracture network configurations.
Quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices
NASA Astrophysics Data System (ADS)
Chakhmakhchyan, L.; Cerf, N. J.; Garcia-Patron, R.
2017-08-01
We construct a quantum-inspired classical algorithm for computing the permanent of Hermitian positive semidefinite matrices by exploiting a connection between these mathematical structures and the boson sampling model. Specifically, the permanent of a Hermitian positive semidefinite matrix can be expressed in terms of the expected value of a random variable, which stands for a specific photon-counting probability when measuring a linear-optically evolved random multimode coherent state. Our algorithm then approximates the matrix permanent from the corresponding sample mean and is shown to run in polynomial time for various sets of Hermitian positive semidefinite matrices, achieving a precision that improves over known techniques. This work illustrates how quantum optics may benefit algorithm development.
MIXREG: a computer program for mixed-effects regression analysis with autocorrelated errors.
Hedeker, D; Gibbons, R D
1996-05-01
MIXREG is a program that provides estimates for a mixed-effects regression model (MRM) for normally-distributed response data including autocorrelated errors. This model can be used for analysis of unbalanced longitudinal data, where individuals may be measured at a different number of timepoints, or even at different timepoints. Autocorrelated errors of a general form or following an AR(1), MA(1), or ARMA(1,1) form are allowable. This model can also be used for analysis of clustered data, where the mixed-effects model assumes data within clusters are dependent. The degree of dependency is estimated jointly with estimates of the usual model parameters, thus adjusting for clustering. MIXREG uses maximum marginal likelihood estimation, utilizing both the EM algorithm and a Fisher-scoring solution. For the scoring solution, the covariance matrix of the random effects is expressed in its Gaussian decomposition, and the diagonal matrix reparameterized using the exponential transformation. Estimation of the individual random effects is accomplished using an empirical Bayes approach. Examples illustrating usage and features of MIXREG are provided.
Random Matrix Theory in molecular dynamics analysis.
Palese, Luigi Leonardo
2015-01-01
It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes. Copyright © 2014 Elsevier B.V. All rights reserved.
Synchronizability of random rectangular graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrada, Ernesto, E-mail: ernesto.estrada@strath.ac.uk; Chen, Guanrong
2015-08-15
Random rectangular graphs (RRGs) represent a generalization of the random geometric graphs in which the nodes are embedded into hyperrectangles instead of on hypercubes. The synchronizability of RRG model is studied. Both upper and lower bounds of the eigenratio of the network Laplacian matrix are determined analytically. It is proven that as the rectangular network is more elongated, the network becomes harder to synchronize. The synchronization processing behavior of a RRG network of chaotic Lorenz system nodes is numerically investigated, showing complete consistence with the theoretical results.
NASA Astrophysics Data System (ADS)
Lyu, Jingyuan; Nakarmi, Ukash; Zhang, Chaoyi; Ying, Leslie
2016-05-01
This paper presents a new approach to highly accelerated dynamic parallel MRI using low rank matrix completion, partial separability (PS) model. In data acquisition, k-space data is moderately randomly undersampled at the center kspace navigator locations, but highly undersampled at the outer k-space for each temporal frame. In reconstruction, the navigator data is reconstructed from undersampled data using structured low-rank matrix completion. After all the unacquired navigator data is estimated, the partial separable model is used to obtain partial k-t data. Then the parallel imaging method is used to acquire the entire dynamic image series from highly undersampled data. The proposed method has shown to achieve high quality reconstructions with reduction factors up to 31, and temporal resolution of 29ms, when the conventional PS method fails.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Civitarese, Osvaldo; Suhonen, Jouni
In this work we report on general properties of the nuclear matrix elements involved in the neutrinoless double β{sup −} decays (0νβ{sup −}β{sup −} decays) of several nuclei. A summary of the values of the NMEs calculated along the years by the Jyväskylä-La Plata collaboration is presented. These NMEs, calculated in the framework of the quasiparticle random phase approximation (QRPA), are compared with those of the other available calculations, like the Shell Model (ISM) and the interacting boson model (IBA-2)
Thermodynamical Limit for Correlated Gaussian Random Energy Models
NASA Astrophysics Data System (ADS)
Contucci, P.; Esposti, M. Degli; Giardinà, C.; Graffi, S.
Let {EΣ(N)}ΣΣN be a family of |ΣN|=2N centered unit Gaussian random variables defined by the covariance matrix CN of elements cN(Σ,τ):=Av(EΣ(N)Eτ(N)) and the corresponding random Hamiltonian. Then the quenched thermodynamical limit exists if, for every decomposition N=N1+N2, and all pairs (Σ,τ)ΣN×ΣN:
Almost sure convergence in quantum spin glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzinski, David, E-mail: dab197@case.edu; Meckes, Elizabeth, E-mail: elizabeth.meckes@case.edu
2015-12-15
Recently, Keating, Linden, and Wells [Markov Processes Relat. Fields 21(3), 537-555 (2015)] showed that the density of states measure of a nearest-neighbor quantum spin glass model is approximately Gaussian when the number of particles is large. The density of states measure is the ensemble average of the empirical spectral measure of a random matrix; in this paper, we use concentration of measure and entropy techniques together with the result of Keating, Linden, and Wells to show that in fact the empirical spectral measure of such a random matrix is almost surely approximately Gaussian itself with no ensemble averaging. We alsomore » extend this result to a spherical quantum spin glass model and to the more general coupling geometries investigated by Erdős and Schröder [Math. Phys., Anal. Geom. 17(3-4), 441–464 (2014)].« less
Character expansion methods for matrix models of dually weighted graphs
NASA Astrophysics Data System (ADS)
Kazakov, Vladimir A.; Staudacher, Matthias; Wynter, Thomas
1996-04-01
We consider generalized one-matrix models in which external fields allow control over the coordination numbers on both the original and dual lattices. We rederive in a simple fashion a character expansion formula for these models originally due to Itzykson and Di Francesco, and then demonstrate how to take the large N limit of this expansion. The relationship to the usual matrix model resolvent is elucidated. Our methods give as a by-product an extremely simple derivation of the Migdal integral equation describing the large N limit of the Itzykson-Zuber formula. We illustrate and check our methods by analysing a number of models solvable by traditional means. We then proceed to solve a new model: a sum over planar graphys possessing even coordination numbers on both the original and the dual lattice. We conclude by formulating the equations for the case of arbitrary sets of even, self-dual coupling constants. This opens the way for studying the deep problems of phase transitions from random to flat lattices. January 1995
Random acoustic metamaterial with a subwavelength dipolar resonance.
Duranteau, Mickaël; Valier-Brasier, Tony; Conoir, Jean-Marc; Wunenburger, Régis
2016-06-01
The effective velocity and attenuation of longitudinal waves through random dispersions of rigid, tungsten-carbide beads in an elastic matrix made of epoxy resin in the range of beads volume fraction 2%-10% are determined experimentally. The multiple scattering model proposed by Luppé, Conoir, and Norris [J. Acoust. Soc. Am. 131(2), 1113-1120 (2012)], which fully takes into account the elastic nature of the matrix and the associated mode conversions, accurately describes the measurements. Theoretical calculations show that the rigid particles display a local, dipolar resonance which shares several features with Minnaert resonance of bubbly liquids and with the dipolar resonance of core-shell particles. Moreover, for the samples under study, the main cause of smoothing of the dipolar resonance of the scatterers and the associated variations of the effective mass density of the dispersions is elastic relaxation, i.e., the finite time required for the shear stresses associated to the translational motion of the scatterers to propagate through the matrix. It is shown that its influence is governed solely by the value of the particle to matrix mass density contrast.
NASA Astrophysics Data System (ADS)
Fang, Dong-Liang; Faessler, Amand; Šimkovic, Fedor
2018-04-01
In this paper, with restored isospin symmetry, we evaluated the neutrinoless double-β -decay nuclear matrix elements for 76Ge, 82Se, 130Te, 136Xe, and 150Nd for both the light and heavy neutrino mass mechanisms using the deformed quasiparticle random-phase approximation approach with realistic forces. We give detailed decompositions of the nuclear matrix elements over different intermediate states and nucleon pairs, and discuss how these decompositions are affected by the model space truncations. Compared to the spherical calculations, our results show reductions from 30 % to about 60 % of the nuclear matrix elements for the calculated isotopes mainly due to the presence of the BCS overlap factor between the initial and final ground states. The comparison between different nucleon-nucleon (NN) forces with corresponding short-range correlations shows that the choice of the NN force gives roughly 20 % deviations for the light exchange neutrino mechanism and much larger deviations for the heavy neutrino exchange mechanism.
Staggered chiral random matrix theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, James C.
2011-02-01
We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.
The spatiotemporal MEG covariance matrix modeled as a sum of Kronecker products.
Bijma, Fetsje; de Munck, Jan C; Heethaar, Rob M
2005-08-15
The single Kronecker product (KP) model for the spatiotemporal covariance of MEG residuals is extended to a sum of Kronecker products. This sum of KP is estimated such that it approximates the spatiotemporal sample covariance best in matrix norm. Contrary to the single KP, this extension allows for describing multiple, independent phenomena in the ongoing background activity. Whereas the single KP model can be interpreted by assuming that background activity is generated by randomly distributed dipoles with certain spatial and temporal characteristics, the sum model can be physiologically interpreted by assuming a composite of such processes. Taking enough terms into account, the spatiotemporal sample covariance matrix can be described exactly by this extended model. In the estimation of the sum of KP model, it appears that the sum of the first 2 KP describes between 67% and 93%. Moreover, these first two terms describe two physiological processes in the background activity: focal, frequency-specific alpha activity, and more widespread non-frequency-specific activity. Furthermore, temporal nonstationarities due to trial-to-trial variations are not clearly visible in the first two terms, and, hence, play only a minor role in the sample covariance matrix in terms of matrix power. Considering the dipole localization, the single KP model appears to describe around 80% of the noise and seems therefore adequate. The emphasis of further improvement of localization accuracy should be on improving the source model rather than the covariance model.
Key-Generation Algorithms for Linear Piece In Hand Matrix Method
NASA Astrophysics Data System (ADS)
Tadaki, Kohtaro; Tsujii, Shigeo
The linear Piece In Hand (PH, for short) matrix method with random variables was proposed in our former work. It is a general prescription which can be applicable to any type of multivariate public-key cryptosystems for the purpose of enhancing their security. Actually, we showed, in an experimental manner, that the linear PH matrix method with random variables can certainly enhance the security of HFE against the Gröbner basis attack, where HFE is one of the major variants of multivariate public-key cryptosystems. In 1998 Patarin, Goubin, and Courtois introduced the plus method as a general prescription which aims to enhance the security of any given MPKC, just like the linear PH matrix method with random variables. In this paper we prove the equivalence between the plus method and the primitive linear PH matrix method, which is introduced by our previous work to explain the notion of the PH matrix method in general in an illustrative manner and not for a practical use to enhance the security of any given MPKC. Based on this equivalence, we show that the linear PH matrix method with random variables has the substantial advantage over the plus method with respect to the security enhancement. In the linear PH matrix method with random variables, the three matrices, including the PH matrix, play a central role in the secret-key and public-key. In this paper, we clarify how to generate these matrices and thus present two probabilistic polynomial-time algorithms to generate these matrices. In particular, the second one has a concise form, and is obtained as a byproduct of the proof of the equivalence between the plus method and the primitive linear PH matrix method.
Zhang, J; Feng, J-Y; Ni, Y-L; Wen, Y-J; Niu, Y; Tamba, C L; Yue, C; Song, Q; Zhang, Y-M
2017-06-01
Multilocus genome-wide association studies (GWAS) have become the state-of-the-art procedure to identify quantitative trait nucleotides (QTNs) associated with complex traits. However, implementation of multilocus model in GWAS is still difficult. In this study, we integrated least angle regression with empirical Bayes to perform multilocus GWAS under polygenic background control. We used an algorithm of model transformation that whitened the covariance matrix of the polygenic matrix K and environmental noise. Markers on one chromosome were included simultaneously in a multilocus model and least angle regression was used to select the most potentially associated single-nucleotide polymorphisms (SNPs), whereas the markers on the other chromosomes were used to calculate kinship matrix as polygenic background control. The selected SNPs in multilocus model were further detected for their association with the trait by empirical Bayes and likelihood ratio test. We herein refer to this method as the pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes). Results from simulation studies showed that pLARmEB was more powerful in QTN detection and more accurate in QTN effect estimation, had less false positive rate and required less computing time than Bayesian hierarchical generalized linear model, efficient mixed model association (EMMA) and least angle regression plus empirical Bayes. pLARmEB, multilocus random-SNP-effect mixed linear model and fast multilocus random-SNP-effect EMMA methods had almost equal power of QTN detection in simulation experiments. However, only pLARmEB identified 48 previously reported genes for 7 flowering time-related traits in Arabidopsis thaliana.
Sparse distributed memory and related models
NASA Technical Reports Server (NTRS)
Kanerva, Pentti
1992-01-01
Described here is sparse distributed memory (SDM) as a neural-net associative memory. It is characterized by two weight matrices and by a large internal dimension - the number of hidden units is much larger than the number of input or output units. The first matrix, A, is fixed and possibly random, and the second matrix, C, is modifiable. The SDM is compared and contrasted to (1) computer memory, (2) correlation-matrix memory, (3) feet-forward artificial neural network, (4) cortex of the cerebellum, (5) Marr and Albus models of the cerebellum, and (6) Albus' cerebellar model arithmetic computer (CMAC). Several variations of the basic SDM design are discussed: the selected-coordinate and hyperplane designs of Jaeckel, the pseudorandom associative neural memory of Hassoun, and SDM with real-valued input variables by Prager and Fallside. SDM research conducted mainly at the Research Institute for Advanced Computer Science (RIACS) in 1986-1991 is highlighted.
Electromagnetic Scattering by Fully Ordered and Quasi-Random Rigid Particulate Samples
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.
2016-01-01
In this paper we have analyzed circumstances under which a rigid particulate sample can behave optically as a true discrete random medium consisting of particles randomly moving relative to each other during measurement. To this end, we applied the numerically exact superposition T-matrix method to model far-field scattering characteristics of fully ordered and quasi-randomly arranged rigid multiparticle groups in fixed and random orientations. We have shown that, in and of itself, averaging optical observables over movements of a rigid sample as a whole is insufficient unless it is combined with a quasi-random arrangement of the constituent particles in the sample. Otherwise, certain scattering effects typical of discrete random media (including some manifestations of coherent backscattering) may not be accurately replicated.
Two-component Structure in the Entanglement Spectrum of Highly Excited States
NASA Astrophysics Data System (ADS)
Yang, Zhi-Cheng; Chamon, Claudio; Hamma, Alioscia; Mucciolo, Eduardo
We study the entanglement spectrum of highly excited eigenstates of two known models which exhibit a many-body localization transition, namely the one-dimensional random-field Heisenberg model and the quantum random energy model. Our results indicate that the entanglement spectrum shows a ``two-component'' structure: a universal part that is associated to Random Matrix Theory, and a non-universal part that is model dependent. The non-universal part manifests the deviation of the highly excited eigenstate from a true random state even in the thermalized phase where the Eigenstate Thermalization Hypothesis holds. The fraction of the spectrum containing the universal part decreases continuously as one approaches the critical point and vanishes in the localized phase in the thermodynamic limit. We use the universal part fraction to construct a new order parameter for the many-body delocalized-to-localized transition. Two toy models based on Rokhsar-Kivelson type wavefunctions are constructed and their entanglement spectra are shown to exhibit the same structure.
Two-Component Structure in the Entanglement Spectrum of Highly Excited States
NASA Astrophysics Data System (ADS)
Yang, Zhi-Cheng; Chamon, Claudio; Hamma, Alioscia; Mucciolo, Eduardo R.
2015-12-01
We study the entanglement spectrum of highly excited eigenstates of two known models that exhibit a many-body localization transition, namely the one-dimensional random-field Heisenberg model and the quantum random energy model. Our results indicate that the entanglement spectrum shows a "two-component" structure: a universal part that is associated with random matrix theory, and a nonuniversal part that is model dependent. The nonuniversal part manifests the deviation of the highly excited eigenstate from a true random state even in the thermalized phase where the eigenstate thermalization hypothesis holds. The fraction of the spectrum containing the universal part decreases as one approaches the critical point and vanishes in the localized phase in the thermodynamic limit. We use the universal part fraction to construct an order parameter for measuring the degree of randomness of a generic highly excited state, which is also a promising candidate for studying the many-body localization transition. Two toy models based on Rokhsar-Kivelson type wave functions are constructed and their entanglement spectra are shown to exhibit the same structure.
Universality for 1d Random Band Matrices: Sigma-Model Approximation
NASA Astrophysics Data System (ADS)
Shcherbina, Mariya; Shcherbina, Tatyana
2018-02-01
The paper continues the development of the rigorous supersymmetric transfer matrix approach to the random band matrices started in (J Stat Phys 164:1233-1260, 2016; Commun Math Phys 351:1009-1044, 2017). We consider random Hermitian block band matrices consisting of W× W random Gaussian blocks (parametrized by j,k \\in Λ =[1,n]^d\\cap Z^d ) with a fixed entry's variance J_{jk}=δ _{j,k}W^{-1}+β Δ _{j,k}W^{-2} , β >0 in each block. Taking the limit W→ ∞ with fixed n and β , we derive the sigma-model approximation of the second correlation function similar to Efetov's one. Then, considering the limit β , n→ ∞, we prove that in the dimension d=1 the behaviour of the sigma-model approximation in the bulk of the spectrum, as β ≫ n , is determined by the classical Wigner-Dyson statistics.
Topological Distances Between Brain Networks
Lee, Hyekyoung; Solo, Victor; Davidson, Richard J.; Pollak, Seth D.
2018-01-01
Many existing brain network distances are based on matrix norms. The element-wise differences may fail to capture underlying topological differences. Further, matrix norms are sensitive to outliers. A few extreme edge weights may severely affect the distance. Thus it is necessary to develop network distances that recognize topology. In this paper, we introduce Gromov-Hausdorff (GH) and Kolmogorov-Smirnov (KS) distances. GH-distance is often used in persistent homology based brain network models. The superior performance of KS-distance is contrasted against matrix norms and GH-distance in random network simulations with the ground truths. The KS-distance is then applied in characterizing the multimodal MRI and DTI study of maltreated children.
A generalization of random matrix theory and its application to statistical physics.
Wang, Duan; Zhang, Xin; Horvatic, Davor; Podobnik, Boris; Eugene Stanley, H
2017-02-01
To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.
NASA Astrophysics Data System (ADS)
Shinozuka, Yuzo; Oda, Masato
2015-09-01
The interacting quasi-band model proposed for electronic states in simple alloys is extended for compound semiconductor alloys with general lattice structures containing several atoms per unit cell. Using a tight-binding model, a variational electronic wave function for quasi-Bloch states yields a non-Hermitian Hamiltonian matrix characterized by matrix elements of constituent crystals and concentration of constituents. Solving secular equations for each k-state yields the alloy’s energy spectrum for any type of randomness and arbitrary concentration. The theory is used to address III-V (II-VI) alloys with a zincblende lattice with crystal band structures well represented by the sp3s* model. Using the resulting 15 × 15 matrix, the concentration dependence of valence and conduction bands is calculated in a unified scheme for typical alloys: Al1-xGaxAs, GaAs1-xPx, and GaSb1-xPx. Results agree well with experiments and are discussed with respect to the concentration dependence, direct-indirect gap transition, and band-gap-bowing origin.
Logistic regression of family data from retrospective study designs.
Whittemore, Alice S; Halpern, Jerry
2003-11-01
We wish to study the effects of genetic and environmental factors on disease risk, using data from families ascertained because they contain multiple cases of the disease. To do so, we must account for the way participants were ascertained, and for within-family correlations in both disease occurrences and covariates. We model the joint probability distribution of the covariates of ascertained family members, given family disease occurrence and pedigree structure. We describe two such covariate models: the random effects model and the marginal model. Both models assume a logistic form for the distribution of one person's covariates that involves a vector beta of regression parameters. The components of beta in the two models have different interpretations, and they differ in magnitude when the covariates are correlated within families. We describe ascertainment assumptions needed to estimate consistently the parameters beta(RE) in the random effects model and the parameters beta(M) in the marginal model. Under the ascertainment assumptions for the random effects model, we show that conditional logistic regression (CLR) of matched family data gives a consistent estimate beta(RE) for beta(RE) and a consistent estimate for the covariance matrix of beta(RE). Under the ascertainment assumptions for the marginal model, we show that unconditional logistic regression (ULR) gives a consistent estimate for beta(M), and we give a consistent estimator for its covariance matrix. The random effects/CLR approach is simple to use and to interpret, but it can use data only from families containing both affected and unaffected members. The marginal/ULR approach uses data from all individuals, but its variance estimates require special computations. A C program to compute these variance estimates is available at http://www.stanford.edu/dept/HRP/epidemiology. We illustrate these pros and cons by application to data on the effects of parity on ovarian cancer risk in mother/daughter pairs, and use simulations to study the performance of the estimates. Copyright 2003 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Pinfield, Valerie J.; Challis, Richard E.
2011-01-01
Industrial applications are increasingly turning to modern composite layered materials to satisfy strength requirements whilst reducing component weight. An important group of such materials are fibre/resin composites in which long fibres are laid down in layers in a resin matrix. Whilst delamination flaws, where layers separate from each other, are detectable using traditional ultrasonic techniques, the presence of porosity in any particular layer is harder to detect. The reflected signal from a layered material can already be modelled successfully by using the acoustic impedance of the layers and summing reflections from layer boundaries. However, it is not yet known how to incorporate porosity into such a model. The aim of the work reported here was to model the backscatter from randomly distributed spherical cavities within one layer, and to establish whether an effective medium, with a derived acoustic impedance, could reproduce the characteristics of that scattering. Since effective medium models are much more readily implemented in simulations of multi-layer structures than scattering per se, it was felt desirable to simplify the scattering response into an effective medium representation. A model was constructed in which spherical cavities were placed randomly in a solid continuous matrix and the system backscattering response was calculated. The scattering from the cavities was determined by using the Rayleigh partial-wave method, and taking the received signal at the transducer to be equivalent to the far field limit. It was concluded that even at relatively low porosity levels, the received signal was still "layer-like" and an effective medium model was a good approximation for the scattering behaviour.
RSAT: regulatory sequence analysis tools.
Thomas-Chollier, Morgane; Sand, Olivier; Turatsinze, Jean-Valéry; Janky, Rekin's; Defrance, Matthieu; Vervisch, Eric; Brohée, Sylvain; van Helden, Jacques
2008-07-01
The regulatory sequence analysis tools (RSAT, http://rsat.ulb.ac.be/rsat/) is a software suite that integrates a wide collection of modular tools for the detection of cis-regulatory elements in genome sequences. The suite includes programs for sequence retrieval, pattern discovery, phylogenetic footprint detection, pattern matching, genome scanning and feature map drawing. Random controls can be performed with random gene selections or by generating random sequences according to a variety of background models (Bernoulli, Markov). Beyond the original word-based pattern-discovery tools (oligo-analysis and dyad-analysis), we recently added a battery of tools for matrix-based detection of cis-acting elements, with some original features (adaptive background models, Markov-chain estimation of P-values) that do not exist in other matrix-based scanning tools. The web server offers an intuitive interface, where each program can be accessed either separately or connected to the other tools. In addition, the tools are now available as web services, enabling their integration in programmatic workflows. Genomes are regularly updated from various genome repositories (NCBI and EnsEMBL) and 682 organisms are currently supported. Since 1998, the tools have been used by several hundreds of researchers from all over the world. Several predictions made with RSAT were validated experimentally and published.
Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev model
NASA Astrophysics Data System (ADS)
García-García, Antonio M.; Jia, Yiyang; Verbaarschot, Jacobus J. M.
2018-05-01
We investigate the supersymmetric Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions with infinite range interactions in 0 +1 dimensions. We have found that, close to the ground state E ≈0 , discrete symmetries alter qualitatively the spectral properties with respect to the non-supersymmetric SYK model. The average spectral density at finite N , which we compute analytically and numerically, grows exponentially with N for E ≈0 . However the chiral condensate, which is normalized with respect the total number of eigenvalues, vanishes in the thermodynamic limit. Slightly above E ≈0 , the spectral density grows exponentially with the energy. Deep in the quantum regime, corresponding to the first O (N ) eigenvalues, the average spectral density is universal and well described by random matrix ensembles with chiral and superconducting discrete symmetries. The dynamics for E ≈0 is investigated by level fluctuations. Also in this case we find excellent agreement with the prediction of chiral and superconducting random matrix ensembles for eigenvalue separations smaller than the Thouless energy, which seems to scale linearly with N . Deviations beyond the Thouless energy, which describes how ergodicity is approached, are universally characterized by a quadratic growth of the number variance. In the time domain, we have found analytically that the spectral form factor g (t ), obtained from the connected two-level correlation function of the unfolded spectrum, decays as 1 /t2 for times shorter but comparable to the Thouless time with g (0 ) related to the coefficient of the quadratic growth of the number variance. Our results provide further support that quantum black holes are ergodic and therefore can be classified by random matrix theory.
Probability distribution of the entanglement across a cut at an infinite-randomness fixed point
NASA Astrophysics Data System (ADS)
Devakul, Trithep; Majumdar, Satya N.; Huse, David A.
2017-03-01
We calculate the probability distribution of entanglement entropy S across a cut of a finite one-dimensional spin chain of length L at an infinite-randomness fixed point using Fisher's strong randomness renormalization group (RG). Using the random transverse-field Ising model as an example, the distribution is shown to take the form p (S |L ) ˜L-ψ (k ) , where k ≡S /ln[L /L0] , the large deviation function ψ (k ) is found explicitly, and L0 is a nonuniversal microscopic length. We discuss the implications of such a distribution on numerical techniques that rely on entanglement, such as matrix-product-state-based techniques. Our results are verified with numerical RG simulations, as well as the actual entanglement entropy distribution for the random transverse-field Ising model which we calculate for large L via a mapping to Majorana fermions.
Subtyping cognitive profiles in Autism Spectrum Disorder using a Functional Random Forest algorithm.
Feczko, E; Balba, N M; Miranda-Dominguez, O; Cordova, M; Karalunas, S L; Irwin, L; Demeter, D V; Hill, A P; Langhorst, B H; Grieser Painter, J; Van Santen, J; Fombonne, E J; Nigg, J T; Fair, D A
2018-05-15
DSM-5 Autism Spectrum Disorder (ASD) comprises a set of neurodevelopmental disorders characterized by deficits in social communication and interaction and repetitive behaviors or restricted interests, and may both affect and be affected by multiple cognitive mechanisms. This study attempts to identify and characterize cognitive subtypes within the ASD population using our Functional Random Forest (FRF) machine learning classification model. This model trained a traditional random forest model on measures from seven tasks that reflect multiple levels of information processing. 47 ASD diagnosed and 58 typically developing (TD) children between the ages of 9 and 13 participated in this study. Our RF model was 72.7% accurate, with 80.7% specificity and 63.1% sensitivity. Using the random forest model, the FRF then measures the proximity of each subject to every other subject, generating a distance matrix between participants. This matrix is then used in a community detection algorithm to identify subgroups within the ASD and TD groups, and revealed 3 ASD and 4 TD putative subgroups with unique behavioral profiles. We then examined differences in functional brain systems between diagnostic groups and putative subgroups using resting-state functional connectivity magnetic resonance imaging (rsfcMRI). Chi-square tests revealed a significantly greater number of between group differences (p < .05) within the cingulo-opercular, visual, and default systems as well as differences in inter-system connections in the somato-motor, dorsal attention, and subcortical systems. Many of these differences were primarily driven by specific subgroups suggesting that our method could potentially parse the variation in brain mechanisms affected by ASD. Copyright © 2017. Published by Elsevier Inc.
Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory
NASA Astrophysics Data System (ADS)
Suliman, Mohamed; Ballal, Tarig; Kammoun, Abla; Al-Naffouri, Tareq Y.
2016-12-01
In this supplementary appendix we provide proofs and additional extensive simulations that complement the analysis of the main paper (constrained perturbation regularization approach for signal estimation using random matrix theory).
Finite-time scaling at the Anderson transition for vibrations in solids
NASA Astrophysics Data System (ADS)
Beltukov, Y. M.; Skipetrov, S. E.
2017-11-01
A model in which a three-dimensional elastic medium is represented by a network of identical masses connected by springs of random strengths and allowed to vibrate only along a selected axis of the reference frame exhibits an Anderson localization transition. To study this transition, we assume that the dynamical matrix of the network is given by a product of a sparse random matrix with real, independent, Gaussian-distributed nonzero entries and its transpose. A finite-time scaling analysis of the system's response to an initial excitation allows us to estimate the critical parameters of the localization transition. The critical exponent is found to be ν =1.57 ±0.02 , in agreement with previous studies of the Anderson transition belonging to the three-dimensional orthogonal universality class.
[Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].
Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan
2016-03-01
To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.
Multilevel covariance regression with correlated random effects in the mean and variance structure.
Quintero, Adrian; Lesaffre, Emmanuel
2017-09-01
Multivariate regression methods generally assume a constant covariance matrix for the observations. In case a heteroscedastic model is needed, the parametric and nonparametric covariance regression approaches can be restrictive in the literature. We propose a multilevel regression model for the mean and covariance structure, including random intercepts in both components and allowing for correlation between them. The implied conditional covariance function can be different across clusters as a result of the random effect in the variance structure. In addition, allowing for correlation between the random intercepts in the mean and covariance makes the model convenient for skewedly distributed responses. Furthermore, it permits us to analyse directly the relation between the mean response level and the variability in each cluster. Parameter estimation is carried out via Gibbs sampling. We compare the performance of our model to other covariance modelling approaches in a simulation study. Finally, the proposed model is applied to the RN4CAST dataset to identify the variables that impact burnout of nurses in Belgium. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spectrum of walk matrix for Koch network and its application
NASA Astrophysics Data System (ADS)
Xie, Pinchen; Lin, Yuan; Zhang, Zhongzhi
2015-06-01
Various structural and dynamical properties of a network are encoded in the eigenvalues of walk matrix describing random walks on the network. In this paper, we study the spectra of walk matrix of the Koch network, which displays the prominent scale-free and small-world features. Utilizing the particular architecture of the network, we obtain all the eigenvalues and their corresponding multiplicities. Based on the link between the eigenvalues of walk matrix and random target access time defined as the expected time for a walker going from an arbitrary node to another one selected randomly according to the steady-state distribution, we then derive an explicit solution to the random target access time for random walks on the Koch network. Finally, we corroborate our computation for the eigenvalues by enumerating spanning trees in the Koch network, using the connection governing eigenvalues and spanning trees, where a spanning tree of a network is a subgraph of the network, that is, a tree containing all the nodes.
How Fast Can Networks Synchronize? A Random Matrix Theory Approach
NASA Astrophysics Data System (ADS)
Timme, Marc; Wolf, Fred; Geisel, Theo
2004-03-01
Pulse-coupled oscillators constitute a paradigmatic class of dynamical systems interacting on networks because they model a variety of biological systems including flashing fireflies and chirping crickets as well as pacemaker cells of the heart and neural networks. Synchronization is one of the most simple and most prevailing kinds of collective dynamics on such networks. Here we study collective synchronization [1] of pulse-coupled oscillators interacting on asymmetric random networks. Using random matrix theory we analytically determine the speed of synchronization in such networks in dependence on the dynamical and network parameters [2]. The speed of synchronization increases with increasing coupling strengths. Surprisingly, however, it stays finite even for infinitely strong interactions. The results indicate that the speed of synchronization is limited by the connectivity of the network. We discuss the relevance of our findings to general equilibration processes on complex networks. [5mm] [1] M. Timme, F. Wolf, T. Geisel, Phys. Rev. Lett. 89:258701 (2002). [2] M. Timme, F. Wolf, T. Geisel, cond-mat/0306512 (2003).
Evolutionary Games with Randomly Changing Payoff Matrices
NASA Astrophysics Data System (ADS)
Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun
2015-06-01
Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.
NASA Technical Reports Server (NTRS)
Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol
2015-01-01
This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.
Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel
2014-05-20
A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Menga, G.
1975-01-01
An approach, is proposed for the design of approximate, fixed order, discrete time realizations of stochastic processes from the output covariance over a finite time interval, was proposed. No restrictive assumptions are imposed on the process; it can be nonstationary and lead to a high dimension realization. Classes of fixed order models are defined, having the joint covariance matrix of the combined vector of the outputs in the interval of definition greater or equal than the process covariance; (the difference matrix is nonnegative definite). The design is achieved by minimizing, in one of those classes, a measure of the approximation between the model and the process evaluated by the trace of the difference of the respective covariance matrices. Models belonging to these classes have the notable property that, under the same measurement system and estimator structure, the output estimation error covariance matrix computed on the model is an upper bound of the corresponding covariance on the real process. An application of the approach is illustrated by the modeling of random meteorological wind profiles from the statistical analysis of historical data.
Quantifying Effects of Voids in Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.
2013-01-01
Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness.
Reliable gain-scheduled control of discrete-time systems and its application to CSTR model
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Selvi, S.; Mathiyalagan, K.; Shi, Y.
2016-10-01
This paper is focused on reliable gain-scheduled controller design for a class of discrete-time systems with randomly occurring nonlinearities and actuator fault. Further, the nonlinearity in the system model is assumed to occur randomly according to a Bernoulli distribution with measurable time-varying probability in real time. The main purpose of this paper is to design a gain-scheduled controller by implementing a probability-dependent Lyapunov function and linear matrix inequality (LMI) approach such that the closed-loop discrete-time system is stochastically stable for all admissible randomly occurring nonlinearities. The existence conditions for the reliable controller is formulated in terms of LMI constraints. Finally, the proposed reliable gain-scheduled control scheme is applied on continuously stirred tank reactor model to demonstrate the effectiveness and applicability of the proposed design technique.
Solving large test-day models by iteration on data and preconditioned conjugate gradient.
Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A
1999-12-01
A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.
Phase diagram of matrix compressed sensing
NASA Astrophysics Data System (ADS)
Schülke, Christophe; Schniter, Philip; Zdeborová, Lenka
2016-12-01
In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select. Top. Signal Process. 10, 795 (2016), 10.1109/JSTSP.2016.2539123]. We show the existence of two different types of phase transition and their implications for the solvability of the problem, and we compare the results of our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix compressed sensing are the same as those for a related but formally different problem of matrix factorization.
Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.
Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen
In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.
Graphic matching based on shape contexts and reweighted random walks
NASA Astrophysics Data System (ADS)
Zhang, Mingxuan; Niu, Dongmei; Zhao, Xiuyang; Liu, Mingjun
2018-04-01
Graphic matching is a very critical issue in all aspects of computer vision. In this paper, a new graphics matching algorithm combining shape contexts and reweighted random walks was proposed. On the basis of the local descriptor, shape contexts, the reweighted random walks algorithm was modified to possess stronger robustness and correctness in the final result. Our main process is to use the descriptor of the shape contexts for the random walk on the iteration, of which purpose is to control the random walk probability matrix. We calculate bias matrix by using descriptors and then in the iteration we use it to enhance random walks' and random jumps' accuracy, finally we get the one-to-one registration result by discretization of the matrix. The algorithm not only preserves the noise robustness of reweighted random walks but also possesses the rotation, translation, scale invariance of shape contexts. Through extensive experiments, based on real images and random synthetic point sets, and comparisons with other algorithms, it is confirmed that this new method can produce excellent results in graphic matching.
Accounting for crustal magnetization in models of the core magnetic field
NASA Technical Reports Server (NTRS)
Jackson, Andrew
1990-01-01
The problem of determining the magnetic field originating in the earth's core in the presence of remanent and induced magnetization is considered. The effect of remanent magnetization in the crust on satellite measurements of the core magnetic field is investigated. The crust as a zero-mean stationary Gaussian random process is modelled using an idea proposed by Parker (1988). It is shown that the matrix of second-order statistics is proportional to the Gram matrix, which depends only on the inner-products of the appropriate Green's functions, and that at a typical satellite altitude of 400 km the data are correlated out to an angular separation of approximately 15 deg. Accurate and efficient means of calculating the matrix elements are given. It is shown that the variance of measurements of the radial component of a magnetic field due to the crust is expected to be approximately twice that in horizontal components.
Role of small-norm components in extended random-phase approximation
NASA Astrophysics Data System (ADS)
Tohyama, Mitsuru
2017-09-01
The role of the small-norm amplitudes in extended random-phase approximation (RPA) theories such as the particle-particle and hole-hole components of one-body amplitudes and the two-body amplitudes other than two-particle/two-hole components are investigated for the one-dimensional Hubbard model using an extended RPA derived from the time-dependent density matrix theory. It is found that these amplitudes cannot be neglected in strongly interacting regions where the effects of ground-state correlations are significant.
ERIC Educational Resources Information Center
Enders, Craig K.; Peugh, James L.
2004-01-01
Two methods, direct maximum likelihood (ML) and the expectation maximization (EM) algorithm, can be used to obtain ML parameter estimates for structural equation models with missing data (MD). Although the 2 methods frequently produce identical parameter estimates, it may be easier to satisfy missing at random assumptions using EM. However, no…
Modeling and Predicting the Stress Relaxation of Composites with Short and Randomly Oriented Fibers
Obaid, Numaira; Sain, Mohini
2017-01-01
The addition of short fibers has been experimentally observed to slow the stress relaxation of viscoelastic polymers, producing a change in the relaxation time constant. Our recent study attributed this effect of fibers on stress relaxation behavior to the interfacial shear stress transfer at the fiber-matrix interface. This model explained the effect of fiber addition on stress relaxation without the need to postulate structural changes at the interface. In our previous study, we developed an analytical model for the effect of fully aligned short fibers, and the model predictions were successfully compared to finite element simulations. However, in most industrial applications of short-fiber composites, fibers are not aligned, and hence it is necessary to examine the time dependence of viscoelastic polymers containing randomly oriented short fibers. In this study, we propose an analytical model to predict the stress relaxation behavior of short-fiber composites where the fibers are randomly oriented. The model predictions were compared to results obtained from Monte Carlo finite element simulations, and good agreement between the two was observed. The analytical model provides an excellent tool to accurately predict the stress relaxation behavior of randomly oriented short-fiber composites. PMID:29053601
Efficient two-dimensional compressive sensing in MIMO radar
NASA Astrophysics Data System (ADS)
Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad
2017-12-01
Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.
Not all that glitters is RMT in the forecasting of risk of portfolios in the Brazilian stock market
NASA Astrophysics Data System (ADS)
Sandoval, Leonidas; Bortoluzzo, Adriana Bruscato; Venezuela, Maria Kelly
2014-09-01
Using stocks of the Brazilian stock exchange (BM&F-Bovespa), we build portfolios of stocks based on Markowitz's theory and test the predicted and realized risks. This is done using the correlation matrices between stocks, and also using Random Matrix Theory in order to clean such correlation matrices from noise. We also calculate correlation matrices using a regression model in order to remove the effect of common market movements and their cleaned versions using Random Matrix Theory. This is done for years of both low and high volatility of the Brazilian stock market, from 2004 to 2012. The results show that the use of regression to subtract the market effect on returns greatly increases the accuracy of the prediction of risk, and that, although the cleaning of the correlation matrix often leads to portfolios that better predict risks, in periods of high volatility of the market this procedure may fail to do so. The results may be used in the assessment of the true risks when one builds a portfolio of stocks during periods of crisis.
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
NASA Technical Reports Server (NTRS)
Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.
A real-space stochastic density matrix approach for density functional electronic structure.
Beck, Thomas L
2015-12-21
The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.
Influences of system uncertainties on the numerical transfer path analysis of engine systems
NASA Astrophysics Data System (ADS)
Acri, A.; Nijman, E.; Acri, A.; Offner, G.
2017-10-01
Practical mechanical systems operate with some degree of uncertainty. In numerical models uncertainties can result from poorly known or variable parameters, from geometrical approximation, from discretization or numerical errors, from uncertain inputs or from rapidly changing forcing that can be best described in a stochastic framework. Recently, random matrix theory was introduced to take parameter uncertainties into account in numerical modeling problems. In particular in this paper, Wishart random matrix theory is applied on a multi-body dynamic system to generate random variations of the properties of system components. Multi-body dynamics is a powerful numerical tool largely implemented during the design of new engines. In this paper the influence of model parameter variability on the results obtained from the multi-body simulation of engine dynamics is investigated. The aim is to define a methodology to properly assess and rank system sources when dealing with uncertainties. Particular attention is paid to the influence of these uncertainties on the analysis and the assessment of the different engine vibration sources. Examples of the effects of different levels of uncertainties are illustrated by means of examples using a representative numerical powertrain model. A numerical transfer path analysis, based on system dynamic substructuring, is used to derive and assess the internal engine vibration sources. The results obtained from this analysis are used to derive correlations between parameter uncertainties and statistical distribution of results. The derived statistical information can be used to advance the knowledge of the multi-body analysis and the assessment of system sources when uncertainties in model parameters are considered.
Randomized subspace-based robust principal component analysis for hyperspectral anomaly detection
NASA Astrophysics Data System (ADS)
Sun, Weiwei; Yang, Gang; Li, Jialin; Zhang, Dianfa
2018-01-01
A randomized subspace-based robust principal component analysis (RSRPCA) method for anomaly detection in hyperspectral imagery (HSI) is proposed. The RSRPCA combines advantages of randomized column subspace and robust principal component analysis (RPCA). It assumes that the background has low-rank properties, and the anomalies are sparse and do not lie in the column subspace of the background. First, RSRPCA implements random sampling to sketch the original HSI dataset from columns and to construct a randomized column subspace of the background. Structured random projections are also adopted to sketch the HSI dataset from rows. Sketching from columns and rows could greatly reduce the computational requirements of RSRPCA. Second, the RSRPCA adopts the columnwise RPCA (CWRPCA) to eliminate negative effects of sampled anomaly pixels and that purifies the previous randomized column subspace by removing sampled anomaly columns. The CWRPCA decomposes the submatrix of the HSI data into a low-rank matrix (i.e., background component), a noisy matrix (i.e., noise component), and a sparse anomaly matrix (i.e., anomaly component) with only a small proportion of nonzero columns. The algorithm of inexact augmented Lagrange multiplier is utilized to optimize the CWRPCA problem and estimate the sparse matrix. Nonzero columns of the sparse anomaly matrix point to sampled anomaly columns in the submatrix. Third, all the pixels are projected onto the complemental subspace of the purified randomized column subspace of the background and the anomaly pixels in the original HSI data are finally exactly located. Several experiments on three real hyperspectral images are carefully designed to investigate the detection performance of RSRPCA, and the results are compared with four state-of-the-art methods. Experimental results show that the proposed RSRPCA outperforms four comparison methods both in detection performance and in computational time.
NASA Astrophysics Data System (ADS)
Luo, D. M.; Xie, Y.; Su, X. R.; Zhou, Y. L.
2018-01-01
Based on the four classical models of Mooney-Rivlin (M-R), Yeoh, Ogden and Neo-Hookean (N-H) model, a strain energy constitutive equation with large deformation for rubber composites reinforced with random ceramic particles is proposed from the angle of continuum mechanics theory in this paper. By decoupling the interaction between matrix and random particles, the strain energy of each phase is obtained to derive the explicit constitutive equation for rubber composites. The tests results of uni-axial tensile, pure shear and equal bi-axial tensile are simulated by the non-linear finite element method on the ANSYS platform. The results from finite element method are compared with those from experiment, and the material parameters are determined by fitting the results from different test conditions, and the influence of radius of random ceramic particles on the effective mechanical properties are analyzed.
NASA Astrophysics Data System (ADS)
Odling, Noelle E.; Roden, Julie E.
1997-09-01
Some results from numerical models of flow and contaminant transport in fractured permeable rocks, where fractures are more conductive than rock matrix, are described. The 2D flow field in the fractured and permeable rock matrix is calculated using a finite difference, 'conductance mesh' method, and the contaminant transport is simulated by particle tracking methods using an advection-biased, random walk technique. The model is applied to simulated and naturally occurring fracture patterns. The simulated pattern is an en echelon array of unconnected fractures, as an example of a common, naturally occurring fracture geometry. Two natural fracture patterns are used: one of unconnected, sub-parallel fractures and one with oblique fracture sets which is well connected. Commonly occurring matrix permeability and fracture aperture values are chosen. The simulations show that the presence of fractures creates complex and heterogeneous flow fields and contaminant distribution in the permeable rock matrix. The modelling results have shown that some effects are non-intuitive and therefore difficult to foresee without the help of a model. With respect to contaminant transport rates and plume heterogeneity, it was found that fracture connectivity (crucial when the matrix is impermeable) can play a secondary role to fracture orientation and density. Connected fracture systems can produce smooth break-through curves of contaminants summed over, for example, a bore-hole length, whereas in detail the contaminant plume is spatially highly heterogeneous. Close to a constant-pressure boundary (e.g. an extraction bore-hole), flow and contaminants can be channelled by fractures. Thus observations at a bore-hole may suggest that contaminants are largely confined to the fracture system, when, in fact, significant contamination resides in the matrix.
Robust reliable sampled-data control for switched systems with application to flight control
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Joby, Maya; Shi, P.; Mathiyalagan, K.
2016-11-01
This paper addresses the robust reliable stabilisation problem for a class of uncertain switched systems with random delays and norm bounded uncertainties. The main aim of this paper is to obtain the reliable robust sampled-data control design which involves random time delay with an appropriate gain control matrix for achieving the robust exponential stabilisation for uncertain switched system against actuator failures. In particular, the involved delays are assumed to be randomly time-varying which obeys certain mutually uncorrelated Bernoulli distributed white noise sequences. By constructing an appropriate Lyapunov-Krasovskii functional (LKF) and employing an average-dwell time approach, a new set of criteria is derived for ensuring the robust exponential stability of the closed-loop switched system. More precisely, the Schur complement and Jensen's integral inequality are used in derivation of stabilisation criteria. By considering the relationship among the random time-varying delay and its lower and upper bounds, a new set of sufficient condition is established for the existence of reliable robust sampled-data control in terms of solution to linear matrix inequalities (LMIs). Finally, an illustrative example based on the F-18 aircraft model is provided to show the effectiveness of the proposed design procedures.
Localization in covariance matrices of coupled heterogenous Ornstein-Uhlenbeck processes
NASA Astrophysics Data System (ADS)
Barucca, Paolo
2014-12-01
We define a random-matrix ensemble given by the infinite-time covariance matrices of Ornstein-Uhlenbeck processes at different temperatures coupled by a Gaussian symmetric matrix. The spectral properties of this ensemble are shown to be in qualitative agreement with some stylized facts of financial markets. Through the presented model formulas are given for the analysis of heterogeneous time series. Furthermore evidence for a localization transition in eigenvectors related to small and large eigenvalues in cross-correlations analysis of this model is found, and a simple explanation of localization phenomena in financial time series is provided. Finally we identify both in our model and in real financial data an inverted-bell effect in correlation between localized components and their local temperature: high- and low-temperature components are the most localized ones.
Heterogeneous continuous-time random walks
NASA Astrophysics Data System (ADS)
Grebenkov, Denis S.; Tupikina, Liubov
2018-01-01
We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
Network Dynamics of Innovation Processes.
Iacopini, Iacopo; Milojević, Staša; Latora, Vito
2018-01-26
We introduce a model for the emergence of innovations, in which cognitive processes are described as random walks on the network of links among ideas or concepts, and an innovation corresponds to the first visit of a node. The transition matrix of the random walk depends on the network weights, while in turn the weight of an edge is reinforced by the passage of a walker. The presence of the network naturally accounts for the mechanism of the "adjacent possible," and the model reproduces both the rate at which novelties emerge and the correlations among them observed empirically. We show this by using synthetic networks and by studying real data sets on the growth of knowledge in different scientific disciplines. Edge-reinforced random walks on complex topologies offer a new modeling framework for the dynamics of correlated novelties and are another example of coevolution of processes and networks.
Network Dynamics of Innovation Processes
NASA Astrophysics Data System (ADS)
Iacopini, Iacopo; Milojević, Staša; Latora, Vito
2018-01-01
We introduce a model for the emergence of innovations, in which cognitive processes are described as random walks on the network of links among ideas or concepts, and an innovation corresponds to the first visit of a node. The transition matrix of the random walk depends on the network weights, while in turn the weight of an edge is reinforced by the passage of a walker. The presence of the network naturally accounts for the mechanism of the "adjacent possible," and the model reproduces both the rate at which novelties emerge and the correlations among them observed empirically. We show this by using synthetic networks and by studying real data sets on the growth of knowledge in different scientific disciplines. Edge-reinforced random walks on complex topologies offer a new modeling framework for the dynamics of correlated novelties and are another example of coevolution of processes and networks.
NASA Astrophysics Data System (ADS)
Beaudoin, Yanick; Desbiens, André; Gagnon, Eric; Landry, René
2018-01-01
The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and as first order Markov processes. The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll estimation error and gyroscope bias are only observable if attitude reference sensors are present.
NASA Astrophysics Data System (ADS)
Grayver, Alexander V.; Kuvshinov, Alexey V.
2016-05-01
This paper presents a methodology to sample equivalence domain (ED) in nonlinear partial differential equation (PDE)-constrained inverse problems. For this purpose, we first applied state-of-the-art stochastic optimization algorithm called Covariance Matrix Adaptation Evolution Strategy (CMAES) to identify low-misfit regions of the model space. These regions were then randomly sampled to create an ensemble of equivalent models and quantify uncertainty. CMAES is aimed at exploring model space globally and is robust on very ill-conditioned problems. We show that the number of iterations required to converge grows at a moderate rate with respect to number of unknowns and the algorithm is embarrassingly parallel. We formulated the problem by using the generalized Gaussian distribution. This enabled us to seamlessly use arbitrary norms for residual and regularization terms. We show that various regularization norms facilitate studying different classes of equivalent solutions. We further show how performance of the standard Metropolis-Hastings Markov chain Monte Carlo algorithm can be substantially improved by using information CMAES provides. This methodology was tested by using individual and joint inversions of magneotelluric, controlled-source electromagnetic (EM) and global EM induction data.
NASA Astrophysics Data System (ADS)
Siegel, Z.; Siegel, Edward Carl-Ludwig
2011-03-01
RANDOMNESS of Numbers cognitive-semantics DEFINITION VIA Cognition QUERY: WHAT???, NOT HOW?) VS. computer-``science" mindLESS number-crunching (Harrel-Sipser-...) algorithmics Goldreich "PSEUDO-randomness"[Not.AMS(02)] mea-culpa is ONLY via MAXWELL-BOLTZMANN CLASSICAL-STATISTICS(NOT FDQS!!!) "hot-plasma" REPULSION VERSUS Newcomb(1881)-Weyl(1914;1916)-Benford(1938) "NeWBe" logarithmic-law digit-CLUMPING/ CLUSTERING NON-Randomness simple Siegel[AMS Joint.Mtg.(02)-Abs. # 973-60-124] algebraic-inversion to THE QUANTUM and ONLY BEQS preferentially SEQUENTIALLY lower-DIGITS CLUMPING/CLUSTERING with d = 0 BEC, is ONLY VIA Siegel-Baez FUZZYICS=CATEGORYICS (SON OF TRIZ)/"Category-Semantics"(C-S), latter intersection/union of Lawvere(1964)-Siegel(1964)] category-theory (matrix: MORPHISMS V FUNCTORS) "+" cognitive-semantics'' (matrix: ANTONYMS V SYNONYMS) yields Siegel-Baez FUZZYICS=CATEGORYICS/C-S tabular list-format matrix truth-table analytics: MBCS RANDOMNESS TRUTH/EMET!!!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirac, J. Ignacio; Sierra, German; Instituto de Fisica Teorica, UAM-CSIC, Madrid
We generalize the matrix product states method using the chiral vertex operators of conformal field theory and apply it to study the ground states of the XXZ spin chain, the J{sub 1}-J{sub 2} model and random Heisenberg models. We compute the overlap with the exact wave functions, spin-spin correlators, and the Renyi entropy, showing that critical systems can be described by this method. For rotational invariant ansatzs we construct an inhomogenous extension of the Haldane-Shastry model with long-range exchange interactions.
Social patterns revealed through random matrix theory
NASA Astrophysics Data System (ADS)
Sarkar, Camellia; Jalan, Sarika
2014-11-01
Despite the tremendous advancements in the field of network theory, very few studies have taken weights in the interactions into consideration that emerge naturally in all real-world systems. Using random matrix analysis of a weighted social network, we demonstrate the profound impact of weights in interactions on emerging structural properties. The analysis reveals that randomness existing in particular time frame affects the decisions of individuals rendering them more freedom of choice in situations of financial security. While the structural organization of networks remains the same throughout all datasets, random matrix theory provides insight into the interaction pattern of individuals of the society in situations of crisis. It has also been contemplated that individual accountability in terms of weighted interactions remains as a key to success unless segregation of tasks comes into play.
Zhang, Du; Su, Neil Qiang; Yang, Weitao
2017-07-20
The GW self-energy, especially G 0 W 0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.
Comparison of three controllers applied to helicopter vibration
NASA Technical Reports Server (NTRS)
Leyland, Jane A.
1992-01-01
A comparison was made of the applicability and suitability of the deterministic controller, the cautious controller, and the dual controller for the reduction of helicopter vibration by using higher harmonic blade pitch control. A randomly generated linear plant model was assumed and the performance index was defined to be a quadratic output metric of this linear plant. A computer code, designed to check out and evaluate these controllers, was implemented and used to accomplish this comparison. The effects of random measurement noise, the initial estimate of the plant matrix, and the plant matrix propagation rate were determined for each of the controllers. With few exceptions, the deterministic controller yielded the greatest vibration reduction (as characterized by the quadratic output metric) and operated with the greatest reliability. Theoretical limitations of these controllers were defined and appropriate candidate alternative methods, including one method particularly suitable to the cockpit, were identified.
Bayes linear covariance matrix adjustment
NASA Astrophysics Data System (ADS)
Wilkinson, Darren J.
1995-12-01
In this thesis, a Bayes linear methodology for the adjustment of covariance matrices is presented and discussed. A geometric framework for quantifying uncertainties about covariance matrices is set up, and an inner-product for spaces of random matrices is motivated and constructed. The inner-product on this space captures aspects of our beliefs about the relationship between covariance matrices of interest to us, providing a structure rich enough for us to adjust beliefs about unknown matrices in the light of data such as sample covariance matrices, exploiting second-order exchangeability and related specifications to obtain representations allowing analysis. Adjustment is associated with orthogonal projection, and illustrated with examples of adjustments for some common problems. The problem of adjusting the covariance matrices underlying exchangeable random vectors is tackled and discussed. Learning about the covariance matrices associated with multivariate time series dynamic linear models is shown to be amenable to a similar approach. Diagnostics for matrix adjustments are also discussed.
Asymptotic Linear Spectral Statistics for Spiked Hermitian Random Matrices
NASA Astrophysics Data System (ADS)
Passemier, Damien; McKay, Matthew R.; Chen, Yang
2015-07-01
Using the Coulomb Fluid method, this paper derives central limit theorems (CLTs) for linear spectral statistics of three "spiked" Hermitian random matrix ensembles. These include Johnstone's spiked model (i.e., central Wishart with spiked correlation), non-central Wishart with rank-one non-centrality, and a related class of non-central matrices. For a generic linear statistic, we derive simple and explicit CLT expressions as the matrix dimensions grow large. For all three ensembles under consideration, we find that the primary effect of the spike is to introduce an correction term to the asymptotic mean of the linear spectral statistic, which we characterize with simple formulas. The utility of our proposed framework is demonstrated through application to three different linear statistics problems: the classical likelihood ratio test for a population covariance, the capacity analysis of multi-antenna wireless communication systems with a line-of-sight transmission path, and a classical multiple sample significance testing problem.
NASA Astrophysics Data System (ADS)
Hu, Guiqiang; Xiao, Di; Wang, Yong; Xiang, Tao; Zhou, Qing
2017-11-01
Recently, a new kind of image encryption approach using compressive sensing (CS) and double random phase encoding has received much attention due to the advantages such as compressibility and robustness. However, this approach is found to be vulnerable to chosen plaintext attack (CPA) if the CS measurement matrix is re-used. Therefore, designing an efficient measurement matrix updating mechanism that ensures resistance to CPA is of practical significance. In this paper, we provide a novel solution to update the CS measurement matrix by altering the secret sparse basis with the help of counter mode operation. Particularly, the secret sparse basis is implemented by a reality-preserving fractional cosine transform matrix. Compared with the conventional CS-based cryptosystem that totally generates all the random entries of measurement matrix, our scheme owns efficiency superiority while guaranteeing resistance to CPA. Experimental and analysis results show that the proposed scheme has a good security performance and has robustness against noise and occlusion.
In silico study on the effects of matrix structure in controlled drug release
NASA Astrophysics Data System (ADS)
Villalobos, Rafael; Cordero, Salomón; Maria Vidales, Ana; Domínguez, Armando
2006-07-01
Purpose: To study the effects of drug concentration and spatial distribution of the medicament, in porous solid dosage forms, on the kinetics and total yield of drug release. Methods: Cubic networks are used as models of drug release systems. They were constructed by means of the dual site-bond model framework, which allows a substrate to have adequate geometrical and topological distribution of its pore elements. Drug particles can move inside the networks by following a random walk model with excluded volume interactions between the particles. The drug release time evolution for different drug concentration and different initial drug spatial distribution has been monitored. Results: The numerical results show that in all the studied cases, drug release presents an anomalous behavior, and the consequences of the matrix structural properties, i.e., drug spatial distribution and drug concentration, on the drug release profile have been quantified. Conclusions: The Weibull function provides a simple connection between the model parameters and the microstructure of the drug release device. A critical modeling of drug release from matrix-type delivery systems is important in order to understand the transport mechanisms that are implicated, and to predict the effect of the device design parameters on the release rate.
Randomized Dynamic Mode Decomposition
NASA Astrophysics Data System (ADS)
Erichson, N. Benjamin; Brunton, Steven L.; Kutz, J. Nathan
2017-11-01
The dynamic mode decomposition (DMD) is an equation-free, data-driven matrix decomposition that is capable of providing accurate reconstructions of spatio-temporal coherent structures arising in dynamical systems. We present randomized algorithms to compute the near-optimal low-rank dynamic mode decomposition for massive datasets. Randomized algorithms are simple, accurate and able to ease the computational challenges arising with `big data'. Moreover, randomized algorithms are amenable to modern parallel and distributed computing. The idea is to derive a smaller matrix from the high-dimensional input data matrix using randomness as a computational strategy. Then, the dynamic modes and eigenvalues are accurately learned from this smaller representation of the data, whereby the approximation quality can be controlled via oversampling and power iterations. Here, we present randomized DMD algorithms that are categorized by how many passes the algorithm takes through the data. Specifically, the single-pass randomized DMD does not require data to be stored for subsequent passes. Thus, it is possible to approximately decompose massive fluid flows (stored out of core memory, or not stored at all) using single-pass algorithms, which is infeasible with traditional DMD algorithms.
Scattering Properties of Heterogeneous Mineral Particles with Absorbing Inclusions
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2015-01-01
We analyze the results of numerically exact computer modeling of scattering and absorption properties of randomly oriented poly-disperse heterogeneous particles obtained by placing microscopic absorbing grains randomly on the surfaces of much larger spherical mineral hosts or by imbedding them randomly inside the hosts. These computations are paralleled by those for heterogeneous particles obtained by fully encapsulating fractal-like absorbing clusters in the mineral hosts. All computations are performed using the superposition T-matrix method. In the case of randomly distributed inclusions, the results are compared with the outcome of Lorenz-Mie computations for an external mixture of the mineral hosts and absorbing grains. We conclude that internal aggregation can affect strongly both the integral radiometric and differential scattering characteristics of the heterogeneous particle mixtures.
NASA Astrophysics Data System (ADS)
Fang, Dong-Liang; Faessler, Amand; Simkovic, Fedor
2015-10-01
In this work, we calculate the matrix elements for the 0 ν β β decay of 150Nd using the deformed quasiparticle random-phase approximation (p n -QRPA) method. We adopted the approach introduced by Rodin and Faessler [Phys. Rev. C 84, 014322 (2011), 10.1103/PhysRevC.84.014322] and Simkovic et al. [Phys. Rev. C 87, 045501 (2013), 10.1103/PhysRevC.87.045501] to restore the isospin symmetry by enforcing MF2 ν=0 . We found that with this restoration, the Fermi matrix elements are reduced in the strongly deformed 150Nd by about 15 to 20%, while the more important Gamow-Teller matrix elements remain the same. The results of an enlarged model space are also presented. This enlargement increases the total (Fermi plus Gamow-Teller) matrix elements by less than 10%.
Self-Avoiding Walks on the Random Lattice and the Random Hopping Model on a Cayley Tree
NASA Astrophysics Data System (ADS)
Kim, Yup
Using a field theoretic method based on the replica trick, it is proved that the three-parameter renormalization group for an n-vector model with quenched randomness reduces to a two-parameter one in the limit n (--->) 0 which corresponds to self-avoiding walks (SAWs). This is also shown by the explicit calculation of the renormalization group recursion relations to second order in (epsilon). From this reduction we find that SAWs on the random lattice are in the same universality class as SAWs on the regular lattice. By analogy with the case of the n-vector model with cubic anisotropy in the limit n (--->) 1, the fixed-point structure of the n-vector model with randomness is analyzed in the SAW limit, so that a physical interpretation of the unphysical fixed point is given. Corrections of the values of critical exponents of the unphysical fixed point published previously is also given. Next we formulate an integral equation and recursion relations for the configurationally averaged one particle Green's function of the random hopping model on a Cayley tree of coordination number ((sigma) + 1). This formalism is tested by applying it successfully to the nonrandom model. Using this scheme for 1 << (sigma) < (INFIN) we calculate the density of states of this model with a Gaussian distribution of hopping matrix elements in the range of energy E('2) > E(,c)('2), where E(,c) is a critical energy described below. The singularity in the Green's function which occurs at energy E(,1)('(0)) for (sigma) = (INFIN) is shifted to complex energy E(,1) (on the unphysical sheet of energy E) for small (sigma)('-1). This calculation shows that the density of states is smooth function of energy E around the critical energy E(,c) = Re E(,1) in accord with Wegner's theorem. In this formulation the density of states has no sharp phase transition on the real axis of E because E(,1) has developed an imaginary part. Using the Lifschitz argument, we calculate the density of states near the band edge for the model when the hopping matrix elements are governed by a bounded probability distribution. It is also shown within the dynamical system language that the density of states of the model with a bounded distribution never vanishes inside the band and we suggest a theoretical mechanism for the formation of energy bands.
Noise sensitivity of portfolio selection in constant conditional correlation GARCH models
NASA Astrophysics Data System (ADS)
Varga-Haszonits, I.; Kondor, I.
2007-11-01
This paper investigates the efficiency of minimum variance portfolio optimization for stock price movements following the Constant Conditional Correlation GARCH process proposed by Bollerslev. Simulations show that the quality of portfolio selection can be improved substantially by computing optimal portfolio weights from conditional covariances instead of unconditional ones. Measurement noise can be further reduced by applying some filtering method on the conditional correlation matrix (such as Random Matrix Theory based filtering). As an empirical support for the simulation results, the analysis is also carried out for a time series of S&P500 stock prices.
Moura, Fernando Silva; Aya, Julio Cesar Ceballos; Fleury, Agenor Toledo; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez
2010-02-01
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.
Discriminative Projection Selection Based Face Image Hashing
NASA Astrophysics Data System (ADS)
Karabat, Cagatay; Erdogan, Hakan
Face image hashing is an emerging method used in biometric verification systems. In this paper, we propose a novel face image hashing method based on a new technique called discriminative projection selection. We apply the Fisher criterion for selecting the rows of a random projection matrix in a user-dependent fashion. Moreover, another contribution of this paper is to employ a bimodal Gaussian mixture model at the quantization step. Our simulation results on three different databases demonstrate that the proposed method has superior performance in comparison to previously proposed random projection based methods.
Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel
2015-09-10
Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.
Luo, Lei; Yang, Jian; Qian, Jianjun; Tai, Ying; Lu, Gui-Fu
2017-09-01
Dealing with partial occlusion or illumination is one of the most challenging problems in image representation and classification. In this problem, the characterization of the representation error plays a crucial role. In most current approaches, the error matrix needs to be stretched into a vector and each element is assumed to be independently corrupted. This ignores the dependence between the elements of error. In this paper, it is assumed that the error image caused by partial occlusion or illumination changes is a random matrix variate and follows the extended matrix variate power exponential distribution. This has the heavy tailed regions and can be used to describe a matrix pattern of l×m dimensional observations that are not independent. This paper reveals the essence of the proposed distribution: it actually alleviates the correlations between pixels in an error matrix E and makes E approximately Gaussian. On the basis of this distribution, we derive a Schatten p -norm-based matrix regression model with L q regularization. Alternating direction method of multipliers is applied to solve this model. To get a closed-form solution in each step of the algorithm, two singular value function thresholding operators are introduced. In addition, the extended Schatten p -norm is utilized to characterize the distance between the test samples and classes in the design of the classifier. Extensive experimental results for image reconstruction and classification with structural noise demonstrate that the proposed algorithm works much more robustly than some existing regression-based methods.
Near-optimal matrix recovery from random linear measurements.
Romanov, Elad; Gavish, Matan
2018-06-25
In matrix recovery from random linear measurements, one is interested in recovering an unknown M-by-N matrix [Formula: see text] from [Formula: see text] measurements [Formula: see text], where each [Formula: see text] is an M-by-N measurement matrix with i.i.d. random entries, [Formula: see text] We present a matrix recovery algorithm, based on approximate message passing, which iteratively applies an optimal singular-value shrinker-a nonconvex nonlinearity tailored specifically for matrix estimation. Our algorithm typically converges exponentially fast, offering a significant speedup over previously suggested matrix recovery algorithms, such as iterative solvers for nuclear norm minimization (NNM). It is well known that there is a recovery tradeoff between the information content of the object [Formula: see text] to be recovered (specifically, its matrix rank r) and the number of linear measurements n from which recovery is to be attempted. The precise tradeoff between r and n, beyond which recovery by a given algorithm becomes possible, traces the so-called phase transition curve of that algorithm in the [Formula: see text] plane. The phase transition curve of our algorithm is noticeably better than that of NNM. Interestingly, it is close to the information-theoretic lower bound for the minimal number of measurements needed for matrix recovery, making it not only state of the art in terms of convergence rate, but also near optimal in terms of the matrices it successfully recovers. Copyright © 2018 the Author(s). Published by PNAS.
Road simulation for four-wheel vehicle whole input power spectral density
NASA Astrophysics Data System (ADS)
Wang, Jiangbo; Qiang, Baomin
2017-05-01
As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.
NASA Astrophysics Data System (ADS)
Wirtz, Tim; Kieburg, Mario; Guhr, Thomas
2017-06-01
The correlated Wishart model provides the standard benchmark when analyzing time series of any kind. Unfortunately, the real case, which is the most relevant one in applications, poses serious challenges for analytical calculations. Often these challenges are due to square root singularities which cannot be handled using common random matrix techniques. We present a new way to tackle this issue. Using supersymmetry, we carry out an anlaytical study which we support by numerical simulations. For large but finite matrix dimensions, we show that statistical properties of the fully correlated real Wishart model generically approach those of a correlated real Wishart model with doubled matrix dimensions and doubly degenerate empirical eigenvalues. This holds for the local and global spectral statistics. With Monte Carlo simulations we show that this is even approximately true for small matrix dimensions. We explicitly investigate the k-point correlation function as well as the distribution of the largest eigenvalue for which we find a surprisingly compact formula in the doubly degenerate case. Moreover we show that on the local scale the k-point correlation function exhibits the sine and the Airy kernel in the bulk and at the soft edges, respectively. We also address the positions and the fluctuations of the possible outliers in the data.
Work distributions for random sudden quantum quenches
NASA Astrophysics Data System (ADS)
Łobejko, Marcin; Łuczka, Jerzy; Talkner, Peter
2017-05-01
The statistics of work performed on a system by a sudden random quench is investigated. Considering systems with finite dimensional Hilbert spaces we model a sudden random quench by randomly choosing elements from a Gaussian unitary ensemble (GUE) consisting of Hermitian matrices with identically, Gaussian distributed matrix elements. A probability density function (pdf) of work in terms of initial and final energy distributions is derived and evaluated for a two-level system. Explicit results are obtained for quenches with a sharply given initial Hamiltonian, while the work pdfs for quenches between Hamiltonians from two independent GUEs can only be determined in explicit form in the limits of zero and infinite temperature. The same work distribution as for a sudden random quench is obtained for an adiabatic, i.e., infinitely slow, protocol connecting the same initial and final Hamiltonians.
NASA Astrophysics Data System (ADS)
Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun
2018-03-01
In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.
Quantum simulation of an ultrathin body field-effect transistor with channel imperfections
NASA Astrophysics Data System (ADS)
Vyurkov, V.; Semenikhin, I.; Filippov, S.; Orlikovsky, A.
2012-04-01
An efficient program for the all-quantum simulation of nanometer field-effect transistors is elaborated. The model is based on the Landauer-Buttiker approach. Our calculation of transmission coefficients employs a transfer-matrix technique involving the arbitrary precision (multiprecision) arithmetic to cope with evanescent modes. Modified in such way, the transfer-matrix technique turns out to be much faster in practical simulations than that of scattering-matrix. Results of the simulation demonstrate the impact of realistic channel imperfections (random charged centers and wall roughness) on transistor characteristics. The Landauer-Buttiker approach is developed to incorporate calculation of the noise at an arbitrary temperature. We also validate the ballistic Landauer-Buttiker approach for the usual situation when heavily doped contacts are indispensably included into the simulation region.
Constructing acoustic timefronts using random matrix theory.
Hegewisch, Katherine C; Tomsovic, Steven
2013-10-01
In a recent letter [Hegewisch and Tomsovic, Europhys. Lett. 97, 34002 (2012)], random matrix theory is introduced for long-range acoustic propagation in the ocean. The theory is expressed in terms of unitary propagation matrices that represent the scattering between acoustic modes due to sound speed fluctuations induced by the ocean's internal waves. The scattering exhibits a power-law decay as a function of the differences in mode numbers thereby generating a power-law, banded, random unitary matrix ensemble. This work gives a more complete account of that approach and extends the methods to the construction of an ensemble of acoustic timefronts. The result is a very efficient method for studying the statistical properties of timefronts at various propagation ranges that agrees well with propagation based on the parabolic equation. It helps identify which information about the ocean environment can be deduced from the timefronts and how to connect features of the data to that environmental information. It also makes direct connections to methods used in other disordered waveguide contexts where the use of random matrix theory has a multi-decade history.
Random walks with long-range steps generated by functions of Laplacian matrices
NASA Astrophysics Data System (ADS)
Riascos, A. P.; Michelitsch, T. M.; Collet, B. A.; Nowakowski, A. F.; Nicolleau, F. C. G. A.
2018-04-01
In this paper, we explore different Markovian random walk strategies on networks with transition probabilities between nodes defined in terms of functions of the Laplacian matrix. We generalize random walk strategies with local information in the Laplacian matrix, that describes the connections of a network, to a dynamic determined by functions of this matrix. The resulting processes are non-local allowing transitions of the random walker from one node to nodes beyond its nearest neighbors. We find that only two types of Laplacian functions are admissible with distinct behaviors for long-range steps in the infinite network limit: type (i) functions generate Brownian motions, type (ii) functions Lévy flights. For this asymptotic long-range step behavior only the lowest non-vanishing order of the Laplacian function is relevant, namely first order for type (i), and fractional order for type (ii) functions. In the first part, we discuss spectral properties of the Laplacian matrix and a series of relations that are maintained by a particular type of functions that allow to define random walks on any type of undirected connected networks. Once described general properties, we explore characteristics of random walk strategies that emerge from particular cases with functions defined in terms of exponentials, logarithms and powers of the Laplacian as well as relations of these dynamics with non-local strategies like Lévy flights and fractional transport. Finally, we analyze the global capacity of these random walk strategies to explore networks like lattices and trees and different types of random and complex networks.
Structural phase transitions in isotropic magnetic elastomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meilikhov, E. Z., E-mail: meilikhov@yandex.ru; Farzetdinova, R. M.
Magnetic elastomers represent a new type of materials that are “soft” matrices with “hard” magnetic granules embedded in them. The elastic forces of the matrix and the magnetic forces acting between granules are comparable in magnitude even under small deformations. As a result, these materials acquire a number of new properties; in particular, their mechanical and/or magnetic characteristics can depend strongly on the polymer matrix filling with magnetic particles and can change under the action of an external magnetic field, pressure, and temperature. To describe the properties of elastomers, we use a model in which the interaction of magnetic granulesmore » randomly arranged in space with one another is described in the dipole approximation by the distribution function of dipole fields, while their interaction with the matrix is described phenomenologically. A multitude of deformation, magnetic-field, and temperature effects that are described in this paper and are quite accessible to experimental observation arise within this model.« less
On the Extraction of Components and the Applicability of the Factor Model.
ERIC Educational Resources Information Center
Dziuban, Charles D.; Harris, Chester W.
A reanalysis of Shaycroft's matrix of intercorrelations of 10 test variables plus 4 random variables is discussed. Three different procedures were used in the reanalysis: (1) Image Component Analysis, (2) Uniqueness Rescaling Factor Analysis, and (3) Alpha Factor Analysis. The results of these analyses are presented in tables. It is concluded from…
An Off-Lattice Hybrid Discrete-Continuum Model of Tumor Growth and Invasion
Jeon, Junhwan; Quaranta, Vito; Cummings, Peter T.
2010-01-01
Abstract We have developed an off-lattice hybrid discrete-continuum (OLHDC) model of tumor growth and invasion. The continuum part of the OLHDC model describes microenvironmental components such as matrix-degrading enzymes, nutrients or oxygen, and extracellular matrix (ECM) concentrations, whereas the discrete portion represents individual cell behavior such as cell cycle, cell-cell, and cell-ECM interactions and cell motility by the often-used persistent random walk, which can be depicted by the Langevin equation. Using this framework of the OLHDC model, we develop a phenomenologically realistic and bio/physically relevant model that encompasses the experimentally observed superdiffusive behavior (at short times) of mammalian cells. When systemic simulations based on the OLHDC model are performed, tumor growth and its morphology are found to be strongly affected by cell-cell adhesion and haptotaxis. There is a combination of the strength of cell-cell adhesion and haptotaxis in which fingerlike shapes, characteristic of invasive tumor, are observed. PMID:20074513
Uniform Recovery Bounds for Structured Random Matrices in Corrupted Compressed Sensing
NASA Astrophysics Data System (ADS)
Zhang, Peng; Gan, Lu; Ling, Cong; Sun, Sumei
2018-04-01
We study the problem of recovering an $s$-sparse signal $\\mathbf{x}^{\\star}\\in\\mathbb{C}^n$ from corrupted measurements $\\mathbf{y} = \\mathbf{A}\\mathbf{x}^{\\star}+\\mathbf{z}^{\\star}+\\mathbf{w}$, where $\\mathbf{z}^{\\star}\\in\\mathbb{C}^m$ is a $k$-sparse corruption vector whose nonzero entries may be arbitrarily large and $\\mathbf{w}\\in\\mathbb{C}^m$ is a dense noise with bounded energy. The aim is to exactly and stably recover the sparse signal with tractable optimization programs. In this paper, we prove the uniform recovery guarantee of this problem for two classes of structured sensing matrices. The first class can be expressed as the product of a unit-norm tight frame (UTF), a random diagonal matrix and a bounded columnwise orthonormal matrix (e.g., partial random circulant matrix). When the UTF is bounded (i.e. $\\mu(\\mathbf{U})\\sim1/\\sqrt{m}$), we prove that with high probability, one can recover an $s$-sparse signal exactly and stably by $l_1$ minimization programs even if the measurements are corrupted by a sparse vector, provided $m = \\mathcal{O}(s \\log^2 s \\log^2 n)$ and the sparsity level $k$ of the corruption is a constant fraction of the total number of measurements. The second class considers randomly sub-sampled orthogonal matrix (e.g., random Fourier matrix). We prove the uniform recovery guarantee provided that the corruption is sparse on certain sparsifying domain. Numerous simulation results are also presented to verify and complement the theoretical results.
Random network model of electrical conduction in two-phase rock
NASA Astrophysics Data System (ADS)
Fuji-ta, Kiyoshi; Seki, Masayuki; Ichiki, Masahiro
2018-05-01
We developed a cell-type lattice model to clarify the interconnected conductivity mechanism of two-phase rock. We quantified electrical conduction networks in rock and evaluated electrical conductivity models of the two-phase interaction. Considering the existence ratio of conductive and resistive cells in the model, we generated natural matrix cells simulating a natural mineral distribution pattern, using Mersenne Twister random numbers. The most important and prominent feature of the model simulation is a drastic increase in the pseudo-conductivity index for conductor ratio R > 0.22. This index in the model increased from 10-4 to 100 between R = 0.22 and 0.9, a change of four orders of magnitude. We compared our model responses with results from previous model studies. Although the pseudo-conductivity computed by the model differs slightly from that of the previous model, model responses can account for the conductivity change. Our modeling is thus effective for quantitatively estimating the degree of interconnection of rock and minerals.
A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation.
Edgar, Lowell T; Sibole, Scott C; Underwood, Clayton J; Guilkey, James E; Weiss, Jeffrey A
2013-01-01
Recent interest in the process of vascularisation within the biomedical community has motivated numerous new research efforts focusing on the process of angiogenesis. Although the role of chemical factors during angiogenesis has been well documented, the role of mechanical factors, such as the interaction between angiogenic vessels and the extracellular matrix, remains poorly understood. In vitro methods for studying angiogenesis exist; however, measurements available using such techniques often suffer from limited spatial and temporal resolutions. For this reason, computational models have been extensively employed to investigate various aspects of angiogenesis. This paper outlines the formulation and validation of a simple and robust computational model developed to accurately simulate angiogenesis based on length, branching and orientation morphometrics collected from vascularised tissue constructs. Microvessels were represented as a series of connected line segments. The morphology of the vessels was determined by a linear combination of the collagen fibre orientation, the vessel density gradient and a random walk component. Excellent agreement was observed between computational and experimental morphometric data over time. Computational predictions of microvessel orientation within an anisotropic matrix correlated well with experimental data. The accuracy of this modelling approach makes it a valuable platform for investigating the role of mechanical interactions during angiogenesis.
Seven lessons from manyfield inflation in random potentials
NASA Astrophysics Data System (ADS)
Dias, Mafalda; Frazer, Jonathan; Marsh, M. C. David
2018-01-01
We study inflation in models with many interacting fields subject to randomly generated scalar potentials. We use methods from non-equilibrium random matrix theory to construct the potentials and an adaption of the `transport method' to evolve the two-point correlators during inflation. This construction allows, for the first time, for an explicit study of models with up to 100 interacting fields supporting a period of `approximately saddle-point' inflation. We determine the statistical predictions for observables by generating over 30,000 models with 2–100 fields supporting at least 60 efolds of inflation. These studies lead us to seven lessons: i) Manyfield inflation is not single-field inflation, ii) The larger the number of fields, the simpler and sharper the predictions, iii) Planck compatibility is not rare, but future experiments may rule out this class of models, iv) The smoother the potentials, the sharper the predictions, v) Hyperparameters can transition from stiff to sloppy, vi) Despite tachyons, isocurvature can decay, vii) Eigenvalue repulsion drives the predictions. We conclude that many of the `generic predictions' of single-field inflation can be emergent features of complex inflation models.
Henschel, Volkmar; Engel, Jutta; Hölzel, Dieter; Mansmann, Ulrich
2009-02-10
Multivariate analysis of interval censored event data based on classical likelihood methods is notoriously cumbersome. Likelihood inference for models which additionally include random effects are not available at all. Developed algorithms bear problems for practical users like: matrix inversion, slow convergence, no assessment of statistical uncertainty. MCMC procedures combined with imputation are used to implement hierarchical models for interval censored data within a Bayesian framework. Two examples from clinical practice demonstrate the handling of clustered interval censored event times as well as multilayer random effects for inter-institutional quality assessment. The software developed is called survBayes and is freely available at CRAN. The proposed software supports the solution of complex analyses in many fields of clinical epidemiology as well as health services research.
Effective Perron-Frobenius eigenvalue for a correlated random map
NASA Astrophysics Data System (ADS)
Pool, Roman R.; Cáceres, Manuel O.
2010-09-01
We investigate the evolution of random positive linear maps with various type of disorder by analytic perturbation and direct simulation. Our theoretical result indicates that the statistics of a random linear map can be successfully described for long time by the mean-value vector state. The growth rate can be characterized by an effective Perron-Frobenius eigenvalue that strongly depends on the type of correlation between the elements of the projection matrix. We apply this approach to an age-structured population dynamics model. We show that the asymptotic mean-value vector state characterizes the population growth rate when the age-structured model has random vital parameters. In this case our approach reveals the nontrivial dependence of the effective growth rate with cross correlations. The problem was reduced to the calculation of the smallest positive root of a secular polynomial, which can be obtained by perturbations in terms of Green’s function diagrammatic technique built with noncommutative cumulants for arbitrary n -point correlations.
Random isotropic one-dimensional XY-model
NASA Astrophysics Data System (ADS)
Gonçalves, L. L.; Vieira, A. P.
1998-01-01
The 1D isotropic s = ½XY-model ( N sites), with random exchange interaction in a transverse random field is considered. The random variables satisfy bimodal quenched distributions. The solution is obtained by using the Jordan-Wigner fermionization and a canonical transformation, reducing the problem to diagonalizing an N × N matrix, corresponding to a system of N noninteracting fermions. The calculations are performed numerically for N = 1000, and the field-induced magnetization at T = 0 is obtained by averaging the results for the different samples. For the dilute case, in the uniform field limit, the magnetization exhibits various discontinuities, which are the consequence of the existence of disconnected finite clusters distributed along the chain. Also in this limit, for finite exchange constants J A and J B, as the probability of J A varies from one to zero, the saturation field is seen to vary from Γ A to Γ B, where Γ A(Γ B) is the value of the saturation field for the pure case with exchange constant equal to J A(J B) .
Random Weighting, Strong Tracking, and Unscented Kalman Filter for Soft Tissue Characterization.
Shin, Jaehyun; Zhong, Yongmin; Oetomo, Denny; Gu, Chengfan
2018-05-21
This paper presents a new nonlinear filtering method based on the Hunt-Crossley model for online nonlinear soft tissue characterization. This method overcomes the problem of performance degradation in the unscented Kalman filter due to contact model error. It adopts the concept of Mahalanobis distance to identify contact model error, and further incorporates a scaling factor in predicted state covariance to compensate identified model error. This scaling factor is determined according to the principle of innovation orthogonality to avoid the cumbersome computation of Jacobian matrix, where the random weighting concept is adopted to improve the estimation accuracy of innovation covariance. A master-slave robotic indentation system is developed to validate the performance of the proposed method. Simulation and experimental results as well as comparison analyses demonstrate that the efficacy of the proposed method for online characterization of soft tissue parameters in the presence of contact model error.
Stochastic damage evolution in textile laminates
NASA Technical Reports Server (NTRS)
Dzenis, Yuris A.; Bogdanovich, Alexander E.; Pastore, Christopher M.
1993-01-01
A probabilistic model utilizing random material characteristics to predict damage evolution in textile laminates is presented. Model is based on a division of each ply into two sublaminas consisting of cells. The probability of cell failure is calculated using stochastic function theory and maximal strain failure criterion. Three modes of failure, i.e. fiber breakage, matrix failure in transverse direction, as well as matrix or interface shear cracking, are taken into account. Computed failure probabilities are utilized in reducing cell stiffness based on the mesovolume concept. A numerical algorithm is developed predicting the damage evolution and deformation history of textile laminates. Effect of scatter of fiber orientation on cell properties is discussed. Weave influence on damage accumulation is illustrated with the help of an example of a Kevlar/epoxy laminate.
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.
2016-01-01
Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.
Random Matrix Approach for Primal-Dual Portfolio Optimization Problems
NASA Astrophysics Data System (ADS)
Tada, Daichi; Yamamoto, Hisashi; Shinzato, Takashi
2017-12-01
In this paper, we revisit the portfolio optimization problems of the minimization/maximization of investment risk under constraints of budget and investment concentration (primal problem) and the maximization/minimization of investment concentration under constraints of budget and investment risk (dual problem) for the case that the variances of the return rates of the assets are identical. We analyze both optimization problems by the Lagrange multiplier method and the random matrix approach. Thereafter, we compare the results obtained from our proposed approach with the results obtained in previous work. Moreover, we use numerical experiments to validate the results obtained from the replica approach and the random matrix approach as methods for analyzing both the primal and dual portfolio optimization problems.
Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Tao, E-mail: tzhou@lsec.cc.ac.c; Tang Tao, E-mail: ttang@hkbu.edu.h
2010-11-01
In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266-281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coefficient matrix. In this work, we will provide some results related to the open question.
Risk analytics for hedge funds
NASA Astrophysics Data System (ADS)
Pareek, Ankur
2005-05-01
The rapid growth of the hedge fund industry presents significant business opportunity for the institutional investors particularly in the form of portfolio diversification. To facilitate this, there is a need to develop a new set of risk analytics for investments consisting of hedge funds, with the ultimate aim to create transparency in risk measurement without compromising the proprietary investment strategies of hedge funds. As well documented in the literature, use of dynamic options like strategies by most of the hedge funds make their returns highly non-normal with fat tails and high kurtosis, thus rendering Value at Risk (VaR) and other mean-variance analysis methods unsuitable for hedge fund risk quantification. This paper looks at some unique concerns for hedge fund risk management and will particularly concentrate on two approaches from physical world to model the non-linearities and dynamic correlations in hedge fund portfolio returns: Self Organizing Criticality (SOC) and Random Matrix Theory (RMT).Random Matrix Theory analyzes correlation matrix between different hedge fund styles and filters random noise from genuine correlations arising from interactions within the system. As seen in the results of portfolio risk analysis, it leads to a better portfolio risk forecastability and thus to optimum allocation of resources to different hedge fund styles. The results also prove the efficacy of self-organized criticality and implied portfolio correlation as a tool for risk management and style selection for portfolios of hedge funds, being particularly effective during non-linear market crashes.
Matrix models for size-structured populations: unrealistic fast growth or simply diffusion?
Picard, Nicolas; Liang, Jingjing
2014-01-01
Matrix population models are widely used to study population dynamics but have been criticized because their outputs are sensitive to the dimension of the matrix (or, equivalently, to the class width). This sensitivity is concerning for the population growth rate (λ) because this is an intrinsic characteristic of the population that should not depend on the model specification. It has been suggested that the sensitivity of λ to matrix dimension was linked to the existence of fast pathways (i.e. the fraction of individuals that systematically move up a class), whose proportion increases when class width increases. We showed that for matrix population models with growth transition only from class i to class i + 1, λ was independent of the class width when the mortality and the recruitment rates were constant, irrespective of the growth rate. We also showed that if there were indeed fast pathways, there were also in about the same proportion slow pathways (i.e. the fraction of individuals that systematically remained in the same class), and that they jointly act as a diffusion process (where diffusion here is the movement in size of an individual whose size increments are random according to a normal distribution with mean zero). For 53 tree species from a tropical rain forest in the Central African Republic, the diffusion resulting from common matrix dimensions was much stronger than would be realistic. Yet, the sensitivity of λ to matrix dimension for a class width in the range 1-10 cm was small, much smaller than the sampling uncertainty on the value of λ. Moreover, λ could either increase or decrease when class width increased depending on the species. Overall, even if the class width should be kept small enough to limit diffusion, it had little impact on the estimate of λ for tree species.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, Jin AU; Yueh, Herng-Aung
1990-01-01
The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The vegetation canopy is modeled as an anisotropic random medium containing nonspherical scatterers with preferred alignment. The underlying medium is considered as a homogeneous half space. The scattering effect of the vegetation canopy are characterized by 3-D correlation functions with variances and correlation lengths respectively corresponding to the fluctuation strengths and the physical geometries of the scatterers. The strong fluctuation theory is used to calculate the anisotropic effective permittivity tensor of the random medium and the distorted Born approximation is then applied to obtain the covariance matrix which describes the fully polarimetric scattering properties of the vegetation field. This model accounts for all the interaction processes between the boundaries and the scatterers and includes all the coherent effects due to wave propagation in different directions such as the constructive and destructive interferences. For a vegetation canopy with low attenuation, the boundary between the vegetation and the underlying medium can give rise to significant coherent effects.
On the efficiency of a randomized mirror descent algorithm in online optimization problems
NASA Astrophysics Data System (ADS)
Gasnikov, A. V.; Nesterov, Yu. E.; Spokoiny, V. G.
2015-04-01
A randomized online version of the mirror descent method is proposed. It differs from the existing versions by the randomization method. Randomization is performed at the stage of the projection of a subgradient of the function being optimized onto the unit simplex rather than at the stage of the computation of a subgradient, which is common practice. As a result, a componentwise subgradient descent with a randomly chosen component is obtained, which admits an online interpretation. This observation, for example, has made it possible to uniformly interpret results on weighting expert decisions and propose the most efficient method for searching for an equilibrium in a zero-sum two-person matrix game with sparse matrix.
NASA Astrophysics Data System (ADS)
Hall, Lisa; Schweizer, Kenneth
2010-03-01
The microscopic Polymer Reference Interaction Site Model theory has been applied to spherical and rodlike fillers dissolved in three types of chemically heterogeneous polymer melts: alternating AB copolymer, random AB copolymers, and an equimolar blend of two homopolymers. In each case, one monomer species adsorbs more strongly on the filler mimicking a specific attraction, while all inter-monomer potentials are hard core which precludes macrophase or microphase separation. Qualitative differences in the filler potential-of-mean force are predicted relative to the homopolymer case. The adsorbed bound layer for alternating copolymers exhibits a spatial moduluation or layering effect but is otherwise similar to that of the homopolymer system. Random copolymers and the polymer blend mediate a novel strong, long-range bridging interaction between fillers at moderate to high adsorption strengths. The bridging strength is a non-monotonic function of random copolymer composition, reflecting subtle competing enthalpic and entropic considerations.
Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.
2013-01-01
In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.
Gong, Feng; Duong, Hai M.; Papavassiliou, Dimitrios V.
2016-01-01
Here, we present a review of recent developments for an off-lattice Monte Carlo approach used to investigate the thermal transport properties of multiphase composites with complex structure. The thermal energy was quantified by a large number of randomly moving thermal walkers. Different modes of heat conduction were modeled in appropriate ways. The diffusive heat conduction in the polymer matrix was modeled with random Brownian motion of thermal walkers within the polymer, and the ballistic heat transfer within the carbon nanotubes (CNTs) was modeled by assigning infinite speed of thermal walkers in the CNTs. Three case studies were conducted to validate the developed approach, including three-phase single-walled CNTs/tungsten disulfide (WS2)/(poly(ether ether ketone) (PEEK) composites, single-walled CNT/WS2/PEEK composites with the CNTs clustered in bundles, and complex graphene/poly(methyl methacrylate) (PMMA) composites. In all cases, resistance to heat transfer due to nanoscale phenomena was also modeled. By quantitatively studying the influencing factors on the thermal transport properties of the multiphase composites, it was found that the orientation, aggregation and morphology of fillers, as well as the interfacial thermal resistance at filler-matrix interfaces would limit the transfer of heat in the composites. These quantitative findings may be applied in the design and synthesis of multiphase composites with specific thermal transport properties. PMID:28335270
Chen, Jiao; Weihs, Daphne; Vermolen, Fred J
2018-04-01
Cell migration, known as an orchestrated movement of cells, is crucially important for wound healing, tumor growth, immune response as well as other biomedical processes. This paper presents a cell-based model to describe cell migration in non-isotropic fibrin networks around pancreatic tumor islets. This migration is determined by the mechanical strain energy density as well as cytokines-driven chemotaxis. Cell displacement is modeled by solving a large system of ordinary stochastic differential equations where the stochastic parts result from random walk. The stochastic differential equations are solved by the use of the classical Euler-Maruyama method. In this paper, the influence of anisotropic stromal extracellular matrix in pancreatic tumor islets on T-lymphocytes migration in different immune systems is investigated. As a result, tumor peripheral stromal extracellular matrix impedes the immune response of T-lymphocytes through changing direction of their migration.
Noise in two-color electronic distance meter measurements revisited
Langbein, J.
2004-01-01
Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.
Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K
2011-11-01
A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.
Group identification in Indonesian stock market
NASA Astrophysics Data System (ADS)
Nurriyadi Suparno, Ervano; Jo, Sung Kyun; Lim, Kyuseong; Purqon, Acep; Kim, Soo Yong
2016-08-01
The characteristic of Indonesian stock market is interesting especially because it represents developing countries. We investigate the dynamics and structures by using Random Matrix Theory (RMT). Here, we analyze the cross-correlation of the fluctuations of the daily closing price of stocks from the Indonesian Stock Exchange (IDX) between January 1, 2007, and October 28, 2014. The eigenvalue distribution of the correlation matrix consists of noise which is filtered out using the random matrix as a control. The bulk of the eigenvalue distribution conforms to the random matrix, allowing the separation of random noise from original data which is the deviating eigenvalues. From the deviating eigenvalues and the corresponding eigenvectors, we identify the intrinsic normal modes of the system and interpret their meaning based on qualitative and quantitative approach. The results show that the largest eigenvector represents the market-wide effect which has a predominantly common influence toward all stocks. The other eigenvectors represent highly correlated groups within the system. Furthermore, identification of the largest components of the eigenvectors shows the sector or background of the correlated groups. Interestingly, the result shows that there are mainly two clusters within IDX, natural and non-natural resource companies. We then decompose the correlation matrix to investigate the contribution of the correlated groups to the total correlation, and we find that IDX is still driven mainly by the market-wide effect.
Tensor manifold-based extreme learning machine for 2.5-D face recognition
NASA Astrophysics Data System (ADS)
Chong, Lee Ying; Ong, Thian Song; Teoh, Andrew Beng Jin
2018-01-01
We explore the use of the Gabor regional covariance matrix (GRCM), a flexible matrix-based descriptor that embeds the Gabor features in the covariance matrix, as a 2.5-D facial descriptor and an effective means of feature fusion for 2.5-D face recognition problems. Despite its promise, matching is not a trivial problem for GRCM since it is a special instance of a symmetric positive definite (SPD) matrix that resides in non-Euclidean space as a tensor manifold. This implies that GRCM is incompatible with the existing vector-based classifiers and distance matchers. Therefore, we bridge the gap of the GRCM and extreme learning machine (ELM), a vector-based classifier for the 2.5-D face recognition problem. We put forward a tensor manifold-compliant ELM and its two variants by embedding the SPD matrix randomly into reproducing kernel Hilbert space (RKHS) via tensor kernel functions. To preserve the pair-wise distance of the embedded data, we orthogonalize the random-embedded SPD matrix. Hence, classification can be done using a simple ridge regressor, an integrated component of ELM, on the random orthogonal RKHS. Experimental results show that our proposed method is able to improve the recognition performance and further enhance the computational efficiency.
Radiance and polarization of multiple scattered light from haze and clouds.
Kattawar, G W; Plass, G N
1968-08-01
The radiance and polarization of multiple scattered light is calculated from the Stokes' vectors by a Monte Carlo method. The exact scattering matrix for a typical haze and for a cloud whose spherical drops have an average radius of 12 mu is calculated from the Mie theory. The Stokes' vector is transformed in a collision by this scattering matrix and the rotation matrix. The two angles that define the photon direction after scattering are chosen by a random process that correctly simulates the actual distribution functions for both angles. The Monte Carlo results for Rayleigh scattering compare favorably with well known tabulated results. Curves are given of the reflected and transmitted radiances and polarizations for both the haze and cloud models and for several solar angles, optical thicknesses, and surface albedos. The dependence on these various parameters is discussed.
Mineralogy and petrology of the Abee enstatite chondrite breccia and its dark inclusions
NASA Technical Reports Server (NTRS)
Rubin, A. E.; Keil, K.
1983-01-01
A model is proposed for the petrogenesis of the Abee E4 enstatite chondrite breccia, which consists of clasts, dark inclusions and matrix, and whose dark inclusions are an unusual kind of enstatite chondritic material. When the maximum metamorphic temperature of the breccia parent material was greater than 840 C, euhedral enstatite crystals in metallic Fe, Ni, and sulfide-rich areas grew into pliable metal and sulfide. Breccia parent material was impact-excavated, admixed with dark inclusions, and rapidly cooled. During this cooling, the clast and matrix material acquired thermal remanent magnetization. A subsequent ambient magnetic field imparted a uniform net magnetic orientation to the matrix and caused the magnetic orientation of the clasts to be less random. The Abee breccia was later consolidated by shock or by shallow burial and long period, low temperature metamorphism.
Oskouyi, Amirhossein Biabangard; Sundararaj, Uttandaraman; Mertiny, Pierre
2014-01-01
In this study, a three-dimensional continuum percolation model was developed based on a Monte Carlo simulation approach to investigate the percolation behavior of an electrically insulating matrix reinforced with conductive nano-platelet fillers. The conductivity behavior of composites rendered conductive by randomly dispersed conductive platelets was modeled by developing a three-dimensional finite element resistor network. Parameters related to the percolation threshold and a power-low describing the conductivity behavior were determined. The piezoresistivity behavior of conductive composites was studied employing a reoriented resistor network emulating a conductive composite subjected to mechanical strain. The effects of the governing parameters, i.e., electron tunneling distance, conductive particle aspect ratio and size effects on conductivity behavior were examined. PMID:28788580
NASA Astrophysics Data System (ADS)
Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.
2018-02-01
Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.
NASA Astrophysics Data System (ADS)
Shimada, Yutaka; Ikeguchi, Tohru; Shigehara, Takaomi
2012-10-01
In this Letter, we propose a framework to transform a complex network to a time series. The transformation from complex networks to time series is realized by the classical multidimensional scaling. Applying the transformation method to a model proposed by Watts and Strogatz [Nature (London) 393, 440 (1998)], we show that ring lattices are transformed to periodic time series, small-world networks to noisy periodic time series, and random networks to random time series. We also show that these relationships are analytically held by using the circulant-matrix theory and the perturbation theory of linear operators. The results are generalized to several high-dimensional lattices.
Photon Localization and Dicke Superradiance in Atomic Gases
NASA Astrophysics Data System (ADS)
Akkermans, E.; Gero, A.; Kaiser, R.
2008-09-01
Photon propagation in a gas of N atoms is studied using an effective Hamiltonian describing photon-mediated atomic dipolar interactions. The density P(Γ) of photon escape rates is determined from the spectrum of the N×N random matrix Γij=sin(xij)/xij, where xij is the dimensionless random distance between any two atoms. Varying disorder and system size, a scaling behavior is observed for the escape rates. It is explained using microscopic calculations and a stochastic model which emphasizes the role of cooperative effects in photon localization and provides an interesting relation with statistical properties of “small world networks.”
Absorption and scattering of light by nonspherical particles. [in atmosphere
NASA Technical Reports Server (NTRS)
Bohren, C. F.
1986-01-01
Using the example of the polarization of scattered light, it is shown that the scattering matrices for identical, randomly ordered particles and for spherical particles are unequal. The spherical assumptions of Mie theory are therefore inconsistent with the random shapes and sizes of atmospheric particulates. The implications for corrections made to extinction measurements of forward scattering light are discussed. Several analytical methods are examined as potential bases for developing more accurate models, including Rayleigh theory, Fraunhoffer Diffraction theory, anomalous diffraction theory, Rayleigh-Gans theory, the separation of variables technique, the Purcell-Pennypacker method, the T-matrix method, and finite difference calculations.
Linear mixed model for heritability estimation that explicitly addresses environmental variation.
Heckerman, David; Gurdasani, Deepti; Kadie, Carl; Pomilla, Cristina; Carstensen, Tommy; Martin, Hilary; Ekoru, Kenneth; Nsubuga, Rebecca N; Ssenyomo, Gerald; Kamali, Anatoli; Kaleebu, Pontiano; Widmer, Christian; Sandhu, Manjinder S
2016-07-05
The linear mixed model (LMM) is now routinely used to estimate heritability. Unfortunately, as we demonstrate, LMM estimates of heritability can be inflated when using a standard model. To help reduce this inflation, we used a more general LMM with two random effects-one based on genomic variants and one based on easily measured spatial location as a proxy for environmental effects. We investigated this approach with simulated data and with data from a Uganda cohort of 4,778 individuals for 34 phenotypes including anthropometric indices, blood factors, glycemic control, blood pressure, lipid tests, and liver function tests. For the genomic random effect, we used identity-by-descent estimates from accurately phased genome-wide data. For the environmental random effect, we constructed a covariance matrix based on a Gaussian radial basis function. Across the simulated and Ugandan data, narrow-sense heritability estimates were lower using the more general model. Thus, our approach addresses, in part, the issue of "missing heritability" in the sense that much of the heritability previously thought to be missing was fictional. Software is available at https://github.com/MicrosoftGenomics/FaST-LMM.
Eigenvalue density of cross-correlations in Sri Lankan financial market
NASA Astrophysics Data System (ADS)
Nilantha, K. G. D. R.; Ranasinghe; Malmini, P. K. C.
2007-05-01
We apply the universal properties with Gaussian orthogonal ensemble (GOE) of random matrices namely spectral properties, distribution of eigenvalues, eigenvalue spacing predicted by random matrix theory (RMT) to compare cross-correlation matrix estimators from emerging market data. The daily stock prices of the Sri Lankan All share price index and Milanka price index from August 2004 to March 2005 were analyzed. Most eigenvalues in the spectrum of the cross-correlation matrix of stock price changes agree with the universal predictions of RMT. We find that the cross-correlation matrix satisfies the universal properties of the GOE of real symmetric random matrices. The eigen distribution follows the RMT predictions in the bulk but there are some deviations at the large eigenvalues. The nearest-neighbor spacing and the next nearest-neighbor spacing of the eigenvalues were examined and found that they follow the universality of GOE. RMT with deterministic correlations found that each eigenvalue from deterministic correlations is observed at values, which are repelled from the bulk distribution.
Network analysis of a financial market based on genuine correlation and threshold method
NASA Astrophysics Data System (ADS)
Namaki, A.; Shirazi, A. H.; Raei, R.; Jafari, G. R.
2011-10-01
A financial market is an example of an adaptive complex network consisting of many interacting units. This network reflects market’s behavior. In this paper, we use Random Matrix Theory (RMT) notion for specifying the largest eigenvector of correlation matrix as the market mode of stock network. For a better risk management, we clean the correlation matrix by removing the market mode from data and then construct this matrix based on the residuals. We show that this technique has an important effect on correlation coefficient distribution by applying it for Dow Jones Industrial Average (DJIA). To study the topological structure of a network we apply the removing market mode technique and the threshold method to Tehran Stock Exchange (TSE) as an example. We show that this network follows a power-law model in certain intervals. We also show the behavior of clustering coefficients and component numbers of this network for different thresholds. These outputs are useful for both theoretical and practical purposes such as asset allocation and risk management.
Chakrabarti, C G; Ghosh, Koyel
2013-10-01
In the present paper we have first introduced a measure of dynamical entropy of an ecosystem on the basis of the dynamical model of the system. The dynamical entropy which depends on the eigenvalues of the community matrix of the system leads to a consistent measure of complexity of the ecosystem to characterize the dynamical behaviours such as the stability, instability and periodicity around the stationary states of the system. We have illustrated the theory with some model ecosystems. Copyright © 2013 Elsevier Inc. All rights reserved.
Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory
NASA Astrophysics Data System (ADS)
Pato, Mauricio P.; Oshanin, Gleb
2013-03-01
We study the probability distribution function P(β)n(w) of the Schmidt-like random variable w = x21/(∑j = 1nx2j/n), where xj, (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P(β)n(w) converges to the Marčenko-Pastur form, i.e. is defined as P_{n}^{( \\beta )}(w) \\sim \\sqrt{(4 - w)/w} for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P(β = 2)n(w) which are valid for arbitrary n and analyse their behaviour.
Katriel, G.; Yaari, R.; Huppert, A.; Roll, U.; Stone, L.
2011-01-01
This paper presents new computational and modelling tools for studying the dynamics of an epidemic in its initial stages that use both available incidence time series and data describing the population's infection network structure. The work is motivated by data collected at the beginning of the H1N1 pandemic outbreak in Israel in the summer of 2009. We formulated a new discrete-time stochastic epidemic SIR (susceptible-infected-recovered) model that explicitly takes into account the disease's specific generation-time distribution and the intrinsic demographic stochasticity inherent to the infection process. Moreover, in contrast with many other modelling approaches, the model allows direct analytical derivation of estimates for the effective reproductive number (Re) and of their credible intervals, by maximum likelihood and Bayesian methods. The basic model can be extended to include age–class structure, and a maximum likelihood methodology allows us to estimate the model's next-generation matrix by combining two types of data: (i) the incidence series of each age group, and (ii) infection network data that provide partial information of ‘who-infected-who’. Unlike other approaches for estimating the next-generation matrix, the method developed here does not require making a priori assumptions about the structure of the next-generation matrix. We show, using a simulation study, that even a relatively small amount of information about the infection network greatly improves the accuracy of estimation of the next-generation matrix. The method is applied in practice to estimate the next-generation matrix from the Israeli H1N1 pandemic data. The tools developed here should be of practical importance for future investigations of epidemics during their initial stages. However, they require the availability of data which represent a random sample of the real epidemic process. We discuss the conditions under which reporting rates may or may not influence our estimated quantities and the effects of bias. PMID:21247949
Architecture of Columnar Nacre, and Implications for Its Formation Mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzler, Rebecca A.; Olabisi, Ronke M.; Coppersmith, Susan N.
2007-06-29
We analyze the structure of Haliotis rufescens nacre, or mother-of-pearl, using synchrotron spectromicroscopy and x-ray absorption near-edge structure spectroscopy. We observe imaging contrast between adjacent individual nacre tablets, arising because different tablets have different crystal orientations with respect to the radiation's polarization vector. Comparing previous data and our new data with models for columnar nacre growth, we find the data are most consistent with a model in which nacre tablets are nucleated by randomly distributed sites in the organic matrix layers.
Stochastic model of cell rearrangements in convergent extension of ascidian notochord
NASA Astrophysics Data System (ADS)
Lubkin, Sharon; Backes, Tracy; Latterman, Russell; Small, Stephen
2007-03-01
We present a discrete stochastic cell based model of convergent extension of the ascidian notochord. Our work derives from research that clarifies the coupling of invagination and convergent extension in ascidian notochord morphogenesis (Odell and Munro, 2002). We have tested the roles of cell-cell adhesion, cell-extracellular matrix adhesion, random motion, and extension of individual cells, as well as the presence or absence of various tissue types, and determined which factors are necessary and/or sufficient for convergent extension.
Random matrix theory and portfolio optimization in Moroccan stock exchange
NASA Astrophysics Data System (ADS)
El Alaoui, Marwane
2015-09-01
In this work, we use random matrix theory to analyze eigenvalues and see if there is a presence of pertinent information by using Marčenko-Pastur distribution. Thus, we study cross-correlation among stocks of Casablanca Stock Exchange. Moreover, we clean correlation matrix from noisy elements to see if the gap between predicted risk and realized risk would be reduced. We also analyze eigenvectors components distributions and their degree of deviations by computing the inverse participation ratio. This analysis is a way to understand the correlation structure among stocks of Casablanca Stock Exchange portfolio.
Properties of networks with partially structured and partially random connectivity
NASA Astrophysics Data System (ADS)
Ahmadian, Yashar; Fumarola, Francesco; Miller, Kenneth D.
2015-01-01
Networks studied in many disciplines, including neuroscience and mathematical biology, have connectivity that may be stochastic about some underlying mean connectivity represented by a non-normal matrix. Furthermore, the stochasticity may not be independent and identically distributed (iid) across elements of the connectivity matrix. More generally, the problem of understanding the behavior of stochastic matrices with nontrivial mean structure and correlations arises in many settings. We address this by characterizing large random N ×N matrices of the form A =M +L J R , where M ,L , and R are arbitrary deterministic matrices and J is a random matrix of zero-mean iid elements. M can be non-normal, and L and R allow correlations that have separable dependence on row and column indices. We first provide a general formula for the eigenvalue density of A . For A non-normal, the eigenvalues do not suffice to specify the dynamics induced by A , so we also provide general formulas for the transient evolution of the magnitude of activity and frequency power spectrum in an N -dimensional linear dynamical system with a coupling matrix given by A . These quantities can also be thought of as characterizing the stability and the magnitude of the linear response of a nonlinear network to small perturbations about a fixed point. We derive these formulas and work them out analytically for some examples of M ,L , and R motivated by neurobiological models. We also argue that the persistence as N →∞ of a finite number of randomly distributed outlying eigenvalues outside the support of the eigenvalue density of A , as previously observed, arises in regions of the complex plane Ω where there are nonzero singular values of L-1(z 1 -M ) R-1 (for z ∈Ω ) that vanish as N →∞ . When such singular values do not exist and L and R are equal to the identity, there is a correspondence in the normalized Frobenius norm (but not in the operator norm) between the support of the spectrum of A for J of norm σ and the σ pseudospectrum of M .
The supersymmetric method in random matrix theory and applications to QCD
NASA Astrophysics Data System (ADS)
Verbaarschot, Jacobus
2004-12-01
The supersymmetric method is a powerful method for the nonperturbative evaluation of quenched averages in disordered systems. Among others, this method has been applied to the statistical theory of S-matrix fluctuations, the theory of universal conductance fluctuations and the microscopic spectral density of the QCD Dirac operator. We start this series of lectures with a general review of Random Matrix Theory and the statistical theory of spectra. An elementary introduction of the supersymmetric method in Random Matrix Theory is given in the second and third lecture. We will show that a Random Matrix Theory can be rewritten as an integral over a supermanifold. This integral will be worked out in detail for the Gaussian Unitary Ensemble that describes level correlations in systems with broken time-reversal invariance. We especially emphasize the role of symmetries. As a second example of the application of the supersymmetric method we discuss the calculation of the microscopic spectral density of the QCD Dirac operator. This is the eigenvalue density near zero on the scale of the average level spacing which is known to be given by chiral Random Matrix Theory. Also in this case we use symmetry considerations to rewrite the generating function for the resolvent as an integral over a supermanifold. The main topic of the second last lecture is the recent developments on the relation between the supersymmetric partition function and integrable hierarchies (in our case the Toda lattice hierarchy). We will show that this relation is an efficient way to calculate superintegrals. Several examples that were given in previous lectures will be worked out by means of this new method. Finally, we will discuss the quenched QCD Dirac spectrum at nonzero chemical potential. Because of the nonhermiticity of the Dirac operator the usual supersymmetric method has not been successful in this case. However, we will show that the supersymmetric partition function can be evaluated by means of the replica limit of the Toda lattice equation.
Levy Matrices and Financial Covariances
NASA Astrophysics Data System (ADS)
Burda, Zdzislaw; Jurkiewicz, Jerzy; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail
2003-10-01
In a given market, financial covariances capture the intra-stock correlations and can be used to address statistically the bulk nature of the market as a complex system. We provide a statistical analysis of three SP500 covariances with evidence for raw tail distributions. We study the stability of these tails against reshuffling for the SP500 data and show that the covariance with the strongest tails is robust, with a spectral density in remarkable agreement with random Lévy matrix theory. We study the inverse participation ratio for the three covariances. The strong localization observed at both ends of the spectral density is analogous to the localization exhibited in the random Lévy matrix ensemble. We discuss two competitive mechanisms responsible for the occurrence of an extensive and delocalized eigenvalue at the edge of the spectrum: (a) the Lévy character of the entries of the correlation matrix and (b) a sort of off-diagonal order induced by underlying inter-stock correlations. (b) can be destroyed by reshuffling, while (a) cannot. We show that the stocks with the largest scattering are the least susceptible to correlations, and likely candidates for the localized states. We introduce a simple model for price fluctuations which captures behavior of the SP500 covariances. It may be of importance for assets diversification.
QRAP: A numerical code for projected (Q)uasiparticle (RA)ndom (P)hase approximation
NASA Astrophysics Data System (ADS)
Samana, A. R.; Krmpotić, F.; Bertulani, C. A.
2010-06-01
A computer code for quasiparticle random phase approximation - QRPA and projected quasiparticle random phase approximation - PQRPA models of nuclear structure is explained in details. The residual interaction is approximated by a simple δ-force. An important application of the code consists in evaluating nuclear matrix elements involved in neutrino-nucleus reactions. As an example, cross sections for 56Fe and 12C are calculated and the code output is explained. The application to other nuclei and the description of other nuclear and weak decay processes are also discussed. Program summaryTitle of program: QRAP ( Quasiparticle RAndom Phase approximation) Computers: The code has been created on a PC, but also runs on UNIX or LINUX machines Operating systems: WINDOWS or UNIX Program language used: Fortran-77 Memory required to execute with typical data: 16 Mbytes of RAM memory and 2 MB of hard disk space No. of lines in distributed program, including test data, etc.: ˜ 8000 No. of bytes in distributed program, including test data, etc.: ˜ 256 kB Distribution format: tar.gz Nature of physical problem: The program calculates neutrino- and antineutrino-nucleus cross sections as a function of the incident neutrino energy, and muon capture rates, using the QRPA or PQRPA as nuclear structure models. Method of solution: The QRPA, or PQRPA, equations are solved in a self-consistent way for even-even nuclei. The nuclear matrix elements for the neutrino-nucleus interaction are treated as the beta inverse reaction of odd-odd nuclei as function of the transfer momentum. Typical running time: ≈ 5 min on a 3 GHz processor for Data set 1.
Measurement Matrix Design for Phase Retrieval Based on Mutual Information
NASA Astrophysics Data System (ADS)
Shlezinger, Nir; Dabora, Ron; Eldar, Yonina C.
2018-01-01
In phase retrieval problems, a signal of interest (SOI) is reconstructed based on the magnitude of a linear transformation of the SOI observed with additive noise. The linear transform is typically referred to as a measurement matrix. Many works on phase retrieval assume that the measurement matrix is a random Gaussian matrix, which, in the noiseless scenario with sufficiently many measurements, guarantees invertability of the transformation between the SOI and the observations, up to an inherent phase ambiguity. However, in many practical applications, the measurement matrix corresponds to an underlying physical setup, and is therefore deterministic, possibly with structural constraints. In this work we study the design of deterministic measurement matrices, based on maximizing the mutual information between the SOI and the observations. We characterize necessary conditions for the optimality of a measurement matrix, and analytically obtain the optimal matrix in the low signal-to-noise ratio regime. Practical methods for designing general measurement matrices and masked Fourier measurements are proposed. Simulation tests demonstrate the performance gain achieved by the proposed techniques compared to random Gaussian measurements for various phase recovery algorithms.
Spectra of empirical autocorrelation matrices: A random-matrix-theory-inspired perspective
NASA Astrophysics Data System (ADS)
Jamali, Tayeb; Jafari, G. R.
2015-07-01
We construct an autocorrelation matrix of a time series and analyze it based on the random-matrix theory (RMT) approach. The autocorrelation matrix is capable of extracting information which is not easily accessible by the direct analysis of the autocorrelation function. In order to provide a precise conclusion based on the information extracted from the autocorrelation matrix, the results must be first evaluated. In other words they need to be compared with some sort of criterion to provide a basis for the most suitable and applicable conclusions. In the context of the present study, the criterion is selected to be the well-known fractional Gaussian noise (fGn). We illustrate the applicability of our method in the context of stock markets. For the former, despite the non-Gaussianity in returns of the stock markets, a remarkable agreement with the fGn is achieved.
NASA Astrophysics Data System (ADS)
Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.
2017-12-01
We analyze a Markovian random walk strategy on undirected regular networks involving power matrix functions of the type L\\frac{α{2}} where L indicates a ‘simple’ Laplacian matrix. We refer to such walks as ‘fractional random walks’ with admissible interval 0<α ≤slant 2 . We deduce probability-generating functions (network Green’s functions) for the fractional random walk. From these analytical results we establish a generalization of Polya’s recurrence theorem for fractional random walks on d-dimensional infinite lattices: The fractional random walk is transient for dimensions d > α (recurrent for d≤slantα ) of the lattice. As a consequence, for 0<α< 1 the fractional random walk is transient for all lattice dimensions d=1, 2, .. and in the range 1≤slantα < 2 for dimensions d≥slant 2 . Finally, for α=2 , Polya’s classical recurrence theorem is recovered, namely the walk is transient only for lattice dimensions d≥slant 3 . The generalization of Polya’s recurrence theorem remains valid for the class of random walks with Lévy flight asymptotics for long-range steps. We also analyze the mean first passage probabilities, mean residence times, mean first passage times and global mean first passage times (Kemeny constant) for the fractional random walk. For an infinite 1D lattice (infinite ring) we obtain for the transient regime 0<α<1 closed form expressions for the fractional lattice Green’s function matrix containing the escape and ever passage probabilities. The ever passage probabilities (fractional lattice Green’s functions) in the transient regime fulfil Riesz potential power law decay asymptotic behavior for nodes far from the departure node. The non-locality of the fractional random walk is generated by the non-diagonality of the fractional Laplacian matrix with Lévy-type heavy tailed inverse power law decay for the probability of long-range moves. This non-local and asymptotic behavior of the fractional random walk introduces small-world properties with the emergence of Lévy flights on large (infinite) lattices.
Portfolio optimization and the random magnet problem
NASA Astrophysics Data System (ADS)
Rosenow, B.; Plerou, V.; Gopikrishnan, P.; Stanley, H. E.
2002-08-01
Diversification of an investment into independently fluctuating assets reduces its risk. In reality, movements of assets are mutually correlated and therefore knowledge of cross-correlations among asset price movements are of great importance. Our results support the possibility that the problem of finding an investment in stocks which exposes invested funds to a minimum level of risk is analogous to the problem of finding the magnetization of a random magnet. The interactions for this "random magnet problem" are given by the cross-correlation matrix C of stock returns. We find that random matrix theory allows us to make an estimate for C which outperforms the standard estimate in terms of constructing an investment which carries a minimum level of risk.
Path statistics, memory, and coarse-graining of continuous-time random walks on networks
Kion-Crosby, Willow; Morozov, Alexandre V.
2015-01-01
Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach can be applied to calculating higher moments (beyond the mean) of path length, time, and action, as well as statistics of any conservative or non-conservative force along a path. For homogeneous networks, we derive exact relations between length and time moments, quantifying the validity of approximating a continuous-time process with its discrete-time projection. For more general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model of choice. We demonstrate the algorithm on a few representative examples which underscore the importance of non-exponential distributions, memory, and coarse-graining in CTRWs. PMID:26646868
Entanglement transitions induced by large deviations
NASA Astrophysics Data System (ADS)
Bhosale, Udaysinh T.
2017-12-01
The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B , is computed analytically using a Coulomb gas method. It is shown that this probability, for large N , goes as exp[-β N2Φ (ζ ) ] , where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ (ζ ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A , using the properties of the density matrix's partial transpose ρ12Γ. The density of states of ρ12Γ is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ . Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.
Entanglement transitions induced by large deviations.
Bhosale, Udaysinh T
2017-12-01
The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B, is computed analytically using a Coulomb gas method. It is shown that this probability, for large N, goes as exp[-βN^{2}Φ(ζ)], where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ(ζ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A, using the properties of the density matrix's partial transpose ρ_{12}^{Γ}. The density of states of ρ_{12}^{Γ} is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ. Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.
Deghosting based on the transmission matrix method
NASA Astrophysics Data System (ADS)
Wang, Benfeng; Wu, Ru-Shan; Chen, Xiaohong
2017-12-01
As the developments of seismic exploration and subsequent seismic exploitation advance, marine acquisition systems with towed streamers become an important seismic data acquisition method. But the existing air-water reflective interface can generate surface related multiples, including ghosts, which can affect the accuracy and performance of the following seismic data processing algorithms. Thus, we derive a deghosting method from a new perspective, i.e. using the transmission matrix (T-matrix) method instead of inverse scattering series. The T-matrix-based deghosting algorithm includes all scattering effects and is convergent absolutely. Initially, the effectiveness of the proposed method is demonstrated using synthetic data obtained from a designed layered model, and its noise-resistant property is also illustrated using noisy synthetic data contaminated by random noise. Numerical examples on complicated data from the open SMAART Pluto model and field marine data further demonstrate the validity and flexibility of the proposed method. After deghosting, low frequency components are recovered reasonably and the fake high frequency components are attenuated, and the recovered low frequency components will be useful for the subsequent full waveform inversion. The proposed deghosting method is currently suitable for two-dimensional towed streamer cases with accurate constant depth information and its extension into variable-depth streamers in three-dimensional cases will be studied in the future.
Migration of lymphocytes on fibronectin-coated surfaces: temporal evolution of migratory parameters
NASA Technical Reports Server (NTRS)
Bergman, A. J.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)
1999-01-01
Lymphocytes typically interact with implanted biomaterials through adsorbed exogenous proteins. To provide a more complete characterization of these interactions, analysis of lymphocyte migration on adsorbed extracellular matrix proteins must accompany the commonly performed adhesion studies. We report here a comparison of the migratory and adhesion behavior of Jurkat cells (a T lymphoblastoid cell line) on tissue culture treated and untreated polystyrene surfaces coated with various concentrations of fibronectin. The average speed of cell locomotion showed a biphasic response to substrate adhesiveness for cells migrating on untreated polystyrene and a monotonic decrease for cells migrating on tissue culture-treated polystyrene. A modified approach to the persistent random walk model was implemented to determine the time dependence of cell migration parameters. The random motility coefficient showed significant increases with time when cells migrated on tissue culture-treated polystyrene surfaces, while it remained relatively constant for experiments with untreated polystyrene plates. Finally, a cell migration computer model was developed to verify our modified persistent random walk analysis. Simulation results suggest that our experimental data were consistent with temporally increasing random motility coefficients.
Universal shocks in the Wishart random-matrix ensemble.
Blaizot, Jean-Paul; Nowak, Maciej A; Warchoł, Piotr
2013-05-01
We show that the derivative of the logarithm of the average characteristic polynomial of a diffusing Wishart matrix obeys an exact partial differential equation valid for an arbitrary value of N, the size of the matrix. In the large N limit, this equation generalizes the simple inviscid Burgers equation that has been obtained earlier for Hermitian or unitary matrices. The solution, through the method of characteristics, presents singularities that we relate to the precursors of shock formation in the Burgers equation. The finite N effects appear as a viscosity term in the Burgers equation. Using a scaling analysis of the complete equation for the characteristic polynomial, in the vicinity of the shocks, we recover in a simple way the universal Bessel oscillations (so-called hard-edge singularities) familiar in random-matrix theory.
NASA Astrophysics Data System (ADS)
Santra, Siddhartha; Cruikshank, Benjamin; Balu, Radhakrishnan; Jacobs, Kurt
2017-10-01
Fermi’s golden rule applies to a situation in which a single quantum state \\vert \\psi> is coupled to a near-continuum. This ‘quasi-continuum coupling’ structure results in a rate equation for the population of \\vert \\psi> . Here we show that the coupling of a quantum system to the standard model of a thermal environment, a bath of harmonic oscillators, can be decomposed into a ‘cascade’ made up of the quasi-continuum coupling structures of Fermi’s golden rule. This clarifies the connection between the physics of the golden rule and that of a thermal bath, and provides a non-rigorous but physically intuitive derivation of the Markovian master equation directly from the former. The exact solution to the Hamiltonian of the golden rule, known as the Bixon-Jortner model, generalized for an asymmetric spectrum, provides a window on how the evolution induced by the bath deviates from the master equation as one moves outside the Markovian regime. Our analysis also reveals the relationship between the oscillator bath and the ‘random matrix model’ (RMT) of a thermal bath. We show that the cascade structure is the one essential difference between the two models, and the lack of it prevents the RMT from generating transition rates that are independent of the initial state of the system. We suggest that the cascade structure is one of the generic elements of thermalizing many-body systems.
Telfeyan, Katherine Christina; Ware, Stuart Doug; Reimus, Paul William; ...
2018-01-31
Here, diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged frommore » 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telfeyan, Katherine Christina; Ware, Stuart Doug; Reimus, Paul William
Here, diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged frommore » 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less
NASA Astrophysics Data System (ADS)
Nowak, W.; Schöniger, A.; Wöhling, T.; Illman, W. A.
2016-12-01
Model-based decision support requires justifiable models with good predictive capabilities. This, in turn, calls for a fine adjustment between predictive accuracy (small systematic model bias that can be achieved with rather complex models), and predictive precision (small predictive uncertainties that can be achieved with simpler models with fewer parameters). The implied complexity/simplicity trade-off depends on the availability of informative data for calibration. If not available, additional data collection can be planned through optimal experimental design. We present a model justifiability analysis that can compare models of vastly different complexity. It rests on Bayesian model averaging (BMA) to investigate the complexity/performance trade-off dependent on data availability. Then, we disentangle the complexity component from the performance component. We achieve this by replacing actually observed data by realizations of synthetic data predicted by the models. This results in a "model confusion matrix". Based on this matrix, the modeler can identify the maximum model complexity that can be justified by the available (or planned) amount and type of data. As a side product, the matrix quantifies model (dis-)similarity. We apply this analysis to aquifer characterization via hydraulic tomography, comparing four models with a vastly different number of parameters (from a homogeneous model to geostatistical random fields). As a testing scenario, we consider hydraulic tomography data. Using subsets of these data, we determine model justifiability as a function of data set size. The test case shows that geostatistical parameterization requires a substantial amount of hydraulic tomography data to be justified, while a zonation-based model can be justified with more limited data set sizes. The actual model performance (as opposed to model justifiability), however, depends strongly on the quality of prior geological information.
Asymptotic Expansion of β Matrix Models in the One-cut Regime
NASA Astrophysics Data System (ADS)
Borot, G.; Guionnet, A.
2013-01-01
We prove the existence of a 1/ N expansion to all orders in β matrix models with a confining, offcritical potential corresponding to an equilibrium measure with a connected support. Thus, the coefficients of the expansion can be obtained recursively by the "topological recursion" derived in Chekhov and Eynard (JHEP 0612:026, 2006). Our method relies on the combination of a priori bounds on the correlators and the study of Schwinger-Dyson equations, thanks to the uses of classical complex analysis techniques. These a priori bounds can be derived following (Boutet de Monvel et al. in J Stat Phys 79(3-4):585-611, 1995; Johansson in Duke Math J 91(1):151-204, 1998; Kriecherbauer and Shcherbina in Fluctuations of eigenvalues of matrix models and their applications, 2010) or for strictly convex potentials by using concentration of measure (Anderson et al. in An introduction to random matrices, Sect. 2.3, Cambridge University Press, Cambridge, 2010). Doing so, we extend the strategy of Guionnet and Maurel-Segala (Ann Probab 35:2160-2212, 2007), from the hermitian models ( β = 2) and perturbative potentials, to general β models. The existence of the first correction in 1/ N was considered in Johansson (1998) and more recently in Kriecherbauer and Shcherbina (2010). Here, by taking similar hypotheses, we extend the result to all orders in 1/ N.
Dynamic Textures Modeling via Joint Video Dictionary Learning.
Wei, Xian; Li, Yuanxiang; Shen, Hao; Chen, Fang; Kleinsteuber, Martin; Wang, Zhongfeng
2017-04-06
Video representation is an important and challenging task in the computer vision community. In this paper, we consider the problem of modeling and classifying video sequences of dynamic scenes which could be modeled in a dynamic textures (DT) framework. At first, we assume that image frames of a moving scene can be modeled as a Markov random process. We propose a sparse coding framework, named joint video dictionary learning (JVDL), to model a video adaptively. By treating the sparse coefficients of image frames over a learned dictionary as the underlying "states", we learn an efficient and robust linear transition matrix between two adjacent frames of sparse events in time series. Hence, a dynamic scene sequence is represented by an appropriate transition matrix associated with a dictionary. In order to ensure the stability of JVDL, we impose several constraints on such transition matrix and dictionary. The developed framework is able to capture the dynamics of a moving scene by exploring both sparse properties and the temporal correlations of consecutive video frames. Moreover, such learned JVDL parameters can be used for various DT applications, such as DT synthesis and recognition. Experimental results demonstrate the strong competitiveness of the proposed JVDL approach in comparison with state-of-the-art video representation methods. Especially, it performs significantly better in dealing with DT synthesis and recognition on heavily corrupted data.
Subcritical Multiplicative Chaos for Regularized Counting Statistics from Random Matrix Theory
NASA Astrophysics Data System (ADS)
Lambert, Gaultier; Ostrovsky, Dmitry; Simm, Nick
2018-05-01
For an {N × N} Haar distributed random unitary matrix U N , we consider the random field defined by counting the number of eigenvalues of U N in a mesoscopic arc centered at the point u on the unit circle. We prove that after regularizing at a small scale {ɛN > 0}, the renormalized exponential of this field converges as N \\to ∞ to a Gaussian multiplicative chaos measure in the whole subcritical phase. We discuss implications of this result for obtaining a lower bound on the maximum of the field. We also show that the moments of the total mass converge to a Selberg-like integral and by taking a further limit as the size of the arc diverges, we establish part of the conjectures in Ostrovsky (Nonlinearity 29(2):426-464, 2016). By an analogous construction, we prove that the multiplicative chaos measure coming from the sine process has the same distribution, which strongly suggests that this limiting object should be universal. Our approach to the L 1-phase is based on a generalization of the construction in Berestycki (Electron Commun Probab 22(27):12, 2017) to random fields which are only asymptotically Gaussian. In particular, our method could have applications to other random fields coming from either random matrix theory or a different context.
Convergence to equilibrium under a random Hamiltonian.
Brandão, Fernando G S L; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K; Mozrzymas, Marek
2012-09-01
We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.
Convergence to equilibrium under a random Hamiltonian
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K.; Mozrzymas, Marek
2012-09-01
We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.
Intermediate quantum maps for quantum computation
NASA Astrophysics Data System (ADS)
Giraud, O.; Georgeot, B.
2005-10-01
We study quantum maps displaying spectral statistics intermediate between Poisson and Wigner-Dyson. It is shown that they can be simulated on a quantum computer with a small number of gates, and efficiently yield information about fidelity decay or spectral statistics. We study their matrix elements and entanglement production and show that they converge with time to distributions which differ from random matrix predictions. A randomized version of these maps can be implemented even more economically and yields pseudorandom operators with original properties, enabling, for example, one to produce fractal random vectors. These algorithms are within reach of present-day quantum computers.
Anomalous Anderson localization
NASA Astrophysics Data System (ADS)
Deng, Wenji
2000-04-01
We propose a generalized Anderson model and study numerically the localization phenomena in one dimension. In our model, not all the sites take on-site random site energy. The on-site energy εn on the nth site is assigned as follows. If n+P-1=0 ( mod P) , where P is a positive integer, εn is assumed to be randomly distributed between - W/2 and W/2. On the other lattice sites, the site energy is fixed, say εn=0.The localization length ξ defined as | t| 2=e -2 L/ ξ, where t is the transmission coefficient, is calculated using the transfer matrix method. It is found that the single-electron states with wave vectors k= π/P, 2 π/P,…,(P-1) π/P are no longer localized as in the standard Anderson model. Compared with the smooth localization length spectrum of the Anderson model, there appear P-1 sharp peaks periodically located at P-1 values of wave vector on the localization length spectrum of the generalized Anderson model with parameter P.
Single-qubit decoherence under a separable coupling to a random matrix environment
NASA Astrophysics Data System (ADS)
Carrera, M.; Gorin, T.; Seligman, T. H.
2014-08-01
This paper describes the dynamics of a quantum two-level system (qubit) under the influence of an environment modeled by an ensemble of random matrices. In distinction to earlier work, we consider here separable couplings and focus on a regime where the decoherence time is of the same order of magnitude as the environmental Heisenberg time. We derive an analytical expression in the linear response approximation, and study its accuracy by comparison with numerical simulations. We discuss a series of unusual properties, such as purity oscillations, strong signatures of spectral correlations (in the environment Hamiltonian), memory effects, and symmetry-breaking equilibrium states.
Emergence of Lévy Walks from Second-Order Stochastic Optimization
NASA Astrophysics Data System (ADS)
Kuśmierz, Łukasz; Toyoizumi, Taro
2017-12-01
In natural foraging, many organisms seem to perform two different types of motile search: directed search (taxis) and random search. The former is observed when the environment provides cues to guide motion towards a target. The latter involves no apparent memory or information processing and can be mathematically modeled by random walks. We show that both types of search can be generated by a common mechanism in which Lévy flights or Lévy walks emerge from a second-order gradient-based search with noisy observations. No explicit switching mechanism is required—instead, continuous transitions between the directed and random motions emerge depending on the Hessian matrix of the cost function. For a wide range of scenarios, the Lévy tail index is α =1 , consistent with previous observations in foraging organisms. These results suggest that adopting a second-order optimization method can be a useful strategy to combine efficient features of directed and random search.
Estimation of genetic parameters related to eggshell strength using random regression models.
Guo, J; Ma, M; Qu, L; Shen, M; Dou, T; Wang, K
2015-01-01
This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen's laying life using random regression. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.
Local Geostatistical Models and Big Data in Hydrological and Ecological Applications
NASA Astrophysics Data System (ADS)
Hristopulos, Dionissios
2015-04-01
The advent of the big data era creates new opportunities for environmental and ecological modelling but also presents significant challenges. The availability of remote sensing images and low-cost wireless sensor networks implies that spatiotemporal environmental data to cover larger spatial domains at higher spatial and temporal resolution for longer time windows. Handling such voluminous data presents several technical and scientific challenges. In particular, the geostatistical methods used to process spatiotemporal data need to overcome the dimensionality curse associated with the need to store and invert large covariance matrices. There are various mathematical approaches for addressing the dimensionality problem, including change of basis, dimensionality reduction, hierarchical schemes, and local approximations. We present a Stochastic Local Interaction (SLI) model that can be used to model local correlations in spatial data. SLI is a random field model suitable for data on discrete supports (i.e., regular lattices or irregular sampling grids). The degree of localization is determined by means of kernel functions and appropriate bandwidths. The strength of the correlations is determined by means of coefficients. In the "plain vanilla" version the parameter set involves scale and rigidity coefficients as well as a characteristic length. The latter determines in connection with the rigidity coefficient the correlation length of the random field. The SLI model is based on statistical field theory and extends previous research on Spartan spatial random fields [2,3] from continuum spaces to explicitly discrete supports. The SLI kernel functions employ adaptive bandwidths learned from the sampling spatial distribution [1]. The SLI precision matrix is expressed explicitly in terms of the model parameter and the kernel function. Hence, covariance matrix inversion is not necessary for parameter inference that is based on leave-one-out cross validation. This property helps to overcome a significant computational bottleneck of geostatistical models due to the poor scaling of the matrix inversion [4,5]. We present applications to real and simulated data sets, including the Walker lake data, and we investigate the SLI performance using various statistical cross validation measures. References [1] T. Hofmann, B. Schlkopf, A.J. Smola, Annals of Statistics, 36, 1171-1220 (2008). [2] D. T. Hristopulos, SIAM Journal on Scientific Computing, 24(6): 2125-2162 (2003). [3] D. T. Hristopulos and S. N. Elogne, IEEE Transactions on Signal Processing, 57(9): 3475-3487 (2009) [4] G. Jona Lasinio, G. Mastrantonio, and A. Pollice, Statistical Methods and Applications, 22(1):97-112 (2013) [5] Sun, Y., B. Li, and M. G. Genton (2012). Geostatistics for large datasets. In: Advances and Challenges in Space-time Modelling of Natural Events, Lecture Notes in Statistics, pp. 55-77. Springer, Berlin-Heidelberg.
Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.
1996-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Cho, Yi Je; Lee, Wookjin; Park, Yong Ho
2017-01-01
The elastoplastic deformation behaviors of hollow glass microspheres/iron syntactic foam under tension were modeled using a representative volume element (RVE) approach. The three-dimensional microstructures of the iron syntactic foam with 5 wt % glass microspheres were reconstructed using the random sequential adsorption algorithm. The constitutive behavior of the elastoplasticity in the iron matrix and the elastic-brittle failure for the glass microsphere were simulated in the models. An appropriate RVE size was statistically determined by evaluating elastic modulus, Poisson’s ratio, and yield strength in terms of model sizes and boundary conditions. The model was validated by the agreement with experimental findings. The tensile deformation mechanism of the syntactic foam considering the fracture of the microspheres was then investigated. In addition, the feasibility of introducing the interfacial deboning behavior to the proposed model was briefly investigated to improve the accuracy in depicting fracture behaviors of the syntactic foam. It is thought that the modeling techniques and the model itself have major potential for applications not only in the study of hollow glass microspheres/iron syntactic foams, but also for the design of composites with a high modulus matrix and high strength reinforcement. PMID:29048346
NASA Astrophysics Data System (ADS)
Han, Tongcheng
2018-07-01
Understanding the electrical properties of rocks under varying pressure is important for a variety of geophysical applications. This study proposes an approach to modelling the pressure-dependent electrical properties of porous rocks based on an effective medium model. The so-named Textural model uses the aspect ratios and pressure-dependent volume fractions of the pores and the aspect ratio and electrical conductivity of the matrix grains. The pores were represented by randomly oriented stiff and compliant spheroidal shapes with constant aspect ratios, and their pressure-dependent volume fractions were inverted from the measured variation of total porosity with differential pressure using a dual porosity model. The unknown constant stiff and compliant pore aspect ratios and the aspect ratio and electrical conductivity of the matrix grains were inverted by best fitting the modelled electrical formation factor to the measured data. Application of the approach to three sandstone samples covering a broad porosity range showed that the pressure-dependent electrical properties can be satisfactorily modelled by the proposed approach. The results demonstrate that the dual porosity concept is sufficient to explain the electrical properties of porous rocks under pressure through the effective medium model scheme.
NASA Astrophysics Data System (ADS)
Wilkinson, Michael; Grant, John
2018-03-01
We consider a stochastic process in which independent identically distributed random matrices are multiplied and where the Lyapunov exponent of the product is positive. We continue multiplying the random matrices as long as the norm, ɛ, of the product is less than unity. If the norm is greater than unity we reset the matrix to a multiple of the identity and then continue the multiplication. We address the problem of determining the probability density function of the norm, \
Derivatives of random matrix characteristic polynomials with applications to elliptic curves
NASA Astrophysics Data System (ADS)
Snaith, N. C.
2005-12-01
The value distribution of derivatives of characteristic polynomials of matrices from SO(N) is calculated at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. We consider subsets of matrices from SO(N) that are constrained to have at least n eigenvalues equal to 1 and investigate the first non-zero derivative of the characteristic polynomial at that point. The connection between the values of random matrix characteristic polynomials and values of L-functions in families has been well established. The motivation for this work is the expectation that through this connection with L-functions derived from families of elliptic curves, and using the Birch and Swinnerton-Dyer conjecture to relate values of the L-functions to the rank of elliptic curves, random matrix theory will be useful in probing important questions concerning these ranks.
Spectral analysis of finite-time correlation matrices near equilibrium phase transitions
NASA Astrophysics Data System (ADS)
Vinayak; Prosen, T.; Buča, B.; Seligman, T. H.
2014-10-01
We study spectral densities for systems on lattices, which, at a phase transition display, power-law spatial correlations. Constructing the spatial correlation matrix we prove that its eigenvalue density shows a power law that can be derived from the spatial correlations. In practice time series are short in the sense that they are either not stationary over long time intervals or not available over long time intervals. Also we usually do not have time series for all variables available. We shall make numerical simulations on a two-dimensional Ising model with the usual Metropolis algorithm as time evolution. Using all spins on a grid with periodic boundary conditions we find a power law, that is, for large grids, compatible with the analytic result. We still find a power law even if we choose a fairly small subset of grid points at random. The exponents of the power laws will be smaller under such circumstances. For very short time series leading to singular correlation matrices we use a recently developed technique to lift the degeneracy at zero in the spectrum and find a significant signature of critical behavior even in this case as compared to high temperature results which tend to those of random matrix models.
Statistical mechanics of homogeneous partly pinned fluid systems.
Krakoviack, Vincent
2010-12-01
The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.
Zhang, Xue-Xi; Yin, Jian-Hua; Mao, Zhi-Hua; Xia, Yang
2015-01-01
Abstract. Fourier transform infrared imaging (FTIRI) combined with chemometrics algorithm has strong potential to obtain complex chemical information from biology tissues. FTIRI and partial least squares-discriminant analysis (PLS-DA) were used to differentiate healthy and osteoarthritic (OA) cartilages for the first time. A PLS model was built on the calibration matrix of spectra that was randomly selected from the FTIRI spectral datasets of healthy and lesioned cartilage. Leave-one-out cross-validation was performed in the PLS model, and the fitting coefficient between actual and predicted categorical values of the calibration matrix reached 0.95. In the calibration and prediction matrices, the successful identifying percentages of healthy and lesioned cartilage spectra were 100% and 90.24%, respectively. These results demonstrated that FTIRI combined with PLS-DA could provide a promising approach for the categorical identification of healthy and OA cartilage specimens. PMID:26057029
Zhang, Xue-Xi; Yin, Jian-Hua; Mao, Zhi-Hua; Xia, Yang
2015-06-01
Fourier transform infrared imaging (FTIRI) combined with chemometrics algorithm has strong potential to obtain complex chemical information from biology tissues. FTIRI and partial least squares-discriminant analysis (PLS-DA) were used to differentiate healthy and osteoarthritic (OA) cartilages for the first time. A PLS model was built on the calibration matrix of spectra that was randomly selected from the FTIRI spectral datasets of healthy and lesioned cartilage. Leave-one-out cross-validation was performed in the PLS model, and the fitting coefficient between actual and predicted categorical values of the calibration matrix reached 0.95. In the calibration and prediction matrices, the successful identifying percentages of healthy and lesioned cartilage spectra were 100% and 90.24%, respectively. These results demonstrated that FTIRI combined with PLS-DA could provide a promising approach for the categorical identification of healthy and OA cartilage specimens.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t tomore » be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.« less
Model Reduction via Principe Component Analysis and Markov Chain Monte Carlo (MCMC) Methods
NASA Astrophysics Data System (ADS)
Gong, R.; Chen, J.; Hoversten, M. G.; Luo, J.
2011-12-01
Geophysical and hydrogeological inverse problems often include a large number of unknown parameters, ranging from hundreds to millions, depending on parameterization and problems undertaking. This makes inverse estimation and uncertainty quantification very challenging, especially for those problems in two- or three-dimensional spatial domains. Model reduction technique has the potential of mitigating the curse of dimensionality by reducing total numbers of unknowns while describing the complex subsurface systems adequately. In this study, we explore the use of principal component analysis (PCA) and Markov chain Monte Carlo (MCMC) sampling methods for model reduction through the use of synthetic datasets. We compare the performances of three different but closely related model reduction approaches: (1) PCA methods with geometric sampling (referred to as 'Method 1'), (2) PCA methods with MCMC sampling (referred to as 'Method 2'), and (3) PCA methods with MCMC sampling and inclusion of random effects (referred to as 'Method 3'). We consider a simple convolution model with five unknown parameters as our goal is to understand and visualize the advantages and disadvantages of each method by comparing their inversion results with the corresponding analytical solutions. We generated synthetic data with noise added and invert them under two different situations: (1) the noised data and the covariance matrix for PCA analysis are consistent (referred to as the unbiased case), and (2) the noise data and the covariance matrix are inconsistent (referred to as biased case). In the unbiased case, comparison between the analytical solutions and the inversion results show that all three methods provide good estimates of the true values and Method 1 is computationally more efficient. In terms of uncertainty quantification, Method 1 performs poorly because of relatively small number of samples obtained, Method 2 performs best, and Method 3 overestimates uncertainty due to inclusion of random effects. However, in the biased case, only Method 3 correctly estimates all the unknown parameters, and both Methods 1 and 2 provide wrong values for the biased parameters. The synthetic case study demonstrates that if the covariance matrix for PCA analysis is inconsistent with true models, the PCA methods with geometric or MCMC sampling will provide incorrect estimates.
On Fluctuations of Eigenvalues of Random Band Matrices
NASA Astrophysics Data System (ADS)
Shcherbina, M.
2015-10-01
We consider the fluctuations of linear eigenvalue statistics of random band matrices whose entries have the form with i.i.d. possessing the th moment, where the function u has a finite support , so that M has only nonzero diagonals. The parameter b (called the bandwidth) is assumed to grow with n in a way such that . Without any additional assumptions on the growth of b we prove CLT for linear eigenvalue statistics for a rather wide class of test functions. Thus we improve and generalize the results of the previous papers (Jana et al., arXiv:1412.2445; Li et al. Random Matrices 2:04, 2013), where CLT was proven under the assumption . Moreover, we develop a method which allows to prove automatically the CLT for linear eigenvalue statistics of the smooth test functions for almost all classical models of random matrix theory: deformed Wigner and sample covariance matrices, sparse matrices, diluted random matrices, matrices with heavy tales etc.
Finite-time stability of neutral-type neural networks with random time-varying delays
NASA Astrophysics Data System (ADS)
Ali, M. Syed; Saravanan, S.; Zhu, Quanxin
2017-11-01
This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.
A note on variance estimation in random effects meta-regression.
Sidik, Kurex; Jonkman, Jeffrey N
2005-01-01
For random effects meta-regression inference, variance estimation for the parameter estimates is discussed. Because estimated weights are used for meta-regression analysis in practice, the assumed or estimated covariance matrix used in meta-regression is not strictly correct, due to possible errors in estimating the weights. Therefore, this note investigates the use of a robust variance estimation approach for obtaining variances of the parameter estimates in random effects meta-regression inference. This method treats the assumed covariance matrix of the effect measure variables as a working covariance matrix. Using an example of meta-analysis data from clinical trials of a vaccine, the robust variance estimation approach is illustrated in comparison with two other methods of variance estimation. A simulation study is presented, comparing the three methods of variance estimation in terms of bias and coverage probability. We find that, despite the seeming suitability of the robust estimator for random effects meta-regression, the improved variance estimator of Knapp and Hartung (2003) yields the best performance among the three estimators, and thus may provide the best protection against errors in the estimated weights.
Many-body-localization: strong disorder perturbative approach for the local integrals of motion
NASA Astrophysics Data System (ADS)
Monthus, Cécile
2018-05-01
For random quantum spin models, the strong disorder perturbative expansion of the local integrals of motion around the real-spin operators is revisited. The emphasis is on the links with other properties of the many-body-localized phase, in particular the memory in the dynamics of the local magnetizations and the statistics of matrix elements of local operators in the eigenstate basis. Finally, this approach is applied to analyze the many-body-localization transition in a toy model studied previously from the point of view of the entanglement entropy.
Implementation of a finite-amplitude method in a relativistic meson-exchange model
NASA Astrophysics Data System (ADS)
Sun, Xuwei; Lu, Dinghui
2017-08-01
The finite-amplitude method is a feasible numerical approach to large scale random phase approximation calculations. It avoids the storage and calculation of residual interaction elements as well as the diagonalization of the RPA matrix, which will be prohibitive when the configuration space is huge. In this work we finished the implementation of a finite-amplitude method in a relativistic meson exchange mean field model with axial symmetry. The direct variation approach makes our FAM scheme capable of being extended to the multipole excitation case.
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; van Schaik, Loes; Graeff, Thomas; Zehe, Erwin
2014-05-01
Preferential flow through macropores often determines hydrological characteristics - especially regarding runoff generation and fast transport of solutes. Macropore settings may yet be very different in nature and dynamics, depending on their origin. While biogenic structures follow activity cycles (e.g. earth worms) and population conditions (e.g. roots), pedogenic and geogenic structures may depend on water stress (e.g. cracks) or large events (e.g. flushed voids between skeleton and soil pipes) or simply persist (e.g. bedrock interface). On the one hand, such dynamic site characteristics can be observed in seasonal changes in its reaction to precipitation. On the other hand, sprinkling experiments accompanied by tracers or time-lapse 3D Ground-Penetrating-Radar are suitable tools to determine infiltration patterns and macropore configuration. However, model representation of the macropore-matrix system is still problematic, because models either rely on effective parameters (assuming well-mixed state) or on explicit advection strongly simplifying or neglecting interaction with the diffusive flow domain. Motivated by the dynamic nature of macropores, we present a novel model approach for interacting diffusive and advective water, solutes and energy transport in structured soils. It solely relies on scale- and process-aware observables. A representative set of macropores (data from sprinkling experiments) determines the process model scale through 1D advective domains. These are connected to a 2D matrix domain which is defined by pedo-physical retention properties. Water is represented as particles. Diffusive flow is governed by a 2D random walk of these particles while advection may take place in the macropore domain. Macropore-matrix interaction is computed as dissipation of the advective momentum of a particle by its experienced drag from the matrix domain. Through a representation of matrix and macropores as connected diffusive and advective domains for water transport we open up double domain concepts linking porescale physics to preferential macroscale fingerprints without effective parameterisation or mixing assumptions. Moreover, solute transport, energy balance aspects and lateral heterogeneity in soil moisture distribution are intrinsically captured. In addition, macropore and matrix domain settings may change over time based on physical and stochastic observations. The representativity concept allows scaleability from plotscale to the lower mesoscale.
Uncertainty in dual permeability model parameters for structured soils.
Arora, B; Mohanty, B P; McGuire, J T
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface ( K sa ) and macropore tortuosity ( l f ) but also of other parameters of the matrix and macropore domains.
Uncertainty in dual permeability model parameters for structured soils
NASA Astrophysics Data System (ADS)
Arora, B.; Mohanty, B. P.; McGuire, J. T.
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.
NASA Astrophysics Data System (ADS)
Machado, M. R.; Adhikari, S.; Dos Santos, J. M. C.; Arruda, J. R. F.
2018-03-01
Structural parameter estimation is affected not only by measurement noise but also by unknown uncertainties which are present in the system. Deterministic structural model updating methods minimise the difference between experimentally measured data and computational prediction. Sensitivity-based methods are very efficient in solving structural model updating problems. Material and geometrical parameters of the structure such as Poisson's ratio, Young's modulus, mass density, modal damping, etc. are usually considered deterministic and homogeneous. In this paper, the distributed and non-homogeneous characteristics of these parameters are considered in the model updating. The parameters are taken as spatially correlated random fields and are expanded in a spectral Karhunen-Loève (KL) decomposition. Using the KL expansion, the spectral dynamic stiffness matrix of the beam is expanded as a series in terms of discretized parameters, which can be estimated using sensitivity-based model updating techniques. Numerical and experimental tests involving a beam with distributed bending rigidity and mass density are used to verify the proposed method. This extension of standard model updating procedures can enhance the dynamic description of structural dynamic models.
Signatures of bifurcation on quantum correlations: Case of the quantum kicked top
NASA Astrophysics Data System (ADS)
Bhosale, Udaysinh T.; Santhanam, M. S.
2017-01-01
Quantum correlations reflect the quantumness of a system and are useful resources for quantum information and computational processes. Measures of quantum correlations do not have a classical analog and yet are influenced by classical dynamics. In this work, by modeling the quantum kicked top as a multiqubit system, the effect of classical bifurcations on measures of quantum correlations such as the quantum discord, geometric discord, and Meyer and Wallach Q measure is studied. The quantum correlation measures change rapidly in the vicinity of a classical bifurcation point. If the classical system is largely chaotic, time averages of the correlation measures are in good agreement with the values obtained by considering the appropriate random matrix ensembles. The quantum correlations scale with the total spin of the system, representing its semiclassical limit. In the vicinity of trivial fixed points of the kicked top, the scaling function decays as a power law. In the chaotic limit, for large total spin, quantum correlations saturate to a constant, which we obtain analytically, based on random matrix theory, for the Q measure. We also suggest that it can have experimental consequences.
Ribeiro, Viviana P; Silva-Correia, Joana; Gonçalves, Cristiana; Pina, Sandra; Radhouani, Hajer; Montonen, Toni; Hyttinen, Jari; Roy, Anirban; Oliveira, Ana L; Reis, Rui L; Oliveira, Joaquim M
2018-01-01
Timely and spatially-regulated injectable hydrogels, able to suppress growing tumors in response to conformational transitions of proteins, are of great interest in cancer research and treatment. Herein, we report rapidly responsive silk fibroin (SF) hydrogels formed by a horseradish peroxidase (HRP) crosslinking reaction at physiological conditions, and demonstrate their use as an artificial biomimetic three-dimensional (3D) matrix. The proposed SF hydrogels presented a viscoelastic nature of injectable hydrogels and spontaneous conformational changes from random coil to β-sheet conformation under physiological conditions. A human neuronal glioblastoma (U251) cell line was used for screening cell encapsulation and in vitro evaluation within the SF hydrogels. The transparent random coil SF hydrogels promoted cell viability and proliferation up to 10 days of culturing, while the crystalline SF hydrogels converted into β-sheet structure induced the formation of TUNEL-positive apoptotic cells. Therefore, this work provides a powerful tool for the investigation of the microenvironment on the programed tumor cells death, by using rapidly responsive SF hydrogels as 3D in vitro tumor models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faessler, Amand; Rodin, V.; Fogli, G. L.
2009-03-01
The variances and covariances associated to the nuclear matrix elements of neutrinoless double beta decay (0{nu}{beta}{beta}) are estimated within the quasiparticle random phase approximation. It is shown that correlated nuclear matrix elements uncertainties play an important role in the comparison of 0{nu}{beta}{beta} decay rates for different nuclei, and that they are degenerate with the uncertainty in the reconstructed Majorana neutrino mass.
NASA Astrophysics Data System (ADS)
Sui, Xin; Yang, Yongqing; Xu, Xianyun; Zhang, Shuai; Zhang, Lingzhong
2018-02-01
This paper investigates the consensus of multi-agent systems with probabilistic time-varying delays and packet losses via sampled-data control. On the one hand, a Bernoulli-distributed white sequence is employed to model random packet losses among agents. On the other hand, a switched system is used to describe packet dropouts in a deterministic way. Based on the special property of the Laplacian matrix, the consensus problem can be converted into a stabilization problem of a switched system with lower dimensions. Some mean square consensus criteria are derived in terms of constructing an appropriate Lyapunov function and using linear matrix inequalities (LMIs). Finally, two numerical examples are given to show the effectiveness of the proposed method.
Improved analysis of SP and CoSaMP under total perturbations
NASA Astrophysics Data System (ADS)
Li, Haifeng
2016-12-01
Practically, in the underdetermined model y= A x, where x is a K sparse vector (i.e., it has no more than K nonzero entries), both y and A could be totally perturbed. A more relaxed condition means less number of measurements are needed to ensure the sparse recovery from theoretical aspect. In this paper, based on restricted isometry property (RIP), for subspace pursuit (SP) and compressed sampling matching pursuit (CoSaMP), two relaxed sufficient conditions are presented under total perturbations to guarantee that the sparse vector x is recovered. Taking random matrix as measurement matrix, we also discuss the advantage of our condition. Numerical experiments validate that SP and CoSaMP can provide oracle-order recovery performance.
Unsupervised Bayesian linear unmixing of gene expression microarrays.
Bazot, Cécile; Dobigeon, Nicolas; Tourneret, Jean-Yves; Zaas, Aimee K; Ginsburg, Geoffrey S; Hero, Alfred O
2013-03-19
This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor.
A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays
Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.
2015-01-01
We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055
A transfer hamiltonian model for devices based on quantum dot arrays.
Illera, S; Prades, J D; Cirera, A; Cornet, A
2015-01-01
We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.
Carbon atom clusters in random covalent networks: PAHs as an integral component of interstellar HAC
NASA Astrophysics Data System (ADS)
Jones, A. P.
1990-11-01
Using a random covalent network (RCN) model for the structure of hydrogenated amorphorous carbon (HAC) and the available laboratory data, it is shown that aromatic species are a natural consequence of the structure of amorphous carbons formed in the laboratory. Amorphous carbons in the interstellar medium are therefore likely to contain a significant fraction of Polycyclic aromatic hydrocarbons (PAH) species within the 'amorphous' matrix making up these materials. This aromatic component can be produced in situ during the accretion of gas phase carbon species on to grains in the interstellar medium under hydrogen-poor conditions, or subsequent to deposition as a result of photolysis (photodarkening). The fraction of interstellar carbon present in HAC in the form of PAHs, based upon a RCN model, is consistent with the observed Unidentified infrared (UIR) emission features.
NASA Astrophysics Data System (ADS)
Livan, Giacomo; Alfarano, Simone; Scalas, Enrico
2011-07-01
We study some properties of eigenvalue spectra of financial correlation matrices. In particular, we investigate the nature of the large eigenvalue bulks which are observed empirically, and which have often been regarded as a consequence of the supposedly large amount of noise contained in financial data. We challenge this common knowledge by acting on the empirical correlation matrices of two data sets with a filtering procedure which highlights some of the cluster structure they contain, and we analyze the consequences of such filtering on eigenvalue spectra. We show that empirically observed eigenvalue bulks emerge as superpositions of smaller structures, which in turn emerge as a consequence of cross correlations between stocks. We interpret and corroborate these findings in terms of factor models, and we compare empirical spectra to those predicted by random matrix theory for such models.
Deformation mechanisms of idealised cermets under multi-axial loading
NASA Astrophysics Data System (ADS)
Bele, E.; Goel, A.; Pickering, E. G.; Borstnar, G.; Katsamenis, O. L.; Pierron, F.; Danas, K.; Deshpande, V. S.
2017-05-01
The response of idealised cermets comprising approximately 60% by volume steel spheres in a Sn/Pb solder matrix is investigated under a range of axisymmetric compressive stress states. Digital volume correlation (DVC) anal`ysis of X-ray micro-computed tomography scans (μ-CT), and the measured macroscopic stress-strain curves of the specimens revealed two deformation mechanisms. At low triaxialities the deformation is granular in nature, with dilation occurring within shear bands. Under higher imposed hydrostatic pressures, the deformation mechanism transitions to a more homogeneous incompressible mode. However, DVC analyses revealed that under all triaxialities there are regions with local dilatory and compaction responses, with the magnitude of dilation and the number of zones wherein dilation occurs decreasing with increasing triaxiality. Two numerical models are presented in order to clarify these mechanisms: (i) a periodic unit cell model comprising nearly rigid spherical particles in a porous metal matrix and (ii) a discrete element model comprising a large random aggregate of spheres connected by non-linear normal and tangential "springs". The periodic unit cell model captured the measured stress-strain response with reasonable accuracy but under-predicted the observed dilation at the lower triaxialities, because the kinematic constraints imposed by the skeleton of rigid particles were not accurately accounted for in this model. By contrast, the discrete element model captured the kinematics and predicted both the overall levels of dilation and the simultaneous presence of both local compaction and dilatory regions with the specimens. However, the levels of dilation in this model are dependent on the assumed contact law between the spheres. Moreover, since the matrix is not explicitly included in the analysis, this model cannot be used to predict the stress-strain responses. These analyses have revealed that the complete constitutive response of cermets depends both on the kinematic constraints imposed by the particle aggregate skeleton, and the constraints imposed by the metal matrix filling the interstitial spaces in that skeleton.
Random Matrix Theory and Econophysics
NASA Astrophysics Data System (ADS)
Rosenow, Bernd
2000-03-01
Random Matrix Theory (RMT) [1] is used in many branches of physics as a ``zero information hypothesis''. It describes generic behavior of different classes of systems, while deviations from its universal predictions allow to identify system specific properties. We use methods of RMT to analyze the cross-correlation matrix C of stock price changes [2] of the largest 1000 US companies. In addition to its scientific interest, the study of correlations between the returns of different stocks is also of practical relevance in quantifying the risk of a given stock portfolio. We find [3,4] that the statistics of most of the eigenvalues of the spectrum of C agree with the predictions of RMT, while there are deviations for some of the largest eigenvalues. We interpret these deviations as a system specific property, e.g. containing genuine information about correlations in the stock market. We demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large ratios at both edges of the eigenvalue spectrum - a situation reminiscent of localization theory results. This work was done in collaboration with V. Plerou, P. Gopikrishnan, T. Guhr, L.A.N. Amaral, and H.E Stanley and is related to recent work of Laloux et al.. 1. T. Guhr, A. Müller Groeling, and H.A. Weidenmüller, ``Random Matrix Theories in Quantum Physics: Common Concepts'', Phys. Rep. 299, 190 (1998). 2. See, e.g. R.N. Mantegna and H.E. Stanley, Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999). 3. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series'', Phys. Rev. Lett. 83, 1471 (1999). 4. V. Plerou, P. Gopikrishnan, T. Guhr, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Random Matrix Theory Analysis of Diffusion in Stock Price Dynamics, preprint
Standard, Random, and Optimum Array conversions from Two-Pole resistance data
Rucker, D. F.; Glaser, Danney R.
2014-09-01
We present an array evaluation of standard and nonstandard arrays over a hydrogeological target. We develop the arrays by linearly combining data from the pole-pole (or 2-pole) array. The first test shows that reconstructed resistances for the standard Schlumberger and dipoledipole arrays are equivalent or superior to the measured arrays in terms of noise, especially at large geometric factors. The inverse models for the standard arrays also confirm what others have presented in terms of target resolvability, namely the dipole-dipole array has the highest resolution. In the second test, we reconstruct random electrode combinations from the 2-pole data segregated intomore » inner, outer, and overlapping dipoles. The resistance data and inverse models from these randomized arrays show those with inner dipoles to be superior in terms of noise and resolution and that overlapping dipoles can cause model instability and low resolution. Finally, we use the 2-pole data to create an optimized array that maximizes the model resolution matrix for a given electrode geometry. The optimized array produces the highest resolution and target detail. Thus, the tests demonstrate that high quality data and high model resolution can be achieved by acquiring field data from the pole-pole array.« less
NASA Astrophysics Data System (ADS)
Cho, Yi Je; Lee, Wook Jin; Park, Yong Ho
2014-11-01
Aspects of numerical results from computational experiments on representative volume element (RVE) problems using finite element analyses are discussed. Two different boundary conditions (BCs) are examined and compared numerically for volume elements with different sizes, where tests have been performed on the uniaxial tensile deformation of random particle reinforced composites. Structural heterogeneities near model boundaries such as the free-edges of particle/matrix interfaces significantly influenced the overall numerical solutions, producing force and displacement fluctuations along the boundaries. Interestingly, this effect was shown to be limited to surface regions within a certain distance of the boundaries, while the interior of the model showed almost identical strain fields regardless of the applied BCs. Also, the thickness of the BC-affected regions remained constant with varying volume element sizes in the models. When the volume element size was large enough compared to the thickness of the BC-affected regions, the structural response of most of the model was found to be almost independent of the applied BC such that the apparent properties converged to the effective properties. Finally, the mechanism that leads a RVE model for random heterogeneous materials to be representative is discussed in terms of the size of the volume element and the thickness of the BC-affected region.
Tensor Minkowski Functionals for random fields on the sphere
NASA Astrophysics Data System (ADS)
Chingangbam, Pravabati; Yogendran, K. P.; Joby, P. K.; Ganesan, Vidhya; Appleby, Stephen; Park, Changbom
2017-12-01
We generalize the translation invariant tensor-valued Minkowski Functionals which are defined on two-dimensional flat space to the unit sphere. We apply them to level sets of random fields. The contours enclosing boundaries of level sets of random fields give a spatial distribution of random smooth closed curves. We outline a method to compute the tensor-valued Minkowski Functionals numerically for any random field on the sphere. Then we obtain analytic expressions for the ensemble expectation values of the matrix elements for isotropic Gaussian and Rayleigh fields. The results hold on flat as well as any curved space with affine connection. We elucidate the way in which the matrix elements encode information about the Gaussian nature and statistical isotropy (or departure from isotropy) of the field. Finally, we apply the method to maps of the Galactic foreground emissions from the 2015 PLANCK data and demonstrate their high level of statistical anisotropy and departure from Gaussianity.
Martínez, Carlos Alberto; Khare, Kshitij; Banerjee, Arunava; Elzo, Mauricio A
2017-03-21
It is important to consider heterogeneity of marker effects and allelic frequencies in across population genome-wide prediction studies. Moreover, all regression models used in genome-wide prediction overlook randomness of genotypes. In this study, a family of hierarchical Bayesian models to perform across population genome-wide prediction modeling genotypes as random variables and allowing population-specific effects for each marker was developed. Models shared a common structure and differed in the priors used and the assumption about residual variances (homogeneous or heterogeneous). Randomness of genotypes was accounted for by deriving the joint probability mass function of marker genotypes conditional on allelic frequencies and pedigree information. As a consequence, these models incorporated kinship and genotypic information that not only permitted to account for heterogeneity of allelic frequencies, but also to include individuals with missing genotypes at some or all loci without the need for previous imputation. This was possible because the non-observed fraction of the design matrix was treated as an unknown model parameter. For each model, a simpler version ignoring population structure, but still accounting for randomness of genotypes was proposed. Implementation of these models and computation of some criteria for model comparison were illustrated using two simulated datasets. Theoretical and computational issues along with possible applications, extensions and refinements were discussed. Some features of the models developed in this study make them promising for genome-wide prediction, the use of information contained in the probability distribution of genotypes is perhaps the most appealing. Further studies to assess the performance of the models proposed here and also to compare them with conventional models used in genome-wide prediction are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Random matrix approach to the dynamics of stock inventory variations
NASA Astrophysics Data System (ADS)
Zhou, Wei-Xing; Mu, Guo-Hua; Kertész, János
2012-09-01
It is well accepted that investors can be classified into groups owing to distinct trading strategies, which forms the basic assumption of many agent-based models for financial markets when agents are not zero-intelligent. However, empirical tests of these assumptions are still very rare due to the lack of order flow data. Here we adopt the order flow data of Chinese stocks to tackle this problem by investigating the dynamics of inventory variations for individual and institutional investors that contain rich information about the trading behavior of investors and have a crucial influence on price fluctuations. We find that the distributions of cross-correlation coefficient Cij have power-law forms in the bulk that are followed by exponential tails, and there are more positive coefficients than negative ones. In addition, it is more likely that two individuals or two institutions have a stronger inventory variation correlation than one individual and one institution. We find that the largest and the second largest eigenvalues (λ1 and λ2) of the correlation matrix cannot be explained by random matrix theory and the projections of investors' inventory variations on the first eigenvector u(λ1) are linearly correlated with stock returns, where individual investors play a dominating role. The investors are classified into three categories based on the cross-correlation coefficients CV R between inventory variations and stock returns. A strong Granger causality is unveiled from stock returns to inventory variations, which means that a large proportion of individuals hold the reversing trading strategy and a small part of individuals hold the trending strategy. Our empirical findings have scientific significance in the understanding of investors' trading behavior and in the construction of agent-based models for emerging stock markets.
Comparison of the compressive strengths for stitched and toughened composite systems
NASA Technical Reports Server (NTRS)
Reeder, James R.
1994-01-01
The compression strength of a stitched and a toughened matrix graphite/epoxy composite was determined and compared to a baseline unstitched untoughened composite. Two different layups with a variety of test lengths were tested under both ambient and hot/wet conditions. No significant difference in strength was seen for the different materials when the gage lengths of the specimens were long enough to lead to a buckling failure. For shorter specimens, a 30 percent reduction in strength from the baseline was seen due to stitching for both a 48-ply quasi-isotropic and a (0/45/0/-45/90/-45/0/45/0)s laminate. Analysis of the results suggested that the decrease in strength was due to increased fiber misalignment due to the stitches. An observed increasing strength with decreasing gage length, which was seen for all materials, was explained with a size effect model. The model assumed a random distribution of flaws (misaligned fibers). The toughened materials showed a small increase in strength over the baseline material for both laminates presumably due to the compensating effects of a more compliant matrix and straighter fibers in the toughened material. The hot/wet strength of the stitched and baseline material fell 30 percent below their ambient strengths for shorter, nonbuckling specimen, while the strength of the toughened matrix material only fell 20 percent. Video images of the failing specimen were recorded and showed local failures prior to global collapse of the specimen. These images support the theory of a random distribution of flaws controlling composite failure. Failed specimen appearance, however, seems to be a misleading indication of the cause of failure.
[Development of an Enterococcus faecalis periapical biofilm model for in vitro morphological study].
Cao, Ridan; Hou, Benxiang
2014-08-01
This study aims to develop and observe a model system of the periapical biofilm structure of Enterococcus faecalis (E. faecalis). A total of 24 intact human single-rooted premolars extracted for orthodontic reasons were collected and randomly divided into eight groups (n = 3). The specimens were subjected to ultraviolet disinfection, inoculated with E. faecalis (ATCC 29212) suspension adjusted to 1 x 10(8) CFU x mL(-1), and incubated at 37 degrees C for 1, 2, and 7 d. Specimen groups were prepared for scanning electron microscope to examine the biofilm formation. The specimens in the confocal laser scanning microscope (CLSM) groups were stained with propidium iodide (PI) and ConA-fluorescein isothiocyanate (ConA-FITC) to examine the biofilm formation. The images were randomized, and biofilm coverage (%) was assessed using Photoshop CS5. The biofilm coverage (%) on the cementum increased with increasing incubation period. The biofilm coverage of the 7 d group was significantly higher than those of the 1 and 2 d groups (P < 0.05). The values of the latter two groups were not significantly different (P > 0.05). Dense aggregations composed of E. faecalis and the amorphous matrix were observed on the root cementum surfaces of the specimens in the 7 d group. The bacteria were stained red by PI, and the matrix was stained green by ConA-FITC under CLSM observation. The biofilm coverage (%) on the samples in the 7 d group was 17.23% +/- 1.52%, showing multi-level space structure and water channels. E. faecalis forms bacterial biofilms on the root cementum surface in 7 d. The biofilms were composed of E. faecalis and the amorphous matrix.
Barret, M; Bordaçahar, B; Beuvon, F; Terris, B; Camus, M; Coriat, R; Chaussade, S; Batteux, F; Prat, F
2017-05-01
Esophageal stricture formation after extensive endoscopic resection remains a major limitation of endoscopic therapy for early esophageal neoplasia. This study assessed a recently developed self-assembling peptide (SAP) matrix as a wound dressing after endoscopic resection for the prevention of esophageal stricture. Ten pigs were randomly assigned to the SAP or the control group after undergoing a 5-cm-long circumferential endoscopic submucosal dissection of the lower esophagus. Esophageal diameter on endoscopy and esophagogram, weight variation, and histological measurements of fibrosis, granulation tissue, and neoepithelium were assessed in each animal. The rate of esophageal stricture at day 14 was 40% in the SAP-treated group versus 100% in the control group (P = 0.2). Median interquartile range (IQR) esophageal diameter at day 14 was 8 mm (2.5-9) in the SAP-treated group versus 4 mm (3-4) in the control group (P = 0.13). The median (IQR) stricture indexes on esophagograms at day 14 were 0.32 (0.14-0.48) and 0.26 (0.14-0.33) in the SAP-treated and control groups, respectively (P = 0.42). Median (IQR) weight variation during the study was +0.2 (-7.4; +1.8) and -3.8 (-5.4; +0.6) in the SAP-treated and control groups, respectively (P = 0.9). Fibrosis, granulation tissue, and neoepithelium were not significantly different between the groups. The application of SAP matrix on esophageal wounds after a circumferential endoscopic submucosal dissection delayed the onset of esophageal stricture in a porcine model. © International Society for Diseases of the Esophagus 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Correlation and volatility in an Indian stock market: A random matrix approach
NASA Astrophysics Data System (ADS)
Kulkarni, Varsha; Deo, Nivedita
2007-11-01
We examine the volatility of an Indian stock market in terms of correlation of stocks and quantify the volatility using the random matrix approach. First we discuss trends observed in the pattern of stock prices in the Bombay Stock Exchange for the three-year period 2000 2002. Random matrix analysis is then applied to study the relationship between the coupling of stocks and volatility. The study uses daily returns of 70 stocks for successive time windows of length 85 days for the year 2001. We compare the properties of matrix C of correlations between price fluctuations in time regimes characterized by different volatilities. Our analyses reveal that (i) the largest (deviating) eigenvalue of C correlates highly with the volatility of the index, (ii) there is a shift in the distribution of the components of the eigenvector corresponding to the largest eigenvalue across regimes of different volatilities, (iii) the inverse participation ratio for this eigenvector anti-correlates significantly with the market fluctuations and finally, (iv) this eigenvector of C can be used to set up a Correlation Index, CI whose temporal evolution is significantly correlated with the volatility of the overall market index.
Fuzzy Markov random fields versus chains for multispectral image segmentation.
Salzenstein, Fabien; Collet, Christophe
2006-11-01
This paper deals with a comparison of recent statistical models based on fuzzy Markov random fields and chains for multispectral image segmentation. The fuzzy scheme takes into account discrete and continuous classes which model the imprecision of the hidden data. In this framework, we assume the dependence between bands and we express the general model for the covariance matrix. A fuzzy Markov chain model is developed in an unsupervised way. This method is compared with the fuzzy Markovian field model previously proposed by one of the authors. The segmentation task is processed with Bayesian tools, such as the well-known MPM (Mode of Posterior Marginals) criterion. Our goal is to compare the robustness and rapidity for both methods (fuzzy Markov fields versus fuzzy Markov chains). Indeed, such fuzzy-based procedures seem to be a good answer, e.g., for astronomical observations when the patterns present diffuse structures. Moreover, these approaches allow us to process missing data in one or several spectral bands which correspond to specific situations in astronomy. To validate both models, we perform and compare the segmentation on synthetic images and raw multispectral astronomical data.
Parsimonious extreme learning machine using recursive orthogonal least squares.
Wang, Ning; Er, Meng Joo; Han, Min
2014-10-01
Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results.
Introducing two Random Forest based methods for cloud detection in remote sensing images
NASA Astrophysics Data System (ADS)
Ghasemian, Nafiseh; Akhoondzadeh, Mehdi
2018-07-01
Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The quantitative values on Landsat 8 images show similar trend. Consequently, while SVM and K-nearest neighbor show overestimation in predicting cloud and snow/ice pixels, our Random Forest (RF) based models can achieve higher cloud, snow/ice kappa values on MODIS and thin cloud, thick cloud and snow/ice kappa values on Landsat 8 images. Our algorithms predict both thin and thick cloud on Landsat 8 images while the existing cloud detection algorithm, Fmask cannot discriminate them. Compared to the state-of-the-art methods, our algorithms have acquired higher average cloud and snow/ice kappa values for different spatial resolutions.
NASA Astrophysics Data System (ADS)
Kuijlaars, A. B. J.
2001-08-01
The asymptotic behavior of polynomials that are orthogonal with respect to a slowly decaying weight is very different from the asymptotic behavior of polynomials that are orthogonal with respect to a Freud-type weight. While the latter has been extensively studied, much less is known about the former. Following an earlier investigation into the zero behavior, we study here the asymptotics of the density of states in a unitary ensemble of random matrices with a slowly decaying weight. This measure is also naturally connected with the orthogonal polynomials. It is shown that, after suitable rescaling, the weak limit is the same as the weak limit of the rescaled zeros.
Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers
NASA Astrophysics Data System (ADS)
Li, Huanan; Suwunnarat, Suwun; Fleischmann, Ragnar; Schanz, Holger; Kottos, Tsampikos
2017-01-01
We employ random matrix theory in order to investigate coherent perfect absorption (CPA) in lossy systems with complex internal dynamics. The loss strength γCPA and energy ECPA, for which a CPA occurs, are expressed in terms of the eigenmodes of the isolated cavity—thus carrying over the information about the chaotic nature of the target—and their coupling to a finite number of scattering channels. Our results are tested against numerical calculations using complex networks of resonators and chaotic graphs as CPA cavities.
An Empirical State Error Covariance Matrix Orbit Determination Example
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2015-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance is suspect. In its most straight forward form, the technique only requires supplemental calculations to be added to existing batch estimation algorithms. In the current problem being studied a truth model making use of gravity with spherical, J2 and J4 terms plus a standard exponential type atmosphere with simple diurnal and random walk components is used. The ability of the empirical state error covariance matrix to account for errors is investigated under four scenarios during orbit estimation. These scenarios are: exact modeling under known measurement errors, exact modeling under corrupted measurement errors, inexact modeling under known measurement errors, and inexact modeling under corrupted measurement errors. For this problem a simple analog of a distributed space surveillance network is used. The sensors in this network make only range measurements and with simple normally distributed measurement errors. The sensors are assumed to have full horizon to horizon viewing at any azimuth. For definiteness, an orbit at the approximate altitude and inclination of the International Space Station is used for the study. The comparison analyses of the data involve only total vectors. No investigation of specific orbital elements is undertaken. The total vector analyses will look at the chisquare values of the error in the difference between the estimated state and the true modeled state using both the empirical and theoretical error covariance matrices for each of scenario.
Semistochastic approach to many electron systems
NASA Astrophysics Data System (ADS)
Grossjean, M. K.; Grossjean, M. F.; Schulten, K.; Tavan, P.
1992-08-01
A Pariser-Parr-Pople (PPP) Hamiltonian of an 8π electron system of the molecule octatetraene, represented in a configuration-interaction basis (CI basis), is analyzed with respect to the statistical properties of its matrix elements. Based on this analysis we develop an effective Hamiltonian, which represents virtual excitations by a Gaussian orthogonal ensemble (GOE). We also examine numerical approaches which replace the original Hamiltonian by a semistochastically generated CI matrix. In that CI matrix, the matrix elements of high energy excitations are choosen randomly according to distributions reflecting the statistics of the original CI matrix.
Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2011-01-01
A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Probabilistic Simulation for Combined Cycle Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Network trending; leadership, followership and neutrality among companies: A random matrix approach
NASA Astrophysics Data System (ADS)
Mobarhan, N. S. Safavi; Saeedi, A.; Roodposhti, F. Rahnamay; Jafari, G. R.
2016-11-01
In this article, we analyze the cross-correlation between returns of different stocks to answer the following important questions. The first one is: If there exists collective behavior in a financial market, how could we detect it? And the second question is: Is there a particular company among the companies of a market as the leader of the collective behavior? Or is there no specified leadership governing the system similar to some complex systems? We use the method of random matrix theory to answer the mentioned questions. Cross-correlation matrix of index returns of four different markets is analyzed. The participation ratio quantity related to each matrices' eigenvectors and the eigenvalue spectrum is calculated. We introduce shuffled-matrix created of cross correlation matrix in such a way that the elements of the later one are displaced randomly. Comparing the participation ratio quantities obtained from a correlation matrix of a market and its related shuffled-one, on the bulk distribution region of the eigenvalues, we detect a meaningful deviation between the mentioned quantities indicating the collective behavior of the companies forming the market. By calculating the relative deviation of participation ratios, we obtain a measure to compare the markets according to their collective behavior. Answering the second question, we show there are three groups of companies: The first group having higher impact on the market trend called leaders, the second group is followers and the third one is the companies who have not a considerable role in the trend. The results can be utilized in portfolio construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter; ...
2016-06-30
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
RANDOM MATRIX DIAGONALIZATION--A COMPUTER PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchel, K.; Greibach, R.J.; Porter, C.E.
A computer prograra is described which generates random matrices, diagonalizes them and sorts appropriately the resulting eigenvalues and eigenvector components. FAP and FORTRAN listings for the IBM 7090 computer are included. (auth)
NASA Astrophysics Data System (ADS)
Liu, P. F.; Li, X. K.
2018-06-01
The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.
NASA Astrophysics Data System (ADS)
Liu, P. F.; Li, X. K.
2017-09-01
The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.
NASA Astrophysics Data System (ADS)
Song, Dawei; Ponte Castañeda, P.
2018-06-01
We make use of the recently developed iterated second-order homogenization method to obtain finite-strain constitutive models for the macroscopic response of porous polycrystals consisting of large pores randomly distributed in a fine-grained polycrystalline matrix. The porous polycrystal is modeled as a three-scale composite, where the grains are described by single-crystal viscoplasticity and the pores are assumed to be large compared to the grain size. The method makes use of a linear comparison composite (LCC) with the same substructure as the actual nonlinear composite, but whose local properties are chosen optimally via a suitably designed variational statement. In turn, the effective properties of the resulting three-scale LCC are determined by means of a sequential homogenization procedure, utilizing the self-consistent estimates for the effective behavior of the polycrystalline matrix, and the Willis estimates for the effective behavior of the porous composite. The iterated homogenization procedure allows for a more accurate characterization of the properties of the matrix by means of a finer "discretization" of the properties of the LCC to obtain improved estimates, especially at low porosities, high nonlinearties and high triaxialities. In addition, consistent homogenization estimates for the average strain rate and spin fields in the pores and grains are used to develop evolution laws for the substructural variables, including the porosity, pore shape and orientation, as well as the "crystallographic" and "morphological" textures of the underlying matrix. In Part II of this work has appeared in Song and Ponte Castañeda (2018b), the model will be used to generate estimates for both the instantaneous effective response and the evolution of the microstructure for porous FCC and HCP polycrystals under various loading conditions.
System matrix computation vs storage on GPU: A comparative study in cone beam CT.
Matenine, Dmitri; Côté, Geoffroi; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe
2018-02-01
Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersection distances between the trajectories of photons and the object, also called ray tracing or system matrix computation. This work focused on the thin-ray model is aimed at comparing different system matrix handling strategies using graphical processing units (GPUs). In this work, the system matrix is modeled by thin rays intersecting a regular grid of box-shaped voxels, known to be an accurate representation of the forward projection operator in CT. However, an uncompressed system matrix exceeds the random access memory (RAM) capacities of typical computers by one order of magnitude or more. Considering the RAM limitations of GPU hardware, several system matrix handling methods were compared: full storage of a compressed system matrix, on-the-fly computation of its coefficients, and partial storage of the system matrix with partial on-the-fly computation. These methods were tested on geometries mimicking a cone beam CT (CBCT) acquisition of a human head. Execution times of three routines of interest were compared: forward projection, backprojection, and ordered-subsets convex (OSC) iteration. A fully stored system matrix yielded the shortest backprojection and OSC iteration times, with a 1.52× acceleration for OSC when compared to the on-the-fly approach. Nevertheless, the maximum problem size was bound by the available GPU RAM and geometrical symmetries. On-the-fly coefficient computation did not require symmetries and was shown to be the fastest for forward projection. It also offered reasonable execution times of about 176.4 ms per view per OSC iteration for a detector of 512 × 448 pixels and a volume of 384 3 voxels, using commodity GPU hardware. Partial system matrix storage has shown a performance similar to the on-the-fly approach, while still relying on symmetries. Partial system matrix storage was shown to yield the lowest relative performance. On-the-fly ray tracing was shown to be the most flexible method, yielding reasonable execution times. A fully stored system matrix allowed for the lowest backprojection and OSC iteration times and may be of interest for certain performance-oriented applications. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telfeyan, Katherine Christina; Ware, Stuart Douglas; Reimus, Paul William
Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%,more » and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less
Hurtado Rúa, Sandra M; Mazumdar, Madhu; Strawderman, Robert L
2015-12-30
Bayesian meta-analysis is an increasingly important component of clinical research, with multivariate meta-analysis a promising tool for studies with multiple endpoints. Model assumptions, including the choice of priors, are crucial aspects of multivariate Bayesian meta-analysis (MBMA) models. In a given model, two different prior distributions can lead to different inferences about a particular parameter. A simulation study was performed in which the impact of families of prior distributions for the covariance matrix of a multivariate normal random effects MBMA model was analyzed. Inferences about effect sizes were not particularly sensitive to prior choice, but the related covariance estimates were. A few families of prior distributions with small relative biases, tight mean squared errors, and close to nominal coverage for the effect size estimates were identified. Our results demonstrate the need for sensitivity analysis and suggest some guidelines for choosing prior distributions in this class of problems. The MBMA models proposed here are illustrated in a small meta-analysis example from the periodontal field and a medium meta-analysis from the study of stroke. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
On efficient randomized algorithms for finding the PageRank vector
NASA Astrophysics Data System (ADS)
Gasnikov, A. V.; Dmitriev, D. Yu.
2015-03-01
Two randomized methods are considered for finding the PageRank vector; in other words, the solution of the system p T = p T P with a stochastic n × n matrix P, where n ˜ 107-109, is sought (in the class of probability distributions) with accuracy ɛ: ɛ ≫ n -1. Thus, the possibility of brute-force multiplication of P by the column is ruled out in the case of dense objects. The first method is based on the idea of Markov chain Monte Carlo algorithms. This approach is efficient when the iterative process p {/t+1 T} = p {/t T} P quickly reaches a steady state. Additionally, it takes into account another specific feature of P, namely, the nonzero off-diagonal elements of P are equal in rows (this property is used to organize a random walk over the graph with the matrix P). Based on modern concentration-of-measure inequalities, new bounds for the running time of this method are presented that take into account the specific features of P. In the second method, the search for a ranking vector is reduced to finding the equilibrium in the antagonistic matrix game where S n (1) is a unit simplex in ℝ n and I is the identity matrix. The arising problem is solved by applying a slightly modified Grigoriadis-Khachiyan algorithm (1995). This technique, like the Nazin-Polyak method (2009), is a randomized version of Nemirovski's mirror descent method. The difference is that randomization in the Grigoriadis-Khachiyan algorithm is used when the gradient is projected onto the simplex rather than when the stochastic gradient is computed. For sparse matrices P, the method proposed yields noticeably better results.
Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang
2016-09-13
Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan's coral reefs.
Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang
2016-01-01
Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan’s coral reefs. PMID:27622504
Random matrix theory and fund of funds portfolio optimisation
NASA Astrophysics Data System (ADS)
Conlon, T.; Ruskin, H. J.; Crane, M.
2007-08-01
The proprietary nature of Hedge Fund investing means that it is common practise for managers to release minimal information about their returns. The construction of a fund of hedge funds portfolio requires a correlation matrix which often has to be estimated using a relatively small sample of monthly returns data which induces noise. In this paper, random matrix theory (RMT) is applied to a cross-correlation matrix C, constructed using hedge fund returns data. The analysis reveals a number of eigenvalues that deviate from the spectrum suggested by RMT. The components of the deviating eigenvectors are found to correspond to distinct groups of strategies that are applied by hedge fund managers. The inverse participation ratio is used to quantify the number of components that participate in each eigenvector. Finally, the correlation matrix is cleaned by separating the noisy part from the non-noisy part of C. This technique is found to greatly reduce the difference between the predicted and realised risk of a portfolio, leading to an improved risk profile for a fund of hedge funds.
Banks, Sam C; Lindenmayer, David B
2014-03-01
Animal dispersal is highly non-random and has important implications for the dynamics of populations in fragmented habitat. We identified interpatch dispersal events from genetic tagging, parentage analyses and assignment tests and modelled the factors associated with apparent emigration and post-dispersal settlement choices by individual male agile antechinus (Antechinus agilis, a marsupial carnivore of south-east Australian forests). Emigration decisions were best modelled with on data patch isolation and inbreeding risk. The choice of dispersal destination by males was influenced by inbreeding risk, female abundance, patch size, patch quality and matrix permeability (variation in land cover). Males were less likely to settle in patches without highly unrelated females. Our findings highlight the importance of individual-level dispersal data for understanding how multiple processes drive non-randomness in dispersal in modified landscapes. Fragmented landscapes present novel environmental, demographic and genetic contexts in which dispersal decisions are made, so the major factors affecting dispersal decisions in fragmented habitat may differ considerably from unfragmented landscapes. We show that the spatial scale of genetic neighbourhoods can be large in fragmented habitat, such that dispersing males can potentially settle in the presence of genetically similar females after moving considerable distances, thereby necessitating both a choice to emigrate and a choice of where to settle to avoid inbreeding. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model
NASA Astrophysics Data System (ADS)
Hazan, Aurélien
2017-05-01
We show that a steady-state stock-flow consistent macro-economic model can be represented as a Constraint Satisfaction Problem (CSP). The set of solutions is a polytope, which volume depends on the constraints applied and reveals the potential fragility of the economic circuit, with no need to study the dynamics. Several methods to compute the volume are compared, inspired by operations research methods and the analysis of metabolic networks, both exact and approximate. We also introduce a random transaction matrix, and study the particular case of linear flows with respect to money stocks.
Solving large mixed linear models using preconditioned conjugate gradient iteration.
Strandén, I; Lidauer, M
1999-12-01
Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.
Communication Optimal Parallel Multiplication of Sparse Random Matrices
2013-02-21
Definition 2.1), and (2) the algorithm is sparsity- independent, where the computation is statically partitioned to processors independent of the sparsity...struc- ture of the input matrices (see Definition 2.5). The second assumption applies to nearly all existing al- gorithms for general sparse matrix-matrix...where A and B are n× n ER(d) matrices: Definition 2.1 An ER(d) matrix is an adjacency matrix of an Erdős-Rényi graph with parameters n and d/n. That
The rate constant of a quantum-diffusion-controlled bimolecular reaction
NASA Astrophysics Data System (ADS)
Bondarev, B. V.
1986-04-01
A quantum-mechanical equation is derived in the tight-bond approximation which describes the motion and chemical interaction of a pair of species A and B when their displacement in the matrix is caused by tunnelling. Within the framework of the discrete model of random walks, definitions are given of the probability and rate constant of a reaction A + B → P (products) proceeding in a condensed medium. A method is suggested for calculating the rate constant of a quantum-diffusion-controlled bimolecular reaction. By this method, an expression is obtained for the rate constant in the stationary spherically symmetrical case. An equation for the density matrix is also proposed which describes the motion and chemical interaction of a pair of species when the quantum and classical diffusion are competitive.
Role of protein fluctuation correlations in electron transfer in photosynthetic complexes.
Nesterov, Alexander I; Berman, Gennady P
2015-04-01
We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtained analytic expressions for the electron transfer rates and found the range of parameters for their applicability by comparing with the exact numerical simulations. We also compared the correlated and uncorrelated regimes and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2017-01-01
In this paper, we discuss some aspects of numerical modeling of electromagnetic scattering by discrete random medium by using numerically exact solutions of the macroscopic Maxwell equations. Typical examples of such media are clouds of interstellar dust, clouds of interplanetary dust in the Solar system, dusty atmospheres of comets, particulate planetary rings, clouds in planetary atmospheres, aerosol particles with numerous inclusions and so on. Our study is based on the results of extensive computations of different characteristics of electromagnetic scattering obtained by using the superposition T-matrix method which represents a direct computer solver of the macroscopic Maxwell equations for an arbitrary multisphere configuration. As a result, in particular, we clarify the range of applicability of the low-density theories of radiative transfer and coherent backscattering as well as of widely used effective-medium approximations.
Nonlinear wave chaos: statistics of second harmonic fields.
Zhou, Min; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M
2017-10-01
Concepts from the field of wave chaos have been shown to successfully predict the statistical properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling Model (RCM) describes these properties by incorporating both universal features described by Random Matrix Theory and the system-specific features of particular system realizations. In an effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical properties of the resulting second harmonic fields. We develop an RCM-based model of this system as two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field strengths are predicted to be the product of two statistical quantities and the nonlinearity characteristics. Statistical results from measurement-based calculation, RCM-based simulation, and direct experimental measurements are compared and show good agreement over many decades of power.
Polarimetric signatures of a coniferous forest canopy based on vector radiative transfer theory
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Amar, F.; Mougin, E.; Lopes, A.; Beaudoin, A.
1992-01-01
Complete polarization signatures of a coniferous forest canopy are studied by the iterative solution of the vector radiative transfer equations up to the second order. The forest canopy constituents (leaves, branches, stems, and trunk) are embedded in a multi-layered medium over a rough interface. The branches, stems and trunk scatterers are modeled as finite randomly oriented cylinders. The leaves are modeled as randomly oriented needles. For a plane wave exciting the canopy, the average Mueller matrix is formulated in terms of the iterative solution of the radiative transfer solution and used to determine the linearly polarized backscattering coefficients, the co-polarized and cross-polarized power returns, and the phase difference statistics. Numerical results are presented to investigate the effect of transmitting and receiving antenna configurations on the polarimetric signature of a pine forest. Comparison is made with measurements.
Analysis on Vertical Scattering Signatures in Forestry with PolInSAR
NASA Astrophysics Data System (ADS)
Guo, Shenglong; Li, Yang; Zhang, Jingjing; Hong, Wen
2014-11-01
We apply accurate topographic phase to the Freeman-Durden decomposition for polarimetric SAR interferometry (PolInSAR) data. The cross correlation matrix obtained from PolInSAR observations can be decomposed into three scattering mechanisms matrices accounting for the odd-bounce, double-bounce and volume scattering. We estimate the phase based on the Random volume over Ground (RVoG) model, and as the initial input parameter of the numerical method which is used to solve the parameters of decomposition. In addition, the modified volume scattering model introduced by Y. Yamaguchi is applied to the PolInSAR target decomposition in forest areas rather than the pure random volume scattering as proposed by Freeman-Durden to make best fit to the actual measured data. This method can accurately retrieve the magnitude associated with each mechanism and their vertical location along the vertical dimension. We test the algorithms with L- and P- band simulated data.
Robust Takagi-Sugeno fuzzy control for fractional order hydro-turbine governing system.
Wang, Bin; Xue, Jianyi; Wu, Fengjiao; Zhu, Delan
2016-11-01
A robust fuzzy control method for fractional order hydro-turbine governing system (FOHGS) in the presence of random disturbances is investigated in this paper. Firstly, the mathematical model of FOHGS is introduced, and based on Takagi-Sugeno (T-S) fuzzy rules, the generalized T-S fuzzy model of FOHGS is presented. Secondly, based on fractional order Lyapunov stability theory, a novel T-S fuzzy control method is designed for the stability control of FOHGS. Thirdly, the relatively loose sufficient stability condition is acquired, which could be transformed into a group of linear matrix inequalities (LMIs) via Schur complement as well as the strict mathematical derivation is given. Furthermore, the control method could resist random disturbances, which shows the good robustness. Simulation results indicate the designed fractional order T-S fuzzy control scheme works well compared with the existing method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images
NASA Astrophysics Data System (ADS)
Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.
2018-04-01
A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Zakharova, Nadezhda T.
2016-01-01
The numerically exact superposition T-matrix method is used to model far-field electromagnetic scattering by two types of particulate object. Object 1 is a fixed configuration which consists of N identical spherical particles (with N 200 or 400) quasi-randomly populating a spherical volume V having a median size parameter of 50. Object 2 is a true discrete random medium (DRM) comprising the same number N of particles randomly moving throughout V. The median particle size parameter is fixed at 4. We show that if Object 1 is illuminated by a quasi-monochromatic parallel beam then it generates a typical speckle pattern having no resemblance to the scattering pattern generated by Object 2. However, if Object 1 is illuminated by a parallel polychromatic beam with a 10 bandwidth then it generates a scattering pattern that is largely devoid of speckles and closely reproduces the quasi-monochromatic pattern generated by Object 2. This result serves to illustrate the capacity of the concept of electromagnetic scattering by a DRM to encompass fixed quasi-random particulate samples provided that they are illuminated by polychromatic light.
Dynamical Localization for Discrete Anderson Dirac Operators
NASA Astrophysics Data System (ADS)
Prado, Roberto A.; de Oliveira, César R.; Carvalho, Silas L.
2017-04-01
We establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d\\in { 1, 2, 3} , in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential.
NASA Astrophysics Data System (ADS)
Henri, Christopher; Fernàndez-Garcia, Daniel
2015-04-01
Modeling multi-species reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterwards. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the effect of biochemical reactions.
NASA Astrophysics Data System (ADS)
Henri, Christopher V.; Fernàndez-Garcia, Daniel
2014-09-01
Modeling multispecies reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterward. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the effect of biochemical reactions.
NASA Astrophysics Data System (ADS)
Gong, Ming; Hofer, B.; Zallo, E.; Trotta, R.; Luo, Jun-Wei; Schmidt, O. G.; Zhang, Chuanwei
2014-05-01
We develop an effective model to describe the statistical properties of exciton fine structure splitting (FSS) and polarization angle in quantum dot ensembles (QDEs) using only a few symmetry-related parameters. The connection between the effective model and the random matrix theory is established. Such effective model is verified both theoretically and experimentally using several rather different types of QDEs, each of which contains hundreds to thousands of QDs. The model naturally addresses three fundamental issues regarding the FSS and polarization angels of QDEs, which are frequently encountered in both theories and experiments. The answers to these fundamental questions yield an approach to characterize the optical properties of QDEs. Potential applications of the effective model are also discussed.
Yu, Jimin; Yang, Chenchen; Tang, Xiaoming; Wang, Ping
2018-03-01
This paper investigates the H ∞ control problems for uncertain linear system over networks with random communication data dropout and actuator saturation. The random data dropout process is modeled by a Bernoulli distributed white sequence with a known conditional probability distribution and the actuator saturation is confined in a convex hull by introducing a group of auxiliary matrices. By constructing a quadratic Lyapunov function, effective conditions for the state feedback-based H ∞ controller and the observer-based H ∞ controller are proposed in the form of non-convex matrix inequalities to take the random data dropout and actuator saturation into consideration simultaneously, and the problem of non-convex feasibility is solved by applying cone complementarity linearization (CCL) procedure. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed new design techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
[Theory, method and application of method R on estimation of (co)variance components].
Liu, Wen-Zhong
2004-07-01
Theory, method and application of Method R on estimation of (co)variance components were reviewed in order to make the method be reasonably used. Estimation requires R values,which are regressions of predicted random effects that are calculated using complete dataset on predicted random effects that are calculated using random subsets of the same data. By using multivariate iteration algorithm based on a transformation matrix,and combining with the preconditioned conjugate gradient to solve the mixed model equations, the computation efficiency of Method R is much improved. Method R is computationally inexpensive,and the sampling errors and approximate credible intervals of estimates can be obtained. Disadvantages of Method R include a larger sampling variance than other methods for the same data,and biased estimates in small datasets. As an alternative method, Method R can be used in larger datasets. It is necessary to study its theoretical properties and broaden its application range further.
NASA Astrophysics Data System (ADS)
Kozel, Tomas; Stary, Milos
2017-12-01
The main advantage of stochastic forecasting is fan of possible value whose deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. Discharge in measurement profile could be categorized as random process. Content of article is construction and application of forecasting model for managed large open water reservoir with supply function. Model is based on neural networks (NS) and zone models, which forecasting values of average monthly flow from inputs values of average monthly flow, learned neural network and random numbers. Part of data was sorted to one moving zone. The zone is created around last measurement average monthly flow. Matrix of correlation was assembled only from data belonging to zone. The model was compiled for forecast of 1 to 12 month with using backward month flows (NS inputs) from 2 to 11 months for model construction. Data was got ridded of asymmetry with help of Box-Cox rule (Box, Cox, 1964), value r was found by optimization. In next step were data transform to standard normal distribution. The data were with monthly step and forecast is not recurring. 90 years long real flow series was used for compile of the model. First 75 years were used for calibration of model (matrix input-output relationship), last 15 years were used only for validation. Outputs of model were compared with real flow series. For comparison between real flow series (100% successfully of forecast) and forecasts, was used application to management of artificially made reservoir. Course of water reservoir management using Genetic algorithm (GE) + real flow series was compared with Fuzzy model (Fuzzy) + forecast made by Moving zone model. During evaluation process was founding the best size of zone. Results show that the highest number of input did not give the best results and ideal size of zone is in interval from 25 to 35, when course of management was almost same for all numbers from interval. Resulted course of management was compared with course, which was obtained from using GE + real flow series. Comparing results showed that fuzzy model with forecasted values has been able to manage main malfunction and artificially disorders made by model were founded essential, after values of water volume during management were evaluated. Forecasting model in combination with fuzzy model provide very good results in management of water reservoir with storage function and can be recommended for this purpose.
Structure of local interactions in complex financial dynamics
Jiang, X. F.; Chen, T. T.; Zheng, B.
2014-01-01
With the network methods and random matrix theory, we investigate the interaction structure of communities in financial markets. In particular, based on the random matrix decomposition, we clarify that the local interactions between the business sectors (subsectors) are mainly contained in the sector mode. In the sector mode, the average correlation inside the sectors is positive, while that between the sectors is negative. Further, we explore the time evolution of the interaction structure of the business sectors, and observe that the local interaction structure changes dramatically during a financial bubble or crisis. PMID:24936906
Generating synthetic wave climates for coastal modelling: a linear mixed modelling approach
NASA Astrophysics Data System (ADS)
Thomas, C.; Lark, R. M.
2013-12-01
Numerical coastline morphological evolution models require wave climate properties to drive morphological change through time. Wave climate properties (typically wave height, period and direction) may be temporally fixed, culled from real wave buoy data, or allowed to vary in some way defined by a Gaussian or other pdf. However, to examine sensitivity of coastline morphologies to wave climate change, it seems desirable to be able to modify wave climate time series from a current to some new state along a trajectory, but in a way consistent with, or initially conditioned by, the properties of existing data, or to generate fully synthetic data sets with realistic time series properties. For example, mean or significant wave height time series may have underlying periodicities, as revealed in numerous analyses of wave data. Our motivation is to develop a simple methodology to generate synthetic wave climate time series that can change in some stochastic way through time. We wish to use such time series in a coastline evolution model to test sensitivities of coastal landforms to changes in wave climate over decadal and centennial scales. We have worked initially on time series of significant wave height, based on data from a Waverider III buoy located off the coast of Yorkshire, England. The statistical framework for the simulation is the linear mixed model. The target variable, perhaps after transformation (Box-Cox), is modelled as a multivariate Gaussian, the mean modelled as a function of a fixed effect, and two random components, one of which is independently and identically distributed (iid) and the second of which is temporally correlated. The model was fitted to the data by likelihood methods. We considered the option of a periodic mean, the period either fixed (e.g. at 12 months) or estimated from the data. We considered two possible correlation structures for the second random effect. In one the correlation decays exponentially with time. In the second (spherical) model, it cuts off at a temporal range. Having fitted the model, multiple realisations were generated; the random effects were simulated by specifying a covariance matrix for the simulated values, with the estimated parameters. The Cholesky factorisation of the covariance matrix was computed and realizations of the random component of the model generated by pre-multiplying a vector of iid standard Gaussian variables by the lower triangular factor. The resulting random variate was added to the mean value computed from the fixed effects, and the result back-transformed to the original scale of the measurement. Realistic simulations result from approach described above. Background exploratory data analysis was undertaken on 20-day sets of 30-minute buoy data, selected from days 5-24 of months January, April, July, October, 2011, to elucidate daily to weekly variations, and to keep numerical analysis tractable computationally. Work remains to be undertaken to develop suitable models for synthetic directional data. We suggest that the general principles of the method will have applications in other geomorphological modelling endeavours requiring time series of stochastically variable environmental parameters.
Exploiting data representation for fault tolerance
Hoemmen, Mark Frederick; Elliott, J.; Sandia National Lab.; ...
2015-01-06
Incorrect computer hardware behavior may corrupt intermediate computations in numerical algorithms, possibly resulting in incorrect answers. Prior work models misbehaving hardware by randomly flipping bits in memory. We start by accepting this premise, and present an analytic model for the error introduced by a bit flip in an IEEE 754 floating-point number. We then relate this finding to the linear algebra concepts of normalization and matrix equilibration. In particular, we present a case study illustrating that normalizing both vector inputs of a dot product minimizes the probability of a single bit flip causing a large error in the dot product'smore » result. Moreover, the absolute error is either less than one or very large, which allows detection of large errors. Then, we apply this to the GMRES iterative solver. We count all possible errors that can be introduced through faults in arithmetic in the computationally intensive orthogonalization phase of GMRES, and show that when the matrix is equilibrated, the absolute error is bounded above by one.« less
NASA Astrophysics Data System (ADS)
Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua
2016-07-01
On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.
Copolymers For Capillary Gel Electrophoresis
Liu, Changsheng; Li, Qingbo
2005-08-09
This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.
Removal of Stationary Sinusoidal Noise from Random Vibration Signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian; Cap, Jerome S.
In random vibration environments, sinusoidal line noise may appear in the vibration signal and can affect analysis of the resulting data. We studied two methods which remove stationary sine tones from random noise: a matrix inversion algorithm and a chirp-z transform algorithm. In addition, we developed new methods to determine the frequency of the tonal noise. The results show that both of the removal methods can eliminate sine tones in prefabricated random vibration data when the sine-to-random ratio is at least 0.25. For smaller ratios down to 0.02 only the matrix inversion technique can remove the tones, but the metricsmore » to evaluate its effectiveness also degrade. We also found that using fast Fourier transforms best identified the tonal noise, and determined that band-pass-filtering the signals prior to the process improved sine removal. When applied to actual vibration test data, the methods were not as effective at removing harmonic tones, which we believe to be a result of mixed-phase sinusoidal noise.« less
Simple Emergent Power Spectra from Complex Inflationary Physics
NASA Astrophysics Data System (ADS)
Dias, Mafalda; Frazer, Jonathan; Marsh, M. C. David
2016-09-01
We construct ensembles of random scalar potentials for Nf-interacting scalar fields using nonequilibrium random matrix theory, and use these to study the generation of observables during small-field inflation. For Nf=O (few ), these heavily featured scalar potentials give rise to power spectra that are highly nonlinear, at odds with observations. For Nf≫1 , the superhorizon evolution of the perturbations is generically substantial, yet the power spectra simplify considerably and become more predictive, with most realizations being well approximated by a linear power spectrum. This provides proof of principle that complex inflationary physics can give rise to simple emergent power spectra. We explain how these results can be understood in terms of large Nf universality of random matrix theory.
Simple Emergent Power Spectra from Complex Inflationary Physics.
Dias, Mafalda; Frazer, Jonathan; Marsh, M C David
2016-09-30
We construct ensembles of random scalar potentials for N_{f}-interacting scalar fields using nonequilibrium random matrix theory, and use these to study the generation of observables during small-field inflation. For N_{f}=O(few), these heavily featured scalar potentials give rise to power spectra that are highly nonlinear, at odds with observations. For N_{f}≫1, the superhorizon evolution of the perturbations is generically substantial, yet the power spectra simplify considerably and become more predictive, with most realizations being well approximated by a linear power spectrum. This provides proof of principle that complex inflationary physics can give rise to simple emergent power spectra. We explain how these results can be understood in terms of large N_{f} universality of random matrix theory.
NASA Astrophysics Data System (ADS)
Errico, F.; Ichchou, M.; De Rosa, S.; Bareille, O.; Franco, F.
2018-06-01
The stochastic response of periodic flat and axial-symmetric structures, subjected to random and spatially-correlated loads, is here analysed through an approach based on the combination of a wave finite element and a transfer matrix method. Although giving a lower computational cost, the present approach keeps the same accuracy of classic finite element methods. When dealing with homogeneous structures, the accuracy is also extended to higher frequencies, without increasing the time of calculation. Depending on the complexity of the structure and the frequency range, the computational cost can be reduced more than two orders of magnitude. The presented methodology is validated both for simple and complex structural shapes, under deterministic and random loads.
Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media.
Chen, W; Zhao, S L; Holovko, M; Chen, X S; Dong, W
2016-06-23
The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.
Random matrix theory filters and currency portfolio optimisation
NASA Astrophysics Data System (ADS)
Daly, J.; Crane, M.; Ruskin, H. J.
2010-04-01
Random matrix theory (RMT) filters have recently been shown to improve the optimisation of financial portfolios. This paper studies the effect of three RMT filters on realised portfolio risk, using bootstrap analysis and out-of-sample testing. We considered the case of a foreign exchange and commodity portfolio, weighted towards foreign exchange, and consisting of 39 assets. This was intended to test the limits of RMT filtering, which is more obviously applicable to portfolios with larger numbers of assets. We considered both equally and exponentially weighted covariance matrices, and observed that, despite the small number of assets involved, RMT filters reduced risk in a way that was consistent with a much larger S&P 500 portfolio. The exponential weightings indicated showed good consistency with the value suggested by Riskmetrics, in contrast to previous results involving stocks. This decay factor, along with the low number of past moves preferred in the filtered, equally weighted case, displayed a trend towards models which were reactive to recent market changes. On testing portfolios with fewer assets, RMT filtering provided less or no overall risk reduction. In particular, no long term out-of-sample risk reduction was observed for a portfolio consisting of 15 major currencies and commodities.
Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun
1996-01-01
In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.
Kim, Maru; Song, In-Guk; Kim, Hyung Jin
2015-06-01
The aim of this study was to compare the result of electrocauterization and curettage, which can be done with basic instruments. Patients with ingrown nail were randomized to 2 groups. In the first group, nail matrix was removed by curettage, and the second group, nail matrix was removed by electrocautery. A total of 61 patients were enrolled; 32 patients were operated by curettage, and 29 patients were operated by electrocautery. Wound infections, as early complication, were found in 15.6% (5/32) of the curettage group, 10.3% (3/29) of the electrocautery group patients each (P = .710). Nonrecurrence was observed in 93.8% (30/32) and 86.2% (25/29) of the curettage and electrocautery groups, respectively, (lower limit of 1-sided 90% confidence interval = -2.3% > -15% [noninferiority margin]). To remove nail matrix, the curettage is effective as well as the electrocauterization. Further study is required to determine the differences between the procedures. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Zhang, Aidi; Zheng, Fen; Gong, Lihua
2014-10-01
The existing ways to encrypt images based on compressive sensing usually treat the whole measurement matrix as the key, which renders the key too large to distribute and memorize or store. To solve this problem, a new image compression-encryption hybrid algorithm is proposed to realize compression and encryption simultaneously, where the key is easily distributed, stored or memorized. The input image is divided into 4 blocks to compress and encrypt, then the pixels of the two adjacent blocks are exchanged randomly by random matrices. The measurement matrices in compressive sensing are constructed by utilizing the circulant matrices and controlling the original row vectors of the circulant matrices with logistic map. And the random matrices used in random pixel exchanging are bound with the measurement matrices. Simulation results verify the effectiveness, security of the proposed algorithm and the acceptable compression performance.
A Multivariate Randomization Text of Association Applied to Cognitive Test Results
NASA Technical Reports Server (NTRS)
Ahumada, Albert; Beard, Bettina
2009-01-01
Randomization tests provide a conceptually simple, distribution-free way to implement significance testing. We have applied this method to the problem of evaluating the significance of the association among a number (k) of variables. The randomization method was the random re-ordering of k-1 of the variables. The criterion variable was the value of the largest eigenvalue of the correlation matrix.
Lie, Stein Atle; Eriksen, Hege R; Ursin, Holger; Hagen, Eli Molde
2008-05-01
Analysing and presenting data on different outcomes after sick-leave is challenging. The use of extended statistical methods supplies additional information and allows further exploitation of data. Four hundred and fifty-seven patients, sick-listed for 8-12 weeks for low back pain, were randomized to intervention (n=237) or control (n=220). Outcome was measured as: "sick-listed'', "returned to work'', or "disability pension''. The individuals shifted between the three states between one and 22 times (mean 6.4 times). In a multi-state model, shifting between the states was set up in a transition intensity matrix. The probability of being in any of the states was calculated as a transition probability matrix. The effects of the intervention were modelled using a non-parametric model. There was an effect of the intervention for leaving the state sick-listed and shifting to returned to work (relative risk (RR)=1.27, 95% confidence interval (CI) 1.09- 1.47). The nonparametric estimates showed an effect of the intervention for leaving sick-listed and shifting to returned to work in the first 6 months. We found a protective effect of the intervention for shifting back to sick-listed between 6 and 18 months. The analyses showed that the probability of staying in the state returned to work was not different between the intervention and control groups at the end of the follow-up (3 years). We demonstrate that these alternative analyses give additional results and increase the strength of the analyses. The simple intervention did not decrease the probability of being on sick-leave in the long term; however, it decreased the time that individuals were on sick-leave.
NASA Astrophysics Data System (ADS)
Cai, Jizhe; Naraghi, Mohammad
2016-08-01
In this work, a comprehensive multi-resolution two-dimensional (2D) resistor network model is proposed to analyze the electrical conductivity of hybrid nanomaterials made of insulating matrix with conductive particles such as CNT reinforced nanocomposites and thick film resistors. Unlike existing approaches, our model takes into account the impenetrability of the particles and their random placement within the matrix. Moreover, our model presents a detailed description of intra-particle conductivity via finite element analysis, which to the authors’ best knowledge has not been addressed before. The inter-particle conductivity is assumed to be primarily due to electron tunneling. The model is then used to predict the electrical conductivity of electrospun carbon nanofibers as a function of microstructural parameters such as turbostratic domain alignment and aspect ratio. To simulate the microstructure of single CNF, randomly positioned nucleation sites were seeded and grown as turbostratic particles with anisotropic growth rates. Particle growth was in steps and growth of each particle in each direction was stopped upon contact with other particles. The study points to the significant contribution of both intra-particle and inter-particle conductivity to the overall conductivity of hybrid composites. Influence of particle alignment and anisotropic growth rate ratio on electrical conductivity is also discussed. The results show that partial alignment in contrast to complete alignment can result in maximum electrical conductivity of whole CNF. High degrees of alignment can adversely affect conductivity by lowering the probability of the formation of a conductive path. The results demonstrate approaches to enhance electrical conductivity of hybrid materials through controlling their microstructure which is applicable not only to carbon nanofibers, but also many other types of hybrid composites such as thick film resistors.
Distributed Matrix Completion: Application to Cooperative Positioning in Noisy Environments
2013-12-11
positioning, and a gossip version of low-rank approximation were developed. A convex relaxation for positioning in the presence of noise was shown to...of a large data matrix through gossip algorithms. A new algorithm is proposed that amounts to iteratively multiplying a vector by independent random...sparsification of the original matrix and averaging the resulting normalized vectors. This can be viewed as a generalization of gossip algorithms for
NASA Astrophysics Data System (ADS)
Han, Rui-Qi; Xie, Wen-Jie; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing
The correlation structure of a stock market contains important financial contents, which may change remarkably due to the occurrence of financial crisis. We perform a comparative analysis of the Chinese stock market around the occurrence of the 2008 crisis based on the random matrix analysis of high-frequency stock returns of 1228 Chinese stocks. Both raw correlation matrix and partial correlation matrix with respect to the market index in two time periods of one year are investigated. We find that the Chinese stocks have stronger average correlation and partial correlation in 2008 than in 2007 and the average partial correlation is significantly weaker than the average correlation in each period. Accordingly, the largest eigenvalue of the correlation matrix is remarkably greater than that of the partial correlation matrix in each period. Moreover, each largest eigenvalue and its eigenvector reflect an evident market effect, while other deviating eigenvalues do not. We find no evidence that deviating eigenvalues contain industrial sectorial information. Surprisingly, the eigenvectors of the second largest eigenvalues in 2007 and of the third largest eigenvalues in 2008 are able to distinguish the stocks from the two exchanges. We also find that the component magnitudes of the some largest eigenvectors are proportional to the stocks’ capitalizations.
NASA Astrophysics Data System (ADS)
Song, Dawei; Ponte Castañeda, P.
2018-06-01
In Part I of this work (Song and Ponte Castañeda, 2018a), a new homogenization model was developed for the macroscopic behavior of three-scale porous polycrystals consisting of random distributions of large pores in a fine-grained polycrystalline matrix. In this second part, the model is used to investigate both the instantaneous effective behavior and the finite-strain macroscopic response of porous FCC and HCP polycrystals for axisymmetric loading conditions. The stress triaxiality and Lode parameter are found to have significant effects on the evolution of the substructure, which in turn have important implications for the overall hardening/softening behavior of the porous polycrystal. The intrinsic effect of the texture evolution of the polycrystalline matrix is inferred by appropriate comparisons with corresponding results for porous isotropic materials, and found to be significant, especially at low triaxialities. In particular, the predictions of the model identify, for the first time, two disparate regimes for the macroscopic response of porous polycrystals: a porosity-controlled regime at high triaxialities, and a texture-controlled regime at low triaxialities. The transition between these two regimes is found to be quite sharp, taking place between triaxialities of 1 and 2.
On the mixing time in the Wang-Landau algorithm
NASA Astrophysics Data System (ADS)
Fadeeva, Marina; Shchur, Lev
2018-01-01
We present preliminary results of the investigation of the properties of the Markov random walk in the energy space generated by the Wang-Landau probability. We build transition matrix in the energy space (TMES) using the exact density of states for one-dimensional and two-dimensional Ising models. The spectral gap of TMES is inversely proportional to the mixing time of the Markov chain. We estimate numerically the dependence of the mixing time on the lattice size, and extract the mixing exponent.
Random matrix approach to cross correlations in financial data
NASA Astrophysics Data System (ADS)
Plerou, Vasiliki; Gopikrishnan, Parameswaran; Rosenow, Bernd; Amaral, Luís A.; Guhr, Thomas; Stanley, H. Eugene
2002-06-01
We analyze cross correlations between price fluctuations of different stocks using methods of random matrix theory (RMT). Using two large databases, we calculate cross-correlation matrices
NASA Astrophysics Data System (ADS)
Batchelor, Murray T.; Wille, Luc T.
The Table of Contents for the book is as follows: * Preface * Modelling the Immune System - An Example of the Simulation of Complex Biological Systems * Brief Overview of Quantum Computation * Quantal Information in Statistical Physics * Modeling Economic Randomness: Statistical Mechanics of Market Phenomena * Essentially Singular Solutions of Feigenbaum- Type Functional Equations * Spatiotemporal Chaotic Dynamics in Coupled Map Lattices * Approach to Equilibrium of Chaotic Systems * From Level to Level in Brain and Behavior * Linear and Entropic Transformations of the Hydrophobic Free Energy Sequence Help Characterize a Novel Brain Polyprotein: CART's Protein * Dynamical Systems Response to Pulsed High-Frequency Fields * Bose-Einstein Condensates in the Light of Nonlinear Physics * Markov Superposition Expansion for the Entropy and Correlation Functions in Two and Three Dimensions * Calculation of Wave Center Deflection and Multifractal Analysis of Directed Waves Through the Study of su(1,1)Ferromagnets * Spectral Properties and Phases in Hierarchical Master Equations * Universality of the Distribution Functions of Random Matrix Theory * The Universal Chiral Partition Function for Exclusion Statistics * Continuous Space-Time Symmetries in a Lattice Field Theory * Quelques Cas Limites du Problème à N Corps Unidimensionnel * Integrable Models of Correlated Electrons * On the Riemann Surface of the Three-State Chiral Potts Model * Two Exactly Soluble Lattice Models in Three Dimensions * Competition of Ferromagnetic and Antiferromagnetic Order in the Spin-l/2 XXZ Chain at Finite Temperature * Extended Vertex Operator Algebras and Monomial Bases * Parity and Charge Conjugation Symmetries and S Matrix of the XXZ Chain * An Exactly Solvable Constrained XXZ Chain * Integrable Mixed Vertex Models Ftom the Braid-Monoid Algebra * From Yang-Baxter Equations to Dynamical Zeta Functions for Birational Tlansformations * Hexagonal Lattice Directed Site Animals * Direction in the Star-Triangle Relations * A Self-Avoiding Walk Through Exactly Solved Lattice Models in Statistical Mechanics
Easy way to determine quantitative spatial resolution distribution for a general inverse problem
NASA Astrophysics Data System (ADS)
An, M.; Feng, M.
2013-12-01
The spatial resolution computation of a solution was nontrivial and more difficult than solving an inverse problem. Most geophysical studies, except for tomographic studies, almost uniformly neglect the calculation of a practical spatial resolution. In seismic tomography studies, a qualitative resolution length can be indicatively given via visual inspection of the restoration of a synthetic structure (e.g., checkerboard tests). An effective strategy for obtaining quantitative resolution length is to calculate Backus-Gilbert resolution kernels (also referred to as a resolution matrix) by matrix operation. However, not all resolution matrices can provide resolution length information, and the computation of resolution matrix is often a difficult problem for very large inverse problems. A new class of resolution matrices, called the statistical resolution matrices (An, 2012, GJI), can be directly determined via a simple one-parameter nonlinear inversion performed based on limited pairs of random synthetic models and their inverse solutions. The total procedure were restricted to forward/inversion processes used in the real inverse problem and were independent of the degree of inverse skill used in the solution inversion. Spatial resolution lengths can be directly given during the inversion. Tests on 1D/2D/3D model inversion demonstrated that this simple method can be at least valid for a general linear inverse problem.
Detection Performance of Horizontal Linear Hydrophone Arrays in Shallow Water.
1980-12-15
random phase G gain G angle interval covariance matrix h processor vector H matrix matched filter; generalized beamformer I unity matrix 4 SACLANTCEN SR...omnidirectional sensor is h*Ph P G = - h [Eq. 47] G = h* Q h P s The following two sections evaluate a few examples of application of the OLP. Following the...At broadside the signal covariance matrix reduces to a dyadic: P s s*;therefore, the gain (e.g. Eq. 37) becomes tr(H* P H) Pn * -1 Q -1 Pn G ~OQp
Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density
Smallwood, David O.
1997-01-01
The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less
Simulation of the mechanical behavior of random fiber networks with different microstructure.
Hatami-Marbini, H
2018-05-24
Filamentous protein networks are broadly encountered in biological systems such as cytoskeleton and extracellular matrix. Many numerical studies have been conducted to better understand the fundamental mechanisms behind the striking mechanical properties of these networks. In most of these previous numerical models, the Mikado algorithm has been used to represent the network microstructure. Here, a different algorithm is used to create random fiber networks in order to investigate possible roles of architecture on the elastic behavior of filamentous networks. In particular, random fibrous structures are generated from the growth of individual fibers from random nucleation points. We use computer simulations to determine the mechanical behavior of these networks in terms of their model parameters. The findings are presented and discussed along with the response of Mikado fiber networks. We demonstrate that these alternative networks and Mikado networks show a qualitatively similar response. Nevertheless, the overall elasticity of Mikado networks is stiffer compared to that of the networks created using the alternative algorithm. We describe the effective elasticity of both network types as a function of their line density and of the material properties of the filaments. We also characterize the ratio of bending and axial energy and discuss the behavior of these networks in terms of their fiber density distribution and coordination number.
Turner, John B; Corazzini, Rubina L; Butler, Timothy J; Garlick, David S; Rinker, Brian D
2015-09-01
Reduction of peritendinous adhesions after injury and repair has been the subject of extensive prior investigation. The application of a circumferential barrier at the repair site may limit the quantity of peritendinous adhesions while preserving the tendon's innate ability to heal. The authors compare the effectiveness of a type I/III collagen membrane and a collagen-glycosaminoglycan (GAG) resorbable matrix in reducing tendon adhesions in an experimental chicken model of a "zone II" tendon laceration and repair. In Leghorn chickens, flexor tendons were sharply divided using a scalpel and underwent repair in a standard fashion (54 total repairs). The sites were treated with a type I/III collagen membrane, collagen-GAG resorbable matrix, or saline in a randomized fashion. After 3 weeks, qualitative and semiquantitative histological analysis was performed to evaluate the "extent of peritendinous adhesions" and "nature of tendon healing." The data was evaluated with chi-square analysis and unpaired Student's t test. For both collagen materials, there was a statistically significant improvement in the degree of both extent of peritendinous adhesions and nature of tendon healing relative to the control group. There was no significant difference seen between the two materials. There was one tendon rupture observed in each treatment group. Surgical handling characteristics were subjectively favored for type I/III collagen membrane over the collagen-GAG resorbable matrix. The ideal method of reducing clinically significant tendon adhesions after injury remains elusive. Both materials in this study demonstrate promise in reducing tendon adhesions after flexor tendon repair without impeding tendon healing in this model.
NASA Astrophysics Data System (ADS)
Liu, Haitao
The objective of the present study is to investigate damage mechanisms and thermal residual stresses of composites, and to establish the frameworks to model the particle-reinforced metal matrix composites with particle-matrix interfacial debonding, particle cracking or thermal residual stresses. An evolutionary interfacial debonding model is proposed for the composites with spheroidal particles. The construction of the equivalent stiffness is based on the fact that when debonding occurs in a certain direction, the load-transfer ability will lose in that direction. By using this equivalent method, the interfacial debonding problem can be converted into a composite problem with perfectly bonded inclusions. Considering the interfacial debonding is a progressive process in which the debonding area increases in proportion to external loading, a progressive interfacial debonding model is proposed. In this model, the relation between external loading and the debonding area is established using a normal stress controlled debonding criterion. Furthermore, an equivalent orthotropic stiffness tensor is constructed based on the debonding areas. This model is able to study the composites with randomly distributed spherical particles. The double-inclusion theory is recalled to model the particle cracking problems. Cracks inside particles are treated as penny-shape particles with zero stiffness. The disturbed stress field due to the existence of a double-inclusion is expressed explicitly. Finally, a thermal mismatch eigenstrain is introduced to simulate the inconsistent expansions of the matrix and the particles due to the difference of the coefficients of thermal expansion. Micromechanical stress and strain fields are calculated due to the combination of applied external loads and the prescribed thermal mismatch eigenstrains. For all of the above models, ensemble-volume averaging procedures are employed to derive the effective yield function of the composites. Numerical simulations are performed to analyze the effects of various parameters and several good agreements between our model's predictions and experimental results are obtained. It should be mentioned that all of expressions in the frameworks are explicitly derived and these analytical results are easy to be adopted in other related investigations.
Characterizations of matrix and operator-valued Φ-entropies, and operator Efron-Stein inequalities.
Cheng, Hao-Chung; Hsieh, Min-Hsiu
2016-03-01
We derive new characterizations of the matrix Φ-entropy functionals introduced in Chen & Tropp (Chen, Tropp 2014 Electron. J. Prob. 19 , 1-30. (doi:10.1214/ejp.v19-2964)). These characterizations help us to better understand the properties of matrix Φ-entropies, and are a powerful tool for establishing matrix concentration inequalities for random matrices. Then, we propose an operator-valued generalization of matrix Φ-entropy functionals, and prove the subadditivity under Löwner partial ordering. Our results demonstrate that the subadditivity of operator-valued Φ-entropies is equivalent to the convexity. As an application, we derive the operator Efron-Stein inequality.
PCEMCAN - Probabilistic Ceramic Matrix Composites Analyzer: User's Guide, Version 1.0
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Mital, Subodh K.; Murthy, Pappu L. N.
1998-01-01
PCEMCAN (Probabalistic CEramic Matrix Composites ANalyzer) is an integrated computer code developed at NASA Lewis Research Center that simulates uncertainties associated with the constituent properties, manufacturing process, and geometric parameters of fiber reinforced ceramic matrix composites and quantifies their random thermomechanical behavior. The PCEMCAN code can perform the deterministic as well as probabilistic analyses to predict thermomechanical properties. This User's guide details the step-by-step procedure to create input file and update/modify the material properties database required to run PCEMCAN computer code. An overview of the geometric conventions, micromechanical unit cell, nonlinear constitutive relationship and probabilistic simulation methodology is also provided in the manual. Fast probability integration as well as Monte-Carlo simulation methods are available for the uncertainty simulation. Various options available in the code to simulate probabilistic material properties and quantify sensitivity of the primitive random variables have been described. The description of deterministic as well as probabilistic results have been described using demonstration problems. For detailed theoretical description of deterministic and probabilistic analyses, the user is referred to the companion documents "Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composite Behavior," NASA TP-3602, 1996 and "Probabilistic Micromechanics and Macromechanics for Ceramic Matrix Composites", NASA TM 4766, June 1997.
ERIC Educational Resources Information Center
Montague, Margariete A.
This study investigated the feasibility of concurrently and randomly sampling examinees and items in order to estimate group achievement. Seven 32-item tests reflecting a 640-item universe of simple open sentences were used such that item selection (random, systematic) and assignment (random, systematic) of items (four, eight, sixteen) to forms…
Akemann, G; Bloch, J; Shifrin, L; Wettig, T
2008-01-25
We analyze how individual eigenvalues of the QCD Dirac operator at nonzero quark chemical potential are distributed in the complex plane. Exact and approximate analytical results for both quenched and unquenched distributions are derived from non-Hermitian random matrix theory. When comparing these to quenched lattice QCD spectra close to the origin, excellent agreement is found for zero and nonzero topology at several values of the quark chemical potential. Our analytical results are also applicable to other physical systems in the same symmetry class.
Fidelity under isospectral perturbations: a random matrix study
NASA Astrophysics Data System (ADS)
Leyvraz, F.; García, A.; Kohler, H.; Seligman, T. H.
2013-07-01
The set of Hamiltonians generated by all unitary transformations from a single Hamiltonian is the largest set of isospectral Hamiltonians we can form. Taking advantage of the fact that the unitary group can be generated from Hermitian matrices we can take the ones generated by the Gaussian unitary ensemble with a small parameter as small perturbations. Similarly, the transformations generated by Hermitian antisymmetric matrices from orthogonal matrices form isospectral transformations among symmetric matrices. Based on this concept we can obtain the fidelity decay of a system that decays under a random isospectral perturbation with well-defined properties regarding time-reversal invariance. If we choose the Hamiltonian itself also from a classical random matrix ensemble, then we obtain solutions in terms of form factors in the limit of large matrices.
A non-stochastic iterative computational method to model light propagation in turbid media
NASA Astrophysics Data System (ADS)
McIntyre, Thomas J.; Zemp, Roger J.
2015-03-01
Monte Carlo models are widely used to model light transport in turbid media, however their results implicitly contain stochastic variations. These fluctuations are not ideal, especially for inverse problems where Jacobian matrix errors can lead to large uncertainties upon matrix inversion. Yet Monte Carlo approaches are more computationally favorable than solving the full Radiative Transport Equation. Here, a non-stochastic computational method of estimating fluence distributions in turbid media is proposed, which is called the Non-Stochastic Propagation by Iterative Radiance Evaluation method (NSPIRE). Rather than using stochastic means to determine a random walk for each photon packet, the propagation of light from any element to all other elements in a grid is modelled simultaneously. For locally homogeneous anisotropic turbid media, the matrices used to represent scattering and projection are shown to be block Toeplitz, which leads to computational simplifications via convolution operators. To evaluate the accuracy of the algorithm, 2D simulations were done and compared against Monte Carlo models for the cases of an isotropic point source and a pencil beam incident on a semi-infinite turbid medium. The model was shown to have a mean percent error less than 2%. The algorithm represents a new paradigm in radiative transport modelling and may offer a non-stochastic alternative to modeling light transport in anisotropic scattering media for applications where the diffusion approximation is insufficient.
Nonequilibrium Statistical Mechanics in One Dimension
NASA Astrophysics Data System (ADS)
Privman, Vladimir
2005-08-01
Part I. Reaction-Diffusion Systems and Models of Catalysis; 1. Scaling theories of diffusion-controlled and ballistically-controlled bimolecular reactions S. Redner; 2. The coalescence process, A+A->A, and the method of interparticle distribution functions D. ben-Avraham; 3. Critical phenomena at absorbing states R. Dickman; Part II. Kinetic Ising Models; 4. Kinetic ising models with competing dynamics: mappings, correlations, steady states, and phase transitions Z. Racz; 5. Glauber dynamics of the ising model N. Ito; 6. 1D Kinetic ising models at low temperatures - critical dynamics, domain growth, and freezing S. Cornell; Part III. Ordering, Coagulation, Phase Separation; 7. Phase-ordering dynamics in one dimension A. J. Bray; 8. Phase separation, cluster growth, and reaction kinetics in models with synchronous dynamics V. Privman; 9. Stochastic models of aggregation with injection H. Takayasu and M. Takayasu; Part IV. Random Sequential Adsorption and Relaxation Processes; 10. Random and cooperative sequential adsorption: exactly solvable problems on 1D lattices, continuum limits, and 2D extensions J. W. Evans; 11. Lattice models of irreversible adsorption and diffusion P. Nielaba; 12. Deposition-evaporation dynamics: jamming, conservation laws and dynamical diversity M. Barma; Part V. Fluctuations In Particle and Surface Systems; 13. Microscopic models of macroscopic shocks S. A. Janowsky and J. L. Lebowitz; 14. The asymmetric exclusion model: exact results through a matrix approach B. Derrida and M. R. Evans; 15. Nonequilibrium surface dynamics with volume conservation J. Krug; 16. Directed walks models of polymers and wetting J. Yeomans; Part VI. Diffusion and Transport In One Dimension; 17. Some recent exact solutions of the Fokker-Planck equation H. L. Frisch; 18. Random walks, resonance, and ratchets C. R. Doering and T. C. Elston; 19. One-dimensional random walks in random environment K. Ziegler; Part VII. Experimental Results; 20. Diffusion-limited exciton kinetics in one-dimensional systems R. Kroon and R. Sprik; 21. Experimental investigations of molecular and excitonic elementary reaction kinetics in one-dimensional systems R. Kopelman and A. L. Lin; 22. Luminescence quenching as a probe of particle distribution S. H. Bossmann and L. S. Schulman; Index.
Multichannel Compressive Sensing MRI Using Noiselet Encoding
Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin
2015-01-01
The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548
NASA Astrophysics Data System (ADS)
Pavlichin, Dmitri S.; Mabuchi, Hideo
2014-06-01
Nanoscale integrated photonic devices and circuits offer a path to ultra-low power computation at the few-photon level. Here we propose an optical circuit that performs a ubiquitous operation: the controlled, random-access readout of a collection of stored memory phases or, equivalently, the computation of the inner product of a vector of phases with a binary selector" vector, where the arithmetic is done modulo 2pi and the result is encoded in the phase of a coherent field. This circuit, a collection of cascaded interferometers driven by a coherent input field, demonstrates the use of coherence as a computational resource, and of the use of recently-developed mathematical tools for modeling optical circuits with many coupled parts. The construction extends in a straightforward way to the computation of matrix-vector and matrix-matrix products, and, with the inclusion of an optical feedback loop, to the computation of a weighted" readout of stored memory phases. We note some applications of these circuits for error correction and for computing tasks requiring fast vector inner products, e.g. statistical classification and some machine learning algorithms.
Information of group-correlations in Korean financial market
NASA Astrophysics Data System (ADS)
Choi, Jaewon; Lim, Gyuchang; Kim, Soo Yong; Kim, Kyungsik
2011-01-01
We study two sides of the KOSPI, classified as an emerging market. First, the evolutionary property is examined in terms of overlapping matrix and survival ratios. To this end, we apply the random matrix theory (RMT) and the one-factor model to analyzing correlation matrix and finding business clusters. Second, we examine the relations between the market capitalization and the business. For the well-developed markets such as NYSE, the contribution of the firms to the second-largest eigenvector shows an exponential function of the market capitalizations while no clue is observed for the KOSPI. We confirm that the market capitalization is distributed in a power-law with the exponent 1.2 like a Pareto's distribution. Particulary, the KOSPI shows a different behavior compared to the mature market, that is, one or two companies lead a number of companies with the little money and big companies competed to win each other. The clusters also represent by largest eigenstates show a weak affiliation compared to smaller ones. These results imply that the KOSPI is the target for the short-positioned investors.
Two-faced property of a market factor in asset pricing and diversification effect
NASA Astrophysics Data System (ADS)
Eom, Cheoljun
2017-04-01
This study empirically investigates the test hypothesis that a market factor acting as a representative common factor in the pricing models has a negative influence on constructing a well-diversified portfolio from the Markowitz mean-variance optimization function (MVOF). We use the comparative correlation matrix (C-CM) method to control a single eigenvalue among all eigenvalues included in the sample correlation matrix (S-CM), through the random matrix theory (RMT). In particular, this study observes the effect of the largest eigenvalue that has the property of the market factor. According to the results, the largest eigenvalue has the highest explanatory power on the stock return changes. The C-CM without the largest eigenvalue in the S-CM constructs a more diversified portfolio capable of improving the practical applicability of the MVOF. Moreover, the more diversified portfolio constructed from this C-CM has better out-of-sample performance in the future period. These results support the test hypothesis for the two-faced property of the market factor, defined by the largest eigenvalue.
Pixel electronic noise as a function of position in an active matrix flat panel imaging array
NASA Astrophysics Data System (ADS)
Yazdandoost, Mohammad Y.; Wu, Dali; Karim, Karim S.
2010-04-01
We present an analysis of output referred pixel electronic noise as a function of position in the active matrix array for both active and passive pixel architectures. Three different noise sources for Active Pixel Sensor (APS) arrays are considered: readout period noise, reset period noise and leakage current noise of the reset TFT during readout. For the state-of-the-art Passive Pixel Sensor (PPS) array, the readout noise of the TFT switch is considered. Measured noise results are obtained by modeling the array connections with RC ladders on a small in-house fabricated prototype. The results indicate that the pixels in the rows located in the middle part of the array have less random electronic noise at the output of the off-panel charge amplifier compared to the ones in rows at the two edges of the array. These results can help optimize for clearer images as well as help define the region-of-interest with the best signal-to-noise ratio in an active matrix digital flat panel imaging array.
Multi-cut solutions in Chern-Simons matrix models
NASA Astrophysics Data System (ADS)
Morita, Takeshi; Sugiyama, Kento
2018-04-01
We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.
Strategies for efficient resolution analysis in full-waveform inversion
NASA Astrophysics Data System (ADS)
Fichtner, A.; van Leeuwen, T.; Trampert, J.
2016-12-01
Full-waveform inversion is developing into a standard method in the seismological toolbox. It combines numerical wave propagation for heterogeneous media with adjoint techniques in order to improve tomographic resolution. However, resolution becomes increasingly difficult to quantify because of the enormous computational requirements. Here we present two families of methods that can be used for efficient resolution analysis in full-waveform inversion. They are based on the targeted extraction of resolution proxies from the Hessian matrix, which is too large to store and to compute explicitly. Fourier methods rest on the application of the Hessian to Earth models with harmonic oscillations. This yields the Fourier spectrum of the Hessian for few selected wave numbers, from which we can extract properties of the tomographic point-spread function for any point in space. Random probing methods use uncorrelated, random test models instead of harmonic oscillations. Auto-correlating the Hessian-model applications for sufficiently many test models also characterises the point-spread function. Both Fourier and random probing methods provide a rich collection of resolution proxies. These include position- and direction-dependent resolution lengths, and the volume of point-spread functions as indicator of amplitude recovery and inter-parameter trade-offs. The computational requirements of these methods are equivalent to approximately 7 conjugate-gradient iterations in full-waveform inversion. This is significantly less than the optimisation itself, which may require tens to hundreds of iterations to reach convergence. In addition to the theoretical foundations of the Fourier and random probing methods, we show various illustrative examples from real-data full-waveform inversion for crustal and mantle structure.
A model study of aggregates composed of spherical soot monomers with an acentric carbon shell
NASA Astrophysics Data System (ADS)
Luo, Jie; Zhang, Yongming; Zhang, Qixing
2018-01-01
Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.
A minimum drives automatic target definition procedure for multi-axis random control testing
NASA Astrophysics Data System (ADS)
Musella, Umberto; D'Elia, Giacomo; Carrella, Alex; Peeters, Bart; Mucchi, Emiliano; Marulo, Francesco; Guillaume, Patrick
2018-07-01
Multiple-Input Multiple-Output (MIMO) vibration control tests are able to closely replicate, via shakers excitation, the vibration environment that a structure needs to withstand during its operational life. This feature is fundamental to accurately verify the experienced stress state, and ultimately the fatigue life, of the tested structure. In case of MIMO random tests, the control target is a full reference Spectral Density Matrix in the frequency band of interest. The diagonal terms are the Power Spectral Densities (PSDs), representative for the acceleration operational levels, and the off-diagonal terms are the Cross Spectral Densities (CSDs). The specifications of random vibration tests are however often given in terms of PSDs only, coming from a legacy of single axis testing. Information about the CSDs is often missing. An accurate definition of the CSD profiles can further enhance the MIMO random testing practice, as these terms influence both the responses and the shaker's voltages (the so-called drives). The challenges are linked to the algebraic constraint that the full reference matrix must be positive semi-definite in the entire bandwidth, with no flexibility in modifying the given PSDs. This paper proposes a newly developed method that automatically provides the full reference matrix without modifying the PSDs, considered as test specifications. The innovative feature is the capability of minimizing the drives required to match the reference PSDs and, at the same time, to directly guarantee that the obtained full matrix is positive semi-definite. The drives minimization aims on one hand to reach the fixed test specifications without stressing the delicate excitation system; on the other hand it potentially allows to further increase the test levels. The detailed analytic derivation and implementation steps of the proposed method are followed by real-life testing considering different scenarios.
Sciahbasi, Alessandro; Calabrò, Paolo; Sarandrea, Alessandro; Rigattieri, Stefano; Tomassini, Francesco; Sardella, Gennaro; Zavalloni, Dennis; Cortese, Bernardo; Limbruno, Ugo; Tebaldi, Matteo; Gagnor, Andrea; Rubartelli, Paolo; Zingarelli, Antonio; Valgimigli, Marco
2014-06-01
Radiation absorbed by interventional cardiologists is a frequently under-evaluated important issue. Aim is to compare radiation dose absorbed by interventional cardiologists during percutaneous coronary procedures for acute coronary syndromes comparing transradial and transfemoral access. The randomized multicentre MATRIX (Minimizing Adverse Haemorrhagic Events by TRansradial Access Site and Systemic Implementation of angioX) trial has been designed to compare the clinical outcome of patients with acute coronary syndromes treated invasively according to the access site (transfemoral vs. transradial) and to the anticoagulant therapy (bivalirudin vs. heparin). Selected experienced interventional cardiologists involved in this study have been equipped with dedicated thermoluminescent dosimeters to evaluate the radiation dose absorbed during transfemoral or right transradial or left transradial access. For each access we evaluate the radiation dose absorbed at wrist, at thorax and at eye level. Consequently the operator is equipped with three sets (transfemoral, right transradial or left transradial access) of three different dosimeters (wrist, thorax and eye dosimeter). Primary end-point of the study is the procedural radiation dose absorbed by operators at thorax. An important secondary end-point is the procedural radiation dose absorbed by operators comparing the right or left radial approach. Patient randomization is performed according to the MATRIX protocol for the femoral or radial approach. A further randomization for the radial approach is performed to compare right and left transradial access. The RAD-MATRIX study will probably consent to clarify the radiation issue for interventional cardiologist comparing transradial and transfemoral access in the setting of acute coronary syndromes. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ebrahimi, R.; Zohren, S.
2018-03-01
In this paper we extend the orthogonal polynomials approach for extreme value calculations of Hermitian random matrices, developed by Nadal and Majumdar (J. Stat. Mech. P04001 arXiv:1102.0738), to normal random matrices and 2D Coulomb gases in general. Firstly, we show that this approach provides an alternative derivation of results in the literature. More precisely, we show convergence of the rescaled eigenvalue with largest modulus of a normal Gaussian ensemble to a Gumbel distribution, as well as universality for an arbitrary radially symmetric potential. Secondly, it is shown that this approach can be generalised to obtain convergence of the eigenvalue with smallest modulus and its universality for ring distributions. Most interestingly, the here presented techniques are used to compute all slowly varying finite N correction of the above distributions, which is important for practical applications, given the slow convergence. Another interesting aspect of this work is the fact that we can use standard techniques from Hermitian random matrices to obtain the extreme value statistics of non-Hermitian random matrices resembling the large N expansion used in context of the double scaling limit of Hermitian matrix models in string theory.
Fingerprint recognition of alien invasive weeds based on the texture character and machine learning
NASA Astrophysics Data System (ADS)
Yu, Jia-Jia; Li, Xiao-Li; He, Yong; Xu, Zheng-Hao
2008-11-01
Multi-spectral imaging technique based on texture analysis and machine learning was proposed to discriminate alien invasive weeds with similar outline but different categories. The objectives of this study were to investigate the feasibility of using Multi-spectral imaging, especially the near-infrared (NIR) channel (800 nm+/-10 nm) to find the weeds' fingerprints, and validate the performance with specific eigenvalues by co-occurrence matrix. Veronica polita Pries, Veronica persica Poir, longtube ground ivy, Laminum amplexicaule Linn. were selected in this study, which perform different effect in field, and are alien invasive species in China. 307 weed leaves' images were randomly selected for the calibration set, while the remaining 207 samples for the prediction set. All images were pretreated by Wallis filter to adjust the noise by uneven lighting. Gray level co-occurrence matrix was applied to extract the texture character, which shows density, randomness correlation, contrast and homogeneity of texture with different algorithms. Three channels (green channel by 550 nm+/-10 nm, red channel by 650 nm+/-10 nm and NIR channel by 800 nm+/-10 nm) were respectively calculated to get the eigenvalues.Least-squares support vector machines (LS-SVM) was applied to discriminate the categories of weeds by the eigenvalues from co-occurrence matrix. Finally, recognition ratio of 83.35% by NIR channel was obtained, better than the results by green channel (76.67%) and red channel (69.46%). The prediction results of 81.35% indicated that the selected eigenvalues reflected the main characteristics of weeds' fingerprint based on multi-spectral (especially by NIR channel) and LS-SVM model.
Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J
2017-01-01
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D , observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄ . When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model.
Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J.
2017-01-01
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D, observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄. When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model. PMID:28989561
Bayesian statistics and Monte Carlo methods
NASA Astrophysics Data System (ADS)
Koch, K. R.
2018-03-01
The Bayesian approach allows an intuitive way to derive the methods of statistics. Probability is defined as a measure of the plausibility of statements or propositions. Three rules are sufficient to obtain the laws of probability. If the statements refer to the numerical values of variables, the so-called random variables, univariate and multivariate distributions follow. They lead to the point estimation by which unknown quantities, i.e. unknown parameters, are computed from measurements. The unknown parameters are random variables, they are fixed quantities in traditional statistics which is not founded on Bayes' theorem. Bayesian statistics therefore recommends itself for Monte Carlo methods, which generate random variates from given distributions. Monte Carlo methods, of course, can also be applied in traditional statistics. The unknown parameters, are introduced as functions of the measurements, and the Monte Carlo methods give the covariance matrix and the expectation of these functions. A confidence region is derived where the unknown parameters are situated with a given probability. Following a method of traditional statistics, hypotheses are tested by determining whether a value for an unknown parameter lies inside or outside the confidence region. The error propagation of a random vector by the Monte Carlo methods is presented as an application. If the random vector results from a nonlinearly transformed vector, its covariance matrix and its expectation follow from the Monte Carlo estimate. This saves a considerable amount of derivatives to be computed, and errors of the linearization are avoided. The Monte Carlo method is therefore efficient. If the functions of the measurements are given by a sum of two or more random vectors with different multivariate distributions, the resulting distribution is generally not known. TheMonte Carlo methods are then needed to obtain the covariance matrix and the expectation of the sum.
Characterizations of matrix and operator-valued Φ-entropies, and operator Efron–Stein inequalities
Cheng, Hao-Chung; Hsieh, Min-Hsiu
2016-01-01
We derive new characterizations of the matrix Φ-entropy functionals introduced in Chen & Tropp (Chen, Tropp 2014 Electron. J. Prob. 19, 1–30. (doi:10.1214/ejp.v19-2964)). These characterizations help us to better understand the properties of matrix Φ-entropies, and are a powerful tool for establishing matrix concentration inequalities for random matrices. Then, we propose an operator-valued generalization of matrix Φ-entropy functionals, and prove the subadditivity under Löwner partial ordering. Our results demonstrate that the subadditivity of operator-valued Φ-entropies is equivalent to the convexity. As an application, we derive the operator Efron–Stein inequality. PMID:27118909
Interactive Reliability Model for Whisker-toughened Ceramics
NASA Technical Reports Server (NTRS)
Palko, Joseph L.
1993-01-01
Wider use of ceramic matrix composites (CMC) will require the development of advanced structural analysis technologies. The use of an interactive model to predict the time-independent reliability of a component subjected to multiaxial loads is discussed. The deterministic, three-parameter Willam-Warnke failure criterion serves as the theoretical basis for the reliability model. The strength parameters defining the model are assumed to be random variables, thereby transforming the deterministic failure criterion into a probabilistic criterion. The ability of the model to account for multiaxial stress states with the same unified theory is an improvement over existing models. The new model was coupled with a public-domain finite element program through an integrated design program. This allows a design engineer to predict the probability of failure of a component. A simple structural problem is analyzed using the new model, and the results are compared to existing models.
Fractal planetary rings: Energy inequalities and random field model
NASA Astrophysics Data System (ADS)
Malyarenko, Anatoliy; Ostoja-Starzewski, Martin
2017-12-01
This study is motivated by a recent observation, based on photographs from the Cassini mission, that Saturn’s rings have a fractal structure in radial direction. Accordingly, two questions are considered: (1) What Newtonian mechanics argument in support of such a fractal structure of planetary rings is possible? (2) What kinematics model of such fractal rings can be formulated? Both challenges are based on taking planetary rings’ spatial structure as being statistically stationary in time and statistically isotropic in space, but statistically nonstationary in space. An answer to the first challenge is given through an energy analysis of circular rings having a self-generated, noninteger-dimensional mass distribution [V. E. Tarasov, Int. J. Mod Phys. B 19, 4103 (2005)]. The second issue is approached by taking the random field of angular velocity vector of a rotating particle of the ring as a random section of a special vector bundle. Using the theory of group representations, we prove that such a field is completely determined by a sequence of continuous positive-definite matrix-valued functions defined on the Cartesian square F2 of the radial cross-section F of the rings, where F is a fat fractal.
Fluctuation theorems for discrete kinetic models of molecular motors
NASA Astrophysics Data System (ADS)
Faggionato, Alessandra; Silvestri, Vittoria
2017-04-01
Motivated by discrete kinetic models for non-cooperative molecular motors on periodic tracks, we consider random walks (also not Markov) on quasi one dimensional (1d) lattices, obtained by gluing several copies of a fundamental graph in a linear fashion. We show that, for a suitable class of quasi-1d lattices, the large deviation rate function associated to the position of the walker satisfies a Gallavotti-Cohen symmetry for any choice of the dynamical parameters defining the stochastic walk. This class includes the linear model considered in Lacoste et al (2008 Phys. Rev. E 78 011915). We also derive fluctuation theorems for the time-integrated cycle currents and discuss how the matrix approach of Lacoste et al (2008 Phys. Rev. E 78 011915) can be extended to derive the above Gallavotti-Cohen symmetry for any Markov random walk on {Z} with periodic jump rates. Finally, we review in the present context some large deviation results of Faggionato and Silvestri (2017 Ann. Inst. Henri Poincaré 53 46-78) and give some specific examples with explicit computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okabe, T.; Takeda, N.; Komotori, J.
1999-11-26
A new model is proposed for multiple matrix cracking in order to take into account the role of matrix-rich regions in the cross section in initiating crack growth. The model is used to predict the matrix cracking stress and the total number of matrix cracks. The model converts the matrix-rich regions into equivalent penny shape crack sizes and predicts the matrix cracking stress with a fracture mechanics crack-bridging model. The estimated distribution of matrix cracking stresses is used as statistical input to predict the number of matrix cracks. The results show good agreement with the experimental results by replica observations.more » Therefore, it is found that the matrix cracking behavior mainly depends on the distribution of matrix-rich regions in the composite.« less
Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.
2016-01-01
The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.
Structure of the two-neutrino double-β decay matrix elements within perturbation theory
NASA Astrophysics Data System (ADS)
Štefánik, Dušan; Šimkovic, Fedor; Faessler, Amand
2015-06-01
The two-neutrino double-β Gamow-Teller and Fermi transitions are studied within an exactly solvable model, which allows a violation of both spin-isospin SU(4) and isospin SU(2) symmetries, and is expressed with generators of the SO(8) group. It is found that this model reproduces the main features of realistic calculation within the quasiparticle random-phase approximation with isospin symmetry restoration concerning the dependence of the two-neutrino double-β decay matrix elements on isovector and isoscalar particle-particle interactions. By using perturbation theory an explicit dependence of the two-neutrino double-β decay matrix elements on the like-nucleon pairing, particle-particle T =0 and T =1 , and particle-hole proton-neutron interactions is obtained. It is found that double-β decay matrix elements do not depend on the mean field part of Hamiltonian and that they are governed by a weak violation of both SU(2) and SU(4) symmetries by the particle-particle interaction of Hamiltonian. It is pointed out that there is a dominance of two-neutrino double-β decay transition through a single state of intermediate nucleus. The energy position of this state relative to energies of initial and final ground states is given by a combination of strengths of residual interactions. Further, energy-weighted Fermi and Gamow-Teller sum rules connecting Δ Z =2 nuclei are discussed. It is proposed that these sum rules can be used to study the residual interactions of the nuclear Hamiltonian, which are relevant for charge-changing nuclear transitions.
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL
Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui
2013-01-01
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities. PMID:24086091
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.
Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui
2013-06-01
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.
Medeiros Turra, Kely; Pineda Rivelli, Diogo; Berlanga de Moraes Barros, Silvia; Mesquita Pasqualoto, Kerly Fernanda
2016-07-01
A receptor-independent (RI) four-dimensional structure-activity relationship (4D-QSAR) formalism was applied to a set of sixty-four β-N-biaryl ether sulfonamide hydroxamate derivatives, previously reported as potent inhibitors against matrix metalloproteinase subtype 9 (MMP-9). MMP-9 belongs to a group of enzymes related to the cleavage of several extracellular matrix components and has been associated to cancer invasiveness/metastasis. The best RI 4D-QSAR model was statistically significant (N=47; r(2) =0.91; q(2) =0.83; LSE=0.09; LOF=0.35; outliers=0). Leave-N-out (LNO) and y-randomization approaches indicated the QSAR model was robust and presented no chance correlation, respectively. Furthermore, it also had good external predictability (82 %) regarding the test set (N=17). In addition, the grid cell occupancy descriptors (GCOD) of the predicted bioactive conformation for the most potent inhibitor were successfully interpreted when docked into the MMP-9 active site. The 3D-pharmacophore findings were used to predict novel ligands and exploit the MMP-9 calculated binding affinity through molecular docking procedure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Probabilistic Modeling of Ceramic Matrix Composite Strength
NASA Technical Reports Server (NTRS)
Shan, Ashwin R.; Murthy, Pappu L. N.; Mital, Subodh K.; Bhatt, Ramakrishna T.
1998-01-01
Uncertainties associated with the primitive random variables such as manufacturing process (processing temperature, fiber volume ratio, void volume ratio), constituent properties (fiber, matrix and interface), and geometric parameters (ply thickness, interphase thickness) have been simulated to quantify the scatter in the first matrix cracking strength (FMCS) and the ultimate tensile strength of SCS-6/RBSN (SiC fiber (SCS-6) reinforced reaction-bonded silicon nitride composite) ceramic matrix composite laminate at room temperature. Cumulative probability distribution function for the FMCS and ultimate tensile strength at room temperature (RT) of (0)(sub 8), (0(sub 2)/90(sub 2), and (+/-45(sub 2))(sub S) laminates have been simulated and the sensitivity of primitive variables to the respective strengths have been quantified. Computationally predicted scatter of the strengths for a uniaxial laminate have been compared with those from limited experimental data. Also the experimental procedure used in the tests has been described briefly. Results show a very good agreement between the computational simulation and the experimental data. Dominating failure modes in (0)(sub 8), (0/90)(sub s) and (+/-45)(sub S) laminates have been identified. Results indicate that the first matrix cracking strength for the (0)(sub S), and (0/90)(sub S) laminates is sensitive to the thermal properties, modulus and strengths of both the fiber and matrix whereas the ultimate tensile strength is sensitive to the fiber strength and the fiber volume ratio. In the case of a (+/-45)(sub S), laminate, both the FMCS and the ultimate tensile strengths have a small scatter range and are sensitive to the fiber tensile strength as well as the fiber volume ratio.
NASA Astrophysics Data System (ADS)
Zarubin, V. S.; Sergeeva, E. S.
2017-11-01
This paper outlines simulation models that represent the quantitative interdependencies between the thermal conductivity and the thermoelastic properties of composites, on the one hand, and their porous structure and matrix properties, as well as the volume fraction of their reinforcing inclusions, on the other hand. As the reinforcing inclusions, randomly-oriented anisotropic single-wall carbon nanotubes (SWNT) are taken. The key means for constructing the simulation models are the self-matching method and the dual variational formulation of the thermal conductivity/thermoelasticity problem for a non-homogeneous solid body. With the simulation models presented below, it is possible to estimate the effect the nanocomposite porosity has on the thermoelastic properties and thermal conductivity of nanocomposites.
Temporal evolution of financial-market correlations.
Fenn, Daniel J; Porter, Mason A; Williams, Stacy; McDonald, Mark; Johnson, Neil F; Jones, Nick S
2011-08-01
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.
Temporal evolution of financial-market correlations
NASA Astrophysics Data System (ADS)
Fenn, Daniel J.; Porter, Mason A.; Williams, Stacy; McDonald, Mark; Johnson, Neil F.; Jones, Nick S.
2011-08-01
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.
Remote sensing of earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1988-01-01
Two monographs and 85 journal and conference papers on remote sensing of earth terrain have been published, sponsored by NASA Contract NAG5-270. A multivariate K-distribution is proposed to model the statistics of fully polarimetric data from earth terrain with polarizations HH, HV, VH, and VV. In this approach, correlated polarizations of radar signals, as characterized by a covariance matrix, are treated as the sum of N n-dimensional random vectors; N obeys the negative binomial distribution with a parameter alpha and mean bar N. Subsequently, and n-dimensional K-distribution, with either zero or non-zero mean, is developed in the limit of infinite bar N or illuminated area. The probability density function (PDF) of the K-distributed vector normalized by its Euclidean norm is independent of the parameter alpha and is the same as that derived from a zero-mean Gaussian-distributed random vector. The above model is well supported by experimental data provided by MIT Lincoln Laboratory and the Jet Propulsion Laboratory in the form of polarimetric measurements.
NASA Astrophysics Data System (ADS)
Wang, Duan; Podobnik, Boris; Horvatić, Davor; Stanley, H. Eugene
2011-04-01
We propose a modified time lag random matrix theory in order to study time-lag cross correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross correlations in the absolute values of returns that quantify risk, and find that they decay much more slowly than cross correlations between the returns. The magnitude of the cross correlations constitutes “bad news” for international investment managers who may believe that risk is reduced by diversifying across countries. We find that when a market shock is transmitted around the world, the risk decays very slowly. We explain these time-lag cross correlations by introducing a global factor model (GFM) in which all index returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the cross correlations between returns (or magnitudes) can be modeled with the autocorrelations of the global factor returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the world index cross correlations can be explained by the global factor, which supports the utility of the GFM. We demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual indices. We find ten indices that are practically uncorrelated with the global factor and with the remainder of the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we argue that this general method can be applied to a wide range of phenomena in which time series are measured, ranging from seismology and physiology to atmospheric geophysics.
Wang, Duan; Podobnik, Boris; Horvatić, Davor; Stanley, H Eugene
2011-04-01
We propose a modified time lag random matrix theory in order to study time-lag cross correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross correlations in the absolute values of returns that quantify risk, and find that they decay much more slowly than cross correlations between the returns. The magnitude of the cross correlations constitutes "bad news" for international investment managers who may believe that risk is reduced by diversifying across countries. We find that when a market shock is transmitted around the world, the risk decays very slowly. We explain these time-lag cross correlations by introducing a global factor model (GFM) in which all index returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the cross correlations between returns (or magnitudes) can be modeled with the autocorrelations of the global factor returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the world index cross correlations can be explained by the global factor, which supports the utility of the GFM. We demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual indices. We find ten indices that are practically uncorrelated with the global factor and with the remainder of the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we argue that this general method can be applied to a wide range of phenomena in which time series are measured, ranging from seismology and physiology to atmospheric geophysics.
NASA Astrophysics Data System (ADS)
Tatlier, Mehmet Seha
Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.
Influence of fiber architecture on the elastic an d inelastic response of metal matrix composites
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Pindera, Marek-Jerzy; Wilt, Thomas E.
1995-01-01
This three part paper focuses on the effect of fiber architecture (i.e., shape and distribution) on the elastic and inelastic response of metal matrix composites. The first part provides an annotative survey of the literature, presented as a historical perspective, dealing with the effects of fiber shape and distribution on the response of advanced polymeric matrix and metal matrix composites. Previous investigations dealing with both continuously and discontinuously reinforced composites are included. A summary of the state-of-the-art will assist in defining new directions in this quickly reviving area of research. The second part outlines a recently developed analytical micromechanics model that is particularly well suited for studying the influence of these effects on the response of metal matrix composites. This micromechanics model, referred to as the generalized method of cells (GMC), is capable of predicting the overall, inelastic behavior of unidirectional, multi-phased composites given the properties of the constituents. In particular, the model is sufficiently general to predict the response of unidirectional composites reinforced by either continuous or discontinuous fibers with different inclusion shapes and spatial arrangements in the presence of either perfect or imperfect interfaces and/or interfacial layers. Recent developments regarding this promising model, as well as directions for future enhancements of the model's predictive capability, are included. Finally, the third pan provides qualitative results generated using GMC for a representative titanium matix composite system, SCS-6/TlMETAL 21S. Results are presented that correctly demonstrate the relative effects of fiber arrangement and shape on the longitudinal and transverse stress-strain and creep response, with both strong and weak fiber/matrix interfacial bonds. The fiber arrangements include square, square diagonal, hexagonal and rectangular periodic arrays, as well as a random array. The fiber shapes include circular, square and cross-shaped cross sections. The effect of fiber volume fraction on the observed stress-strain response is also discussed, as the thus-far poorly documented strain rate sensitivity effect. In addition to the well documented features of architecture dependent response of continuously reinforced two-phase MMC's, new results involving continuous multi-phase internal architectures are presented. Specifically, stress strain and creep response of composites with different size fibers having different internal arrangements and bond strengths are investigated with the aim of determining the feasibility of using this approach to enhance the transverse toughness and creep resistance of TMC's.
Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B; Tamascelli, Dario; Montangero, Simone
2018-01-01
We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.
Coherent Backscattering by Polydisperse Discrete Random Media: Exact T-Matrix Results
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.
2011-01-01
The numerically exact superposition T-matrix method is used to compute, for the first time to our knowledge, electromagnetic scattering by finite spherical volumes composed of polydisperse mixtures of spherical particles with different size parameters or different refractive indices. The backscattering patterns calculated in the far-field zone of the polydisperse multiparticle volumes reveal unequivocally the classical manifestations of the effect of weak localization of electromagnetic waves in discrete random media, thereby corroborating the universal interference nature of coherent backscattering. The polarization opposition effect is shown to be the least robust manifestation of weak localization fading away with increasing particle size parameter.
NASA Astrophysics Data System (ADS)
Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B.; Tamascelli, Dario; Montangero, Simone
2018-01-01
We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.
Statistical properties of the stock and credit market: RMT and network topology
NASA Astrophysics Data System (ADS)
Lim, Kyuseong; Kim, Min Jae; Kim, Sehyun; Kim, Soo Yong
We analyzed the dependence structure of the credit and stock market using random matrix theory and network topology. The dynamics of both markets have been spotlighted throughout the subprime crisis. In this study, we compared these two markets in view of the market-wide effect from random matrix theory and eigenvalue analysis. We found that the largest eigenvalue of the credit market as a whole preceded that of the stock market in the beginning of the financial crisis and that of two markets tended to be synchronized after the crisis. The correlation between the companies of both markets became considerably stronger after the crisis as well.
Kang, James; An, Howard; Hilibrand, Alan; Yoon, S Tim; Kavanagh, Eoin; Boden, Scott
2012-05-20
Prospective multicenter randomized clinical trail. The goal of our 2-year prospective study was to perform a randomized clinical trial comparing the outcomes of Grafton demineralized bone matrix (DBM) Matrix with local bone with that of iliac crest bone graft (ICBG) in a single-level instrumented posterior lumbar fusion. There has been extensive research and development in identifying a suitable substitute to replace autologous ICBG that is associated with known morbidities. DBMs are a class of commercially available grafting agents that are prepared from allograft bone. Many such products have been commercially available for clinical use; however, their efficacy for spine fusion has been mostly based on anecdotal evidence rather than randomized controlled clinical trials. Forty-six patients were randomly assigned (2:1) to receive Grafton DBM Matrix with local bone (30 patients) or autologous ICBG (16 patients). The mean age was 64 (females [F] = 21, males [M] = 9) in the DBM group and 65 (F = 9, M = 5) in the ICBG group. An independent radiologist evaluated plain radiographs and computed tomographic scans at 6-month, 1-year, and 2-year time points. Clinical outcomes were measured using Oswestry Disability Index (ODI) and Medical Outcomes Study 36-Item Short Form Health Survey. Forty-one patients (DBM = 28 and ICBG = 13) completed the 2-year follow-up. Final fusion rates were 86% (Grafton Matrix) versus 92% (ICBG) (P = 1.0 not significant). The Grafton group showed slightly better improvement in ODI score than the ICBG group at the final 2-year follow-up (Grafton [16.2] and ICBG [22.7]); however, the difference was not statistically significant (P = 0.2346 at 24 mo). Grafton showed consistently higher physical function scores at 24 months; however, differences were not statistically significant (P = 0.0823). Similar improvements in the physical component summary scores were seen in both the Grafton and ICBG groups. There was a statistically significant greater mean intraoperative blood loss in the ICBG group than in the Grafton group (P < 0.0031). At 2-year follow-up, subjects who were randomized to Grafton Matrix and local bone achieved an 86% overall fusion rate and improvements in clinical outcomes that were comparable with those in the ICBG group.
Studies on Relaxation Behavior of Corona Poled Aromatic Dipolar Molecules in a Polymer Matrix
1990-08-03
concentration upto 30 weight percent. Orientation As expected optically responsive molecules are randomly oriented in the polymer matrix although a small amount...INSERT Figure 4 The retention of SH intensity of the small molecule such as MNA was found to be very poor in the PMMA matrix while the larger rodlike...Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem. 24(2), 309 (1983). 16.- H. Ringsdorf and H. W. Schmidt. Makromol. Chem. 185, 1327 (1984). 17. S. Musikant
Comprehensive T-matrix Reference Database: A 2009-2011 Update
NASA Technical Reports Server (NTRS)
Zakharova, Nadezhda T.; Videen, G.; Khlebtsov, Nikolai G.
2012-01-01
The T-matrix method is one of the most versatile and efficient theoretical techniques widely used for the computation of electromagnetic scattering by single and composite particles, discrete random media, and particles in the vicinity of an interface separating two half-spaces with different refractive indices. This paper presents an update to the comprehensive database of peer-reviewed T-matrix publications compiled by us previously and includes the publications that appeared since 2009. It also lists several earlier publications not included in the original database.
Random pure states: Quantifying bipartite entanglement beyond the linear statistics.
Vivo, Pierpaolo; Pato, Mauricio P; Oshanin, Gleb
2016-05-01
We analyze the properties of entangled random pure states of a quantum system partitioned into two smaller subsystems of dimensions N and M. Framing the problem in terms of random matrices with a fixed-trace constraint, we establish, for arbitrary N≤M, a general relation between the n-point densities and the cross moments of the eigenvalues of the reduced density matrix, i.e., the so-called Schmidt eigenvalues, and the analogous functionals of the eigenvalues of the Wishart-Laguerre ensemble of the random matrix theory. This allows us to derive explicit expressions for two-level densities, and also an exact expression for the variance of von Neumann entropy at finite N,M. Then, we focus on the moments E{K^{a}} of the Schmidt number K, the reciprocal of the purity. This is a random variable supported on [1,N], which quantifies the number of degrees of freedom effectively contributing to the entanglement. We derive a wealth of analytical results for E{K^{a}} for N=2 and 3 and arbitrary M, and also for square N=M systems by spotting for the latter a connection with the probability P(x_{min}^{GUE}≥sqrt[2N]ξ) that the smallest eigenvalue x_{min}^{GUE} of an N×N matrix belonging to the Gaussian unitary ensemble is larger than sqrt[2N]ξ. As a by-product, we present an exact asymptotic expansion for P(x_{min}^{GUE}≥sqrt[2N]ξ) for finite N as ξ→∞. Our results are corroborated by numerical simulations whenever possible, with excellent agreement.
A transfer matrix approach to vibration localization in mistuned blade assemblies
NASA Technical Reports Server (NTRS)
Ottarson, Gisli; Pierre, Chritophe
1993-01-01
A study of mode localization in mistuned bladed disks is performed using transfer matrices. The transfer matrix approach yields the free response of a general, mono-coupled, perfectly cyclic assembly in closed form. A mistuned structure is represented by random transfer matrices, and the expansion of these matrices in terms of the small mistuning parameter leads to the definition of a measure of sensitivity to mistuning. An approximation of the localization factor, the spatially averaged rate of exponential attenuation per blade-disk sector, is obtained through perturbation techniques in the limits of high and low sensitivity. The methodology is applied to a common model of a bladed disk and the results verified by Monte Carlo simulations. The easily calculated sensitivity measure may prove to be a valuable design tool due to its system-independent quantification of mistuning effects such as mode localization.
Research on sparse feature matching of improved RANSAC algorithm
NASA Astrophysics Data System (ADS)
Kong, Xiangsi; Zhao, Xian
2018-04-01
In this paper, a sparse feature matching method based on modified RANSAC algorithm is proposed to improve the precision and speed. Firstly, the feature points of the images are extracted using the SIFT algorithm. Then, the image pair is matched roughly by generating SIFT feature descriptor. At last, the precision of image matching is optimized by the modified RANSAC algorithm,. The RANSAC algorithm is improved from three aspects: instead of the homography matrix, this paper uses the fundamental matrix generated by the 8 point algorithm as the model; the sample is selected by a random block selecting method, which ensures the uniform distribution and the accuracy; adds sequential probability ratio test(SPRT) on the basis of standard RANSAC, which cut down the overall running time of the algorithm. The experimental results show that this method can not only get higher matching accuracy, but also greatly reduce the computation and improve the matching speed.
Random matrix theory for transition strengths: Applications and open questions
NASA Astrophysics Data System (ADS)
Kota, V. K. B.
2017-12-01
Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated interacting quantum many-particle systems. A finite quantum system, induced by a transition operator, makes transitions from its states to the states of the same system or to those of another system. Examples are electromagnetic transitions (then the initial and final systems are same), nuclear beta and double beta decay (then the initial and final systems are different) and so on. Using embedded ensembles (EE), there are efforts to derive a good statistical theory for transition strengths. With m fermions (or bosons) in N mean-field single particle levels and interacting via two-body forces, we have with GOE embedding, the so called EGOE(1+2). Now, the transition strength density (transition strength multiplied by the density of states at the initial and final energies) is a convolution of the density generated by the mean-field one-body part with a bivariate spreading function due to the two-body interaction. Using the embedding U(N) algebra, it is established, for a variety of transition operators, that the spreading function, for sufficiently strong interactions, is close to a bivariate Gaussian. Also, as the interaction strength increases, the spreading function exhibits a transition from bivariate Breit-Wigner to bivariate Gaussian form. In appropriate limits, this EE theory reduces to the polynomial theory of Draayer, French and Wong on one hand and to the theory due to Flambaum and Izrailev for one-body transition operators on the other. Using spin-cutoff factors for projecting angular momentum, the theory is applied to nuclear matrix elements for neutrinoless double beta decay (NDBD). In this paper we will describe: (i) various developments in the EE theory for transition strengths; (ii) results for nuclear matrix elements for 130Te and 136Xe NDBD; (iii) important open questions in the current form of the EE theory.
New Polylactic Acid Composites Reinforced with Artichoke Fibers
Botta, Luigi; Fiore, Vincenzo; Scalici, Tommaso; Valenza, Antonino; Scaffaro, Roberto
2015-01-01
In this work, artichoke fibers were used for the first time to prepare poly(lactic acid) (PLA)-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w) were prepared by the film-stacking method: the first one (UNID) reinforced with unidirectional long artichoke fibers, the second one (RANDOM) reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanical tests. The morphology of the fracture surfaces was analyzed through scanning electron microscopy (SEM). Moreover, a theoretical model, i.e., Hill’s method, was used to fit the experimental Young’s modulus of the biocomposites. The quasi-static tensile tests revealed that the modulus of UNID composites is significantly higher than that of the neat PLA (i.e., ~40%). Moreover, the tensile strength is slightly higher than that of the neat matrix. The other way around, the stiffness of RANDOM composites is not significantly improved, and the tensile strength decreases in comparison to the neat PLA.
A Markov model for blind image separation by a mean-field EM algorithm.
Tonazzini, Anna; Bedini, Luigi; Salerno, Emanuele
2006-02-01
This paper deals with blind separation of images from noisy linear mixtures with unknown coefficients, formulated as a Bayesian estimation problem. This is a flexible framework, where any kind of prior knowledge about the source images and the mixing matrix can be accounted for. In particular, we describe local correlation within the individual images through the use of Markov random field (MRF) image models. These are naturally suited to express the joint pdf of the sources in a factorized form, so that the statistical independence requirements of most independent component analysis approaches to blind source separation are retained. Our model also includes edge variables to preserve intensity discontinuities. MRF models have been proved to be very efficient in many visual reconstruction problems, such as blind image restoration, and allow separation and edge detection to be performed simultaneously. We propose an expectation-maximization algorithm with the mean field approximation to derive a procedure for estimating the mixing matrix, the sources, and their edge maps. We tested this procedure on both synthetic and real images, in the fully blind case (i.e., no prior information on mixing is exploited) and found that a source model accounting for local autocorrelation is able to increase robustness against noise, even space variant. Furthermore, when the model closely fits the source characteristics, independence is no longer a strict requirement, and cross-correlated sources can be separated, as well.
Optical characterization of murine model's in-vivo skin using Mueller matrix polarimetric imaging
NASA Astrophysics Data System (ADS)
Mora-Núñez, Azael; Martinez-Ponce, Geminiano; Garcia-Torales, Guillermo
2015-12-01
Mueller matrix polarimetric imaging (MMPI) provides a complete characterization of an anisotropic optical medium. Subsequent single value decomposition allows image interpretation in terms of basic optical anisotropies, such as depolarization, diattenuation, and retardance. In this work, healthy in-vivo skin at different anatomical locations of a biological model (Rattus norvegicus) was imaged by the MMPI technique using 532nm coherent illumination. The body parts under study were back, abdomen, tail, and calvaria. Because skin components are randomly distributed and skin thickness depends on its location, polarization measures arise from the average over a single detection element (pixel) and on the number of free optical paths, respectively. Optical anisotropies over the imaged skin indicates, mainly, the presence of components related to the physiology of the explored region. In addition, a MMPI-based comparison between a tumor on the back of one test subject and proximal healthy skin was made. The results show that the single values of optical anisotropies can be helpful in distinguishing different areas of in-vivo skin and also lesions.
Ranking Support Vector Machine with Kernel Approximation
Dou, Yong
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256
Ranking Support Vector Machine with Kernel Approximation.
Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
NASA Astrophysics Data System (ADS)
Movassagh, Ramis
2016-02-01
We prove that the complex conjugate (c.c.) eigenvalues of a smoothly varying real matrix attract (Eq. 15). We offer a dynamical perspective on the motion and interaction of the eigenvalues in the complex plane, derive their governing equations and discuss applications. C.c. pairs closest to the real axis, or those that are ill-conditioned, attract most strongly and can collide to become exactly real. As an application we consider random perturbations of a fixed matrix M. If M is Normal, the total expected force on any eigenvalue is shown to be only the attraction of its c.c. (Eq. 24) and when M is circulant the strength of interaction can be related to the power spectrum of white noise. We extend this by calculating the expected force (Eq. 41) for real stochastic processes with zero-mean and independent intervals. To quantify the dominance of the c.c. attraction, we calculate the variance of other forces. We apply the results to the Hatano-Nelson model and provide other numerical illustrations. It is our hope that the simple dynamical perspective herein might help better understanding of the aggregation and low density of the eigenvalues of real random matrices on and near the real line respectively. In the appendix we provide a Matlab code for plotting the trajectories of the eigenvalues.
Statistics of partially-polarized fields: beyond the Stokes vector and coherence matrix
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail
2017-08-01
Traditionally, the partially-polarized light is characterized by the four Stokes parameters. Equivalent description is also provided by correlation tensor of the optical field. These statistics specify only the second moments of the complex amplitudes of the narrow-band two-dimensional electric field of the optical wave. Electric field vector of the random quasi monochromatic wave is a nonstationary oscillating two-dimensional real random variable. We introduce a novel statistical description of these partially polarized waves: the Period-Averaged Probability Density Function (PA-PDF) of the field. PA-PDF contains more information on the polarization state of the field than the Stokes vector. In particular, in addition to the conventional distinction between the polarized and depolarized components of the field PA-PDF allows to separate the coherent and fluctuating components of the field. We present several model examples of the fields with identical Stokes vectors and very distinct shapes of PA-PDF. In the simplest case of the nonstationary, oscillating normal 2-D probability distribution of the real electrical field and stationary 4-D probability distribution of the complex amplitudes, the newly-introduced PA-PDF is determined by 13 parameters that include the first moments and covariance matrix of the quadrature components of the oscillating vector field.
A numerical approximation to the elastic properties of sphere-reinforced composites
NASA Astrophysics Data System (ADS)
Segurado, J.; Llorca, J.
2002-10-01
Three-dimensional cubic unit cells containing 30 non-overlapping identical spheres randomly distributed were generated using a new, modified random sequential adsortion algorithm suitable for particle volume fractions of up to 50%. The elastic constants of the ensemble of spheres embedded in a continuous and isotropic elastic matrix were computed through the finite element analysis of the three-dimensional periodic unit cells, whose size was chosen as a compromise between the minimum size required to obtain accurate results in the statistical sense and the maximum one imposed by the computational cost. Three types of materials were studied: rigid spheres and spherical voids in an elastic matrix and a typical composite made up of glass spheres in an epoxy resin. The moduli obtained for different unit cells showed very little scatter, and the average values obtained from the analysis of four unit cells could be considered very close to the "exact" solution to the problem, in agreement with the results of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) referring to the size of the representative volume element for elastic composites. They were used to assess the accuracy of three classical analytical models: the Mori-Tanaka mean-field analysis, the generalized self-consistent method, and Torquato's third-order approximation.
Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators
NASA Astrophysics Data System (ADS)
Wang, Chaoxin; Xie, Xiling; Chen, Yanhao; Zhang, Zhiyi
2016-11-01
A Stewart platform with piezoelectric actuators is presented for micro-vibration isolation. The Jacobi matrix of the Stewart platform, which reveals the relationship between the position/pointing of the payload and the extensions of the six struts, is derived by kinematic analysis. The dynamic model of the Stewart platform is established by the FRF (frequency response function) synthesis method. In the active control loop, the direct feedback of integrated forces is combined with the FxLMS based adaptive feedback to dampen vibration of inherent modes and suppress transmission of periodic vibrations. Numerical simulations were conducted to prove vibration isolation performance of the Stewart platform under random and periodical disturbances, respectively. In the experiment, the output consistencies of the six piezoelectric actuators were measured at first and the theoretical Jacobi matrix as well as the feedback gain of each piezoelectric actuator was subsequently modified according to the measured consistencies. The direct feedback loop was adjusted to achieve sufficient active damping and the FxLMS based adaptive feedback control was adopted to suppress vibration transmission in the six struts. Experimental results have demonstrated that the Stewart platform can achieve 30 dB attenuation of periodical disturbances and 10-20 dB attenuation of random disturbances in the frequency range of 5-200 Hz.
A Note on Parameters of Random Substitutions by γ-Diagonal Matrices
NASA Astrophysics Data System (ADS)
Kang, Ju-Sung
Random substitutions are very useful and practical method for privacy-preserving schemes. In this paper we obtain the exact relationship between the estimation errors and three parameters used in the random substitutions, namely the privacy assurance metric γ, the total number n of data records, and the size N of transition matrix. We also demonstrate some simulations concerning the theoretical result.
Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials
NASA Technical Reports Server (NTRS)
Nemeth, Noel, N.
2013-01-01
Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.
NASA Astrophysics Data System (ADS)
Lv, Zhong; Chen, Huisu
2014-10-01
Autonomous healing of cracks using pre-embedded capsules containing healing agent is becoming a promising approach to restore the strength of damaged structures. In addition to the material properties, the size and volume fraction of capsules influence crack healing in the matrix. Understanding the crack and capsule interaction is critical in the development and design of structures made of self-healing materials. Assuming that the pre-embedded capsules are randomly dispersed we theoretically model flat ellipsoidal crack interaction with capsules and determine the probability of a crack intersecting the pre-embedded capsules i.e. the self-healing probability. We also develop a probabilistic model of a crack simultaneously meeting with capsules and catalyst carriers in two-component self-healing system matrix. Using a risk-based healing approach, we determine the volume fraction and size of the pre-embedded capsules that are required to achieve a certain self-healing probability. To understand the effect of the shape of the capsules on self-healing we theoretically modeled crack interaction with spherical and cylindrical capsules. We compared the results of our theoretical model with Monte-Carlo simulations of crack interaction with capsules. The formulae presented in this paper will provide guidelines for engineers working with self-healing structures in material selection and sustenance.
Kosmidis, Kosmas; Argyrakis, Panos; Macheras, Panos
2003-07-01
To verify the Higuchi law and study the drug release from cylindrical and spherical matrices by means of Monte Carlo computer simulation. A one-dimensional matrix, based on the theoretical assumptions of the derivation of the Higuchi law, was simulated and its time evolution was monitored. Cylindrical and spherical three-dimensional lattices were simulated with sites at the boundary of the lattice having been denoted as leak sites. Particles were allowed to move inside it using the random walk model. Excluded volume interactions between the particles was assumed. We have monitored the system time evolution for different lattice sizes and different initial particle concentrations. The Higuchi law was verified using the Monte Carlo technique in a one-dimensional lattice. It was found that Fickian drug release from cylindrical matrices can be approximated nicely with the Weibull function. A simple linear relation between the Weibull function parameters and the specific surface of the system was found. Drug release from a matrix, as a result of a diffusion process assuming excluded volume interactions between the drug molecules, can be described using a Weibull function. This model, although approximate and semiempirical, has the benefit of providing a simple physical connection between the model parameters and the system geometry, which was something missing from other semiempirical models.
A Higher Harmonic Optimal Controller to Optimise Rotorcraft Aeromechanical Behaviour
NASA Technical Reports Server (NTRS)
Leyland, Jane Anne
1996-01-01
Three methods to optimize rotorcraft aeromechanical behavior for those cases where the rotorcraft plant can be adequately represented by a linear model system matrix were identified and implemented in a stand-alone code. These methods determine the optimal control vector which minimizes the vibration metric subject to constraints at discrete time points, and differ from the commonly used non-optimal constraint penalty methods such as those employed by conventional controllers in that the constraints are handled as actual constraints to an optimization problem rather than as just additional terms in the performance index. The first method is to use a Non-linear Programming algorithm to solve the problem directly. The second method is to solve the full set of non-linear equations which define the necessary conditions for optimality. The third method is to solve each of the possible reduced sets of equations defining the necessary conditions for optimality when the constraints are pre-selected to be either active or inactive, and then to simply select the best solution. The effects of maneuvers and aeroelasticity on the systems matrix are modelled by using a pseudo-random pseudo-row-dependency scheme to define the systems matrix. Cases run to date indicate that the first method of solution is reliable, robust, and easiest to use, and that it was superior to the conventional controllers which were considered.
NASA Astrophysics Data System (ADS)
Pickering, William; Lim, Chjan
2017-07-01
We investigate a family of urn models that correspond to one-dimensional random walks with quadratic transition probabilities that have highly diverse applications. Well-known instances of these two-urn models are the Ehrenfest model of molecular diffusion, the voter model of social influence, and the Moran model of population genetics. We also provide a generating function method for diagonalizing the corresponding transition matrix that is valid if and only if the underlying mean density satisfies a linear differential equation and express the eigenvector components as terms of ordinary hypergeometric functions. The nature of the models lead to a natural extension to interaction between agents in a general network topology. We analyze the dynamics on uncorrelated heterogeneous degree sequence networks and relate the convergence times to the moments of the degree sequences for various pairwise interaction mechanisms.
Optimized Projection Matrix for Compressive Sensing
NASA Astrophysics Data System (ADS)
Xu, Jianping; Pi, Yiming; Cao, Zongjie
2010-12-01
Compressive sensing (CS) is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF) design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.
On the Wigner law in dilute random matrices
NASA Astrophysics Data System (ADS)
Khorunzhy, A.; Rodgers, G. J.
1998-12-01
We consider ensembles of N × N symmetric matrices whose entries are weakly dependent random variables. We show that random dilution can change the limiting eigenvalue distribution of such matrices. We prove that under general and natural conditions the normalised eigenvalue counting function coincides with the semicircle (Wigner) distribution in the limit N → ∞. This can be explained by the observation that dilution (or more generally, random modulation) eliminates the weak dependence (or correlations) between random matrix entries. It also supports our earlier conjecture that the Wigner distribution is stable to random dilution and modulation.
The Matrix Analogies Test: A Validity Study with the K-ABC.
ERIC Educational Resources Information Center
Smith, Douglas K.
The Matrix Analogies Test-Expanded Form (MAT-EF) and Kaufman Assessment Battery for Children (K-ABC) were administered in counterbalanced order to two randomly selected samples of students in grades 2 through 5. The MAT-EF was recently developed to measure non-verbal reasoning. The samples included 26 non-handicapped second graders in a rural…
Nonlinear Rheology in a Model Biological Tissue
NASA Astrophysics Data System (ADS)
Matoz-Fernandez, D. A.; Agoritsas, Elisabeth; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten
2017-04-01
The rheological response of dense active matter is a topic of fundamental importance for many processes in nature such as the mechanics of biological tissues. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with an increasing shear rate. To rationalize this nonlinear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are, respectively, generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.
CMV matrices in random matrix theory and integrable systems: a survey
NASA Astrophysics Data System (ADS)
Nenciu, Irina
2006-07-01
We present a survey of recent results concerning a remarkable class of unitary matrices, the CMV matrices. We are particularly interested in the role they play in the theory of random matrices and integrable systems. Throughout the paper we also emphasize the analogies and connections to Jacobi matrices.
Lee, Jeffrey S; Cleaver, Gerald B
2017-10-01
In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.
A Complex Network Approach to Distributional Semantic Models
Utsumi, Akira
2015-01-01
A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models. PMID:26295940
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrester, Peter J., E-mail: p.forrester@ms.unimelb.edu.au; Thompson, Colin J.
The Golden-Thompson inequality, Tr (e{sup A+B}) ⩽ Tr (e{sup A}e{sup B}) for A, B Hermitian matrices, appeared in independent works by Golden and Thompson published in 1965. Both of these were motivated by considerations in statistical mechanics. In recent years the Golden-Thompson inequality has found applications to random matrix theory. In this article, we detail some historical aspects relating to Thompson's work, giving in particular a hitherto unpublished proof due to Dyson, and correspondence with Pólya. We show too how the 2 × 2 case relates to hyperbolic geometry, and how the original inequality holds true with the trace operation replaced bymore » any unitarily invariant norm. In relation to the random matrix applications, we review its use in the derivation of concentration type lemmas for sums of random matrices due to Ahlswede-Winter, and Oliveira, generalizing various classical results.« less
The difference between two random mixed quantum states: exact and asymptotic spectral analysis
NASA Astrophysics Data System (ADS)
Mejía, José; Zapata, Camilo; Botero, Alonso
2017-01-01
We investigate the spectral statistics of the difference of two density matrices, each of which is independently obtained by partially tracing a random bipartite pure quantum state. We first show how a closed-form expression for the exact joint eigenvalue probability density function for arbitrary dimensions can be obtained from the joint probability density function of the diagonal elements of the difference matrix, which is straightforward to compute. Subsequently, we use standard results from free probability theory to derive a relatively simple analytic expression for the asymptotic eigenvalue density (AED) of the difference matrix ensemble, and using Carlson’s theorem, we obtain an expression for its absolute moments. These results allow us to quantify the typical asymptotic distance between the two random mixed states using various distance measures; in particular, we obtain the almost sure asymptotic behavior of the operator norm distance and the trace distance.
Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smallwood, David O.
2007-01-01
A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less
Probabilistic Modeling of Settlement Risk at Land Disposal Facilities - 12304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foye, Kevin C.; Soong, Te-Yang
2012-07-01
The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass (caused by inconsistent compaction, void space distribution, debris-soil mix ratio, waste material stiffness, time-dependent primary compression of the fine-grained soil matrix, long-term creep settlement of the soil matrix and the debris, etc.) at most land disposal facilities. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the wastemore » mass and sub-grade properties which control differential settlement. An alternative, probabilistic solution is to use random fields to model the waste and sub-grade properties. The modeling effort informs the design, construction, operation, and maintenance of land disposal facilities. A probabilistic method to establish design criteria for waste placement and compaction is introduced using the model. Random fields are ideally suited to problems of differential settlement modeling of highly heterogeneous foundations, such as waste. Random fields model the seemingly random spatial distribution of a design parameter, such as compressibility. When used for design, the use of these models prompts the need for probabilistic design criteria. It also allows for a statistical approach to waste placement acceptance criteria. An example design evaluation was performed, illustrating the use of the probabilistic differential settlement simulation methodology to assemble a design guidance chart. The purpose of this design evaluation is to enable the designer to select optimal initial combinations of design slopes and quality control acceptance criteria that yield an acceptable proportion of post-settlement slopes meeting some design minimum. For this specific example, relative density, which can be determined through field measurements, was selected as the field quality control parameter for waste placement. This technique can be extended to include a rigorous performance-based methodology using other parameters (void space criteria, debris-soil mix ratio, pre-loading, etc.). As shown in this example, each parameter range, or sets of parameter ranges can be selected such that they can result in an acceptable, long-term differential settlement according to the probabilistic model. The methodology can also be used to re-evaluate the long-term differential settlement behavior at closed land disposal facilities to identify, if any, problematic facilities so that remedial action (e.g., reinforcement of upper and intermediate waste layers) can be implemented. Considering the inherent spatial variability in waste and earth materials and the need for engineers to apply sound quantitative practices to engineering analysis, it is important to apply the available probabilistic techniques to problems of differential settlement. One such method to implement probability-based differential settlement analyses for the design of landfill final covers has been presented. The design evaluation technique presented is one tool to bridge the gap from deterministic practice to probabilistic practice. (authors)« less
Genetic parameters of legendre polynomials for first parity lactation curves.
Pool, M H; Janss, L L; Meuwissen, T H
2000-11-01
Variance components of the covariance function coefficients in a random regression test-day model were estimated by Legendre polynomials up to a fifth order for first-parity records of Dutch dairy cows using Gibbs sampling. Two Legendre polynomials of equal order were used to model the random part of the lactation curve, one for the genetic component and one for permanent environment. Test-day records from cows registered between 1990 to 1996 and collected by regular milk recording were available. For the data set, 23,700 complete lactations were selected from 475 herds sired by 262 sires. Because the application of a random regression model is limited by computing capacity, we investigated the minimum order needed to fit the variance structure in the data sufficiently. Predictions of genetic and permanent environmental variance structures were compared with bivariate estimates on 30-d intervals. A third-order or higher polynomial modeled the shape of variance curves over DIM with sufficient accuracy for the genetic and permanent environment part. Also, the genetic correlation structure was fitted with sufficient accuracy by a third-order polynomial, but, for the permanent environmental component, a fourth order was needed. Because equal orders are suggested in the literature, a fourth-order Legendre polynomial is recommended in this study. However, a rank of three for the genetic covariance matrix and of four for permanent environment allows a simpler covariance function with a reduced number of parameters based on the eigenvalues and eigenvectors.
Large-scale inverse model analyses employing fast randomized data reduction
NASA Astrophysics Data System (ADS)
Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan
2017-08-01
When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.
Liao, Jun; Zhang, Le; Ke, Mei-gui; Xu, Teng
2013-12-01
To observe the effect of electroacupuncture (EA) at "Dazhui" (GV 14) on the contents of extracellular matrix (ECM), collagen type II (COL-II), collagen type V (COL-V), matrix metalloproteinase (MMP)-13, tissue inhibitor of metalloproteinase (TIMP)-1 in rats with cervicovertebral disc degeneration so as to explore its mechanism underlying relief of intervertebral disc degeneration. A total of 28 SD rats were randomly divided into sham group (n = 7), model group (n = 7), EA group (n = 7) and medication group (n = 7). The model of cervical intervertebral disc degeneration was established by trans-section of the deep neck splenius, the longest muscles of head, neck costocervicalis, head semi-spinatus muscle, supraspinous ligament and interspinal ligaments of cervical 2-7 segments, etc. to produce imbalance between the dynamic and static force. EA was applied to "Dazhui" (GV 14) for 30 min, once daily for 28 days, with a 2 days' interval between two courses. Animals of the medication group were treated by oral administration of meloxicam tablets (0.75 mg/kg) once daily for 28 days, with a 2 days' interval between two courses. Immunohistochemistry was used to measure the expression of ECM, COL- II, COL-V, MMP-13 and TIMP-1 in the cervicovertebral disc tissue. Compared with the sham group, the expression levels of ECM and COL-II proteins in the cervicovertebral disc tissue were significantly decreased in the model group (P < 0.01), while COL-V and MMP-13 expression levels in the model group were significantly increased (P < 0.01, P < 0.05). Compared with the model group, both ECM and COL-Il expression levels were considerably increased in the EA group and medication group (P < 0.01), while COL-V and MMP-13 expression levels were considerably down-regulated (P < 0.01, P < 0.05). No significant differences were found among the four groups in TIMP-1 expression levels (P > 0.05). EA of "Dazhui" (GV 14) can effectively regulate extracellular matrix system in rats with cervical intervertebral disc degeneration, which is possibly related to its effect in relieving cervical spondylosis.
Li, Jia; Wu, Pinghui; Chang, Liping
2015-08-24
Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.
Effect of Computer-Presented Organizational/Memory Aids on Problem Solving Behavior.
ERIC Educational Resources Information Center
Steinberg, Esther R.; And Others
This research studied the effects of computer-presented organizational/memory aids on problem solving behavior. The aids were either matrix or verbal charts shown on the display screen next to the problem. The 104 college student subjects were randomly assigned to one of the four conditions: type of chart (matrix or verbal chart) and use of charts…
Beller Lectureship Talk: Active response of biological cells to mechanical stress
NASA Astrophysics Data System (ADS)
Safran, Samuel
2009-03-01
Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. We present a simple and generic theoretical model for the active response of biological cells to mechanical stress. The theory includes cell activity and mechanical forces as well as random forces as factors that determine the polarizability that relates cell orientation to stress. This allows us to explain the puzzling observation of parallel (or sometimes random) alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency and compare the theory with recent experiments. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material distinguishes cells whose activity is controlled by stress from those controlled by strain. We have extended the theory to generalize the treatment of elastic inclusions in solids to ''living'' inclusions (cells) whose active polarizability, analogous to the polarizability of non-living matter, results in the feedback of cellular forces that develop in response to matrix stresses. We use this to explain recent observations of the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. These findings provide a mechanical correlate for the existence of an optimal substrate elasticity for cell differentiation and function. [3pt] *In collaboration with R. De (Brown University), Y. Biton (Weizmann Institute), and A. Zemel (Hebrew University) and the experimental groups: Max Planck Institute, Stuttgart: S. Jungbauer, R. Kemkemer, J. Spatz; University of Pennsylvania: A. Brown, D. Discher, F. Rehfeldt.
Chaotic itinerancy and power-law residence time distribution in stochastic dynamical systems.
Namikawa, Jun
2005-08-01
Chaotic itinerant motion among varieties of ordered states is described by a stochastic model based on the mechanism of chaotic itinerancy. The model consists of a random walk on a half-line and a Markov chain with a transition probability matrix. The stability of attractor ruin in the model is investigated by analyzing the residence time distribution of orbits at attractor ruins. It is shown that the residence time distribution averaged over all attractor ruins can be described by the superposition of (truncated) power-law distributions if the basin of attraction for each attractor ruin has a zero measure. This result is confirmed by simulation of models exhibiting chaotic itinerancy. Chaotic itinerancy is also shown to be absent in coupled Milnor attractor systems if the transition probability among attractor ruins can be represented as a Markov chain.
Modelling the atomic structure of Al92U8 metallic glass.
Michalik, S; Bednarcik, J; Jóvári, P; Honkimäki, V; Webb, A; Franz, H; Fazakas, E; Varga, L K
2010-10-13
The local atomic structure of the glassy Al(92)U(8) alloy was modelled by the reverse Monte Carlo (RMC) method, fitting x-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) signals. The final structural model was analysed by means of partial pair correlation functions, coordination number distributions and Voronoi tessellation. In our study we found that the most probable atomic separations between Al-Al and U-Al pairs in the glassy Al(92)U(8) alloy are 2.7 Å and 3.1 Å with coordination numbers 11.7 and 17.1, respectively. The Voronoi analysis did not support evidence of the existence of well-defined building blocks directly embedded in the amorphous matrix. The dense-random-packing model seems to be adequate for describing the connection between solvent and solute atoms.
On an Additive Semigraphoid Model for Statistical Networks With Application to Pathway Analysis.
Li, Bing; Chun, Hyonho; Zhao, Hongyu
2014-09-01
We introduce a nonparametric method for estimating non-gaussian graphical models based on a new statistical relation called additive conditional independence, which is a three-way relation among random vectors that resembles the logical structure of conditional independence. Additive conditional independence allows us to use one-dimensional kernel regardless of the dimension of the graph, which not only avoids the curse of dimensionality but also simplifies computation. It also gives rise to a parallel structure to the gaussian graphical model that replaces the precision matrix by an additive precision operator. The estimators derived from additive conditional independence cover the recently introduced nonparanormal graphical model as a special case, but outperform it when the gaussian copula assumption is violated. We compare the new method with existing ones by simulations and in genetic pathway analysis.
Bidault, Xavier; Chaussedent, Stéphane; Blanc, Wilfried
2015-10-21
A simple transferable adaptive model is developed and it allows for the first time to simulate by molecular dynamics the separation of large phases in the MgO-SiO2 binary system, as experimentally observed and as predicted by the phase diagram, meaning that separated phases have various compositions. This is a real improvement over fixed-charge models, which are often limited to an interpretation involving the formation of pure clusters, or involving the modified random network model. Our adaptive model, efficient to reproduce known crystalline and glassy structures, allows us to track the formation of large amorphous Mg-rich Si-poor nanoparticles in an Mg-poor Si-rich matrix from a 0.1MgO-0.9SiO2 melt.
NASA Astrophysics Data System (ADS)
Validi, AbdoulAhad
2014-03-01
This study introduces a non-intrusive approach in the context of low-rank separated representation to construct a surrogate of high-dimensional stochastic functions, e.g., PDEs/ODEs, in order to decrease the computational cost of Markov Chain Monte Carlo simulations in Bayesian inference. The surrogate model is constructed via a regularized alternative least-square regression with Tikhonov regularization using a roughening matrix computing the gradient of the solution, in conjunction with a perturbation-based error indicator to detect optimal model complexities. The model approximates a vector of a continuous solution at discrete values of a physical variable. The required number of random realizations to achieve a successful approximation linearly depends on the function dimensionality. The computational cost of the model construction is quadratic in the number of random inputs, which potentially tackles the curse of dimensionality in high-dimensional stochastic functions. Furthermore, this vector-valued separated representation-based model, in comparison to the available scalar-valued case, leads to a significant reduction in the cost of approximation by an order of magnitude equal to the vector size. The performance of the method is studied through its application to three numerical examples including a 41-dimensional elliptic PDE and a 21-dimensional cavity flow.
Liang, Zhibing; Liu, Fuxian; Gao, Jiale
2018-01-01
For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms.
Liu, Fuxian; Gao, Jiale
2018-01-01
For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms. PMID:29444144
Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan
2014-10-01
It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.
Vermeulen, Pieter; Dickens, Stijn; Degezelle, Karlien; Van den Berge, Stefaan; Hendrickx, Benoit; Vranckx, Jan Jeroen
2009-07-01
In search of an autologous vascularized skin substitute, we treated full-thickness wounds (FTWs) with autologous platelet-rich plasma gel (APG) in which we embedded endothelial progenitor cells (EPCs) and basal cell keratinocytes (KCs). We cultivated autologous KCs in low-serum conditions and expanded autologous EPCs from venous blood. FTWs (n = 55) were created on the backs of four pigs, covered with wound chambers, and randomly assigned to the following treatments: (1) APG, (2) APG + KCs, (3) APG + EPCs, (4) APG + KCs + EPCs, and (5) saline. All wounds were biopsied to measure neovascularization (lectin Bandeiraea Simplicifolia-1 (BS-1), alpha smooth muscle actin [alphaSMA], and membrane type 1 matrix metalloproteinase (MT1-MMP)), matrix deposition (fibronectin, collagen type I/III, and alphavbeta3), and reepithelialization. Wound fluids were analyzed for protein expression. All APG-treated wounds showed more vascular structures (p < 0.001), and the addition of EPCs further improved neovascularization, as confirmed by higher lectin, alphaSMA, and MT1-MMP. APG groups had higher collagen I/III (p < 0.05), alphavbeta3, and fibronectin content (p < 0.001), and they exhibited higher concentrations of platelet-derived growth factor subunit bb, basic fibroblast growth factor, hepatocyte growth factor, insulin growth factor-1, transforming growth factor-beta1 and -beta3, matrix metalloproteinase-1 and -z9, and tissue-inhibiting matrix metalloproteinase-1 and -2. Applying APG + KCs resulted in the highest reepithelialization rates (p < 0.001). No differences were found for wound contraction by planimetry. In this porcine FTW model, APG acts as a supportive biomatrix that, along with the embedded cells, improves extracellular matrix organization, promotes angiogenesis, and accelerates reepithelialization.
Diestelkamp, Wiebke S; Krane, Carissa M; Pinnell, Margaret F
2011-05-20
Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the artery during transection (three types); and artery type (two types) resulting in a total of twelve possible treatment combinations. Burst pressures of porcine carotid and renal arteries sealed ex vivo were assigned as the response variable. The experimental test matrix was designed and carried out as a split-plot experiment in order to assess the contributions of several variables and their interactions while accounting for randomization restrictions present in the experimental setup. The statistical software package SAS was utilized and PROC MIXED was used to account for the randomization restrictions in the split-plot design. The combination of temperature, solution, and vessel type had a statistically significant impact on seal quality. The design and implementation of a split-plot experimental test-matrix provided a mechanism for addressing the existing technical randomization restrictions of ex vivo ultrasonic scalpel performance testing, while preserving the ability to examine the potential effects of independent factors or variables. This method for generating the experimental design and the statistical analyses of the resulting data are adaptable to a wide variety of experimental problems involving large-scale tissue-based studies of medical or experimental device efficacy and performance.
Comprehensive T-Matrix Reference Database: A 2007-2009 Update
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Zakharova, Nadia T.; Videen, Gorden; Khlebtsov, Nikolai G.; Wriedt, Thomas
2010-01-01
The T-matrix method is among the most versatile, efficient, and widely used theoretical techniques for the numerically exact computation of electromagnetic scattering by homogeneous and composite particles, clusters of particles, discrete random media, and particles in the vicinity of an interface separating two half-spaces with different refractive indices. This paper presents an update to the comprehensive database of T-matrix publications compiled by us previously and includes the publications that appeared since 2007. It also lists several earlier publications not included in the original database.
Least-squares analysis of the Mueller matrix.
Reimer, Michael; Yevick, David
2006-08-15
In a single-mode fiber excited by light with a fixed polarization state, the output polarizations obtained at two different optical frequencies are related by a Mueller matrix. We examine least-squares procedures for estimating this matrix from repeated measurements of the output Stokes vector for a random set of input polarization states. We then apply these methods to the determination of polarization mode dispersion and polarization-dependent loss in an optical fiber. We find that a relatively simple formalism leads to results that are comparable with those of far more involved techniques.
Xu, Zhi-ling; Wang, Qiang; Liu, Tian-lin; Guo, Li-ying; Jing, Feng-qiu; Liu, Hui
2006-04-01
To investigate the changes of bone sialoprotein (BSP) in developing dental tissues of rats exposed to fluoride. Twenty rats were randomly divided into two groups, one was with distilled water (control group), the other was with distilled water treated by fluoride (experimental group). When the fluorosis model was established, the changes of the expression of BSP were investigated and compared between the two groups. HE staining was used to observe the morphology of the cell, and immunohistochemisty assay was used to determine the expression of BSP in rat incisor. Student's t test was used for statistical analysis. The ameloblasts had normal morphology and arranged orderly. Immunoreactivitis of BSP was present in matured ameloblasts, dentinoblasts, cementoblasts, and the matrix in the control group. But in the experimental group the ameloblasts arranged in multiple layers, the enamel matrix was confused and the expression of BSP was significantly lower than that of the control group. Statistical analysis showed significant differences between the two groups (P<0.01). Fluoride can inhibit the expression of BSP in developing dental tissues of rats, and then inhibit differentiation of the tooth epithelial cells and secretion of matrix. This is a probable intracellular mechanism of dental fluorosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark
Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this paper, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary themore » connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. Finally, the results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer’s local volume.« less
Structure of a financial cross-correlation matrix under attack
NASA Astrophysics Data System (ADS)
Lim, Gyuchang; Kim, SooYong; Kim, Junghwan; Kim, Pyungsoo; Kang, Yoonjong; Park, Sanghoon; Park, Inho; Park, Sang-Bum; Kim, Kyungsik
2009-09-01
We investigate the structure of a perturbed stock market in terms of correlation matrices. For the purpose of perturbing a stock market, two distinct methods are used, namely local and global perturbation. The former involves replacing a correlation coefficient of the cross-correlation matrix with one calculated from two Gaussian-distributed time series while the latter reconstructs the cross-correlation matrix just after replacing the original return series with Gaussian-distributed time series. Concerning the local case, it is a technical study only and there is no attempt to model reality. The term ‘global’ means the overall effect of the replacement on other untouched returns. Through statistical analyses such as random matrix theory (RMT), network theory, and the correlation coefficient distributions, we show that the global structure of a stock market is vulnerable to perturbation. However, apart from in the analysis of inverse participation ratios (IPRs), the vulnerability becomes dull under a small-scale perturbation. This means that these analysis tools are inappropriate for monitoring the whole stock market due to the low sensitivity of a stock market to a small-scale perturbation. In contrast, when going down to the structure of business sectors, we confirm that correlation-based business sectors are regrouped in terms of IPRs. This result gives a clue about monitoring the effect of hidden intentions, which are revealed via portfolios taken mostly by large investors.
Ziyatdinov, Andrey; Vázquez-Santiago, Miquel; Brunel, Helena; Martinez-Perez, Angel; Aschard, Hugues; Soria, Jose Manuel
2018-02-27
Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide association study (GWAS) software. To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project. Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and efficient computation for sparse covariances. lme4qtl is available at https://github.com/variani/lme4qtl .
Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices
Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen
2013-01-01
In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588
Sequential time interleaved random equivalent sampling for repetitive signal.
Zhao, Yijiu; Liu, Jingjing
2016-12-01
Compressed sensing (CS) based sampling techniques exhibit many advantages over other existing approaches for sparse signal spectrum sensing; they are also incorporated into non-uniform sampling signal reconstruction to improve the efficiency, such as random equivalent sampling (RES). However, in CS based RES, only one sample of each acquisition is considered in the signal reconstruction stage, and it will result in more acquisition runs and longer sampling time. In this paper, a sampling sequence is taken in each RES acquisition run, and the corresponding block measurement matrix is constructed using a Whittaker-Shannon interpolation formula. All the block matrices are combined into an equivalent measurement matrix with respect to all sampling sequences. We implemented the proposed approach with a multi-cores analog-to-digital converter (ADC), whose ADC cores are time interleaved. A prototype realization of this proposed CS based sequential random equivalent sampling method has been developed. It is able to capture an analog waveform at an equivalent sampling rate of 40 GHz while sampled at 1 GHz physically. Experiments indicate that, for a sparse signal, the proposed CS based sequential random equivalent sampling exhibits high efficiency.
Fatigue loading history reconstruction based on the rain-flow technique
NASA Technical Reports Server (NTRS)
Khosrovaneh, A. K.; Dowling, N. E.
1989-01-01
Methods are considered for reducing a non-random fatigue loading history to a concise description and then for reconstructing a time history similar to the original. In particular, three methods of reconstruction based on a rain-flow cycle counting matrix are presented. A rain-flow matrix consists of the numbers of cycles at various peak and valley combinations. Two methods are based on a two dimensional rain-flow matrix, and the third on a three dimensional rain-flow matrix. Histories reconstructed by any of these methods produce a rain-flow matrix identical to that of the original history, and as a result the resulting time history is expected to produce a fatigue life similar to that for the original. The procedures described allow lengthy loading histories to be stored in compact form.
Information matrix estimation procedures for cognitive diagnostic models.
Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei
2018-03-06
Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.
Bilici, Suat; Yiğit, Özgür; Dönmez, Zehra; Huq, Gülben Erdem; Aktaş, Şamil
2015-04-01
The aim of the study is to investigate the histopathologic and cartilage mass changes in hyperbaric oxygen (HBO)-treated auricular cartilage grafts either crushed or fascia wrapped in a rabbit model. This is a prospective, controlled experimental study. Sixteen rabbits were randomly allocated into control (n = 8) and treatment groups (n = 8). Each group was further grouped as crushed cartilage (n = 4) and fascia wrapped crushed cartilage (n = 4). The eight rabbits in the treatment group had HBO once daily for 10 days as total of 10 sessions. The mass of cartilage, cartilage edge layout, structural layout, staining disorders of the chondroid matrix, necrosis, calcification besides bone metaplasia, chronic inflammation in the surrounding tissues, fibrosis, and increased vascularity were evaluated in the hematoxylin and eosin (H&E)-stained sections. Fibrosis in the surrounding tissue and cartilage matrix was evaluated with Masson's trichrome stain. The toluidine blue staining was used to evaluate loss of metachromasia in matrix. The prevalence of glial fibrillary acidic protein (GFAP) staining in chondrocytes was also evaluated. Although the remaining amount of cartilage mass after implantation does not show a significant difference between the control and the study group (p = 0.322, p <0.05).The difference between control and study group in terms of positive staining with GFAP was statistically significant (p = 0.01, p <0.05). Necrosis and loss of matrix metachromasia were significantly low in the study group compared with control group (p = 0.001, p = 0.006, p <0.05). HBO therapy did not have significant effect on the mass of rabbit auricular cartilage graft. HBO therapy significantly reduced loss of metachromasia, necrosis, and GFAP staining in the auricular cartilage grafts of the animal model. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Random matrix approach to group correlations in development country financial market
NASA Astrophysics Data System (ADS)
Qohar, Ulin Nuha Abdul; Lim, Kyuseong; Kim, Soo Yong; Liong, The Houw; Purqon, Acep
2015-12-01
Financial market is a borderless economic activity, everyone in this world has the right to participate in stock transactions. The movement of stocks is interesting to be discussed in various sciences, ranging from economists to mathe-maticians try to explain and predict the stock movement. Econophysics, as a discipline that studies the economic behavior using one of the methods in particle physics to explain stock movement. Stocks tend to be unpredictable probabilistic regarded as a probabilistic particle. Random Matrix Theory is one method used to analyze probabilistic particle is used to analyze the characteristics of the movement in the stock collection of developing country stock market shares of the correlation matrix. To obtain the characteristics of the developing country stock market and use characteristics of stock markets of developed countries as a parameter for comparison. The result shows market wide effect is not happened in Philipine market and weak in Indonesia market. Contrary, developed country (US) has strong market wide effect.
Direct Demonstration of the Concept of Unrestricted Effective-Medium Approximation
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Zhanna M.; Zakharova, Nadezhda T.
2014-01-01
The modified unrestricted effective-medium refractive index is defined as one that yields accurate values of a representative set of far-field scattering characteristics (including the scattering matrix) for an object made of randomly heterogeneous materials. We validate the concept of the modified unrestricted effective-medium refractive index by comparing numerically exact superposition T-matrix results for a spherical host randomly filled with a large number of identical small inclusions and Lorenz-Mie results for a homogeneous spherical counterpart. A remarkable quantitative agreement between the superposition T-matrix and Lorenz-Mie scattering matrices over the entire range of scattering angles demonstrates unequivocally that the modified unrestricted effective-medium refractive index is a sound (albeit still phenomenological) concept provided that the size parameter of the inclusions is sufficiently small and their number is sufficiently large. Furthermore, it appears that in cases when the concept of the modified unrestricted effective-medium refractive index works, its actual value is close to that predicted by the Maxwell-Garnett mixing rule.
Coherent Patterns in Nuclei and in Financial Markets
NASA Astrophysics Data System (ADS)
DroŻdŻ, S.; Kwapień, J.; Speth, J.
2010-07-01
In the area of traditional physics the atomic nucleus belongs to the most complex systems. It involves essentially all elements that characterize complexity including the most distinctive one whose essence is a permanent coexistence of coherent patterns and of randomness. From a more interdisciplinary perspective, these are the financial markets that represent an extreme complexity. Here, based on the matrix formalism, we set some parallels between several characteristics of complexity in the above two systems. We, in particular, refer to the concept—historically originating from nuclear physics considerations—of the random matrix theory and demonstrate its utility in quantifying characteristics of the coexistence of chaos and collectivity also for the financial markets. In this later case we show examples that illustrate mapping of the matrix formulation into the concepts originating from the graph theory. Finally, attention is drawn to some novel aspects of the financial coherence which opens room for speculation if analogous effects can be detected in the atomic nuclei or in other strongly interacting Fermi systems.
MIXOR: a computer program for mixed-effects ordinal regression analysis.
Hedeker, D; Gibbons, R D
1996-03-01
MIXOR provides maximum marginal likelihood estimates for mixed-effects ordinal probit, logistic, and complementary log-log regression models. These models can be used for analysis of dichotomous and ordinal outcomes from either a clustered or longitudinal design. For clustered data, the mixed-effects model assumes that data within clusters are dependent. The degree of dependency is jointly estimated with the usual model parameters, thus adjusting for dependence resulting from clustering of the data. Similarly, for longitudinal data, the mixed-effects approach can allow for individual-varying intercepts and slopes across time, and can estimate the degree to which these time-related effects vary in the population of individuals. MIXOR uses marginal maximum likelihood estimation, utilizing a Fisher-scoring solution. For the scoring solution, the Cholesky factor of the random-effects variance-covariance matrix is estimated, along with the effects of model covariates. Examples illustrating usage and features of MIXOR are provided.
Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao
2017-04-01
Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.
Tomasik, Andrzej; Jacheć, Wojciech; Wojciechowska, Celina; Kawecki, Damian; Białkowska, Beata; Romuk, Ewa; Gabrysiak, Artur; Birkner, Ewa; Kalarus, Zbigniew; Nowalany-Kozielska, Ewa
2015-05-01
Dual chamber pacing is known to have detrimental effect on cardiac performance and heart failure occurring eventually is associated with increased mortality. Experimental studies of pacing in dogs have shown contractile dyssynchrony leading to diffuse alterations in extracellular matrix. In parallel, studies on experimental ischemia/reperfusion injury have shown efficacy of valsartan to inhibit activity of matrix metalloproteinase-9, to increase the activity of tissue inhibitor of matrix metalloproteinase-3 and preserve global contractility and left ventricle ejection fraction. To present rationale and design of randomized blinded trial aimed to assess whether 12 month long administration of valsartan will prevent left ventricle remodeling in patients with preserved left ventricle ejection fraction (LVEF ≥ 40%) and first implantation of dual chamber pacemaker. A total of 100 eligible patients will be randomized into three parallel arms: placebo, valsartan 80 mg/daily and valsartan 160 mg/daily added to previously used drugs. The primary endpoint will be assessment of valsartan efficacy to prevent left ventricle remodeling during 12 month follow-up. We assess patients' functional capacity, blood plasma activity of matrix metalloproteinases and their tissue inhibitors, NT-proBNP, tumor necrosis factor alpha, and Troponin T. Left ventricle function and remodeling is assessed echocardiographically: M-mode, B-mode, tissue Doppler imaging. If valsartan proves effective, it will be an attractive measure to improve long term prognosis in aging population and increasing number of pacemaker recipients. ClinicalTrials.org (NCT01805804). Copyright © 2015 Elsevier Inc. All rights reserved.
Sangiorgio, João Paulo Menck; Neves, Felipe Lucas da Silva; Rocha Dos Santos, Manuela; França-Grohmann, Isabela Lima; Casarin, Renato Corrêa Viana; Casati, Márcio Zaffalon; Santamaria, Mauro Pedrine; Sallum, Enilson Antonio
2017-12-01
Considering xenogeneic collagen matrix (CM) and enamel matrix derivative (EMD) characteristics, it is suggested that their combination could promote superior clinical outcomes in root coverage procedures. Thus, the aim of this parallel, double-masked, dual-center, randomized clinical trial is to evaluate clinical outcomes after treatment of localized gingival recession (GR) by a coronally advanced flap (CAF) combined with CM and/or EMD. Sixty-eight patients presenting one Miller Class I or II GRs were randomly assigned to receive either CAF (n = 17); CAF + CM (n = 17); CAF + EMD (n = 17), or CAF + CM + EMD (n = 17). Recession height, probing depth, clinical attachment level, and keratinized tissue width and thickness were measured at baseline and 90 days and 6 months after surgery. The obtained root coverage was 68.04% ± 24.11% for CAF; 87.20% ± 15.01% for CAF + CM; 88.77% ± 20.66% for CAF + EMD; and 91.59% ± 11.08% for CAF + CM + EMD after 6 months. Groups that received biomaterials showed greater values (P <0.05). Complete root coverage (CRC) for CAF + EMD was 70.59%, significantly superior to CAF alone (23.53%); CAF + CM (52.94%), and CAF + CM + EMD (51.47%) (P <0.05). Keratinized tissue thickness gain was significant only in CM-treated groups (P <0.05). The three approaches are superior to CAF alone for root coverage. EMD provides highest levels of CRC; however, the addition of CM increases gingival thickness. The combination approach does not seem justified.
NASA Astrophysics Data System (ADS)
Ma, Ning; Zhao, Juan; Hanson, Steen G.; Takeda, Mitsuo; Wang, Wei
2016-10-01
Laser speckle has received extensive studies of its basic properties and associated applications. In the majority of research on speckle phenomena, the random optical field has been treated as a scalar optical field, and the main interest has been concentrated on their statistical properties and applications of its intensity distribution. Recently, statistical properties of random electric vector fields referred to as Polarization Speckle have come to attract new interest because of their importance in a variety of areas with practical applications such as biomedical optics and optical metrology. Statistical phenomena of random electric vector fields have close relevance to the theories of speckles, polarization and coherence theory. In this paper, we investigate the correlation tensor for stochastic electromagnetic fields modulated by a depolarizer consisting of a rough-surfaced retardation plate. Under the assumption that the microstructure of the scattering surface on the depolarizer is as fine as to be unresolvable in our observation region, we have derived a relationship between the polarization matrix/coherency matrix for the modulated electric fields behind the rough-surfaced retardation plate and the coherence matrix under the free space geometry. This relation is regarded as entirely analogous to the van Cittert-Zernike theorem of classical coherence theory. Within the paraxial approximation as represented by the ABCD-matrix formalism, the three-dimensional structure of the generated polarization speckle is investigated based on the correlation tensor, indicating a typical carrot structure with a much longer axial dimension than the extent in its transverse dimension.
Robinson, Sean; Guyon, Laurent; Nevalainen, Jaakko; Toriseva, Mervi
2015-01-01
Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy. PMID:26630674
Robinson, Sean; Guyon, Laurent; Nevalainen, Jaakko; Toriseva, Mervi; Åkerfelt, Malin; Nees, Matthias
2015-01-01
Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy.
Covariance Matrix Estimation for Massive MIMO
NASA Astrophysics Data System (ADS)
Upadhya, Karthik; Vorobyov, Sergiy A.
2018-04-01
We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The covariance matrix of a particular user is obtained by computing the sample cross-correlation of the channel estimates obtained from the two pilot sequences. This approach relaxes the requirement that all the users transmit their uplink pilots over the same set of symbols. We derive expressions for the achievable rate and the mean-squared error of the covariance matrix estimate when the proposed method is used with staggered pilots. The performance of the proposed method is compared with existing methods through simulations.
Strategies for vectorizing the sparse matrix vector product on the CRAY XMP, CRAY 2, and CYBER 205
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry
1987-01-01
Large, randomly sparse matrix vector products are important in a number of applications in computational chemistry, such as matrix diagonalization and the solution of simultaneous equations. Vectorization of this process is considered for the CRAY XMP, CRAY 2, and CYBER 205, using a matrix of dimension of 20,000 with from 1 percent to 6 percent nonzeros. Efficient scatter/gather capabilities add coding flexibility and yield significant improvements in performance. For the CYBER 205, it is shown that minor changes in the IO can reduce the CPU time by a factor of 50. Similar changes in the CRAY codes make a far smaller improvement.
D'Agostino, M F; Sanz, J; Martínez-Castro, I; Giuffrè, A M; Sicari, V; Soria, A C
2014-07-01
Statistical analysis has been used for the first time to evaluate the dispersion of quantitative data in the solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis of blackberry (Rubus ulmifolius Schott) volatiles with the aim of improving their precision. Experimental and randomly simulated data were compared using different statistical parameters (correlation coefficients, Principal Component Analysis loadings and eigenvalues). Non-random factors were shown to significantly contribute to total dispersion; groups of volatile compounds could be associated with these factors. A significant improvement of precision was achieved when considering percent concentration ratios, rather than percent values, among those blackberry volatiles with a similar dispersion behavior. As novelty over previous references, and to complement this main objective, the presence of non-random dispersion trends in data from simple blackberry model systems was evidenced. Although the influence of the type of matrix on data precision was proved, the possibility of a better understanding of the dispersion patterns in real samples was not possible from model systems. The approach here used was validated for the first time through the multicomponent characterization of Italian blackberries from different harvest years. Copyright © 2014 Elsevier B.V. All rights reserved.
Network meta-analysis, electrical networks and graph theory.
Rücker, Gerta
2012-12-01
Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Tang, Y. B.; Li, M.; Bernabe, Y.
2014-12-01
We modeled the electrical transport behavior of dual-pore carbonate rocks in this paper. Based on experimental data of a carbonate reservoir in China, we simply considered the low porosity samples equivalent to the matrix (micro-pore system) of the high porosity samples. For modeling the bimodal porous media, we considered that the matrix is homogeneous and interconnected. The connectivity and the pore size distribution of macro-pore system are varied randomly. Both pore systems are supposed to act electrically in parallel, connected at the nodes, where the fluid exchange takes place, an approach previously used by Bauer et al. (2012). Then, the effect of the properties of matrix, the pore size distribution and connectivity of macro-pore system on petrophysical properties of carbonates can be investigated. We simulated electrical current through networks in three-dimensional simple cubic (SC) and body-center cubic (BCC) with different coordination numbers and different pipe radius distributions of macro-pore system. Based on the simulation results, we found that the formation factor obeys a "universal" scaling relationship (i.e. independent of lattice type), 1/F∝eγz, where γ is a function of the normalized standard deviation of the pore radius distribution of macro-pore system and z is the coordination number of macro-pore system. This relationship is different from the classic "universal power law" in percolation theory. A formation factor model was inferred on the basis of the scaling relationship mentioned above and several scale-invariant quantities (such as hydraulic radius rH and throat length l of macro-pore). Several methods were developed to estimate corresponding parameters of the new model with conventional core analyses. It was satisfactorily tested against experimental data, including some published experimental data. Furthermore, the relationship between water saturation and resistivity in dual-pore carbonates was discussed based on the new model.
NASA Astrophysics Data System (ADS)
Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio
2013-05-01
Let a pure state | ψ> be chosen randomly in an NM-dimensional Hilbert space, and consider the reduced density matrix ρ A of an N-dimensional subsystem. The bipartite entanglement properties of | ψ> are encoded in the spectrum of ρ A . By means of a saddle point method and using a "Coulomb gas" model for the eigenvalues, we obtain the typical spectrum of reduced density matrices. We consider the cases of an unbiased ensemble of pure states and of a fixed value of the purity. We finally obtain the eigenvalue distribution by using a statistical mechanics approach based on the introduction of a partition function.
Improved Satellite Launcher Navigation Performance by Using the Reference Trajectory Data
2015-04-16
The roll rate is considered as unaffected by the wind. • Only the random walk is modeled for the accelerometers and rate gyroscopes imperfec- tions...where δψe is the yaw estimation error of the navigation. Inserting (3) in (2): ψr = Gψ(s)(ψd−ψr−δψe)+ GI(s)ωwψ (4) 4 and isolating ψr in the previous...dynamics: Gθ (s) = Gψ(s) (15) The open loop roll dynamics is: Gφ (s) = 1.2 s(2s + 1) (16) The state covariance matrix of the Kalman filter is calculated
Photoinduced orientation in natural rubber
NASA Astrophysics Data System (ADS)
de Souza, Nara C.; Cavalheri, Adriana S.; Brito, Jackeline B.; Job, Aldo E.; Oliveira, Osvaldo N.; Giacometti, José A.; Silva, Josmary R.
2012-04-01
Azobenzene molecules and their derivatives have been widely investigated for their potential applications in optical and electrooptical devices. We have prepared a new guest-host system from natural rubber (NR) impregnated with azobenzene derivative Sudan Red B (SRB). The effects of stretching and immersion time on photoinduced orientation were investigated by birefringence signal measurements. We have found that the molecular orientation increase when the samples are stretched and decrease with the increase of immersion time. The first behavior was explained by using the random coil model and the latter was attributed to increase of the aggregation of SRB into NR matrix.
The Masked Sample Covariance Estimator: An Analysis via the Matrix Laplace Transform
2012-02-01
Variables: Suppose that we divide the stock market into disjoint sectors, and we would like to study the interactions among the monthly returns for...vector to conform with the market sectors, and we estimate only the entries in the diagonal blocks. Spatial or Temporal Localization: A simple random model...eαW1A c ] ≤ 4p e−B/2κ 2 = 1 n . Introduce this expression into (4.11) to conclude that E[exp(2θεM xx∗)1A c ] 4 1 n · I. (4.17) 20 RICHARD Y. CHEN
Robust portfolio selection based on asymmetric measures of variability of stock returns
NASA Astrophysics Data System (ADS)
Chen, Wei; Tan, Shaohua
2009-10-01
This paper addresses a new uncertainty set--interval random uncertainty set for robust optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust mean-variance portfolio selection under interval random uncertainty sets in the elements of mean vector and covariance matrix. Numerical experiments with real market data indicate that our approach results in better portfolio performance.
Carbon nanotubes within polymer matrix can synergistically enhance mechanical energy dissipation
NASA Astrophysics Data System (ADS)
Ashraf, Taimoor; Ranaiefar, Meelad; Khatri, Sumit; Kavosi, Jamshid; Gardea, Frank; Glaz, Bryan; Naraghi, Mohammad
2018-03-01
Safe operation and health of structures relies on their ability to effectively dissipate undesired vibrations, which could otherwise significantly reduce the life-time of a structure due to fatigue loads or large deformations. To address this issue, nanoscale fillers, such as carbon nanotubes (CNTs), have been utilized to dissipate mechanical energy in polymer-based nanocomposites through filler-matrix interfacial friction by benefitting from their large interface area with the matrix. In this manuscript, for the first time, we experimentally investigate the effect of CNT alignment with respect to reach other and their orientation with respect to the loading direction on vibrational damping in nanocomposites. The matrix was polystyrene (PS). A new technique was developed to fabricate PS-CNT nanocomposites which allows for controlling the angle of CNTs with respect to the far-field loading direction (misalignment angle). Samples were subjected to dynamic mechanical analysis, and the damping of the samples were measured as the ratio of the loss to storage moduli versus CNT misalignment angle. Our results defied a notion that randomly oriented CNT nanocomposites can be approximated as a combination of matrix-CNT representative volume elements with randomly aligned CNTs. Instead, our results points to major contributions of stress concentration induced by each CNT in the matrix in proximity of other CNTs on vibrational damping. The stress fields around CNTs in PS-CNT nanocomposites were studied via finite element analysis. Our findings provide significant new insights not only on vibrational damping nanocomposites, but also on their failure modes and toughness, in relation to interface phenomena.
Bigaeva, Emilia; van Doorn, Eva; Liu, Heng; Hak, Eelko
2016-01-01
Background and Objectives QS-21 shows in vitro hemolytic effect and causes side effects in vivo. New saponin adjuvant formulations with better toxicity profiles are needed. This study aims to evaluate the safety and tolerability of QS-21 and the improved saponin adjuvants (ISCOM, ISCOMATRIX and Matrix-M™) from vaccine trials. Methods A systematic literature search was conducted from MEDLINE, EMBASE, Cochrane library and Clinicaltrials.gov. We selected for the meta-analysis randomized controlled trials (RCTs) of vaccines adjuvanted with QS-21, ISCOM, ISCOMATRIX or Matrix-M™, which included a placebo control group and reported safety outcomes. Pooled risk ratios (RRs) and their 95% confidence intervals (CIs) were calculated using a random-effects model. Jadad scale was used to assess the study quality. Results Nine RCTs were eligible for the meta-analysis: six trials on QS-21-adjuvanted vaccines and three trials on ISCOMATRIX-adjuvanted, with 907 patients in total. There were no studies on ISCOM or Matrix-M™ adjuvanted vaccines matching the inclusion criteria. Meta-analysis identified an increased risk for diarrhea in patients receiving QS21-adjuvanted vaccines (RR 2.55, 95% CI 1.04–6.24). No increase in the incidence of the reported systemic AEs was observed for ISCOMATRIX-adjuvanted vaccines. QS-21- and ISCOMATRIX-adjuvanted vaccines caused a significantly higher incidence of injection site pain (RR 4.11, 95% CI 1.10–15.35 and RR 2.55, 95% CI 1.41–4.59, respectively). ISCOMATRIX-adjuvanted vaccines also increased the incidence of injection site swelling (RR 3.43, 95% CI 1.08–10.97). Conclusions Our findings suggest that vaccines adjuvanted with either QS-21 or ISCOMATRIX posed no specific safety concern. Furthermore, our results indicate that the use of ISCOMATRIX enables a better systemic tolerability profile when compared to the use of QS-21. However, no better local tolerance was observed for ISCOMATRIX-adjuvanted vaccines in immunized non-healthy subjects. This meta-analysis is limited by the relatively small number of individuals recruited in the included trials, especially in the control groups. PMID:27149269
Bigaeva, Emilia; Doorn, Eva van; Liu, Heng; Hak, Eelko
2016-01-01
QS-21 shows in vitro hemolytic effect and causes side effects in vivo. New saponin adjuvant formulations with better toxicity profiles are needed. This study aims to evaluate the safety and tolerability of QS-21 and the improved saponin adjuvants (ISCOM, ISCOMATRIX and Matrix-M™) from vaccine trials. A systematic literature search was conducted from MEDLINE, EMBASE, Cochrane library and Clinicaltrials.gov. We selected for the meta-analysis randomized controlled trials (RCTs) of vaccines adjuvanted with QS-21, ISCOM, ISCOMATRIX or Matrix-M™, which included a placebo control group and reported safety outcomes. Pooled risk ratios (RRs) and their 95% confidence intervals (CIs) were calculated using a random-effects model. Jadad scale was used to assess the study quality. Nine RCTs were eligible for the meta-analysis: six trials on QS-21-adjuvanted vaccines and three trials on ISCOMATRIX-adjuvanted, with 907 patients in total. There were no studies on ISCOM or Matrix-M™ adjuvanted vaccines matching the inclusion criteria. Meta-analysis identified an increased risk for diarrhea in patients receiving QS21-adjuvanted vaccines (RR 2.55, 95% CI 1.04-6.24). No increase in the incidence of the reported systemic AEs was observed for ISCOMATRIX-adjuvanted vaccines. QS-21- and ISCOMATRIX-adjuvanted vaccines caused a significantly higher incidence of injection site pain (RR 4.11, 95% CI 1.10-15.35 and RR 2.55, 95% CI 1.41-4.59, respectively). ISCOMATRIX-adjuvanted vaccines also increased the incidence of injection site swelling (RR 3.43, 95% CI 1.08-10.97). Our findings suggest that vaccines adjuvanted with either QS-21 or ISCOMATRIX posed no specific safety concern. Furthermore, our results indicate that the use of ISCOMATRIX enables a better systemic tolerability profile when compared to the use of QS-21. However, no better local tolerance was observed for ISCOMATRIX-adjuvanted vaccines in immunized non-healthy subjects. This meta-analysis is limited by the relatively small number of individuals recruited in the included trials, especially in the control groups.
Human salmonellosis: estimation of dose-illness from outbreak data.
Bollaerts, Kaatje; Aerts, Marc; Faes, Christel; Grijspeerdt, Koen; Dewulf, Jeroen; Mintiens, Koen
2008-04-01
The quantification of the relationship between the amount of microbial organisms ingested and a specific outcome such as infection, illness, or mortality is a key aspect of quantitative risk assessment. A main problem in determining such dose-response models is the availability of appropriate data. Human feeding trials have been criticized because only young healthy volunteers are selected to participate and low doses, as often occurring in real life, are typically not considered. Epidemiological outbreak data are considered to be more valuable, but are more subject to data uncertainty. In this article, we model the dose-illness relationship based on data of 20 Salmonella outbreaks, as discussed by the World Health Organization. In particular, we model the dose-illness relationship using generalized linear mixed models and fractional polynomials of dose. The fractional polynomial models are modified to satisfy the properties of different types of dose-illness models as proposed by Teunis et al. Within these models, differences in host susceptibility (susceptible versus normal population) are modeled as fixed effects whereas differences in serovar type and food matrix are modeled as random effects. In addition, two bootstrap procedures are presented. A first procedure accounts for stochastic variability whereas a second procedure accounts for both stochastic variability and data uncertainty. The analyses indicate that the susceptible population has a higher probability of illness at low dose levels when the combination pathogen-food matrix is extremely virulent and at high dose levels when the combination is less virulent. Furthermore, the analyses suggest that immunity exists in the normal population but not in the susceptible population.
NASA Astrophysics Data System (ADS)
Shi, Aiye; Wang, Chao; Shen, Shaohong; Huang, Fengchen; Ma, Zhenli
2016-10-01
Chi-squared transform (CST), as a statistical method, can describe the difference degree between vectors. The CST-based methods operate directly on information stored in the difference image and are simple and effective methods for detecting changes in remotely sensed images that have been registered and aligned. However, the technique does not take spatial information into consideration, which leads to much noise in the result of change detection. An improved unsupervised change detection method is proposed based on spatial constraint CST (SCCST) in combination with a Markov random field (MRF) model. First, the mean and variance matrix of the difference image of bitemporal images are estimated by an iterative trimming method. In each iteration, spatial information is injected to reduce scattered changed points (also known as "salt and pepper" noise). To determine the key parameter confidence level in the SCCST method, a pseudotraining dataset is constructed to estimate the optimal value. Then, the result of SCCST, as an initial solution of change detection, is further improved by the MRF model. The experiments on simulated and real multitemporal and multispectral images indicate that the proposed method performs well in comprehensive indices compared with other methods.
Learning Circulant Sensing Kernels
2014-03-01
Furthermore, we test learning the circulant sensing matrix/operator and the nonparametric dictionary altogether and obtain even better performance. We...scale. Furthermore, we test learning the circulant sensing matrix/operator and the nonparametric dictionary altogether and obtain even better performance...matrices, Tropp et al.[28] de - scribes a random filter for acquiring a signal x̄; Haupt et al.[12] describes a channel estimation problem to identify a
Table-sized matrix model in fractional learning
NASA Astrophysics Data System (ADS)
Soebagyo, J.; Wahyudin; Mulyaning, E. C.
2018-05-01
This article provides an explanation of the fractional learning model i.e. a Table-Sized Matrix model in which fractional representation and its operations are symbolized by the matrix. The Table-Sized Matrix are employed to develop problem solving capabilities as well as the area model. The Table-Sized Matrix model referred to in this article is used to develop an understanding of the fractional concept to elementary school students which can then be generalized into procedural fluency (algorithm) in solving the fractional problem and its operation.
Improving performances of suboptimal greedy iterative biclustering heuristics via localization.
Erten, Cesim; Sözdinler, Melih
2010-10-15
Biclustering gene expression data is the problem of extracting submatrices of genes and conditions exhibiting significant correlation across both the rows and the columns of a data matrix of expression values. Even the simplest versions of the problem are computationally hard. Most of the proposed solutions therefore employ greedy iterative heuristics that locally optimize a suitably assigned scoring function. We provide a fast and simple pre-processing algorithm called localization that reorders the rows and columns of the input data matrix in such a way as to group correlated entries in small local neighborhoods within the matrix. The proposed localization algorithm takes its roots from effective use of graph-theoretical methods applied to problems exhibiting a similar structure to that of biclustering. In order to evaluate the effectivenesss of the localization pre-processing algorithm, we focus on three representative greedy iterative heuristic methods. We show how the localization pre-processing can be incorporated into each representative algorithm to improve biclustering performance. Furthermore, we propose a simple biclustering algorithm, Random Extraction After Localization (REAL) that randomly extracts submatrices from the localization pre-processed data matrix, eliminates those with low similarity scores, and provides the rest as correlated structures representing biclusters. We compare the proposed localization pre-processing with another pre-processing alternative, non-negative matrix factorization. We show that our fast and simple localization procedure provides similar or even better results than the computationally heavy matrix factorization pre-processing with regards to H-value tests. We next demonstrate that the performances of the three representative greedy iterative heuristic methods improve with localization pre-processing when biological correlations in the form of functional enrichment and PPI verification constitute the main performance criteria. The fact that the random extraction method based on localization REAL performs better than the representative greedy heuristic methods under same criteria also confirms the effectiveness of the suggested pre-processing method. Supplementary material including code implementations in LEDA C++ library, experimental data, and the results are available at http://code.google.com/p/biclustering/ cesim@khas.edu.tr; melihsozdinler@boun.edu.tr Supplementary data are available at Bioinformatics online.