Boson expansions based on the random phase approximation representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedrocchi, V.G.; Tamura, T.
1984-04-01
A new boson expansion theory based on the random phase approximation is presented. The boson expansions are derived here directly in the random phase approximation representation with the help of a technique that combines the use of the Usui operator with that of a new bosonization procedure, called the term-by-term bosonization method. The present boson expansion theory is constructed by retaining a single collective quadrupole random phase approximation component, a truncation that allows for a perturbative treatment of the whole problem. Both Hermitian, as well as non-Hermitian boson expansions, valid for even nuclei, are obtained.
Speckle phase near random surfaces
NASA Astrophysics Data System (ADS)
Chen, Xiaoyi; Cheng, Chuanfu; An, Guoqiang; Han, Yujing; Rong, Zhenyu; Zhang, Li; Zhang, Meina
2018-03-01
Based on Kirchhoff approximation theory, the speckle phase near random surfaces with different roughness is numerically simulated. As expected, the properties of the speckle phase near the random surfaces are different from that in far field. In addition, as scattering distances and roughness increase, the average fluctuations of the speckle phase become larger. Unusually, the speckle phase is somewhat similar to the corresponding surface topography. We have performed experiments to verify the theoretical simulation results. Studies in this paper contribute to understanding the evolution of speckle phase near a random surface and provide a possible way to identify a random surface structure based on its speckle phase.
Correlation Energies from the Two-Component Random Phase Approximation.
Kühn, Michael
2014-02-11
The correlation energy within the two-component random phase approximation accounting for spin-orbit effects is derived. The resulting plasmon equation is rewritten-analogously to the scalar relativistic case-in terms of the trace of two Hermitian matrices for (Kramers-restricted) closed-shell systems and then represented as an integral over imaginary frequency using the resolution of the identity approximation. The final expression is implemented in the TURBOMOLE program suite. The code is applied to the computation of equilibrium distances and vibrational frequencies of heavy diatomic molecules. The efficiency is demonstrated by calculation of the relative energies of the Oh-, D4h-, and C5v-symmetric isomers of Pb6. Results within the random phase approximation are obtained based on two-component Kohn-Sham reference-state calculations, using effective-core potentials. These values are finally compared to other two-component and scalar relativistic methods, as well as experimental data.
Reproduction of exact solutions of Lipkin model by nonlinear higher random-phase approximation
NASA Astrophysics Data System (ADS)
Terasaki, J.; Smetana, A.; Šimkovic, F.; Krivoruchenko, M. I.
2017-10-01
It is shown that the random-phase approximation (RPA) method with its nonlinear higher generalization, which was previously considered as approximation except for a very limited case, reproduces the exact solutions of the Lipkin model. The nonlinear higher RPA is based on an equation nonlinear on eigenvectors and includes many-particle-many-hole components in the creation operator of the excited states. We demonstrate the exact character of solutions analytically for the particle number N = 2 and numerically for N = 8. This finding indicates that the nonlinear higher RPA is equivalent to the exact Schrödinger equation.
Restoring the Pauli principle in the random phase approximation ground state
NASA Astrophysics Data System (ADS)
Kosov, D. S.
2017-12-01
Random phase approximation ground state contains electronic configurations where two (and more) identical electrons can occupy the same molecular spin-orbital violating the Pauli exclusion principle. This overcounting of electronic configurations happens due to quasiboson approximation in the treatment of electron-hole pair operators. We describe the method to restore the Pauli principle in the RPA wavefunction. The proposed theory is illustrated by the calculations of molecular dipole moments and electronic kinetic energies. The Hartree-Fock based RPA, which is corrected for the Pauli principle, gives the results of comparable accuracy with Møller-Plesset second order perturbation theory and coupled-cluster singles and doubles method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shenvi, Neil; Yang, Yang; Yang, Weitao
In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r{sup 6}), the THC-ppRPA algorithm scales asymptotically as only O(r{sup 4}), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditionalmore » ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.« less
NASA Astrophysics Data System (ADS)
Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-07-01
In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r6), the THC-ppRPA algorithm scales asymptotically as only O(r4), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditional ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.
Zhang, Du; Su, Neil Qiang; Yang, Weitao
2017-07-20
The GW self-energy, especially G 0 W 0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.
NASA Astrophysics Data System (ADS)
Katkovnik, Vladimir; Shevkunov, Igor; Petrov, Nikolay V.; Egiazarian, Karen
2017-06-01
In-line lensless holography is considered with a random phase modulation at the object plane. The forward wavefront propagation is modelled using the Fourier transform with the angular spectrum transfer function. The multiple intensities (holograms) recorded by the sensor are random due to the random phase modulation and noisy with Poissonian noise distribution. It is shown by computational experiments that high-accuracy reconstructions can be achieved with resolution going up to the two thirds of the wavelength. With respect to the sensor pixel size it is a super-resolution with a factor of 32. The algorithm designed for optimal superresolution phase/amplitude reconstruction from Poissonian data is based on the general methodology developed for phase retrieval with a pixel-wise resolution in V. Katkovnik, "Phase retrieval from noisy data based on sparse approximation of object phase and amplitude", http://www.cs.tut.fi/ lasip/DDT/index3.html.
NASA Astrophysics Data System (ADS)
Tselyaev, V.; Lyutorovich, N.; Speth, J.; Krewald, S.; Reinhard, P.-G.
2016-09-01
We present results of the time blocking approximation (TBA) for giant resonances in light-, medium-, and heavy-mass nuclei. The TBA is an extension of the widely used random-phase approximation (RPA) adding complex configurations by coupling to phonon excitations. A new method for handling the single-particle continuum is developed and applied in the present calculations. We investigate in detail the dependence of the numerical results on the size of the single-particle space and the number of phonons as well as on nuclear matter properties. Our approach is self-consistent, based on an energy-density functional of Skyrme type where we used seven different parameter sets. The numerical results are compared with experimental data.
Subtraction method in the Second Random Phase Approximation
NASA Astrophysics Data System (ADS)
Gambacurta, Danilo
2018-02-01
We discuss the subtraction method applied to the Second Random Phase Approximation (SRPA). This method has been proposed to overcome double counting and stability issues appearing in beyond mean-field calculations. We show that the subtraction procedure leads to a considerable reduction of the SRPA downwards shift with respect to the random phase approximation (RPA) spectra and to results that are weakly cutoff dependent. Applications to the isoscalar monopole and quadrupole response in 16O and to the low-lying dipole response in 48Ca are shown and discussed.
Photons in dense nuclear matter: Random-phase approximation
NASA Astrophysics Data System (ADS)
Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay
2018-04-01
We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.
NASA Astrophysics Data System (ADS)
Jamaluddin, Muzhar Bin
The Boson Expansion Theory of Kishimoto and Tamura has proved to be very successful in describing quadrupole collective motions in even-even nuclei. This theory, however, involves a complicated transformation from the Tamm-Dancoff phonons to the phonons of the Random Phase Approximation. In this thesis a Boson Expansion formalism, derived directly from the Random Phase Approximation and set forth by Pedracchi and Tamura, is used to derive the boson forms of the nuclear Hamiltonian and the electromagnetic transition operator. Detailed discussions of the formalism of Pedrocchi and Tamura and its extension needed to perform realistic calculations are presented. The technique used to deriving the boson forms and the formulae used in the calculations are also given a thorough treatment to demonstrate the simplicity of this approach. Finally, the theory is tested by applying it to calculate the energy levels and some electromagnetic properties of the Samarium isotopes. The results show that the present theory is capable of describing the range of behavior from a vibrational to a rotational character of the Samarium isotopes as good as the previous theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamaluddin, M.B.
1986-01-01
The Boson Expansion Theory of Kishimoto and Tamura has proved to be very successful in describing quadrupole collective motions in even-even nuclei. This theory, however, involves a complicated transformation from the Tamm-Dancoff phonons to the phonons of the random Phase Approximation. In this thesis a Boson Expansion formalism, derived directly from the Random Phase Approximation and set forth by Pedracchi and Tamura, is used to derive the boson forms of the nuclear Hamiltonian and the electromagnetic transition operator. Detailed discussions of the formalism of Pedrocchi and Tamura and its extension needed to perform realistic calculations are presented. The technique usedmore » to deriving the boson forms and the formulae used in the calculations are also given a thorough treatment to demonstrate the simplicity of this approach. Finally, the theory is tested by applying it to calculate the energy levels and some electromagnetic properties of the Samarium isotopes. The results show that the present theory is capable of describing the range of behavior from a vibrational to a rotational character of the Samarium isotopes as well as the previous theory.« less
Random phase approximation and cluster mean field studies of hard core Bose Hubbard model
NASA Astrophysics Data System (ADS)
Alavani, Bhargav K.; Gaude, Pallavi P.; Pai, Ramesh V.
2018-04-01
We investigate zero temperature and finite temperature properties of the Bose Hubbard Model in the hard core limit using Random Phase Approximation (RPA) and Cluster Mean Field Theory (CMFT). We show that our RPA calculations are able to capture quantum and thermal fluctuations significantly better than CMFT.
Yura, H T; Thrane, L; Andersen, P E
2000-12-01
Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.
Wilhelm, Jan; Seewald, Patrick; Del Ben, Mauro; Hutter, Jürg
2016-12-13
We present an algorithm for computing the correlation energy in the random phase approximation (RPA) in a Gaussian basis requiring [Formula: see text] operations and [Formula: see text] memory. The method is based on the resolution of the identity (RI) with the overlap metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time, and imaginary frequency integration techniques, and the use of sparse linear algebra. Additional memory reduction without extra computations can be achieved by an iterative scheme that overcomes the memory bottleneck of canonical RPA implementations. We report a massively parallel implementation that is the key for the application to large systems. Finally, cubic-scaling RPA is applied to a thousand water molecules using a correlation-consistent triple-ζ quality basis.
Luenser, Arne; Schurkus, Henry F; Ochsenfeld, Christian
2017-04-11
A reformulation of the random phase approximation within the resolution-of-the-identity (RI) scheme is presented, that is competitive to canonical molecular orbital RI-RPA already for small- to medium-sized molecules. For electronically sparse systems drastic speedups due to the reduced scaling behavior compared to the molecular orbital formulation are demonstrated. Our reformulation is based on two ideas, which are independently useful: First, a Cholesky decomposition of density matrices that reduces the scaling with basis set size for a fixed-size molecule by one order, leading to massive performance improvements. Second, replacement of the overlap RI metric used in the original AO-RPA by an attenuated Coulomb metric. Accuracy is significantly improved compared to the overlap metric, while locality and sparsity of the integrals are retained, as is the effective linear scaling behavior.
Chaotic oscillations and noise transformations in a simple dissipative system with delayed feedback
NASA Astrophysics Data System (ADS)
Zverev, V. V.; Rubinstein, B. Ya.
1991-04-01
We analyze the statistical behavior of signals in nonlinear circuits with delayed feedback in the presence of external Markovian noise. For the special class of circuits with intense phase mixing we develop an approach for the computation of the probability distributions and multitime correlation functions based on the random phase approximation. Both Gaussian and Kubo-Andersen models of external noise statistics are analyzed and the existence of the stationary (asymptotic) random process in the long-time limit is shown. We demonstrate that a nonlinear system with chaotic behavior becomes a noise amplifier with specific statistical transformation properties.
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Yang, Haizhao
2017-07-01
The particle-particle random phase approximation (pp-RPA) has been shown to be capable of describing double, Rydberg, and charge transfer excitations, for which the conventional time-dependent density functional theory (TDDFT) might not be suitable. It is thus desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied to larger molecules and even solids. This paper introduces an O (N3) algorithm, where N is the number of orbitals, based on an interpolative separable density fitting technique and the Jacobi-Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA framework. The size of the pp-RPA matrix can also be reduced by keeping only a small portion of orbitals with orbital energy close to the Fermi energy. This reduced system leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy for the low-lying excitation energies.
Energy and criticality in random Boolean networks
NASA Astrophysics Data System (ADS)
Andrecut, M.; Kauffman, S. A.
2008-06-01
The central issue of the research on the Random Boolean Networks (RBNs) model is the characterization of the critical transition between ordered and chaotic phases. Here, we discuss an approach based on the ‘energy’ associated with the unsatisfiability of the Boolean functions in the RBNs model, which provides an upper bound estimation for the energy used in computation. We show that in the ordered phase the RBNs are in a ‘dissipative’ regime, performing mostly ‘downhill’ moves on the ‘energy’ landscape. Also, we show that in the disordered phase the RBNs have to ‘hillclimb’ on the ‘energy’ landscape in order to perform computation. The analytical results, obtained using Derrida's approximation method, are in complete agreement with numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korotkevich, Alexander O.; Lushnikov, Pavel M., E-mail: plushnik@math.unm.edu; Landau Institute for Theoretical Physics, 2 Kosygin Str., Moscow 119334
2015-01-15
We developed a linear theory of backward stimulated Brillouin scatter (BSBS) of a spatially and temporally random laser beam relevant for laser fusion. Our analysis reveals a new collective regime of BSBS (CBSBS). Its intensity threshold is controlled by diffraction, once cT{sub c} exceeds a laser speckle length, with T{sub c} the laser coherence time. The BSBS spatial gain rate is approximately the sum of that due to CBSBS, and a part which is independent of diffraction and varies linearly with T{sub c}. The CBSBS spatial gain rate may be reduced significantly by the temporal bandwidth of KrF-based laser systemsmore » compared to the bandwidth currently available to temporally smoothed glass-based laser systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faessler, Amand; Rodin, V.; Fogli, G. L.
2009-03-01
The variances and covariances associated to the nuclear matrix elements of neutrinoless double beta decay (0{nu}{beta}{beta}) are estimated within the quasiparticle random phase approximation. It is shown that correlated nuclear matrix elements uncertainties play an important role in the comparison of 0{nu}{beta}{beta} decay rates for different nuclei, and that they are degenerate with the uncertainty in the reconstructed Majorana neutrino mass.
Phase computations and phase models for discrete molecular oscillators.
Suvak, Onder; Demir, Alper
2012-06-11
Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations.
Phase computations and phase models for discrete molecular oscillators
2012-01-01
Background Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. Results In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. Conclusions The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations. PMID:22687330
NASA Astrophysics Data System (ADS)
Pattabhiraman, Harini; Gantapara, Anjan P.; Dijkstra, Marjolein
2015-10-01
Using computer simulations, we study the phase behavior of a model system of colloidal hard disks with a diameter σ and a soft corona of width 1.4σ. The particles interact with a hard core and a repulsive square-shoulder potential. We calculate the free energy of the random-tiling quasicrystal and its crystalline approximants using the Frenkel-Ladd method. We explicitly account for the configurational entropy associated with the number of distinct configurations of the random-tiling quasicrystal. We map out the phase diagram and find that the random tiling dodecagonal quasicrystal is stabilised by entropy at finite temperatures with respect to the crystalline approximants that we considered, and its stability region seems to extend to zero temperature as the energies of the defect-free quasicrystal and the crystalline approximants are equal within our statistical accuracy.
Photoionization cross sections for atomic chlorine using an open-shell random phase approximation
NASA Technical Reports Server (NTRS)
Starace, A. F.; Armstrong, L., Jr.
1975-01-01
The use of the Random Phase Approximation with Exchange (RPAE) for calculating partial and total photoionization cross sections and photoelectron angular distributions for open shell atoms is examined for atomic chlorine. Whereas the RPAE corrections in argon (Z=18) are large, it is found that those in chlorine (Z=17) are much smaller due to geometric factors. Hartree-Fock calculations with and without core relaxation are also presented. Sizable deviations from the close coupling results of Conneely are also found.
Role of small-norm components in extended random-phase approximation
NASA Astrophysics Data System (ADS)
Tohyama, Mitsuru
2017-09-01
The role of the small-norm amplitudes in extended random-phase approximation (RPA) theories such as the particle-particle and hole-hole components of one-body amplitudes and the two-body amplitudes other than two-particle/two-hole components are investigated for the one-dimensional Hubbard model using an extended RPA derived from the time-dependent density matrix theory. It is found that these amplitudes cannot be neglected in strongly interacting regions where the effects of ground-state correlations are significant.
NASA Astrophysics Data System (ADS)
Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.
2018-03-01
The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.
Enhancing Security of Double Random Phase Encoding Based on Random S-Box
NASA Astrophysics Data System (ADS)
Girija, R.; Singh, Hukum
2018-06-01
In this paper, we propose a novel asymmetric cryptosystem for double random phase encoding (DRPE) using random S-Box. While utilising S-Box separately is not reliable and DRPE does not support non-linearity, so, our system unites the effectiveness of S-Box with an asymmetric system of DRPE (through Fourier transform). The uniqueness of proposed cryptosystem lies on employing high sensitivity dynamic S-Box for our DRPE system. The randomness and scalability achieved due to applied technique is an additional feature of the proposed solution. The firmness of random S-Box is investigated in terms of performance parameters such as non-linearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. S-Boxes convey nonlinearity to cryptosystems which is a significant parameter and very essential for DRPE. The strength of proposed cryptosystem has been analysed using various parameters such as MSE, PSNR, correlation coefficient analysis, noise analysis, SVD analysis, etc. Experimental results are conferred in detail to exhibit proposed cryptosystem is highly secure.
Analytic Interatomic Forces in the Random Phase Approximation
NASA Astrophysics Data System (ADS)
Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg
2017-03-01
We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the G W approximation. This relationship allows us to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.
NASA Astrophysics Data System (ADS)
Ivliev, S. V.
2017-12-01
For calculation of short laser pulse absorption in metal the imaginary part of permittivity, which is simply related to the conductivity, is required. Currently to find the static and dynamic conductivity the Kubo-Greenwood formula is most commonly used. It describes the electromagnetic energy absorption in the one-electron approach. In the present study, this formula is derived directly from the expression for the permittivity expression in the random phase approximation, which in fact is equivalent to the method of the mean field. The detailed analysis of the role of electron-electron interaction in the calculation of the matrix elements of the velocity operator is given. It is shown that in the one-electron random phase approximation the single-particle conductive electron wave functions in the field of fixed ions should be used. The possibility of considering the exchange and correlation effects by means of an amendment to a local function field is discussed.
QRAP: A numerical code for projected (Q)uasiparticle (RA)ndom (P)hase approximation
NASA Astrophysics Data System (ADS)
Samana, A. R.; Krmpotić, F.; Bertulani, C. A.
2010-06-01
A computer code for quasiparticle random phase approximation - QRPA and projected quasiparticle random phase approximation - PQRPA models of nuclear structure is explained in details. The residual interaction is approximated by a simple δ-force. An important application of the code consists in evaluating nuclear matrix elements involved in neutrino-nucleus reactions. As an example, cross sections for 56Fe and 12C are calculated and the code output is explained. The application to other nuclei and the description of other nuclear and weak decay processes are also discussed. Program summaryTitle of program: QRAP ( Quasiparticle RAndom Phase approximation) Computers: The code has been created on a PC, but also runs on UNIX or LINUX machines Operating systems: WINDOWS or UNIX Program language used: Fortran-77 Memory required to execute with typical data: 16 Mbytes of RAM memory and 2 MB of hard disk space No. of lines in distributed program, including test data, etc.: ˜ 8000 No. of bytes in distributed program, including test data, etc.: ˜ 256 kB Distribution format: tar.gz Nature of physical problem: The program calculates neutrino- and antineutrino-nucleus cross sections as a function of the incident neutrino energy, and muon capture rates, using the QRPA or PQRPA as nuclear structure models. Method of solution: The QRPA, or PQRPA, equations are solved in a self-consistent way for even-even nuclei. The nuclear matrix elements for the neutrino-nucleus interaction are treated as the beta inverse reaction of odd-odd nuclei as function of the transfer momentum. Typical running time: ≈ 5 min on a 3 GHz processor for Data set 1.
Singles correlation energy contributions in solids
NASA Astrophysics Data System (ADS)
Klimeš, Jiří; Kaltak, Merzuk; Maggio, Emanuele; Kresse, Georg
2015-09-01
The random phase approximation to the correlation energy often yields highly accurate results for condensed matter systems. However, ways how to improve its accuracy are being sought and here we explore the relevance of singles contributions for prototypical solid state systems. We set out with a derivation of the random phase approximation using the adiabatic connection and fluctuation dissipation theorem, but contrary to the most commonly used derivation, the density is allowed to vary along the coupling constant integral. This yields results closely paralleling standard perturbation theory. We re-derive the standard singles of Görling-Levy perturbation theory [A. Görling and M. Levy, Phys. Rev. A 50, 196 (1994)], highlight the analogy of our expression to the renormalized singles introduced by Ren and coworkers [Phys. Rev. Lett. 106, 153003 (2011)], and introduce a new approximation for the singles using the density matrix in the random phase approximation. We discuss the physical relevance and importance of singles alongside illustrative examples of simple weakly bonded systems, including rare gas solids (Ne, Ar, Xe), ice, adsorption of water on NaCl, and solid benzene. The effect of singles on covalently and metallically bonded systems is also discussed.
NASA Astrophysics Data System (ADS)
Kvasil, J.; Nesterenko, V. O.; Repko, A.; Kleinig, W.; Reinhard, P.-G.
2016-12-01
The deformation-induced splitting of isoscalar giant monopole resonance (ISGMR) is systematically analyzed in a wide range of masses covering medium, rare-earth, actinide, and superheavy axial deformed nuclei. The study is performed within the fully self-consistent quasiparticle random-phase-approximation method based on the Skyrme functional. Two Skyrme forces, one with a large (SV-bas) and one with a small (SkP) nuclear incompressibility, are considered. The calculations confirm earlier results that, because of the deformation-induced E 0 -E 2 coupling, the isoscalar E 0 resonance attains a double-peak structure and significant energy upshift. Our results are compared with available analytic estimations. Unlike earlier studies, we get a smaller energy difference between the lower and upper peaks and thus a stronger E 0 -E 2 coupling. This in turn results in more pumping of E 0 strength into the lower peak and more pronounced splitting of ISGMR. We also discuss widths of the peaks and their negligible correlation with deformation.
Insight into organic reactions from the direct random phase approximation and its corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruzsinszky, Adrienn; Zhang, Igor Ying; Scheffler, Matthias
2015-10-14
The performance of the random phase approximation (RPA) and beyond-RPA approximations for the treatment of electron correlation is benchmarked on three different molecular test sets. The test sets are chosen to represent three typical sources of error which can contribute to the failure of most density functional approximations in chemical reactions. The first test set (atomization and n-homodesmotic reactions) offers a gradually increasing balance of error from the chemical environment. The second test set (Diels-Alder reaction cycloaddition = DARC) reflects more the effect of weak dispersion interactions in chemical reactions. Finally, the third test set (self-interaction error 11 = SIE11)more » represents reactions which are exposed to noticeable self-interaction errors. This work seeks to answer whether any one of the many-body approximations considered here successfully addresses all these challenges.« less
1976-05-01
random walk photon scattering, geometric optics refraction at a thin phase screen, plane wave scattering from a thin screen in the Fraunhofer limit and...significant cases. In the geometric optics regime the distribution of density of allowable multipath rays is gsslanly distributed and the power...3.1 Random Walk Approach to Scattering 10 3.2 Phase Screen Approximation to Strong Scattering 13 3.3 Ray Optics and Stationary Phase Analysis 21 3,3,1
NASA Astrophysics Data System (ADS)
Zhang, Chunwei; Zhao, Hong; Zhu, Qian; Zhou, Changquan; Qiao, Jiacheng; Zhang, Lu
2018-06-01
Phase-shifting fringe projection profilometry (PSFPP) is a three-dimensional (3D) measurement technique widely adopted in industry measurement. It recovers the 3D profile of measured objects with the aid of the fringe phase. The phase accuracy is among the dominant factors that determine the 3D measurement accuracy. Evaluation of the phase accuracy helps refine adjustable measurement parameters, contributes to evaluating the 3D measurement accuracy, and facilitates improvement of the measurement accuracy. Although PSFPP has been deeply researched, an effective, easy-to-use phase accuracy evaluation method remains to be explored. In this paper, methods based on the uniform-phase coded image (UCI) are presented to accomplish phase accuracy evaluation for PSFPP. These methods work on the principle that the phase value of a UCI can be manually set to be any value, and once the phase value of a UCI pixel is the same as that of a pixel of a corresponding sinusoidal fringe pattern, their phase accuracy values are approximate. The proposed methods provide feasible approaches to evaluating the phase accuracy for PSFPP. Furthermore, they can be used to experimentally research the property of the random and gamma phase errors in PSFPP without the aid of a mathematical model to express random phase error or a large-step phase-shifting algorithm. In this paper, some novel and interesting phenomena are experimentally uncovered with the aid of the proposed methods.
Correlation energy functional within the GW -RPA: Exact forms, approximate forms, and challenges
NASA Astrophysics Data System (ADS)
Ismail-Beigi, Sohrab
2010-05-01
In principle, the Luttinger-Ward Green’s-function formalism allows one to compute simultaneously the total energy and the quasiparticle band structure of a many-body electronic system from first principles. We present approximate and exact expressions for the correlation energy within the GW -random-phase approximation that are more amenable to computation and allow for developing efficient approximations to the self-energy operator and correlation energy. The exact form is a sum over differences between plasmon and interband energies. The approximate forms are based on summing over screened interband transitions. We also demonstrate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on the allowed solutions (Green’s functions) is necessary. Finally, we present some relevant numerical results for atomic systems.
Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen
2014-09-09
The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.
NASA Astrophysics Data System (ADS)
Garrido Torres, José A.; Ramberger, Benjamin; Früchtl, Herbert A.; Schaub, Renald; Kresse, Georg
2017-11-01
The adsorption energy of benzene on various metal substrates is predicted using the random phase approximation (RPA) for the correlation energy. Agreement with available experimental data is systematically better than 10% for both coinage and reactive metals. The results are also compared with more approximate methods, including van der Waals density functional theory (DFT), as well as dispersion-corrected DFT functionals. Although dispersion-corrected DFT can yield accurate results, for instance, on coinage metals, the adsorption energies are clearly overestimated on more reactive transition metals. Furthermore, coverage dependent adsorption energies are well described by the RPA. This shows that for the description of aromatic molecules on metal surfaces further improvements in density functionals are necessary, or more involved many-body methods such as the RPA are required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Churna; van Schilfgaarde, Mark; Kotani, Takao
The electronic band structure of SrTiO3 is investigated in the all-electron quasiparticle self-consistent GW (QSGW) approximation. Unlike previous pseudopotential-based QSGW or single-shot G0W0 calculations, the gap is found to be significantly overestimated compared to experiment. After putting in a correction for the underestimate of the screening by the random phase approximation in terms of a 0.8Σ approach, the gap is still overestimated. The 0.8Σ approach is discussed and justified in terms of various recent literature results including electron-hole corrections. Adding a lattice polarization correction (LPC) in the q→0 limit for the screening of W, agreement with experiment is recovered. Themore » LPC is alternatively estimated using a polaron model. Here, we apply our approach to the cubic and tetragonal phases as well as a hypothetical layered postperovskite structure and find that the local density approximation (LDA) to GW gap correction is almost independent of structure.« less
Bhandari, Churna; van Schilfgaarde, Mark; Kotani, Takao; ...
2018-01-23
The electronic band structure of SrTiO3 is investigated in the all-electron quasiparticle self-consistent GW (QSGW) approximation. Unlike previous pseudopotential-based QSGW or single-shot G0W0 calculations, the gap is found to be significantly overestimated compared to experiment. After putting in a correction for the underestimate of the screening by the random phase approximation in terms of a 0.8Σ approach, the gap is still overestimated. The 0.8Σ approach is discussed and justified in terms of various recent literature results including electron-hole corrections. Adding a lattice polarization correction (LPC) in the q→0 limit for the screening of W, agreement with experiment is recovered. Themore » LPC is alternatively estimated using a polaron model. Here, we apply our approach to the cubic and tetragonal phases as well as a hypothetical layered postperovskite structure and find that the local density approximation (LDA) to GW gap correction is almost independent of structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altmeyer, Michaela; Guterding, Daniel; Hirschfeld, P. J.
2016-12-21
In the framework of a multiorbital Hubbard model description of superconductivity, a matrix formulation of the superconducting pairing interaction that has been widely used is designed to treat spin, charge, and orbital fluctuations within a random phase approximation (RPA). In terms of Feynman diagrams, this takes into account particle-hole ladder and bubble contributions as expected. It turns out, however, that this matrix formulation also generates additional terms which have the diagrammatic structure of vertex corrections. Furthermore we examine these terms and discuss the relationship between the matrix-RPA superconducting pairing interaction and the Feynman diagrams that it sums.
Miller, Ted R; Zaloshnja, Eduard; Spicer, Rebecca S
2007-05-01
Few studies have evaluated the impact of workplace substance abuse prevention programs on occupational injury, despite this being a justification for these programs. This paper estimates the effectiveness and benefit-cost ratio of a peer-based substance abuse prevention program at a U.S. transportation company, implemented in phases from 1988 to 1990. The program focuses on changing workplace attitudes toward on-the-job substance use in addition to training workers to recognize and intervene with coworkers who have a problem. The program was strengthened by federally mandated random drug and alcohol testing (implemented, respectively, in 1990 and 1994). With time-series analysis, we analyzed the association of monthly injury rates and costs with phased program implementation, controlling for industry injury trend. The combination of the peer-based program and testing was associated with an approximate one-third reduction in injury rate, avoiding an estimated $48 million in employer costs in 1999. That year, the peer-based program cost the company $35 and testing cost another $35 per employee. The program avoided an estimated $1850 in employer injury costs per employee in 1999, corresponding to a benefit-cost ratio of 26:1. The findings suggest that peer-based programs buttressed by random testing can be cost-effective in the workplace.
Abelian-Higgs phase of SU(2) QCD and glueball energy
NASA Astrophysics Data System (ADS)
Jia, Duojie
2008-07-01
It is shown that SU(2) QCD admits an dual Abelian-Higgs phase, with a Higgs vacuum of a type-II superconductor. This is done by using a connection decomposition for the gluon field and the random-direction approximation. Using a bag picture with soft wall, we presented a calculational procedure for the glueball energy based on the recent proof for wall-vortices [Nucl. Phys. B 741(2006)1]. Supported by National Natural Science Foundation of China (10547009) and Research Backbone Fostering Program of Knowledge and S&T Innovation Project of NWNU (KJCXGC 03-41)
Dimensionality-strain phase diagram of strontium iridates
NASA Astrophysics Data System (ADS)
Kim, Bongjae; Liu, Peitao; Franchini, Cesare
2017-03-01
The competition between spin-orbit coupling, bandwidth (W ), and electron-electron interaction (U ) makes iridates highly susceptible to small external perturbations, which can trigger the onset of novel types of electronic and magnetic states. Here we employ first principles calculations based on density functional theory and on the constrained random phase approximation to study how dimensionality and strain affect the strength of U and W in (SrIrO3)m/(SrTiO3) superlattices. The result is a phase diagram explaining two different types of controllable magnetic and electronic transitions, spin-flop and insulator-to-metal, connected with the disruption of the Jeff=1 /2 state which cannot be understood within a simplified local picture.
NASA Astrophysics Data System (ADS)
Wang, B. X.; Zhao, C. Y.
2018-02-01
Understanding radiative transfer in random media like micro- or nanoporous and particulate materials, allows people to manipulate the scattering and absorption of radiation, as well as opens new possibilities in applications such as imaging through turbid media, photovoltaics, and radiative cooling. A strong-backscattering phase function, i.e., a negative scattering asymmetry parameter g , is of great interest, which can possibly lead to unusual radiative transport phenomena, for instance, Anderson localization of light. Here we demonstrate that by utilizing the structural correlations and second Kerker condition for a disordered medium composed of randomly distributed silicon nanoparticles, a strongly negative scattering asymmetry factor (g ˜-0.5 ) for multiple light scattering can be realized in the near infrared. Based on the multipole expansion of Foldy-Lax equations and quasicrystalline approximation (QCA), we have rigorously derived analytical expressions for the effective propagation constant and scattering phase function for a random system containing spherical particles, by taking the effect of structural correlations into account. We show that as the concentration of scattering particles rises, the backscattering is also enhanced. Moreover, in this circumstance, the transport mean free path is largely reduced and even becomes smaller than that predicted by independent scattering approximation. We further explore the dependent scattering effects, including the modification of electric and magnetic dipole excitations and far-field interference effect, both induced and influenced by the structural correlations, for volume fraction of particles up to fv˜0.25 . Our results have profound implications in harnessing micro- or nanoscale radiative transfer through random media.
Low-lying dipole response in the stable 40,48Ca nuclei within the second random-phase approximation
NASA Astrophysics Data System (ADS)
Gambacurta, D.; Grasso, M.; Catara, F.
2012-10-01
The low-lying dipole strength distributions of 40CaCa and 48Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Koushik; Jawulski, Konrad; Pastorczak, Ewa
A perfect-pairing generalized valence bond (GVB) approximation is known to be one of the simplest approximations, which allows one to capture the essence of static correlation in molecular systems. In spite of its attractive feature of being relatively computationally efficient, this approximation misses a large portion of dynamic correlation and does not offer sufficient accuracy to be generally useful for studying electronic structure of molecules. We propose to correct the GVB model and alleviate some of its deficiencies by amending it with the correlation energy correction derived from the recently formulated extended random phase approximation (ERPA). On the examples ofmore » systems of diverse electronic structures, we show that the resulting ERPA-GVB method greatly improves upon the GVB model. ERPA-GVB recovers most of the electron correlation and it yields energy barrier heights of excellent accuracy. Thanks to a balanced treatment of static and dynamic correlation, ERPA-GVB stays reliable when one moves from systems dominated by dynamic electron correlation to those for which the static correlation comes into play.« less
Boyer, David S; Nguyen, Quan Dong; Brown, David M; Basu, Karen; Ehrlich, Jason S
2015-12-01
To determine whether the efficacy and safety achieved with monthly ranibizumab as treatment for diabetic macular edema (DME) can be maintained with less-than-monthly treatment. Open-label extension (OLE) phase of randomized, sham-controlled phase III trials: RIDE (NCT00473382) and RISE (NCT00473330). Five hundred of 582 adults who completed the 36-month randomized core studies elected to enter the OLE. All patients participating in the OLE were eligible to receive 0.5 mg ranibizumab according to predefined re-treatment criteria: Treatment was administered when DME was identified by the investigator on optical coherence tomography or when best-corrected visual acuity (BCVA) worsened by ≥5 Early Treatment Diabetic Retinopathy Study letters versus month 36. Patients were observed at 30-, 60-, or 90-day intervals depending on the need for treatment. The incidence and severity of ocular and nonocular events, proportion of patients with ≥15-letter best-corrected visual acuity (BCVA) gain from baseline, mean BCVA change from month 36 (final core study visit), mean central foveal thickness (CFT), and mean CFT change from month 36. A mean of 4.5 injections were administered over a mean follow-up of 14.1 months. Approximately 25% of patients did not require further treatment based on protocol-defined re-treatment criteria. Mean BCVA was sustained or improved in these patients through the end of follow-up. Approximately 75% of patients received ≥1 criteria-based re-treatment; mean time to first re-treatment was approximately 3 months after the last masked-phase visit. Mean BCVA remained stable in re-treated patients; CFT was generally stable with a trend toward slight thickening in all patients when mandatory monthly therapy was relaxed. Vision gains achieved after 1 or 3 years of monthly ranibizumab therapy were maintained with a marked reduction in treatment frequency; some patients required no additional treatment. These observations are consistent with other studies evaluating induction followed by maintenance ranibizumab therapy for DME. Patients whose treatment was deferred by 2 years (randomized initially to sham) did not ultimately achieve the same BCVA gains as patients who received ranibizumab from baseline. Ranibizumab's safety profile in the OLE appeared similar to that observed in the controlled core studies and other studies. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism
NASA Astrophysics Data System (ADS)
Trugenberger, Carlo A.
2015-12-01
Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.
Conditions where random phase approximation becomes exact in the high-density limit
NASA Astrophysics Data System (ADS)
Morawetz, Klaus; Ashokan, Vinod; Bala, Renu; Pathak, Kare Narain
2018-04-01
It is shown that, in d -dimensional systems, the vertex corrections beyond the random phase approximation (RPA) or G W approximation scales with the power d -β -α of the Fermi momentum if the relation between Fermi energy and Fermi momentum is ɛf˜pfβ and the interacting potential possesses a momentum power law of ˜p-α . The condition d -β -α <0 specifies systems where RPA is exact in the high-density limit. The one-dimensional structure factor is found to be the interaction-free one in the high-density limit for contact interaction. A cancellation of RPA and vertex corrections render this result valid up to second order in contact interaction. For finite-range potentials of cylindrical wires a large-scale cancellation appears and is found to be independent of the width parameter of the wire. The proposed high-density expansion agrees with the quantum Monte Carlo simulations.
Heßelmann, Andreas
2015-04-14
Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.
Random-Phase Approximation Methods
NASA Astrophysics Data System (ADS)
Chen, Guo P.; Voora, Vamsee K.; Agee, Matthew M.; Balasubramani, Sree Ganesh; Furche, Filipp
2017-05-01
Random-phase approximation (RPA) methods are rapidly emerging as cost-effective validation tools for semilocal density functional computations. We present the theoretical background of RPA in an intuitive rather than formal fashion, focusing on the physical picture of screening and simple diagrammatic analysis. A new decomposition of the RPA correlation energy into plasmonic modes leads to an appealing visualization of electron correlation in terms of charge density fluctuations. Recent developments in the areas of beyond-RPA methods, RPA correlation potentials, and efficient algorithms for RPA energy and property calculations are reviewed. The ability of RPA to approximately capture static correlation in molecules is quantified by an analysis of RPA natural occupation numbers. We illustrate the use of RPA methods in applications to small-gap systems such as open-shell d- and f-element compounds, radicals, and weakly bound complexes, where semilocal density functional results exhibit strong functional dependence.
Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev
2011-01-01
Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255
Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev
2011-06-28
Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.
NASA Technical Reports Server (NTRS)
Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K.N.; Stamnes, K.
2016-01-01
The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 x 10(exp 3) so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling- adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5 for I and within 1.5 for Q for all viewing angles. In 1971 Hansen showed that for scattering by spherical particles the 3 x 3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3 x 3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3 x 3 approximation leads to an absolute error 2 x 10(exp -6) for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.
NASA Astrophysics Data System (ADS)
Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K. N.; Stamnes, K.
2017-05-01
The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 ×103 so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling-adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5% for I and within 1.5% for Q for all viewing angles. In 1971 Hansen [1] showed that for scattering by spherical particles the 3×3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3×3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3×3 approximation leads to an absolute error < 2 ×10-6 for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.
Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light
NASA Astrophysics Data System (ADS)
Flores, Angel; Ehrehreich, Thomas; Holten, Roger; Anderson, Brian; Dajani, Iyad
2016-03-01
We report efficient coherent beam combining of five kilowatt-class fiber amplifiers with a diffractive optical element (DOE). Based on a master oscillator power amplifier (MOPA) configuration, the amplifiers were seeded with pseudo random phase modulated light. Each non-polarization maintaining fiber amplifier was optically path length matched and provides approximately 1.2 kW of near diffraction-limited output power (measured M2<1.1). Consequently, a low power sample of each laser was utilized for active linear polarization control. A low power sample of the combined beam after the DOE provided an error signal for active phase locking which was performed via Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging (LOCSET). After phase stabilization, the beams were coherently combined via the 1x5 DOE. A total combined output power of 4.9 kW was achieved with 82% combining efficiency and excellent beam quality (M2<1.1). The intrinsic DOE splitter loss was 5%. Similarly, losses due in part to non-ideal polarization, ASE content, uncorrelated wavefront errors, and misalignment errors contributed to the efficiency reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambacurta, D.; Grasso, M.; Catara, F.
2012-10-20
The low-lying dipole strength distributions of {sup 40}CaCa and {sup 48}Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transitionmore » densities.« less
Inhomogeneous fluid of penetrable-spheres: Application of the random phase approximation
NASA Astrophysics Data System (ADS)
Xiang, Yan; Frydel, Derek
2017-05-01
The focus of the present work is the application of the random phase approximation (RPA), derived for inhomogeneous fluids [Frydel and Ma, Phys. Rev. E 93, 062112 (2016)], to penetrable-spheres. As penetrable-spheres transform into hard-spheres with increasing interactions, they provide an interesting case for exploring the RPA, its shortcomings, and limitations, the weak- versus the strong-coupling limit. Two scenarios taken up by the present study are a one-component and a two-component fluid with symmetric interactions. In the latter case, the mean-field contributions cancel out and any contributions from particle interactions are accounted for by correlations. The accuracy of the RPA for this case is the result of a somewhat lucky cancellation of errors.
simulation methods for materials physics and chemistry, with particular expertise in post-DFT, high accuracy methods such as the GW approximation for electronic structure and random phase approximation (RPA) total the art in computational methods, including efficient methods for including the effects of substrates
Response surface method in geotechnical/structural analysis, phase 1
NASA Astrophysics Data System (ADS)
Wong, F. S.
1981-02-01
In the response surface approach, an approximating function is fit to a long running computer code based on a limited number of code calculations. The approximating function, called the response surface, is then used to replace the code in subsequent repetitive computations required in a statistical analysis. The procedure of the response surface development and feasibility of the method are shown using a sample problem in slop stability which is based on data from centrifuge experiments of model soil slopes and involves five random soil parameters. It is shown that a response surface can be constructed based on as few as four code calculations and that the response surface is computationally extremely efficient compared to the code calculation. Potential applications of this research include probabilistic analysis of dynamic, complex, nonlinear soil/structure systems such as slope stability, liquefaction, and nuclear reactor safety.
Phased-mission system analysis using Boolean algebraic methods
NASA Technical Reports Server (NTRS)
Somani, Arun K.; Trivedi, Kishor S.
1993-01-01
Most reliability analysis techniques and tools assume that a system is used for a mission consisting of a single phase. However, multiple phases are natural in many missions. The failure rates of components, system configuration, and success criteria may vary from phase to phase. In addition, the duration of a phase may be deterministic or random. Recently, several researchers have addressed the problem of reliability analysis of such systems using a variety of methods. A new technique for phased-mission system reliability analysis based on Boolean algebraic methods is described. Our technique is computationally efficient and is applicable to a large class of systems for which the failure criterion in each phase can be expressed as a fault tree (or an equivalent representation). Our technique avoids state space explosion that commonly plague Markov chain-based analysis. A phase algebra to account for the effects of variable configurations and success criteria from phase to phase was developed. Our technique yields exact (as opposed to approximate) results. The use of our technique was demonstrated by means of an example and present numerical results to show the effects of mission phases on the system reliability.
NASA Astrophysics Data System (ADS)
Singh, Hukum
2016-06-01
An asymmetric scheme has been proposed for optical double images encryption in the gyrator wavelet transform (GWT) domain. Grayscale and binary images are encrypted separately using double random phase encoding (DRPE) in the GWT domain. Phase masks based on devil's vortex Fresnel Lens (DVFLs) and random phase masks (RPMs) are jointly used in spatial as well as in the Fourier plane. The images to be encrypted are first gyrator transformed and then single-level discrete wavelet transformed (DWT) to decompose LL , HL , LH and HH matrices of approximation, horizontal, vertical and diagonal coefficients. The resulting coefficients from the DWT are multiplied by other RPMs and the results are applied to inverse discrete wavelet transform (IDWT) for obtaining the encrypted images. The images are recovered from their corresponding encrypted images by using the correct parameters of the GWT, DVFL and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family, DVFL and gyrator transform orders associated with the GWT are extra keys that cause difficulty to an attacker. Thus, the scheme is more secure as compared to conventional techniques. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE) between recovered and the original images. The sensitivity of the proposed scheme is verified with encryption parameters and noise attacks.
Dalaudier, F; Kan, V; Gurvich, A S
2001-02-20
We describe refractive and chromatic effects, both regular and random, that occur during star occultations by the Earth's atmosphere. The scintillation that results from random density fluctuations, as well as the consequences of regular chromatic refraction, is qualitatively described. The resultant chromatic scintillation will produce random features on the Global Ozone Monitoring by Occultation of Stars (GOMOS) spectrometer, with an amplitude comparable with that of some of the real absorbing features that result from atmospheric constituents. A correction method that is based on the use of fast photometer signals is described, and its efficiency is discussed. We give a qualitative (although accurate) description of the phenomena, including numerical values when needed. Geometrical optics and the phase-screen approximation are used to keep the description simple.
Crystal structure and phase stability in Fe{sub 1{minus}x}Co{sub x} from AB initio theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soederlind, P.; Abrikosov, I.A.; James, P.
1996-06-01
For alloys between Fe and Co, their magnetic properties determine their structure. From the occupation of d states, a phase diagram is expected which depend largely on the spin polarization. A method more elaborate than canonical band models is used to calculate the spin moment and crystal structure energies. This method was the multisublattice generalization of the coherent potential approximation in conjunction with the Linear-Muffin-Tin-Orbital method in the atomic sphere approximation. To treat itinerant magnetism, the Vosko-Wilk-Nusair parameterization was used for the local spin density approximation. The fcc, bcc, and hcp phases were studied as completely random alloys, while themore » {alpha}{prime} phase for off-stoichiometries were considered as partially ordered. Results are compared with experiment and canonical band model.« less
NASA Astrophysics Data System (ADS)
Gambacurta, D.; Grasso, M.; Vasseur, O.
2018-02-01
The second random-phase-approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random-phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.
Topological analysis of the CfA redshift survey
NASA Technical Reports Server (NTRS)
Vogeley, Michael S.; Park, Changbom; Geller, Margaret J.; Huchra, John P.; Gott, J. Richard, III
1994-01-01
We study the topology of large-scale structure in the Center for Astrophysics Redshift Survey, which now includes approximately 12,000 galaxies with limiting magnitude m(sub B) is less than or equal to 15.5. The dense sampling and large volume of this survey allow us to compute the topology on smoothing scales from 6 to 20/h Mpc; we thus examine the topology of structure in both 'nonlinear' and 'linear' regimes. On smoothing scales less than or equal to 10/h Mpc this sample has 3 times the number of resolution elements of samples examined in previous studies. Isodensity surface of the smoothed galaxy density field demonstrate that coherent high-density structures and large voids dominate the galaxy distribution. We compute the genus-threshold density relation for isodensity surfaces of the CfA survey. To quantify phase correlation in these data, we compare the CfA genus with the genus of realizations of Gaussian random fields with the power spectrum measured for the CfA survey. On scales less than or equal to 10/h Mpc the observed genus amplitude is smaller than random phase (96% confidence level). This decrement reflects the degree of phase coherence in the observed galaxy distribution. In other words the genus amplitude on these scales is not good measure of the power spectrum slope. On scales greater than 10/h Mpc, where the galaxy distribution is rougly in the 'linear' regime, the genus ampitude is consistent with the random phase amplitude. The shape of the genus curve reflects the strong coherence in the observed structure; the observed genus curve appears broader than random phase (94% confidence level for smoothing scales less than or equal to 10/h Mpc) because the topolgoy is spongelike over a very large range of density threshold. This departre from random phase consistent with a distribution like a filamentary net of 'walls with holes.' On smoothing scales approaching approximately 20/h Mpc the shape of the CfA genus curve is consistent with random phase. There is very weak evidence for a shift of the genus toward a 'bubble-like' topology. To test cosmological models, we compute the genus for mock CfA surveys drawn from large (L greater than or approximately 400/h Mpc) N-body simulations of three variants of the cold dark matter (CDM) cosmogony. The genus amplitude of the 'standard' CDM model (omega h = 0.5, b = 1.5) differs from the observations (96% confidence level) on smoothing scales is less than or approximately 10/h Mpc. An open CDM model (omega h = 0.2) and a CDM model with nonzero cosmological constant (omega h = 0.24, lambda (sub 0) = 0.6) are consistent with the observed genus amplitude over the full range of smoothing scales. All of these models fail (97% confidence level) to match the broadness of the observed genus curve on smoothing scales is less than or equal to 10/h Mpc.
Approximate Genealogies Under Genetic Hitchhiking
Pfaffelhuber, P.; Haubold, B.; Wakolbinger, A.
2006-01-01
The rapid fixation of an advantageous allele leads to a reduction in linked neutral variation around the target of selection. The genealogy at a neutral locus in such a selective sweep can be simulated by first generating a random path of the advantageous allele's frequency and then a structured coalescent in this background. Usually the frequency path is approximated by a logistic growth curve. We discuss an alternative method that approximates the genealogy by a random binary splitting tree, a so-called Yule tree that does not require first constructing a frequency path. Compared to the coalescent in a logistic background, this method gives a slightly better approximation for identity by descent during the selective phase and a much better approximation for the number of lineages that stem from the founder of the selective sweep. In applications such as the approximation of the distribution of Tajima's D, the two approximation methods perform equally well. For relevant parameter ranges, the Yule approximation is faster. PMID:17182733
NASA Technical Reports Server (NTRS)
Tilley, David G.
1987-01-01
NASA Space Shuttle Challenger SIR-B ocean scenes are used to derive directional wave spectra for which speckle noise is modeled as a function of Rayleigh random phase coherence downrange and Poisson random amplitude errors inherent in the Doppler measurement of along-track position. A Fourier filter that preserves SIR-B image phase relations is used to correct the stationary and dynamic response characteristics of the remote sensor and scene correlator, as well as to subtract an estimate of the speckle noise component. A two-dimensional map of sea surface elevation is obtained after the filtered image is corrected for both random and deterministic motions.
NASA Astrophysics Data System (ADS)
Sato, Kazunori; Dederichs, Peter H.; Katayama-Yoshida, Hiroshi
2007-02-01
We investigate the electronic structure and magnetic properties of AlN-, AlP-, AlAs-, AlSb-, InN-, InP-, InAs-, and InSb-based dilute magnetic semiconductors (DMS) with Mn impurities from first-principles. The electronic structure of DMS is calculated by using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method in connection with the local density approximation (LDA) and the LDA+U method. Describing the magnetic properties by a classical Heisenberg model, effective exchange interactions are calculated by applying magnetic force theorem for two impurities embedded in the CPA medium. With the calculated exchange interactions, TC is estimated by using the mean field approximation, the random phase approximation and the Monte Carlo simulation. It is found that the p-d exchange model [Dietl et al.: Science 287 (2000) 1019] is adequate for a limited class of DMS and insufficient to describe the ferromagnetism in wide gap semiconductor based DMS such as (Ga,Mn)N and the presently investigated (Al,Mn)N and (In,Mn)N.
NASA Astrophysics Data System (ADS)
Paramonov, L. E.
2012-05-01
Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.
Spectral weight of excitations in Bose Hubbard model
NASA Astrophysics Data System (ADS)
Alavani, Bhargav K.; Pai, Ramesh V.
2017-05-01
We obtain excitation spectra in the superfluid and the Mott Insulator phases of Bose Hubbard model near unit filling within Random Phase Approximation (RPA) and calculate its spectral weight. This gives a transparent description of contribution of each excitation towards the total Density of States (DOS) which we calculate from these spectral weights.
Calculations of Hubbard U from first-principles
NASA Astrophysics Data System (ADS)
Aryasetiawan, F.; Karlsson, K.; Jepsen, O.; Schönberger, U.
2006-09-01
The Hubbard U of the 3d transition metal series as well as SrVO3 , YTiO3 , Ce, and Gd has been estimated using a recently proposed scheme based on the random-phase approximation. The values obtained are generally in good accord with the values often used in model calculations but for some cases the estimated values are somewhat smaller than those used in the literature. We have also calculated the frequency-dependent U for some of the materials. The strong frequency dependence of U in some of the cases considered in this paper suggests that the static value of U may not be the most appropriate one to use in model calculations. We have also made comparison with the constrained local density approximation (LDA) method and found some discrepancies in a number of cases. We emphasize that our scheme and the constrained local density approximation LDA method theoretically ought to give similar results and the discrepancies may be attributed to technical difficulties in performing calculations based on currently implemented constrained LDA schemes.
NASA Astrophysics Data System (ADS)
Tibi, R.; Young, C. J.; Gonzales, A.; Ballard, S.; Encarnacao, A. V.
2016-12-01
The matched filtering technique involving the cross-correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive, and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this study, we introduce an Approximate Nearest Neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation without requiring a complex distributed computing system. Our method begins with a projection into a reduced dimensionality space based on correlation with a randomized subset of the full template archive. Searching for a specified number of nearest neighbors is accomplished by using randomized K-dimensional trees. We used the approach to search for matches to each of 2700 analyst-reviewed signal detections reported for May 2010 for the IMS station MKAR. The template library in this case consists of a dataset of more than 200,000 analyst-reviewed signal detections for the same station from 2002-2014 (excluding May 2010). Of these signal detections, 60% are teleseismic first P, and 15% regional phases (Pn, Pg, Sn, and Lg). The analyses performed on a standard desktop computer shows that the proposed approach performs the search of the large template libraries about 20 times faster than the standard full linear search, while achieving recall rates greater than 80%, with the recall rate increasing for higher correlation values. To decide whether to confirm a match, we use a hybrid method involving a cluster approach for queries with two or more matches, and correlation score for single matches. Of the signal detections that passed our confirmation process, 52% were teleseismic first P, and 30% were regional phases.
NASA Astrophysics Data System (ADS)
Ohlídal, Ivan; Vohánka, Jiří; Čermák, Martin; Franta, Daniel
2017-10-01
The modification of the effective medium approximation for randomly microrough surfaces covered by very thin overlayers based on inhomogeneous fictitious layers is formulated. The numerical analysis of this modification is performed using simulated ellipsometric data calculated using the Rayleigh-Rice theory. The system used to perform this numerical analysis consists of a randomly microrough silicon single crystal surface covered with a SiO2 overlayer. A comparison to the effective medium approximation based on homogeneous fictitious layers is carried out within this numerical analysis. For ellipsometry of the system mentioned above the possibilities and limitations of both the effective medium approximation approaches are discussed. The results obtained by means of the numerical analysis are confirmed by the ellipsometric characterization of two randomly microrough silicon single crystal substrates covered with native oxide overlayers. It is shown that the effective medium approximation approaches for this system exhibit strong deficiencies compared to the Rayleigh-Rice theory. The practical consequences implied by these results are presented. The results concerning the random microroughness are verified by means of measurements performed using atomic force microscopy.
Stiffness-constant variation in nickel-based alloys: Experiment and theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennion, M.; Hennion, B.
1979-01-01
Recent measurements of the spin-wave stiffness constant in several nickel alloys at various concentrations are interpreted within a random-phase approximation, coherent-potential approximation (RPA-CPA) band model which uses the Hartree-Fock approximation to treat the intraatomic correlations. We give a theoretical description of the possible impurity states in the Hartree-Fock approximation. This allows the determination of the Hartree-Fock solutions which can account for the stiffness-constant behavior and the magnetic moment on the impurity for all the investigated alloys. For alloys such as NiCr, NiV, NiMo, and NiRu, the magnetizations of which deviate from the Slater-Pauling curve, our determination does not correspond tomore » previous works and is consequently discussed. The limits of the model appear mainly due to local-environment effects; in the case of NiMn, it is found that a ternary-alloy model with some Mn atoms in the antiferromagnetic state can account for both stiffness-constant and magnetization behaviors.« less
Isoscalar giant resonances in Ca48
NASA Astrophysics Data System (ADS)
Lui, Y.-W.; Youngblood, D. H.; Shlomo, S.; Chen, X.; Tokimoto, Y.; Krishichayan; Anders, M.; Button, J.
2011-04-01
The giant resonance region from 9.5 MeV < Ex < 40 MeV in Ca48 has been studied with inelastic scattering of 240-MeV α particles at small angles, including 0°. 95-15+11% of E0 energy-weighted sum rule (EWSR), 83-16+10% of E2 EWSR, and 137 ± 20% of E1 EWSR were located below Ex=40 MeV. A comparison of the experimental data with calculated results for the isoscalar giant monopole resonance, obtained within the mean-field-based random-phase approximation, is also given.
Plasmon modes of bilayer molybdenum disulfide: a density functional study
NASA Astrophysics Data System (ADS)
Torbatian, Z.; Asgari, R.
2017-11-01
We explore the collective electronic excitations of bilayer molybdenum disulfide (MoS2) using density functional theory together with random phase approximation. The many-body dielectric function and electron energy-loss spectra are calculated using an ab initio based model involving material-realistic physical properties. The electron energy-loss function of the bilayer MoS2 system is found to be sensitive to either electron or hole doping and this is due to the fact that the Kohn-Sham band dispersions are not symmetric for energies above and below the zero Fermi level. Three plasmon modes are predicted, a damped high-energy mode, one optical mode (in-phase mode) for which the plasmon dispersion exhibits \\sqrt q in the long wavelength limit originating from low-energy electron scattering and finally a highly damped acoustic mode (out-of-phase mode).
Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias
2011-04-15
The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.
Low-lying dipole modes in 26,28Ne in the quasiparticle relativistic random phase approximation
NASA Astrophysics Data System (ADS)
Cao, Li-Gang; Ma, Zhong-Yu
2005-03-01
The low-lying isovector dipole strengths in the neutron-rich nuclei 26Ne and 28Ne are investigated in the quasiparticle relativistic random phase approximation. Nuclear ground-state properties are calculated in an extended relativistic mean field theory plus Bardeen-Cooper-Schrieffer (BCS) method where the contribution of the resonant continuum to pairing correlations is properly treated. Numerical calculations are tested in the case of isovector dipole and isoscalar quadrupole modes in the neutron-rich nucleus 22O. It is found that in the present calculation, low-lying isovector dipole strengths at Ex<10MeV in nuclei 26Ne and 26Ne exhaust about 4.9% and 5.8% of the Thomas-Reiche-Kuhn dipole sum rule, respectively. The centroid energy of the low-lying dipole excitation is located at 8.3 MeV in 26Ne and 7.9 MeV in 28Ne.
A simple but fully nonlocal correction to the random phase approximation
NASA Astrophysics Data System (ADS)
Ruzsinszky, Adrienn; Perdew, John P.; Csonka, Gábor I.
2011-03-01
The random phase approximation (RPA) stands on the top rung of the ladder of ground-state density functional approximations. The simple or direct RPA has been found to predict accurately many isoelectronic energy differences. A nonempirical local or semilocal correction to this direct RPA leaves isoelectronic energy differences almost unchanged, while improving total energies, ionization energies, etc., but fails to correct the RPA underestimation of molecular atomization energies. Direct RPA and its semilocal correction may miss part of the middle-range multicenter nonlocality of the correlation energy in a molecule. Here we propose a fully nonlocal, hybrid-functional-like addition to the semilocal correction. The added full nonlocality is important in molecules, but not in atoms. Under uniform-density scaling, this fully nonlocal correction scales like the second-order-exchange contribution to the correlation energy, an important part of the correction to direct RPA, and like the semilocal correction itself. For the atomization energies of ten molecules, and with the help of one fit parameter, it performs much better than the elaborate second-order screened exchange correction.
NASA Astrophysics Data System (ADS)
Pahlavani, M. R.; Firoozi, B.
2016-09-01
γ-ray transitions from excited states of {}16{{N}} and {}16{{O}} isomers that appear in the γ spectrum of the {}616{{{C}}}10\\to {}716{{{N}}}9\\to {}816{{{O}}}8 beta decay chain are investigated. The theoretical approach used in this research starts with a mean-field potential consisting of a phenomenological Woods-Saxon potential including spin-orbit and Coulomb terms (for protons) in order to obtain single-particle energies and wave functions for nucleons in a nucleus. A schematic residual surface delta interaction is then employed on the top of the mean field and is treated within the proton-neutron Tamm-Dancoff approximation (pnTDA) and the proton-neutron random phase approximation. The goal is to use an optimized surface delta interaction interaction, as a residual interaction, to improve the results. We have used artificial intelligence algorithms to establish a good agreement between theoretical and experimental energy spectra. The final results of the ‘optimized’ calculations are reasonable via this approach.
Modelling the light-scattering properties of a planetary-regolith analog sample
NASA Astrophysics Data System (ADS)
Vaisanen, T.; Markkanen, J.; Hadamcik, E.; Levasseur-Regourd, A. C.; Lasue, J.; Blum, J.; Penttila, A.; Muinonen, K.
2017-12-01
Solving the scattering properties of asteroid surfaces can be made cheaper, faster, and more accurate with reliable physics-based electromagnetic scattering programs for large and dense random media. Existing exact methods fail to produce solutions for such large systems and it is essential to develop approximate methods. Radiative transfer (RT) is an approximate method which works for sparse random media such as atmospheres fails when applied to dense media. In order to make the method applicable to dense media, we have developed a radiative-transfer coherent-backscattering method (RT-CB) with incoherent interactions. To show the current progress with the RT-CB, we have modeled a planetary-regolith analog sample. The analog sample is a low-density agglomerate produced by random ballistic deposition of almost equisized silicate spheres studied using the PROGRA2-surf experiment. The scattering properties were then computed with the RT-CB assuming that the silicate spheres were equisized and that there were a Gaussian particle size distribution. The results were then compared to the measured data and the intensity plot is shown below. The phase functions are normalized to unity at the 40-deg phase angle. The tentative intensity modeling shows good match with the measured data, whereas the polarization modeling shows discrepancies. In summary, the current RT-CB modeling is promising, but more work needs to be carried out, in particular, for modeling the polarization. Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL, Scattering and Absorption of ElectroMagnetic waves in ParticuLate media. Computational resources provided by CSC - IT Centre for Science Ltd, Finland.
Autonomous Modeling, Statistical Complexity and Semi-annealed Treatment of Boolean Networks
NASA Astrophysics Data System (ADS)
Gong, Xinwei
This dissertation presents three studies on Boolean networks. Boolean networks are a class of mathematical systems consisting of interacting elements with binary state variables. Each element is a node with a Boolean logic gate, and the presence of interactions between any two nodes is represented by directed links. Boolean networks that implement the logic structures of real systems are studied as coarse-grained models of the real systems. Large random Boolean networks are studied with mean field approximations and used to provide a baseline of possible behaviors of large real systems. This dissertation presents one study of the former type, concerning the stable oscillation of a yeast cell-cycle oscillator, and two studies of the latter type, respectively concerning the statistical complexity of large random Boolean networks and an extension of traditional mean field techniques that accounts for the presence of short loops. In the cell-cycle oscillator study, a novel autonomous update scheme is introduced to study the stability of oscillations in small networks. A motif that corrects pulse-growing perturbations and a motif that grows pulses are identified. A combination of the two motifs is capable of sustaining stable oscillations. Examining a Boolean model of the yeast cell-cycle oscillator using an autonomous update scheme yields evidence that it is endowed with such a combination. Random Boolean networks are classified as ordered, critical or disordered based on their response to small perturbations. In the second study, random Boolean networks are taken as prototypical cases for the evaluation of two measures of complexity based on a criterion for optimal statistical prediction. One measure, defined for homogeneous systems, does not distinguish between the static spatial inhomogeneity in the ordered phase and the dynamical inhomogeneity in the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing complexity values for networks in the ordered and critical phases and for highly disordered networks, peaking somewhere in the disordered phase. Individual nodes with high complexity have, on average, a larger influence on the system dynamics. Lastly, a semi-annealed approximation that preserves the correlation between states at neighboring nodes is introduced to study a social game-inspired network model in which all links are bidirectional and all nodes have a self-input. The technique developed here is shown to yield accurate predictions of distribution of players' states, and accounts for some nontrivial collective behavior of game theoretic interest.
Feng, Hao; Ashkar, Rana; Steinke, Nina; ...
2018-02-01
A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less
NASA Astrophysics Data System (ADS)
Li, Shang; Kobayashi, Yoshiaki; Itoh, Masayuki; Hirai, Daigorou; Takagi, Hidenori
2017-04-01
31P NMR measurements have been made on polycrystalline samples to study a metal-insulator (MI) transition and magnetic fluctuations in Ru1 -xRhxP which has metallic (M), pseudogap (PG), insulating (I), and superconducting (SC) phases. We find that RuP undergoes a crossover from the high-temperature (high-T ) M phase to the PG phase with the pseudo spin-gap behavior probed by the nuclear spin-lattice relaxation rate at TPG=330 K . The first-order MI transition is observed to take place from the PG phase to the low-T nonmagnetic I phase with the spin-gap energy of 1250 K at TMI=270 K . In the PG phase of Ru1 -xRhxP with 0 ≤x <0.45 , an analysis based on the modified Korringa relation, which is applicable to an itinerant paramagnet with weak electron correlation, shows that antiferromagnetic (AFM) fluctuations described in the random-phase approximation are enhanced in the low-T and low-x region. Around the PG-M phase boundary at xc˜0.45 , there is the SC phase whose normal state has negligible electron-electron interaction. We discuss the MI transition, the crossover from the M phase to the PG phase, and the magnetic properties of each phase based on the band structure.
Saxvig, Ingvild West; Wilhelmsen-Langeland, Ane; Pallesen, Ståle; Vedaa, Oystein; Nordhus, Inger Hilde; Bjorvatn, Bjørn
2014-02-01
Delayed sleep phase disorder (DSPD) is assumed to be common amongst adolescents, with potentially severe consequences in terms of school attendance and daytime functioning. The most common treatment approaches for DSPD are based on the administration of bright light and/or exogenous melatonin with or without adjunct behavioural instructions. Much is generally known about the chronobiological effects of light and melatonin. However, placebo-controlled treatment studies for DSPD are scarce, in particular in adolescents and young adults, and no standardized guidelines exist regarding treatment. The aim of the present study was, therefore, to investigate the short- and long-term effects on sleep of a DSPD treatment protocol involving administration of timed bright light and melatonin alongside gradual advancement of rise time in adolescents and young adults with DSPD in a randomized controlled trial and an open label follow-up study. A total of 40 adolescents and young adults (age range 16-25 years) diagnosed with DSPD were recruited to participate in the study. The participants were randomized to receive treatment for two weeks in one of four treatment conditions: dim light and placebo capsules, bright light and placebo capsules, dim light and melatonin capsules or bright light and melatonin capsules. In a follow-up study, participants were re-randomized to either receive treatment with the combination of bright light and melatonin or no treatment in an open label trial for approximately three months. Light and capsules were administered alongside gradual advancement of rise times. The main end points were sleep as assessed by sleep diaries and actigraphy recordings and circadian phase as assessed by salivary dim light melatonin onset (DLMO). During the two-week intervention, the timing of sleep and DLMO was advanced in all treatment conditions as seen by about 1 h advance of bed time, 2 h advance of rise time and 2 h advance of DLMO in all four groups. Sleep duration was reduced with approximately 1 h. At three-month follow-up, only the treatment group had maintained an advanced sleep phase. Sleep duration had returned to baseline levels in both groups. In conclusion, gradual advancement of rise time produced a phase advance during the two-week intervention, irrespective of treatment condition. Termination of treatment caused relapse into delayed sleep times, whereas long-term treatment with bright light and melatonin (three months) allowed maintenance of the advanced sleep phase.
Regular and Random Components in Aiming-Point Trajectory During Rifle Aiming and Shooting
Goodman, Simon; Haufler, Amy; Shim, Jae Kun; Hatfield, Bradley
2009-01-01
The authors examined the kinematic qualities of the aiming trajectory as related to expertise. In all, 2 phases of the trajectory were discriminated. The first phase was regular approximation to the target accompanied by substantial fluctuations obeying the Weber–Fechner law. During the first phase, shooters did not initiate the triggering despite any random closeness of the aiming point (AP) to the target. In the second phase, beginning at 0.6–0.8 s before the trigger pull, shooters applied a different control strategy: They waited until the following random fluctuation brought the AP closer to the target and then initiated triggering. This strategy is tenable when sensitivity of perception is greater than precision of the motor action, and could be considered a case of stochastic resonance. The strategies that novices and experts used distinguished only in the values of parameters. The authors present an analytical model explaining the main properties of shooting. PMID:19508963
Reference Determinant Dependence of the Random Phase Approximation in 3d Transition Metal Chemistry.
Bates, J E; Mezei, P D; Csonka, G I; Sun, J; Ruzsinszky, A
2017-01-10
Without extensive fitting, accurate prediction of transition metal chemistry is a challenge for semilocal and hybrid density funcitonals. The Random Phase Approximation (RPA) has been shown to yield superior results to semilocal functionals for main group thermochemistry, but much less is known about its performance for transition metals. We have therefore analyzed the behavior of reaction energies, barrier heights, and ligand dissociation energies obtained with RPA and compare our results to several semilocal and hybrid functionals. Particular attention is paid to the reference determinant dependence of RPA. We find that typically the results do not vary much between semilocal or hybrid functionals as a reference, as long as the fraction of exact exchange (EXX) mixing in the hybrid functional is small. For large fractions of EXX mixing, however, the Hartree-Fock-like nature of the determinant can severely degrade the performance. Overall, RPA systematically reduces the errors of semilocal functionals and delivers excellent performance from a single reference determinant for inherently multireference reactions. The behavior of dual hybrids that combine RPA correlation with a hybrid exchange energy was also explored, but ultimately did not lead to a systematic improvement compared to traditional RPA for these systems. We rationalize this conclusion by decomposing the contributions to the reaction energies, and briefly discuss the possible implications for double-hybrid functionals based on RPA. The correlation between EXX mixing and spin-symmetry breaking is also discussed.
NASA Astrophysics Data System (ADS)
Bi, Lei; Yang, Ping
2016-07-01
The accuracy of the physical-geometric optics (PG-O) approximation is examined for the simulation of electromagnetic scattering by nonspherical dielectric particles. This study seeks a better understanding of the tunneling effect on the phase matrix by employing the invariant imbedding method to rigorously compute the zeroth-order Debye series, from which the tunneling efficiency and the phase matrix corresponding to the diffraction and external reflection are obtained. The tunneling efficiency is shown to be a factor quantifying the relative importance of the tunneling effect over the Fraunhofer diffraction near the forward scattering direction. Due to the tunneling effect, different geometries with the same projected cross section might have different diffraction patterns, which are traditionally assumed to be identical according to the Babinet principle. For particles with a fixed orientation, the PG-O approximation yields the external reflection pattern with reasonable accuracy, but ordinarily fails to predict the locations of peaks and minima in the diffraction pattern. The larger the tunneling efficiency, the worse the PG-O accuracy is at scattering angles less than 90°. If the particles are assumed to be randomly oriented, the PG-O approximation yields the phase matrix close to the rigorous counterpart, primarily due to error cancellations in the orientation-average process. Furthermore, the PG-O approximation based on an electric field volume-integral equation is shown to usually be much more accurate than the Kirchhoff surface integral equation at side-scattering angles, particularly when the modulus of the complex refractive index is close to unity. Finally, tunneling efficiencies are tabulated for representative faceted particles.
A Comparison of Three Random Number Generators for Aircraft Dynamic Modeling Applications
NASA Technical Reports Server (NTRS)
Grauer, Jared A.
2017-01-01
Three random number generators, which produce Gaussian white noise sequences, were compared to assess their suitability in aircraft dynamic modeling applications. The first generator considered was the MATLAB (registered) implementation of the Mersenne-Twister algorithm. The second generator was a website called Random.org, which processes atmospheric noise measured using radios to create the random numbers. The third generator was based on synthesis of the Fourier series, where the random number sequences are constructed from prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random numbers, for each generator were collected and analyzed in terms of the mean, variance, normality, autocorrelation, and power spectral density. These sequences were then applied to two problems in aircraft dynamic modeling, namely estimating stability and control derivatives from simulated onboard sensor data, and simulating flight in atmospheric turbulence. In general, each random number generator had good performance and is well-suited for aircraft dynamic modeling applications. Specific strengths and weaknesses of each generator are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended because it most accurately and consistently approximated Gaussian white noise and can be implemented with reasonable computational effort.
NASA Astrophysics Data System (ADS)
Archer, Andrew J.; Chacko, Blesson; Evans, Robert
2017-07-01
In classical density functional theory (DFT), the part of the Helmholtz free energy functional arising from attractive inter-particle interactions is often treated in a mean-field or van der Waals approximation. On the face of it, this is a somewhat crude treatment as the resulting functional generates the simple random phase approximation (RPA) for the bulk fluid pair direct correlation function. We explain why using standard mean-field DFT to describe inhomogeneous fluid structure and thermodynamics is more accurate than one might expect based on this observation. By considering the pair correlation function g(x) and structure factor S(k) of a one-dimensional model fluid, for which exact results are available, we show that the mean-field DFT, employed within the test-particle procedure, yields results much superior to those from the RPA closure of the bulk Ornstein-Zernike equation. We argue that one should not judge the quality of a DFT based solely on the approximation it generates for the bulk pair direct correlation function.
Model of chiral spin liquids with Abelian and non-Abelian topological phases
NASA Astrophysics Data System (ADS)
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; Tsvelik, A. M.
2017-12-01
We present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, the Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.
Realization of a mixed-symmetry superconducting gap in correlated organic metals
NASA Astrophysics Data System (ADS)
Altmeyer, Michaela; Guterding, Daniel; Jeschke, Harald O.; Diehl, Sandra; Methfessel, Torsten; Tutsch, Ulrich; Schubert, Harald; Lang, Michael; Müller, Jens; Huth, Michael; Jourdan, Martin; Elmers, Hans-Joachim; Valenti, Roser
Recent scanning tunneling spectroscopy measurements on the organic charge tranfer salt κ-(BEDT-TTF)2Cu[N(CN)2]Br show clear evidence of a highly anisotropic gap structure. Based on an ab initio derived model Hamiltonian we employ random phase approximation spin fluctuation theory yielding a composite order parameter of (extended) s+dx2-y2 symmetry. Taking explicitly also the shape of the Fermi surface into account we calculate STS spectra that are in excellent agreement to the experimental observations [1]. Moreover we determine the minimal tight binding model to describe the general lattice structure of these compounds accurately and generate a phase diagram for the gap symmetry by varying the hopping parameters. Based on ab initio derived parameter sets we predict the gap symmetry of other superconducting κ charge transfer salts. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TR 49.
He, Pingan; Jagannathan, S
2007-04-01
A novel adaptive-critic-based neural network (NN) controller in discrete time is designed to deliver a desired tracking performance for a class of nonlinear systems in the presence of actuator constraints. The constraints of the actuator are treated in the controller design as the saturation nonlinearity. The adaptive critic NN controller architecture based on state feedback includes two NNs: the critic NN is used to approximate the "strategic" utility function, whereas the action NN is employed to minimize both the strategic utility function and the unknown nonlinear dynamic estimation errors. The critic and action NN weight updates are derived by minimizing certain quadratic performance indexes. Using the Lyapunov approach and with novel weight updates, the uniformly ultimate boundedness of the closed-loop tracking error and weight estimates is shown in the presence of NN approximation errors and bounded unknown disturbances. The proposed NN controller works in the presence of multiple nonlinearities, unlike other schemes that normally approximate one nonlinearity. Moreover, the adaptive critic NN controller does not require an explicit offline training phase, and the NN weights can be initialized at zero or random. Simulation results justify the theoretical analysis.
Low-Energy Excitation Spectra in the Excitonic Phase of Cobalt Oxides
NASA Astrophysics Data System (ADS)
Yamaguchi, Tomoki; Sugimoto, Koudai; Ohta, Yukinori
2017-04-01
We study the excitonic phase and low-energy excitation spectra of perovskite cobalt oxides. Constructing the five-orbital Hubbard model defined on the three-dimensional cubic lattice for the 3d bands of Pr0.5Ca0.5CoO3, we calculate the excitonic susceptibility in the normal state in the random-phase approximation (RPA) to show the presence of the instability toward excitonic condensation. On the basis of the excitonic ground state with a magnetic multipole obtained in the mean-field approximation, we calculate the dynamical susceptibility of the excitonic phase in the RPA and find that there appear a gapless collective excitation in the spin-transverse mode (Goldstone mode) and a gapful collective excitation in the spin-longitudinal mode (Higgs mode). The experimental relevance of our results is discussed.
Wang, Xiaogang; Chen, Wen; Chen, Xudong
2015-03-09
In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system.
NASA Astrophysics Data System (ADS)
Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo
2018-01-01
An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.
Skyrme RPA description of γ-vibrational states in rare-earth nuclei
NASA Astrophysics Data System (ADS)
Nesterenko, V. O.; Kartavenko, V. G.; Kleinig, W.; Kvasil, J.; Repko, A.; Jolos, R. V.; Reinhard, P.-G.
2016-01-01
The lowest γ-vibrational states with Kπ = 2+γ in well-deformed Dy, Er and Yb isotopes are investigated within the self-consistent separable quasiparticle random-phase-approximation (QRPA) approach based on the Skyrme functional. The energies Eγ and reduced transition probabilities B(E2)γ of the states are calculated with the Skyrme force SV-mas10. We demonstrate the strong effect of the pairing blocking on the energies of γ-vibrational states. It is also shown that collectivity of γ-vibrational states is strictly determined by keeping the Nilsson selection rules in the corresponding lowest 2qp configurations.
Influence of complex configurations on properties of pygmy dipole resonances
NASA Astrophysics Data System (ADS)
Arsenyev, N. N.; Severyukhin, A. P.; Voronov, V. V.; Van Giai, Nguyen
2018-05-01
Starting from the quasiparticle random phase approximation based on the Skyrme interaction SLy5, we study the effects of phonon-phonon coupling (PPC) on the low-energy electric dipole responses in some spherical nuclei. The inclusion of the PPC results in the formation of low-energy 1‑ states. There is an impact of the PPC effect on low-energy E1 strength. The PPC effect on the electric dipole polarizability is discussed. We predict a strong increase of the summed E1 strength below 10 MeV, with increasing neutron number from 48Ca till 58Ca.
Yasui, S; Young, L R
1984-01-01
Smooth pursuit and saccadic components of foveal visual tracking as well as more involuntary ocular movements of optokinetic (o.k.n.) and vestibular nystagmus slow phase components were investigated in man, with particular attention given to their possible input-adaptive or predictive behaviour. Each component in question was isolated from the eye movement records through a computer-aided procedure. The frequency response method was used with sinusoidal (predictable) and pseudo-random (unpredictable) stimuli. When the target motion was pseudo-random, the frequency response of pursuit eye movements revealed a large phase lead (up to about 90 degrees) at low stimulus frequencies. It is possible to interpret this result as a predictive effect, even though the stimulation was pseudo-random and thus 'unpredictable'. The pseudo-random-input frequency response intrinsic to the saccadic system was estimated in an indirect way from the pursuit and composite (pursuit + saccade) frequency response data. The result was fitted well by a servo-mechanism model, which has a simple anticipatory mechanism to compensate for the inherent neuromuscular saccadic delay by utilizing the retinal slip velocity signal. The o.k.n. slow phase also exhibited a predictive effect with sinusoidal inputs; however, pseudo-random stimuli did not produce such phase lead as found in the pursuit case. The vestibular nystagmus slow phase showed no noticeable sign of prediction in the frequency range examined (0 approximately 0.7 Hz), in contrast to the results of the visually driven eye movements (i.e. saccade, pursuit and o.k.n. slow phase) at comparable stimulus frequencies. PMID:6707954
Convergence behavior of the random phase approximation renormalized correlation energy
NASA Astrophysics Data System (ADS)
Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn
2017-05-01
Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.
Recursive approach to the moment-based phase unwrapping method.
Langley, Jason A; Brice, Robert G; Zhao, Qun
2010-06-01
The moment-based phase unwrapping algorithm approximates the phase map as a product of Gegenbauer polynomials, but the weight function for the Gegenbauer polynomials generates artificial singularities along the edge of the phase map. A method is presented to remove the singularities inherent to the moment-based phase unwrapping algorithm by approximating the phase map as a product of two one-dimensional Legendre polynomials and applying a recursive property of derivatives of Legendre polynomials. The proposed phase unwrapping algorithm is tested on simulated and experimental data sets. The results are then compared to those of PRELUDE 2D, a widely used phase unwrapping algorithm, and a Chebyshev-polynomial-based phase unwrapping algorithm. It was found that the proposed phase unwrapping algorithm provides results that are comparable to those obtained by using PRELUDE 2D and the Chebyshev phase unwrapping algorithm.
NASA Astrophysics Data System (ADS)
Garza, Alejandro J.; Bulik, Ireneusz W.; Alencar, Ana G. Sousa; Sun, Jianwei; Perdew, John P.; Scuseria, Gustavo E.
2016-04-01
Contrary to standard coupled cluster doubles (CCD) and Brueckner doubles (BD), singlet-paired analogues of CCD and BD (denoted here as CCD0 and BD0) do not break down when static correlation is present, but neglect substantial amounts of dynamic correlation. In fact, CCD0 and BD0 do not account for any contributions from multielectron excitations involving only same-spin electrons at all. We exploit this feature to add - without introducing double counting, self-interaction, or increase in cost - the missing correlation to these methods via meta-GGA (generalised gradient approximation) density functionals (Tao-Perdew-Staroverov-Scuseria and strongly constrained and appropriately normed). Furthermore, we improve upon these CCD0+DFT blends by invoking range separation: the short- and long-range correlations absent in CCD0/BD0 are evaluated with density functional theory and the direct random phase approximation, respectively. This corrects the description of long-range van der Waals forces. Comprehensive benchmarking shows that the combinations presented here are very accurate for weakly correlated systems, while also providing a reasonable description of strongly correlated problems without resorting to symmetry breaking.
Roles of antinucleon degrees of freedom in the relativistic random phase approximation
NASA Astrophysics Data System (ADS)
Kurasawa, Haruki; Suzuki, Toshio
2015-11-01
The roles of antinucleon degrees of freedom in the relativistic random phase approximation (RPA) are investigated. The energy-weighted sum of the RPA transition strengths is expressed in terms of the double commutator between the excitation operator and the Hamiltonian, as in nonrelativistic models. The commutator, however, should not be calculated in the usual way in the local field theory, because, otherwise, the sum vanishes. The sum value obtained correctly from the commutator is infinite, owing to the Dirac sea. Most of the previous calculations take into account only some of the nucleon-antinucleon states, in order to avoid divergence problems. As a result, RPA states with negative excitation energy appear, which make the sum value vanish. Moreover, disregarding the divergence changes the sign of nuclear interactions in the RPA equation that describes the coupling of the nucleon particle-hole states with the nucleon-antinucleon states. Indeed, the excitation energies of the spurious state and giant monopole states in the no-sea approximation are dominated by these unphysical changes. The baryon current conservation can be described without touching the divergence problems. A schematic model with separable interactions is presented, which makes the structure of the relativistic RPA transparent.
Santoyo-Olsson, Jasmine; Cabrera, Julissa; Freyre, Rachel; Grossman, Melanie; Alvarez, Natalie; Mathur, Deepika; Guerrero, Maria; Delgadillo, Adriana T.; Kanaya, Alka M.; Stewart, Anita L.
2011-01-01
Purpose: To conduct and evaluate a two-phased community-based approach to recruit lower socioeconomic status, minority, or Spanish-speaking adults at risk of developing diabetes to a randomized trial of a lifestyle intervention program delivered by a public health department. Design: Within geographic areas comprising our target population, 4 community organizations provided local space for conducting the study and program. Phase I—outreach in venues surrounding these organizations—included diabetes education, a short diabetes risk appraisal (DRA), and diabetes risk screening based on a fasting fingerstick glucose test. Phase II—trial recruitment—began concurrently for those found to be at risk of developing diabetes in Phase I by explaining the study, lifestyle program, and research process. Those interested and eligible enrolled in the 1-year study. Results: Over 2 years, approximately 5,110 individuals received diabetes education, 1,917 completed a DRA, and 1,164 were screened of which 641 (55%) had an elevated fingerstick result of ≥106 mg/dl. Of the study sampling frame—persons over age 25 at risk of developing diabetes (N = 544)—238 (43%) enrolled in the trial; of those who were study eligible (n = 427), 56% enrolled. In the final sample, mean age was 56 years (SD = 17), 78% were ethnic minorities, 32% were Spanish-speaking, and 15% had a high school education or less. Implications: Providing diabetes health education and screening prior to study recruitment may help overcome barriers to research participation in underserved communities, thus helping address difficulties recruiting minority and older populations into research, particularly research pertaining to chronic disease risk factors. PMID:21565823
Estimation of gloss from rough surface parameters
NASA Astrophysics Data System (ADS)
Simonsen, Ingve; Larsen, Åge G.; Andreassen, Erik; Ommundsen, Espen; Nord-Varhaug, Katrin
2005-12-01
Gloss is a quantity used in the optical industry to quantify and categorize materials according to how well they scatter light specularly. With the aid of phase perturbation theory, we derive an approximate expression for this quantity for a one-dimensional randomly rough surface. It is demonstrated that gloss depends in an exponential way on two dimensionless quantities that are associated with the surface randomness: the root-mean-square roughness times the perpendicular momentum transfer for the specular direction, and a correlation function dependent factor times a lateral momentum variable associated with the collection angle. Rigorous Monte Carlo simulations are used to access the quality of this approximation, and good agreement is observed over large regions of parameter space.
NASA Astrophysics Data System (ADS)
Eshuis, Henk; Yarkony, Julian; Furche, Filipp
2010-06-01
The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N4 log N) operations and O(N3) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield μH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.
Eshuis, Henk; Yarkony, Julian; Furche, Filipp
2010-06-21
The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N(4) log N) operations and O(N(3)) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield muH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.
Range-Separated Brueckner Coupled Cluster Doubles Theory
NASA Astrophysics Data System (ADS)
Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.
2014-04-01
We introduce a range-separation approximation to coupled cluster doubles (CCD) theory that successfully overcomes limitations of regular CCD when applied to the uniform electron gas. We combine the short-range ladder channel with the long-range ring channel in the presence of a Bruckner renormalized one-body interaction and obtain ground-state energies with an accuracy of 0.001 a.u./electron across a wide range of density regimes. Our scheme is particularly useful in the low-density and strongly correlated regimes, where regular CCD has serious drawbacks. Moreover, we cure the infamous overcorrelation of approaches based on ring diagrams (i.e., the particle-hole random phase approximation). Our energies are further shown to have appropriate basis set and thermodynamic limit convergence, and overall this scheme promises energetic properties for realistic periodic and extended systems which existing methods do not possess.
Yan, Xin-Zhong
2011-07-01
The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green's function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.
Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach
NASA Astrophysics Data System (ADS)
Lyutorovich, N.; Tselyaev, V.; Speth, J.; Krewald, S.; Grümmer, F.; Reinhard, P.-G.
2015-10-01
We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree-Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.
Review of Random Phase Encoding in Volume Holographic Storage
Su, Wei-Chia; Sun, Ching-Cherng
2012-01-01
Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.
Importance of σ Bonding Electrons for the Accurate Description of Electron Correlation in Graphene.
Zheng, Huihuo; Gan, Yu; Abbamonte, Peter; Wagner, Lucas K
2017-10-20
Electron correlation in graphene is unique because of the interplay between the Dirac cone dispersion of π electrons and long-range Coulomb interaction. Because of the zero density of states at Fermi level, the random phase approximation predicts no metallic screening at long distance and low energy, so one might expect that graphene should be a poorly screened system. However, empirically graphene is a weakly interacting semimetal, which leads to the question of how electron correlations take place in graphene at different length scales. We address this question by computing the equal time and dynamic structure factor S(q) and S(q,ω) of freestanding graphene using ab initio fixed-node diffusion Monte Carlo simulations and the random phase approximation. We find that the σ electrons contribute strongly to S(q,ω) for relevant experimental values of ω even at distances up to around 80 Å. These findings illustrate how the emergent physics from underlying Coulomb interactions results in the observed weakly correlated semimetal.
Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation
NASA Astrophysics Data System (ADS)
Leconte, Nicolas; Jung, Jeil; Lebègue, Sébastien; Gould, Tim
2017-11-01
Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two-dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. Here we study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) homo- and heterostructures using high-level random-phase approximation (RPA) ab initio calculations. Our results show that although total binding energies within LDA and RPA differ substantially by a factor of 200%-400%, the energy differences as a function of stacking configuration yield nearly constant values with variations smaller than 20%, meaning that LDA estimates are quite reliable. We produce phenomenological fits to these energy differences, which allows us to calculate various properties of interest including interlayer spacing, sliding energetics, pressure gradients, and elastic coefficients to high accuracy. The importance of long-range interactions (captured by RPA but not LDA) on various properties is also discussed. Parametrizations for all fits are provided.
NASA Astrophysics Data System (ADS)
Jin, Ye; Yang, Yang; Zhang, Du; Peng, Degao; Yang, Weitao
2017-10-01
The optimized effective potential (OEP) that gives accurate Kohn-Sham (KS) orbitals and orbital energies can be obtained from a given reference electron density. These OEP-KS orbitals and orbital energies are used here for calculating electronic excited states with the particle-particle random phase approximation (pp-RPA). Our calculations allow the examination of pp-RPA excitation energies with the exact KS density functional theory (DFT). Various input densities are investigated. Specifically, the excitation energies using the OEP with the electron densities from the coupled-cluster singles and doubles method display the lowest mean absolute error from the reference data for the low-lying excited states. This study probes into the theoretical limit of the pp-RPA excitation energies with the exact KS-DFT orbitals and orbital energies. We believe that higher-order correlation contributions beyond the pp-RPA bare Coulomb kernel are needed in order to achieve even higher accuracy in excitation energy calculations.
NASA Technical Reports Server (NTRS)
Wang, C.-W.; Stark, W.
2005-01-01
This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.
Osman, S M; Grosdidier, B; Ali, I; Abdellah, A Ben
2013-06-01
Quite recently, we reported a semianalytical equation of state (EOS) for the Ga-Pb alloy [Phys. Rev. B 78, 024205 (2008)], which was based on the first-order perturbation theory of fluid mixtures, within the simplified random phase approximation, in conjunction with the Grosdidier et al. model pair potentials for Ga-Ga and Pb-Pb with a suitable nonadditive pair potential between Ga-Pb unlike pairs. In the present work, we employ the present EOS to calculate the Ga-Pb phase diagram along the immiscibility gap region. The accuracy of the EOS is tested by consulting the empirical binodal curve. A statistical-mechanical-based theory for the surface tension is employed to obtain an analytical expression for the alloy surface tension. We calculated the surface tension along the bimodal curve and at extreme conditions of temperatures and pressures. The surface tension exhibits reasonably well the prewetting transition of Pb atoms at the surface of the Ga-rich liquid alloy and could qualitatively explain the prewetting phenomena occurring in the Ga-rich side of the phase diagram. The predicted prewetting line and wetting temperature qualitatively agree with the empirical measurements.
Spectral estimation for characterization of acoustic aberration.
Varslot, Trond; Angelsen, Bjørn; Waag, Robert C
2004-07-01
Spectral estimation based on acoustic backscatter from a motionless stochastic medium is described for characterization of aberration in ultrasonic imaging. The underlying assumptions for the estimation are: The correlation length of the medium is short compared to the length of the transmitted acoustic pulse, an isoplanatic region of sufficient size exists around the focal point, and the backscatter can be modeled as an ergodic stochastic process. The motivation for this work is ultrasonic imaging with aberration correction. Measurements were performed using a two-dimensional array system with 80 x 80 transducer elements and an element pitch of 0.6 mm. The f number for the measurements was 1.2 and the center frequency was 3.0 MHz with a 53% bandwidth. Relative phase of aberration was extracted from estimated cross spectra using a robust least-mean-square-error method based on an orthogonal expansion of the phase differences of neighboring wave forms as a function of frequency. Estimates of cross-spectrum phase from measurements of random scattering through a tissue-mimicking aberrator have confidence bands approximately +/- 5 degrees wide. Both phase and magnitude are in good agreement with a reference characterization obtained from a point scatterer.
Skyrme random-phase-approximation description of lowest Kπ=2γ+ states in axially deformed nuclei
NASA Astrophysics Data System (ADS)
Nesterenko, V. O.; Kartavenko, V. G.; Kleinig, W.; Kvasil, J.; Repko, A.; Jolos, R. V.; Reinhard, P.-G.
2016-03-01
The lowest quadrupole γ -vibrational Kπ=2+ states in axially deformed rare-earth (Nd, Sm, Gd, Dy, Er, Yb, Hf, W) and actinide (U) nuclei are systematically investigated within the separable random-phase-approximation (SRPA) based on the Skyrme functional. The energies Eγ and reduced transition probabilities B (E 2 ) of 2γ+ states are calculated with the Skyrme forces SV-bas and SkM*. The energies of two-quasiparticle configurations forming the SRPA basis are corrected by using the pairing blocking effect. This results in a systematic downshift of Eγ by 0.3-0.5 MeV and thus in a better agreement with the experiment, especially in Sm, Gd, Dy, Hf, and W regions. For other isotopic chains, a noticeable overestimation of Eγ and too weak collectivity of 2γ+ states still persist. It is shown that domains of nuclei with low and high 2γ+ collectivity are related to the structure of the lowest two-quasiparticle states and conservation of the Nilsson selection rules. The description of 2γ+ states with SV-bas and SkM* is similar in light rare-earth nuclei but deviates in heavier nuclei. However SV-bas much better reproduces the quadrupole deformation and energy of the isoscalar giant quadrupole resonance. The accuracy of SRPA is justified by comparison with exact RPA. The calculations suggest that a further development of the self-consistent calculation schemes is needed for a systematic satisfactory description of the 2γ+ states.
Chiral NNLOsat descriptions of nuclear multipole resonances within the random-phase approximation
NASA Astrophysics Data System (ADS)
Wu, Q.; Hu, B. S.; Xu, F. R.; Ma, Y. Z.; Dai, S. J.; Sun, Z. H.; Jansen, G. R.
2018-05-01
We study nuclear multipole resonances in the framework of the random-phase approximation by using the chiral potential NNLOsat. This potential includes two- and three-body terms that have been simultaneously optimized to low-energy nucleon-nucleon scattering data and selected nuclear structure data. Our main focuses have been the isoscalar monopole, isovector dipole, and isoscalar quadrupole resonances of the closed-shell nuclei, 4He,
NASA Astrophysics Data System (ADS)
Baba, J. S.; Koju, V.; John, D.
2015-03-01
The propagation of light in turbid media is an active area of research with relevance to numerous investigational fields, e.g., biomedical diagnostics and therapeutics. The statistical random-walk nature of photon propagation through turbid media is ideal for computational based modeling and simulation. Ready access to super computing resources provide a means for attaining brute force solutions to stochastic light-matter interactions entailing scattering by facilitating timely propagation of sufficient (>107) photons while tracking characteristic parameters based on the incorporated physics of the problem. One such model that works well for isotropic but fails for anisotropic scatter, which is the case for many biomedical sample scattering problems, is the diffusion approximation. In this report, we address this by utilizing Berry phase (BP) evolution as a means for capturing anisotropic scattering characteristics of samples in the preceding depth where the diffusion approximation fails. We extend the polarization sensitive Monte Carlo method of Ramella-Roman, et al., to include the computationally intensive tracking of photon trajectory in addition to polarization state at every scattering event. To speed-up the computations, which entail the appropriate rotations of reference frames, the code was parallelized using OpenMP. The results presented reveal that BP is strongly correlated to the photon penetration depth, thus potentiating the possibility of polarimetric depth resolved characterization of highly scattering samples, e.g., biological tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, Justin S; John, Dwayne O; Koju, Vijay
The propagation of light in turbid media is an active area of research with relevance to numerous investigational fields, e.g., biomedical diagnostics and therapeutics. The statistical random-walk nature of photon propagation through turbid media is ideal for computational based modeling and simulation. Ready access to super computing resources provide a means for attaining brute force solutions to stochastic light-matter interactions entailing scattering by facilitating timely propagation of sufficient (>10million) photons while tracking characteristic parameters based on the incorporated physics of the problem. One such model that works well for isotropic but fails for anisotropic scatter, which is the case formore » many biomedical sample scattering problems, is the diffusion approximation. In this report, we address this by utilizing Berry phase (BP) evolution as a means for capturing anisotropic scattering characteristics of samples in the preceding depth where the diffusion approximation fails. We extend the polarization sensitive Monte Carlo method of Ramella-Roman, et al.,1 to include the computationally intensive tracking of photon trajectory in addition to polarization state at every scattering event. To speed-up the computations, which entail the appropriate rotations of reference frames, the code was parallelized using OpenMP. The results presented reveal that BP is strongly correlated to the photon penetration depth, thus potentiating the possibility of polarimetric depth resolved characterization of highly scattering samples, e.g., biological tissues.« less
Large-N -approximated field theory for multipartite entanglement
NASA Astrophysics Data System (ADS)
Facchi, P.; Florio, G.; Parisi, G.; Pascazio, S.; Scardicchio, A.
2015-12-01
We try to characterize the statistics of multipartite entanglement of the random states of an n -qubit system. Unable to solve the problem exactly we generalize it, replacing complex numbers with real vectors with Nc components (the original problem is recovered for Nc=2 ). Studying the leading diagrams in the large-Nc approximation, we unearth the presence of a phase transition and, in an explicit example, show that the so-called entanglement frustration disappears in the large-Nc limit.
Encrypted holographic data storage based on orthogonal-phase-code multiplexing.
Heanue, J F; Bashaw, M C; Hesselink, L
1995-09-10
We describe an encrypted holographic data-storage system that combines orthogonal-phase-code multiplexing with a random-phase key. The system offers the security advantages of random-phase coding but retains the low cross-talk performance and the minimum code storage requirements typical in an orthogonal-phase-code-multiplexing system.
Concatenated shift registers generating maximally spaced phase shifts of PN-sequences
NASA Technical Reports Server (NTRS)
Hurd, W. J.; Welch, L. R.
1977-01-01
A large class of linearly concatenated shift registers is shown to generate approximately maximally spaced phase shifts of pn-sequences, for use in pseudorandom number generation. A constructive method is presented for finding members of this class, for almost all degrees for which primitive trinomials exist. The sequences which result are not normally characterized by trinomial recursions, which is desirable since trinomial sequences can have some undesirable randomness properties.
Model of chiral spin liquids with Abelian and non-Abelian topological phases
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; ...
2017-12-15
In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less
Model of chiral spin liquids with Abelian and non-Abelian topological phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio
In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less
Correlational correction to plasmon dispersion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalman, G.; Golden, K.I.
The authors question the suggestion that plasmon dispersion increases for small values of the coupling over its random-phase-approximation value, and conclude that, contrary to what has been stated in the literature, it does not: high-frequency-moment sum-rule and Kramers-Kronig arguments, when properly treated, do not entail such a consequence.
Optimal approximations for risk measures of sums of lognormals based on conditional expectations
NASA Astrophysics Data System (ADS)
Vanduffel, S.; Chen, X.; Dhaene, J.; Goovaerts, M.; Henrard, L.; Kaas, R.
2008-11-01
In this paper we investigate the approximations for the distribution function of a sum S of lognormal random variables. These approximations are obtained by considering the conditional expectation E[S|[Lambda
Interchannel Coupling in the Photoionization of Atoms and Ions in the X-Ray Range
NASA Technical Reports Server (NTRS)
Manson, Steven T.; Chakraborty, Himadri S.; Deshmukh, Pranawa C.
2002-01-01
To understand how this interchannel coupling, so important in neutral atoms, applies to positive ions, a research program has been initiated to deal with this question, i.e., a program to quantify the effects of interchannel coupling in ionic photoionization, thereby assessing existing photoionization data bases in the x-ray region. To accomplish this task, we have employed the Relativistic Random-Phase-Approximation (RRPA) methodology which includes significant aspects of electron-electron correlation, including interchannel coupling. The RRPA methodology has been found to produce excellent agreement with experiment for neutral Ne at photon energies in the 1 keV range.
Scattering of Internal Tides by Irregular Bathymetry of Large Extent
NASA Astrophysics Data System (ADS)
Mei, C.
2014-12-01
We present an analytic theory of scattering of tide-generated internal gravity waves in a continuously stratified ocean with a randomly rough seabed. Based on the linearized approximation, the idealized case of constant mean sea depth and Brunt-Vaisala frequency is considered. The depth fluctuation is assumed to be a stationary random function of space characterized by small amplitude and correlation length comparable to the typical wavelength. For both one- and two-dimensional topography the effects of scattering on wave phase over long distances are derived explicitly by the method of multiple scales. For one-dimensional topography, numerical results are compared with Buhler-& Holmes-Cerfon(2011) computed by the method of characteristics. For two-dimensional topography, new results are presented for both statistically isotropic and anisotropic cases. In thi talk we shall apply the perturbation technique of multiple scales to treat analytically the random scattering of internal tides by gently sloped bathymetric irregularities.The basic assumptions are: incompressible fluid, infinitestimal wave amplitudes, constant Brunt-Vaisala frequency, and constant mean depth. In addition, the depth disorder is assumed to be a stationary random function of space with zero mean and small root-mean-square amplitude. The correlation length can be comparable in order of magnitude as the dominant wavelength. Both one- and two-dimensional disorder will be considered. Physical effects of random scattering on the mean wave phase i.e., spatial attenuation and wavenumber shift will be calculated and discussed for one mode of incident wave. For two dimensional topographies, statistically isotropic and anisotropic examples will be presented.
Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium
NASA Astrophysics Data System (ADS)
Dahmen, David; Bos, Hannah; Helias, Moritz
2016-07-01
Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many applications require the statistics of activity for a single realization of the possibly asymmetric couplings in finite-sized networks. Examples include reconstruction of couplings from the observed dynamics, representation of probability distributions for sampling-based inference, and learning in the central nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The systematic cumulant expansion for kinetic binary (Ising) threshold units with strong, random, and asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermodynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise covariances in quantitative agreement with full simulations down to hundreds of units. The linearized theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of the interaction strengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Hao; Ashkar, Rana; Steinke, Nina
A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less
Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.
Das, Mini; Liang, Zhihua
2014-09-15
Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.
Gross, Oliver; Friede, Tim; Hilgers, Reinhard; Görlitz, Anke; Gavénis, Karsten; Ahmed, Raees; Dürr, Ulrike
2012-01-01
Introduction. Retrospective observational data show that ACE-inhibitor therapy delays renal failure and improves life expectancy in Alport patients with proteinuria. The EARLY PRO-TECT Alport trial assesses the safety and efficacy of early therapy onset with ramipril in pediatric Alport patients. Methods and analysis. This double-blind, randomized, placebo-controlled, multicenter phase III trial (NCT01485978; EudraCT-number 2010-024300-10) includes 120 pediatric patients aged 24 months to 18 years with early stages of Alport syndrome (isolated hematuria or microalbuminuria). From March 2012, up to 80 patients will be randomized 1:1 to ramipril or placebo. In the event of disease progression during 3-year treatment, patients are unblinded and ramipril is initiated, if applicable. Approximately 40 patients receive open-label ramipril contributing to the safety database. Primary end-points are "time to progression to next disease level" and "incidence of adverse drug events before disease progression." Treatment effect estimates from the randomized comparison and Alport registry data will be combined in supportive analyses to maximize evidence. Conclusion. Without this trial, ACE inhibitors may become standard off-label treatment in Alport syndrome without satisfactory evidence base. The results are expected to be of relevance for therapy of all pediatric patients with kidney disease, and the trial protocol might serve as a model for other rare pediatric glomerulopathies.
Weak convergence to isotropic complex [Formula: see text] random measure.
Wang, Jun; Li, Yunmeng; Sang, Liheng
2017-01-01
In this paper, we prove that an isotropic complex symmetric α -stable random measure ([Formula: see text]) can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.
Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.
Kulkarni, Rishikesh; Rastogi, Pramod
2018-02-01
A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.
Comparison of Coarse-Grained Approaches in Predicting Polymer Nanocomposite Phase Behavior
Koski, Jason P.; Ferrier, Robert C.; Krook, Nadia M.; ...
2017-11-02
Because of the considerable parameter space, efficient theoretical and simulation methods are required to predict the morphology and guide experiments in polymer nanocomposites (PNCs). Unfortunately, theoretical and simulation methods are restricted in their ability to accurately map to experiments based on necessary approximations and numerical limitations. In this study, we provide direct comparisons of two recently developed coarse-grained approaches for modeling polymer nanocomposites (PNCs): polymer nanocomposite field theory (PNC-FT) and dynamic mean-field theory (DMFT). These methods are uniquely suited to efficiently capture mesoscale phase behavior of PNCs in comparison to other theoretical and simulation frameworks. We demonstrate the ability ofmore » both methods to capture macrophase separation and describe the thermodynamics of PNCs. We systematically test how the nanoparticle morphology in PNCs is affected by a uniform probability distribution of grafting sites, common in field-based methods, versus random discrete grafting sites on the nanoparticle surface. We also analyze the accuracy of the mean-field approximation in capturing the phase behavior of PNCs. Moreover, the DMFT method introduces the ability to describe nonequilibrium phase behavior while the PNC-FT method is strictly an equilibrium method. With the DMFT method we are able to show the evolution of nonequilibrium states toward their equilibrium state and a qualitative assessment of the dynamics in these systems. These simulations are compared to experiments consisting of polystyrene grafted gold nanorods in a poly(methyl methacrylate) matrix to ensure the model gives results that qualitatively agree with the experiments. This study reveals that nanoparticles in a relatively high matrix molecular weight are trapped in a nonequilibrium state and demonstrates the utility of the DMFT framework in capturing nonequilibrium phase behavior of PNCs. In conclusion, both the PNC-FT and DMFT framework are promising methods to describe the thermodynamic and nonequilibrium phase behavior of PNCs.« less
Comparison of Coarse-Grained Approaches in Predicting Polymer Nanocomposite Phase Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koski, Jason P.; Ferrier, Robert C.; Krook, Nadia M.
Because of the considerable parameter space, efficient theoretical and simulation methods are required to predict the morphology and guide experiments in polymer nanocomposites (PNCs). Unfortunately, theoretical and simulation methods are restricted in their ability to accurately map to experiments based on necessary approximations and numerical limitations. In this study, we provide direct comparisons of two recently developed coarse-grained approaches for modeling polymer nanocomposites (PNCs): polymer nanocomposite field theory (PNC-FT) and dynamic mean-field theory (DMFT). These methods are uniquely suited to efficiently capture mesoscale phase behavior of PNCs in comparison to other theoretical and simulation frameworks. We demonstrate the ability ofmore » both methods to capture macrophase separation and describe the thermodynamics of PNCs. We systematically test how the nanoparticle morphology in PNCs is affected by a uniform probability distribution of grafting sites, common in field-based methods, versus random discrete grafting sites on the nanoparticle surface. We also analyze the accuracy of the mean-field approximation in capturing the phase behavior of PNCs. Moreover, the DMFT method introduces the ability to describe nonequilibrium phase behavior while the PNC-FT method is strictly an equilibrium method. With the DMFT method we are able to show the evolution of nonequilibrium states toward their equilibrium state and a qualitative assessment of the dynamics in these systems. These simulations are compared to experiments consisting of polystyrene grafted gold nanorods in a poly(methyl methacrylate) matrix to ensure the model gives results that qualitatively agree with the experiments. This study reveals that nanoparticles in a relatively high matrix molecular weight are trapped in a nonequilibrium state and demonstrates the utility of the DMFT framework in capturing nonequilibrium phase behavior of PNCs. In conclusion, both the PNC-FT and DMFT framework are promising methods to describe the thermodynamic and nonequilibrium phase behavior of PNCs.« less
NASA Astrophysics Data System (ADS)
Shahi, Chandra; Sun, Jianwei; Perdew, John P.
2018-03-01
Most of the group IV, III-V, and II-VI compounds crystallize in semiconductor structures under ambient conditions. Upon application of pressure, they undergo structural phase transitions to more closely packed structures, sometimes metallic phases. We have performed density functional calculations using projector augmented wave (PAW) pseudopotentials to determine the transition pressures for these transitions within the local density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and the strongly constrained and appropriately normed (SCAN) meta-GGA. LDA underestimates the transition pressure for most of the studied materials. PBE under- or overestimates in many cases. SCAN typically corrects the errors of LDA and PBE for the transition pressure. The accuracy of SCAN is comparable to that of computationally expensive methods like the hybrid functional HSE06, the random phase approximation (RPA), and quantum Monte Carlo (QMC), in cases where calculations with these methods have been reported, but at a more modest computational cost. The improvement from LDA to PBE to SCAN is especially clearcut and dramatic for covalent semiconductor-metal transitions, as for Si and Ge, where it reflects the increasing relative stabilization of the covalent semiconducting phases under increasing functional sophistication.
NASA Astrophysics Data System (ADS)
Lin, Yi-Hsuan; Brady, Jacob P.; Forman-Kay, Julie D.; Chan, Hue Sun
2017-11-01
Biologically functional liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-phase-approximation (RPA) polymer theory to electrostatics, which is a major energetic component governing IDP phase properties. RPA accounts for charge patterns and thus has advantages over Flory-Huggins (FH) and Overbeek-Voorn mean-field theories. To make progress toward deciphering the phase behaviors of multiple IDP sequences, the RPA formulation for one IDP species plus solvent is hereby extended to treat polyampholyte solutions containing two IDP species plus solvent. The new formulation generally allows for binary coexistence of two phases, each containing a different set of volume fractions ({φ }1,{φ }2) for the two different IDP sequences. The asymmetry between the two predicted coexisting phases with regard to their {φ }1/{φ }2 ratios for the two sequences increases with increasing mismatch between their charge patterns. This finding points to a multivalent, stochastic, ‘fuzzy’ mode of molecular recognition that helps populate various IDP sequences differentially into separate phase compartments. An intuitive illustration of this trend is provided by FH models, whereby a hypothetical case of ternary coexistence is also explored. Augmentations of the present RPA theory with a relative permittivity {ɛ }{{r}}(φ ) that depends on IDP volume fraction φ ={φ }1+{φ }2 lead to higher propensities to phase separate, in line with the case with one IDP species we studied previously. Notably, the cooperative, phase-separation-enhancing effects predicted by the prescriptions for {ɛ }{{r}}(φ ) we deem physically plausible are much more prominent than that entailed by common effective medium approximations based on Maxwell Garnett and Bruggeman mixing formulas. Ramifications of our findings on further theoretical development for IDP phase separation are discussed.
Random sequences generation through optical measurements by phase-shifting interferometry
NASA Astrophysics Data System (ADS)
François, M.; Grosges, T.; Barchiesi, D.; Erra, R.; Cornet, A.
2012-04-01
The development of new techniques for producing random sequences with a high level of security is a challenging topic of research in modern cryptographics. The proposed method is based on the measurement by phase-shifting interferometry of the speckle signals of the interaction between light and structures. We show how the combination of amplitude and phase distributions (maps) under a numerical process can produce random sequences. The produced sequences satisfy all the statistical requirements of randomness and can be used in cryptographic schemes.
Simulation of angular-resolved RABBITT measurements in noble-gas atoms
NASA Astrophysics Data System (ADS)
Bray, Alexander W.; Naseem, Faiza; Kheifets, Anatoli S.
2018-06-01
We simulate angular-resolved RABBITT (reconstruction of attosecond beating by interference of two-photon transitions) measurements on valence shells of noble-gas atoms (Ne, Ar, Kr, and Xe). Our nonperturbative numerical simulation is based on solution of the time-dependent Schrödinger equation (TDSE) for a target atom driven by an ionizing XUV and dressing IR fields. From these simulations we extract the angular-dependent magnitude and phase of the RABBITT oscillations and deduce the corresponding angular anisotropy β parameter and Wigner time delay τW for the single XUV photon absorption that initiates the RABBITT process. Said β and τW parameters are compared with calculations in the random-phase approximation with exchange (RPAE), which includes intershell correlation. This comparison is used to test various effective potentials employed in the one-electron TDSE. In lighter atoms (Ne and Ar), several effective potentials are found to provide accurate simulations of RABBITT measurements for a wide range of photon energies up to 100 eV above the valence-shell threshold. In heavier atoms (Kr and Xe), the onset of strong correlation with the d shell restricts the validity of the single active electron approximation to several tens of eV above the valence-shell threshold.
Piccini, Jonathan P; Connolly, Stuart J; Abraham, William T; Healey, Jeff S; Steinberg, Benjamin A; Al-Khalidi, Hussein R; Dignacco, Patricia; van Veldhuisen, Dirk J; Sauer, William H; White, Michel; Wilton, Stephen B; Anand, Inder S; Dufton, Christopher; Marshall, Debra A; Aleong, Ryan G; Davis, Gordon W; Clark, Richard L; Emery, Laura L; Bristow, Michael R
2018-05-01
Few therapies are available for the safe and effective treatment of atrial fibrillation (AF) in patients with heart failure. Bucindolol is a non-selective beta-blocker with mild vasodilator activity previously found to have accentuated antiarrhythmic effects and increased efficacy for preventing heart failure events in patients homozygous for the major allele of the ADRB1 Arg389Gly polymorphism (ADRB1 Arg389Arg genotype). The safety and efficacy of bucindolol for the prevention of AF or atrial flutter (AFL) in these patients has not been proven in randomized trials. The Genotype-Directed Comparative Effectiveness Trial of Bucindolol and Metoprolol Succinate for Prevention of Symptomatic Atrial Fibrillation/Atrial Flutter in Patients with Heart Failure (GENETIC-AF) trial is a multicenter, randomized, double-blinded "seamless" phase 2B/3 trial of bucindolol hydrochloride versus metoprolol succinate, for the prevention of symptomatic AF/AFL in patients with reduced ejection fraction heart failure (HFrEF). Patients with pre-existing HFrEF and recent history of symptomatic AF are eligible for enrollment and genotype screening, and if they are ADRB1 Arg389Arg, eligible for randomization. A total of approximately 200 patients will comprise the phase 2B component and if pre-trial assumptions are met, 620 patients will be randomized at approximately 135 sites to form the Phase 3 population. The primary endpoint is the time to recurrence of symptomatic AF/AFL or mortality over a 24-week follow-up period, and the trial will continue until 330 primary endpoints have occurred. GENETIC-AF is the first randomized trial of pharmacogenetic guided rhythm control, and will test the safety and efficacy of bucindolol compared with metoprolol succinate for the prevention of recurrent symptomatic AF/AFL in patients with HFrEF and an ADRB1 Arg389Arg genotype. (ClinicalTrials.govNCT01970501). Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Sibeck, David G.
2013-01-01
The interaction of electrons with coherent chorus waves in the random phase approximation can be described as quasi-linear diffusion for waves with amplitudes below some limit. The limit is calculated for relativistic and non-relativistic electrons. For stronger waves, the friction force should be taken into account.
Flux quantization in aperiodic and periodic networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrooz, A.
1987-01-01
The phase boundary of quasicrystalline, quasi-periodic, and random networks, was studied. It was found that if a network is composed of two different tiles, whose areas are relatively irrational, then the T/sub c/ (H) curve shows large-scale structure at fields that approximate flux quantization around the tiles, i.e., when the ratio of fluxoids contained in the large tiles to those in the small tiles is a rational approximant to the irrational area ratio. The phase boundaries of quasi-crystalline and quasi-periodic networks show fine structure indicating the existence of commensurate vortex superlattices on these networks. No such fine structure is foundmore » on the random array. For a quasi-crystal whose quasi-periodic long-range order is characterized by the irrational number of tau, the commensurate vortex lattices are all found at H = H/sub 0/ absolute value n + m tau (n,m integers). It was found that the commensurate superlattices on quasicrystalline as well as on crystalline networks are related to the inflation symmetry. A general definition of commensurability is proposed.« less
NASA Astrophysics Data System (ADS)
Fang, Dong-Liang; Faessler, Amand; Šimkovic, Fedor
2018-04-01
In this paper, with restored isospin symmetry, we evaluated the neutrinoless double-β -decay nuclear matrix elements for 76Ge, 82Se, 130Te, 136Xe, and 150Nd for both the light and heavy neutrino mass mechanisms using the deformed quasiparticle random-phase approximation approach with realistic forces. We give detailed decompositions of the nuclear matrix elements over different intermediate states and nucleon pairs, and discuss how these decompositions are affected by the model space truncations. Compared to the spherical calculations, our results show reductions from 30 % to about 60 % of the nuclear matrix elements for the calculated isotopes mainly due to the presence of the BCS overlap factor between the initial and final ground states. The comparison between different nucleon-nucleon (NN) forces with corresponding short-range correlations shows that the choice of the NN force gives roughly 20 % deviations for the light exchange neutrino mechanism and much larger deviations for the heavy neutrino exchange mechanism.
NASA Astrophysics Data System (ADS)
Wang, Jun; Li, Xiaowei; Hu, Yuhen; Wang, Qiong-Hua
2018-03-01
A phase-retrieval attack free cryptosystem based on the cylindrical asymmetric diffraction and double-random phase encoding (DRPE) is proposed. The plaintext is abstract as a cylinder, while the observed diffraction and holographic surfaces are concentric cylinders. Therefore, the plaintext can be encrypted through a two-step asymmetric diffraction process with double pseudo random phase masks located on the object surface and the first diffraction surface. After inverse diffraction from a holographic surface to an object surface, the plaintext can be reconstructed using a decryption process. Since the diffraction propagated from the inner cylinder to the outer cylinder is different from that of the reversed direction, the proposed cryptosystem is asymmetric and hence is free of phase-retrieval attack. Numerical simulation results demonstrate the flexibility and effectiveness of the proposed cryptosystem.
Pion properties at finite isospin chemical potential with isospin symmetry breaking
NASA Astrophysics Data System (ADS)
Wu, Zuqing; Ping, Jialun; Zong, Hongshi
2017-12-01
Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the u quark and d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI <0 and μI >0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses. Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)
Absolute phase estimation: adaptive local denoising and global unwrapping.
Bioucas-Dias, Jose; Katkovnik, Vladimir; Astola, Jaakko; Egiazarian, Karen
2008-10-10
The paper attacks absolute phase estimation with a two-step approach: the first step applies an adaptive local denoising scheme to the modulo-2 pi noisy phase; the second step applies a robust phase unwrapping algorithm to the denoised modulo-2 pi phase obtained in the first step. The adaptive local modulo-2 pi phase denoising is a new algorithm based on local polynomial approximations. The zero-order and the first-order approximations of the phase are calculated in sliding windows of varying size. The zero-order approximation is used for pointwise adaptive window size selection, whereas the first-order approximation is used to filter the phase in the obtained windows. For phase unwrapping, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [IEEE Trans. Image Process.16, 698 (2007)] to the denoised wrapped phase. Simulations give evidence that the proposed algorithm yields state-of-the-art performance, enabling strong noise attenuation while preserving image details. (c) 2008 Optical Society of America
Field-theoretical approach to a dense polymer with an ideal binary mixture of clustering centers.
Fantoni, Riccardo; Müller-Nedebock, Kristian K
2011-07-01
We propose a field-theoretical approach to a polymer system immersed in an ideal mixture of clustering centers. The system contains several species of these clustering centers with different functionality, each of which connects a fixed number segments of the chain to each other. The field theory is solved using the saddle point approximation and evaluated for dense polymer melts using the random phase approximation. We find a short-ranged effective intersegment interaction with strength dependent on the average segment density and discuss the structure factor within this approximation. We also determine the fractions of linkers of the different functionalities.
Are genetically robust regulatory networks dynamically different from random ones?
NASA Astrophysics Data System (ADS)
Sevim, Volkan; Rikvold, Per Arne
We study a genetic regulatory network model developed to demonstrate that genetic robustness can evolve through stabilizing selection for optimal phenotypes. We report preliminary results on whether such selection could result in a reorganization of the state space of the system. For the chosen parameters, the evolution moves the system slightly toward the more ordered part of the phase diagram. We also find that strong memory effects cause the Derrida annealed approximation to give erroneous predictions about the model's phase diagram.
NASA Astrophysics Data System (ADS)
Liao, Zhikun; Lu, Dawei; Hu, Jiemin; Zhang, Jun
2018-04-01
For the random hopping frequency signal, the modulated frequencies are randomly distributed over given bandwidth. The randomness of modulated frequency not only improves the electronic counter countermeasure capability for radar systems, but also determines its performance of range compression. In this paper, the range ambiguity function of RHF signal is firstly derived. Then, a design method of frequency hopping pattern based on stationary phase principle to improve the peak to side-lobe ratio is proposed. Finally, the simulated experiments show a good effectiveness of the presented design method.
Li, Zhendong; Liu, Wenjian
2010-08-14
The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin-flip configuration interaction approaches can easily be spin-adapted via the tensor-coupling scheme.
Multipole ordering and collective excitations in the excitonic phase of Pr0.5Ca0.5CoO3
NASA Astrophysics Data System (ADS)
Yamaguchi, Tomoki; Sugimoto, Koudai; Ohta, Yukinori
2018-05-01
As an extension of our previous paper (Yamaguchi et al., 2017) [24], we study the carrier doping dependence of the excitonic condensation in Pr0.5Ca0.5CoO3 using the random-phase and mean-field approximations for the realistic five-orbital Hubbard model. We show that the spin-triplet excitonic phase with a magnetic multipole ordering is stable against the doping of carriers in a considerable range around Co3+ (or 3d6). We discuss experimental relevance of our results.
Bridging the gap between formal and experience-based knowledge for context-aware laparoscopy.
Katić, Darko; Schuck, Jürgen; Wekerle, Anna-Laura; Kenngott, Hannes; Müller-Stich, Beat Peter; Dillmann, Rüdiger; Speidel, Stefanie
2016-06-01
Computer assistance is increasingly common in surgery. However, the amount of information is bound to overload processing abilities of surgeons. We propose methods to recognize the current phase of a surgery for context-aware information filtering. The purpose is to select the most suitable subset of information for surgical situations which require special assistance. We combine formal knowledge, represented by an ontology, and experience-based knowledge, represented by training samples, to recognize phases. For this purpose, we have developed two different methods. Firstly, we use formal knowledge about possible phase transitions to create a composition of random forests. Secondly, we propose a method based on cultural optimization to infer formal rules from experience to recognize phases. The proposed methods are compared with a purely formal knowledge-based approach using rules and a purely experience-based one using regular random forests. The comparative evaluation on laparoscopic pancreas resections and adrenalectomies employs a consistent set of quality criteria on clean and noisy input. The rule-based approaches proved best with noisefree data. The random forest-based ones were more robust in the presence of noise. Formal and experience-based knowledge can be successfully combined for robust phase recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Du; Yang, Weitao
An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and doublemore » excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K^{4}), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.« less
Zhang, Du; Yang, Weitao
2016-10-13
An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and doublemore » excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K^{4}), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.« less
On the validation of seismic imaging methods: Finite frequency or ray theory?
Maceira, Monica; Larmat, Carene; Porritt, Robert W.; ...
2015-01-23
We investigate the merits of the more recently developed finite-frequency approach to tomography against the more traditional and approximate ray theoretical approach for state of the art seismic models developed for western North America. To this end, we employ the spectral element method to assess the agreement between observations on real data and measurements made on synthetic seismograms predicted by the models under consideration. We check for phase delay agreement as well as waveform cross-correlation values. Based on statistical analyses on S wave phase delay measurements, finite frequency shows an improvement over ray theory. Random sampling using cross-correlation values identifiesmore » regions where synthetic seismograms computed with ray theory and finite-frequency models differ the most. Our study suggests that finite-frequency approaches to seismic imaging exhibit measurable improvement for pronounced low-velocity anomalies such as mantle plumes.« less
NASA Astrophysics Data System (ADS)
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-08-01
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.
A seamless phase IIB/III adaptive outcome trial: design rationale and implementation challenges.
Chen, Y H Joshua; Gesser, Richard; Luxembourg, Alain
2015-02-01
The licensed four-valent prophylactic human papillomavirus vaccine is highly efficacious in preventing cervical, vulvar, vaginal, and anal cancers and related precancers caused by human papillomavirus types 6, 11, 16, and 18. These four types account for approximately 70% of cervical cancers. A nine-valent human papillomavirus vaccine, including the four original types (6, 11, 16, and 18) plus the next five most prevalent types in cervical cancer (31, 33, 45, 52, and 58) could provide approximately 90% overall cervical cancer coverage. To expedite the nine-valent human papillomavirus vaccine clinical development, an adaptive, seamless Phase IIB/III outcome trial with ∼ 15,000 subjects was conducted to facilitate dose formulation selection and provide pivotal evidence of safety and efficacy for regulatory registrations. We discuss the design rationale and implementation challenges of the outcome trial, focusing on the adaptive feature of the seamless Phase IIB/III design. Subjects were enrolled in two parts (Part A and Part B). Approximately 1240 women, 16-26 years of age, were enrolled in Part A for Phase IIB evaluation and equally randomized to one of three dose formulations of the nine-valent human papillomavirus vaccine or the four-valent human papillomavirus vaccine (active control). Based on an interim analysis of immunogenicity and safety, one dose formulation of the nine-valent human papillomavirus vaccine was selected for evaluation in the Phase III part of the study. Subjects enrolled in Part A who received the selected dose formulation of the nine-valent human papillomavirus vaccine or four-valent human papillomavirus vaccine continued to be followed up and contributed to the final efficacy and safety analyses. In addition, ∼ 13,400 women 16-26 years of age were enrolled in Part B, randomized to nine-valent human papillomavirus vaccine at the selected dose formulation or four-valent human papillomavirus vaccine, and followed for immunogenicity, efficacy, and safety. A seamless Phase IIB/III design was justified by the extensive pre-existing knowledge of the licensed four-valent human papillomavirus vaccine and the development objectives for the nine-valent human papillomavirus vaccine. Subjects enrolled in Part A who received either the selected nine-valent human papillomavirus formulation or four-valent human papillomavirus vaccine contributed ∼ 10% of person-years of follow-up due to its earlier start-thereby maximizing the overall efficiency of the trial. Some of the challenges encountered in the implementation of the adaptive design included practical considerations during Phase IIB formulation selection by internal and external committees, End-of-Phase II discussion with health authorities and managing changes in the assay for immunological endpoints. Application of the experience and lesson learned from this seamless adaptive design to other clinical programs may depend on case-by-case consideration. A seamless Phase IIB/III adaptive design was successfully implemented in this large outcome study. The development time of the second-generation nine-valent human papillomavirus vaccine was shortened due to improved statistical efficiency. © The Author(s) 2014.
QCD-inspired spectra from Blue's functions
NASA Astrophysics Data System (ADS)
Nowak, Maciej A.; Papp, Gábor; Zahed, Ismail
1996-02-01
We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether through symmetries or models. In terms of the Blue's functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter.
Tian, Yuzhen; Guo, Jin; Wang, Rui; Wang, Tingfeng
2011-09-12
In order to research the statistical properties of Gaussian beam propagation through an arbitrary thickness random phase screen for adaptive optics and laser communication application in the laboratory, we establish mathematic models of statistical quantities, which are based on the Rytov method and the thin phase screen model, involved in the propagation process. And the analytic results are developed for an arbitrary thickness phase screen based on the Kolmogorov power spectrum. The comparison between the arbitrary thickness phase screen and the thin phase screen shows that it is more suitable for our results to describe the generalized case, especially the scintillation index.
Optimizing phonon space in the phonon-coupling model
NASA Astrophysics Data System (ADS)
Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.
2017-08-01
We present a new scheme to select the most relevant phonons in the phonon-coupling model, named here the time-blocking approximation (TBA). The new criterion, based on the phonon-nucleon coupling strengths rather than on B (E L ) values, is more selective and thus produces much smaller phonon spaces in the TBA. This is beneficial in two respects: first, it curbs the computational cost, and second, it reduces the danger of double counting in the expansion basis of the TBA. We use here the TBA in a form where the coupling strength is regularized to keep the given Hartree-Fock ground state stable. The scheme is implemented in a random-phase approximation and TBA code based on the Skyrme energy functional. We first explore carefully the cutoff dependence with the new criterion and can work out a natural (optimal) cutoff parameter. Then we use the freshly developed and tested scheme for a survey of giant resonances and low-lying collective states in six doubly magic nuclei looking also at the dependence of the results when varying the Skyrme parametrization.
Self-consistency in the phonon space of the particle-phonon coupling model
NASA Astrophysics Data System (ADS)
Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.
2018-04-01
In the paper the nonlinear generalization of the time blocking approximation (TBA) is presented. The TBA is one of the versions of the extended random-phase approximation (RPA) developed within the Green-function method and the particle-phonon coupling model. In the generalized version of the TBA the self-consistency principle is extended onto the phonon space of the model. The numerical examples show that this nonlinear version of the TBA leads to the convergence of results with respect to enlarging the phonon space of the model.
Pattern formations and optimal packing.
Mityushev, Vladimir
2016-04-01
Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.
Coupled mode effects on energy transfer in weakly coupled, two-temperature plasmas
NASA Astrophysics Data System (ADS)
Vorberger, J.; Gericke, D. O.
2009-08-01
The effects of collective modes on the temperature relaxation in fully ionized, weakly coupled plasmas are investigated. A coupled mode (CM) formula for the electron-ion energy transfer is derived within the random phase approximation and it is shown how it can be evaluated using standard methods. The CM rates are considerably smaller than rates based on Fermi's golden rule for some parameters and identical for others. It is shown how the CM effects are connected to the occurrence of ion acoustic modes and when they occur. Interestingly, CM effects occur also for plasmas with very high electron temperatures; a regime, where the Landau-Spitzer approach is believed to be accurate.
Approximated maximum likelihood estimation in multifractal random walks
NASA Astrophysics Data System (ADS)
Løvsletten, O.; Rypdal, M.
2012-04-01
We present an approximated maximum likelihood method for the multifractal random walk processes of [E. Bacry , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.64.026103 64, 026103 (2001)]. The likelihood is computed using a Laplace approximation and a truncation in the dependency structure for the latent volatility. The procedure is implemented as a package in the r computer language. Its performance is tested on synthetic data and compared to an inference approach based on the generalized method of moments. The method is applied to estimate parameters for various financial stock indices.
NASA Astrophysics Data System (ADS)
Tang, Li-Chuan; Hu, Guang W.; Russell, Kendra L.; Chang, Chen S.; Chang, Chi Ching
2000-10-01
We propose a new holographic memory scheme based on random phase-encoded multiplexing in a photorefractive LiNbO3:Fe crystal. Experimental results show that rotating a diffuser placed as a random phase modulator in the path of the reference beam provides a simple yet effective method of increasing the holographic storage capabilities of the crystal. Combining this rotational multiplexing with angular multiplexing offers further advantages. Storage capabilities can be optimized by using a post-image random phase plate in the path of the object beam. The technique is applied to a triple phase-encoded optical security system that takes advantage of the high angular selectivity of the angular-rotational multiplexing components.
Flux Quantization in Aperiodic and Periodic Networks
NASA Astrophysics Data System (ADS)
Behrooz, Angelika
The normal - superconducting phase boundary, T_{c}(H), of a periodic wire network shows periodic oscillations with period H _{o} = phi_ {o}/A due to flux quantization around the individual plaquettes (of area A) of the network. The magnetic flux quantum is phi_{o } = hc/2e. The phase boundary also shows fine structure at fields H = (p/q)H_{o} (p,q integers), where the flux vortices can form commensurate superlattices on the periodic substrate. We have studied the phase boundary of quasicrystalline, quasiperiodic and random networks. We have found that if a network is composed of two different tiles, whose areas are relatively irrational then the T_ {c}(H) curve shows large scale structure at fields that approximate flux quantization around the tiles, i.e. when the ratio of fluxoids contained in the large tiles to those in the small tiles is a rational approximant to the irrational area ratio. The phase boundaries of quasicrystalline and quasiperiodic networks show fine structure indicating the existence of commensurate vortex superlattices on these networks. No such fine structure is found on the random array. For a quasicrystal whose quasiperiodic long-range order is characterized by the irrational number tau the commensurate vortex lattices are all found at H = H_{o}| n + mtau| (n,m integers). We have found that the commensurate superlattices on quasicrystalline as well as on crystalline networks are related to the inflation symmetry. We propose a general definition of commensurability.
Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mengjie; Xiao, Feng; Johnson-Paben, Rebecca
2012-01-01
The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by amore » highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.« less
Choice of optical system is critical for the security of double random phase encryption systems
NASA Astrophysics Data System (ADS)
Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Cassidy, Derek; Zhao, Liang; Ryle, James P.; Healy, John J.; Sheridan, John T.
2017-06-01
The linear canonical transform (LCT) is used in modeling a coherent light-field propagation through first-order optical systems. Recently, a generic optical system, known as the quadratic phase encoding system (QPES), for encrypting a two-dimensional image has been reported. In such systems, two random phase keys and the individual LCT parameters (α,β,γ) serve as secret keys of the cryptosystem. It is important that such encryption systems also satisfy some dynamic security properties. We, therefore, examine such systems using two cryptographic evaluation methods, the avalanche effect and bit independence criterion, which indicate the degree of security of the cryptographic algorithms using QPES. We compared our simulation results with the conventional Fourier and the Fresnel transform-based double random phase encryption (DRPE) systems. The results show that the LCT-based DRPE has an excellent avalanche and bit independence characteristics compared to the conventional Fourier and Fresnel-based encryption systems.
NASA Astrophysics Data System (ADS)
Paramonov, P. V.; Vorontsov, A. M.; Kunitsyn, V. E.
2015-10-01
Numerical modeling of optical wave propagation in atmospheric turbulence is traditionally performed with using the so-called "split"-operator method, when the influence of the propagation medium's refractive index inhomogeneities is accounted for only within a system of infinitely narrow layers (phase screens) where phase is distorted. Commonly, under certain assumptions, such phase screens are considered as mutually statistically uncorrelated. However, in several important applications including laser target tracking, remote sensing, and atmospheric imaging, accurate optical field propagation modeling assumes upper limitations on interscreen spacing. The latter situation can be observed, for instance, in the presence of large-scale turbulent inhomogeneities or in deep turbulence conditions, where interscreen distances become comparable with turbulence outer scale and, hence, corresponding phase screens cannot be statistically uncorrelated. In this paper, we discuss correlated phase screens. The statistical characteristics of screens are calculated based on a representation of turbulent fluctuations of three-dimensional (3D) refractive index random field as a set of sequentially correlated 3D layers displaced in the wave propagation direction. The statistical characteristics of refractive index fluctuations are described in terms of the von Karman power spectrum density. In the representation of these 3D layers by corresponding phase screens, the geometrical optics approximation is used.
Probabilistic models for reactive behaviour in heterogeneous condensed phase media
NASA Astrophysics Data System (ADS)
Baer, M. R.; Gartling, D. K.; DesJardin, P. E.
2012-02-01
This work presents statistically-based models to describe reactive behaviour in heterogeneous energetic materials. Mesoscale effects are incorporated in continuum-level reactive flow descriptions using probability density functions (pdfs) that are associated with thermodynamic and mechanical states. A generalised approach is presented that includes multimaterial behaviour by treating the volume fraction as a random kinematic variable. Model simplifications are then sought to reduce the complexity of the description without compromising the statistical approach. Reactive behaviour is first considered for non-deformable media having a random temperature field as an initial state. A pdf transport relationship is derived and an approximate moment approach is incorporated in finite element analysis to model an example application whereby a heated fragment impacts a reactive heterogeneous material which leads to a delayed cook-off event. Modelling is then extended to include deformation effects associated with shock loading of a heterogeneous medium whereby random variables of strain, strain-rate and temperature are considered. A demonstrative mesoscale simulation of a non-ideal explosive is discussed that illustrates the joint statistical nature of the strain and temperature fields during shock loading to motivate the probabilistic approach. This modelling is derived in a Lagrangian framework that can be incorporated in continuum-level shock physics analysis. Future work will consider particle-based methods for a numerical implementation of this modelling approach.
Picard, Melissa; Curry, Nancy; Collins, Heather; Soma, LaShonda; Hill, Jeanne
2015-10-01
Simulation-based training has been shown to be a useful adjunct to standard didactic lecture in teaching residents appropriate management of adverse contrast reactions. In addition, it has been suggested that a biannual refresher is needed; however, the type of refresher education has not been assessed. This was a prospective study involving 31 radiology residents across all years in a university program. All residents underwent standard didactic lecture followed by high-fidelity simulation-based training. At approximately 6 months, residents were randomized into a didactic versus simulation group for a refresher. At approximately 9 months, all residents returned to the simulation center for performance testing. Knowledge and confidence assessments were obtained from all participants before and after each phase. Performance testing was obtained at each simulation session and scored based on predefined critical actions. There was significant improvement in knowledge (P < .002) and confidence (P < .001) after baseline education of combined didactic and simulation-based training. There was no statistical difference between the simulation and didactic groups in knowledge or confidence at any phase of the study. There was no significant difference in tested performance between the groups in either performance testing session. This study suggests that a curriculum consisting of an annual didactic lecture combined with simulation-based training followed by a didactic refresher at 6 months is an effective and efficient (both cost-effective and time-effective) method of educating radiology residents in the management of adverse contrast reactions. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Statistical theory of correlations in random packings of hard particles.
Jin, Yuliang; Puckett, James G; Makse, Hernán A
2014-05-01
A random packing of hard particles represents a fundamental model for granular matter. Despite its importance, analytical modeling of random packings remains difficult due to the existence of strong correlations which preclude the development of a simple theory. Here, we take inspiration from liquid theories for the n-particle angular correlation function to develop a formalism of random packings of hard particles from the bottom up. A progressive expansion into a shell of particles converges in the large layer limit under a Kirkwood-like approximation of higher-order correlations. We apply the formalism to hard disks and predict the density of two-dimensional random close packing (RCP), ϕ(rcp) = 0.85 ± 0.01, and random loose packing (RLP), ϕ(rlp) = 0.67 ± 0.01. Our theory also predicts a phase diagram and angular correlation functions that are in good agreement with experimental and numerical data.
Dynamic Effects in the Photoionization of the 6s Subshell of Radon and Nobelium
NASA Astrophysics Data System (ADS)
Keating, David; Manson, Steven; Deshmukh, Pranawa
2017-04-01
Relativistic interactions are very important contributors to atomic properties. Of interest is the alterations made to the wave functions, i.e., the dynamics. These dynamical changes can greatly affect the photoionization cross section of heavy (high Z) atoms. To explore the extent of these dynamic effects a theoretical study of the 6s photoionization cross section of both radon (Z = 86) and nobelium (Z = 102) have been performed using the relativistic random phase approximation (RRPA) methodology. These two cases have been selected because they offer the clearest picture of the effects in question. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. Interchannel coupling can obscure the dynamic effects by ``pulling'' minima out of the discrete spectrum and into the continuum or by inducing minima. Therefore it is necessary to perform calculations without coupling included. This is possible thanks to the RRPA and RPAE codes being able to calculate cross sections with particular channels omitted. Comparisons are presented between calculations with and without interchannel coupling. Work supported by DOE and NSF.
Relativistic Confinement Resonances
NASA Astrophysics Data System (ADS)
Keating, David; Manson, Steven; Deshmukh, Pranawa
2017-04-01
Photoionization of confined atoms in a C60 fullerene have been under intense investigation in the recent years, in particular the confinement induced resonances, termed confinement resonances. The effects of the C60 potential are modeled by a static spherical well, with (in atomic units) inner radius r0 = 5.8, width Δ = 1.9, and depth U0 = -0.302, which is reasonable in the energy region well above the C60 plasmons. At very high Z, relativistic interactions become important contributors to even the qualitative nature of atomic properties; this is true for confined atomic properties as well. To explore the extent of these interactions, a theoretical study of several heavy atoms has been performed using the relativistic random phase approximation (RRPA) methodology. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. The existence of the second subshell of the spin-orbit-split doublets can induce new confinement resonances in the total cross section, which is the sum of the spin-orbit-split doublets, due to the shift in the doublet's threshold. Several examples for confined high-Z atoms are presented. Work supported by DOE and NSF.
Erukhimovich, I Ya; Kudryavtsev, Ya V
2003-08-01
An extended generalization of the dynamic random phase approximation (DRPA) for L-component polymer systems is presented. Unlike the original version of the DRPA, which relates the (LxL) matrices of the collective density-density time correlation functions and the corresponding susceptibilities of concentrated polymer systems to those of the tracer macromolecules and so-called broken-links system (BLS), our generalized DRPA solves this problem for the (5xL) x (5xL) matrices of the coupled susceptibilities and time correlation functions of the component number, kinetic energy and flux densities. The presented technique is used to study propagation of sound and dynamic form-factor in disentangled (Rouse) monodisperse homopolymer melt. The calculated ultrasonic velocity and absorption coefficient reveal substantial frequency dispersion. The relaxation time tau is proportional to the degree of polymerization N, which is N times less than the Rouse time and evidences strong dynamic screening because of interchain interaction. We discuss also some peculiarities of the Brillouin scattering in polymer melts. Besides, a new convenient expression for the dynamic structure function of the single Rouse chain in (q,p) representation is found.
Orthen, E; Lange, P; Wöhrmann, K
1984-12-01
This paper analyses the fate of artificially induced mutations and their importance to the fitness of populations of the yeast, Saccharomyces cerevisiae, an increasingly important model organism in population genetics. Diploid strains, treated with UV and EMS, were cultured asexually for approximately 540 generations and under conditions where the asexual growth was interrupted by a sexual phase. Growth rates of 100 randomly sampled diploid clones were estimated at the beginning and at the end of the experiment. After the induction of sporulation the growth rates of 100 randomly sampled spores were measured. UV and EMS treatment decreases the average growth rate of the clones significantly but increases the variability in comparison to the untreated control. After selection over approximately 540 generations, variability in growth rates was reduced to that of the untreated control. No increase in mean population fitness was observed. However, the results show that after selection there still exists a large amount of hidden genetic variability in the populations which is revealed when the clones are cultivated in environments other than those in which selection took place. A sexual phase increased the reduction of the induced variability.
Application of a Phase-resolving, Directional Nonlinear Spectral Wave Model
NASA Astrophysics Data System (ADS)
Davis, J. R.; Sheremet, A.; Tian, M.; Hanson, J. L.
2014-12-01
We describe several applications of a phase-resolving, directional nonlinear spectral wave model. The model describes a 2D surface gravity wave field approaching a mildly sloping beach with parallel depth contours at an arbitrary angle accounting for nonlinear, quadratic triad interactions. The model is hyperbolic, with the initial wave spectrum specified in deep water. Complex amplitudes are generated based on the random phase approximation. The numerical implementation includes unidirectional propagation as a special case. In directional mode, it solves the system of equations in the frequency-alongshore wave number space. Recent enhancements of the model include the incorporation of dissipation caused by breaking and propagation over a viscous mud layer and the calculation of wave induced setup. Applications presented include: a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation, a study of the evolution of a single directional triad, and several preliminary comparisons to wave spectra collected at the USACE-FRF in Duck, NC which show encouraging results although further validation with a wider range of beach slopes and wave conditions is needed.
Methods for converging correlation energies within the dielectric matrix formalism
NASA Astrophysics Data System (ADS)
Dixit, Anant; Claudot, Julien; Gould, Tim; Lebègue, Sébastien; Rocca, Dario
2018-03-01
Within the dielectric matrix formalism, the random-phase approximation (RPA) and analogous methods that include exchange effects are promising approaches to overcome some of the limitations of traditional density functional theory approximations. The RPA-type methods however have a significantly higher computational cost, and, similarly to correlated quantum-chemical methods, are characterized by a slow basis set convergence. In this work we analyzed two different schemes to converge the correlation energy, one based on a more traditional complete basis set extrapolation and one that converges energy differences by accounting for the size-consistency property. These two approaches have been systematically tested on the A24 test set, for six points on the potential-energy surface of the methane-formaldehyde complex, and for reaction energies involving the breaking and formation of covalent bonds. While both methods converge to similar results at similar rates, the computation of size-consistent energy differences has the advantage of not relying on the choice of a specific extrapolation model.
Phase unwrapping using region-based markov random field model.
Dong, Ying; Ji, Jim
2010-01-01
Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method.
Near-optimal matrix recovery from random linear measurements.
Romanov, Elad; Gavish, Matan
2018-06-25
In matrix recovery from random linear measurements, one is interested in recovering an unknown M-by-N matrix [Formula: see text] from [Formula: see text] measurements [Formula: see text], where each [Formula: see text] is an M-by-N measurement matrix with i.i.d. random entries, [Formula: see text] We present a matrix recovery algorithm, based on approximate message passing, which iteratively applies an optimal singular-value shrinker-a nonconvex nonlinearity tailored specifically for matrix estimation. Our algorithm typically converges exponentially fast, offering a significant speedup over previously suggested matrix recovery algorithms, such as iterative solvers for nuclear norm minimization (NNM). It is well known that there is a recovery tradeoff between the information content of the object [Formula: see text] to be recovered (specifically, its matrix rank r) and the number of linear measurements n from which recovery is to be attempted. The precise tradeoff between r and n, beyond which recovery by a given algorithm becomes possible, traces the so-called phase transition curve of that algorithm in the [Formula: see text] plane. The phase transition curve of our algorithm is noticeably better than that of NNM. Interestingly, it is close to the information-theoretic lower bound for the minimal number of measurements needed for matrix recovery, making it not only state of the art in terms of convergence rate, but also near optimal in terms of the matrices it successfully recovers. Copyright © 2018 the Author(s). Published by PNAS.
Reconciling quality and cost: A case study in interventional radiology.
Zhang, Li; Domröse, Sascha; Mahnken, Andreas
2015-10-01
To provide a method to calculate delay cost and examine the relationship between quality and total cost. The total cost including capacity, supply and delay cost for running an interventional radiology suite was calculated. The capacity cost, consisting of labour, lease and overhead costs, was derived based on expenses per unit time. The supply cost was calculated according to actual procedural material use. The delay cost and marginal delay cost derived from queueing models was calculated based on waiting times of inpatients for their procedures. Quality improvement increased patient safety and maintained the outcome. The average daily delay costs were reduced from 1275 € to 294 €, and marginal delay costs from approximately 2000 € to 500 €, respectively. The one-time annual cost saved from the transfer of surgical to radiological procedures was approximately 130,500 €. The yearly delay cost saved was approximately 150,000 €. With increased revenue of 10,000 € in project phase 2, the yearly total cost saved was approximately 290,000 €. Optimal daily capacity of 4.2 procedures was determined. An approach for calculating delay cost toward optimal capacity allocation was presented. An overall quality improvement was achieved at reduced costs. • Improving quality in terms of safety, outcome, efficiency and timeliness reduces cost. • Mismatch of demand and capacity is detrimental to quality and cost. • Full system utilization with random demand results in long waiting periods and increased cost.
A new phase of disordered phonons modelled by random matrices
NASA Astrophysics Data System (ADS)
Schmittner, Sebastian; Zirnbauer, Martin
2015-03-01
Starting from the clean harmonic crystal and not invoking two-level systems, we propose a model for phonons in a disordered solid. In this model the strength of mass and spring constant disorder can be increased separately. Both types of disorder are modelled by random matrices that couple the degrees of freedom locally. Treated in coherent potential approximation (CPA), the speed of sound decreases with increasing disorder until it reaches zero at finite disorder strength. There, a critical transition to a strong disorder phase occurs. In this novel phase, we find the density of states at zero energy in three dimensions to be finite, leading to a linear temperature dependence of the heat capacity, as observed experimentally for vitreous systems. For any disorder strength, our model is stable, i.e. masses and spring constants are positive, and there are no runaway dynamics. This is ensured by using appropriate probability distributions, inspired by Wishart ensembles, for the random matrices. The CPA self-consistency equations are derived in a very accessible way using planar diagrams. The talk focuses on the model and the results. The first author acknowledges financial support by the Deutsche Telekom Stiftung.
NASA Astrophysics Data System (ADS)
Granato, Enzo
2017-11-01
We study numerically the superconductor-insulator transition in two-dimensional inhomogeneous superconductors with gauge disorder, described by four different quantum rotor models: a gauge glass, a flux glass, a binary phase glass, and a Gaussian phase glass. The first two models describe the combined effect of geometrical disorder in the array of local superconducting islands and a uniform external magnetic field, while the last two describe the effects of random negative Josephson-junction couplings or π junctions. Monte Carlo simulations in the path-integral representation of the models are used to determine the critical exponents and the universal conductivity at the quantum phase transition. The gauge- and flux-glass models display the same critical behavior, within the estimated numerical uncertainties. Similar agreement is found for the binary and Gaussian phase-glass models. Despite the different symmetries and disorder correlations, we find that the universal conductivity of these models is approximately the same. In particular, the ratio of this value to that of the pure model agrees with recent experiments on nanohole thin-film superconductors in a magnetic field, in the large disorder limit.
Model's sparse representation based on reduced mixed GMsFE basis methods
NASA Astrophysics Data System (ADS)
Jiang, Lijian; Li, Qiuqi
2017-06-01
In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.
Model's sparse representation based on reduced mixed GMsFE basis methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Qiuqi, E-mail: qiuqili@hnu.edu.cn
2017-06-01
In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a largemore » number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.« less
Phase walk analysis of leptokurtic time series.
Schreiber, Korbinian; Modest, Heike I; Räth, Christoph
2018-06-01
The Fourier phase information play a key role for the quantified description of nonlinear data. We present a novel tool for time series analysis that identifies nonlinearities by sensitively detecting correlations among the Fourier phases. The method, being called phase walk analysis, is based on well established measures from random walk analysis, which are now applied to the unwrapped Fourier phases of time series. We provide an analytical description of its functionality and demonstrate its capabilities on systematically controlled leptokurtic noise. Hereby, we investigate the properties of leptokurtic time series and their influence on the Fourier phases of time series. The phase walk analysis is applied to measured and simulated intermittent time series, whose probability density distribution is approximated by power laws. We use the day-to-day returns of the Dow-Jones industrial average, a synthetic time series with tailored nonlinearities mimicing the power law behavior of the Dow-Jones and the acceleration of the wind at an Atlantic offshore site. Testing for nonlinearities by means of surrogates shows that the new method yields strong significances for nonlinear behavior. Due to the drastically decreased computing time as compared to embedding space methods, the number of surrogate realizations can be increased by orders of magnitude. Thereby, the probability distribution of the test statistics can very accurately be derived and parameterized, which allows for much more precise tests on nonlinearities.
Szelinger, Szabolcs; Malenica, Ivana; Corneveaux, Jason J.; Siniard, Ashley L.; Kurdoglu, Ahmet A.; Ramsey, Keri M.; Schrauwen, Isabelle; Trent, Jeffrey M.; Narayanan, Vinodh; Huentelman, Matthew J.; Craig, David W.
2014-01-01
In females, X chromosome inactivation (XCI) is an epigenetic, gene dosage compensatory mechanism by inactivation of one copy of X in cells. Random XCI of one of the parental chromosomes results in an approximately equal proportion of cells expressing alleles from either the maternally or paternally inherited active X, and is defined by the XCI ratio. Skewed XCI ratio is suggestive of non-random inactivation, which can play an important role in X-linked genetic conditions. Current methods rely on indirect, semi-quantitative DNA methylation-based assay to estimate XCI ratio. Here we report a direct approach to estimate XCI ratio by integrated, family-trio based whole-exome and mRNA sequencing using phase-by-transmission of alleles coupled with allele-specific expression analysis. We applied this method to in silico data and to a clinical patient with mild cognitive impairment but no clear diagnosis or understanding molecular mechanism underlying the phenotype. Simulation showed that phased and unphased heterozygous allele expression can be used to estimate XCI ratio. Segregation analysis of the patient's exome uncovered a de novo, interstitial, 1.7 Mb deletion on Xp22.31 that originated on the paternally inherited X and previously been associated with heterogeneous, neurological phenotype. Phased, allelic expression data suggested an 83∶20 moderately skewed XCI that favored the expression of the maternally inherited, cytogenetically normal X and suggested that the deleterious affect of the de novo event on the paternal copy may be offset by skewed XCI that favors expression of the wild-type X. This study shows the utility of integrated sequencing approach in XCI ratio estimation. PMID:25503791
Estimation of treatment effects in all-comers randomized clinical trials with a predictive marker.
Choai, Yuki; Matsui, Shigeyuki
2015-03-01
Recent advances in genomics and biotechnologies have accelerated the development of molecularly targeted treatments and accompanying markers to predict treatment responsiveness. However, it is common at the initiation of a definitive phase III clinical trial that there is no compelling biological basis or early trial data for a candidate marker regarding its capability in predicting treatment effects. In this case, it is reasonable to include all patients as eligible for randomization, but to plan for prospective subgroup analysis based on the marker. One analysis plan in such all-comers designs is the so-called fallback approach that first tests for overall treatment efficacy and then proceeds to testing in a biomarker-positive subgroup if the first test is not significant. In this approach, owing to the adaptive nature of the analysis and a correlation between the two tests, a bias will arise in estimating the treatment effect in the biomarker-positive subgroup after a non-significant first overall test. In this article, we formulate the bias function and show a difficulty in obtaining unbiased estimators for a whole range of an associated parameter. To address this issue, we propose bias-corrected estimation methods, including those based on an approximation of the bias function under a bounded range of the parameter using polynomials. We also provide an interval estimation method based on a bivariate doubly truncated normal distribution. Simulation experiments demonstrated a success in bias reduction. Application to a phase III trial for lung cancer is provided. © 2014, The International Biometric Society.
Cold pasta phase in the extended Thomas-Fermi approximation
NASA Astrophysics Data System (ADS)
Avancini, S. S.; Bertolino, B. P.
2015-10-01
In this paper, we aim to obtain more accurate values for the transition density to the homogenous phase in the nuclear pasta that occurs in the inner crust of neutron stars. To that end, we use the nonlinear Walecka model at zero temperature and an approach based on the extended Thomas-Fermi (ETF) approximation.
Phase-Image Encryption Based on 3D-Lorenz Chaotic System and Double Random Phase Encoding
NASA Astrophysics Data System (ADS)
Sharma, Neha; Saini, Indu; Yadav, AK; Singh, Phool
2017-12-01
In this paper, an encryption scheme for phase-images based on 3D-Lorenz chaotic system in Fourier domain under the 4f optical system is presented. The encryption scheme uses a random amplitude mask in the spatial domain and a random phase mask in the frequency domain. Its inputs are phase-images, which are relatively more secure as compared to the intensity images because of non-linearity. The proposed scheme further derives its strength from the use of 3D-Lorenz transform in the frequency domain. Although the experimental setup for optical realization of the proposed scheme has been provided, the results presented here are based on simulations on MATLAB. It has been validated for grayscale images, and is found to be sensitive to the encryption parameters of the Lorenz system. The attacks analysis shows that the key-space is large enough to resist brute-force attack, and the scheme is also resistant to the noise and occlusion attacks. Statistical analysis and the analysis based on correlation distribution of adjacent pixels have been performed to test the efficacy of the encryption scheme. The results have indicated that the proposed encryption scheme possesses a high level of security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isobe, Hiroki; Fu, Liang
Here, we study the pairing symmetry of the interlayer paired state of composite fermions in quantum Hall bilayers. Based on the Halperin-Lee-Read (HLR) theory, the effect of the long-range Coulomb interaction and the internal Chern-Simons gauge fluctuation is analyzed with the random-phase approximation beyond the leading order contribution in small momentum expansion, and we observe that the interlayer paired states with a relative angular momentummore » $l=+1$ are energetically favored for filling ν=$$\\frac{1}2$$+$$\\frac{1}2$$ and $$\\frac{1}4$$+$$\\frac{1}4$$. The degeneracy between states with $±l$ is lifted by the interlayer density-current interaction arising from the interplay of the long-range Coulomb interaction and the Chern-Simons term in the HLR theory.« less
Tanaka, Shigenori
2016-12-07
Correlational and thermodynamic properties of homogeneous electron liquids at finite temperatures are theoretically analyzed in terms of dielectric response formalism with the hypernetted-chain (HNC) approximation and its modified version. The static structure factor and the local-field correction to describe the strong Coulomb-coupling effects beyond the random-phase approximation are self-consistently calculated through solution to integral equations in the paramagnetic (spin unpolarized) and ferromagnetic (spin polarized) states. In the ground state with the normalized temperature θ=0, the present HNC scheme well reproduces the exchange-correlation energies obtained by quantum Monte Carlo (QMC) simulations over the whole fluid phase (the coupling constant r s ≤100), i.e., within 1% and 2% deviations from putative best QMC values in the paramagnetic and ferromagnetic states, respectively. As compared with earlier studies based on the Singwi-Tosi-Land-Sjölander and modified convolution approximations, some improvements on the correlation energies and the correlation functions including the compressibility sum rule are found in the intermediate to strong coupling regimes. When applied to the electron fluids at intermediate Fermi degeneracies (θ≈1), the static structure factors calculated in the HNC scheme show good agreements with the results obtained by the path integral Monte Carlo (PIMC) simulation, while a small negative region in the radial distribution function is observed near the origin, which may be associated with a slight overestimation for the exchange-correlation hole in the HNC approximation. The interaction energies are calculated for various combinations of density and temperature parameters ranging from strong to weak degeneracy and from weak to strong coupling, and the HNC values are then parametrized as functions of r s and θ. The HNC exchange-correlation free energies obtained through the coupling-constant integration show reasonable agreements with earlier results including the PIMC-based fitting over the whole fluid region at finite degeneracies in the paramagnetic state. In contrast, a systematic difference between the HNC and PIMC results is observed in the ferromagnetic state, which suggests a necessity of further studies on the exchange-correlation free energies from both aspects of analytical theory and simulation.
Calculation of exchange integrals and Curie temperature for La-substituted barium hexaferrites.
Wu, Chuanjian; Yu, Zhong; Sun, Ke; Nie, Jinlan; Guo, Rongdi; Liu, Hai; Jiang, Xiaona; Lan, Zhongwen
2016-10-31
As the macro behavior of the strength of exchange interaction, state of the art of Curie temperature T c , which is directly proportional to the exchange integrals, makes sense to the high-frequency and high-reliability microwave devices. Challenge remains as finding a quantitative way to reveal the relationship between the Curie temperature and the exchange integrals for doped barium hexaferrites. Here in this report, for La-substituted barium hexaferrites, the electronic structure has been determined by the density functional theory (DFT) and generalized gradient approximation (GGA). By means of the comparison between the ground and relative state, thirteen exchange integrals have been calculated as a function of the effective value U eff . Furthermore, based on the Heisenberg model, the molecular field approximation (MFA) and random phase approximation (RPA), which provide an upper and lower bound of the Curie temperature T c , have been adopted to deduce the Curie temperature T c . In addition, the Curie temperature T c derived from the MFA are coincided well with the experimental data. Finally, the strength of superexchange interaction mainly depends on 2b-4f 1 , 4f 2 -12k, 2a-4f 1 , and 4f 1 -12k interactions.
NASA Technical Reports Server (NTRS)
Ham, Yoo-Geun; Schubert, Siegfried; Chang, Yehui
2012-01-01
An initialization strategy, tailored to the prediction of the Madden-Julian oscillation (MJO), is evaluated using the Goddard Earth Observing System Model, version 5 (GEOS-5), coupled general circulation model (CGCM). The approach is based on the empirical singular vectors (ESVs) of a reduced-space statistically determined linear approximation of the full nonlinear CGCM. The initial ESV, extracted using 10 years (1990-99) of boreal winter hindcast data, has zonal wind anomalies over the western Indian Ocean, while the final ESV (at a forecast lead time of 10 days) reflects a propagation of the zonal wind anomalies to the east over the Maritime Continent an evolution that is characteristic of the MJO. A new set of ensemble hindcasts are produced for the boreal winter season from 1990 to 1999 in which the leading ESV provides the initial perturbations. The results are compared with those from a set of control hindcasts generated using random perturbations. It is shown that the ESV-based predictions have a systematically higher bivariate correlation skill in predicting the MJO compared to those using the random perturbations. Furthermore, the improvement in the skill depends on the phase of the MJO. The ESV is particularly effective in increasing the forecast skill during those phases of the MJO in which the control has low skill (with correlations increasing by as much as 0.2 at 20 25-day lead times), as well as during those times in which the MJO is weak.
Yi, Faliu; Jeoung, Yousun; Moon, Inkyu
2017-05-20
In recent years, many studies have focused on authentication of two-dimensional (2D) images using double random phase encryption techniques. However, there has been little research on three-dimensional (3D) imaging systems, such as integral imaging, for 3D image authentication. We propose a 3D image authentication scheme based on a double random phase integral imaging method. All of the 2D elemental images captured through integral imaging are encrypted with a double random phase encoding algorithm and only partial phase information is reserved. All the amplitude and other miscellaneous phase information in the encrypted elemental images is discarded. Nevertheless, we demonstrate that 3D images from integral imaging can be authenticated at different depths using a nonlinear correlation method. The proposed 3D image authentication algorithm can provide enhanced information security because the decrypted 2D elemental images from the sparse phase cannot be easily observed by the naked eye. Additionally, using sparse phase images without any amplitude information can greatly reduce data storage costs and aid in image compression and data transmission.
A rule-based software test data generator
NASA Technical Reports Server (NTRS)
Deason, William H.; Brown, David B.; Chang, Kai-Hsiung; Cross, James H., II
1991-01-01
Rule-based software test data generation is proposed as an alternative to either path/predicate analysis or random data generation. A prototype rule-based test data generator for Ada programs is constructed and compared to a random test data generator. Four Ada procedures are used in the comparison. Approximately 2000 rule-based test cases and 100,000 randomly generated test cases are automatically generated and executed. The success of the two methods is compared using standard coverage metrics. Simple statistical tests showing that even the primitive rule-based test data generation prototype is significantly better than random data generation are performed. This result demonstrates that rule-based test data generation is feasible and shows great promise in assisting test engineers, especially when the rule base is developed further.
ERIC Educational Resources Information Center
Jackson, Dan; Bowden, Jack; Baker, Rose
2015-01-01
Moment-based estimators of the between-study variance are very popular when performing random effects meta-analyses. This type of estimation has many advantages including computational and conceptual simplicity. Furthermore, by using these estimators in large samples, valid meta-analyses can be performed without the assumption that the treatment…
Sum Rule for a Schiff-Like Dipole Moment
NASA Astrophysics Data System (ADS)
Raduta, A. A.; Budaca, R.
The energy-weighted sum rule for an electric dipole transition operator of a Schiff type differs from the Thomas-Reiche-Kuhn (TRK) sum rule by several corrective terms which depend on the number of system components, N. For illustration the formalism was applied to the case of Na clusters. One concludes that the random phase approximation (RPA) results for Na clusters obey the modified TRK sum rule.
Experimental study of a quantum random-number generator based on two independent lasers
NASA Astrophysics Data System (ADS)
Sun, Shi-Hai; Xu, Feihu
2017-12-01
A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.
Iteration and superposition encryption scheme for image sequences based on multi-dimensional keys
NASA Astrophysics Data System (ADS)
Han, Chao; Shen, Yuzhen; Ma, Wenlin
2017-12-01
An iteration and superposition encryption scheme for image sequences based on multi-dimensional keys is proposed for high security, big capacity and low noise information transmission. Multiple images to be encrypted are transformed into phase-only images with the iterative algorithm and then are encrypted by different random phase, respectively. The encrypted phase-only images are performed by inverse Fourier transform, respectively, thus new object functions are generated. The new functions are located in different blocks and padded zero for a sparse distribution, then they propagate to a specific region at different distances by angular spectrum diffraction, respectively and are superposed in order to form a single image. The single image is multiplied with a random phase in the frequency domain and then the phase part of the frequency spectrums is truncated and the amplitude information is reserved. The random phase, propagation distances, truncated phase information in frequency domain are employed as multiple dimensional keys. The iteration processing and sparse distribution greatly reduce the crosstalk among the multiple encryption images. The superposition of image sequences greatly improves the capacity of encrypted information. Several numerical experiments based on a designed optical system demonstrate that the proposed scheme can enhance encrypted information capacity and make image transmission at a highly desired security level.
Wave-induced fluid flow in random porous media: Attenuation and dispersion of elastic waves
NASA Astrophysics Data System (ADS)
Müller, Tobias M.; Gurevich, Boris
2005-05-01
A detailed analysis of the relationship between elastic waves in inhomogeneous, porous media and the effect of wave-induced fluid flow is presented. Based on the results of the poroelastic first-order statistical smoothing approximation applied to Biot's equations of poroelasticity, a model for elastic wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous poroelastic media is developed. Attenuation and dispersion depend on linear combinations of the spatial correlations of the fluctuating poroelastic parameters. The observed frequency dependence is typical for a relaxation phenomenon. Further, the analytic properties of attenuation and dispersion are analyzed. It is shown that the low-frequency asymptote of the attenuation coefficient of a plane compressional wave is proportional to the square of frequency. At high frequencies the attenuation coefficient becomes proportional to the square root of frequency. A comparison with the 1-D theory shows that attenuation is of the same order but slightly larger in 3-D random media. Several modeling choices of the approach including the effect of cross correlations between fluid and solid phase properties are demonstrated. The potential application of the results to real porous materials is discussed. .
Modified Hartree-Fock-Bogoliubov theory at finite temperature
NASA Astrophysics Data System (ADS)
Dinh Dang, Nguyen; Arima, Akito
2003-07-01
The modified Hartree-Fock-Bogoliubov (MHFB) theory at finite temperature is derived, which conserves the unitarity relation of the particle-density matrix. This is achieved by constructing a modified-quasiparticle-density matrix, where the fluctuation of the quasiparticle number is microscopically built in. This matrix can be directly obtained from the usual quasiparticle-density matrix by applying the secondary Bogoliubov transformation, which includes the quasiparticle-occupation number. It is shown that, in the limit of constant pairing parameter, the MHFB theory yields the previously obtained modified BCS (MBCS) equations. It is also proved that the modified quasiparticle-random-phase approximation, which is based on the MBCS quasiparticle excitations, conserves the Ikeda sum rule. The numerical calculations of the pairing gap, heat capacity, level density, and level-density parameter within the MBCS theory are carried out for 120Sn. The results show that the superfluid-normal phase transition is completely washed out. The applicability of the MBCS up to a temperature as high as T˜5 MeV is analyzed in detail.
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
On the estimation variance for the specific Euler-Poincaré characteristic of random networks.
Tscheschel, A; Stoyan, D
2003-07-01
The specific Euler number is an important topological characteristic in many applications. It is considered here for the case of random networks, which may appear in microscopy either as primary objects of investigation or as secondary objects describing in an approximate way other structures such as, for example, porous media. For random networks there is a simple and natural estimator of the specific Euler number. For its estimation variance, a simple Poisson approximation is given. It is based on the general exact formula for the estimation variance. In two examples of quite different nature and topology application of the formulas is demonstrated.
Phase transitions in Ising models on directed networks
NASA Astrophysics Data System (ADS)
Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof
2015-11-01
We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme.
Phonons in random alloys: The itinerant coherent-potential approximation
NASA Astrophysics Data System (ADS)
Ghosh, Subhradip; Leath, P. L.; Cohen, Morrel H.
2002-12-01
We present the itinerant coherent-potential approximation (ICPA), an analytic, translationally invariant, and tractable form of augmented-space-based multiple-scattering theory18 in a single-site approximation for harmonic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expressions for quantities needed for comparison with experimental structure factors such as partial and average spectral functions and derive the sum rules associated with them. Numerical results are presented for Ni55Pd45 and Ni50Pt50 alloys which serve as test cases, the former for weak force-constant disorder and the latter for strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the single-site coherent potential approximation (CPA) and experiment are made which provide insight into the physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant disorder case but fails for strong force-constant disorder where the ICPA succeeds.
NASA Technical Reports Server (NTRS)
Chadwick, C.
1984-01-01
This paper describes the development and use of an algorithm to compute approximate statistics of the magnitude of a single random trajectory correction maneuver (TCM) Delta v vector. The TCM Delta v vector is modeled as a three component Cartesian vector each of whose components is a random variable having a normal (Gaussian) distribution with zero mean and possibly unequal standard deviations. The algorithm uses these standard deviations as input to produce approximations to (1) the mean and standard deviation of the magnitude of Delta v, (2) points of the probability density function of the magnitude of Delta v, and (3) points of the cumulative and inverse cumulative distribution functions of Delta v. The approximates are based on Monte Carlo techniques developed in a previous paper by the author and extended here. The algorithm described is expected to be useful in both pre-flight planning and in-flight analysis of maneuver propellant requirements for space missions.
Wivel, Ashley E; Lapane, Kate; Kleoudis, Christi; Singer, Burton H; Horwitz, Ralph I
2017-11-01
To guide management decisions for an index patient, evidence is required from comparisons between approximate matches to the profile of the index case, where some matches contain responses to treatment and others act as controls. We describe a method for constructing clinically relevant histories/profiles using data collected but unreported from 2 recent phase 3 randomized controlled trials assessing belimumab in subjects with clinically active and serologically positive systemic lupus erythematosus. Outcome was the Systemic lupus erythematosus Responder Index (SRI) measured at 52 weeks. Among 1175 subjects, we constructed an algorithm utilizing 11 trajectory variables including 4 biological, 2 clinical, and 5 social/behavioral. Across all biological and social/behavioral variables, the proportion of responders based on the SRI whose value indicated clinical worsening or no improvement ranged from 27.5% to 42.3%. Kappa values suggested poor agreement, indicating that each biological and patient-reported outcome provides different information than gleaned from the SRI. The richly detailed patient profiles needed to guide decision-making in clinical practice are sharply at odds with the limited information utilized in conventional randomized controlled trial analyses. Copyright © 2017 Elsevier Inc. All rights reserved.
Anomalies in the 1D Anderson model: Beyond the band-centre and band-edge cases
NASA Astrophysics Data System (ADS)
Tessieri, L.; Izrailev, F. M.
2018-03-01
We consider the one-dimensional Anderson model with weak disorder. Using the Hamiltonian map approach, we analyse the validity of the random-phase approximation for resonant values of the energy, E = 2 cos(πr) , with r a rational number. We expand the invariant measure of the phase variable in powers of the disorder strength and we show that, contrary to what happens at the centre and at the edges of the band, for all other resonant energies the leading term of the invariant measure is uniform. When higher-order terms are taken into account, a modulation of the invariant measure appears for all resonant values of the energy. This implies that, when the localisation length is computed within the second-order approximation in the disorder strength, the Thouless formula is valid everywhere except at the band centre and at the band edges.
Model of a thin film optical fiber fluorosensor
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1991-01-01
The efficiency of core-light injection from sources in the cladding of an optical fiber is modeled analytically by means of the exact field solution of a step-profile fiber. The analysis is based on the techniques by Marcuse (1988) in which the sources are treated as infinitesimal electric currents with random phase and orientation that excite radiation fields and bound modes. Expressions are developed based on an infinite cladding approximation which yield the power efficiency for a fiber coated with fluorescent sources in the core/cladding interface. Marcuse's results are confirmed for the case of a weakly guiding cylindrical fiber with fluorescent sources uniformly distributed in the cladding, and the power efficiency is shown to be practically constant for variable wavelengths and core radii. The most efficient fibers have the thin film located at the core/cladding boundary, and fibers with larger differences in the indices of refraction are shown to be the most efficient.
Spin Resonance in the New-Structure-Type Iron-Based Superconductor CaKFe4As4
NASA Astrophysics Data System (ADS)
Iida, Kazuki; Ishikado, Motoyuki; Nagai, Yuki; Yoshida, Hiroyuki; Christianson, Andrew D.; Murai, Naoki; Kawashima, Kenji; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Iyo, Akira
2017-09-01
The dynamical spin susceptibility in the new-structure-type iron-based superconductor CaKFe4As4 was investigated by using a combination of inelastic neutron scattering (INS) measurements and random phase approximation (RPA) calculations. Powder INS measurements show that the spin resonance at Qres = 1.17(1) Å-1, corresponding to the (π ,π ) nesting wave vector in tetragonal notation, evolves below Tc. The characteristic energy of the spin resonance Eres = 12.5 meV is smaller than twice the size of the superconducting gap (2Δ). The broad energy feature of the dynamical susceptibility of the spin resonance can be explained by the RPA calculations, in which the different superconducting gaps on different Fermi surfaces are taken into account. Our INS and PRA studies demonstrate that the superconducting pairing nature in CaKFe4As4 is the s± symmetry.
DNA unzipping phase diagram calculated via replica theory.
Roland, C Brian; Hatch, Kristi Adamson; Prentiss, Mara; Shakhnovich, Eugene I
2009-05-01
We show how single-molecule unzipping experiments can provide strong evidence that the zero-force melting transition of long molecules of natural dsDNA should be classified as a phase transition of the higher-order type (continuous). Toward this end, we study a statistical-mechanics model for the fluctuating structure of a long molecule of dsDNA, and compute the equilibrium phase diagram for the experiment in which the molecule is unzipped under applied force. We consider a perfect-matching dsDNA model, in which the loops are volume-excluding chains with arbitrary loop exponent c . We include stacking interactions, hydrogen bonds, and main-chain entropy. We include sequence heterogeneity at the level of random sequences; in particular, there is no correlation in the base-pairing (bp) energy from one sequence position to the next. We present heuristic arguments to demonstrate that the low-temperature macrostate does not exhibit degenerate ergodicity breaking. We use this claim to understand the results of our replica-theoretic calculation of the equilibrium properties of the system. As a function of temperature, we obtain the minimal force at which the molecule separates completely. This critical-force curve is a line in the temperature-force phase diagram that marks the regions where the molecule exists primarily as a double helix versus the region where the molecule exists as two separate strands. We compare our random-sequence model to magnetic tweezer experiments performed on the 48 502 bp genome of bacteriophage lambda . We find good agreement with the experimental data, which is restricted to temperatures between 24 and 50 degrees C . At higher temperatures, the critical-force curve of our random-sequence model is very different for that of the homogeneous-sequence version of our model. For both sequence models, the critical force falls to zero at the melting temperature T_{c} like |T-T_{c}|;{alpha} . For the homogeneous-sequence model, alpha=1/2 almost exactly, while for the random-sequence model, alpha approximately 0.9 . Importantly, the shape of the critical-force curve is connected, via our theory, to the manner in which the helix fraction falls to zero at T_{c} . The helix fraction is the property that is used to classify the melting transition as a type of phase transition. In our calculation, the shape of the critical-force curve holds strong evidence that the zero-force melting transition of long natural dsDNA should be classified as a higher-order (continuous) phase transition. Specifically, the order is 3rd or greater.
NASA Astrophysics Data System (ADS)
Witte, B. B. L.; Fletcher, L. B.; Galtier, E.; Gamboa, E.; Lee, H. J.; Zastrau, U.; Redmer, R.; Glenzer, S. H.; Sperling, P.
2017-06-01
We present simulations using finite-temperature density-functional-theory molecular dynamics to calculate the dynamic electrical conductivity in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew-Burke-Enzerhof and Heyd-Scuseria-Enzerhof (HSE) approximation indicates evident differences in the density of states and the dc conductivity. The HSE calculations show excellent agreement with experimental Linac Coherent Light Source x-ray plasmon scattering spectra revealing plasmon damping below the widely used random phase approximation. These findings demonstrate non-Drude-like behavior of the dynamic conductivity that needs to be taken into account to determine the optical properties of warm dense matter.
Approximating prediction uncertainty for random forest regression models
John W. Coulston; Christine E. Blinn; Valerie A. Thomas; Randolph H. Wynne
2016-01-01
Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as...
NASA Astrophysics Data System (ADS)
Heßelmann, Andreas
2017-06-01
A many-body Green's-function method employing an infinite order summation of ring and exchange-ring contributions to the self-energy is presented. The individual correlation and relaxation contributions to the quasiparticle energies are calculated using an iterative scheme which utilizes density fitting of the particle-hole, particle-particle and hole-hole densities. It is shown that the ionization energies and electron affinities of this approach agree better with highly accurate coupled-cluster singles and doubles with perturbative triples energy difference results than those obtained with second-order Green's-function approaches. An analysis of the correlation and relaxation terms of the self-energy for the direct- and exchange-random-phase-approximation (RPA) Green's-function methods shows that the inclusion of exchange interactions leads to a reduction of the two contributions in magnitude. These differences, however, strongly cancel each other when summing the individual terms to the quasiparticle energies. Due to this, the direct- and exchange-RPA methods perform similarly for the description of ionization energies (IPs) and electron affinities (EAs). The coupled-cluster reference IPs and EAs, if corrected to the adiabatic energy differences between the neutral and charged molecules, were shown to be in very good agreement with experimental measurements.
NASA Astrophysics Data System (ADS)
Olsen, Thomas
2017-09-01
The random phase approximation (RPA) for total energies has previously been shown to provide a qualitatively correct description of static correlation in molecular systems, where density functional theory (DFT) with local functionals are bound to fail. This immediately poses the question of whether the RPA is also able to capture the correct physics of strongly correlated solids such as Mott insulators. Due to strong electron localization, magnetic interactions in such systems are dominated by superexchange, which in the simplest picture can be regarded as the analog of static correlation for molecules. In this paper, we investigate the performance of the RPA for evaluating both superexchange and direct exchange interactions in the magnetic solids NiO, MnO, Na3Cu2SbO6,Sr2CuO3,Sr2CuTeO6 , and a monolayer of CrI3, which were chosen to represent a broad variety of magnetic interactions. It is found that the RPA can accurately correct the large errors introduced by Hartree-Fock, independent of the input orbitals used for the perturbative expansion. However, in most cases, accuracies similar to RPA can be obtained with DFT+U, which is significantly simpler from a computational point of view.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
Systematic Onset of Periodic Patterns in Random Disk Packings
NASA Astrophysics Data System (ADS)
Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A. C.
2018-04-01
We report evidence of a surprising systematic onset of periodic patterns in very tall piles of disks deposited randomly between rigid walls. Independently of the pile width, periodic structures are always observed in monodisperse deposits containing up to 1 07 disks. The probability density function of the lengths of disordered transient phases that precede the onset of periodicity displays an approximately exponential tail. These disordered transients may become very large when the channel width grows without bound. For narrow channels, the probability density of finding periodic patterns of a given period displays a series of discrete peaks, which, however, are washed out completely when the channel width grows.
Deterministic quantum controlled-PHASE gates based on non-Markovian environments
NASA Astrophysics Data System (ADS)
Zhang, Rui; Chen, Tian; Wang, Xiang-Bin
2017-12-01
We study the realization of the quantum controlled-PHASE gate in an atom-cavity system beyond the Markovian approximation. The general description of the dynamics for the atom-cavity system without any approximation is presented. When the spectral density of the reservoir has the Lorentz form, by making use of the memory backflow from the reservoir, we can always construct the deterministic quantum controlled-PHASE gate between a photon and an atom, no matter the atom-cavity coupling strength is weak or strong. While, the phase shift in the output pulse hinders the implementation of quantum controlled-PHASE gates in the sub-Ohmic, Ohmic or super-Ohmic reservoirs.
The infinite limit as an eliminable approximation for phase transitions
NASA Astrophysics Data System (ADS)
Ardourel, Vincent
2018-05-01
It is generally claimed that infinite idealizations are required for explaining phase transitions within statistical mechanics (e.g. Batterman 2011). Nevertheless, Menon and Callender (2013) have outlined theoretical approaches that describe phase transitions without using the infinite limit. This paper closely investigates one of these approaches, which consists of studying the complex zeros of the partition function (Borrmann et al., 2000). Based on this theory, I argue for the plausibility for eliminating the infinite limit for studying phase transitions. I offer a new account for phase transitions in finite systems, and I argue for the use of the infinite limit as an approximation for studying phase transitions in large systems.
Random-phase metasurfaces at optical wavelengths
NASA Astrophysics Data System (ADS)
Pors, Anders; Ding, Fei; Chen, Yiting; Radko, Ilya P.; Bozhevolnyi, Sergey I.
2016-06-01
Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector.
Role of phase synchronisation in turbulence
NASA Astrophysics Data System (ADS)
Moradi, Sara; Teaca, Bogdan; Anderson, Johan
2017-11-01
The role of the phase dynamics in turbulence is investigated. As a demonstration of the importance of the phase dynamics, a simplified system is used, namely the one-dimensional Burgers equation, which is evolved numerically. The system is forced via a known external force, with two components that are added into the evolution equations of the amplitudes and the phase of the Fourier modes, separately. In this way, we are able to control the impact of the force on the dynamics of the phases. In the absence of the direct forcing in the phase equation, it is observed that the phases are not stochastic as assumed in the Random Phase Approximation (RPA) models, and in contrast, the non-linear couplings result in intermittent locking of the phases to ± π/2. The impact of the force, applied purely on the phases, is to increase the occurrence of the phase locking events in which the phases of the modes in a wide k range are now locked to ± π/2, leading to a change in the dynamics of both phases and amplitudes, with a significant localization of the real space flow structures.
Single scattering from nonspherical Chebyshev particles: A compendium of calculations
NASA Technical Reports Server (NTRS)
Wiscombe, W. J.; Mugnai, A.
1986-01-01
A large set of exact calculations of the scattering from a class of nonspherical particles known as Chebyshev particles' has been performed. Phase function and degree of polarization in random orientation, and parallel and perpendicular intensities in fixed orientations, are plotted for a variety of particles shapes and sizes. The intention is to furnish a data base against which both experimental data, and the predictions of approximate methods, can be tested. The calculations are performed with the widely-used Extended Boundary Condition Method. An extensive discussion of this method is given, including much material that is not easily available elsewhere (especially the analysis of its convergence properties). An extensive review is also given of all extant methods for nonspherical scattering calculations, as well as of the available pool of experimental data.
Interlayer Pairing Symmetry of Composite Fermions in Quantum Hall Bilayers
Isobe, Hiroki; Fu, Liang
2017-04-17
Here, we study the pairing symmetry of the interlayer paired state of composite fermions in quantum Hall bilayers. Based on the Halperin-Lee-Read (HLR) theory, the effect of the long-range Coulomb interaction and the internal Chern-Simons gauge fluctuation is analyzed with the random-phase approximation beyond the leading order contribution in small momentum expansion, and we observe that the interlayer paired states with a relative angular momentummore » $l=+1$ are energetically favored for filling ν=$$\\frac{1}2$$+$$\\frac{1}2$$ and $$\\frac{1}4$$+$$\\frac{1}4$$. The degeneracy between states with $±l$ is lifted by the interlayer density-current interaction arising from the interplay of the long-range Coulomb interaction and the Chern-Simons term in the HLR theory.« less
Why phase errors affect the electron function more than amplitude errors.
Lattman, Eaton; DeRosier, David
2008-03-01
If Fexp(ialpha) are the set of structure factors for a structure f, the amplitudes can be converted to those of an uncorrelated structure g (amplitude swapping) by multiplying each F by the positive number G/F. Correspondingly, the image f is convoluted with k, the Fourier transform of G/F; k has a large peak at the origin, so that f * k approximately f. For swapped phases, the image f is convoluted with l, the Fourier transform of exp(iDeltaalpha), where Deltaalpha, the phase difference between F and G, is a random variable; l does not have a large peak at the origin, so that f * l does not resemble f. The paper provides quantitative descriptions of these arguments.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t tomore » be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.« less
Improved decryption quality and security of a joint transform correlator-based encryption system
NASA Astrophysics Data System (ADS)
Vilardy, Juan M.; Millán, María S.; Pérez-Cabré, Elisabet
2013-02-01
Some image encryption systems based on modified double random phase encoding and joint transform correlator architecture produce low quality decrypted images and are vulnerable to a variety of attacks. In this work, we analyse the algorithm of some reported methods that optically implement the double random phase encryption in a joint transform correlator. We show that it is possible to significantly improve the quality of the decrypted image by introducing a simple nonlinear operation in the encrypted function that contains the joint power spectrum. This nonlinearity also makes the system more resistant to chosen-plaintext attacks. We additionally explore the system resistance against this type of attack when a variety of probability density functions are used to generate the two random phase masks of the encryption-decryption process. Numerical results are presented and discussed.
Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan
2016-08-01
A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.
Validation of optical codes based on 3D nanostructures
NASA Astrophysics Data System (ADS)
Carnicer, Artur; Javidi, Bahram
2017-05-01
Image information encoding using random phase masks produce speckle-like noise distributions when the sample is propagated in the Fresnel domain. As a result, information cannot be accessed by simple visual inspection. Phase masks can be easily implemented in practice by attaching cello-tape to the plain-text message. Conventional 2D-phase masks can be generalized to 3D by combining glass and diffusers resulting in a more complex, physical unclonable function. In this communication, we model the behavior of a 3D phase mask using a simple approach: light is propagated trough glass using the angular spectrum of plane waves whereas the diffusor is described as a random phase mask and a blurring effect on the amplitude of the propagated wave. Using different designs for the 3D phase mask and multiple samples, we demonstrate that classification is possible using the k-nearest neighbors and random forests machine learning algorithms.
Toward DNA-based Security Circuitry: First Step - Random Number Generation.
Bogard, Christy M; Arazi, Benjamin; Rouchka, Eric C
2008-08-10
DNA-based circuit design is an area of research in which traditional silicon-based technologies are replaced by naturally occurring phenomena taken from biochemistry and molecular biology. Our team investigates the implications of DNA-based circuit design in serving security applications. As an initial step we develop a random number generation circuitry. A novel prototype schema employs solid-phase synthesis of oligonucleotides for random construction of DNA sequences. Temporary storage and retrieval is achieved through plasmid vectors.
Prague, Mélanie; Commenges, Daniel; Guedj, Jérémie; Drylewicz, Julia; Thiébaut, Rodolphe
2013-08-01
Models based on ordinary differential equations (ODE) are widespread tools for describing dynamical systems. In biomedical sciences, data from each subject can be sparse making difficult to precisely estimate individual parameters by standard non-linear regression but information can often be gained from between-subjects variability. This makes natural the use of mixed-effects models to estimate population parameters. Although the maximum likelihood approach is a valuable option, identifiability issues favour Bayesian approaches which can incorporate prior knowledge in a flexible way. However, the combination of difficulties coming from the ODE system and from the presence of random effects raises a major numerical challenge. Computations can be simplified by making a normal approximation of the posterior to find the maximum of the posterior distribution (MAP). Here we present the NIMROD program (normal approximation inference in models with random effects based on ordinary differential equations) devoted to the MAP estimation in ODE models. We describe the specific implemented features such as convergence criteria and an approximation of the leave-one-out cross-validation to assess the model quality of fit. In pharmacokinetics models, first, we evaluate the properties of this algorithm and compare it with FOCE and MCMC algorithms in simulations. Then, we illustrate NIMROD use on Amprenavir pharmacokinetics data from the PUZZLE clinical trial in HIV infected patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Simultaneous transmission for an encrypted image and a double random-phase encryption key
NASA Astrophysics Data System (ADS)
Yuan, Sheng; Zhou, Xin; Li, Da-Hai; Zhou, Ding-Fu
2007-06-01
We propose a method to simultaneously transmit double random-phase encryption key and an encrypted image by making use of the fact that an acceptable decryption result can be obtained when only partial data of the encrypted image have been taken in the decryption process. First, the original image data are encoded as an encrypted image by a double random-phase encryption technique. Second, a double random-phase encryption key is encoded as an encoded key by the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. Then the amplitude of the encrypted image is modulated by the encoded key to form what we call an encoded image. Finally, the encoded image that carries both the encrypted image and the encoded key is delivered to the receiver. Based on such a method, the receiver can have an acceptable result and secure transmission can be guaranteed by the RSA cipher system.
Simultaneous transmission for an encrypted image and a double random-phase encryption key.
Yuan, Sheng; Zhou, Xin; Li, Da-hai; Zhou, Ding-fu
2007-06-20
We propose a method to simultaneously transmit double random-phase encryption key and an encrypted image by making use of the fact that an acceptable decryption result can be obtained when only partial data of the encrypted image have been taken in the decryption process. First, the original image data are encoded as an encrypted image by a double random-phase encryption technique. Second, a double random-phase encryption key is encoded as an encoded key by the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. Then the amplitude of the encrypted image is modulated by the encoded key to form what we call an encoded image. Finally, the encoded image that carries both the encrypted image and the encoded key is delivered to the receiver. Based on such a method, the receiver can have an acceptable result and secure transmission can be guaranteed by the RSA cipher system.
Graf, Daniel; Beuerle, Matthias; Schurkus, Henry F; Luenser, Arne; Savasci, Gökcen; Ochsenfeld, Christian
2018-05-08
An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.
Local random configuration-tree theory for string repetition and facilitated dynamics of glass
NASA Astrophysics Data System (ADS)
Lam, Chi-Hang
2018-02-01
We derive a microscopic theory of glassy dynamics based on the transport of voids by micro-string motions, each of which involves particles arranged in a line hopping simultaneously displacing one another. Disorder is modeled by a random energy landscape quenched in the configuration space of distinguishable particles, but transient in the physical space as expected for glassy fluids. We study the evolution of local regions with m coupled voids. At a low temperature, energetically accessible local particle configurations can be organized into a random tree with nodes and edges denoting configurations and micro-string propagations respectively. Such trees defined in the configuration space naturally describe systems defined in two- or three-dimensional physical space. A micro-string propagation initiated by a void can facilitate similar motions by other voids via perturbing the random energy landscape, realizing path interactions between voids or equivalently string interactions. We obtain explicit expressions of the particle diffusion coefficient and a particle return probability. Under our approximation, as temperature decreases, random trees of energetically accessible configurations exhibit a sequence of percolation transitions in the configuration space, with local regions containing fewer coupled voids entering the non-percolating immobile phase first. Dynamics is dominated by coupled voids of an optimal group size, which increases as temperature decreases. Comparison with a distinguishable-particle lattice model (DPLM) of glass shows very good quantitative agreements using only two adjustable parameters related to typical energy fluctuations and the interaction range of the micro-strings.
Stability of smectic phases in hard-rod mixtures
NASA Astrophysics Data System (ADS)
Martínez-Ratón, Yuri; Velasco, Enrique; Mederos, Luis
2005-09-01
Using density-functional theory, we have analyzed the phase behavior of binary mixtures of hard rods of different lengths and diameters. Previous studies have shown a strong tendency of smectic phases of these mixtures to segregate and, in some circumstances, to form microsegregated phases. Our focus in the present work is on the formation of columnar phases which some studies, under some approximations, have shown to become thermodynamically stable prior to crystallization. Specifically we focus on the relative stability between smectic and columnar phases, a question not fully addressed in previous work. Our analysis is based on two complementary perspectives: on the one hand, an extended Onsager theory, which includes the full orientational degrees of freedom but with spatial and orientational correlations being treated in an approximate manner; on the other hand, we formulate a Zwanzig approximation of fundamental-measure theory on hard parallelepipeds, whereby orientations are restricted to be only along three mutually orthogonal axes, but correlations are faithfully represented. In the latter case novel, complete phase diagrams containing regions of stability of liquid-crystalline phases are calculated. Our findings indicate that the restricted-orientation approximation enhances the stability of columnar phases so as to preempt smectic order completely while, in the framework of the extended Onsager model, with full orientational degrees of freedom taken into account, columnar phases may preempt a large region of smectic stability in some mixtures, but some smectic order still persists.
Inelastic scattering of electrons at real metal surfaces
NASA Astrophysics Data System (ADS)
Ding, Z.-J.
1997-04-01
A theory is presented to calculate the electron inelastic scattering cross section for a moving electron near the surface region at an arbitrary takeoff angle. The theory is based on using a bulk plasmon-pole approximation to derive the numerically computable expression of the electron self-energy in the random-phase approximation for a surface system, through the use of experimental optical constants. It is shown that the wave-vector-dependent surface dielectric function satisfies the surface sum rules in this scheme. The theory provides a detailed knowledge of electron self-energy depending on the kinetic energy, distance from surface, and velocity vector of an electron moving in any metal of a known dielectric constant, accommodating the formulation to practical situation in surface electron spectroscopies. Numerical computations of the energy-loss cross section have been made for Si and Au. The contribution to the total differential scattering cross section from each component is analyzed. The depth dependence informs us in detail how the bulk excitation mode changes to a surface excitation mode with an electron approaching the surface from the interior of a medium.
A baseline maritime satellite communication system
NASA Technical Reports Server (NTRS)
Durrani, S. H.; Mcgregor, D. N.
1974-01-01
This paper describes a baseline system for maritime communications via satellite during the 1980s. The system model employs three geostationary satellites with global coverage antennas. Access to the system is controlled by a master station; user access is based on time-ordered polling or random access. Each Thor-Delta launched satellite has an RF power of 100 W (spinner) or 250 W (three-axis stabilized), and provides 10 equivalent duplex voice channels for up to 1500 ships with average waiting times of approximately 2.5 minutes. The satellite capacity is bounded by the available bandwidth to 50 such channels, which can serve up to 10,000 ships with an average waiting time of 5 minutes. The ships must have peak antenna gains of approximately 15.5 dB or 22.5 dB for the two cases (10 or 50 voice channels) when a spinner satellite is used; the required gains are 4 dB lower if a three-axis stabilized satellite is used. The ship antenna requirements can be reduced by 8 to 10 dB by employing a high-gain multi-beam phased array antenna on the satellite.
A statistical model of false negative and false positive detection of phase singularities.
Jacquemet, Vincent
2017-10-01
The complexity of cardiac fibrillation dynamics can be assessed by analyzing the distribution of phase singularities (PSs) observed using mapping systems. Interelectrode distance, however, limits the accuracy of PS detection. To investigate in a theoretical framework the PS false negative and false positive rates in relation to the characteristics of the mapping system and fibrillation dynamics, we propose a statistical model of phase maps with controllable number and locations of PSs. In this model, phase maps are generated from randomly distributed PSs with physiologically-plausible directions of rotation. Noise and distortion of the phase are added. PSs are detected using topological charge contour integrals on regular grids of varying resolutions. Over 100 × 10 6 realizations of the random field process are used to estimate average false negative and false positive rates using a Monte-Carlo approach. The false detection rates are shown to depend on the average distance between neighboring PSs expressed in units of interelectrode distance, following approximately a power law with exponents in the range of 1.14 to 2 for false negatives and around 2.8 for false positives. In the presence of noise or distortion of phase, false detection rates at high resolution tend to a non-zero noise-dependent lower bound. This model provides an easy-to-implement tool for benchmarking PS detection algorithms over a broad range of configurations with multiple PSs.
Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao
2016-07-15
We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilizedmore » interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.« less
Impact of aluminum doping on the thermo-physical properties of refractory medium-entropy alloys
NASA Astrophysics Data System (ADS)
Tian, Fuyang; Wang, Yang; Vitos, Levente
2017-01-01
We investigate the elastic moduli, ideal tensile strength, and thermodynamic properties of TiVNb and AlTiVNb refractory medium-entropy alloys (HEAs) by using ab initio alloy theories: the coherent potential approximation (CPA), the special quasi-random supercell (SQS), and a 432-atom supercell (SC). We find that with increasing number of alloy components, the SQS elastic constants become sensitive to the supercell size. The predicted elastic moduli are consistent with the available experiments. Aluminum doping decreases the stability of the body centered cubic phase. The ideal tensile strength calculation indicates that adding equiatomic Al to TiVNb random solid solution increases the intrinsic strength (ideal strain increase from 9.6% to 11.8%) and decreases the intrinsic strength (from 9.6 to 5.7 GPa). Based on the equation of states calculated by the CPA and SC methods, the thermodynamic properties obtained by the two ab initio methods are assessed. The L21 AlTiVNb (Ti-Al-V-Nb) alloy is predicted to be thermodynamically and dynamically stable with respect to the solid solution.
Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed
NASA Technical Reports Server (NTRS)
Rakoczy, John; Steincamp, James; Taylor, Jaime
2003-01-01
A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.
Unbiased All-Optical Random-Number Generator
NASA Astrophysics Data System (ADS)
Steinle, Tobias; Greiner, Johannes N.; Wrachtrup, Jörg; Giessen, Harald; Gerhardt, Ilja
2017-10-01
The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random-number generators. These often exhibit a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to "iron out" such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.
NASA Astrophysics Data System (ADS)
Jia, Zhongxiao; Yang, Yanfei
2018-05-01
In this paper, we propose new randomization based algorithms for large scale linear discrete ill-posed problems with general-form regularization: subject to , where L is a regularization matrix. Our algorithms are inspired by the modified truncated singular value decomposition (MTSVD) method, which suits only for small to medium scale problems, and randomized SVD (RSVD) algorithms that generate good low rank approximations to A. We use rank-k truncated randomized SVD (TRSVD) approximations to A by truncating the rank- RSVD approximations to A, where q is an oversampling parameter. The resulting algorithms are called modified TRSVD (MTRSVD) methods. At every step, we use the LSQR algorithm to solve the resulting inner least squares problem, which is proved to become better conditioned as k increases so that LSQR converges faster. We present sharp bounds for the approximation accuracy of the RSVDs and TRSVDs for severely, moderately and mildly ill-posed problems, and substantially improve a known basic bound for TRSVD approximations. We prove how to choose the stopping tolerance for LSQR in order to guarantee that the computed and exact best regularized solutions have the same accuracy. Numerical experiments illustrate that the best regularized solutions by MTRSVD are as accurate as the ones by the truncated generalized singular value decomposition (TGSVD) algorithm, and at least as accurate as those by some existing truncated randomized generalized singular value decomposition (TRGSVD) algorithms. This work was supported in part by the National Science Foundation of China (Nos. 11771249 and 11371219).
Random vibration analysis of space flight hardware using NASTRAN
NASA Technical Reports Server (NTRS)
Thampi, S. K.; Vidyasagar, S. N.
1990-01-01
During liftoff and ascent flight phases, the Space Transportation System (STS) and payloads are exposed to the random acoustic environment produced by engine exhaust plumes and aerodynamic disturbances. The analysis of payloads for randomly fluctuating loads is usually carried out using the Miles' relationship. This approximation technique computes an equivalent load factor as a function of the natural frequency of the structure, the power spectral density of the excitation, and the magnification factor at resonance. Due to the assumptions inherent in Miles' equation, random load factors are often over-estimated by this approach. In such cases, the estimates can be refined using alternate techniques such as time domain simulations or frequency domain spectral analysis. Described here is the use of NASTRAN to compute more realistic random load factors through spectral analysis. The procedure is illustrated using Spacelab Life Sciences (SLS-1) payloads and certain unique features of this problem are described. The solutions are compared with Miles' results in order to establish trends at over or under prediction.
NASA Astrophysics Data System (ADS)
Ferreira, V. dos S.; Krmpotić, F.; Barbero, C. A.; Samana, A. R.
2017-10-01
The one-quasiparticle random-phase approximation (one-QRPA) method is used to describe simultaneously both double-β -decay modes, giving special attention to the partial restoration of spin-isospin SU(4 ) symmetry. To implement this restoration and to fix the model parameters, we resort to the energetics of Gamow-Teller resonances and to the minima of the single-β+-decay strengths. This makes the theory predictive regarding the β β2 ν decay, producing the 2 ν moments in 48Ca, 76Ge, 82Se, 96Zr, 100Mo, Te,130128, and 150Nd, that are of the same order of magnitude as the experimental ones; however, the agreement with β β2 ν data is only modest. To include contributions coming from induced nuclear weak currents, we extend the β β0 ν -decay formalism employed previously in C. Barbero et al., Nucl. Phys. A 628, 170 (1998), 10.1016/S0375-9474(97)00614-3, which is based on the Fourier-Bessel expansion. The numerical results for the β β0 ν moments in the above mentioned nuclei are similar to those obtained in other theoretical studies although smaller on average by ˜40 % . We attribute this difference basically to the one-QRPA method, employed here for the first time, instead of the currently used two-QRPA method. The difference is partially due also to the way of carrying out the restoration of the spin-isospin symmetry. It is hard to say which is the best way to make this restoration, since the β β0 ν moments are not experimentally measurable. The recipe proposed here is based on physically robust arguments. The numerical uncertainties in the β β moments, related to (i) their strong dependence on the residual interaction in the particle-particle channel when evaluated within the QRPA, and (ii) lack of proper knowledge of single-particle energies, have been quantified. It is concluded that the partial restoration of the SU(4 ) symmetry, generated by the residual interaction, is crucial in the description of the β β decays, regardless of the nuclear model used.
Chavanis, P H; Delfini, L
2014-03-01
We study random transitions between two metastable states that appear below a critical temperature in a one-dimensional self-gravitating Brownian gas with a modified Poisson equation experiencing a second order phase transition from a homogeneous phase to an inhomogeneous phase [P. H. Chavanis and L. Delfini, Phys. Rev. E 81, 051103 (2010)]. We numerically solve the N-body Langevin equations and the stochastic Smoluchowski-Poisson system, which takes fluctuations (finite N effects) into account. The system switches back and forth between the two metastable states (bistability) and the particles accumulate successively at the center or at the boundary of the domain. We explicitly show that these random transitions exhibit the phenomenology of the ordinary Kramers problem for a Brownian particle in a double-well potential. The distribution of the residence time is Poissonian and the average lifetime of a metastable state is given by the Arrhenius law; i.e., it is proportional to the exponential of the barrier of free energy ΔF divided by the energy of thermal excitation kBT. Since the free energy is proportional to the number of particles N for a system with long-range interactions, the lifetime of metastable states scales as eN and is considerable for N≫1. As a result, in many applications, metastable states of systems with long-range interactions can be considered as stable states. However, for moderate values of N, or close to a critical point, the lifetime of the metastable states is reduced since the barrier of free energy decreases. In that case, the fluctuations become important and the mean field approximation is no more valid. This is the situation considered in this paper. By an appropriate change of notations, our results also apply to bacterial populations experiencing chemotaxis in biology. Their dynamics can be described by a stochastic Keller-Segel model that takes fluctuations into account and goes beyond the usual mean field approximation.
Luis Martínez Fuentes, Jose; Moreno, Ignacio
2018-03-05
A new technique for encoding the amplitude and phase of diffracted fields in digital holography is proposed. It is based on a random spatial multiplexing of two phase-only diffractive patterns. The first one is the phase information of the intended pattern, while the second one is a diverging optical element whose purpose is the control of the amplitude. A random number determines the choice between these two diffractive patterns at each pixel, and the amplitude information of the desired field governs its discrimination threshold. This proposed technique is computationally fast and does not require iterative methods, and the complex field reconstruction appears on axis. We experimentally demonstrate this new encoding technique with holograms implemented onto a flicker-free phase-only spatial light modulator (SLM), which allows the axial generation of such holograms. The experimental verification includes the phase measurement of generated patterns with a phase-shifting polarization interferometer implemented in the same experimental setup.
Z-dependence of mean excitation energies for second and third row atoms and their ions
NASA Astrophysics Data System (ADS)
Sauer, Stephan P. A.; Sabin, John R.; Oddershede, Jens
2018-05-01
All mean excitation energies for second and third row atoms and their ions are calculated in the random-phase approximation using large basis sets. To a very good approximation, it turns out that mean excitation energies within an isoelectronic series are a quadratic function of the nuclear charge. It is demonstrated that this behavior is linked to the fact that the contributions from continuum electronic states give the dominate contributions to the mean excitation energies and that these contributions for atomic ions appear hydrogen-like. We argue that this finding may present a method to get a first estimate of mean excitation energies also for other non-relativistic atomic ions.
NASA Astrophysics Data System (ADS)
van Loon, E. G. C. P.; Schüler, M.; Katsnelson, M. I.; Wehling, T. O.
2016-10-01
We investigate the Peierls-Feynman-Bogoliubov variational principle to map Hubbard models with nonlocal interactions to effective models with only local interactions. We study the renormalization of the local interaction induced by nearest-neighbor interaction and assess the quality of the effective Hubbard models in reproducing observables of the corresponding extended Hubbard models. We compare the renormalization of the local interactions as obtained from numerically exact determinant quantum Monte Carlo to approximate but more generally applicable calculations using dual boson, dynamical mean field theory, and the random phase approximation. These more approximate approaches are crucial for any application with real materials in mind. Furthermore, we use the dual boson method to calculate observables of the extended Hubbard models directly and benchmark these against determinant quantum Monte Carlo simulations of the effective Hubbard model.
Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J
2013-09-14
The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.
Arbitrary-step randomly delayed robust filter with application to boost phase tracking
NASA Astrophysics Data System (ADS)
Qin, Wutao; Wang, Xiaogang; Bai, Yuliang; Cui, Naigang
2018-04-01
The conventional filters such as extended Kalman filter, unscented Kalman filter and cubature Kalman filter assume that the measurement is available in real-time and the measurement noise is Gaussian white noise. But in practice, both two assumptions are invalid. To solve this problem, a novel algorithm is proposed by taking the following four steps. At first, the measurement model is modified by the Bernoulli random variables to describe the random delay. Then, the expression of predicted measurement and covariance are reformulated, which could get rid of the restriction that the maximum number of delay must be one or two and the assumption that probabilities of Bernoulli random variables taking the value one are equal. Next, the arbitrary-step randomly delayed high-degree cubature Kalman filter is derived based on the 5th-degree spherical-radial rule and the reformulated expressions. Finally, the arbitrary-step randomly delayed high-degree cubature Kalman filter is modified to the arbitrary-step randomly delayed high-degree cubature Huber-based filter based on the Huber technique, which is essentially an M-estimator. Therefore, the proposed filter is not only robust to the randomly delayed measurements, but robust to the glint noise. The application to the boost phase tracking example demonstrate the superiority of the proposed algorithms.
Nonlinear Estimation of Discrete-Time Signals Under Random Observation Delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero-Aguila, R.; Jimenez-Lopez, J. D.; Hermoso-Carazo, A.
2008-11-06
This paper presents an approximation to the nonlinear least-squares estimation problem of discrete-time stochastic signals using nonlinear observations with additive white noise which can be randomly delayed by one sampling time. The observation delay is modelled by a sequence of independent Bernoulli random variables whose values, zero or one, indicate that the real observation arrives on time or it is delayed and, hence, the available measurement to estimate the signal is not up-to-date. Assuming that the state-space model generating the signal is unknown and only the covariance functions of the processes involved in the observation equation are ready for use,more » a filtering algorithm based on linear approximations of the real observations is proposed.« less
Color image encryption based on gyrator transform and Arnold transform
NASA Astrophysics Data System (ADS)
Sui, Liansheng; Gao, Bo
2013-06-01
A color image encryption scheme using gyrator transform and Arnold transform is proposed, which has two security levels. In the first level, the color image is separated into three components: red, green and blue, which are normalized and scrambled using the Arnold transform. The green component is combined with the first random phase mask and transformed to an interim using the gyrator transform. The first random phase mask is generated with the sum of the blue component and a logistic map. Similarly, the red component is combined with the second random phase mask and transformed to three-channel-related data. The second random phase mask is generated with the sum of the phase of the interim and an asymmetrical tent map. In the second level, the three-channel-related data are scrambled again and combined with the third random phase mask generated with the sum of the previous chaotic maps, and then encrypted into a gray scale ciphertext. The encryption result has stationary white noise distribution and camouflage property to some extent. In the process of encryption and decryption, the rotation angle of gyrator transform, the iterative numbers of Arnold transform, the parameters of the chaotic map and generated accompanied phase function serve as encryption keys, and hence enhance the security of the system. Simulation results and security analysis are presented to confirm the security, validity and feasibility of the proposed scheme.
Best uniform approximation to a class of rational functions
NASA Astrophysics Data System (ADS)
Zheng, Zhitong; Yong, Jun-Hai
2007-10-01
We explicitly determine the best uniform polynomial approximation to a class of rational functions of the form 1/(x-c)2+K(a,b,c,n)/(x-c) on [a,b] represented by their Chebyshev expansion, where a, b, and c are real numbers, n-1 denotes the degree of the best approximating polynomial, and K is a constant determined by a, b, c, and n. Our result is based on the explicit determination of a phase angle [eta] in the representation of the approximation error by a trigonometric function. Moreover, we formulate an ansatz which offers a heuristic strategies to determine the best approximating polynomial to a function represented by its Chebyshev expansion. Combined with the phase angle method, this ansatz can be used to find the best uniform approximation to some more functions.
Information hiding based on double random-phase encoding and public-key cryptography.
Sheng, Yuan; Xin, Zhou; Alam, Mohammed S; Xi, Lu; Xiao-Feng, Li
2009-03-02
A novel information hiding method based on double random-phase encoding (DRPE) and Rivest-Shamir-Adleman (RSA) public-key cryptosystem is proposed. In the proposed technique, the inherent diffusion property of DRPE is cleverly utilized to make up the diffusion insufficiency of RSA public-key cryptography, while the RSA cryptosystem is utilized for simultaneous transmission of the cipher text and the two phase-masks, which is not possible under the DRPE technique. This technique combines the complementary advantages of the DPRE and RSA encryption techniques and brings security and convenience for efficient information transmission. Extensive numerical simulation results are presented to verify the performance of the proposed technique.
Phase-only asymmetric optical cryptosystem based on random modulus decomposition
NASA Astrophysics Data System (ADS)
Xu, Hongfeng; Xu, Wenhui; Wang, Shuaihua; Wu, Shaofan
2018-06-01
We propose a phase-only asymmetric optical cryptosystem based on random modulus decomposition (RMD). The cryptosystem is presented for effectively improving the capacity to resist various attacks, including the attack of iterative algorithms. On the one hand, RMD and phase encoding are combined to remove the constraints that can be used in the attacking process. On the other hand, the security keys (geometrical parameters) introduced by Fresnel transform can increase the key variety and enlarge the key space simultaneously. Numerical simulation results demonstrate the strong feasibility, security and robustness of the proposed cryptosystem. This cryptosystem will open up many new opportunities in the application fields of optical encryption and authentication.
Phase behaviors of supramolecular graft copolymers with reversible bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xu; Wang, Liquan, E-mail: jlin@ecust.edu.cn, E-mail: lq-wang@ecust.edu.cn; Jiang, Tao
2013-11-14
Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors.more » Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.« less
Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation
NASA Astrophysics Data System (ADS)
Pinilla, Samuel; Poveda, Juan; Arguello, Henry
2018-03-01
Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.
NASA Astrophysics Data System (ADS)
Martini, M.; Péru, S.; Hilaire, S.; Goriely, S.; Lechaftois, F.
2016-07-01
Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we present large-scale calculations of the E 1 γ -ray strength function obtained in the framework of the axially symmetric deformed quasiparticle random-phase approximation based on the finite-range Gogny force. This approach is applied to even-even nuclei, the strength function for odd nuclei being derived by interpolation. The convergence with respect to the adopted number of harmonic oscillator shells and the cutoff energy introduced in the 2-quasiparticle (2 -q p ) excitation space is analyzed. The calculations performed with two different Gogny interactions, namely D1S and D1M, are compared. A systematic energy shift of the E 1 strength is found for D1M relative to D1S, leading to a lower energy centroid and a smaller energy-weighted sum rule for D1M. When comparing with experimental photoabsorption data, the Gogny-QRPA predictions are found to overestimate the giant dipole energy by typically ˜2 MeV. Despite the microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA calculation, some phenomenological corrections need to be included to take into account the effects beyond the standard 2 -q p QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. For this purpose, three prescriptions of folding procedure are considered and adjusted to reproduce experimental photoabsorption data at best. All of them are shown to lead to somewhat similar predictions of the E 1 strength, both at low energies and for exotic neutron-rich nuclei. Predictions of γ -ray strength functions and Maxwellian-averaged neutron capture rates for the whole Sn isotopic chain are also discussed and compared with previous theoretical calculations.
Possible exotic superconductivity in the monolayer and bilayer silicene
NASA Astrophysics Data System (ADS)
Yang, Fan; Yao, Yugui; Zhang, Li-Da; Liu, Cheng-Cheng; Liu, Feng
2014-03-01
Silicene, the silicon-based counterpart of graphene, has attracted a lot of research interest since synthesized recently. Similar honeycomb lattice structures of the two systems let them share most of their marvelous physical properties. The most important structural difference between the two systems lie in the noncoplanar lowbuckled geometry in silicene, which brings up a lot of interesting physical consequence to the system. Here we focus on possible exotic superconductivity (SC) in the family, via random phase approximation (RPA) study on the relevant Hubbard-models. Two systems of this family are studied, including the monolayer and bilayer silicene. For the former system, we found an electric-field driven quantum phase transition (QPT) from chiral d+id to f-wave SC when the field is perpendicular to the silicene plane. For the latter system, we found that even the undoped system is intrinsically metallic and superconducting with chiral d+id symmetry and tunable Tc which can be high . Our study not only provides a new playground for the study of the exotic SC, but also brings a new epoch to the familiar Si industry.
Gonnelli, R. S.; Daghero, D.; Tortello, M.; Ummarino, G. A.; Bukowski, Z.; Karpinski, J.; Reuvekamp, P. G.; Kremer, R. K.; Profeta, G.; Suzuki, K.; Kuroki, K.
2016-01-01
Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line. PMID:27216477
NASA Astrophysics Data System (ADS)
Gonnelli, R. S.; Daghero, D.; Tortello, M.; Ummarino, G. A.; Bukowski, Z.; Karpinski, J.; Reuvekamp, P. G.; Kremer, R. K.; Profeta, G.; Suzuki, K.; Kuroki, K.
2016-05-01
Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line.
Robust electroencephalogram phase estimation with applications in brain-computer interface systems.
Seraj, Esmaeil; Sameni, Reza
2017-03-01
In this study, a robust method is developed for frequency-specific electroencephalogram (EEG) phase extraction using the analytic representation of the EEG. Based on recent theoretical findings in this area, it is shown that some of the phase variations-previously associated to the brain response-are systematic side-effects of the methods used for EEG phase calculation, especially during low analytical amplitude segments of the EEG. With this insight, the proposed method generates randomized ensembles of the EEG phase using minor perturbations in the zero-pole loci of narrow-band filters, followed by phase estimation using the signal's analytical form and ensemble averaging over the randomized ensembles to obtain a robust EEG phase and frequency. This Monte Carlo estimation method is shown to be very robust to noise and minor changes of the filter parameters and reduces the effect of fake EEG phase jumps, which do not have a cerebral origin. As proof of concept, the proposed method is used for extracting EEG phase features for a brain computer interface (BCI) application. The results show significant improvement in classification rates using rather simple phase-related features and a standard K-nearest neighbors and random forest classifiers, over a standard BCI dataset. The average performance was improved between 4-7% (in absence of additive noise) and 8-12% (in presence of additive noise). The significance of these improvements was statistically confirmed by a paired sample t-test, with 0.01 and 0.03 p-values, respectively. The proposed method for EEG phase calculation is very generic and may be applied to other EEG phase-based studies.
New band structures in Neutron-Rich Mo and Ru Isotopes
Hamilton, J. H.; Luoa, Y. X.; Zhu, S. J.; ...
2009-01-01
Rotational bands in 110,112Ru and 108Mo have been investigated by means of γ-γ-γ and γ-γ(θ) coincidences of prompt γ rays emitted in the spontaneous fission of 252Cf. New ΔI = 1 negative parity doublet bands are found. These bands in 110,112Ru and 108Mo have all the properties expected for chiral vibrations. Microscopic calculations that combine the TAC meanfield with random phase approximation support this interpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkel, M. van; Fellow of the Japan Society for the Promotion of Science; FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Association EURATOM- FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein
2014-11-15
In this paper, a number of new approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on semi-infinite slab approximations of the heat equation. The main result is the approximation of χ under the influence of V and τ based on the phase of two harmonics making the estimate less sensitive to calibration errors. To understand why the slab approximations can estimate χ well in cylindrical geometry, the relationships betweenmore » heat transport models in slab and cylindrical geometry are studied. In addition, the relationship between amplitude and phase with respect to their derivatives, used to estimate χ, is discussed. The results are presented in terms of the relative error for the different derived approximations for different values of frequency, transport coefficients, and dimensionless radius. The approximations show a significant region in which χ, V, and τ can be estimated well, but also regions in which the error is large. Also, it is shown that some compensation is necessary to estimate V and τ in a cylindrical geometry. On the other hand, errors resulting from the simplified assumptions are also discussed showing that estimating realistic values for V and τ based on infinite domains will be difficult in practice. This paper is the first part (Part I) of a series of three papers. In Part II and Part III, cylindrical approximations based directly on semi-infinite cylindrical domain (outward propagating heat pulses) and inward propagating heat pulses in a cylindrical domain, respectively, will be treated.« less
CMOS-based Stochastically Spiking Neural Network for Optimization under Uncertainties
2017-03-01
inverse tangent characteristics at varying input voltage (VIN) [Fig. 3], thereby it is suitable for Kernel function implementation. By varying bias...cost function/constraint variables are generated based on inverse transform on CDF. In Fig. 5, F-1(u) for uniformly distributed random number u [0, 1...extracts random samples of x varying with CDF of F(x). In Fig. 6, we present a successive approximation (SA) circuit to evaluate inverse
Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations
NASA Astrophysics Data System (ADS)
Padrino, Juan C.; Zhang, Duan Z.
2016-11-01
The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.
NASA Astrophysics Data System (ADS)
Granade, Christopher; Wiebe, Nathan
2017-08-01
A major challenge facing existing sequential Monte Carlo methods for parameter estimation in physics stems from the inability of existing approaches to robustly deal with experiments that have different mechanisms that yield the results with equivalent probability. We address this problem here by proposing a form of particle filtering that clusters the particles that comprise the sequential Monte Carlo approximation to the posterior before applying a resampler. Through a new graphical approach to thinking about such models, we are able to devise an artificial-intelligence based strategy that automatically learns the shape and number of the clusters in the support of the posterior. We demonstrate the power of our approach by applying it to randomized gap estimation and a form of low circuit-depth phase estimation where existing methods from the physics literature either exhibit much worse performance or even fail completely.
Assessing Density Functionals Using Many Body Theory for Hybrid Perovskites
NASA Astrophysics Data System (ADS)
Bokdam, Menno; Lahnsteiner, Jonathan; Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg
2017-10-01
Which density functional is the "best" for structure simulations of a particular material? A concise, first principles, approach to answer this question is presented. The random phase approximation (RPA)—an accurate many body theory—is used to evaluate various density functionals. To demonstrate and verify the method, we apply it to the hybrid perovskite MAPbI3 , a promising new solar cell material. The evaluation is done by first creating finite temperature ensembles for small supercells using RPA molecular dynamics, and then evaluating the variance between the RPA and various approximate density functionals for these ensembles. We find that, contrary to recent suggestions, van der Waals functionals do not improve the description of the material, whereas hybrid functionals and the strongly constrained appropriately normed (SCAN) density functional yield very good agreement with the RPA. Finally, our study shows that in the room temperature tetragonal phase of MAPbI3 , the molecules are preferentially parallel to the shorter lattice vectors but reorientation on ps time scales is still possible.
Makarov, D V; Kon'kov, L E; Uleysky, M Yu; Petrov, P S
2013-01-01
The problem of sound propagation in a randomly inhomogeneous oceanic waveguide is considered. An underwater sound channel in the Sea of Japan is taken as an example. Our attention is concentrated on the domains of finite-range ray stability in phase space and their influence on wave dynamics. These domains can be found by means of the one-step Poincare map. To study manifestations of finite-range ray stability, we introduce the finite-range evolution operator (FREO) describing transformation of a wave field in the course of propagation along a finite segment of a waveguide. Carrying out statistical analysis of the FREO spectrum, we estimate the contribution of regular domains and explore their evanescence with increasing length of the segment. We utilize several methods of spectral analysis: analysis of eigenfunctions by expanding them over modes of the unperturbed waveguide, approximation of level-spacing statistics by means of the Berry-Robnik distribution, and the procedure used by A. Relano and coworkers [Relano et al., Phys. Rev. Lett. 89, 244102 (2002); Relano, Phys. Rev. Lett. 100, 224101 (2008)]. Comparing the results obtained with different methods, we find that the method based on the statistical analysis of FREO eigenfunctions is the most favorable for estimating the contribution of regular domains. It allows one to find directly the waveguide modes whose refraction is regular despite the random inhomogeneity. For example, it is found that near-axial sound propagation in the Sea of Japan preserves stability even over distances of hundreds of kilometers due to the presence of a shearless torus in the classical phase space. Increasing the acoustic wavelength degrades scattering, resulting in recovery of eigenfunction localization near periodic orbits of the one-step Poincaré map.
NASA Astrophysics Data System (ADS)
Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro
2012-09-01
It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method.
Exact PDF equations and closure approximations for advective-reactive transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venturi, D.; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.
2013-06-01
Mathematical models of advection–reaction phenomena rely on advective flow velocity and (bio) chemical reaction rates that are notoriously random. By using functional integral methods, we derive exact evolution equations for the probability density function (PDF) of the state variables of the advection–reaction system in the presence of random transport velocity and random reaction rates with rather arbitrary distributions. These PDF equations are solved analytically for transport with deterministic flow velocity and a linear reaction rate represented mathematically by a heterog eneous and strongly-correlated random field. Our analytical solution is then used to investigate the accuracy and robustness of the recentlymore » proposed large-eddy diffusivity (LED) closure approximation [1]. We find that the solution to the LED-based PDF equation, which is exact for uncorrelated reaction rates, is accurate even in the presence of strong correlations and it provides an upper bound of predictive uncertainty.« less
The quantum-field renormalization group in the problem of a growing phase boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, N.V.; Vasil`ev, A.N.
1995-09-01
Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik`s assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants ({open_quotes}charge{close_quotes}). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundarymore » and time, {delta}{sub h} and {delta}{sub t}, which satisfy the exact relationship 2 {delta}{sub h}= {delta}{sub t} + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab.« less
Envelope and phase distribution of a resonance transmission through a complex environment
NASA Astrophysics Data System (ADS)
Savin, Dmitry V.
2018-06-01
A transmission amplitude is considered for quantum or wave transport mediated by a single resonance coupled to the background of many chaotic states. Such a model provides a useful approach to quantify fluctuations in an established signal induced by a complex environment. Applying random matrix theory to the problem, we derive an exact result for the joint distribution of the transmission intensity (envelope) and the transmission phase at arbitrary coupling to the background with finite absorption. The intensity and phase are distributed within a certain region, revealing essential correlations even at strong absorption. In the latter limit, we obtain a simple asymptotic expression that provides a uniformly good approximation of the exact distribution within its whole support, thus going beyond the Rician distribution often used for such purposes. Exact results are also derived for the marginal distribution of the phase, including its limiting forms at weak and strong absorption.
NASA Astrophysics Data System (ADS)
Bi, Lei; Yang, Ping
2015-04-01
Understanding the inherent optical properties (IOPs) of coccoliths and coccolithophores is important in oceanic radiative transfer simulations and remote sensing implementations. In this study, the invariant imbedding T-matrix method (II-TM) is employed to investigate the IOPs of coccoliths and coccolithophores. The Emiliania huxleyi (Ehux) coccolith and coccolithophore models are built based on observed biometric parameters including the eccentricity, the number of slits, and the rim width of detached coccoliths. The calcification state that specifies the amount of calcium of a single coccolith is critical in the determination of the size-volume/mass relationship (note, the volume/mass of coccoltihs at different calcification states are different although the diameters are the same). The present results show that the calcification state, namely, under-calcification, normal-calcification, or over-calcification, significantly influences the backscattering cross section and the phase matrix. Furthermore, the linear depolarization ratio of the light scattered by coccoliths is sensitive to the degree of calcification, and provides a potentially valuable parameter for interpreting oceanic remote sensing data. The phase function of an ensemble of randomly oriented coccolithophores has a similar pattern to that of individual coccoliths, but the forward scattering is dominant in the coccolithophores due to the large geometric cross sections. The linear depolarization ratio associated with coccolithophores is found to be larger than that for coccoliths as polarization is more sensitive to multiple scattering than the phase function. The simulated coccolithophore phase matrix numerical results are compared with laboratory measurements. For scattering angles larger than 100°, an increase of the phase function with respect to the scattering angle is confirmed based on the present coccolithophore model while the spherical approximation fails.
Phase information contained in meter-scale SAR images
NASA Astrophysics Data System (ADS)
Datcu, Mihai; Schwarz, Gottfried; Soccorsi, Matteo; Chaabouni, Houda
2007-10-01
The properties of single look complex SAR satellite images have already been analyzed by many investigators. A common belief is that, apart from inverse SAR methods or polarimetric applications, no information can be gained from the phase of each pixel. This belief is based on the assumption that we obtain uniformly distributed random phases when a sufficient number of small-scale scatterers are mixed in each image pixel. However, the random phase assumption does no longer hold for typical high resolution urban remote sensing scenes, when a limited number of prominent human-made scatterers with near-regular shape and sub-meter size lead to correlated phase patterns. If the pixel size shrinks to a critical threshold of about 1 meter, the reflectance of built-up urban scenes becomes dominated by typical metal reflectors, corner-like structures, and multiple scattering. The resulting phases are hard to model, but one can try to classify a scene based on the phase characteristics of neighboring image pixels. We provide a "cooking recipe" of how to analyze existing phase patterns that extend over neighboring pixels.
[Patient's individuality and application of guidelines in surgery].
Schulte, Michael
2005-01-01
Individual treatment decisions can become considerably conflictual in view of the co-existence of medical professional guidelines, recommendations based on evidence-based medicine (EBM), and juridical and economical directions. Medical guidelines are not subject to an external review process; also, due to reduced practicability, the surgeons' compliance with guidelines remains relatively low. Surgical treatment strategies can rely on randomized clinical trials (RCTs) in approximately 20% of the surgical procedures and on non-randomized trials in approximately 70% of the cases. No evidence is given in approximately 10% of the cases. Specific problems of implementation of EBM in surgical disciplines are represented by the difficulty of standardized procedures, the heterogeneity of the population, the impossibility to conduct double-blinded RCTs, a low statistical power, and a publication bias. Since individual diseases cannot be reduced to surgical cases manageable only by the application of guidelines, adequate treatment of individual patients requires the critical application of both external evidence and surgeon expertise (internal evidence).
NASA Astrophysics Data System (ADS)
Tarantino, Walter; Mendoza, Bernardo S.; Romaniello, Pina; Berger, J. A.; Reining, Lucia
2018-04-01
Many-body perturbation theory is often formulated in terms of an expansion in the dressed instead of the bare Green’s function, and in the screened instead of the bare Coulomb interaction. However, screening can be calculated on different levels of approximation, and it is important to define what is the most appropriate choice. We explore this question by studying a zero-dimensional model (so called ‘one-point model’) that retains the structure of the full equations. We study both linear and non-linear response approximations to the screening. We find that an expansion in terms of the screening in the random phase approximation is the most promising way for an application in real systems. Moreover, by making use of the nonperturbative features of the Kadanoff-Baym equation for the one-body Green’s function, we obtain an approximate solution in our model that is very promising, although its applicability to real systems has still to be explored.
Optics of Water Microdroplets with Soot Inclusions: Exact Versus Approximate Results
NASA Technical Reports Server (NTRS)
Liu, Li; Mishchenko, Michael I.
2016-01-01
We use the recently generalized version of the multi-sphere superposition T-matrix method (STMM) to compute the scattering and absorption properties of microscopic water droplets contaminated by black carbon. The soot material is assumed to be randomly distributed throughout the droplet interior in the form of numerous small spherical inclusions. Our numerically-exact STMM results are compared with approximate ones obtained using the Maxwell-Garnett effective-medium approximation (MGA) and the Monte Carlo ray-tracing approximation (MCRTA). We show that the popular MGA can be used to calculate the droplet optical cross sections, single-scattering albedo, and asymmetry parameter provided that the soot inclusions are quasi-uniformly distributed throughout the droplet interior, but can fail in computations of the elements of the scattering matrix depending on the volume fraction of soot inclusions. The integral radiative characteristics computed with the MCRTA can deviate more significantly from their exact STMM counterparts, while accurate MCRTA computations of the phase function require droplet size parameters substantially exceeding 60.
NASA Astrophysics Data System (ADS)
Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi
2008-10-01
Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP)2I3 based on the X-ray experiment data and the extended Hückel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP)2I3 and β-(BDA-TTP)2SbF6 are briefly discussed.
Costanza-Robinson, Molly S.; Carlson, Tyson D.; Brusseau, Mark L.
2013-01-01
Gas-phase miscible-displacement experiments were conducted using a large weighing lysimeter to evaluate retention processes for volatile organic compounds (VOCs) in water-unsaturated (vadoze-zone) systems, and to test the utility of gas-phase tracers for predicting VOC retardation. Trichloroethene (TCE) served as a model VOC, while trichlorofluoromethane (CFM) and heptane were used as partitioning tracers to independently characterize retention by water and the air-water interface, respectively. Retardation factors for TCE ranged between 1.9 and 3.5, depending on water content. The results indicate that dissolution into the bulk water was the primary retention mechanism for TCE under all conditions studied, contributing approximately two thirds of the total measured retention. Accumulation at the air-water interface comprised a significant fraction of the observed retention for all experiments, with an average contribution of approximately 24%. Sorption to the solid phase contributed approximately 10% to retention. Water contents and air-water interfacial areas estimated based on the CFM and heptane tracer data, respectively, were similar to independently measured values. Retardation factors for TCE predicted using the partitioning-tracer data were in reasonable agreement with the measured values. These results suggest that gas-phase tracer tests hold promise for characterizing the retention and transport of VOCs in the vadose-zone. PMID:23333418
Kernel-Based Approximate Dynamic Programming Using Bellman Residual Elimination
2010-02-01
framework is the ability to utilize stochastic system models, thereby allowing the system to make sound decisions even if there is randomness in the system ...approximate policy when a system model is unavailable. We present theoretical analysis of all BRE algorithms proving convergence to the optimal policy in...policies based on MDPs is that there may be parameters of the system model that are poorly known and/or vary with time as the system operates. System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Nobuyuki, E-mail: sano@esys.tsukuba.ac.jp
2015-12-28
The impurity-limited resistance and the effect of the phase interference among localized multiple impurities in the quasi-one dimensional (quasi-1D) nanowire structures are systematically investigated under the framework of the scattering theory. We derive theoretical expressions of the impurity-limited resistance in the nanowire under the linear response regime from the Landauer formula and from the Boltzmann transport equation (BTE) with the relaxation time approximation. We show that the formula from the BTE exactly coincides with that from the Landauer approach with the weak-scattering limit when the energy spectrum of the in-coming electrons from the reservoirs is narrow and, thus, point outmore » a possibility that the distinction of the impurity-limited resistances derived from the Landauer formula and that of the BTE could be made clear. The derived formulas are applied to the quasi-1D nanowires doped with multiple localized impurities with short-range scattering potential and the validity of various approximations on the resistance are discussed. It is shown that impurity scattering becomes so strong under the nanowire structures that the weak-scattering limit breaks down in most cases. Thus, both phase interference and phase randomization simultaneously play a crucial role in determining the impurity-limited resistance even under the fully coherent framework. When the impurity separation along the wire axis direction is small, the constructive phase interference dominates and the resistance is much greater than the average resistance. As the separation becomes larger, however, it approaches the series resistance of the single-impurity resistance due to the phase randomization. Furthermore, under the uniform configuration of impurities, the space-average resistance of multiple impurities at room temperature is very close to the series resistance of the single-impurity resistance, and thus, each impurity could be regarded as an independent scattering center. The physical origin of this “self-averaging” under the fully coherent environments is attributed to the broadness of the energy spectrum of the in-coming electrons from the reservoirs.« less
Efficient quantum pseudorandomness with simple graph states
NASA Astrophysics Data System (ADS)
Mezher, Rawad; Ghalbouni, Joe; Dgheim, Joseph; Markham, Damian
2018-02-01
Measurement based (MB) quantum computation allows for universal quantum computing by measuring individual qubits prepared in entangled multipartite states, known as graph states. Unless corrected for, the randomness of the measurements leads to the generation of ensembles of random unitaries, where each random unitary is identified with a string of possible measurement results. We show that repeating an MB scheme an efficient number of times, on a simple graph state, with measurements at fixed angles and no feedforward corrections, produces a random unitary ensemble that is an ɛ -approximate t design on n qubits. Unlike previous constructions, the graph is regular and is also a universal resource for measurement based quantum computing, closely related to the brickwork state.
Theoretical results which strengthen the hypothesis of electroweak bioenantioselection
NASA Astrophysics Data System (ADS)
Zanasi, R.; Lazzeretti, P.; Ligabue, A.; Soncini, A.
1999-03-01
It is shown via a large series of numerical tests on two fundamental organic molecules, the L-α-amino acid L-valine and the sugar precursor hydrated D-glyceraldheyde, that the ab initio calculation of the parity-violating energy shift, at the random-phase approximation level of accuracy, provides results that are about one order of magnitude larger than those obtained by means of less accurate methods employed previously. These findings would make more plausible the hypothesis of electroweak selection of natural enantiomers via the Kondepudi-Nelson scenario, or could imply that Salam phase-transition temperature is higher than previously inferred: accordingly, the hypothesis of terrestrial origin of life would become more realistic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanai, Ryo; Littlewood, Peter B.; Ohashi, Yoji
2017-09-01
We present a stability analysis on a driven-dissipative electron-hole condensate in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein-condensation)-crossover region. Extending the combined BCS-Leggett theory with the generalized random phase approximation (GRPA) to the non-equilibrium case by employing the Keldysh formalism, we show that the pumping-and-decay of carriers causes a depairing effect on excitons. This phenomenon gives rise to an attractive interaction between excitons in the BEC regime, as well as a supercurrent that anomalously flows anti-parallel to ∇θ(r) (where θ(r) is the phase of the condensate) in the BCS regime, both leading to dynamical instabilities of an exciton-BEC.
Fabrication et applications des reseaux de Bragg ultra-longs
NASA Astrophysics Data System (ADS)
Gagne, Mathieu
This thesis presents the principal accomplishments realized during the PhD project. The thesis is presented by publication format and is a collection of four published articles having fiber Bragg gratings as a central theme. First achieved in 1978, UV writing of fiber Bragg gratings is nowadays a common and mature technology being present in both industry and academia. The property of reflecting light guided by optical fibers lead to diverse applications in telecommunication, lasers as well as several types of sensors. The conventional fabrication technique is generally based on the use of generally expensive phase masks which determine the obtained characteristics of the fiber Bragg grating. The fiber being photosensitive at those wavelengths, a periodic pattern can be written into it. The maximal length, the period, the chirp, the index contrast and the apodisation are all characteristics that depend on the phase mask. The first objective of the research project is to be able to go beyond this strong dependance on the phase mask without deteriorating grating quality. This is what really sets apart the technique presented in this thesis from other long fiber Bragg grating fabrication techniques available in the literature. The fundamental approach to obtain ultra long fiber Bragg gratings of arbitrary profile is to replace the scheme of scanning a UV beam across a phase mask to expose a fixed fiber by a scheme where the UV beam and phase mask are fixed and where the fiber is moving instead. To obtain a periodic index variation, the interference pattern itself must be synchronized with the moving fiber. Two variations of this scheme were implanted: the first one using electro-optical phase modulator placed in each arm of a Talbot interferometer and the second one using a phase mask mounted on a piezo electric actuator. A new scheme that imparts fine movements of the interferometer is also implemented for the first time and showed to be essential to achieve high quality ultra long fiber Bragg gratings. High quality theory matching ultra long fiber Bragg gratings up to 1 meter long are obtained for the first time. The possibility of fabricating high quality ultra long fiber Bragg grating of more than 10 cm (approximately the maximal phase mask length) opens a variety of new applications otherwise impossible with short fiber Bragg grating technology. Ultra long fiber Bragg gratings have unique characteristics such as high reflectivity, high dispersion and ultra narrow bandwidth. Those characteristics can be used to do advanced signal processing, non linear propagation experiments, distributed feedback fiber lasers and dispersion compensator for telecommunication or optical tomography. The second objective of this project is to use these ultra-long fiber Bragg gratings as an optical cavity for fiber lasers. Alot of research in the past years have been concentrated on those lasers, particularly on distributed feedback fiber lasers where the gratings spans all the gain media. A new random fiber laser configuration is presented. It is based on passive or active insertion of phase shifts along the Bragg grating to obtained a phenomenon called light localization which is the optical equivalent of Anderson localization. This complex wave phenomenon has the unique property to mimic the reflection of a uniform photonic crystal with the random diffusion of light among the elements of a random media. Being commonly obtained in fine powders which must respect a certain set of rules, the realization of 1D structures is vastly simplified in optical fibers. Two random fiber laser schemes based on light localization, one using erbium dopant and the other one Raman scattering, are demonstrated for the first time and compared to traditional distributed feedback fiber lasers.
NASA Astrophysics Data System (ADS)
Li, Yuanyuan; Gao, Guanjun; Zhang, Jie; Zhang, Kai; Chen, Sai; Yu, Xiaosong; Gu, Wanyi
2015-06-01
A simplex-method based optimizing (SMO) strategy is proposed to improve the transmission performance for dispersion uncompensated (DU) coherent optical systems with non-identical spans. Through analytical expression of quality of transmission (QoT), this strategy improves the Q factors effectively, while minimizing the number of erbium-doped optical fiber amplifier (EDFA) that needs to be optimized. Numerical simulations are performed for 100 Gb/s polarization-division multiplexed quadrature phase shift keying (PDM-QPSK) channels over 10-span standard single mode fiber (SSMF) with randomly distributed span-lengths. Compared to the EDFA configurations with complete span loss compensation, the Q factor of the SMO strategy is improved by approximately 1 dB at the optimal transmitter launch power. Moreover, instead of adjusting the gains of all the EDFAs to their optimal value, the number of EDFA that needs to be adjusted for SMO is reduced from 8 to 2, showing much less tuning costs and almost negligible performance degradation.
Dynamic Structure Factor: An Introduction
NASA Astrophysics Data System (ADS)
Sturm, K.
1993-02-01
The doubly differential cross-section for weak inelastic scattering of waves or particles by manybody systems is derived in Born approximation and expressed in terms of the dynamic structure factor according to van Hove. The application of this very general scheme to scattering of neutrons, x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space and time Fourier transform of the density-density correlation function, is a property of the many-body system independent of the external probe and carries information on the excitation spectrum of the system. The relation of the electronic structure factor to the density-density response function defined in linear-response theory is shown using the fluctuation-dissipation theorem. This is important for calculations, since the response function can be calculated approximately from the independent-particle response function in self-consistent field approximations, such as the random-phase approximation or the local-density approximation of the density functional theory. Since the density-density response function also determines the dielectric function, the dynamic structure can be expressed by the dielectric function.
Rupert, C.P.; Miller, C.T.
2008-01-01
We examine a variety of polynomial-chaos-motivated approximations to a stochastic form of a steady state groundwater flow model. We consider approaches for truncating the infinite dimensional problem and producing decoupled systems. We discuss conditions under which such decoupling is possible and show that to generalize the known decoupling by numerical cubature, it would be necessary to find new multivariate cubature rules. Finally, we use the acceleration of Monte Carlo to compare the quality of polynomial models obtained for all approaches and find that in general the methods considered are more efficient than Monte Carlo for the relatively small domains considered in this work. A curse of dimensionality in the series expansion of the log-normal stochastic random field used to represent hydraulic conductivity provides a significant impediment to efficient approximations for large domains for all methods considered in this work, other than the Monte Carlo method. PMID:18836519
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl; Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven; Daude, F.
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splittingmore » approach. The results are in good agreement with reference results and exact solutions.« less
NASA Astrophysics Data System (ADS)
Blawzdziewicz, Jerzy; Gao, Guo-Jie J.; Holcomb, Michael C.; Thomas, Jeffrey H.
The key process giving rise to ventral furrow formation (VFF) in Drosophila embryo is apical constriction of cells in the ventral region. The constriction produces negative spontaneous curvature of the cell layer. During the initial slower phase of VFF approximately 40% of cells constrict in a seemingly random order. We show that this initial phase of VFF does not depend on random uncorrelated events. Instead, constricted cell apices form well-defined correlated structures, i.e., cellular constriction chains (CCCs), indicative of strong spatial and directional correlations between the constriction events. We argue that this chain formation is a signature of mechanical signaling that coordinates apical constrictions through tensile stress. To gain insights into the mechanisms involved in this correlated constriction process, we propose an active granular fluid (AGF) model which considers a tissue as a collection of mechanically active, stress-responsive objects. Our AGF molecular dynamics simulations show that cell constriction sensitivity to tensile stress results in formation of CCCs whereas compressive-stress sensitivity leads to compact constricted cell clusters; the CCCs, which can penetrate less-active regions, increase the robustness of the VFF process.
Progressive Staging of Pilot Studies to Improve Phase III Trials for Motor Interventions
Dobkin, Bruce H.
2014-01-01
Based on the suboptimal research pathways that finally led to multicenter randomized clinical trials (MRCTs) of treadmill training with partial body weight support and of robotic assistive devices, strategically planned successive stages are proposed for pilot studies of novel rehabilitation interventions Stage 1, consideration-of-concept studies, drawn from animal experiments, theories, and observations, delineate the experimental intervention in a small convenience sample of participants, so the results must be interpreted with caution. Stage 2, development-of-concept pilots, should optimize the components of the intervention, settle on most appropriate outcome measures, and examine dose-response effects. A well-designed study that reveals no efficacy should be published to counterweight the confirmation bias of positive trials. Stage 3, demonstration-of-concept pilots, can build out from what has been learned to test at least 15 participants in each arm, using random assignment and blinded outcome measures. A control group should receive an active practice intervention aimed at the same primary outcome. A third arm could receive a substantially larger dose of the experimental therapy or a combinational intervention. If only 1 site performed this trial, a different investigative group should aim to reproduce positive outcomes based on the optimal dose of motor training. Stage 3 studies ought to suggest an effect size of 0.4 or higher, so that approximately 50 participants in each arm will be the number required to test for efficacy in a stage 4, proof-of-concept MRCT. By developing a consensus around acceptable and necessary practices for each stage, similar to CONSORT recommendations for the publication of phase III clinical trials, better quality pilot studies may move quickly into better designed and more successful MRCTs of experimental interventions. PMID:19240197
Lin, Guoxing
2016-11-21
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) techniques have been increasingly used to study anomalous diffusion in nuclear magnetic resonance and magnetic resonance imaging. However, the interpretation of PFG anomalous diffusion is complicated. Moreover, the exact signal attenuation expression including the finite gradient pulse width effect has not been obtained based on fractional derivatives for PFG anomalous diffusion. In this paper, a new method, a Mainardi-Luchko-Pagnini (MLP) phase distribution approximation, is proposed to describe PFG fractional diffusion. MLP phase distribution is a non-Gaussian phase distribution. From the fractional derivative model, both the probability density function (PDF) of a spin in real space and the PDF of the spin's accumulating phase shift in virtual phase space are MLP distributions. The MLP phase distribution leads to a Mittag-Leffler function based PFG signal attenuation, which differs significantly from the exponential attenuation for normal diffusion and from the stretched exponential attenuation for fractional diffusion based on the fractal derivative model. A complete signal attenuation expression E α (-D f b α,β * ) including the finite gradient pulse width effect was obtained and it can handle all three types of PFG fractional diffusions. The result was also extended in a straightforward way to give a signal attenuation expression of fractional diffusion in PFG intramolecular multiple quantum coherence experiments, which has an n β dependence upon the order of coherence which is different from the familiar n 2 dependence in normal diffusion. The results obtained in this study are in agreement with the results from the literature. The results in this paper provide a set of new, convenient approximation formalisms to interpret complex PFG fractional diffusion experiments.
Tornio, A; Niemi, M; Neuvonen, M; Laitila, J; Kalliokoski, A; Neuvonen, P J; Backman, J T
2008-09-01
Repaglinide is metabolized by cytochrome P450 (CYP) 2C8 and 3A4. Gemfibrozil has the effect of increasing the area under the concentration-time curve (AUC) of repaglinide eightfold. We studied the effect of dosing interval on the extent of the gemfibrozil-repaglinide interaction. In a randomized five-phase crossover study, 10 healthy volunteers ingested 0.25 mg repaglinide, with or without gemfibrozil pretreatment. Plasma repaglinide, gemfibrozil, their metabolites, and blood glucose were measured. When the last dose of 600 mg gemfibrozil was ingested simultaneously with repaglinide, or 3, 6, or 12 h before, it increased the AUC(0-infinity) of repaglinide 7.0-, 6.5-, 6.2- and 5.0-fold, respectively (P < 0.001). The peak repaglinide concentration increased approximately twofold (P < 0.001), and the half-life was prolonged from 1.2 h to 2-3 h (P < 0.001) during all the gemfibrozil phases. The drug interaction effects persisted at least 12 h after gemfibrozil was administered, although plasma gemfibrozil and gemfibrozil 1-O-beta-glucuronide concentrations were only 5 and 10% of their peak values, respectively. The long-lasting interaction is likely caused by mechanism-based inhibition of CYP2C8 by gemfibrozil glucuronide.
NASA Astrophysics Data System (ADS)
Deshmukh, Pranawa C.; Johnson, W. R.
1983-01-01
A study of the photoionization of calcium in the relativistic random-phase approximation is reported. Predictions of photoionization cross sections, angular distribution asymmetry parameters, and spin-polarization parameters for the 4s, 3p, and 3s subshells are made with emphasis on the energy region above the 3p32 threshold where multiconfigurational effects are not expected to be very important. Autoionization resonances below the 3s threshold and between the 3p32 and 3p12 thresholds are analyzed using the relativistic multichannel quantum-defect theory.
The turbulent life of dust grains in the supernova-driven, multiphase interstellar medium
NASA Astrophysics Data System (ADS)
Peters, Thomas; Zhukovska, Svitlana; Naab, Thorsten; Girichidis, Philipp; Walch, Stefanie; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Seifried, Daniel
2017-06-01
Dust grains are an important component of the interstellar medium (ISM) of galaxies. We present the first direct measurement of the residence times of interstellar dust in the different ISM phases, and of the transition rates between these phases, in realistic hydrodynamical simulations of the multiphase ISM. Our simulations include a time-dependent chemical network that follows the abundances of H+, H, H2, C+ and CO and take into account self-shielding by gas and dust using a tree-based radiation transfer method. Supernova explosions are injected either at random locations, at density peaks, or as a mixture of the two. For each simulation, we investigate how matter circulates between the ISM phases and find more sizeable transitions than considered in simple mass exchange schemes in the literature. The derived residence times in the ISM phases are characterized by broad distributions, in particular for the molecular, warm and hot medium. The most realistic simulations with random and mixed driving have median residence times in the molecular, cold, warm and hot phase around 17, 7, 44 and 1 Myr, respectively. The transition rates measured in the random driving run are in good agreement with observations of Ti gas-phase depletion in the warm and cold phases in a simple depletion model. ISM phase definitions based on chemical abundance rather than temperature cuts are physically more meaningful, but lead to significantly different transition rates and residence times because there is no direct correspondence between the two definitions.
Electron Correlation from the Adiabatic Connection for Multireference Wave Functions
NASA Astrophysics Data System (ADS)
Pernal, Katarzyna
2018-01-01
An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.
Dependence of structure factor and correlation energy on the width of electron wires
NASA Astrophysics Data System (ADS)
Ashokan, Vinod; Bala, Renu; Morawetz, Klaus; Pathak, Kare Narain
2018-02-01
The structure factor and correlation energy of a quantum wire of thickness b ≪ a B are studied in random phase approximation (RPA) and for the less investigated region r s < 1. Using the single-loop approximation, analytical expressions of the structure factor are obtained. The exact expressions for the exchange energy are also derived for a cylindrical and harmonic wire. The correlation energy in RPA is found to be represented by ɛ c ( b, r s ) = α( r s )/ b + β( r s ) ln( b) + η( r s ), for small b and high densities. For a pragmatic width of the wire, the correlation energy is in agreement with the quantum Monte Carlo simulation data.
Discontinuing Oxytocin Infusion in the Active Phase of Labor: A Systematic Review and Meta-analysis.
Saccone, Gabriele; Ciardulli, Andrea; Baxter, Jason K; Quiñones, Joanne N; Diven, Liany C; Pinar, Bor; Maruotti, Giuseppe Maria; Martinelli, Pasquale; Berghella, Vincenzo
2017-11-01
To evaluate the benefits and harms of discontinuation of oxytocin after the active phase of labor is reached. Electronic databases (ie, MEDLINE, Scopus, ClinicalTrials.gov, EMBASE, ScienceDirect, the Cochrane Library at the CENTRAL Register of Controlled Trials, Scielo) were searched from their inception until April 2017. We included all randomized controlled trials comparing discontinuation (ie, intervention group) and continuation (ie, control group) of oxytocin infusion after the active phase of labor is reached, either after induction or augmentation of labor. Discontinuation of oxytocin infusion was defined as discontinuing oxytocin infusion when the active phase of labor was achieved. Continuation of oxytocin infusion was defined as continuing oxytocin infusion until delivery. Only trials in singleton gestations with vertex presentation at term were included. The primary outcome was the incidence of cesarean delivery. Nine randomized controlled trials, including 1,538 singleton gestations, were identified as relevant and included in the meta-analysis. All nine trials included only women undergoing induction of labor. In the discontinuation group, if arrest of labor occurred, usually defined as no cervical dilation in 2 hours or inadequate uterine contractions for 2 hours or more, oxytocin infusion was restarted. Women in the control group had oxytocin continued until delivery usually at the same dose used at the time the active phase was reached. Women who were randomized to have discontinuation of oxytocin infusion after the active phase of labor was reached had a significantly lower risk of cesarean delivery (9.3% compared with 14.7%; relative risk 0.64, 95% CI 0.48-0.87) and of uterine tachysystole (6.2% compared with 13.1%; relative risk 0.53, 95% CI 0.33-0.84) compared with those who were randomized to have continuation of oxytocin infusion until delivery. Discontinuation of oxytocin infusion was associated with an increase in the duration of the active phase of labor (mean difference 27.65 minutes, 95% CI 3.94-51.36). In singleton gestations with cephalic presentation at term undergoing induction, discontinuation of oxytocin infusion after the active phase of labor at approximately 5 cm is reached reduces the risk of cesarean delivery and of uterine tachysystole compared with continuous oxytocin infusion. Given this evidence, discontinuation of oxytocin infusion once the active stage of labor is established in women being induced should be considered as an alternative management plan.
Measurement Matrix Design for Phase Retrieval Based on Mutual Information
NASA Astrophysics Data System (ADS)
Shlezinger, Nir; Dabora, Ron; Eldar, Yonina C.
2018-01-01
In phase retrieval problems, a signal of interest (SOI) is reconstructed based on the magnitude of a linear transformation of the SOI observed with additive noise. The linear transform is typically referred to as a measurement matrix. Many works on phase retrieval assume that the measurement matrix is a random Gaussian matrix, which, in the noiseless scenario with sufficiently many measurements, guarantees invertability of the transformation between the SOI and the observations, up to an inherent phase ambiguity. However, in many practical applications, the measurement matrix corresponds to an underlying physical setup, and is therefore deterministic, possibly with structural constraints. In this work we study the design of deterministic measurement matrices, based on maximizing the mutual information between the SOI and the observations. We characterize necessary conditions for the optimality of a measurement matrix, and analytically obtain the optimal matrix in the low signal-to-noise ratio regime. Practical methods for designing general measurement matrices and masked Fourier measurements are proposed. Simulation tests demonstrate the performance gain achieved by the proposed techniques compared to random Gaussian measurements for various phase recovery algorithms.
NASA Technical Reports Server (NTRS)
Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.
2015-01-01
To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.
NASA Astrophysics Data System (ADS)
Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod
2010-04-01
For phase estimation in digital holographic interferometry, a high-order instantaneous moments (HIM) based method was recently developed which relies on piecewise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients using the HIM operator. A crucial step in the method is mapping the polynomial coefficient estimation to single-tone frequency determination for which various techniques exist. The paper presents a comparative analysis of the performance of the HIM operator based method in using different single-tone frequency estimation techniques for phase estimation. The analysis is supplemented by simulation results.
In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture
NASA Technical Reports Server (NTRS)
Corda, Stephen; Franz, Russell J.; Blanton, James N.; Vachon, M. Jake; DeBoer, James B.
2002-01-01
Flight vibration data are analyzed for the NASA F-15B/Flight Test Fixture II test bed. Understanding the in-flight vibration environment benefits design and integration of experiments on the test bed. The power spectral density (PSD) of accelerometer flight data is analyzed to quantify the in-flight vibration environment from a frequency of 15 Hz to 1325 Hz. These accelerometer data are analyzed for typical flight conditions and maneuvers. The vibration data are compared to flight-qualification random vibration test standards. The PSD levels in the lateral axis generally are greater than in the longitudinal and vertical axes and decrease with increasing frequency. At frequencies less than approximately 40 Hz, the highest PSD levels occur during takeoff and landing. Peaks in the PSD data for the test fixture occur at approximately 65, 85, 105-110, 200, 500, and 1000 Hz. The pitch-pulse and 2-g turn maneuvers produce PSD peaks at 115 Hz. For cruise conditions, the PSD level of the 85-Hz peak is greatest for transonic flight at Mach 0.9. From 400 Hz to 1325 Hz, the takeoff phase has the highest random vibration levels. The flight-measured vibration levels generally are substantially lower than the random vibration test curve.
Frequency-domain elastic full waveform inversion using encoded simultaneous sources
NASA Astrophysics Data System (ADS)
Jeong, W.; Son, W.; Pyun, S.; Min, D.
2011-12-01
Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results provided by the approximate Hessian matrix, it is noted that the latter are better than the former for deeper parts of the model. This work was financially supported by the Brain Korea 21 project of Energy System Engineering, by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0006155), by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2010T100200133).
NASA Technical Reports Server (NTRS)
Kelton, K. F.; Croat, T. K.; Gangopadhyay, A.; Holland-Moritz, D.; Hyers, Robert W.; Rathz, Thomas J.; Robinson, Michael B.; Rogers, Jan R.
2001-01-01
Undercooling experiments and thermal physical property measurements of metallic alloys on the International Space Station (ISS) are planned. This recently-funded research focuses on fundamental issues of the formation and structure of highly-ordered non-crystallographic phases (quasicrystals) and related crystal phases (crystal approximants), and the connections between the atomic structures of these phases and those of liquids and glasses. It extends studies made previously by us of the composition dependence of crystal nucleation processes in silicate and metallic glasses, to the case of nucleation from the liquid phase. Motivating results from rf-levitation and drop-tube measurements of the undercooling of Ti/Zr-based liquids that form quasicrystals and crystal approximants are discussed. Preliminary measurements by electrostatic levitation (ESL) are presented.
The topology of large-scale structure. V - Two-dimensional topology of sky maps
NASA Astrophysics Data System (ADS)
Gott, J. R., III; Mao, Shude; Park, Changbom; Lahav, Ofer
1992-01-01
A 2D algorithm is applied to observed sky maps and numerical simulations. It is found that when topology is studied on smoothing scales larger than the correlation length, the topology is approximately in agreement with the random phase formula for the 2D genus-threshold density relation, G2(nu) varies as nu(e) exp-nu-squared/2. Some samples show small 'meatball shifts' similar to those seen in corresponding 3D observational samples and similar to those produced by biasing in cold dark matter simulations. The observational results are thus consistent with the standard model in which the structure in the universe today has grown from small fluctuations caused by random quantum noise in the early universe.
Some Aspects of the Investigation of Random Vibration Influence on Ride Comfort
NASA Astrophysics Data System (ADS)
DEMIĆ, M.; LUKIĆ, J.; MILIĆ, Ž.
2002-05-01
Contemporary vehicles must satisfy high ride comfort criteria. This paper attempts to develop criteria for ride comfort improvement. The highest loading levels have been found to be in the vertical direction and the lowest in lateral direction in passenger cars and trucks. These results have formed the basis for further laboratory and field investigations. An investigation of the human body behaviour under random vibrations is reported in this paper. The research included two phases; biodynamic research and ride comfort investigation. A group of 30 subjects was tested. The influence of broadband random vibrations on the human body was examined through the seat-to-head transmissibility function (STHT). Initially, vertical and fore and aft vibrations were considered. Multi-directional vibration was also investigated. In the biodynamic research, subjects were exposed to 0·55, 1·75 and 2·25 m/s2 r.m.s. vibration levels in the 0·5- 40 Hz frequency domain. The influence of sitting position on human body behaviour under two axial vibrations was also examined. Data analysis showed that the human body behaviour under two-directional random vibrations could not be approximated by superposition of one-directional random vibrations. Non-linearity of the seated human body in the vertical and fore and aft directions was observed. Seat-backrest angle also influenced STHT. In the second phase of experimental research, a new method for the assessment of the influence of narrowband random vibration on the human body was formulated and tested. It included determination of equivalent comfort curves in the vertical and fore and aft directions under one- and two-directional narrowband random vibrations. Equivalent comfort curves for durations of 2·5, 4 and 8 h were determined.
NASA Astrophysics Data System (ADS)
Cho, Junhan
2014-03-01
Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.
2013-01-01
Background Cancer and other chronic diseases reduce quality and length of life and productivity, and represent a significant financial burden to society. Evidence-based public health approaches to prevent cancer and other chronic diseases have been identified in recent decades and have the potential for high impact. Yet, barriers to implement prevention approaches persist as a result of multiple factors including lack of organizational support, limited resources, competing emerging priorities and crises, and limited skill among the public health workforce. The purpose of this study is to learn how best to promote the adoption of evidence based public health practice related to chronic disease prevention. Methods/design This paper describes the methods for a multi-phase dissemination study with a cluster randomized trial component that will evaluate the dissemination of public health knowledge about evidence-based prevention of cancer and other chronic diseases. Phase one involves development of measures of practitioner views on and organizational supports for evidence-based public health and data collection using a national online survey involving state health department chronic disease practitioners. In phase two, a cluster randomized trial design will be conducted to test receptivity and usefulness of dissemination strategies directed toward state health department chronic disease practitioners to enhance capacity and organizational support for evidence-based chronic disease prevention. Twelve state health department chronic disease units will be randomly selected and assigned to intervention or control. State health department staff and the university-based study team will jointly identify, refine, and select dissemination strategies within intervention units. Intervention (dissemination) strategies may include multi-day in-person training workshops, electronic information exchange modalities, and remote technical assistance. Evaluation methods include pre-post surveys, structured qualitative phone interviews, and abstraction of state-level chronic disease prevention program plans and progress reports. Trial registration clinicaltrials.gov: NCT01978054. PMID:24330729
2012-12-01
acoustics One begins with Eikonal equation for the acoustic phase function S(t,x) as derived from the geometric acoustics (high frequency) approximation to...zb(x) is smooth and reasonably approximated as piecewise linear. The time domain ray (characteristic) equations for the Eikonal equation are ẋ(t)= c...travel time is affected, which is more physically relevant than global error in φ since it provides the phase information for the Eikonal equation (2.1
Optical image encryption by random shifting in fractional Fourier domains
NASA Astrophysics Data System (ADS)
Hennelly, B.; Sheridan, J. T.
2003-02-01
A number of methods have recently been proposed in the literature for the encryption of two-dimensional information by use of optical systems based on the fractional Fourier transform. Typically, these methods require random phase screen keys for decrypting the data, which must be stored at the receiver and must be carefully aligned with the received encrypted data. A new technique based on a random shifting, or jigsaw, algorithm is proposed. This method does not require the use of phase keys. The image is encrypted by juxtaposition of sections of the image in fractional Fourier domains. The new method has been compared with existing methods and shows comparable or superior robustness to blind decryption. Optical implementation is discussed, and the sensitivity of the various encryption keys to blind decryption is examined.
NASA Astrophysics Data System (ADS)
Liu, Qi; Wang, Ying; Wang, Jun; Wang, Qiong-Hua
2018-02-01
In this paper, a novel optical image encryption system combining compressed sensing with phase-shifting interference in fractional wavelet domain is proposed. To improve the encryption efficiency, the volume data of original image are decreased by compressed sensing. Then the compacted image is encoded through double random phase encoding in asymmetric fractional wavelet domain. In the encryption system, three pseudo-random sequences, generated by three-dimensional chaos map, are used as the measurement matrix of compressed sensing and two random-phase masks in the asymmetric fractional wavelet transform. It not only simplifies the keys to storage and transmission, but also enhances our cryptosystem nonlinearity to resist some common attacks. Further, holograms make our cryptosystem be immune to noises and occlusion attacks, which are obtained by two-step-only quadrature phase-shifting interference. And the compression and encryption can be achieved in the final result simultaneously. Numerical experiments have verified the security and validity of the proposed algorithm.
Dong, Nianbo; Lipsey, Mark W
2017-01-01
It is unclear whether propensity score analysis (PSA) based on pretest and demographic covariates will meet the ignorability assumption for replicating the results of randomized experiments. This study applies within-study comparisons to assess whether pre-Kindergarten (pre-K) treatment effects on achievement outcomes estimated using PSA based on a pretest and demographic covariates can approximate those found in a randomized experiment. Data-Four studies with samples of pre-K children each provided data on two math achievement outcome measures with baseline pretests and child demographic variables that included race, gender, age, language spoken at home, and mother's highest education. Research Design and Data Analysis-A randomized study of a pre-K math curriculum provided benchmark estimates of effects on achievement measures. Comparison samples from other pre-K studies were then substituted for the original randomized control and the effects were reestimated using PSA. The correspondence was evaluated using multiple criteria. The effect estimates using PSA were in the same direction as the benchmark estimates, had similar but not identical statistical significance, and did not differ from the benchmarks at statistically significant levels. However, the magnitude of the effect sizes differed and displayed both absolute and relative bias larger than required to show statistical equivalence with formal tests, but those results were not definitive because of the limited statistical power. We conclude that treatment effect estimates based on a single pretest and demographic covariates in PSA correspond to those from a randomized experiment on the most general criteria for equivalence.
Analytical excited state forces for the time-dependent density-functional tight-binding method.
Heringer, D; Niehaus, T A; Wanko, M; Frauenheim, Th
2007-12-01
An analytical formulation for the geometrical derivatives of excitation energies within the time-dependent density-functional tight-binding (TD-DFTB) method is presented. The derivation is based on the auxiliary functional approach proposed in [Furche and Ahlrichs, J Chem Phys 2002, 117, 7433]. To validate the quality of the potential energy surfaces provided by the method, adiabatic excitation energies, excited state geometries, and harmonic vibrational frequencies were calculated for a test set of molecules in excited states of different symmetry and multiplicity. According to the results, the TD-DFTB scheme surpasses the performance of configuration interaction singles and the random phase approximation but has a lower quality than ab initio time-dependent density-functional theory. As a consequence of the special form of the approximations made in TD-DFTB, the scaling exponent of the method can be reduced to three, similar to the ground state. The low scaling prefactor and the satisfactory accuracy of the method makes TD-DFTB especially suitable for molecular dynamics simulations of dozens of atoms as well as for the computation of luminescence spectra of systems containing hundreds of atoms. (c) 2007 Wiley Periodicals, Inc.
Nuclear Pasta at Finite Temperature with the Time-Dependent Hartree-Fock Approach
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.
2016-01-01
We present simulations of neutron-rich matter at sub-nuclear densities, like supernova matter. With the time-dependent Hartree-Fock approximation we can study the evolution of the system at temperatures of several MeV employing a full Skyrme interaction in a periodic three-dimensional grid [1]. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. The matter evolves into spherical, rod-like, connected rod-like and slab-like shapes. Further we observe gyroid-like structures, discussed e.g. in [2], which are formed spontaneously choosing a certain value of the simulation box length. The ρ-T-map of pasta shapes is basically consistent with the phase diagrams obtained from QMD calculations [3]. By an improved topological analysis based on Minkowski functionals [4], all observed pasta shapes can be uniquely identified by only two valuations, namely the Euler characteristic and the integral mean curvature. In addition we propose the variance in the cell-density distribution as a measure to distinguish pasta matter from uniform matter.
Jagannathan, Sarangapani; He, Pingan
2008-12-01
In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability.
NASA Technical Reports Server (NTRS)
Majewski, Steven R.; Munn, Jeffrey A.; Hawley, Suzanne L.
1994-01-01
Radial velocities have been obtained for six of nine stars identified on the basis of similar distances and common, extreme transverse velocities in the proper motion survey of Majewski (1992) as a candidate halo moving group at the north Galactic pole. These radial velocities correspond to velocities perpendicular to the Galactic plane which span the range -48 +/- 21 to -128 +/- 9 km/sec (but a smaller range, -48 +/- 21 to -86 +/- 19 km/sec, when only our own measurements are considered), significantly different than the expected distribution, with mean 0 km/sec, for a random sample of either halo or thick disk stars. The probability of picking such a set of radial velocities at random is less than 1%. Thus the radial velocity data support the hypothesis that these stars constitute part of a halo moving group or star stream at a distance of approximately 4-5 kpc above the Galactic plane. If real, this moving group is evidence for halo phase space substructure which may be the fossil remains of a destroyed globular cluster, Galactic satellite, or Searle & Zinn (1978) 'fragment.'
NASA Astrophysics Data System (ADS)
Lye, Ribin; Tan, James Peng Lung; Cheong, Siew Ann
2012-11-01
We describe a bottom-up framework, based on the identification of appropriate order parameters and determination of phase diagrams, for understanding progressively refined agent-based models and simulations of financial markets. We illustrate this framework by starting with a deterministic toy model, whereby N independent traders buy and sell M stocks through an order book that acts as a clearing house. The price of a stock increases whenever it is bought and decreases whenever it is sold. Price changes are updated by the order book before the next transaction takes place. In this deterministic model, all traders based their buy decisions on a call utility function, and all their sell decisions on a put utility function. We then make the agent-based model more realistic, by either having a fraction fb of traders buy a random stock on offer, or a fraction fs of traders sell a random stock in their portfolio. Based on our simulations, we find that it is possible to identify useful order parameters from the steady-state price distributions of all three models. Using these order parameters as a guide, we find three phases: (i) the dead market; (ii) the boom market; and (iii) the jammed market in the phase diagram of the deterministic model. Comparing the phase diagrams of the stochastic models against that of the deterministic model, we realize that the primary effect of stochasticity is to eliminate the dead market phase.
Anal Cancer: An Examination of Radiotherapy Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glynne-Jones, Rob; Lim, Faye
2011-04-01
The Radiation Therapy Oncology Group 9811, ACCORD-03, and ACT II Phase III trials in anal cancer showed no benefit for cisplatin-based induction and maintenance chemotherapy, or radiation dose-escalation >59 Gy. This review examines the efficacy and toxicity of chemoradiation (CRT) in anal cancer, and discusses potential alternative radiotherapy strategies. The evidence for the review was compiled from randomized and nonrandomized trials of radiation therapy and CRT. A total of 103 retrospective/observational studies, 4 Phase I/II studies, 16 Phase II prospective studies, 2 randomized Phase II studies, and 6 Phase III trials of radiotherapy or chemoradiation were identified. There are nomore » meta-analyses based on individual patient data. A 'one-size-fits-all' approach for all stages of anal cancer is inappropriate. Early T1 tumors are probably currently overtreated, whereas T3/T4 lesions might merit escalation of treatment. Intensity-modulated radiotherapy or the integration of biological therapy may play a role in future.« less
NASA Astrophysics Data System (ADS)
Gorthi, Sai Siva; Rajshekhar, G.; Rastogi, Pramod
2010-04-01
For three-dimensional (3D) shape measurement using fringe projection techniques, the information about the 3D shape of an object is encoded in the phase of a recorded fringe pattern. The paper proposes a high-order instantaneous moments based method to estimate phase from a single fringe pattern in fringe projection. The proposed method works by approximating the phase as a piece-wise polynomial and subsequently determining the polynomial coefficients using high-order instantaneous moments to construct the polynomial phase. Simulation results are presented to show the method's potential.
NASA Astrophysics Data System (ADS)
Arif Khalil, R. M.; Ahmad, Javed; Rana, Anwar Manzoor; Bukhari, Syed Hamad; Tufiq Jamil, M.; Tehreem, Tuba; Nissar, Umair
2018-05-01
In this investigation, structural, dynamical and thermal properties of black and blue phosphorene (P) are presented through the first principles calculations based on the density functional theory (DFT). These DFT calculations depict that due to the approximately same values of ground state energy at zero Kelvin and Helmholtz free energy at room-temperature, it is expected that both structures can coexist at transition temperature. Lattice dynamics of both phases were investigated by using the finite displacement supercell approach. It is noticed on the basis of harmonic approximation thermodynamic calculations that the blue phase is thermodynamically more stable than the black phase above 155 K.
Telecentric 3D profilometry based on phase-shifting fringe projection.
Li, Dong; Liu, Chunyang; Tian, Jindong
2014-12-29
Three dimensional shape measurement in the microscopic range becomes increasingly important with the development of micro manufacturing technology. Microscopic fringe projection techniques offer a fast, robust, and full-field measurement for field sizes from approximately 1 mm2 to several cm2. However, the depth of field is very small due to the imaging of non-telecentric microscope, which is often not sufficient to measure the complete depth of a 3D-object. And the calibration of phase-to-depth conversion is complicated which need a precision translation stage and a reference plane. In this paper, we propose a novel telecentric phase-shifting projected fringe profilometry for small and thick objects. Telecentric imaging extends the depth of field approximately to millimeter order, which is much larger than that of microscopy. To avoid the complicated phase-to-depth conversion in microscopic fringe projection, we develop a new system calibration method of camera and projector based on telecentric imaging model. Based on these, a 3D reconstruction of telecentric imaging is presented with stereovision aided by fringe phase maps. Experiments demonstrated the feasibility and high measurement accuracy of the proposed system for thick object.
Computer modeling of in terferograms of flowing plasma and determination of the phase shift
NASA Astrophysics Data System (ADS)
Blažek, J.; Kříž, P.; Stach, V.
2000-03-01
Interferograms of the flowing gas contain information about the phase shift between the object and the reference beams. The determination of the phase shift is the first step in getting information about the inner distribution of the density in cylindrically symmetric discharges. Slightly modified Takeda method based on the Fourier transformation is applied to determine the phase information from the interferogram. The least squares spline approximation is used for approximation and smoothing intensity profiles. At the same time, cubic splines with their end-knots conditions naturally realize “hanning windows” eliminating unwanted edge effects. For the purpose of numerical testing of the method, we developed a code that for a density given in advance reconstructs the corresponding interferogram.
Nonstationary envelope process and first excursion probability.
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1972-01-01
The definition of stationary random envelope proposed by Cramer and Leadbetter, is extended to the envelope of nonstationary random process possessing evolutionary power spectral densities. The density function, the joint density function, the moment function, and the crossing rate of a level of the nonstationary envelope process are derived. Based on the envelope statistics, approximate solutions to the first excursion probability of nonstationary random processes are obtained. In particular, applications of the first excursion probability to the earthquake engineering problems are demonstrated in detail.
Improving practice in community-based settings: a randomized trial of supervision - study protocol.
Dorsey, Shannon; Pullmann, Michael D; Deblinger, Esther; Berliner, Lucy; Kerns, Suzanne E; Thompson, Kelly; Unützer, Jürgen; Weisz, John R; Garland, Ann F
2013-08-10
Evidence-based treatments for child mental health problems are not consistently available in public mental health settings. Expanding availability requires workforce training. However, research has demonstrated that training alone is not sufficient for changing provider behavior, suggesting that ongoing intervention-specific supervision or consultation is required. Supervision is notably under-investigated, particularly as provided in public mental health. The degree to which supervision in this setting includes 'gold standard' supervision elements from efficacy trials (e.g., session review, model fidelity, outcome monitoring, skill-building) is unknown. The current federally-funded investigation leverages the Washington State Trauma-focused Cognitive Behavioral Therapy Initiative to describe usual supervision practices and test the impact of systematic implementation of gold standard supervision strategies on treatment fidelity and clinical outcomes. The study has two phases. We will conduct an initial descriptive study (Phase I) of supervision practices within public mental health in Washington State followed by a randomized controlled trial of gold standard supervision strategies (Phase II), with randomization at the clinician level (i.e., supervisors provide both conditions). Study participants will be 35 supervisors and 130 clinicians in community mental health centers. We will enroll one child per clinician in Phase I (N = 130) and three children per clinician in Phase II (N = 390). We use a multi-level mixed within- and between-subjects longitudinal design. Audio recordings of supervision and therapy sessions will be collected and coded throughout both phases. Child outcome data will be collected at the beginning of treatment and at three and six months into treatment. This study will provide insight into how supervisors can optimally support clinicians delivering evidence-based treatments. Phase I will provide descriptive information, currently unavailable in the literature, about commonly used supervision strategies in community mental health. The Phase II randomized controlled trial of gold standard supervision strategies is, to our knowledge, the first experimental study of gold standard supervision strategies in community mental health and will yield needed information about how to leverage supervision to improve clinician fidelity and client outcomes. ClinicalTrials.gov NCT01800266.
Improving practice in community-based settings: a randomized trial of supervision – study protocol
2013-01-01
Background Evidence-based treatments for child mental health problems are not consistently available in public mental health settings. Expanding availability requires workforce training. However, research has demonstrated that training alone is not sufficient for changing provider behavior, suggesting that ongoing intervention-specific supervision or consultation is required. Supervision is notably under-investigated, particularly as provided in public mental health. The degree to which supervision in this setting includes ‘gold standard’ supervision elements from efficacy trials (e.g., session review, model fidelity, outcome monitoring, skill-building) is unknown. The current federally-funded investigation leverages the Washington State Trauma-focused Cognitive Behavioral Therapy Initiative to describe usual supervision practices and test the impact of systematic implementation of gold standard supervision strategies on treatment fidelity and clinical outcomes. Methods/Design The study has two phases. We will conduct an initial descriptive study (Phase I) of supervision practices within public mental health in Washington State followed by a randomized controlled trial of gold standard supervision strategies (Phase II), with randomization at the clinician level (i.e., supervisors provide both conditions). Study participants will be 35 supervisors and 130 clinicians in community mental health centers. We will enroll one child per clinician in Phase I (N = 130) and three children per clinician in Phase II (N = 390). We use a multi-level mixed within- and between-subjects longitudinal design. Audio recordings of supervision and therapy sessions will be collected and coded throughout both phases. Child outcome data will be collected at the beginning of treatment and at three and six months into treatment. Discussion This study will provide insight into how supervisors can optimally support clinicians delivering evidence-based treatments. Phase I will provide descriptive information, currently unavailable in the literature, about commonly used supervision strategies in community mental health. The Phase II randomized controlled trial of gold standard supervision strategies is, to our knowledge, the first experimental study of gold standard supervision strategies in community mental health and will yield needed information about how to leverage supervision to improve clinician fidelity and client outcomes. Trial registration ClinicalTrials.gov NCT01800266 PMID:23937766
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, H.; Zhang, G. X.; Yoshida, K.
The level structure of 172Dy has been investigated for the first time by means of decay spectroscopy following in-flight fission of a 238U beam. A long-lived isomeric state with T1/2 = 0.71(5) s and Kπ = 8- has been identified at 1278 keV, which decays to the ground-state and γ -vibrational bands through hindered electromagnetic transitions, as well as to the daughter nucleus 172Ho via allowed β decays. The robust nature of the Kπ = 8- isomer and the ground-state rotational band reveals an axially-symmetric structure for this nucleus. Meanwhile, the γ -vibrational levels have been identified at unusually lowmore » excitation energy compared to the neighboring well-deformed nuclei, indicating the significance of the microscopic effect on the non-axial collectivity in this doubly mid-shell region. The underlying mechanism of enhanced γ vibration is discussed in comparison with the deformed Quasiparticle Random-Phase Approximation based on a Skyrme energy-density functional.« less
NASA Astrophysics Data System (ADS)
Li, Pengfei; Ren, Xinguo; He, Lixin
2017-10-01
Plasmon excitations in free-standing graphene and graphene/hexagonal boron nitride (hBN) heterostructure are studied using linear-response time-dependent density functional theory within the random phase approximation. Within a single theoretical framework, we examine both the plasmon dispersion behavior and lifetime (linewidth) of Dirac and π plasmons on an equal footing. Particular attention is paid to the influence of the hBN substrate and the anisotropic effect. Furthermore, a model-based analysis indicates that the correct dispersion behavior of π plasmons should be ωπ(q ) =√{Eg2+β ql} for small q 's, where Eg is the band gap at the M point in the Brillouin zone, and β is a fitting parameter. This model is radically different from previous proposals, but in good agreement with our calculated results from first principles.
Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si
NASA Astrophysics Data System (ADS)
Persson, C.; Lindefelt, U.; Sernelius, B. E.
1999-10-01
Doping-induced energy shifts of the conduction band minimum and the valence band maximum have been calculated for n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. The narrowing of the fundamental band gap and of the optical band gap are presented as functions of ionized impurity concentration. The calculations go beyond the common parabolic treatments of the ground state energy dispersion by using energy dispersion and overlap integrals from band structure calculations. The nonparabolic valence band curvatures influence strongly the energy shifts especially in p-type materials. The utilized method is based on a zero-temperature Green's function formalism within the random phase approximation with local field correction according to Hubbard. We have parametrized the shifts of the conduction and the valence bands and made comparisons with recently published results from a semi-empirical model.
Single and double beta decays in the A=100, A=116 and A=128 triplets of isobars
NASA Astrophysics Data System (ADS)
Suhonen, J.; Civitarese, O.
2014-04-01
In this paper we analyze the ground-state-to-ground-state two-neutrino double beta (2νββ) decays and single EC and β- decays for the A=100 (100Mo-100Tc-100Ru), A=116 (116Cd-116In-116Sn) and A=128 (128Te-128I-128Xe) triplets of isobars. We use the proton-neutron quasiparticle random-phase approximation (pnQRPA) with realistic G-matrix-derived effective interactions in very large single-particle bases. The purpose is to access the effective value of the axial-vector coupling constant gA in the pnQRPA calculations. We show that the three triplets of isobars represent systems with different characteristics of orbital occupancies and cumulative 2νββ nuclear matrix elements. Our analysis points to a considerably quenched averaged effective value of
Massive black holes and light-element nucleosynthesis in a baryonic universe
NASA Technical Reports Server (NTRS)
Gnedin, Nickolay Y.; Ostriker, Jeremiah P.; Rees, Martin J.
1995-01-01
We reexamine the model proposed by Gnedin & Ostriker (1992) in which Jeans mass black holes (M(sub BH) approximately = 10(exp 6) solar mass) form shortly after decoupling. There is no nonbaryonic dark matter in this model, but we examine the possibility that Omega(sub b) is considerably larger than given by normal nucleosynthesis. Here we allow for the fact that much of the high baryon-to-photon ratio material will collapse leaving the universe of remaining material with light-element abundances more in accord with the residual baryonic density (approximately = 10(exp -2)) than with Omega(sub 0) and the initial baryonic density (approximately = 10(exp -1)). We find that no reasonable model can be made with random-phase density fluctuations, if the power on scales smaller than 10(exp 6) solar mass is as large as expected. However, phase-correlated models of the type that might occur in connection with topological singularities can be made with Omega(sub b) h(exp 2) = 0.013 +/- 0.001, 0.15 approximately less than Omega(sub 0) approximately less than 0.4, which are either flat (Omega(sub lambda) = 1 - Omega(sub 0)) or open (Omega(sub lambda) = 0) and which satisfy all the observational constraints which we apply, including the large baryon-to-total mass ratio found in the X-ray clusters. The remnant baryon density is thus close to that obtained in the standard picture (Omega(sub b) h(exp 2) = 0.0125 +/- 0.0025; Walker et al. 1991). The spectral index implied for fluctuations in the baryonic isocurvature scenario, -1 less than m less than 0, is in the range expected by other arguments based on large-scale structure and microwave fluctuation constraints. The dark matter in this picture is in the form of massive black holes. Accretion onto them at early epochs releases high-energy photons which significantly heat and reionize the universe. But photodissociation does not materially change light-element abundances. A typical model gives bar-y approximately = 1 x 10(exp -5), n(sub e)/n(sub H)(z = 30) approximately = 0.1, and a diffuse gamma-ray background at 100 keV near the Cosmic Background Explorer Satellite (COBE) limit of the order of 10% of that observed which originates from high-redshift quasars. Reionization in this model occurs at redshift 600 and reaches (H II/H(sub tot) approximately = 0.1-0.2.
Analytical model and error analysis of arbitrary phasing technique for bunch length measurement
NASA Astrophysics Data System (ADS)
Chen, Qushan; Qin, Bin; Chen, Wei; Fan, Kuanjun; Pei, Yuanji
2018-05-01
An analytical model of an RF phasing method using arbitrary phase scanning for bunch length measurement is reported. We set up a statistical model instead of a linear chirp approximation to analyze the energy modulation process. It is found that, assuming a short bunch (σφ / 2 π → 0) and small relative energy spread (σγ /γr → 0), the energy spread (Y =σγ 2) at the exit of the traveling wave linac has a parabolic relationship with the cosine value of the injection phase (X = cosφr|z=0), i.e., Y = AX2 + BX + C. Analogous to quadrupole strength scanning for emittance measurement, this phase scanning method can be used to obtain the bunch length by measuring the energy spread at different injection phases. The injection phases can be randomly chosen, which is significantly different from the commonly used zero-phasing method. Further, the systematic error of the reported method, such as the influence of the space charge effect, is analyzed. This technique will be especially useful at low energies when the beam quality is dramatically degraded and is hard to measure using the zero-phasing method.
Weiss, Roger D.; Potter, Jennifer Sharpe; Provost, Scott E.; Huang, Zhen; Jacobs, Petra; Hasson, Albert; Lindblad, Robert; Connery, Hilary Smith; Prather, Kristi; Ling, Walter
2010-01-01
The National Institute on Drug Abuse Clinical Trials Network launched the Prescription Opioid Addiction Treatment Study (POATS) in response to rising rates of prescription opioid dependence and gaps in understanding the optimal course of treatment for this population. POATS employed a multi-site, two-phase adaptive, sequential treatment design to approximate clinical practice. The study took place at 10 community treatment programs around the United States. Participants included men and women age ≥18 who met Diagnostic and Statistical Manual, 4th Edition criteria for dependence upon prescription opioids, with physiologic features; those with a prominent history of heroin use (according to pre-specified criteria) were excluded. All participants received buprenorphine/naloxone (bup/nx). Phase 1 consisted of 4 weeks of bup/nx treatment, including a 14-day dose taper, with 8 weeks of follow-up. Phase 1 participants were monitored for treatment response during these 12 weeks. Those who relapsed to opioid use, as defined by pre-specified criteria, were invited to enter Phase 2; Phase 2 consisted of 12 weeks of bup/nx stabilization treatment, followed by a 4-week taper and 8 weeks of post-treatment follow-up. Participants were randomized at the beginning of Phase 1 to receive bup/nx, paired with either Standard Medical Management (SMM) or Enhanced Medical Management (EMM; defined as SMM plus individual drug counseling). Eligible participants entering Phase 2 were re-randomized to either EMM or SMM. POATS was developed to determine what benefit, if any, EMM offers over SMM in short-term and longer-term treatment paradigm. This paper describes the rationale and design of the study. PMID:20116457
Weiss, Roger D; Potter, Jennifer Sharpe; Provost, Scott E; Huang, Zhen; Jacobs, Petra; Hasson, Albert; Lindblad, Robert; Connery, Hilary Smith; Prather, Kristi; Ling, Walter
2010-03-01
The National Institute on Drug Abuse Clinical Trials Network launched the Prescription Opioid Addiction Treatment Study (POATS) in response to rising rates of prescription opioid dependence and gaps in understanding the optimal course of treatment for this population. POATS employed a multi-site, two-phase adaptive, sequential treatment design to approximate clinical practice. The study took place at 10 community treatment programs around the United States. Participants included men and women age > or =18 who met Diagnostic and Statistical Manual, 4th Edition criteria for dependence upon prescription opioids, with physiologic features; those with a prominent history of heroin use (according to pre-specified criteria) were excluded. All participants received buprenorphine/naloxone (bup/nx). Phase 1 consisted of 4 weeks of bup/nx treatment, including a 14-day dose taper, with 8 weeks of follow-up. Phase 1 participants were monitored for treatment response during these 12 weeks. Those who relapsed to opioid use, as defined by pre-specified criteria, were invited to enter Phase 2; Phase 2 consisted of 12 weeks of bup/nx stabilization treatment, followed by a 4-week taper and 8 weeks of post-treatment follow-up. Participants were randomized at the beginning of Phase 1 to receive bup/nx, paired with either Standard Medical Management (SMM) or Enhanced Medical Management (EMM; defined as SMM plus individual drug counseling). Eligible participants entering Phase 2 were re-randomized to either EMM or SMM. POATS was developed to determine what benefit, if any, EMM offers over SMM in short-term and longer-term treatment paradigm. This paper describes the rationale and design of the study. Copyright 2010 Elsevier Inc. All rights reserved.
Ing, Claire Townsend; Miyamoto, Robin E S; Fang, Rui; Antonio, Mapuana; Paloma, Diane; Braun, Kathryn L; Kaholokula, Joseph Keawe'aimoku
2018-03-01
Native Hawaiians and other Pacific Islanders have high rates of overweight and obesity compared with other ethnic groups in Hawai'i. Effective weight loss and weight loss-maintenance programs are needed to address obesity and obesity-related health inequities for this group. Compare the effectiveness of a 9-month, worksite-based, weight loss-maintenance intervention delivered via DVD versus face-to-face in continued weight reduction and weight loss maintenance beyond the initial weight loss phase. We tested DVD versus face-to-face delivery of the PILI@Work Program's 9-month, weight loss-maintenance phase in Native Hawaiian-serving organizations. After completing the 3-month weight loss phase, participants ( n = 217) were randomized to receive the weight loss-maintenance phase delivered via trained peer facilitators or DVDs. Participant assessments at randomization and postintervention included weight, height, blood pressure, physical functioning, exercise frequency, and fat intake. Eighty-three face-to-face participants were retained at 12 months (74.1%) compared with 73 DVD participants (69.5%). There was no significant difference between groups in weight loss or weight loss maintenance. The number of lessons attended in Phase 1 of the intervention (β = 0.358, p = .022) and baseline systolic blood pressure (β = -0.038, p = .048) predicted percent weight loss at 12 months. Weight loss maintenance was similar across groups. This suggests that low-cost delivery methods for worksite-based interventions targeting at-risk populations can help address obesity and obesity-related disparities. Additionally, attendance during the weight loss phase and lower baseline systolic blood pressure predicted greater percent weight loss during the weight loss-maintenance phase, suggesting that early engagement and initial physical functioning improve long-term weight loss outcomes.
Single-random-phase holographic encryption of images
NASA Astrophysics Data System (ADS)
Tsang, P. W. M.
2017-02-01
In this paper, a method is proposed for encrypting an optical image onto a phase-only hologram, utilizing a single random phase mask as the private encryption key. The encryption process can be divided into 3 stages. First the source image to be encrypted is scaled in size, and pasted onto an arbitrary position in a larger global image. The remaining areas of the global image that are not occupied by the source image could be filled with randomly generated contents. As such, the global image as a whole is very different from the source image, but at the same time the visual quality of the source image is preserved. Second, a digital Fresnel hologram is generated from the new image, and converted into a phase-only hologram based on bi-directional error diffusion. In the final stage, a fixed random phase mask is added to the phase-only hologram as the private encryption key. In the decryption process, the global image together with the source image it contained, can be reconstructed from the phase-only hologram if it is overlaid with the correct decryption key. The proposed method is highly resistant to different forms of Plain-Text-Attacks, which are commonly used to deduce the encryption key in existing holographic encryption process. In addition, both the encryption and the decryption processes are simple and easy to implement.
On the design of random metasurface based devices.
Dupré, Matthieu; Hsu, Liyi; Kanté, Boubacar
2018-05-08
Metasurfaces are generally designed by placing scatterers in periodic or pseudo-periodic grids. We propose and discuss design rules for functional metasurfaces with randomly placed anisotropic elements that randomly sample a well-defined phase function. By analyzing the focusing performance of random metasurface lenses as a function of their density and the density of the phase-maps used to design them, we find that the performance of 1D metasurfaces is mostly governed by their density while 2D metasurfaces strongly depend on both the density and the near-field coupling configuration of the surface. The proposed approach is used to design all-polarization random metalenses at near infrared frequencies. Challenges, as well as opportunities of random metasurfaces compared to periodic ones are discussed. Our results pave the way to new approaches in the design of nanophotonic structures and devices from lenses to solar energy concentrators.
NASA Technical Reports Server (NTRS)
Pratt, D. T.
1984-01-01
Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.
NASA Astrophysics Data System (ADS)
Badalyan, S. M.; Kim, C. S.; Vignale, G.; Senatore, G.
2007-03-01
We investigate the effect of exchange and correlation (XC) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a different approach, which employs dynamic XC kernels in the calculation of the bilayer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. The spectrum of bilayer plasmons and the drag resistivity are calculated in a broad range of temperatures taking into account both intra- and interlayer correlation effects. We observe that both plasmon modes are strongly affected by XC corrections. After the inclusion of the complex dynamic XC kernels, a decrease of the electron density induces shifts of the plasmon branches in opposite directions. This is in stark contrast with the tendency observed within random phase approximation that both optical and acoustical plasmons move away from the boundary of the particle-hole continuum with a decrease in the electron density. We find that the introduction of XC corrections results in a significant enhancement of the transresistivity and qualitative changes in its temperature dependence. In particular, the large high-temperature plasmon peak that is present in the random phase approximation is found to disappear when the XC corrections are included. Our numerical results at low temperatures are in good agreement with the results of recent experiments by Kellogg [Solid State Commun. 123, 515 (2002)].
Costanza-Robinson, Molly S; Carlson, Tyson D; Brusseau, Mark L
2013-02-01
Gas-phase transport experiments were conducted using a large weighing lysimeter to evaluate retention processes for volatile organic compounds (VOCs) in water-unsaturated (vadose-zone) systems, and to test the utility of gas-phase tracers for predicting VOC retardation. Trichloroethene (TCE) served as a model VOC, while trichlorofluoromethane (CFM) and heptane were used as partitioning tracers to independently characterize retention by water and the air-water interface, respectively. Retardation factors for TCE ranged between 1.9 and 3.5, depending on water content. The results indicate that dissolution into the bulk water was the primary retention mechanism for TCE under all conditions studied, contributing approximately two-thirds of the total measured retention. Accumulation at the air-water interface comprised a significant fraction of the observed retention for all experiments, with an average contribution of approximately 24%. Sorption to the solid phase contributed approximately 10% to retention. Water contents and air-water interfacial areas estimated based on the CFM and heptane tracer data, respectively, were similar to independently measured values. Retardation factors for TCE predicted using the partitioning-tracer data were in reasonable agreement with the measured values. These results suggest that gas-phase tracer tests hold promise for characterizing the retention and transport of VOCs in the vadose-zone. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Guanjun; Song, Zhaohui
2017-04-01
Traveling solar wind disturbances have a significant influence on radio wave characteristics during the superior solar conjunction communication. This paper considers the impact of solar scintillation on phase fluctuations of electromagnetic (EM) wave propagation during the superior solar conjunction. Based on the Geometric Optics approximation, the close-form approximation model for phase fluctuations is developed. Both effects of anisotropic temporal variations function of plasma irregularities and their power spectrum are presented and analyzed numerically. It is found that phase fluctuations rapidly decrease with increasing Sun-Earth-Probe angle and decrease with increasing frequency at the rate of 1/f2. Moreover, the role of various features of the solar wind irregularities and their influence on the EM wave characteristic parameters is studied and discussed. Finally, we study the phase fluctuations of typical cases in order to better understand the impact of phase fluctuations in future deep space communication scenarios during solar conjunction periods.
PET-CT image fusion using random forest and à-trous wavelet transform.
Seal, Ayan; Bhattacharjee, Debotosh; Nasipuri, Mita; Rodríguez-Esparragón, Dionisio; Menasalvas, Ernestina; Gonzalo-Martin, Consuelo
2018-03-01
New image fusion rules for multimodal medical images are proposed in this work. Image fusion rules are defined by random forest learning algorithm and a translation-invariant à-trous wavelet transform (AWT). The proposed method is threefold. First, source images are decomposed into approximation and detail coefficients using AWT. Second, random forest is used to choose pixels from the approximation and detail coefficients for forming the approximation and detail coefficients of the fused image. Lastly, inverse AWT is applied to reconstruct fused image. All experiments have been performed on 198 slices of both computed tomography and positron emission tomography images of a patient. A traditional fusion method based on Mallat wavelet transform has also been implemented on these slices. A new image fusion performance measure along with 4 existing measures has been presented, which helps to compare the performance of 2 pixel level fusion methods. The experimental results clearly indicate that the proposed method outperforms the traditional method in terms of visual and quantitative qualities and the new measure is meaningful. Copyright © 2017 John Wiley & Sons, Ltd.
Wasdell, Michael B; Jan, James E; Bomben, Melissa M; Freeman, Roger D; Rietveld, Wop J; Tai, Joseph; Hamilton, Donald; Weiss, Margaret D
2008-01-01
The purpose of this study was to determine the efficacy of controlled-release (CR) melatonin in the treatment of delayed sleep phase syndrome and impaired sleep maintenance of children with neurodevelopmental disabilities including autistic spectrum disorders. A randomized double-blind, placebo-controlled crossover trial of CR melatonin (5 mg) followed by a 3-month open-label study was conducted during which the dose was gradually increased until the therapy showed optimal beneficial effects. Sleep characteristics were measured by caregiver who completed somnologs and wrist actigraphs. Clinician rating of severity of the sleep disorder and improvement from baseline, along with caregiver ratings of global functioning and family stress were also obtained. Fifty-one children (age range 2-18 years) who did not respond to sleep hygiene intervention were enrolled. Fifty patients completed the crossover trial and 47 completed the open-label phase. Recordings of total night-time sleep and sleep latency showed significant improvement of approximately 30 min. Similarly, significant improvement was observed in clinician and parent ratings. There was additional improvement in the open-label somnolog measures of sleep efficiency and the longest sleep episode in the open-label phase. Overall, the therapy improved the sleep of 47 children and was effective in reducing family stress. Children with neurodevelopmental disabilities, who had treatment resistant chronic delayed sleep phase syndrome and impaired sleep maintenance, showed improvement in melatonin therapy.
Eriksen, Janus J; Sauer, Stephan P A; Mikkelsen, Kurt V; Jensen, Hans J Aa; Kongsted, Jacob
2012-09-30
We investigate the effect of including a dynamic reaction field at the lowest possible ab inito wave function level of theory, namely the Hartree-Fock (HF) self-consistent field level within the polarizable embedding (PE) formalism. We formulate HF based PE within the linear response theory picture leading to the PE-random-phase approximation (PE-RPA) and bridge the expressions to a second-order polarization propagator approximation (SOPPA) frame such that dynamic reaction field contributions are included at the RPA level in addition to the static response described at the SOPPA level but with HF induced dipole moments. We conduct calculations on para-nitro-aniline and para-nitro-phenolate using said model in addition to dynamic PE-RPA and PE-CAM-B3LYP. We compare the results to recently published PE-CCSD data and demonstrate how the cost effective SOPPA-based model successfully recovers a great portion of the inherent PE-RPA error when the observable is the solvatochromic shift. We furthermore demonstrate that whenever the change in density resulting from the ground state-excited state electronic transition in the solute is not associated with a significant change in the electric field, dynamic response contributions formulated at the HF level of theory manage to capture the majority of the system response originating from derivative densities. Copyright © 2012 Wiley Periodicals, Inc.
Approximate ground states of the random-field Potts model from graph cuts
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Kumar, Ravinder; Weigel, Martin; Banerjee, Varsha; Janke, Wolfhard; Puri, Sanjay
2018-05-01
While the ground-state problem for the random-field Ising model is polynomial, and can be solved using a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new technique to analyze the breakup length of the random-field Potts model in two dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golosio, Bruno; Carpinelli, Massimo; Masala, Giovanni Luca
Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devotedmore » to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and other compact systems. In this work we describe a general method for the simulation of phase contrast imaging using polychromatic sources based on a spherical wave description of the beam and on a double-Gaussian model of the source focal spot, we discuss the validity of some possible approximations, and we test the simulations against experimental measurements using a microfocus x-ray tube on three types of polymers (nylon, poly-ethylene-terephthalate, and poly-methyl-methacrylate) at varying source-object distance. It will be shown that, as long as all experimental conditions are described accurately in the simulations, the described method yields results that are in good agreement with experimental measurements.« less
ERIC Educational Resources Information Center
Santoyo-Olsson, Jasmine; Cabrera, Julissa; Freyre, Rachel; Grossman, Melanie; Alvarez, Natalie; Mathur, Deepika; Guerrero, Maria; Delgadillo, Adriana T.; Kanaya, Alka M.; Stewart, Anita L.
2011-01-01
Purpose: To conduct and evaluate a two-phased community-based approach to recruit lower socioeconomic status, minority, or Spanish-speaking adults at risk of developing diabetes to a randomized trial of a lifestyle intervention program delivered by a public health department. Design: Within geographic areas comprising our target population, 4…
DNA-based random number generation in security circuitry.
Gearheart, Christy M; Arazi, Benjamin; Rouchka, Eric C
2010-06-01
DNA-based circuit design is an area of research in which traditional silicon-based technologies are replaced by naturally occurring phenomena taken from biochemistry and molecular biology. This research focuses on further developing DNA-based methodologies to mimic digital data manipulation. While exhibiting fundamental principles, this work was done in conjunction with the vision that DNA-based circuitry, when the technology matures, will form the basis for a tamper-proof security module, revolutionizing the meaning and concept of tamper-proofing and possibly preventing it altogether based on accurate scientific observations. A paramount part of such a solution would be self-generation of random numbers. A novel prototype schema employs solid phase synthesis of oligonucleotides for random construction of DNA sequences; temporary storage and retrieval is achieved through plasmid vectors. A discussion of how to evaluate sequence randomness is included, as well as how these techniques are applied to a simulation of the random number generation circuitry. Simulation results show generated sequences successfully pass three selected NIST random number generation tests specified for security applications.
Emoto, Akira; Fukuda, Takashi
2013-02-20
For Fourier transform holography, an effective random phase distribution with randomly displaced phase segments is proposed for obtaining a smooth finite optical intensity distribution in the Fourier transform plane. Since unitary phase segments are randomly distributed in-plane, the blanks give various spatial frequency components to an image, and thus smooth the spectrum. Moreover, by randomly changing the phase segment size, spike generation from the unitary phase segment size in the spectrum can be reduced significantly. As a result, a smooth spectrum including sidebands can be formed at a relatively narrow extent. The proposed phase distribution sustains the primary functions of a random phase mask for holographic-data recording and reconstruction. Therefore, this distribution is expected to find applications in high-density holographic memory systems, replacing conventional random phase mask patterns.
USDA-ARS?s Scientific Manuscript database
We tested the acceptability of three new lipid-based nutrient supplements (LNSs) in two independent phases among 18 8–12-month-old healthy rural Malawians and their caregivers. In phase 1, acceptability was assessed by offering three new LNSs in random order, and an LNS already determined to be acce...
Dynamical behaviors of inter-out-of-equilibrium state intervals in Korean futures exchange markets
NASA Astrophysics Data System (ADS)
Lim, Gyuchang; Kim, SooYong; Kim, Kyungsik; Lee, Dong-In; Scalas, Enrico
2008-05-01
A recently discovered feature of financial markets, the two-phase phenomenon, is utilized to categorize a financial time series into two phases, namely equilibrium and out-of-equilibrium states. For out-of-equilibrium states, we analyze the time intervals at which the state is revisited. The power-law distribution of inter-out-of-equilibrium state intervals is shown and we present an analogy with discrete-time heat bath dynamics, similar to random Ising systems. In the mean-field approximation, this model reduces to a one-dimensional multiplicative process. By varying global and local model parameters, the relevance between volatilities in financial markets and the interaction strengths between agents in the Ising model are investigated and discussed.
Chu, Hui-May; Ette, Ene I
2005-09-02
his study was performed to develop a new nonparametric approach for the estimation of robust tissue-to-plasma ratio from extremely sparsely sampled paired data (ie, one sample each from plasma and tissue per subject). Tissue-to-plasma ratio was estimated from paired/unpaired experimental data using independent time points approach, area under the curve (AUC) values calculated with the naïve data averaging approach, and AUC values calculated using sampling based approaches (eg, the pseudoprofile-based bootstrap [PpbB] approach and the random sampling approach [our proposed approach]). The random sampling approach involves the use of a 2-phase algorithm. The convergence of the sampling/resampling approaches was investigated, as well as the robustness of the estimates produced by different approaches. To evaluate the latter, new data sets were generated by introducing outlier(s) into the real data set. One to 2 concentration values were inflated by 10% to 40% from their original values to produce the outliers. Tissue-to-plasma ratios computed using the independent time points approach varied between 0 and 50 across time points. The ratio obtained from AUC values acquired using the naive data averaging approach was not associated with any measure of uncertainty or variability. Calculating the ratio without regard to pairing yielded poorer estimates. The random sampling and pseudoprofile-based bootstrap approaches yielded tissue-to-plasma ratios with uncertainty and variability. However, the random sampling approach, because of the 2-phase nature of its algorithm, yielded more robust estimates and required fewer replications. Therefore, a 2-phase random sampling approach is proposed for the robust estimation of tissue-to-plasma ratio from extremely sparsely sampled data.
Radiative heat transfer in strongly forward scattering media using the discrete ordinates method
NASA Astrophysics Data System (ADS)
Granate, Pedro; Coelho, Pedro J.; Roger, Maxime
2016-03-01
The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta-Eddington phase function and the transport approximation may perform poorly.
NASA Astrophysics Data System (ADS)
Doerr, Timothy P.; Alves, Gelio; Yu, Yi-Kuo
2005-08-01
Typical combinatorial optimizations are NP-hard; however, for a particular class of cost functions the corresponding combinatorial optimizations can be solved in polynomial time using the transfer matrix technique or, equivalently, the dynamic programming approach. This suggests a way to efficiently find approximate solutions-find a transformation that makes the cost function as similar as possible to that of the solvable class. After keeping many high-ranking solutions using the approximate cost function, one may then re-assess these solutions with the full cost function to find the best approximate solution. Under this approach, it is important to be able to assess the quality of the solutions obtained, e.g., by finding the true ranking of the kth best approximate solution when all possible solutions are considered exhaustively. To tackle this statistical issue, we provide a systematic method starting with a scaling function generated from the finite number of high-ranking solutions followed by a convergent iterative mapping. This method, useful in a variant of the directed paths in random media problem proposed here, can also provide a statistical significance assessment for one of the most important proteomic tasks-peptide sequencing using tandem mass spectrometry data. For directed paths in random media, the scaling function depends on the particular realization of randomness; in the mass spectrometry case, the scaling function is spectrum-specific.
ERIC Educational Resources Information Center
Neighbors, Clayton; Lee, Christine M.; Lewis, Melissa A.; Fossos, Nicole; Walter, Theresa
2009-01-01
This article presents an initial randomized controlled trial of an event-specific prevention intervention. Participants included 295 college students (41.69% male, 58.31% female) who intended to consume 2 or more drinks on their 21st birthday. Participants completed a screening/baseline assessment approximately 1 week before they turned 21 and…
Astigmatism in the Early Treatment for Retinopathy of Prematurity Study: findings to 3 years of age
Davitt, Bradley V.; Dobson, Velma; Quinn, Graham E.; Hardy, Robert J.; Tung, Betty; Good, William V.
2009-01-01
Purpose To examine the prevalence of astigmatism (≥ 1.00 diopter (D)) and high astigmatism (≥ 2.00 D) at 6 and 9 months post-term and 2 and 3 years postnatal, in preterm children with birth weight < 1251g who developed high-risk prethreshold retinopathy of prematurity (ROP) and participated in the Early Treatment for ROP (ETROP) Study. Design Randomized controlled clinical trial Participants 401 infants who developed prethreshold ROP in one or both eyes and were randomized after they were determined to have a high risk (≥ 15%) of poor structural outcome without treatment, using the RM-ROP2 risk management program. Refractive error was measured by cycloplegic retinoscopy. Eyes with additional retinal, glaucoma, or cataract surgery were excluded. Intervention Eyes were randomized to receive laser photocoagulation at high-risk prethreshold ROP (early treated (ET)) or to be conventionally managed (CM), receiving treatment only if threshold ROP developed. Main Outcome Measures Astigmatism and high astigmatism at each visit. Astigmatism was classified as “with-the rule” (75° – 105° (WTR)), “against-the-rule” (0° – 15° and 165° – 180° (ATR), or “oblique” (16° – 74° and 106° – 164° (OBL)). Results The prevalence of astigmatism in ET and CM eyes was similar at each test age. For both groups, there was an increase in prevalence of astigmatism from approximately 32% at 6 months to approximately 42% by 3 years, mostly occurring between 6 and 9 months. Among eyes that could be refracted, astigmatism was not influenced by zone of acute-phase ROP, presence of plus disease, or retinal residua of ROP. Eyes with astigmatism and high astigmatism most often had WTR astigmatism. Conclusions By age 3 years, nearly 43% of eyes treated at high-risk prethreshold ROP developed astigmatism ≥ 1.00 D and nearly 20% had astigmatism ≥ 2.00 D. Presence of astigmatism was not influenced by timing of treatment of acute-phase ROP, characteristics of acute-phase or cicatricial ROP. These findings reinforce the need for follow-up eye examinations in infants with high risk prethreshold ROP. PMID:19091409
A single-image method for x-ray refractive index CT.
Mittone, A; Gasilov, S; Brun, E; Bravin, A; Coan, P
2015-05-07
X-ray refraction-based computer tomography imaging is a well-established method for nondestructive investigations of various objects. In order to perform the 3D reconstruction of the index of refraction, two or more raw computed tomography phase-contrast images are usually acquired and combined to retrieve the refraction map (i.e. differential phase) signal within the sample. We suggest an approximate method to extract the refraction signal, which uses a single raw phase-contrast image. This method, here applied to analyzer-based phase-contrast imaging, is employed to retrieve the index of refraction map of a biological sample. The achieved accuracy in distinguishing the different tissues is comparable with the non-approximated approach. The suggested procedure can be used for precise refraction computer tomography with the advantage of a reduction of at least a factor of two of both the acquisition time and the dose delivered to the sample with respect to any of the other algorithms in the literature.
First-principles calculations on the four phases of BaTiO3.
Evarestov, Robert A; Bandura, Andrei V
2012-04-30
The calculations based on linear combination of atomic orbitals basis functions as implemented in CRYSTAL09 computer code have been performed for cubic, tetragonal, orthorhombic, and rhombohedral modifications of BaTiO(3) crystal. Structural and electronic properties as well as phonon frequencies were obtained using local density approximation, generalized gradient approximation, and hybrid exchange-correlation density functional theory (DFT) functionals for four stable phases of BaTiO(3). A comparison was made between the results of different DFT techniques. It is concluded that the hybrid PBE0 [J. P. Perdew, K. Burke, M. Ernzerhof, J. Chem. Phys. 1996, 105, 9982.] functional is able to predict correctly the structural stability and phonon properties both for cubic and ferroelectric phases of BaTiO(3). The comparative phonon symmetry analysis in BaTiO(3) four phases has been made basing on the site symmetry and irreducible representation indexes for the first time. Copyright © 2012 Wiley Periodicals, Inc.
Approximating natural connectivity of scale-free networks based on largest eigenvalue
NASA Astrophysics Data System (ADS)
Tan, S.-Y.; Wu, J.; Li, M.-J.; Lu, X.
2016-06-01
It has been recently proposed that natural connectivity can be used to efficiently characterize the robustness of complex networks. The natural connectivity has an intuitive physical meaning and a simple mathematical formulation, which corresponds to an average eigenvalue calculated from the graph spectrum. However, as a network model close to the real-world system that widely exists, the scale-free network is found difficult to obtain its spectrum analytically. In this article, we investigate the approximation of natural connectivity based on the largest eigenvalue in both random and correlated scale-free networks. It is demonstrated that the natural connectivity of scale-free networks can be dominated by the largest eigenvalue, which can be expressed asymptotically and analytically to approximate natural connectivity with small errors. Then we show that the natural connectivity of random scale-free networks increases linearly with the average degree given the scaling exponent and decreases monotonically with the scaling exponent given the average degree. Moreover, it is found that, given the degree distribution, the more assortative a scale-free network is, the more robust it is. Experiments in real networks validate our methods and results.
The impact of privacy protections on recruitment in a multicenter stroke genetics study
Chen, D.T.; Worrall, B.B.; Brown, R.D.; Brott, T.G.; Kissela, B.M.; Olson, T.S.; Rich, S.S.; Meschia, J.F.
2006-01-01
The authors reviewed the recruitment of stroke-affected sibling pairs using a letter-based, proband-initiated contact strategy. The authors randomly sampled 99 proband enrollment forms (Phase 1) and randomly sampled 50 sibling reply cards (Phase 2). The sibling response rate was 30.6%, for a pedigree response rate of 58%. Of the siblings who replied, 96% authorized further contact. Median time from proband enrollment to pedigree DNA banking, which required 3+ probands, was 134 days. PMID:15728301
NASA Astrophysics Data System (ADS)
Li, Xiayue; Curtis, Farren S.; Rose, Timothy; Schober, Christoph; Vazquez-Mayagoitia, Alvaro; Reuter, Karsten; Oberhofer, Harald; Marom, Noa
2018-06-01
We present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle. Genarris uses machine learning for clustering, based on a relative coordinate descriptor developed specifically for molecular crystals, which is shown to be robust in identifying packing motif similarity. In addition to random structure generation, Genarris offers three workflows based on different sequences of successive clustering and selection steps: the "Rigorous" workflow is an exhaustive exploration of the potential energy landscape, the "Energy" workflow produces a set of low energy structures, and the "Diverse" workflow produces a maximally diverse set of structures. The latter is recommended for generating initial populations for genetic algorithms. Here, the implementation of Genarris is reported and its application is demonstrated for three test cases.
Bounds on the conductivity of a suspension of random impenetrable spheres
NASA Astrophysics Data System (ADS)
Beasley, J. D.; Torquato, S.
1986-11-01
We compare the general Beran bounds on the effective electrical conductivity of a two-phase composite to the bounds derived by Torquato for the specific model of spheres distributed throughout a matrix phase. For the case of impenetrable spheres, these bounds are shown to be identical and to depend on the microstructure through the sphere volume fraction φ2 and a three-point parameter ζ2, which is an integral over a three-point correlation function. We evaluate ζ2 exactly through third order in φ2 for distributions of impenetrable spheres. This expansion is compared to the analogous results of Felderhof and of Torquato and Lado, all of whom employed the superposition approximation for the three-particle distribution function involved in ζ2. The results indicate that the exact ζ2 will be greater than the value calculated under the superposition approximation. For reasons of mathematical analogy, the results obtained here apply as well to the determination of the thermal conductivity, dielectric constant, and magnetic permeability of composite media and the diffusion coefficient of porous media.
Spin-flip isovector giant resonances from the 90Zr(n,p)90Y reaction at 198 MeV
NASA Astrophysics Data System (ADS)
Raywood, K. J.; Spicer, B. M.; Yen, S.; Long, S. A.; Moinester, M. A.; Abegg, R.; Alford, W. P.; Celler, A.; Drake, T. E.; Frekers, D.; Green, P. E.; Häusser, O.; Helmer, R. L.; Henderson, R. S.; Hicks, K. H.; Jackson, K. P.; Jeppesen, R. G.; King, J. D.; King, N. S.; Miller, C. A.; Officer, V. C.; Schubank, R.; Shute, G. G.; Vetterli, M.; Watson, J.; Yavin, A. I.
1990-06-01
Doubly differential cross sections of the reaction 90Zr(n,p)90Y have been measured at 198 MeV for excitations up to 38 MeV in the residual nucleus. An overall resolution of 1.3 MeV was achieved. The spectra show qualitative agreement in shape and magnitude with recent random phase approximation calculations; however, all of the calculations underestimate the high excitation region of the spectra. A multipole decomposition of the data has been performed using differential cross sections calculated in the distorted-wave impulse approximation. An estimate of the Gamow-Teller strength in the reaction is given. The isovector spin-flip dipole giant resonance has been identified and there is also an indication of isovector monopole strength.
Hexagonal boron nitride and water interaction parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu; Wagner, Lucas K.
2016-04-28
The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics andmore » ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.« less
NASA Astrophysics Data System (ADS)
Kono, Naoyuki; Miki, Masahiro; Nakamura, Motoyuki; Ehara, Kazuya
2007-03-01
Phased array techniques are capable of the sensitive detection and precise sizing of flaws or cracks in components of nuclear power plants by using arbitrary focal beams with various depths, positions and angles. Aquantitative investigation of these focal beams is essential for the optimization of array probes, especially for austenitic weld inspection, in order to improve the detectability, sizing accuracy, and signal-to-noise ratio using these beams. In the present work, focal beams generated by phased array probes are calculated based on the Fresnel-Kirchhoff diffraction integral (FKDI) method, and an approximation formula between the actual focal depth and optical focal depth is proposed as an extension of the theory for conventional spherically focusing probes. The validity of the approximation formula for the array probes is confirmed by a comparison with simulation data using the FKDI method, and the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yangzheng; Cohen, Ronald E.; Stackhouse, Stephen
2014-11-10
In this study, we have performed quantum Monte Carlo (QMC) simulations and density functional theory calculations to study the equations of state of MgSiO 3 perovskite (Pv, bridgmanite) and post-perovskite (PPv) up to the pressure and temperature conditions of the base of Earth's lower mantle. The ground-state energies were derived using QMC simulations and the temperature-dependent Helmholtz free energies were calculated within the quasiharmonic approximation and density functional perturbation theory. The equations of state for both phases of MgSiO 3 agree well with experiments, and better than those from generalized gradient approximation calculations. The Pv-PPv phase boundary calculated from ourmore » QMC equations of state is also consistent with experiments, and better than previous local density approximation calculations. Lastly, we discuss the implications for double crossing of the Pv-PPv boundary in the Earth.« less
Small-Tip-Angle Spokes Pulse Design Using Interleaved Greedy and Local Optimization Methods
Grissom, William A.; Khalighi, Mohammad-Mehdi; Sacolick, Laura I.; Rutt, Brian K.; Vogel, Mika W.
2013-01-01
Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods. PMID:22392822
Updated constraints on the light-neutrino exchange mechanisms of the 0νββ-decay
NASA Astrophysics Data System (ADS)
Štefánik, Dušan; Dvornický, Rastislav; Šimkovic, Fedor
2015-10-01
The neutrinoless double-beta (0νββ) decay associated with light neutrino exchange mechanisms, which are due to both left-handed V-A and right-handed V+A leptonic and hadronic currents, is discussed by using the recent progress achieved by the GERDA, EXO and KamlandZen experiments. The upper limits for effective neutrino mass mββ and the parameters <λ> and <η> characterizing the right handed current mechanisms are deduced from the data on the 0νββ-decay of 76Ge and 136Xe using nuclear matrix elements calculated within the nuclear shell model and quasiparticle random phase approximation and phase-space factors calculated with exact Dirac wave functions with finite nuclear size and electron screening. The careful analysis of upper constraints on effective lepton number violating parameters assumes a competition of the above mechanisms and arbitrary values of involved CP violating phases.
Directed intermittent search for a hidden target on a dendritic tree
NASA Astrophysics Data System (ADS)
Newby, Jay M.; Bressloff, Paul C.
2009-08-01
Motivated by experimental observations of active (motor-driven) intracellular transport in neuronal dendrites, we analyze a stochastic model of directed intermittent search on a tree network. A particle injected from the cell body or soma into the primary branch of the dendritic tree randomly switches between a stationary search phase and a mobile nonsearch phase that is biased in the forward direction. A (synaptic) target is presented somewhere within the tree, which the particle can locate if it is within a certain range and in the searching phase. We approximate the moment generating function using Green’s function methods. The moment generating function is then used to compute the hitting probability and conditional mean first passage time to the target. We show that in contrast to a previously explored finite interval case, there is a range of parameters for which a bidirectional search strategy is more efficient than a unidirectional one in finding the target.
MAGGIO, R; SIEKEVITZ, P; PALADE, G E
1963-08-01
This article describes a method for the isolation of nuclei from guinea pig liver. It involves the homogenization of the tissue in 0.88 M sucrose-1.5 mM CaCl(2) followed by centrifugation in a discontinuous density gradient in which the upper phase is the homogenate and the lower phase is 2.2 M sucrose-0.5 mM CaCl(2). Based on DNA recovery, the isolated fraction contains 25 to 30 per cent of the nuclei of the original homogenate. Electron microscopical observations showed that approximately 88 per cent of the isolated nuclei come from liver cells (the rest from von Kupffer cells and leucocytes) and that approximately 90 per cent of the nuclei appear intact, with well preserved nucleoli, nucleoplasm, nuclear envelope, and pores. Cytoplasmic contamination is minimal and consists primarily of the nuclear envelope and its attached ribosomes. The nuclear fraction consists of approximately 22.3 per cent DNA, approximately 4.7 per cent RNA, and approximately 73 per cent protein, the DNA/RNA ratio being 4.7. Data on RNA extractibility by phosphate and salt and on the base composition of total nuclear RNA are included.
Continuous phase and amplitude holographic elements
NASA Technical Reports Server (NTRS)
Maker, Paul D. (Inventor); Muller, Richard E. (Inventor)
1995-01-01
A method for producing a phase hologram using e-beam lithography provides n-ary levels of phase and amplitude by first producing an amplitude hologram on a transparent substrate by e-beam exposure of a resist over a film of metal by exposing n is less than or equal to m x m spots of an array of spots for each pixel, where the spots are randomly selected in proportion to the amplitude assigned to each pixel, and then after developing and etching the metal film producing a phase hologram by e-beam lithography using a low contrast resist, such as PMMA, and n-ary levels of low doses less than approximately 200 micro-C/sq cm and preferably in the range of 20-200 micro-C/sq cm, and aggressive development using pure acetone for an empirically determined time (about 6 s) controlled to within 1/10 s to produce partial development of each pixel in proportion to the n-ary level of dose assigned to it.
Optical properties of single and bilayer arsenene phases
NASA Astrophysics Data System (ADS)
Kecik, Deniz; Ciraci, Salim; Durgun, Engin
An extensive investigation of the optical properties of single-layer buckled and washboard arsenene and their bilayers was performed, starting from layered three-dimensional (3D) crystalline phase of arsenic using density functional and many-body perturbation theories combined with Random Phase Approximation. Electron-hole interactions were taken into account by solving the Bethe-Salpeter equation, suggesting first bound exciton energies on the order of 0.7 eV. Thus, many-body effects were found to be crucial for altering the optical properties of arsenene. The light absorption of single layer and bilayer arsenene structures in general falls within the visible-ultraviolet (UV) spectral regime. Moreover, directional anisotropy, varying the number of layers and applying homogeneous or uniaxial in-plane tensile strain were found to modify the optical properties of two-dimensional (2D) arsenene phases, which could be useful for diverse photovoltaic and optoelectronic applications. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No 115F088.
Autofocus algorithm for curvilinear SAR imaging
NASA Astrophysics Data System (ADS)
Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.
2012-05-01
We describe an approach to autofocusing for large apertures on curved SAR trajectories. It is a phase-gradient type method in which phase corrections compensating trajectory perturbations are estimated not directly from the image itself, but rather on the basis of partial" SAR data { functions of the slow and fast times { recon- structed (by an appropriate forward-projection procedure) from windowed scene patches, of sizes comparable to distances between distinct targets or localized features of the scene. The resulting partial data" can be shown to contain the same information on the phase perturbations as that in the original data, provided the frequencies of the perturbations do not exceed a quantity proportional to the patch size. The algorithm uses as input a sequence of conventional scene images based on moderate-size subapertures constituting the full aperture for which the phase corrections are to be determined. The subaperture images are formed with pixel sizes comparable to the range resolution which, for the optimal subaperture size, should be also approximately equal the cross-range resolution. The method does not restrict the size or shape of the synthetic aperture and can be incorporated in the data collection process in persistent sensing scenarios. The algorithm has been tested on the publicly available set of GOTCHA data, intentionally corrupted by random-walk-type trajectory uctuations (a possible model of errors caused by imprecise inertial navigation system readings) of maximum frequencies compatible with the selected patch size. It was able to eciently remove image corruption for apertures of sizes up to 360 degrees.
de la Matta-Martín, M; López-Herrera, D; Luis-Navarro, J C; López-Romero, J L
2014-02-01
We investigated how ventilation with low tidal volumes affects the pharmacokinetics of sevoflurane uptake during the first minutes of inhaled anaesthesia. Forty-eight patients scheduled for lung resection were randomly assigned to three groups. Patients in group 1, 2 and 3 received 3% sevoflurane for 3 min via face mask and controlled ventilation with a tidal volume of 2.2, 8 and 12 ml kg(-1), respectively (Phase 1). After tracheal intubation (Phase 2), 3% sevoflurane was supplied for 2 min using a tidal volume of 8 ml kg(-1) (Phase 3). End-tidal sevoflurane concentrations were significantly higher in group 1 at the end of phase 1 and lower at the end of phase 2 than in the other groups as follows: median of 2.5%, 2.2% and 2.3% in phase 1 for groups 1, 2 and 3, respectively (P<0.001); and 1.7%, 2.1% and 2.0% in phase 2, respectively (P<0.001). End-tidal carbon dioxide values in group 1 were significantly lower at the end of phase 1 and higher at the end of phase 2 than in the other groups as follows: median of 16.5, 31 and 29.5 mm Hg in phase 1 for groups 1, 2 and 3, respectively (P<0.001); and 46.2, 36 and 33.5 mm Hg in phase 2, respectively (P<0.001). When sevoflurane is administered with tidal volume approximating the airway dead space volume, end-tidal sevoflurane and end-tidal carbon dioxide may not correctly reflect the concentration of these gases in the alveoli, leading to misinterpretation of expired gas data. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.
Effective conductivity of suspensions of hard spheres by Brownian motion simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan Kim, I.; Torquato, S.
1991-02-15
A generalized Brownian motion simulation technique developed by Kim and Torquato (J. Appl. Phys. {bold 68}, 3892 (1990)) is applied to compute exactly'' the effective conductivity {sigma}{sub {ital e}} of heterogeneous media composed of regular and random distributions of hard spheres of conductivity {sigma}{sub 2} in a matrix of conductivity {sigma}{sub 1} for virtually the entire volume fraction range and for several values of the conductivity ratio {alpha}={sigma}{sub 2}/{sigma}{sub 1}, including superconducting spheres ({alpha}={infinity}) and perfectly insulating spheres ({alpha}=0). A key feature of the procedure is the use of {ital first}-{ital passage}-{ital time} equations in the two homogeneous phases andmore » at the two-phase interface. The method is shown to yield {sigma}{sub {ital e}} accurately with a comparatively fast execution time. The microstructure-sensitive analytical approximation of {sigma}{sub {ital e}} for dispersions derived by Torquato (J. Appl. Phys. {bold 58}, 3790 (1985)) is shown to be in excellent agreement with our data for random suspensions for the wide range of conditions reported here.« less
NASA Astrophysics Data System (ADS)
Meng, X. F.; Peng, X.; Cai, L. Z.; Li, A. M.; Gao, Z.; Wang, Y. R.
2009-08-01
A hybrid cryptosystem is proposed, in which one image is encrypted to two interferograms with the aid of double random-phase encoding (DRPE) and two-step phase-shifting interferometry (2-PSI), then three pairs of public-private keys are utilized to encode and decode the session keys (geometrical parameters, the second random-phase mask) and interferograms. In the stage of decryption, the ciphered image can be decrypted by wavefront reconstruction, inverse Fresnel diffraction, and real amplitude normalization. This approach can successfully solve the problem of key management and dispatch, resulting in increased security strength. The feasibility of the proposed cryptosystem and its robustness against some types of attack are verified and analyzed by computer simulations.
Postperovskite phase equilibria in the MgSiO3-Al2O3 system.
Tsuchiya, Jun; Tsuchiya, Taku
2008-12-09
We investigate high-P,T phase equilibria of the MgSiO(3)-Al(2)O(3) system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh(2)O(3)(II) phase, present calculations demonstrate that (i) dissolving Al(2)O(3) tends to decrease the postperovskite transition pressure of MgSiO(3) but the effect is not significant ( approximately -0.2 GPa/mol% Al(2)O(3)); (ii) Al(2)O(3) produces the narrow perovskite+postperovskite coexisting P,T area (approximately 1 GPa) for the pyrolitic concentration (x(Al2O3) approximately 6 mol%), which is sufficiently responsible to the deep-mantle D'' seismic discontinuity; (iii) the transition would be smeared (approximately 4 GPa) for the basaltic Al-rich composition (x(Al2O3) approximately 20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh(2)O(3)(II) with increasing the Al concentration involving small displacements of the Mg-site cations.
McClure, Foster D; Lee, Jung K
2012-01-01
The validation process for an analytical method usually employs an interlaboratory study conducted as a balanced completely randomized model involving a specified number of randomly chosen laboratories, each analyzing a specified number of randomly allocated replicates. For such studies, formulas to obtain approximate unbiased estimates of the variance and uncertainty of the sample laboratory-to-laboratory (lab-to-lab) STD (S(L)) have been developed primarily to account for the uncertainty of S(L) when there is a need to develop an uncertainty budget that includes the uncertainty of S(L). For the sake of completeness on this topic, formulas to estimate the variance and uncertainty of the sample lab-to-lab variance (S(L)2) were also developed. In some cases, it was necessary to derive the formulas based on an approximate distribution for S(L)2.
Relativistic effects in photoionization: Wigner time delay for the noble gases and IIB atoms
NASA Astrophysics Data System (ADS)
Banerjee, Sourav; Deshmukh, Pranawa; Dolmatov, Valeriy; Kheifets, Anatoli; Manson, Steven
2017-04-01
Time delay in atomic photoionization has been observed in several experiments, and various theoretical and experimental approaches are developing rapidly to obtain a better understanding of this phenomena. Theoretical methods that account for many body correlations include the relativistic random phase approximation (RRPA) and its non-relativistic analogue, RPAE. Calculations using RRPA are performed and the impact of relativistic interactions on Wigner time delay are explored via comparison of this result with RPAE results. In addition, results on Wigner time delay for Zn Cd and Hg are presented.
Angle-resolved Wigner time delay in atomic photoionization: The 4 d subshell of free and confined Xe
NASA Astrophysics Data System (ADS)
Mandal, A.; Deshmukh, P. C.; Kheifets, A. S.; Dolmatov, V. K.; Manson, S. T.
2017-11-01
The angular dependence of photoemission time delay for the inner n d3 /2 and n d5 /2 subshells of free and confined Xe is studied in the dipole relativistic random phase approximation. A finite spherical annular well potential is used to model the confinement due to fullerene C60 cage. Near cancellations in a variety of the dipole amplitudes, Cooper-like minima, are found. The effects of confinement on the angular dependence, primarily confinement resonances, are demonstrated and detailed.
Single-particle excitations in periodically modulated two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Kushwaha, Manvir S.
2008-06-01
A theoretical investigation is made of the plasmon excitations in a two-dimensional electron gas subjected to a one-dimensional periodic potential. We embark on the single-particle excitations within a two-subband model in the framework of Bohm-Pines’ random-phase approximation. For such an anisotropic system with spatially modulated charge density, we observe the existence of interesting esthetic necktie gaps that are found to center at the zone boundaries within the intersubband single-particle excitations. We discuss the dependence of the size of necktie gaps on the modulation potential.
Quantum chaos on a critical Fermi surface.
Patel, Aavishkar A; Sachdev, Subir
2017-02-21
We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of [Formula: see text] species of fermions at nonzero density coupled to a [Formula: see text] gauge field in two spatial dimensions and determine the Lyapunov rate and the butterfly velocity in an extended random-phase approximation. The thermal diffusivity is found to be universally related to these chaos parameters; i.e., the relationship is independent of [Formula: see text], the gauge-coupling constant, the Fermi velocity, the Fermi surface curvature, and high-energy details.
Variational method of determining effective moduli of polycrystals with tetragonal symmetry
Meister, R.; Peselnick, L.
1966-01-01
Variational principles have been applied to aggregates of randomly oriented pure-phase polycrystals having tetragonal symmetry. The bounds of the effective elastic moduli obtained in this way show a substantial improvement over the bounds obtained by means of the Voigt and Reuss assumptions. The Hill average is found to be a good approximation in most cases when compared to the bounds found from the variational method. The new bounds reduce in their limits to the Voigt and Reuss values. ?? 1966 The American Institute of Physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moller, Peter; Pereira, J; Hennrich, S
Measurements of the {beta}-decay properties of A {approx}< 110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory, at Michigan State University. {beta}-decay half-lives for {sup 105}Y, {sup 106,107}Zr and {sup 108,111}Mo, along with ,B-delayed neutron emission probabilities of 104Y, 109,11OMo and upper limits for 105Y, 103-107Zr and 108,111 Mo have been measured for the first time. Studies on the basis of the quasi-random phase approximation are used to analyze the ground-state deformation of these nuclei.
Implementation of a finite-amplitude method in a relativistic meson-exchange model
NASA Astrophysics Data System (ADS)
Sun, Xuwei; Lu, Dinghui
2017-08-01
The finite-amplitude method is a feasible numerical approach to large scale random phase approximation calculations. It avoids the storage and calculation of residual interaction elements as well as the diagonalization of the RPA matrix, which will be prohibitive when the configuration space is huge. In this work we finished the implementation of a finite-amplitude method in a relativistic meson exchange mean field model with axial symmetry. The direct variation approach makes our FAM scheme capable of being extended to the multipole excitation case.
Microscopic Lagrangian description of warm plasmas. III - Nonlinear wave-particle interaction
NASA Technical Reports Server (NTRS)
Galloway, J. J.; Crawford, F. W.
1977-01-01
The averaged-Lagrangian method is applied to nonlinear wave-particle interactions in an infinite, homogeneous, magnetic-field-free plasma. The specific example of Langmuir waves is considered, and the combined effects of four-wave interactions and wave-particle interactions are treated. It is demonstrated how the latter lead to diffusion in velocity space, and the quasilinear diffusion equation is derived. The analysis is generalized to the random phase approximation. The paper concludes with a summary of the method as applied in Parts 1-3 of the paper.
Triadic Gaze Intervention for Young Children with Physical Disabilities
Olswang, Lesley B.; Dowden, Patricia; Feuerstein, Julie; Greenslade, Kathryn; Pinder, Gay Lloyd; Fleming, Kandace
2018-01-01
Purpose This randomized controlled study investigated whether a supplemental treatment designed to teach triadic gaze (TG) as a signal of coordinated joint attention (CJA) would yield a significantly greater increase in TG in the experimental versus control group. Method Eighteen 10- to 24-month-old children with severe motor impairments were randomly assigned to an experimental (n=9) or control group (n=9). For approximately 29 sessions over 17 weeks, experimental participants received TG treatment twice weekly with a speech-language pathologist (SLP) in addition to standard practice. Controls received only standard practice from birth-to-three therapists. Coders masked to group assignment coded TG productions with an unfamiliar SLP at baseline, every three weeks during the experimental phase, and at the final measurement session. Results TG increased across groups from baseline to final measurement, with the experimental group showing slightly greater change. Performance trends were examined using experimental phase moving averages. Comparisons revealed significant differences between groups at two time points (at 12 weeks, r= .30, a medium effect and at the end of the phase r=.50, large effect). Conclusion Results suggest the promise of a short-term, focused treatment to teach TG as a behavioral manifestation of CJA to children with severe physical disabilities. PMID:24686825
Apker Award Recipient: Renormalization-Group Study of Helium Mixtures Immersed in a Porous Medium
NASA Astrophysics Data System (ADS)
Lopatnikova, Anna
1998-03-01
Superfluidity and phase separation in ^3He-^4He mixtures immersed in aerogel are studied by renormalization-group theory. Firstly, the theory is applied to jungle-gym (non-random) aerogel.(A. Lopatnikova and A.N. Berker, Phys. Rev. B 55, 3798 (1997).) This calculation is conducted via the coupled renormalization-group mappings of interactions near and away from aerogel. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfludity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. Secondly, the theory is applied to true aerogel, which has quenched disorder at both atomic and geometric levels.(A. Lopatnikova and A.N. Berker, Phys. Rev. B 56, 11865 (1997).) This calculation is conducted via the coupled renormalization-group mappings, near and away from aerogel, of quenched probability distributions of random interactions. Random-bond effects on superfluidity onset and random-field effects on superfluid phase separation are seen. The quenched randomness causes the λ line of second-order phase transitions of superfluidity onset to reach zero temperature, in agreement with general prediction and experiments. Based on these studies, the experimentally observed(S.B. Kim, J. Ma, and M.H.W. Chan, Phys. Rev. Lett. 71, 2268 (1993); N. Mulders and M.H.W. Chan, Phys. Rev. Lett. 75, 3705 (1995).) distinctive characteristics of ^3He-^4He mixtures in aerogel are related to the aerogel properties of connectivity, tenuousness, and atomic and geometric randomness.
Seymour, Lesley; Ivy, S. Percy; Sargent, Daniel; Spriggs, David; Baker, Laurence; Rubinstein, Larry; Ratain, Mark J; Le Blanc, Michael; Stewart, David; Crowley, John; Groshen, Susan; Humphrey, Jeffrey S; West, Pamela; Berry, Donald
2010-01-01
The optimal design of phase II studies continues to be the subject of vigorous debate, especially with regards to studies of newer molecularly targeted agents. The observations that many new therapeutics ‘fail’ in definitive phase III studies, coupled with the numbers of new agents to be tested as well as the increasing costs and complexity of clinical trials further emphasizes the critical importance of robust and efficient phase II design. The Clinical Trial Design Task Force(CTD-TF)of the NCI Investigational Drug Steering Committee (IDSC) has published a series of discussion papers on Phase II trial design in Clinical Cancer Research. The IDSC has developed formal recommendations regarding aspects of phase II trial design which are the subject of frequent debate such as endpoints(response vs. progression free survival), randomization(single arm designs vs. randomization), inclusion of biomarkers, biomarker based patient enrichment strategies, and statistical design(e.g. two stage designs vs. multiple-group adaptive designs). While these recommendations in general encourage the use of progression-free survival as the primary endpoint, the use of randomization, the inclusion of biomarkers and the incorporation of newer designs, we acknowledge that objective response as an endpoint, and single arm designs, remain relevant in certain situations. The design of any clinical trial should always be carefully evaluated and justified based on the characteristic specific to the situation. PMID:20215557
Role of fluctuations in random compressible systems at marginal dimensionality
NASA Astrophysics Data System (ADS)
Meissner, G.; Sasvári, L.; Tadić, B.
1986-07-01
In a unified treatment we have studied the role of fluctuations in uniaxial random systems at marginal dimensionality d*=4 with the n=1 component order parameter being coupled to elastic degrees of freedom. Depending on the ratio of the nonuniversal parameters of quenched disorder Δ0 and of elastic fluctuations v~0, a first- or second-order phase transition is found to occur, separated by a tricritical point. A complete account of critical properties and of macroscopic as well as of microscopic elastic stability is given for temperatures T>Tc. Universal singularities of thermodynamic functions are determined for t=(T-Tc)/Tc-->0 including the tricritical point: for v~0/Δ0>-2, they are the same as in a rigid random system; for v~0/Δ0=-2, they are different due to lattice compressibility being related, however, to the former by Fisher renormalization. Fluctuation corrections in one-loop approximation have been evaluated in a nonuniversal critical temperature range, tx<
An approximate generalized linear model with random effects for informative missing data.
Follmann, D; Wu, M
1995-03-01
This paper develops a class of models to deal with missing data from longitudinal studies. We assume that separate models for the primary response and missingness (e.g., number of missed visits) are linked by a common random parameter. Such models have been developed in the econometrics (Heckman, 1979, Econometrica 47, 153-161) and biostatistics (Wu and Carroll, 1988, Biometrics 44, 175-188) literature for a Gaussian primary response. We allow the primary response, conditional on the random parameter, to follow a generalized linear model and approximate the generalized linear model by conditioning on the data that describes missingness. The resultant approximation is a mixed generalized linear model with possibly heterogeneous random effects. An example is given to illustrate the approximate approach, and simulations are performed to critique the adequacy of the approximation for repeated binary data.
NASA Astrophysics Data System (ADS)
Zheng, Jing; Lu, Jiren; Peng, Suping; Jiang, Tianqi
2018-02-01
The conventional arrival pick-up algorithms cannot avoid the manual modification of the parameters for the simultaneous identification of multiple events under different signal-to-noise ratios (SNRs). Therefore, in order to automatically obtain the arrivals of multiple events with high precision under different SNRs, in this study an algorithm was proposed which had the ability to pick up the arrival of microseismic or acoustic emission events based on deep recurrent neural networks. The arrival identification was performed using two important steps, which included a training phase and a testing phase. The training process was mathematically modelled by deep recurrent neural networks using Long Short-Term Memory architecture. During the testing phase, the learned weights were utilized to identify the arrivals through the microseismic/acoustic emission data sets. The data sets were obtained by rock physics experiments of the acoustic emission. In order to obtain the data sets under different SNRs, this study added random noise to the raw experiments' data sets. The results showed that the outcome of the proposed method was able to attain an above 80 per cent hit-rate at SNR 0 dB, and an approximately 70 per cent hit-rate at SNR -5 dB, with an absolute error in 10 sampling points. These results indicated that the proposed method had high selection precision and robustness.
Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism
NASA Astrophysics Data System (ADS)
Beuerle, Matthias; Graf, Daniel; Schurkus, Henry F.; Ochsenfeld, Christian
2018-05-01
We present efficient methods to calculate beyond random phase approximation (RPA) correlation energies for molecular systems with up to 500 atoms. To reduce the computational cost, we employ the resolution-of-the-identity and a double-Laplace transform of the non-interacting polarization propagator in conjunction with an atomic orbital formalism. Further improvements are achieved using integral screening and the introduction of Cholesky decomposed densities. Our methods are applicable to the dielectric matrix formalism of RPA including second-order screened exchange (RPA-SOSEX), the RPA electron-hole time-dependent Hartree-Fock (RPA-eh-TDHF) approximation, and RPA renormalized perturbation theory using an approximate exchange kernel (RPA-AXK). We give an application of our methodology by presenting RPA-SOSEX benchmark results for the L7 test set of large, dispersion dominated molecules, yielding a mean absolute error below 1 kcal/mol. The present work enables calculating beyond RPA correlation energies for significantly larger molecules than possible to date, thereby extending the applicability of these methods to a wider range of chemical systems.
Stability phase diagram of a perpendicular magnetic tunnel junction in noncollinear geometry
NASA Astrophysics Data System (ADS)
Strelkov, N.; Timopheev, A.; Sousa, R. C.; Chshiev, M.; Buda-Prejbeanu, L. D.; Dieny, B.
2017-05-01
Experimental measurements performed on MgO-based perpendicular magnetic tunnel junctions show a strong dependence of the stability voltage-field diagrams as a function of the direction of the magnetic field with respect to the plane of the sample. When the magnetic field is applied in-plane, systematic nonlinear phase boundaries are observed for various lateral sizes. The simulation results based on the phenomenological Landau-Lifshitz-Gilbert equation including the in-plane and out-of-plane spin transfer torques are consistent with the measurements if a second-order anisotropy contribution is considered. Furthermore, performing the stability analysis in linear approximation allowed us to analytically extract the critical switching voltage at zero temperature in the presence of an in-plane field. This study indicates that in the noncollinear geometry investigations are suitable to detect the presence of the second-order term in the anisotropy. Such higher order anisotropy term can yield an easy-cone anisotropy which reduces the thermal stability factor but allows for more reproducible spin transfer torque switching due to a reduced stochasticity of the switching. As a result, the energy per write event decreases much faster than the thermal stability factor as the second-order anisotropy becomes more negative. Easy-cone anisotropy can be useful for fast-switching spin transfer torque magnetic random access memories provided the thermal stability can be maintained above the required value for a given memory specification.
Ramírez, J; Górriz, J M; Ortiz, A; Martínez-Murcia, F J; Segovia, F; Salas-Gonzalez, D; Castillo-Barnes, D; Illán, I A; Puntonet, C G
2018-05-15
Alzheimer's disease (AD) is the most common cause of dementia in the elderly and affects approximately 30 million individuals worldwide. Mild cognitive impairment (MCI) is very frequently a prodromal phase of AD, and existing studies have suggested that people with MCI tend to progress to AD at a rate of about 10-15% per year. However, the ability of clinicians and machine learning systems to predict AD based on MRI biomarkers at an early stage is still a challenging problem that can have a great impact in improving treatments. The proposed system, developed by the SiPBA-UGR team for this challenge, is based on feature standardization, ANOVA feature selection, partial least squares feature dimension reduction and an ensemble of One vs. Rest random forest classifiers. With the aim of improving its performance when discriminating healthy controls (HC) from MCI, a second binary classification level was introduced that reconsiders the HC and MCI predictions of the first level. The system was trained and evaluated on an ADNI datasets that consist of T1-weighted MRI morphological measurements from HC, stable MCI, converter MCI and AD subjects. The proposed system yields a 56.25% classification score on the test subset which consists of 160 real subjects. The classifier yielded the best performance when compared to: (i) One vs. One (OvO), One vs. Rest (OvR) and error correcting output codes (ECOC) as strategies for reducing the multiclass classification task to multiple binary classification problems, (ii) support vector machines, gradient boosting classifier and random forest as base binary classifiers, and (iii) bagging ensemble learning. A robust method has been proposed for the international challenge on MCI prediction based on MRI data. The system yielded the second best performance during the competition with an accuracy rate of 56.25% when evaluated on the real subjects of the test set. Copyright © 2017 Elsevier B.V. All rights reserved.
Swindle, Taren; Johnson, Susan L; Whiteside-Mansell, Leanne; Curran, Geoffrey M
2017-07-18
Despite the potential to reach at-risk children in childcare, there is a significant gap between current practices and evidence-based obesity prevention in this setting. There are few investigations of the impact of implementation strategies on the uptake of evidence-based practices (EBPs) for obesity prevention and nutrition promotion. This study protocol describes a three-phase approach to developing and testing implementation strategies to support uptake of EBPs for obesity prevention practices in childcare (i.e., key components of the WISE intervention). Informed by the i-PARIHS framework, we will use a stakeholder-driven evidence-based quality improvement (EBQI) process to apply information gathered in qualitative interviews on barriers and facilitators to practice to inform the design of implementation strategies. Then, a Hybrid Type III cluster randomized trial will compare a basic implementation strategy (i.e., intervention as usual) with an enhanced implementation strategy informed by stakeholders. All Head Start centers (N = 12) within one agency in an urban area in a southern state in the USA will be randomized to receive the basic or enhanced implementation with approximately 20 classrooms per group (40 educators, 400 children per group). The educators involved in the study, the data collectors, and the biostastician will be blinded to the study condition. The basic and enhanced implementation strategies will be compared on outcomes specified by the RE-AIM model (e.g., Reach to families, Effectiveness of impact on child diet and health indicators, Adoption commitment of agency, Implementation fidelity and acceptability, and Maintenance after 6 months). Principles of formative evaluation will be used throughout the hybrid trial. This study will test a stakeholder-driven approach to improve implementation, fidelity, and maintenance of EBPs for obesity prevention in childcare. Further, this study provides an example of a systematic process to develop and test a tailored, enhanced implementation strategy. ClinicalTrials.gov, NCT03075085.
A phase response curve to single bright light pulses in human subjects
NASA Technical Reports Server (NTRS)
Khalsa, Sat Bir S.; Jewett, Megan E.; Cajochen, Christian; Czeisler, Charles A.
2003-01-01
The circadian pacemaker is differentially sensitive to the resetting effects of retinal light exposure, depending upon the circadian phase at which the light exposure occurs. Previously reported human phase response curves (PRCs) to single bright light exposures have employed small sample sizes, and were often based on relatively imprecise estimates of circadian phase and phase resetting. In the present study, 21 healthy, entrained subjects underwent pre- and post-stimulus constant routines (CRs) in dim light (approximately 2-7 lx) with maintained wakefulness in a semi-recumbent posture. The 6.7 h bright light exposure stimulus consisted of alternating 6 min fixed gaze (approximately 10 000 lx) and free gaze (approximately 5000-9000 lx) exposures. Light exposures were scheduled across the circadian cycle in different subjects so as to derive a PRC. Plasma melatonin was used to determine the phase of the onset, offset, and midpoint of the melatonin profiles during the CRs. Phase shifts were calculated as the difference in phase between the pre- and post-stimulus CRs. The resultant PRC of the midpoint of the melatonin rhythm revealed a characteristic type 1 PRC with a significant peak-to-trough amplitude of 5.02 h. Phase delays occurred when the light stimulus was centred prior to the critical phase at the core body temperature minimum, phase advances occurred when the light stimulus was centred after the critical phase, and no phase shift occurred at the critical phase. During the subjective day, no prolonged 'dead zone' of photic insensitivity was apparent. Phase shifts derived using the melatonin onsets showed larger magnitudes than those derived from the melatonin offsets. These data provide a comprehensive characterization of the human PRC under highly controlled laboratory conditions.
Parent Reactions to a School-Based Body Mass Index Screening Program
ERIC Educational Resources Information Center
Johnson, Suzanne Bennett; Pilkington, Lorri L.; Lamp, Camilla; He, Jianghua; Deeb, Larry C.
2009-01-01
Background: This study assessed parent reactions to school-based body mass index (BMI) screening. Methods: After a K-8 BMI screening program, parents were sent a letter detailing their child's BMI results. Approximately 50 parents were randomly selected for interview from each of 4 child weight-classification groups (overweight, at risk of…
ERIC Educational Resources Information Center
Joice, Sara; Johnston, Marie; Bonetti, Debbie; Morrison, Val; MacWalter, Ron
2012-01-01
Objective: To report stroke survivors' experiences and perceived usefulness of an effective self-help workbook-based intervention. Design: A cross-sectional study involving the intervention group of an earlier randomized controlled trial. Setting: At the participants' homes approximately seven weeks post-hospital discharge. Method: Following the…
Introducing Perception and Modelling of Spatial Randomness in Classroom
ERIC Educational Resources Information Center
De Nóbrega, José Renato
2017-01-01
A strategy to facilitate understanding of spatial randomness is described, using student activities developed in sequence: looking at spatial patterns, simulating approximate spatial randomness using a grid of equally-likely squares, using binomial probabilities for approximations and predictions and then comparing with given Poisson…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauweloa, Kevin I., E-mail: Kauweloa@livemail.uthscsa.edu; Gutierrez, Alonso N.; Bergamo, Angelo
2014-07-15
Purpose: There is a growing interest in the radiation oncology community to use the biological effective dose (BED) rather than the physical dose (PD) in treatment plan evaluation and optimization due to its stronger correlation with radiobiological effects. Radiotherapy patients may receive treatments involving a single only phase or multiple phases (e.g., primary and boost). Since most treatment planning systems cannot calculate the analytical BED distribution in multiphase treatments, an approximate multiphase BED expression, which is based on the total physical dose distribution, has been used. The purpose of this paper is to reveal the mathematical properties of the approximatemore » BED formulation, relative to the true BED. Methods: The mathematical properties of the approximate multiphase BED equation are analyzed and evaluated. In order to better understand the accuracy of the approximate multiphase BED equation, the true multiphase BED equation was derived and the mathematical differences between the true and approximate multiphase BED equations were determined. The magnitude of its inaccuracies under common clinical circumstances was also studied. All calculations were performed on a voxel-by-voxel basis using the three-dimensional dose matrices. Results: Results showed that the approximate multiphase BED equation is accurate only when the dose-per-fractions (DPFs) in both the first and second phases are equal, which occur when the dose distribution does not significantly change between the phases. In the case of heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the inaccuracy of the approximate multiphase BED is greater. These characteristics are usually seen in the dose distributions being delivered to organs at risk rather than to targets. Conclusions: The finding of this study indicates that the true multiphase BED equation should be implemented in the treatment planning systems due to the inconsistent accuracy of the approximate multiphase BED equation in most of the clinical situations.« less
Linear-response time-dependent density-functional theory with pairing fields.
Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, L.; Okazaki, K.; Yoshida, T.
Here we have investigated the superconducting (SC) gap on hole Fermi surfaces (FSs) of optimally substituted Ba (Fe 0.65 Ru 0.35) 2 As 2 by angle-resolved photoemission spectroscopy (APRES) using bulk-sensitive 7 eV laser and synchrotron radiation. It was found that, whereas the gap is isotropic in the k x - k y plane, the gap magnitudes of two resolved hole FSs show similar k z dependences and decrease as k z approaches ~ 2 π/c (i.e., around the Z point), unlike the other Fe-based superconductors reported so far, where the SC gap of only one hole FS shows amore » strong k z dependence. This unique gap structure can be understood in the scenario that the d z₂ orbital character is mixed into both hole FSs due to finite spin-orbit coupling (SOC) and is reproduced by calculation within the random phase approximation including the SOC.« less
Liu, L.; Okazaki, K.; Yoshida, T.; ...
2017-03-06
Here we have investigated the superconducting (SC) gap on hole Fermi surfaces (FSs) of optimally substituted Ba (Fe 0.65 Ru 0.35) 2 As 2 by angle-resolved photoemission spectroscopy (APRES) using bulk-sensitive 7 eV laser and synchrotron radiation. It was found that, whereas the gap is isotropic in the k x - k y plane, the gap magnitudes of two resolved hole FSs show similar k z dependences and decrease as k z approaches ~ 2 π/c (i.e., around the Z point), unlike the other Fe-based superconductors reported so far, where the SC gap of only one hole FS shows amore » strong k z dependence. This unique gap structure can be understood in the scenario that the d z₂ orbital character is mixed into both hole FSs due to finite spin-orbit coupling (SOC) and is reproduced by calculation within the random phase approximation including the SOC.« less
Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel
2018-04-05
Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.
Using phase II data for the analysis of phase III studies: An application in rare diseases.
Wandel, Simon; Neuenschwander, Beat; Röver, Christian; Friede, Tim
2017-06-01
Clinical research and drug development in orphan diseases are challenging, since large-scale randomized studies are difficult to conduct. Formally synthesizing the evidence is therefore of great value, yet this is rarely done in the drug-approval process. Phase III designs that make better use of phase II data can facilitate drug development in orphan diseases. A Bayesian meta-analytic approach is used to inform the phase III study with phase II data. It is particularly attractive, since uncertainty of between-trial heterogeneity can be dealt with probabilistically, which is critical if the number of studies is small. Furthermore, it allows quantifying and discounting the phase II data through the predictive distribution relevant for phase III. A phase III design is proposed which uses the phase II data and considers approval based on a phase III interim analysis. The design is illustrated with a non-inferiority case study from a Food and Drug Administration approval in herpetic keratitis (an orphan disease). Design operating characteristics are compared to those of a traditional design, which ignores the phase II data. An analysis of the phase II data reveals good but insufficient evidence for non-inferiority, highlighting the need for a phase III study. For the phase III study supported by phase II data, the interim analysis is based on half of the patients. For this design, the meta-analytic interim results are conclusive and would justify approval. In contrast, based on the phase III data only, interim results are inconclusive and require further evidence. To accelerate drug development for orphan diseases, innovative study designs and appropriate methodology are needed. Taking advantage of randomized phase II data when analyzing phase III studies looks promising because the evidence from phase II supports informed decision-making. The implementation of the Bayesian design is straightforward with public software such as R.
Brown, Justin C.; Troxel, Andrea B.; Ky, Bonnie; Damjanov, Nevena; Zemel, Babette S.; Rickels, Michael R.; Rhim, Andrew D.; Rustgi, Anil K.; Courneya, Kerry S.; Schmitz, Kathryn H.
2016-01-01
Background Observational studies indicate that higher volumes of physical activity are associated with improved disease outcomes among colon cancer survivors. The aim of this report is to describe the purpose, study design, methods, and recruitment results of the COURAGE trial, a National Cancer Institute (NCI) sponsored, phase II, randomized, dose-response exercise trial among colon cancer survivors. Methods/Results The primary objective of the COURAGE trial is to quantify the feasibility, safety, and physiologic effects of low-dose (150 min·wk−1) and high-dose (300 min·wk−1) moderate-intensity aerobic exercise compared to usual-care control group over six months. The exercise groups are provided with in-home treadmills and heart rate monitors. Between January and July 2015, 1,433 letters were mailed using a population-based state cancer registry; 126 colon cancer survivors inquired about participation, and 39 were randomized onto the study protocol. Age was associated with inquiry about study participation (P<0.001) and randomization onto the study protocol (P<0.001). No other demographic, clinical, or geographic characteristics were associated with study inquiry or randomization. The final trial participant was randomized in August 2015. Six month endpoint data collection was completed in February 2016. Discussion The recruitment of colon cancer survivors into an exercise trial is feasible. The findings from this trial will inform key design aspects for future phase 2 and phase 3 randomized controlled trials to examine the efficacy of exercise to improve clinical outcomes among colon cancer survivors. PMID:26970181
Improving the frequency precision of oscillators by synchronization.
Cross, M C
2012-04-01
Improving the frequency precision by synchronizing a lattice of N oscillators with disparate frequencies is studied in the phase reduction limit. In the general case where the coupling is not purely dissipative the synchronized state consists of targetlike waves radiating from a local source, which is a region of higher-frequency oscillators. In this state the improvement of the frequency precision is shown to be independent of N for large N, but instead depends on the disorder and reflects the dependence of the frequency of the synchronized state on just those oscillators in the source region of the waves. These results are obtained by a mapping of the nonlinear phase dynamics onto the linear Anderson problem of the quantum mechanics of electrons on a random lattice in the tight-binding approximation.
Asteroid orbital inversion using uniform phase-space sampling
NASA Astrophysics Data System (ADS)
Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.
2014-07-01
We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in a set of virtual observations; second, corresponding virtual least-squares orbital elements are derived using the Nelder-Mead downhill simplex method; third, repeating the procedure two times allows for a computation of a difference for two sets of virtual orbital elements; and, fourth, this orbital-element difference constitutes a symmetric proposal in a random-walk Metropolis-Hastings algorithm, avoiding the explicit computation of the proposal p.d.f. In a discrete approximation, the allowed proposals coincide with the differences that are based on a large number of pre-computed sets of virtual least-squares orbital elements. The virtual-observation MCMC method is thus based on the characterization of the relevant volume in the orbital-element phase space. Here we utilize MCMC to map the phase-space domain of acceptable solutions. We can make use of the proposal p.d.f.s from the MCMC ranging and virtual-observation methods. The present phase-space mapping produces, upon convergence, a uniform sampling of the solution space within a pre-defined χ^2-value. The weights of the sampled orbital elements are then computed on the basis of the corresponding χ^2-values. The present method resembles the original ranging method. On one hand, MCMC mapping is insensitive to local extrema in the phase space and efficiently maps the solution space. This is somewhat contrary to the MCMC methods described above. On the other hand, MCMC mapping can suffer from producing a small number of sample elements with small χ^2-values, in resemblance to the original ranging method. We apply the methods to example near-Earth, main-belt, and transneptunian objects, and highlight the utilization of the methods in the data processing and analysis pipeline of the ESA Gaia space mission.
Rayleigh approximation to ground state of the Bose and Coulomb glasses
Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.
2015-01-01
Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties. PMID:25592417
Estimation of correlation functions by stochastic approximation.
NASA Technical Reports Server (NTRS)
Habibi, A.; Wintz, P. A.
1972-01-01
Consideration of the autocorrelation function of a zero-mean stationary random process. The techniques are applicable to processes with nonzero mean provided the mean is estimated first and subtracted. Two recursive techniques are proposed, both of which are based on the method of stochastic approximation and assume a functional form for the correlation function that depends on a number of parameters that are recursively estimated from successive records. One technique uses a standard point estimator of the correlation function to provide estimates of the parameters that minimize the mean-square error between the point estimates and the parametric function. The other technique provides estimates of the parameters that maximize a likelihood function relating the parameters of the function to the random process. Examples are presented.
Baird, Mark E
2003-10-01
The size, shape, and absorption coefficient of a microalgal cell determines, to a first order approximation, the rate at which light is absorbed by the cell. The rate of absorption determines the maximum amount of energy available for photosynthesis, and can be used to calculate the attenuation of light through the water column, including the effect of packaging pigments within discrete particles. In this paper, numerical approximations are made of the mean absorption cross-section of randomly oriented cells, aA. The shapes investigated are spheroids, rectangular prisms with a square base, cylinders, cones and double cones with aspect ratios of 0.25, 0.5, 1, 2, and 4. The results of the numerical simulations are fitted to a modified sigmoid curve, and take advantage of three analytical solutions. The results are presented in a non-dimensionalised format and are independent of size. A simple approximation using a rectangular hyperbolic curve is also given, and an approach for obtaining the upper and lower bounds of aA for more complex shapes is outlined.
NASA Astrophysics Data System (ADS)
Taher, Kazi Abu; Majumder, Satya Prasad
2017-12-01
A theoretical approach is presented to evaluate the bit error rate (BER) performance of an optical fiber transmission system with quadrature phase-shift keying (QPSK) modulation under the combined influence of polarization mode dispersion (PMD) and group velocity dispersion (GVD) in a single-mode fiber (SMF). The analysis is carried out without and with polarization division multiplexed (PDM) transmission considering a coherent homodyne receiver. The probability density function (pdf) of the random phase fluctuations due to PMD and GVD at the output of the receiver is determined analytically, considering the pdf of differential group delay (DGD) to be Maxwellian distribution and that of GVD to be Gaussian approximation. The exact pdf of the phase fluctuation due to PMD and GVD is also evaluated from its moments using a Monte Carlo simulation technique. Average BER is evaluated by averaging the conditional BER over the pdf of the random phase fluctuation. The BER performance results are evaluated for different system parameters. It is found that PDM-QPSK coherent homodyne system suffers more power penalty than the homodyne QPSK system without PDM. A PDM-QPSK system suffers a penalty of 4.3 dB whereas power penalty of QPSK system is 3.0 dB at a BER of 10-9 for DGD of 0.8 Tb and GVD of 1700 ps/nm. Analytical results are compared with the experimental results reported earlier and found to have good conformity.
Optical parametric oscillation in a random poly-crystalline medium: ZnSe ceramic
NASA Astrophysics Data System (ADS)
Ru, Qitian; Kawamori, Taiki; Lee, Nathaniel; Chen, Xuan; Zhong, Kai; Mirov, Mike; Vasilyev, Sergey; Mirov, Sergey B.; Vodopyanov, Konstantin L.
2018-02-01
We demonstrate an optical parametric oscillator (OPO) based on random phase matching in a polycrystalline χ(2) material, ZnSe. The subharmonic OPO utilized a 1.5-mm-long polished ZnSe ceramic sample placed at the Brewster's angle and was synchronously pumped by a Kerr-lens mode-locked Cr:ZnS laser with a central wavelength of 2.35 μm, a pulse duration of 62 fs, and a repetition frequency of 79 MHz. The OPO had a 90-mW pump threshold, and produced an ultrabroadband spectrum spanning 3-7.5 μm. The observed pump depletion was as high as 79%. The key to success in achieving the OPO action was choosing the average grain size of the ZnSe ceramic to be close to the coherence length ( 100 μm) for our 3-wave interaction. This is the first OPO that uses random polycrystalline material with quadratic nonlinearity and the first OPO based on ZnSe. Very likely, random phase matching in ZnSe and similar random polycrystalline materials (ZnS, CdS, CdSe, GaP) represents a viable route for generating few-cycle pulses and multi-octave frequency combs, thanks to a very broadband nonlinear response.
NASA Astrophysics Data System (ADS)
Klatt, Michael A.; Torquato, Salvatore
2018-01-01
In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.
High Frequency QPOs due to Black Hole Spin
NASA Technical Reports Server (NTRS)
Kazanas, Demos; Fukumura, K.
2009-01-01
We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.
Stability of Dirac Liquids with Strong Coulomb Interaction.
Tupitsyn, Igor S; Prokof'ev, Nikolay V
2017-01-13
We develop and apply the diagrammatic Monte Carlo technique to address the problem of the stability of the Dirac liquid state (in a graphene-type system) against the strong long-range part of the Coulomb interaction. So far, all attempts to deal with this problem in the field-theoretical framework were limited either to perturbative or random phase approximation and functional renormalization group treatments, with diametrically opposite conclusions. Our calculations aim at the approximation-free solution with controlled accuracy by computing vertex corrections from higher-order skeleton diagrams and establishing the renormalization group flow of the effective Coulomb coupling constant. We unambiguously show that with increasing the system size L (up to ln(L)∼40), the coupling constant always flows towards zero; i.e., the two-dimensional Dirac liquid is an asymptotically free T=0 state with divergent Fermi velocity.
Cooling without contact in bilayer dipolar Fermi gases
NASA Astrophysics Data System (ADS)
Tanatar, Bilal; Renklioglu, Basak; Oktel, M. Ozgur
2016-05-01
We consider two parallel layers of dipolar ultracold Fermi gases at different temperatures and calculate the heat transfer between them. The effective interactions describing screening and correlation effects between the dipoles in a single layer are modelled within the Euler-Lagrange Fermi-hypernetted chain approximation. The random-phase approximation is employed for the interactions across the layers. We investigate the amount of transferred power between the layers as a function of the temperature difference. Energy transfer proceeds via the long-range dipole-dipole interactions. A simple thermal model is developed to investigate the feasibility of using the contactless sympathetic cooling of the ultracold polar atoms/molecules. Our calculations indicate that dipolar heat transfer is effective for typical polar molecule experiments and may be utilized as a cooling process. Supported by TUBA and TUBITAK (112T974).
Targeting Prodromal Alzheimer Disease With Avagacestat: A Randomized Clinical Trial.
Coric, Vladimir; Salloway, Stephen; van Dyck, Christopher H; Dubois, Bruno; Andreasen, Niels; Brody, Mark; Curtis, Craig; Soininen, Hilkka; Thein, Stephen; Shiovitz, Thomas; Pilcher, Gary; Ferris, Steven; Colby, Susan; Kerselaers, Wendy; Dockens, Randy; Soares, Holly; Kaplita, Stephen; Luo, Feng; Pachai, Chahin; Bracoud, Luc; Mintun, Mark; Grill, Joshua D; Marek, Ken; Seibyl, John; Cedarbaum, Jesse M; Albright, Charles; Feldman, Howard H; Berman, Robert M
2015-11-01
Early identification of Alzheimer disease (AD) is important for clinical management and affords the opportunity to assess potential disease-modifying agents in clinical trials. To our knowledge, this is the first report of a randomized trial to prospectively enrich a study population with prodromal AD (PDAD) defined by cerebrospinal fluid (CSF) biomarker criteria and mild cognitive impairment (MCI) symptoms. To assess the safety of the γ-secretase inhibitor avagacestat in PDAD and to determine whether CSF biomarkers can identify this patient population prior to clinical diagnosis of dementia. A randomized, placebo-controlled phase 2 clinical trial with a parallel, untreated, nonrandomized observational cohort of CSF biomarker-negative participants was conducted May 26, 2009, to July 9, 2013, in a multicenter global population. Of 1358 outpatients screened, 263 met MCI and CSF biomarker criteria for randomization into the treatment phase. One hundred two observational cohort participants who met MCI criteria but were CSF biomarker-negative were observed during the same study period to evaluate biomarker assay sensitivity. Oral avagacestat or placebo daily. Safety and tolerability of avagacestat. Of the 263 participants in the treatment phase, 132 were randomized to avagacestat and 131 to placebo; an additional 102 participants were observed in an untreated observational cohort. Avagacestat was relatively well tolerated with low discontinuation rates (19.6%) at a dose of 50 mg/d, whereas the dose of 125 mg/d had higher discontinuation rates (43%), primarily attributable to gastrointestinal tract adverse events. Increases in nonmelanoma skin cancer and nonprogressive, reversible renal tubule effects were observed with avagacestat. Serious adverse event rates were higher with avagacestat (49 participants [37.1%]) vs placebo (31 [23.7%]), attributable to the higher incidence of nonmelanoma skin cancer. At 2 years, progression to dementia was more frequent in the PDAD cohort (30.7%) vs the observational cohort (6.5%). Brain atrophy rate in PDAD participants was approximately double that of the observational cohort. Concordance between abnormal amyloid burden on positron emission tomography and pathologic CSF was approximately 87% (κ = 0.68; 95% CI, 0.48-0.87). No significant treatment differences were observed in the avagacestat vs placebo arm in key clinical outcome measures. Avagacestat did not demonstrate efficacy and was associated with adverse dose-limiting effects. This PDAD population receiving avagacestat or placebo had higher rates of clinical progression to dementia and greater brain atrophy compared with CSF biomarker-negative participants. The CSF biomarkers and amyloid positron emission tomography imaging were correlated, suggesting that either modality could be used to confirm the presence of cerebral amyloidopathy and identify PDAD. clinicaltrials.gov Identifier: NCT00890890.
Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A
2008-10-01
A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.
In this paper, a screening model for flow of a nonaqueous phase liquid (NAPL) and associated chemical transport in the vadose zone is developed. he model is based on kinematic approximation of the governing equations for both the NAPL and a partitionable chemical constituent. he ...
Steimer, Andreas; Schindler, Kaspar
2015-01-01
Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon's implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike's preceding ISI. As we show, the EIF's exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron's ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational theories about UP states during slow wave sleep and present possible extensions of the model in the context of spike-frequency adaptation.
Multi-parameter fiber optic sensors based on fiber random grating
NASA Astrophysics Data System (ADS)
Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi
2017-04-01
Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.
Image encryption using random sequence generated from generalized information domain
NASA Astrophysics Data System (ADS)
Xia-Yan, Zhang; Guo-Ji, Zhang; Xuan, Li; Ya-Zhou, Ren; Jie-Hua, Wu
2016-05-01
A novel image encryption method based on the random sequence generated from the generalized information domain and permutation-diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security.
Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process
Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.
1998-04-28
Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.
Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process
Gschneidner, K.A. Jr.; Pecharsky, V.K.
1998-04-28
Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.
Wen, J. -J.; Koohpayeh, S. M.; Ross, K. A.; ...
2017-03-08
Inelastic neutron scattering reveals a broad continuum of excitations in Pr 2 Zr 2 O 7 , the temperature and magnetic field dependence of which indicate a continuous distribution of quenched transverse fields ( Δ ) acting on the non-Kramers Pr 3 + crystal field ground state doublets. Spin-ice correlations are apparent within 0.2 meV of the Zeeman energy. In a random phase approximation an excellent account of the data is provided and contains a transverse field distribution ρ ( Δ ) ∝ ( Δ 2 + Γ 2 ) - 1 , where Γ = 0.27 ( 1 )more » meV . Established during high temperature synthesis due to an underlying structural instability, it appears disorder in Pr 2 Zr 2 O 7 actually induces a quantum spin liquid.« less
Thase, Michael E.
2010-01-01
Background Major depressive disorder (MDD) is highly prevalent and associated with disability and chronicity. Although cognitive therapy (CT) is an effective short-term treatment for MDD, a significant proportion of responders subsequently suffer relapses or recurrences. Purpose This design prospectively evaluates: 1) a method to discriminate CT-treated responders at lower versus higher risk for relapse; and 2) the subsequent durability of 8-month continuation phase therapies in randomized higher risk responders followed for an additional 24-months. The primary prediction is: after protocol treatments are stopped, higher risk patients randomly assigned to continuation phase CT (C-CT) will have a lower risk of relapse/recurrence than those randomized to fluoxetine (FLX). Methods Outpatients, aged 18 to 70 years, with recurrent MDD received 12–14 weeks of CT provided by 15 experienced therapists from two sites. Responders (i.e., no MDD and 17-item Hamilton Rating Scale for Depression ≤ 12) were stratified into higher and lower risk groups based on stability of remission during the last 6 weeks of CT. The lower risk group entered follow-up for 32 months; the higher risk group was randomized to 8 months of continuation phase therapy with either C-CT or clinical management plus either double-blinded FLX or pill placebo. Following the continuation phase, higher risk patients were followed by blinded evaluators for 24 months. Results The trial began in 2000. Enrollment is complete (N=523). The follow-up continues. Conclusions The trial evaluates the preventive effects and durability of acute and continuation phase treatments in the largest known sample of CT responders collected worldwide. PMID:20451668
Lin, Hung-Yu; Flask, Chris A; Dale, Brian M; Duerk, Jeffrey L
2007-06-01
To investigate and evaluate a new rapid dark-blood vessel-wall imaging method using random bipolar gradients with a radial steady-state free precession (SSFP) acquisition in carotid applications. The carotid artery bifurcations of four asymptomatic volunteers (28-37 years old, mean age = 31 years) were included in this study. Dark-blood contrast was achieved through the use of random bipolar gradients applied prior to the signal acquisition of each radial projection in a balanced SSFP acquisition. The resulting phase variation for moving spins established significant destructive interference in the low-frequency region of k-space. This phase variation resulted in a net nulling of the signal from flowing spins, while the bipolar gradients had a minimal effect on the static spins. The net effect was that the regular SSFP signal amplitude (SA) in stationary tissues was preserved while dark-blood contrast was achieved for moving spins. In this implementation, application of the random bipolar gradient pulses along all three spatial directions nulled the signal from both in-plane and through-plane flow in phantom and in vivo studies. In vivo imaging trials confirmed that dark-blood contrast can be achieved with the radial random bipolar SSFP method, thereby substantially reversing the vessel-to-lumen contrast-to-noise ratio (CNR) of a conventional rectilinear SSFP "bright-blood" acquisition from bright blood to dark blood with only a modest increase in TR (approximately 4 msec) to accommodate the additional bipolar gradients. Overall, this sequence offers a simple and effective dark-blood contrast mechanism for high-SNR SSFP acquisitions in vessel wall imaging within a short acquisition time.
Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge
2014-07-14
The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.
NASA Astrophysics Data System (ADS)
Despoja, Vito; Djordjević, Tijana; Karbunar, Lazar; Radović, Ivan; Mišković, Zoran L.
2017-08-01
The propagator of a dynamically screened Coulomb interaction W in a sandwichlike structure consisting of two graphene layers separated by a slab of Al2O3 (or vacuum) is derived from single-layer graphene response functions and by using a local dielectric function for the bulk Al2O3 . The response function of graphene is obtained using two approaches within the random phase approximation (RPA): an ab initio method that includes all electronic bands in graphene and a computationally less demanding method based on the massless Dirac fermion (MDF) approximation for the low-energy excitations of electrons in the π bands. The propagator W is used to derive an expression for the effective dielectric function of our sandwich structure, which is relevant for the reflection electron energy loss spectroscopy of its surface. Focusing on the range of frequencies from THz to mid-infrared, special attention is paid to finding an accurate optical limit in the ab initio method, where the response function is expressed in terms of a frequency-dependent conductivity of graphene. It was shown that the optical limit suffices for describing hybridization between the Dirac plasmons in graphene layers and the Fuchs-Kliewer phonons in both surfaces of the Al2O3 slab, and that the spectra obtained from both the ab initio method and the MDF approximation in the optical limit agree perfectly well for wave numbers up to about 0.1 nm-1. Going beyond the optical limit, the agreement between the full ab initio method and the MDF approximation was found to extend to wave numbers up to about 0.3 nm-1 for doped graphene layers with the Fermi energy of 0.2 eV.
NASA Astrophysics Data System (ADS)
Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.
2018-01-01
Aims: We aim to perform a theoretical evaluation of the impact of the mass loss indetermination on asteroseismic grid based estimates of masses, radii, and ages of stars in the red giant branch (RGB) phase. Methods: We adopted the SCEPtER pipeline on a grid spanning the mass range [0.8; 1.8] M⊙. As observational constraints, we adopted the star effective temperatures, the metallicity [Fe/H], the average large frequency spacing Δν, and the frequency of maximum oscillation power νmax. The mass loss was modelled following a Reimers parametrization with the two different efficiencies η = 0.4 and η = 0.8. Results: In the RGB phase, the average random relative error (owing only to observational uncertainty) on mass and age estimates is about 8% and 30% respectively. The bias in mass and age estimates caused by the adoption of a wrong mass loss parameter in the recovery is minor for the vast majority of the RGB evolution. The biases get larger only after the RGB bump. In the last 2.5% of the RGB lifetime the error on the mass determination reaches 6.5% becoming larger than the random error component in this evolutionary phase. The error on the age estimate amounts to 9%, that is, equal to the random error uncertainty. These results are independent of the stellar metallicity [Fe/H] in the explored range. Conclusions: Asteroseismic-based estimates of stellar mass, radius, and age in the RGB phase can be considered mass loss independent within the range (η ∈ [0.0,0.8]) as long as the target is in an evolutionary phase preceding the RGB bump.
Feng, Shen; Wenhan, Jiang
2002-06-10
Phase-structure and aperture-averaged slope-correlated functions with a finite outer scale are derived based on the Taylor hypothesis and a generalized spectrum, such as the von Kármán modal. The effects of the finite outer scale on measuring and determining the character of atmospheric-turbulence statistics are shown especially for an approximately 4-m class telescope and subaperture. The phase structure function and atmospheric coherent length based on the Kolmogorov model are approximations of the formalism we have derived. The analysis shows that it cannot be determined whether the deviation from the power-law parameter of Kolmogorov turbulence is caused by real variations of the spectrum or by the effect of the finite outer scale.
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.
1998-01-01
The use of response surface models and kriging models are compared for approximating non-random, deterministic computer analyses. After discussing the traditional response surface approach for constructing polynomial models for approximation, kriging is presented as an alternative statistical-based approximation method for the design and analysis of computer experiments. Both approximation methods are applied to the multidisciplinary design and analysis of an aerospike nozzle which consists of a computational fluid dynamics model and a finite element analysis model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations. Four optimization problems are formulated and solved using both approximation models. While neither approximation technique consistently outperforms the other in this example, the kriging models using only a constant for the underlying global model and a Gaussian correlation function perform as well as the second order polynomial response surface models.
Approximating basins of attraction for dynamical systems via stable radial bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavoretto, R.; De Rossi, A.; Perracchione, E.
2016-06-08
In applied sciences it is often required to model and supervise temporal evolution of populations via dynamical systems. In this paper, we focus on the problem of approximating the basins of attraction of such models for each stable equilibrium point. We propose to reconstruct the basins via an implicit interpolant using stable radial bases, obtaining the surfaces by partitioning the phase space into disjoint regions. An application to a competition model presenting jointly three stable equilibria is considered.
Li, Guo; Rangel, Tonatiuh; Liu, Zhen -Fei; ...
2016-03-24
Using density functional theory (DFT) with van der Waals functionals, we calculate the adsorption energetics and geometry of benzenediamine (BDA) molecules on Au(111) surfaces. Our results demonstrate that the reported self-assembled linear chain structure of BDA, stabilized via hydrogen bonds between amine groups, is energetically favored over previously-studied monomeric phases. Moreover, using a model based on many-body perturbation theory within the GW approximation, we obtain approximate self-energy corrections to the DFT highest occupied molecular orbital (HOMO) energy associated with BDA adsorbate phases. As a result, we find that, independent of coverage, the HOMO energy of the linear chain phase ismore » lower relative to the Fermi energy than that of the monomer phase, and in good agreement with values measured with ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.« less
Inhibition of chaotic escape from a potential well by incommensurate escape-suppressing excitations.
Chacón, R; Martínez, J A
2002-03-01
Theoretical results are presented concerning the reduction of chaotic escape from a potential well by means of a harmonic parametric excitation that satisfies an ultrasubharmonic resonance condition with the escape-inducing excitation. The possibility of incommensurate escape-suppressing excitations is demonstrated by studying rational approximations to the irrational escape-suppressing frequency. The analytical predictions for the suitable amplitudes and initial phases of the escape-suppressing excitation are tested against numerical simulations based on a high-resolution grid of initial conditions. These numerical results indicate that the reduction of escape is reliably achieved for small amplitudes and at, and only at, the predicted initial phases. For the case of irrational escape-suppressing frequencies, the effective escape-reducing initial phases are found to lie close to the accumulation points of the set of suitable initial phases that are associated with the complete series of convergents up to the convergent giving the chosen rational approximation.
Atomic structure of a decagonal Al-Pd-Mn phase
NASA Astrophysics Data System (ADS)
Mihalkovič, Marek; Roth, Johannes; Trebin, Hans-Rainer
2017-12-01
We present a detailed structure solution for the 16 -Å decagonal quasicrystal in the Al-Pd-Mn system by means of cluster decoration and ab initio energy minimization. It is based on structure models of the ɛ and other approximant phases. The ɛ phases can be represented as subsets of a hexagon-boat-star (HBS) tiling. The decagonal phase comprises further HBS tiles. We have constructed several fictitious HBS approximants and optimized their structures individually. All tiles are decorated by two types of atomic clusters: the pseudo-Mackay icosahedron (PMI) and the large bicapped pentagonal prism (LBPP). It turns out that, whereas the PMI clusters can be kept essentially unchanged, the LBPP clusters must be adjusted in occupancy with Al atoms depending on their positions in the various tiles. In this way we obtain cluster decorations for all tiles of the decagonal quasicrystal. The calculations were confirmed by evaluation of an effective tile Hamiltonian.
Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun
1996-01-01
In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.
Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael; ...
2016-12-01
Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael
Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less
Gao, Jennifer J; Tan, Ming; Pohlmann, Paula R; Swain, Sandra M
2017-02-01
Approximately 40% to 80% of patients receiving pertuzumab-directed therapy for human epidermal growth factor receptor 2 (HER2)-positive breast cancer will develop chemotherapy-induced diarrhea (CID). Loperamide and octreotide are frequently used to treat CID after diarrhea occurs, but neither is used prophylactically or targets the underlying mechanism. Previous studies suggest blocking epidermal growth factor receptor may cause excess chloride secretion, resulting in diarrhea. Crofelemer is derived from the red latex of the Croton lechleri tree, blocks gastrointestinal cystic fibrosis transmembrane regulator and calcium-activated chloride channels, and is U.S. Food and Drug Administration approved for relief of diarrhea in HIV/AIDS patients on anti-retroviral therapy. Crofelemer is not systemically absorbed, has relatively few side effects, and presents a targeted approach at preventing CID in patients receiving pertuzumab-based therapy. HALT-D (DiarrHeA Prevention and ProphyLaxis with Crofelemer in HER2-Positive Breast Cancer Patients Receiving Trastuzumab, Pertuzumab, and Docetaxel or Paclitaxel with or without Carboplatin, NCT02910219) is a phase II, randomized, open-label trial that aims to recruit 46 patients from 3 MedStar sites. Adults with HER2-positive breast cancer being treated with trastuzumab, pertuzumab, and docetaxel or paclitaxel (THP) or trastuzumab, pertuzumab, docetaxel, and carboplatin (TCHP) will be randomized to receive crofelemer or no medication for diarrhea prophylaxis. The primary endpoint is incidence of all grade diarrhea for ≥ 2 consecutive days during cycles 1 to 2 of THP or TCHP. Secondary endpoints include overall incidence, duration, and severity of diarrhea; time to onset of diarrhea; use of other anti-diarrheal medications; stool frequency and consistency; and quality of life. HALT-D will provide important information about the feasibility and tolerability of crofelemer in preventing diarrhea for patients receiving THP or TCHP. Copyright © 2016 Elsevier Inc. All rights reserved.
Ga-doped indium oxide nanowire phase change random access memory cells
NASA Astrophysics Data System (ADS)
Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo
2014-02-01
Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, M.; Singh, B.; Abriola, D.
2014-06-01
After a comprehensive compilation and evaluation of beta-delayed neutron (β -n) emission probabilities, P n, and associated half-lives for A ≤ 72 nuclei has been performed for the first time. The recommended values have been used to analyze the systematics of β -nemission in this region. The ratio P n/T 1/2 is better correlated with the Q-value of the β -n decay mode than the previously proposed Kratz-Herrmann Formula (KHF). Moreover, the recommended values are also compared with theoretical quasi-particle random phase approximation (QRPA) calculations.
Peselnick, L.; Meister, R.
1965-01-01
Variational principles of anisotropic elasticity have been applied to aggregates of randomly oriented pure-phase polycrystals having hexagonal symmetry and trigonal symmetry. The bounds of the effective elastic moduli obtained in this way show a considerable improvement over the bounds obtained by means of the Voigt and Reuss assumptions. The Hill average is found to be in most cases a good approximation when compared to the bounds found from the variational method. The new bounds reduce in their limits to the Voigt and Reuss values. ?? 1965 The American Institute of Physics.
Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization
NASA Astrophysics Data System (ADS)
Dan, Nguyen Trung; Bechstedt, F.
1996-02-01
We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.
Time-dependent Gutzwiller theory of magnetic excitations in the Hubbard model
NASA Astrophysics Data System (ADS)
Seibold, G.; Becca, F.; Rubin, P.; Lorenzana, J.
2004-04-01
We use a spin-rotational invariant Gutzwiller energy functional to compute random-phase-approximation-like (RPA) fluctuations on top of the Gutzwiller approximation (GA). The method can be viewed as an extension of the previously developed GA+RPA approach for the charge sector [G. Seibold and J. Lorenzana, Phys. Rev. Lett. 86, 2605 (2001)] with respect to the inclusion of the magnetic excitations. Unlike the charge case, no assumptions about the time evolution of the double occupancy are needed in this case. Interestingly, in a spin-rotational invariant system, we find the correct degeneracy between triplet excitations, showing the consistency of both computations. Since no restrictions are imposed on the symmetry of the underlying saddle-point solution, our approach is suitable for the evaluation of the magnetic susceptibility and dynamical structure factor in strongly correlated inhomogeneous systems. We present a detailed study of the quality of our approach by comparing with exact diagonalization results and show its much higher accuracy compared to the conventional Hartree-Fock+RPA theory. In infinite dimensions, where the GA becomes exact for the Gutzwiller variational energy, we evaluate ferromagnetic and antiferromagnetic instabilities from the transverse magnetic susceptibility. The resulting phase diagram is in complete agreement with previous variational computations.
Analytical approximations to the Hotelling trace for digital x-ray detectors
NASA Astrophysics Data System (ADS)
Clarkson, Eric; Pineda, Angel R.; Barrett, Harrison H.
2001-06-01
The Hotelling trace is the signal-to-noise ratio for the ideal linear observer in a detection task. We provide an analytical approximation for this figure of merit when the signal is known exactly and the background is generated by a stationary random process, and the imaging system is an ideal digital x-ray detector. This approximation is based on assuming that the detector is infinite in extent. We test this approximation for finite-size detectors by comparing it to exact calculations using matrix inversion of the data covariance matrix. After verifying the validity of the approximation under a variety of circumstances, we use it to generate plots of the Hotelling trace as a function of pairs of parameters of the system, the signal and the background.
Normal and compound poisson approximations for pattern occurrences in NGS reads.
Zhai, Zhiyuan; Reinert, Gesine; Song, Kai; Waterman, Michael S; Luan, Yihui; Sun, Fengzhu
2012-06-01
Next generation sequencing (NGS) technologies are now widely used in many biological studies. In NGS, sequence reads are randomly sampled from the genome sequence of interest. Most computational approaches for NGS data first map the reads to the genome and then analyze the data based on the mapped reads. Since many organisms have unknown genome sequences and many reads cannot be uniquely mapped to the genomes even if the genome sequences are known, alternative analytical methods are needed for the study of NGS data. Here we suggest using word patterns to analyze NGS data. Word pattern counting (the study of the probabilistic distribution of the number of occurrences of word patterns in one or multiple long sequences) has played an important role in molecular sequence analysis. However, no studies are available on the distribution of the number of occurrences of word patterns in NGS reads. In this article, we build probabilistic models for the background sequence and the sampling process of the sequence reads from the genome. Based on the models, we provide normal and compound Poisson approximations for the number of occurrences of word patterns from the sequence reads, with bounds on the approximation error. The main challenge is to consider the randomness in generating the long background sequence, as well as in the sampling of the reads using NGS. We show the accuracy of these approximations under a variety of conditions for different patterns with various characteristics. Under realistic assumptions, the compound Poisson approximation seems to outperform the normal approximation in most situations. These approximate distributions can be used to evaluate the statistical significance of the occurrence of patterns from NGS data. The theory and the computational algorithm for calculating the approximate distributions are then used to analyze ChIP-Seq data using transcription factor GABP. Software is available online (www-rcf.usc.edu/∼fsun/Programs/NGS_motif_power/NGS_motif_power.html). In addition, Supplementary Material can be found online (www.liebertonline.com/cmb).
Hamiltonian Monte Carlo acceleration using surrogate functions with random bases.
Zhang, Cheng; Shahbaba, Babak; Zhao, Hongkai
2017-11-01
For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov chain Monte Carlo methods, namely, Hamiltonian Monte Carlo. The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the-art methods.
Bao, Yijun; Gaylord, Thomas K
2016-11-01
Multifilter phase imaging with partially coherent light (MFPI-PC) is a promising new quantitative phase imaging method. However, the existing MFPI-PC method is based on the paraxial approximation. In the present work, an analytical nonparaxial partially coherent phase optical transfer function is derived. This enables the MFPI-PC to be extended to the realistic nonparaxial case. Simulations over a wide range of test phase objects as well as experimental measurements on a microlens array verify higher levels of imaging accuracy compared to the paraxial method. Unlike the paraxial version, the nonparaxial MFPI-PC with obliquity factor correction exhibits no systematic error. In addition, due to its analytical expression, the increase in computation time compared to the paraxial version is negligible.
In this paper, a screening model for flow of a nonaqueous phase liquid (NAPL) and associated chemical transport in the vadose zone is developed. The model is based on kinematic approximation of the governing equations for both the NAPL and a partitionable chemical constituent. Th...
NASA Astrophysics Data System (ADS)
Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli
2015-12-01
A color image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and two-coupled logistic map in gyrator transform domain. First, the color plaintext image is decomposed into red, green and blue components, which are scrambled individually by three random sequences generated by using the two-dimensional Sine logistic modulation map. Second, each scrambled component is encrypted into a real-valued function with stationary white noise distribution in the iterative amplitude-phase retrieval process in the gyrator transform domain, and then three obtained functions are considered as red, green and blue channels to form the color ciphertext image. Obviously, the ciphertext image is real-valued function and more convenient for storing and transmitting. In the encryption and decryption processes, the chaotic random phase mask generated based on logistic map is employed as the phase key, which means that only the initial values are used as private key and the cryptosystem has high convenience on key management. Meanwhile, the security of the cryptosystem is enhanced greatly because of high sensitivity of the private keys. Simulation results are presented to prove the security and robustness of the proposed scheme.
Rayleigh approximation to ground state of the Bose and Coulomb glasses
Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; ...
2015-01-16
Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Ourmore » findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.« less
Müller, Eike H.; Scheichl, Rob; Shardlow, Tony
2015-01-01
This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy. PMID:27547075
Müller, Eike H; Scheichl, Rob; Shardlow, Tony
2015-04-08
This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.
Inauen, Jennifer; Mosler, Hans-Joachim
2016-01-01
Theory-based interventions can enhance people's safe water consumption, but the sustainability of these interventions and the mechanisms of maintenance remain unclear. We investigated these questions based on an extended theory of planned behaviour. Seven hundred and ten (445 analysed) randomly selected households participated in two cluster-randomised controlled trials in Bangladesh. Study 1 promoted switching to neighbours' arsenic-safe wells, and Study 2 promoted switching to arsenic-safe deep wells. Both studies included two intervention phases. Structured interviews were conducted at baseline (T1), and at 1-month (T2), 2-month (T3) and 9-month (T4) follow-ups. In intervention phase 1 (between T1 and T2), commitment-based behaviour change techniques--reminders, implementation intentions and public commitment--were combined with information and compared to an information-only control group. In phase 2 (between T2 and T3), half of each phase 1 intervention group was randomly assigned to receive either commitment-based techniques once more or coping planning with reminders and information. Initial well-switching rates of up to 60% significantly declined by T4: 38.3% of T2 safe water users stopped consuming arsenic-safe water. The decline depended on the intervention. Perceived behavioural control, intentions, commitment strength and coping planning were associated with maintenance. In line with previous studies, the results indicate that commitment and reminders engender long-term behavioural change.
Pérol, Maurice; Ciuleanu, Tudor-Eliade; Arrieta, Oscar; Prabhash, Kumar; Syrigos, Konstantinos N; Goksel, Tuncay; Park, Keunchil; Kowalyszyn, Ruben Dario; Pikiel, Joanna; Lewanski, Conrad R; Thomas, Michael; Dakhil, Shaker; Kim, Joo-Hang; Karaseva, Nina; Yurasov, Sergey; Zimmermann, Annamaria; Lee, Pablo; Carter, Gebra Cuyun; Reck, Martin; Cappuzzo, Federico; Garon, Edward B
2016-03-01
REVEL demonstrated that ramucirumab+docetaxel (RAM+DTX) improved overall survival, progression-free survival, and objective response rate in patients with advanced/metastatic non-small cell lung cancer with progression after platinum-based chemotherapy. This analysis examined quality of life (QoL) as assessed by the Lung Cancer Symptom Scale (LCSS) and clinician-reported functional status. The LCSS includes 6 symptom and 3 global items measured on a 0-100-mm scale; higher scores represent greater symptom burden. LCSS and ECOG PS data were collected at baseline, every 3-week cycle, the summary visit, and at the 30-day follow-up. LCSS total score and Average Symptom Burden Index (ASBI) were calculated. The primary analysis compared time to deterioration (TtD) between treatment arms for all individual items and summary scores, defined as increase from baseline by ≥ 15 mm using the Kaplan-Meier method and Cox regression. TtD to ECOG PS ≥ 2 was analyzed. There were 1253 patients randomized to receive RAM+DTX or placebo+docetaxel (PL+DTX). Across all assessments, LCSS compliance was approximately 75% and balanced across arms. The mean (SD) baseline LCSS total score was 27.3mm (17.08 mm) on RAM+DTX and 29.6mm (17.59 mm) on PL+DTX. At 30-day follow-up, mean (SD) LCSS total score was 32.0 (19.03) on RAM+DTX and 32.5 (19.87) on PL+DTX. The TtD for all LCSS scores was similar between treatment arms. Stratified HRs (95% CI) for LCSS total score and ASBI were HR=0.99 (0.81, 1.22), p=0.932 and HR=0.93 (0.75, 1.15), p=0.514 with approximately 70% of patients censored. TtD to PS ≥ 2 was similar between treatment arms (HR=1.03 [95% CI: 0.85, 1.26], p=0.743) with approximately two-thirds of the patients censored. In addition to improvement of clinical efficacy outcomes demonstrated in REVEL, these results suggest that adding ramucirumab to docetaxel did not impair patient QoL, symptoms, or functioning. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
In-line phase shift tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.
2013-08-15
Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 16074–16089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 μm. The digital detector uses CsI/CMOS withmore » a pixel size of 50 × 50 μm. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a ±25° arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (−1600 rad vs −2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.« less
McCormick, Beryl
2012-09-01
This article provides an update of recent progress using partial breast irradiation (PBI) for the treatment of early-stage breast cancer, rather than whole breast radiotherapy (WBRT), which is the standard of care. Several large, prospective, randomized trials are nearing target accrual or have been completed, including the NSABP/RTOG trial, the Milan-based intraoperative radiation trial, and the international TARGIT trial, and the status of each is discussed. The American Society for Radiation Oncology has also published a consensus statement to guide the use of PBI until some of the phase III trials are more mature. Finally, several articles have appeared recently, reporting unexpected adverse effects of PBI in small series, and this information is reviewed. Several recent prospective trials of WBRT are also discussed, with the theme of comparing the standard 25 fractions to a shortened, hypofractionated trial arm delivering equivalent doses of WBRT in approximately 15 treatments, another radiation strategy for a shortened course of treatment after breast-conserving surgery.
Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.
Venturi, D; Karniadakis, G E
2014-06-08
Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima-Zwanzig-Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection-reaction problems.
Excitations in a spin-polarized two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Kreil, Dominik; Hobbiger, Raphael; Drachta, Jürgen T.; Böhm, Helga M.
2015-11-01
A remarkably long-lived spin plasmon may exist in two-dimensional electron liquids with imbalanced spin-up and spin-down population. The predictions for this interesting mode by Agarwal et al. [Phys. Rev. B 90, 155409 (2014), 10.1103/PhysRevB.90.155409] are based on the random phase approximation. Here, we show how to account for spin-dependent correlations from known ground-state pair correlation functions and study the consequences on the various spin-dependent longitudinal response functions. The spin-plasmon dispersion relation and its critical wave vector for Landau damping by minority spins turn out to be significantly lower. We further demonstrate that spin-dependent effective interactions imply a rich structure in the excitation spectrum of the partially spin-polarized system. Most notably, we find a "magnetic antiresonance," where the imaginary part of both, the spin-spin as well as the density-spin response function vanish. The resulting minimum in the double-differential cross section is awaiting experimental confirmation.
A theory of Jovian decameter radiation
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Sharma, R. R.; Papadopoulos, K.; Ben-Ari, M.; Eviatar, A.
1983-01-01
A theory of the Jovian decameter radiation is presented based on the assumed existence of beams of energetic electrons in the inner Jovian magnetosphere. Beam-like electron distributions are shown to be unstable to the growth of both upper hybrid and lower hybrid electrostatic waves. The upconversion of these waves to fast extraordinary mode electromagnetic radiation is calculated by using a fluid model. Two possibilities are considered. First, a random phase approximation is made which leads to a very conservative estimate of intensity that can be expected in decameter radiation. The alternative possibility is also considered, viz, that the upconversion process is coherent. A comparison of both processes suggests that an incoherent interaction may be adequate to account for the observed intensity of decametric radiation, except perhaps near the peak of the spectrum (8 MHz). The coherent process is intrinsically more efficient and can easily produce the observed intensity near 8 MHz if only 0.01% of the energy in the beam is converted to electrostatic energy.
Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties
Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres
2016-01-01
We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161
NASA Astrophysics Data System (ADS)
Watanabe, H.; Zhang, G. X.; Yoshida, K.; Walker, P. M.; Liu, J. J.; Wu, J.; Regan, P. H.; Söderström, P.-A.; Kanaoka, H.; Korkulu, Z.; Lee, P. S.; Nishimura, S.; Yagi, A.; Ahn, D. S.; Alharbi, T.; Baba, H.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Doornenbal, P.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kanaya, S.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lane, G. J.; Lee, C. S.; Lee, E. J.; Lorusso, G.; Lotay, G.; Moon, C.-B.; Nishizuka, I.; Nita, C. R.; Odahara, A.; Patel, Z.; Phong, V. H.; Podolyák, Zs.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Shand, C. M.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Valiente-Dóbon, J. J.; Xu, Z. Y.
2016-09-01
The level structure of 172Dy has been investigated for the first time by means of decay spectroscopy following in-flight fission of a 238U beam. A long-lived isomeric state with T1/2 = 0.71 (5) s and Kπ =8- has been identified at 1278 keV, which decays to the ground-state and γ-vibrational bands through hindered electromagnetic transitions, as well as to the daughter nucleus 172Ho via allowed β decays. The robust nature of the Kπ =8- isomer and the ground-state rotational band reveals an axially-symmetric structure for this nucleus. Meanwhile, the γ-vibrational levels have been identified at unusually low excitation energy compared to the neighboring well-deformed nuclei, indicating the significance of the microscopic effect on the non-axial collectivity in this doubly mid-shell region. The underlying mechanism of enhanced γ vibration is discussed in comparison with the deformed Quasiparticle Random-Phase Approximation based on a Skyrme energy-density functional.
Charged particle layers in the Debye limit.
Golden, Kenneth I; Kalman, Gabor J; Kyrkos, Stamatios
2002-09-01
We develop an equivalent of the Debye-Hückel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r--> infinity limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation.
Pore-scale modeling of saturated permeabilities in random sphere packings.
Pan, C; Hilpert, M; Miller, C T
2001-12-01
We use two pore-scale approaches, lattice-Boltzmann (LB) and pore-network modeling, to simulate single-phase flow in simulated sphere packings that vary in porosity and sphere-size distribution. For both modeling approaches, we determine the size of the representative elementary volume with respect to the permeability. Permeabilities obtained by LB modeling agree well with Rumpf and Gupte's experiments in sphere packings for small Reynolds numbers. The LB simulations agree well with the empirical Ergun equation for intermediate but not for small Reynolds numbers. We suggest a modified form of Ergun's equation to describe both low and intermediate Reynolds number flows. The pore-network simulations agree well with predictions from the effective-medium approximation but underestimate the permeability due to the simplified representation of the porous media. Based on LB simulations in packings with log-normal sphere-size distributions, we suggest a permeability relation with respect to the porosity, as well as the mean and standard deviation of the sphere diameter.
Theoretical model of x-ray scattering as a dense matter probe.
Gregori, G; Glenzer, S H; Rozmus, W; Lee, R W; Landen, O L
2003-02-01
We present analytical expressions for the dynamic structure factor, or form factor S(k,omega), which is the quantity describing the x-ray cross section from a dense plasma or a simple liquid. Our results, based on the random phase approximation for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. Our form factor correctly reproduces the Compton energy down-shift and the known Fermi-Dirac electron velocity distribution for S(k,omega) in the case of a cold degenerate plasma. The usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or for the modeling of solid density matter found in the interior of planets.
Attenuation of the NMR signal in a field gradient due to stochastic dynamics with memory
NASA Astrophysics Data System (ADS)
Lisý, Vladimír; Tóthová, Jana
2017-03-01
The attenuation function S(t) for an ensemble of spins in a magnetic-field gradient is calculated by accumulation of the phase shifts in the rotating frame resulting from the displacements of spin-bearing particles. The found S(t), expressed through the particle mean square displacement, is applicable for any kind of stationary stochastic motion of spins, including their non-markovian dynamics with memory. The known expressions valid for normal and anomalous diffusion are obtained as special cases in the long time approximation. The method is also applicable to the NMR pulse sequences based on the refocusing principle. This is demonstrated by describing the Hahn spin echo experiment. The attenuation of the NMR signal is also evaluated providing that the random motion of particle is modeled by the generalized Langevin equation with the memory kernel exponentially decaying in time. The models considered in our paper assume massive particles driven by much smaller particles.
Terahertz plasmon and surface-plasmon modes in hollow nanospheres
2012-01-01
We present a theoretical study of the electronic subband structure and collective electronic excitation associated with plasmon and surface plasmon modes in metal-based hollow nanosphere. The dependence of the electronic subband energy on the sample parameters of the hollow nanosphere is examined. We find that the subband states with different quantum numbers l degenerate roughly when the outer radius of the sphere is r2 ≥ 100 nm. In this case, the energy spectrum of a sphere is mainly determined by quantum number n. Moreover, the plasmon and surface plasmon excitations can be achieved mainly via inter-subband transitions from occupied subbands to unoccupied subbands. We examine the dependence of the plasmon and surface-plasmon frequencies on the shell thickness d and the outer radius r2 of the sphere using the standard random-phase approximation. We find that when a four-state model is employed for calculations, four branches of the plasmon and surface plasmon oscillations with terahertz frequencies can be observed, respectively. PMID:23092121
Beyond mean-field description of Gamow-Teller resonances and β-decay
NASA Astrophysics Data System (ADS)
Niu, Yifei; Colò, Gianluca; Vigezzi, Enrico; Bai, Chunlin; Niu, Zhongming; Sagawa, Hiroyuki
2018-02-01
β-decay half-lives set the time scale of the rapid neutron capture process, and are therefore essential for understanding the origin of heavy elements in the universe. The random-phase approximation (RPA) based on Skyrme energy density functionals is widely used to calculate the properties of Gamow-Teller (GT) transitions, which play a dominant role in β-decay half-lives. However, the RPA model has its limitations in reproducing the resonance width and often overestimates β-decay half-lives. To overcome these problems, effects beyond mean-field can be included on top of the RPA model. In particular, this can be obtained by taking into account the particle-vibration coupling (PVC). Within the RPA+PVC model, we successfully reproduce the experimental GT resonance width and β-decay half-lives in magic nuclei. We then extend the formalism to superfluid nuclei and apply it to the GT resonance in 120Sn, obtaining a good reproduction of the experimental strength distribution. The effect of isoscalar pairing is also discussed.
Hybrid configuration mixing model for odd nuclei
NASA Astrophysics Data System (ADS)
Colò, G.; Bortignon, P. F.; Bocchi, G.
2017-03-01
In this work, we introduce a new approach which is meant to be a first step towards complete self-consistent low-lying spectroscopy of odd nuclei. So far, we essentially limit ourselves to the description of a double-magic core plus an extra nucleon. The model does not contain any free adjustable parameter and is instead based on a Hartree-Fock (HF) description of the particle states in the core, together with self-consistent random-phase approximation (RPA) calculations for the core excitations. We include both collective and noncollective excitations, with proper care of the corrections due to the overlap between them (i.e., due to the nonorthonormality of the basis). As a consequence, with respect to traditional particle-vibration coupling calculations in which one can only address single-nucleon states and particle-vibration multiplets, we can also describe states of shell-model types like 2 particle-1 hole. We will report results for 49Ca and 133Sb and discuss future perspectives.
Existence problem of proton semi-bubble structure in the 21 + state of 34Si
NASA Astrophysics Data System (ADS)
Wu, Feng; Bai, C. L.; Yao, J. M.; Zhang, H. Q.; Zhang, X. Z.
2017-09-01
The fully self-consistent Hartree-Fock (HF) plus random phase approximation (RPA) based on Skyrme-type interaction is used to study the existence problem of proton semi-bubble structure in the 21+ state of 34Si. The experimental excitation energy and the transition strength of the 21+ state in 34Si can be reproduced quite well. The tensor effect is also studied. It is shown that the tensor interaction has a notable impact on the excitation energy of the 21+ state and a small effect on the B( E2) value. Besides, its effect on the density distributions in the ground and 21+ state of 34Si is negligible. Our present results with T36 and T44 show that the 21+ state of 34Si is mainly caused by proton transition from π 1d_{5/2} orbit to π 2s_{1/2} orbit, and the existence of a proton semi-bubble structure in this state is very unlikely.
NASA Astrophysics Data System (ADS)
Das, Joy Prakash; Setlur, Girish S.
2017-10-01
The one step fermionic ladder refers to two parallel Luttinger Liquids (poles of the ladder) placed such that there is a finite probability of electrons hopping between the two poles at a pair of opposing points along each of the poles. The many-body Green function for such a system is calculated in presence of forward scattering interactions using the powerful non-chiral bosonization technique (NCBT). This technique is based on a non-standard harmonic analysis of the rapidly varying parts of the density fields appropriate for the study of strongly inhomogeneous ladder systems. The closed analytical expression for the correlation function obtained from NCBT is nothing but the series involving the RPA (Random Phase Approximation) diagrams in powers of the forward scattering coupling strength resummed to include only the most singular terms with the source of inhomogeneities treated exactly. Finally the correlation functions are used to study physical phenomena such as Friedel oscillations and the conductance of such systems with the potential difference applied across various ends.
NASA Astrophysics Data System (ADS)
Nomura, Takuji
2017-10-01
We study two-magnon excitations in resonant inelastic x-ray scattering (RIXS) at the transition-metal K edge. Instead of working with effective Heisenberg spin models, we work with a Hubbard-type model (d -p model) for a typical insulating cuprate La2CuO4 . For the antiferromagnetic ground state within the spin density wave (SDW) mean-field formalism, we calculate the dynamical correlation function within the random-phase approximation (RPA), and then obtain two-magnon excitation spectra by calculating the convolution of it. Coupling between the K -shell hole and the magnons in the intermediate state is calculated by means of diagrammatic perturbation expansion in the Coulomb interaction. The calculated momentum dependence of RIXS spectra agrees well with that of experiments. A notable difference from previous calculations based on the Heisenberg spin models is that RIXS spectra have a large two-magnon weight near the zone center, which may be confirmed by further careful high-resolution experiments.
New treatment options for ALK+ advanced non-small-cell lung cancer: critical appraisal of ceritinib
Rothschild, Sacha I
2016-01-01
Rearrangements in ALK gene and EML4 gene were first described in 2007. This genomic aberration is found in about 2%–8% of non-small-cell lung cancer (NSCLC) patients. Crizotinib was the first ALK tyrosine kinase inhibitor licensed for the treatment of metastatic ALK-positive NSCLC based on a randomized Phase III trial. Despite the initial treatment response of crizotinib, disease progression inevitably develops after approximately 10 months of therapy. Different resistance mechanisms have recently been described. One relevant mechanism of resistance is the development of mutations in ALK. Novel ALK tyrosine kinase inhibitors have been developed to overcome these mutations. Ceritinib is an oral second-generation ALK inhibitor showing clinical activity not only in crizotinib-resistant ALK-positive NSCLC but also in treatment-naïve ALK-positive disease. In this paper, preclinical and clinical data of ceritinib are reviewed, and its role in the clinical setting is put into perspective. PMID:27217763
New treatment options for ALK+ advanced non-small-cell lung cancer: critical appraisal of ceritinib.
Rothschild, Sacha I
2016-01-01
Rearrangements in ALK gene and EML4 gene were first described in 2007. This genomic aberration is found in about 2%-8% of non-small-cell lung cancer (NSCLC) patients. Crizotinib was the first ALK tyrosine kinase inhibitor licensed for the treatment of metastatic ALK-positive NSCLC based on a randomized Phase III trial. Despite the initial treatment response of crizotinib, disease progression inevitably develops after approximately 10 months of therapy. Different resistance mechanisms have recently been described. One relevant mechanism of resistance is the development of mutations in ALK. Novel ALK tyrosine kinase inhibitors have been developed to overcome these mutations. Ceritinib is an oral second-generation ALK inhibitor showing clinical activity not only in crizotinib-resistant ALK-positive NSCLC but also in treatment-naïve ALK-positive disease. In this paper, preclinical and clinical data of ceritinib are reviewed, and its role in the clinical setting is put into perspective.
Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems
Venturi, D.; Karniadakis, G. E.
2014-01-01
Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima–Zwanzig–Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection–reaction problems. PMID:24910519
NASA Astrophysics Data System (ADS)
Hu, Bo
2015-08-01
Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.
Collective Transport Properties of Driven Skyrmions with Random Disorder
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson
2015-05-01
We use particle-based simulations to examine the static and driven collective phases of Skyrmions interacting with random quenched disorder. We show that nondissipative effects due to the Magnus term reduce the depinning threshold and strongly affect the Skyrmion motion and the nature of the dynamic phases. The quenched disorder causes the Hall angle to become drive dependent in the moving Skyrmion phase, while different flow regimes produce distinct signatures in the transport curves. For weak disorder, the Skyrmions form a pinned crystal and depin elastically, while for strong disorder the system forms a pinned amorphous state that depins plastically. At high drives the Skyrmions can dynamically reorder into a moving crystal, with the onset of reordering determined by the strength of the Magnus term.
Universal quantum computation with temporal-mode bilayer square lattices
NASA Astrophysics Data System (ADS)
Alexander, Rafael N.; Yokoyama, Shota; Furusawa, Akira; Menicucci, Nicolas C.
2018-03-01
We propose an experimental design for universal continuous-variable quantum computation that incorporates recent innovations in linear-optics-based continuous-variable cluster state generation and cubic-phase gate teleportation. The first ingredient is a protocol for generating the bilayer-square-lattice cluster state (a universal resource state) with temporal modes of light. With this state, measurement-based implementation of Gaussian unitary gates requires only homodyne detection. Second, we describe a measurement device that implements an adaptive cubic-phase gate, up to a random phase-space displacement. It requires a two-step sequence of homodyne measurements and consumes a (non-Gaussian) cubic-phase state.
Qualitative analysis of mycotoxins using micellar electrokinetic capillary chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, R.D.; Sepaniak, M.J.
1993-05-01
Naturally occurring mycotoxins are separated using micellar electrokinetic capillary chromatography. Trends in the retention of these toxins, resulting from changes in mobile-phase composition and pH, are reported and presented as a means of alleviating coelution problems. Two sets of mobile-phase conditions are determined that provide unique separation selectivity. The facile manner by which mobile-phase conditions can be altered, without changes in instrumental configuration, allowed the acquisition of two distinctive, fully resolved chromatograms of 10 mycotoxins in a period of approximately 45 min. By adjusting retention times, using indigenous or added components in mycotoxin samples as normalization standards, it is possiblemore » to obtain coefficients of variation in retention time that average less than 1%. The qualitative capabilities of this methodology are evaluated by separating randomly generated mycotoxin-interferent mixtures. In this study, the utilization of normalized retention times applied to separations obtained with two sets of mobile-phase conditions permitted the identification of all the mycotoxins in five unknown samples without any misidentifications. 24 refs., 3 figs., 2 tabs.« less
Polarimetry With Phased Array Antennas: Theoretical Framework and Definitions
NASA Astrophysics Data System (ADS)
Warnick, Karl F.; Ivashina, Marianna V.; Wijnholds, Stefan J.; Maaskant, Rob
2012-01-01
For phased array receivers, the accuracy with which the polarization state of a received signal can be measured depends on the antenna configuration, array calibration process, and beamforming algorithms. A signal and noise model for a dual-polarized array is developed and related to standard polarimetric antenna figures of merit, and the ideal polarimetrically calibrated, maximum-sensitivity beamforming solution for a dual-polarized phased array feed is derived. A practical polarimetric beamformer solution that does not require exact knowledge of the array polarimetric response is shown to be equivalent to the optimal solution in the sense that when the practical beamformers are calibrated, the optimal solution is obtained. To provide a rough initial polarimetric calibration for the practical beamformer solution, an approximate single-source polarimetric calibration method is developed. The modeled instrumental polarization error for a dipole phased array feed with the practical beamformer solution and single-source polarimetric calibration was -10 dB or lower over the array field of view for elements with alignments perturbed by random rotations with 5 degree standard deviation.
Simultaneous measurements of density field and wavefront distortions in high speed flows
NASA Astrophysics Data System (ADS)
George, Jacob; Jenkins, Thomas; Trolinger, James; Hess, Cecil; Buckner, Benjamin
2017-09-01
This paper presents results from simultaneous measurements of fluid density and the resulting wavefront distortions in a sonic underexpanded jet. The density measurements were carried out using Rayleigh scattering, and the optical distortions were measured using a wavefront sensor based on phase shifting interferometry. The measurements represent a preliminary step toward relating wavefront distortions to a specific flow structure. The measured density field is used to compute the phase distortions using a wave propagation model based on a geometric-optics approximation, and the computed phase map shows moderate agreement with that obtained using the wavefront sensor.
Nouman, M Tayyab; Hwang, Ji Hyun; Faiyaz, Mohd; Lee, Kye-Jeong; Noh, Do-Young; Jang, Jae-Hyung
2018-05-14
Metasurfaces are two dimensional arrays of artificial subwavelength resonators, which can manipulate the amplitude and phase profile of incident electromagnetic fields. To date, limited progress has been achieved in realizing reconfigurable phase control of incident waves using metasurfaces. Here, an active metasurface is presented, whose resonance frequency can be tuned by employing insulator to metal transition in vanadium dioxide. By virtue of the phase jump accompanied by the resonance frequency tuning, the proposed metasurface acts as a phase shifter at THz frequency. It is further demonstrated that by appropriately tailoring the anisotropy of the metasurface, the observed phase shift can be used to switch the transmitted polarization from circular to approximately linear. This work thus shows potential for reconfigurable phase and polarization control at THz frequencies using vanadium dioxide based frequency tunable metasurfaces.
Random search optimization based on genetic algorithm and discriminant function
NASA Technical Reports Server (NTRS)
Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.
1990-01-01
The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.
Response to Oud & Folmer: Randomness and Residuals
ERIC Educational Resources Information Center
Steele, Joel S.; Ferrer, Emilio
2011-01-01
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.
1991-01-01
Phase 1 of a 4 part study was undertaken studying the use of scientific and technical information (STI) by U.S. aerospace engineers and scientists. Specific attention was paid to institutional and socioeconomic variables and to the step-by-step process of information gathering used by the respondents. Data were collected by means of three self administered mail-back questionnaires. The approximately 34,000 members of the American Institute of Aeronautics and Astronautics (AIAA) served as the study population. More than 65 percent of the randomly selected respondents returned the questionnaires in each of the three groups. Respondents relied more heavily upon informal sources of information than formal sources and turned to librarians and other technical information specialists only when they did not obtain results via informal means or their own formal searches.
Morphological Differentiation of Colon Carcinoma Cell Lines in Rotating Wall Vessels
NASA Technical Reports Server (NTRS)
Jessup, J. M.
1994-01-01
The objectives of this project were to determine whether (1) microgravity permits unique, three-dimensional cultures of neoplastic human colon tissues and (2) this culture interaction produces novel intestinal growth and differentiation factors. The initial phase of this project tested the efficacy of simulated microgravity for the cultivation and differentiation of human colon carcinoma in rotating wall vessels (RWV's) on microcarrier beads. The RWV's simulate microgravity by randomizing the gravity vector in an aqueous medium under a low shear stress environment in unit gravity. This simulation achieves approximately a one-fifth g environment that allows cells to 'float' and form three-dimensional relationships with less shear stress than in other stirred aqueous medium bioreactors. In the second phase of this project we assessed the ability of human colon carcinoma lines to adhere to various substrates because adhesion is the first event that must occur to create three-dimensional masses. Finally, we tested growth factor production in the last phase of this project.
NASA Technical Reports Server (NTRS)
Graham, K. N.; Fejer, J. A.
1976-01-01
The paper describes a numerical simulation of electron trajectories in weak random electric fields under conditions that are approximately true for Langmuir waves whose wavelength is much longer than the Debye length. Two types of trajectory calculations were made: (1) the initial particle velocity was made equal to the mean phase velocity of the waves, or (2) it was equal to 0.7419 times the mean velocity of the waves, so that the initial velocity differed substantially from all phase velocities of the wave spectrum. When the autocorrelation time is much greater than the trapping time, the particle motion can change virtually instantaneously from one of three states - high-velocity, low-velocity, or trapped state - to another. The probability of instantaneous transition from a high- or low-velocity state becomes small when the difference between the particle velocity and the mean phase velocity of the waves becomes high in comparison to the trapping velocity. Diffusive motion becomes negligible under these conditions also.