78 FR 57033 - United States Standards for Condition of Food Containers
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-17
... containers during production. Stationary lot sampling is the process of randomly selecting sample units from.... * * * * * Stationary lot sampling. The process of randomly selecting sample units from a lot whose production has been... less than \\1/16\\-inch Stringy seal (excessive plastic threads showing at edge of seal 222 area...
A method for determining the weak statistical stationarity of a random process
NASA Technical Reports Server (NTRS)
Sadeh, W. Z.; Koper, C. A., Jr.
1978-01-01
A method for determining the weak statistical stationarity of a random process is presented. The core of this testing procedure consists of generating an equivalent ensemble which approximates a true ensemble. Formation of an equivalent ensemble is accomplished through segmenting a sufficiently long time history of a random process into equal, finite, and statistically independent sample records. The weak statistical stationarity is ascertained based on the time invariance of the equivalent-ensemble averages. Comparison of these averages with their corresponding time averages over a single sample record leads to a heuristic estimate of the ergodicity of a random process. Specific variance tests are introduced for evaluating the statistical independence of the sample records, the time invariance of the equivalent-ensemble autocorrelations, and the ergodicity. Examination and substantiation of these procedures were conducted utilizing turbulent velocity signals.
Investigating the Randomness of Numbers
ERIC Educational Resources Information Center
Pendleton, Kenn L.
2009-01-01
The use of random numbers is pervasive in today's world. Random numbers have practical applications in such far-flung arenas as computer simulations, cryptography, gambling, the legal system, statistical sampling, and even the war on terrorism. Evaluating the randomness of extremely large samples is a complex, intricate process. However, the…
ERIC Educational Resources Information Center
Felce, David; Perry, Jonathan
2004-01-01
Background: The aims were to: (i) explore the association between age and size of setting and staffing per resident; and (ii) report resident and setting characteristics, and indicators of service process and resident activity for a national random sample of staffed housing provision. Methods: Sixty settings were selected randomly from those…
A high speed implementation of the random decrement algorithm
NASA Technical Reports Server (NTRS)
Kiraly, L. J.
1982-01-01
The algorithm is useful for measuring net system damping levels in stochastic processes and for the development of equivalent linearized system response models. The algorithm works by summing together all subrecords which occur after predefined threshold level is crossed. The random decrement signature is normally developed by scanning stored data and adding subrecords together. The high speed implementation of the random decrement algorithm exploits the digital character of sampled data and uses fixed record lengths of 2(n) samples to greatly speed up the process. The contributions to the random decrement signature of each data point was calculated only once and in the same sequence as the data were taken. A hardware implementation of the algorithm using random logic is diagrammed and the process is shown to be limited only by the record size and the threshold crossing frequency of the sampled data. With a hardware cycle time of 200 ns and 1024 point signature, a threshold crossing frequency of 5000 Hertz can be processed and a stably averaged signature presented in real time.
Aircraft adaptive learning control
NASA Technical Reports Server (NTRS)
Lee, P. S. T.; Vanlandingham, H. F.
1979-01-01
The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.
Nonuniform sampling theorems for random signals in the linear canonical transform domain
NASA Astrophysics Data System (ADS)
Shuiqing, Xu; Congmei, Jiang; Yi, Chai; Youqiang, Hu; Lei, Huang
2018-06-01
Nonuniform sampling can be encountered in various practical processes because of random events or poor timebase. The analysis and applications of the nonuniform sampling for deterministic signals related to the linear canonical transform (LCT) have been well considered and researched, but up to now no papers have been published regarding the various nonuniform sampling theorems for random signals related to the LCT. The aim of this article is to explore the nonuniform sampling and reconstruction of random signals associated with the LCT. First, some special nonuniform sampling models are briefly introduced. Second, based on these models, some reconstruction theorems for random signals from various nonuniform samples associated with the LCT have been derived. Finally, the simulation results are made to prove the accuracy of the sampling theorems. In addition, the latent real practices of the nonuniform sampling for random signals have been also discussed.
NASA Technical Reports Server (NTRS)
Racette, Paul; Lang, Roger; Zhang, Zhao-Nan; Zacharias, David; Krebs, Carolyn A. (Technical Monitor)
2002-01-01
Radiometers must be periodically calibrated because the receiver response fluctuates. Many techniques exist to correct for the time varying response of a radiometer receiver. An analytical technique has been developed that uses generalized least squares regression (LSR) to predict the performance of a wide variety of calibration algorithms. The total measurement uncertainty including the uncertainty of the calibration can be computed using LSR. The uncertainties of the calibration samples used in the regression are based upon treating the receiver fluctuations as non-stationary processes. Signals originating from the different sources of emission are treated as simultaneously existing random processes. Thus, the radiometer output is a series of samples obtained from these random processes. The samples are treated as random variables but because the underlying processes are non-stationary the statistics of the samples are treated as non-stationary. The statistics of the calibration samples depend upon the time for which the samples are to be applied. The statistics of the random variables are equated to the mean statistics of the non-stationary processes over the interval defined by the time of calibration sample and when it is applied. This analysis opens the opportunity for experimental investigation into the underlying properties of receiver non stationarity through the use of multiple calibration references. In this presentation we will discuss the application of LSR to the analysis of various calibration algorithms, requirements for experimental verification of the theory, and preliminary results from analyzing experiment measurements.
The Coalescent Process in Models with Selection
Kaplan, N. L.; Darden, T.; Hudson, R. R.
1988-01-01
Statistical properties of the process describing the genealogical history of a random sample of genes are obtained for a class of population genetics models with selection. For models with selection, in contrast to models without selection, the distribution of this process, the coalescent process, depends on the distribution of the frequencies of alleles in the ancestral generations. If the ancestral frequency process can be approximated by a diffusion, then the mean and the variance of the number of segregating sites due to selectively neutral mutations in random samples can be numerically calculated. The calculations are greatly simplified if the frequencies of the alleles are tightly regulated. If the mutation rates between alleles maintained by balancing selection are low, then the number of selectively neutral segregating sites in a random sample of genes is expected to substantially exceed the number predicted under a neutral model. PMID:3066685
Bayesian estimation of Karhunen–Loève expansions; A random subspace approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhary, Kenny; Najm, Habib N.
One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less
Bayesian estimation of Karhunen–Loève expansions; A random subspace approach
Chowdhary, Kenny; Najm, Habib N.
2016-04-13
One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less
The coalescent of a sample from a binary branching process.
Lambert, Amaury
2018-04-25
At time 0, start a time-continuous binary branching process, where particles give birth to a single particle independently (at a possibly time-dependent rate) and die independently (at a possibly time-dependent and age-dependent rate). A particular case is the classical birth-death process. Stop this process at time T>0. It is known that the tree spanned by the N tips alive at time T of the tree thus obtained (called a reduced tree or coalescent tree) is a coalescent point process (CPP), which basically means that the depths of interior nodes are independent and identically distributed (iid). Now select each of the N tips independently with probability y (Bernoulli sample). It is known that the tree generated by the selected tips, which we will call the Bernoulli sampled CPP, is again a CPP. Now instead, select exactly k tips uniformly at random among the N tips (a k-sample). We show that the tree generated by the selected tips is a mixture of Bernoulli sampled CPPs with the same parent CPP, over some explicit distribution of the sampling probability y. An immediate consequence is that the genealogy of a k-sample can be obtained by the realization of k random variables, first the random sampling probability Y and then the k-1 node depths which are iid conditional on Y=y. Copyright © 2018. Published by Elsevier Inc.
Optimizing Urine Processing Protocols for Protein and Metabolite Detection.
Siddiqui, Nazema Y; DuBois, Laura G; St John-Williams, Lisa; Will, Thompson J; Grenier, Carole; Burke, Emily; Fraser, Matthew O; Amundsen, Cindy L; Murphy, Susan K
In urine, factors such as timing of voids, and duration at room temperature (RT) may affect the quality of recovered protein and metabolite data. Additives may aid with detection, but can add more complexity in sample collection or analysis. We aimed to identify the optimal urine processing protocol for clinically-obtained urine samples that allows for the highest protein and metabolite yields with minimal degradation. Healthy women provided multiple urine samples during the same day. Women collected their first morning (1 st AM) void and another "random void". Random voids were aliquotted with: 1) no additive; 2) boric acid (BA); 3) protease inhibitor (PI); or 4) both BA + PI. Of these aliquots, some were immediately stored at 4°C, and some were left at RT for 4 hours. Proteins and individual metabolites were quantified, normalized to creatinine concentrations, and compared across processing conditions. Sample pools corresponding to each processing condition were analyzed using mass spectrometry to assess protein degradation. Ten Caucasian women between 35-65 years of age provided paired 1 st morning and random voided urine samples. Normalized protein concentrations were slightly higher in 1 st AM compared to random "spot" voids. The addition of BA did not significantly change proteins, while PI significantly improved normalized protein concentrations, regardless of whether samples were immediately cooled or left at RT for 4 hours. In pooled samples, there were minimal differences in protein degradation under the various conditions we tested. In metabolite analyses, there were significant differences in individual amino acids based on the timing of the void. For comparative translational research using urine, information about void timing should be collected and standardized. For urine samples processed in the same day, BA does not appear to be necessary while the addition of PI enhances protein yields, regardless of 4°C or RT storage temperature.
Studies in astronomical time series analysis: Modeling random processes in the time domain
NASA Technical Reports Server (NTRS)
Scargle, J. D.
1979-01-01
Random process models phased in the time domain are used to analyze astrophysical time series data produced by random processes. A moving average (MA) model represents the data as a sequence of pulses occurring randomly in time, with random amplitudes. An autoregressive (AR) model represents the correlations in the process in terms of a linear function of past values. The best AR model is determined from sampled data and transformed to an MA for interpretation. The randomness of the pulse amplitudes is maximized by a FORTRAN algorithm which is relatively stable numerically. Results of test cases are given to study the effects of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the optical light curve of the quasar 3C 273 is given.
Sampling Strategies and Processing of Biobank Tissue Samples from Porcine Biomedical Models.
Blutke, Andreas; Wanke, Rüdiger
2018-03-06
In translational medical research, porcine models have steadily become more popular. Considering the high value of individual animals, particularly of genetically modified pig models, and the often-limited number of available animals of these models, establishment of (biobank) collections of adequately processed tissue samples suited for a broad spectrum of subsequent analyses methods, including analyses not specified at the time point of sampling, represent meaningful approaches to take full advantage of the translational value of the model. With respect to the peculiarities of porcine anatomy, comprehensive guidelines have recently been established for standardized generation of representative, high-quality samples from different porcine organs and tissues. These guidelines are essential prerequisites for the reproducibility of results and their comparability between different studies and investigators. The recording of basic data, such as organ weights and volumes, the determination of the sampling locations and of the numbers of tissue samples to be generated, as well as their orientation, size, processing and trimming directions, are relevant factors determining the generalizability and usability of the specimen for molecular, qualitative, and quantitative morphological analyses. Here, an illustrative, practical, step-by-step demonstration of the most important techniques for generation of representative, multi-purpose biobank specimen from porcine tissues is presented. The methods described here include determination of organ/tissue volumes and densities, the application of a volume-weighted systematic random sampling procedure for parenchymal organs by point-counting, determination of the extent of tissue shrinkage related to histological embedding of samples, and generation of randomly oriented samples for quantitative stereological analyses, such as isotropic uniform random (IUR) sections generated by the "Orientator" and "Isector" methods, and vertical uniform random (VUR) sections.
A sub-sampled approach to extremely low-dose STEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, A.; Luzi, L.; Yang, H.
The inpainting of randomly sub-sampled images acquired by scanning transmission electron microscopy (STEM) is an attractive method for imaging under low-dose conditions (≤ 1 e -Å 2) without changing either the operation of the microscope or the physics of the imaging process. We show that 1) adaptive sub-sampling increases acquisition speed, resolution, and sensitivity; and 2) random (non-adaptive) sub-sampling is equivalent, but faster than, traditional low-dose techniques. Adaptive sub-sampling opens numerous possibilities for the analysis of beam sensitive materials and in-situ dynamic processes at the resolution limit of the aberration corrected microscope and is demonstrated here for the analysis ofmore » the node distribution in metal-organic frameworks (MOFs).« less
Emotional Intelligence and Life Adjustment for Nigerian Secondary Students
ERIC Educational Resources Information Center
Ogoemeka, Obioma Helen
2013-01-01
In the process of educating adolescents, good emotional development and life adjustment are two significant factors for teachers to know. This study employed random cluster sampling of senior secondary school students in Ondo and Oyo States in south-western Nigeria. The Random sampling was employed to select 1,070 students. The data collected were…
Navigation Using Orthogonal Frequency Division Multiplexed Signals of Opportunity
2007-09-01
transmits a 32,767 bit pseudo -random “short” code that repeats 37.5 times per second. Since the pseudo -random bit pattern and modulation scheme are... correlation process takes two “ sample windows,” both of which are ν = 16 samples wide and are spaced N = 64 samples apart, and compares them. When the...technique in (3.4) is a necessary step in order to get a more accurate estimate of the sample shift from the symbol boundary correlator in (3.1). Figure
An improved sampling method of complex network
NASA Astrophysics Data System (ADS)
Gao, Qi; Ding, Xintong; Pan, Feng; Li, Weixing
2014-12-01
Sampling subnet is an important topic of complex network research. Sampling methods influence the structure and characteristics of subnet. Random multiple snowball with Cohen (RMSC) process sampling which combines the advantages of random sampling and snowball sampling is proposed in this paper. It has the ability to explore global information and discover the local structure at the same time. The experiments indicate that this novel sampling method could keep the similarity between sampling subnet and original network on degree distribution, connectivity rate and average shortest path. This method is applicable to the situation where the prior knowledge about degree distribution of original network is not sufficient.
Three-level sampler having automated thresholds
NASA Technical Reports Server (NTRS)
Jurgens, R. F.
1976-01-01
A three-level sampler is described that has its thresholds controlled automatically so as to track changes in the statistics of the random process being sampled. In particular, the mean value is removed and the ratio of the standard deviation of the random process to the threshold is maintained constant. The system is configured in such a manner that slow drifts in the level comparators and digital-to-analog converters are also removed. The ratio of the standard deviation to threshold level may be chosen within the constraints of the ratios of two integers N and M. These may be chosen to minimize the quantizing noise of the sampled process.
Assessing Performance Tradeoffs in Undersea Distributed Sensor Networks
2006-09-01
time. We refer to this process as track - before - detect (see [5] for a description), since the final determination of a target presence is not made until...expressions for probability of successful search and probability of false search for modeling the track - before - detect process. We then describe a numerical...random manner (randomly sampled from a uniform distribution). II. SENSOR NETWORK PERFORMANCE MODELS We model the process of track - before - detect by
Quantum Random Number Generation Using a Quanta Image Sensor
Amri, Emna; Felk, Yacine; Stucki, Damien; Ma, Jiaju; Fossum, Eric R.
2016-01-01
A new quantum random number generation method is proposed. The method is based on the randomness of the photon emission process and the single photon counting capability of the Quanta Image Sensor (QIS). It has the potential to generate high-quality random numbers with remarkable data output rate. In this paper, the principle of photon statistics and theory of entropy are discussed. Sample data were collected with QIS jot device, and its randomness quality was analyzed. The randomness assessment method and results are discussed. PMID:27367698
10 CFR 74.45 - Measurements and measurement control.
Code of Federal Regulations, 2013 CFR
2013-01-01
... measurements, obtaining samples, and performing laboratory analyses for element concentration and isotope... of random error behavior. On a predetermined schedule, the program shall include, as appropriate: (i) Replicate analyses of individual samples; (ii) Analysis of replicate process samples; (iii) Replicate volume...
10 CFR 74.45 - Measurements and measurement control.
Code of Federal Regulations, 2014 CFR
2014-01-01
... measurements, obtaining samples, and performing laboratory analyses for element concentration and isotope... of random error behavior. On a predetermined schedule, the program shall include, as appropriate: (i) Replicate analyses of individual samples; (ii) Analysis of replicate process samples; (iii) Replicate volume...
10 CFR 74.45 - Measurements and measurement control.
Code of Federal Regulations, 2012 CFR
2012-01-01
... measurements, obtaining samples, and performing laboratory analyses for element concentration and isotope... of random error behavior. On a predetermined schedule, the program shall include, as appropriate: (i) Replicate analyses of individual samples; (ii) Analysis of replicate process samples; (iii) Replicate volume...
Elizabeth A. Freeman; Gretchen G. Moisen; Tracy S. Frescino
2012-01-01
Random Forests is frequently used to model species distributions over large geographic areas. Complications arise when data used to train the models have been collected in stratified designs that involve different sampling intensity per stratum. The modeling process is further complicated if some of the target species are relatively rare on the landscape leading to an...
Sparse sampling and reconstruction for electron and scanning probe microscope imaging
Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.
2015-07-28
Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.
Sampling Methods in Cardiovascular Nursing Research: An Overview.
Kandola, Damanpreet; Banner, Davina; O'Keefe-McCarthy, Sheila; Jassal, Debbie
2014-01-01
Cardiovascular nursing research covers a wide array of topics from health services to psychosocial patient experiences. The selection of specific participant samples is an important part of the research design and process. The sampling strategy employed is of utmost importance to ensure that a representative sample of participants is chosen. There are two main categories of sampling methods: probability and non-probability. Probability sampling is the random selection of elements from the population, where each element of the population has an equal and independent chance of being included in the sample. There are five main types of probability sampling including simple random sampling, systematic sampling, stratified sampling, cluster sampling, and multi-stage sampling. Non-probability sampling methods are those in which elements are chosen through non-random methods for inclusion into the research study and include convenience sampling, purposive sampling, and snowball sampling. Each approach offers distinct advantages and disadvantages and must be considered critically. In this research column, we provide an introduction to these key sampling techniques and draw on examples from the cardiovascular research. Understanding the differences in sampling techniques may aid nurses in effective appraisal of research literature and provide a reference pointfor nurses who engage in cardiovascular research.
Kendall, W.L.; Nichols, J.D.; North, P.M.; Nichols, J.D.
1995-01-01
The use of the Cormack- Jolly-Seber model under a standard sampling scheme of one sample per time period, when the Jolly-Seber assumption that all emigration is permanent does not hold, leads to the confounding of temporary emigration probabilities with capture probabilities. This biases the estimates of capture probability when temporary emigration is a completely random process, and both capture and survival probabilities when there is a temporary trap response in temporary emigration, or it is Markovian. The use of secondary capture samples over a shorter interval within each period, during which the population is assumed to be closed (Pollock's robust design), provides a second source of information on capture probabilities. This solves the confounding problem, and thus temporary emigration probabilities can be estimated. This process can be accomplished in an ad hoc fashion for completely random temporary emigration and to some extent in the temporary trap response case, but modelling the complete sampling process provides more flexibility and permits direct estimation of variances. For the case of Markovian temporary emigration, a full likelihood is required.
Optimized Routing of Intelligent, Mobile Sensors for Dynamic, Data-Driven Sampling
2016-09-27
nonstationary random process that requires nonuniform sampling. The ap- proach incorporates complementary representations of an unknown process: the first...lookup table as follows. A uniform grid is created in the r-domain and mapped to the R-domain, which produces a nonuniform grid of locations in the R...vehicle coverage algorithm that invokes the coor- dinate transformation from the previous section to generate nonuniform sampling trajectories [54]. We
Random phase detection in multidimensional NMR.
Maciejewski, Mark W; Fenwick, Matthew; Schuyler, Adam D; Stern, Alan S; Gorbatyuk, Vitaliy; Hoch, Jeffrey C
2011-10-04
Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency constrains the ability to shorten measuring times. Sign discrimination is typically accomplished by sampling the signal with two different receiver phases or by selecting a reference frequency outside the range of frequencies spanned by the signal and then sampling at a higher rate. In the parametrically sampled (indirect) time dimensions of multidimensional NMR experiments, either method imposes an additional factor of 2 sampling burden for each dimension. We demonstrate that by using a single detector phase at each time sample point, but randomly altering the phase for different points, the sign ambiguity that attends fixed single-phase detection is resolved. Random phase detection enables a reduction in experiment time by a factor of 2 for each indirect dimension, amounting to a factor of 8 for a four-dimensional experiment, albeit at the cost of introducing sampling artifacts. Alternatively, for fixed measuring time, random phase detection can be used to double resolution in each indirect dimension. Random phase detection is complementary to nonuniform sampling methods, and their combination offers the potential for additional benefits. In addition to applications in biomolecular NMR, random phase detection could be useful in magnetic resonance imaging and other signal processing contexts.
Borak, T B
1986-04-01
Periodic grab sampling in combination with time-of-occupancy surveys has been the accepted procedure for estimating the annual exposure of underground U miners to Rn daughters. Temporal variations in the concentration of potential alpha energy in the mine generate uncertainties in this process. A system to randomize the selection of locations for measurement is described which can reduce uncertainties and eliminate systematic biases in the data. In general, a sample frequency of 50 measurements per year is sufficient to satisfy the criteria that the annual exposure be determined in working level months to within +/- 50% of the true value with a 95% level of confidence. Suggestions for implementing this randomization scheme are presented.
High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.
Coggins, Brian E; Zhou, Pei
2008-12-01
Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.
High Resolution 4-D Spectroscopy with Sparse Concentric Shell Sampling and FFT-CLEAN
Coggins, Brian E.; Zhou, Pei
2009-01-01
SUMMARY Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise. PMID:18853260
Inspection of care: Findings from an innovative demonstration
Morris, John N.; Sherwood, Clarence C.; Dreyer, Paul
1989-01-01
In this article, information is presented concerning the efficacy of a sample-based approach to completing inspection of care reviews of Medicaid-supported nursing home residents. Massachusetts nursing homes were randomly assigned to full (the control group) or sample (the experimental group) review conditions. The primary research focus was to determine whether the proportion of facilities found to be deficient (based on quality of care and level of care criteria) in the experimental sample was comparable to the proportion in the control sample. The findings supported such a hypothesis: Deficient facilities appear to be equally identifiable using the random or full-sampling protocols, and the process can be completed with a considerable savings of surveyor time. PMID:10313458
Michael, Claire W; Naik, Kalyani; McVicker, Michael
2013-05-01
We developed a value stream map (VSM) of the Papanicolaou test procedure to identify opportunities to reduce waste and errors, created a new VSM, and implemented a new process emphasizing Lean tools. Preimplementation data revealed the following: (1) processing time (PT) for 1,140 samples averaged 54 hours; (2) 27 accessioning errors were detected on review of 357 random requisitions (7.6%); (3) 5 of the 20,060 tests had labeling errors that had gone undetected in the processing stage. Four were detected later during specimen processing but 1 reached the reporting stage. Postimplementation data were as follows: (1) PT for 1,355 samples averaged 31 hours; (2) 17 accessioning errors were detected on review of 385 random requisitions (4.4%); and (3) no labeling errors were undetected. Our results demonstrate that implementation of Lean methods, such as first-in first-out processes and minimizing batch size by staff actively participating in the improvement process, allows for higher quality, greater patient safety, and improved efficiency.
1985-03-01
comparison of samples would be difficult. (5) A restrictive random sample allows the sample to be irregularly spaced throughout the auxiliary variable space ...looking or downward-looking probes and the very low background radiation from space contribute to high signal-to-noise ratio and allow the...sunshine and earthshine, chemiluminescent processes, and radiation to space , in addition to collisional processes, determine the vibrational
[Exploration of the concept of genetic drift in genetics teaching of undergraduates].
Wang, Chun-ming
2016-01-01
Genetic drift is one of the difficulties in teaching genetics due to its randomness and probability which could easily cause conceptual misunderstanding. The “sampling error" in its definition is often misunderstood because of the research method of “sampling", which disturbs the results and causes the random changes in allele frequency. I analyzed and compared the definitions of genetic drift in domestic and international genetic textbooks, and found that the definitions containing “sampling error" are widely adopted but are interpreted correctly in only a few textbooks. Here, the history of research on genetic drift, i.e., the contributions of Wright, Fisher and Kimura, is introduced. Moreover, I particularly describe two representative articles recently published about genetic drift teaching of undergraduates, which point out that misconceptions are inevitable for undergraduates during the studying process and also provide a preliminary solution. Combined with my own teaching practice, I suggest that the definition of genetic drift containing “sampling error" can be adopted with further interpretation, i.e., “sampling error" is random sampling among gametes when generating the next generation of alleles which is equivalent to a random sampling of all gametes participating in mating in gamete pool and has no relationship with artificial sampling in general genetics studies. This article may provide some help in genetics teaching.
Pedagogical Simulation of Sampling Distributions and the Central Limit Theorem
ERIC Educational Resources Information Center
Hagtvedt, Reidar; Jones, Gregory Todd; Jones, Kari
2007-01-01
Students often find the fact that a sample statistic is a random variable very hard to grasp. Even more mysterious is why a sample mean should become ever more Normal as the sample size increases. This simulation tool is meant to illustrate the process, thereby giving students some intuitive grasp of the relationship between a parent population…
Is Knowledge Random? Introducing Sampling and Bias through Outdoor Inquiry
ERIC Educational Resources Information Center
Stier, Sam
2010-01-01
Sampling, very generally, is the process of learning about something by selecting and assessing representative parts of that population or object. In the inquiry activity described here, students learned about sampling techniques as they estimated the number of trees greater than 12 cm dbh (diameter at breast height) in a wooded, discrete area…
Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.
Cecconi, Lorenzo; Grisotto, Laura; Catelan, Dolores; Lagazio, Corrado; Berrocal, Veronica; Biggeri, Annibale
2016-08-01
Preferential sampling refers to any situation in which the spatial process and the sampling locations are not stochastically independent. In this paper, we present two examples of geostatistical analysis in which the usual assumption of stochastic independence between the point process and the measurement process is violated. To account for preferential sampling, we specify a flexible and general Bayesian geostatistical model that includes a shared spatial random component. We apply the proposed model to two different case studies that allow us to highlight three different modeling and inferential aspects of geostatistical modeling under preferential sampling: (1) continuous or finite spatial sampling frame; (2) underlying causal model and relevant covariates; and (3) inferential goals related to mean prediction surface or prediction uncertainty. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Witteveen, Jeroen A. S.; Bijl, Hester
2009-10-01
The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.
The coalescent process in models with selection and recombination.
Hudson, R R; Kaplan, N L
1988-11-01
The statistical properties of the process describing the genealogical history of a random sample of genes at a selectively neutral locus which is linked to a locus at which natural selection operates are investigated. It is found that the equations describing this process are simple modifications of the equations describing the process assuming that the two loci are completely linked. Thus, the statistical properties of the genealogical process for a random sample at a neutral locus linked to a locus with selection follow from the results obtained for the selected locus. Sequence data from the alcohol dehydrogenase (Adh) region of Drosophila melanogaster are examined and compared to predictions based on the theory. It is found that the spatial distribution of nucleotide differences between Fast and Slow alleles of Adh is very similar to the spatial distribution predicted if balancing selection operates to maintain the allozyme variation at the Adh locus. The spatial distribution of nucleotide differences between different Slow alleles of Adh do not match the predictions of this simple model very well.
NASA Astrophysics Data System (ADS)
Peltier, Abigail; Sapkota, Gopal; Potter, Matthew; Busse, Lynda E.; Frantz, Jesse A.; Shaw, L. Brandon; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.; Poutous, Menelaos K.
2017-02-01
Random anti-reflecting subwavelength surface structures (rARSS) have been shown to suppress Fresnel reflection and scatter from optical surfaces. The structures effectively function as a gradient-refractive-index at the substrate boundary, and the spectral transmission properties of the boundary have been shown to depend on the structure's statistical properties (diameter, height, and density.) We fabricated rARSS on fused silica substrates using gold masking. A thin layer of gold was deposited on the surface of the substrate and then subjected to a rapid thermal annealing (RTA) process at various temperatures. This RTA process resulted in the formation of gold "islands" on the surface of the substrate, which then acted as a mask while the substrate was dry etched in a reactive ion etching (RIE) process. The plasma etch yielded a fused silica surface covered with randomly arranged "rods" that act as the anti-reflective layer. We present data relating the physical characteristics of the gold "island" statistical populations, and the resulting rARSS "rod" population, as well as, optical scattering losses and spectral transmission properties of the final surfaces. We focus on comparing results between samples processed at different RTA temperatures, as well as samples fabricated without undergoing RTA, to relate fabrication process statistics to transmission enhancement values.
Improvements in sub-grid, microphysics averages using quadrature based approaches
NASA Astrophysics Data System (ADS)
Chowdhary, K.; Debusschere, B.; Larson, V. E.
2013-12-01
Sub-grid variability in microphysical processes plays a critical role in atmospheric climate models. In order to account for this sub-grid variability, Larson and Schanen (2013) propose placing a probability density function on the sub-grid cloud microphysics quantities, e.g. autoconversion rate, essentially interpreting the cloud microphysics quantities as a random variable in each grid box. Random sampling techniques, e.g. Monte Carlo and Latin Hypercube, can be used to calculate statistics, e.g. averages, on the microphysics quantities, which then feed back into the model dynamics on the coarse scale. We propose an alternate approach using numerical quadrature methods based on deterministic sampling points to compute the statistical moments of microphysics quantities in each grid box. We have performed a preliminary test on the Kessler autoconversion formula, and, upon comparison with Latin Hypercube sampling, our approach shows an increased level of accuracy with a reduction in sample size by almost two orders of magnitude. Application to other microphysics processes is the subject of ongoing research.
Crampin, A C; Mwinuka, V; Malema, S S; Glynn, J R; Fine, P E
2001-01-01
Selection bias, particularly of controls, is common in case-control studies and may materially affect the results. Methods of control selection should be tailored both for the risk factors and disease under investigation and for the population being studied. We present here a control selection method devised for a case-control study of tuberculosis in rural Africa (Karonga, northern Malawi) that selects an age/sex frequency-matched random sample of the population, with a geographical distribution in proportion to the population density. We also present an audit of the selection process, and discuss the potential of this method in other settings.
VNIR hyperspectral background characterization methods in adverse weather conditions
NASA Astrophysics Data System (ADS)
Romano, João M.; Rosario, Dalton; Roth, Luz
2009-05-01
Hyperspectral technology is currently being used by the military to detect regions of interest where potential targets may be located. Weather variability, however, may affect the ability for an algorithm to discriminate possible targets from background clutter. Nonetheless, different background characterization approaches may facilitate the ability for an algorithm to discriminate potential targets over a variety of weather conditions. In a previous paper, we introduced a new autonomous target size invariant background characterization process, the Autonomous Background Characterization (ABC) or also known as the Parallel Random Sampling (PRS) method, features a random sampling stage, a parallel process to mitigate the inclusion by chance of target samples into clutter background classes during random sampling; and a fusion of results at the end. In this paper, we will demonstrate how different background characterization approaches are able to improve performance of algorithms over a variety of challenging weather conditions. By using the Mahalanobis distance as the standard algorithm for this study, we compare the performance of different characterization methods such as: the global information, 2 stage global information, and our proposed method, ABC, using data that was collected under a variety of adverse weather conditions. For this study, we used ARDEC's Hyperspectral VNIR Adverse Weather data collection comprised of heavy, light, and transitional fog, light and heavy rain, and low light conditions.
Genealogical Properties of Subsamples in Highly Fecund Populations
NASA Astrophysics Data System (ADS)
Eldon, Bjarki; Freund, Fabian
2018-03-01
We consider some genealogical properties of nested samples. The complete sample is assumed to have been drawn from a natural population characterised by high fecundity and sweepstakes reproduction (abbreviated HFSR). The random gene genealogies of the samples are—due to our assumption of HFSR—modelled by coalescent processes which admit multiple mergers of ancestral lineages looking back in time. Among the genealogical properties we consider are the probability that the most recent common ancestor is shared between the complete sample and the subsample nested within the complete sample; we also compare the lengths of `internal' branches of nested genealogies between different coalescent processes. The results indicate how `informative' a subsample is about the properties of the larger complete sample, how much information is gained by increasing the sample size, and how the `informativeness' of the subsample varies between different coalescent processes.
The contribution of simple random sampling to observed variations in faecal egg counts.
Torgerson, Paul R; Paul, Michaela; Lewis, Fraser I
2012-09-10
It has been over 100 years since the classical paper published by Gosset in 1907, under the pseudonym "Student", demonstrated that yeast cells suspended in a fluid and measured by a haemocytometer conformed to a Poisson process. Similarly parasite eggs in a faecal suspension also conform to a Poisson process. Despite this there are common misconceptions how to analyse or interpret observations from the McMaster or similar quantitative parasitic diagnostic techniques, widely used for evaluating parasite eggs in faeces. The McMaster technique can easily be shown from a theoretical perspective to give variable results that inevitably arise from the random distribution of parasite eggs in a well mixed faecal sample. The Poisson processes that lead to this variability are described and illustrative examples of the potentially large confidence intervals that can arise from observed faecal eggs counts that are calculated from the observations on a McMaster slide. Attempts to modify the McMaster technique, or indeed other quantitative techniques, to ensure uniform egg counts are doomed to failure and belie ignorance of Poisson processes. A simple method to immediately identify excess variation/poor sampling from replicate counts is provided. Copyright © 2012 Elsevier B.V. All rights reserved.
A seamless acquisition digital storage oscilloscope with three-dimensional waveform display
NASA Astrophysics Data System (ADS)
Yang, Kuojun; Tian, Shulin; Zeng, Hao; Qiu, Lei; Guo, Lianping
2014-04-01
In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, which converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition.
A seamless acquisition digital storage oscilloscope with three-dimensional waveform display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Kuojun, E-mail: kuojunyang@gmail.com; Guo, Lianping; School of Electrical and Electronic Engineering, Nanyang Technological University
In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, whichmore » converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition.« less
McClure, Foster D; Lee, Jung K
2012-01-01
The validation process for an analytical method usually employs an interlaboratory study conducted as a balanced completely randomized model involving a specified number of randomly chosen laboratories, each analyzing a specified number of randomly allocated replicates. For such studies, formulas to obtain approximate unbiased estimates of the variance and uncertainty of the sample laboratory-to-laboratory (lab-to-lab) STD (S(L)) have been developed primarily to account for the uncertainty of S(L) when there is a need to develop an uncertainty budget that includes the uncertainty of S(L). For the sake of completeness on this topic, formulas to estimate the variance and uncertainty of the sample lab-to-lab variance (S(L)2) were also developed. In some cases, it was necessary to derive the formulas based on an approximate distribution for S(L)2.
Minimal-post-processing 320-Gbps true random bit generation using physical white chaos.
Wang, Anbang; Wang, Longsheng; Li, Pu; Wang, Yuncai
2017-02-20
Chaotic external-cavity semiconductor laser (ECL) is a promising entropy source for generation of high-speed physical random bits or digital keys. The rate and randomness is unfortunately limited by laser relaxation oscillation and external-cavity resonance, and is usually improved by complicated post processing. Here, we propose using a physical broadband white chaos generated by optical heterodyning of two ECLs as entropy source to construct high-speed random bit generation (RBG) with minimal post processing. The optical heterodyne chaos not only has a white spectrum without signature of relaxation oscillation and external-cavity resonance but also has a symmetric amplitude distribution. Thus, after quantization with a multi-bit analog-digital-convertor (ADC), random bits can be obtained by extracting several least significant bits (LSBs) without any other processing. In experiments, a white chaos with a 3-dB bandwidth of 16.7 GHz is generated. Its entropy rate is estimated as 16 Gbps by single-bit quantization which means a spectrum efficiency of 96%. With quantization using an 8-bit ADC, 320-Gbps physical RBG is achieved by directly extracting 4 LSBs at 80-GHz sampling rate.
Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory
2016-05-12
valued times series from a sample. (A practical algorithm to compute the estimator is a work in progress.) Third, finitely-valued spatial processes...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 mathematical statistics; time series ; Markov chains; random...proved. Second, a statistical method is developed to estimate the memory depth of discrete- time and continuously-valued times series from a sample. (A
Lensless digital holography with diffuse illumination through a pseudo-random phase mask.
Bernet, Stefan; Harm, Walter; Jesacher, Alexander; Ritsch-Marte, Monika
2011-12-05
Microscopic imaging with a setup consisting of a pseudo-random phase mask, and an open CMOS camera, without an imaging objective, is demonstrated. The pseudo random phase mask acts as a diffuser for an incoming laser beam, scattering a speckle pattern to a CMOS chip, which is recorded once as a reference. A sample which is afterwards inserted somewhere in the optical beam path changes the speckle pattern. A single (non-iterative) image processing step, comparing the modified speckle pattern with the previously recorded one, generates a sharp image of the sample. After a first calibration the method works in real-time and allows quantitative imaging of complex (amplitude and phase) samples in an extended three-dimensional volume. Since no lenses are used, the method is free from lens abberations. Compared to standard inline holography the diffuse sample illumination improves the axial sectioning capability by increasing the effective numerical aperture in the illumination path, and it suppresses the undesired so-called twin images. For demonstration, a high resolution spatial light modulator (SLM) is programmed to act as the pseudo-random phase mask. We show experimental results, imaging microscopic biological samples, e.g. insects, within an extended volume at a distance of 15 cm with a transverse and longitudinal resolution of about 60 μm and 400 μm, respectively.
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
True Randomness from Big Data.
Papakonstantinou, Periklis A; Woodruff, David P; Yang, Guang
2016-09-26
Generating random bits is a difficult task, which is important for physical systems simulation, cryptography, and many applications that rely on high-quality random bits. Our contribution is to show how to generate provably random bits from uncertain events whose outcomes are routinely recorded in the form of massive data sets. These include scientific data sets, such as in astronomics, genomics, as well as data produced by individuals, such as internet search logs, sensor networks, and social network feeds. We view the generation of such data as the sampling process from a big source, which is a random variable of size at least a few gigabytes. Our view initiates the study of big sources in the randomness extraction literature. Previous approaches for big sources rely on statistical assumptions about the samples. We introduce a general method that provably extracts almost-uniform random bits from big sources and extensively validate it empirically on real data sets. The experimental findings indicate that our method is efficient enough to handle large enough sources, while previous extractor constructions are not efficient enough to be practical. Quality-wise, our method at least matches quantum randomness expanders and classical world empirical extractors as measured by standardized tests.
NASA Astrophysics Data System (ADS)
Papakonstantinou, Periklis A.; Woodruff, David P.; Yang, Guang
2016-09-01
Generating random bits is a difficult task, which is important for physical systems simulation, cryptography, and many applications that rely on high-quality random bits. Our contribution is to show how to generate provably random bits from uncertain events whose outcomes are routinely recorded in the form of massive data sets. These include scientific data sets, such as in astronomics, genomics, as well as data produced by individuals, such as internet search logs, sensor networks, and social network feeds. We view the generation of such data as the sampling process from a big source, which is a random variable of size at least a few gigabytes. Our view initiates the study of big sources in the randomness extraction literature. Previous approaches for big sources rely on statistical assumptions about the samples. We introduce a general method that provably extracts almost-uniform random bits from big sources and extensively validate it empirically on real data sets. The experimental findings indicate that our method is efficient enough to handle large enough sources, while previous extractor constructions are not efficient enough to be practical. Quality-wise, our method at least matches quantum randomness expanders and classical world empirical extractors as measured by standardized tests.
Papakonstantinou, Periklis A.; Woodruff, David P.; Yang, Guang
2016-01-01
Generating random bits is a difficult task, which is important for physical systems simulation, cryptography, and many applications that rely on high-quality random bits. Our contribution is to show how to generate provably random bits from uncertain events whose outcomes are routinely recorded in the form of massive data sets. These include scientific data sets, such as in astronomics, genomics, as well as data produced by individuals, such as internet search logs, sensor networks, and social network feeds. We view the generation of such data as the sampling process from a big source, which is a random variable of size at least a few gigabytes. Our view initiates the study of big sources in the randomness extraction literature. Previous approaches for big sources rely on statistical assumptions about the samples. We introduce a general method that provably extracts almost-uniform random bits from big sources and extensively validate it empirically on real data sets. The experimental findings indicate that our method is efficient enough to handle large enough sources, while previous extractor constructions are not efficient enough to be practical. Quality-wise, our method at least matches quantum randomness expanders and classical world empirical extractors as measured by standardized tests. PMID:27666514
Dong, Qi; Elliott, Michael R; Raghunathan, Trivellore E
2014-06-01
Outside of the survey sampling literature, samples are often assumed to be generated by a simple random sampling process that produces independent and identically distributed (IID) samples. Many statistical methods are developed largely in this IID world. Application of these methods to data from complex sample surveys without making allowance for the survey design features can lead to erroneous inferences. Hence, much time and effort have been devoted to develop the statistical methods to analyze complex survey data and account for the sample design. This issue is particularly important when generating synthetic populations using finite population Bayesian inference, as is often done in missing data or disclosure risk settings, or when combining data from multiple surveys. By extending previous work in finite population Bayesian bootstrap literature, we propose a method to generate synthetic populations from a posterior predictive distribution in a fashion inverts the complex sampling design features and generates simple random samples from a superpopulation point of view, making adjustment on the complex data so that they can be analyzed as simple random samples. We consider a simulation study with a stratified, clustered unequal-probability of selection sample design, and use the proposed nonparametric method to generate synthetic populations for the 2006 National Health Interview Survey (NHIS), and the Medical Expenditure Panel Survey (MEPS), which are stratified, clustered unequal-probability of selection sample designs.
Dong, Qi; Elliott, Michael R.; Raghunathan, Trivellore E.
2017-01-01
Outside of the survey sampling literature, samples are often assumed to be generated by a simple random sampling process that produces independent and identically distributed (IID) samples. Many statistical methods are developed largely in this IID world. Application of these methods to data from complex sample surveys without making allowance for the survey design features can lead to erroneous inferences. Hence, much time and effort have been devoted to develop the statistical methods to analyze complex survey data and account for the sample design. This issue is particularly important when generating synthetic populations using finite population Bayesian inference, as is often done in missing data or disclosure risk settings, or when combining data from multiple surveys. By extending previous work in finite population Bayesian bootstrap literature, we propose a method to generate synthetic populations from a posterior predictive distribution in a fashion inverts the complex sampling design features and generates simple random samples from a superpopulation point of view, making adjustment on the complex data so that they can be analyzed as simple random samples. We consider a simulation study with a stratified, clustered unequal-probability of selection sample design, and use the proposed nonparametric method to generate synthetic populations for the 2006 National Health Interview Survey (NHIS), and the Medical Expenditure Panel Survey (MEPS), which are stratified, clustered unequal-probability of selection sample designs. PMID:29200608
NASA Astrophysics Data System (ADS)
Deng, Chengbin; Wu, Changshan
2013-12-01
Urban impervious surface information is essential for urban and environmental applications at the regional/national scales. As a popular image processing technique, spectral mixture analysis (SMA) has rarely been applied to coarse-resolution imagery due to the difficulty of deriving endmember spectra using traditional endmember selection methods, particularly within heterogeneous urban environments. To address this problem, we derived endmember signatures through a least squares solution (LSS) technique with known abundances of sample pixels, and integrated these endmember signatures into SMA for mapping large-scale impervious surface fraction. In addition, with the same sample set, we carried out objective comparative analyses among SMA (i.e. fully constrained and unconstrained SMA) and machine learning (i.e. Cubist regression tree and Random Forests) techniques. Analysis of results suggests three major conclusions. First, with the extrapolated endmember spectra from stratified random training samples, the SMA approaches performed relatively well, as indicated by small MAE values. Second, Random Forests yields more reliable results than Cubist regression tree, and its accuracy is improved with increased sample sizes. Finally, comparative analyses suggest a tentative guide for selecting an optimal approach for large-scale fractional imperviousness estimation: unconstrained SMA might be a favorable option with a small number of samples, while Random Forests might be preferred if a large number of samples are available.
NASA Astrophysics Data System (ADS)
Sergeenko, N. P.
2017-11-01
An adequate statistical method should be developed in order to predict probabilistically the range of ionospheric parameters. This problem is solved in this paper. The time series of the critical frequency of the layer F2- foF2( t) were subjected to statistical processing. For the obtained samples {δ foF2}, statistical distributions and invariants up to the fourth order are calculated. The analysis shows that the distributions differ from the Gaussian law during the disturbances. At levels of sufficiently small probability distributions, there are arbitrarily large deviations from the model of the normal process. Therefore, it is attempted to describe statistical samples {δ foF2} based on the Poisson model. For the studied samples, the exponential characteristic function is selected under the assumption that time series are a superposition of some deterministic and random processes. Using the Fourier transform, the characteristic function is transformed into a nonholomorphic excessive-asymmetric probability-density function. The statistical distributions of the samples {δ foF2} calculated for the disturbed periods are compared with the obtained model distribution function. According to the Kolmogorov's criterion, the probabilities of the coincidence of a posteriori distributions with the theoretical ones are P 0.7-0.9. The conducted analysis makes it possible to draw a conclusion about the applicability of a model based on the Poisson random process for the statistical description and probabilistic variation estimates during heliogeophysical disturbances of the variations {δ foF2}.
Sampling design for spatially distributed hydrogeologic and environmental processes
Christakos, G.; Olea, R.A.
1992-01-01
A methodology for the design of sampling networks over space is proposed. The methodology is based on spatial random field representations of nonhomogeneous natural processes, and on optimal spatial estimation techniques. One of the most important results of random field theory for physical sciences is its rationalization of correlations in spatial variability of natural processes. This correlation is extremely important both for interpreting spatially distributed observations and for predictive performance. The extent of site sampling and the types of data to be collected will depend on the relationship of subsurface variability to predictive uncertainty. While hypothesis formulation and initial identification of spatial variability characteristics are based on scientific understanding (such as knowledge of the physics of the underlying phenomena, geological interpretations, intuition and experience), the support offered by field data is statistically modelled. This model is not limited by the geometric nature of sampling and covers a wide range in subsurface uncertainties. A factorization scheme of the sampling error variance is derived, which possesses certain atttactive properties allowing significant savings in computations. By means of this scheme, a practical sampling design procedure providing suitable indices of the sampling error variance is established. These indices can be used by way of multiobjective decision criteria to obtain the best sampling strategy. Neither the actual implementation of the in-situ sampling nor the solution of the large spatial estimation systems of equations are necessary. The required values of the accuracy parameters involved in the network design are derived using reference charts (readily available for various combinations of data configurations and spatial variability parameters) and certain simple yet accurate analytical formulas. Insight is gained by applying the proposed sampling procedure to realistic examples related to sampling problems in two dimensions. ?? 1992.
Maintenance of tactile short-term memory for locations is mediated by spatial attention.
Katus, Tobias; Andersen, Søren K; Müller, Matthias M
2012-01-01
According to the attention-based rehearsal hypothesis, maintenance of spatial information is mediated by covert orienting towards memorized locations. In a somatosensory memory task, participants simultaneously received bilateral pairs of mechanical sample pulses. For each hand, sample stimuli were randomly assigned to one of three locations (fingers). A subsequent visual retro-cue determined whether the left or right hand sample was to be memorized. The retro-cue elicited lateralized activity reflecting the location of the relevant sample stimulus. Sensory processing during the retention period was probed by task-irrelevant pulses randomized to locations at the cued and uncued hand. The somatosensory N140 was enhanced for probes delivered to the cued hand, relative to uncued. Probes presented shortly after the retro-cue showed greatest attentional modulations. This suggests that transient contributions from retrospective selection overlapped with the sustained effect of attention-based rehearsal. In conclusion, focal attention shifts within tactile mnemonic content occurred after retro-cues and guided sensory processing during retention. Copyright © 2011 Elsevier B.V. All rights reserved.
Variance of discharge estimates sampled using acoustic Doppler current profilers from moving boats
Garcia, Carlos M.; Tarrab, Leticia; Oberg, Kevin; Szupiany, Ricardo; Cantero, Mariano I.
2012-01-01
This paper presents a model for quantifying the random errors (i.e., variance) of acoustic Doppler current profiler (ADCP) discharge measurements from moving boats for different sampling times. The model focuses on the random processes in the sampled flow field and has been developed using statistical methods currently available for uncertainty analysis of velocity time series. Analysis of field data collected using ADCP from moving boats from three natural rivers of varying sizes and flow conditions shows that, even though the estimate of the integral time scale of the actual turbulent flow field is larger than the sampling interval, the integral time scale of the sampled flow field is on the order of the sampling interval. Thus, an equation for computing the variance error in discharge measurements associated with different sampling times, assuming uncorrelated flow fields is appropriate. The approach is used to help define optimal sampling strategies by choosing the exposure time required for ADCPs to accurately measure flow discharge.
Paul L. Patterson; Sara A. Goeking
2012-01-01
The annual forest inventory of New Mexico began as an accelerated inventory, and 8 of the 10 Phase 2 panels were sampled between 2008 and 2011. The inventory includes a large proportion of nonresponse. FIA's estimation process uses post-stratification and assumes that nonresponse occurs at random within each stratum. We construct an estimator for the New Mexico...
2013-06-01
lenses of unconsolidated sand and rounded river gravel overlain by as much as 5 m of silt. Gravel consists mostly of quartz and metamorphic rock with...iii LIST OF FIGURES Page Figure 1. Example of multi-increment sampling using a systematic-random sampling design for collecting two separate...The small arms firing Range 16 Record berms at Fort Wainwright. .................... 25 Figure 9. Location of berms sampled using ISM and grab
Analytical Applications of Monte Carlo Techniques.
ERIC Educational Resources Information Center
Guell, Oscar A.; Holcombe, James A.
1990-01-01
Described are analytical applications of the theory of random processes, in particular solutions obtained by using statistical procedures known as Monte Carlo techniques. Supercomputer simulations, sampling, integration, ensemble, annealing, and explicit simulation are discussed. (CW)
Methods and analysis of realizing randomized grouping.
Hu, Liang-Ping; Bao, Xiao-Lei; Wang, Qi
2011-07-01
Randomization is one of the four basic principles of research design. The meaning of randomization includes two aspects: one is to randomly select samples from the population, which is known as random sampling; the other is to randomly group all the samples, which is called randomized grouping. Randomized grouping can be subdivided into three categories: completely, stratified and dynamically randomized grouping. This article mainly introduces the steps of complete randomization, the definition of dynamic randomization and the realization of random sampling and grouping by SAS software.
Sampling through time and phylodynamic inference with coalescent and birth–death models
Volz, Erik M.; Frost, Simon D. W.
2014-01-01
Many population genetic models have been developed for the purpose of inferring population size and growth rates from random samples of genetic data. We examine two popular approaches to this problem, the coalescent and the birth–death-sampling model (BDM), in the context of estimating population size and birth rates in a population growing exponentially according to the birth–death branching process. For sequences sampled at a single time, we found the coalescent and the BDM gave virtually indistinguishable results in terms of the growth rates and fraction of the population sampled, even when sampling from a small population. For sequences sampled at multiple time points, we find that the birth–death model estimators are subject to large bias if the sampling process is misspecified. Since BDMs incorporate a model of the sampling process, we show how much of the statistical power of BDMs arises from the sequence of sample times and not from the genealogical tree. This motivates the development of a new coalescent estimator, which is augmented with a model of the known sampling process and is potentially more precise than the coalescent that does not use sample time information. PMID:25401173
Evaluation of process errors in bed load sampling using a Dune Model
Gomez, Basil; Troutman, Brent M.
1997-01-01
Reliable estimates of the streamwide bed load discharge obtained using sampling devices are dependent upon good at-a-point knowledge across the full width of the channel. Using field data and information derived from a model that describes the geometric features of a dune train in terms of a spatial process observed at a fixed point in time, we show that sampling errors decrease as the number of samples collected increases, and the number of traverses of the channel over which the samples are collected increases. It also is preferable that bed load sampling be conducted at a pace which allows a number of bed forms to pass through the sampling cross section. The situations we analyze and simulate pertain to moderate transport conditions in small rivers. In such circumstances, bed load sampling schemes typically should involve four or five traverses of a river, and the collection of 20–40 samples at a rate of five or six samples per hour. By ensuring that spatial and temporal variability in the transport process is accounted for, such a sampling design reduces both random and systematic errors and hence minimizes the total error involved in the sampling process.
Optimal estimation for discrete time jump processes
NASA Technical Reports Server (NTRS)
Vaca, M. V.; Tretter, S. A.
1977-01-01
Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.
Optimal estimation for discrete time jump processes
NASA Technical Reports Server (NTRS)
Vaca, M. V.; Tretter, S. A.
1978-01-01
Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.
ERIC Educational Resources Information Center
Glik, Deborah C.; Eisenman, David P.; Zhou, Qiong; Tseng, Chi-Hong; Asch, Steven M.
2014-01-01
Only 40-50% of households in the United States are currently disaster prepared. In this intervention study, respondent-driven sampling was used to select a sample (n = 187) of low income, Latino residents of Los Angeles County, randomly assigned into two treatment conditions: (i) household preparedness education received through…
USDA-ARS?s Scientific Manuscript database
The concentration of mercury, cadmium, lead, and arsenic along with glyphosate and an extensive array of pesticides in the U.S. peanut crop was assessed for crop years 2013-2015. Samples were randomly selected from various buying points during the grading process. Samples were selected from the thre...
Science Teachers' Information Processing Behaviours in Nepal: A Reflective Comparative Study
ERIC Educational Resources Information Center
Acharya, Kamal Prasad
2017-01-01
This study examines the investigation of the information processing behaviours of secondary level science teachers. It is based on the data collected from 50 secondary level school science teachers working in Kathmandy valley. The simple random sampling and the Cognitive Style Inventory have been used respectively as the technique and tool to…
Cognitive Processing Therapy for Veterans with Military-Related Posttraumatic Stress Disorder
ERIC Educational Resources Information Center
Monson, Candice M.; Schnurr, Paula P.; Resick, Patricia A.; Friedman, Matthew J.; Young-Xu, Yinong; Stevens, Susan P.
2006-01-01
Sixty veterans (54 men, 6 women) with chronic military-related posttraumatic stress disorder (PTSD) participated in a wait-list controlled trial of cognitive processing therapy (CPT). The overall dropout rate was 16.6% (20% from CPT, 13% from waiting list). Random regression analyses of the intention-to-treat sample revealed significant…
Chemical mixtures in the environment are often the result of a dynamic process. When dose-response data are available on random samples throughout the process, equivalence testing can be used to determine whether the mixtures are sufficiently similar based on a pre-specified biol...
ERIC Educational Resources Information Center
Shamir, Adina
2009-01-01
This research investigated the effects of an educational electronic book (e-book) on low socioeconomic status (SES) kindergarteners' emergent literacy while focusing on the relationship between process and outcomes during joint learning. The sample (96 kindergarteners, aged five to six) was randomly assigned to experimental (e-book activation) and…
Does participation in art classes influence performance on two different cognitive tasks?
Schindler, Manuel; Maihöfner, Christian; Bolwerk, Anne; Lang, Frieder R
2017-04-01
Effects of two mentally stimulating art interventions on processing speed and visuo-spatial cognition were compared in three samples. In a randomized 10-week art intervention study with a pre-post follow-up design, 113 adults (27 healthy older adults with subjective memory complaints, 50 healthy older adults and 36 healthy younger adults) were randomly assigned to one of two groups: visual art production or cognitive art evaluation, where the participants either produced or evaluated art. ANOVAs with repeated measures were computed to observe effects on the Symbol-Digit Test, and the Stick Test. Significant Time effects were found with regard to processing speed and visuo-spatial cognition. Additionally, there was found a significant Time × Sample interaction for processing speed. The effects proved robust after testing for education and adding sex as additional factor. Mental stimulation by participation in art classes leads to an improvement of processing speed and visuo-spatial cognition. Further investigation is required to improve understanding of the potential impact of art intervention on cognitive abilities across adulthood.
Visell, Yon
2015-04-01
This paper proposes a fast, physically accurate method for synthesizing multimodal, acoustic and haptic, signatures of distributed fracture in quasi-brittle heterogeneous materials, such as wood, granular media, or other fiber composites. Fracture processes in these materials are challenging to simulate with existing methods, due to the prevalence of large numbers of disordered, quasi-random spatial degrees of freedom, representing the complex physical state of a sample over the geometric volume of interest. Here, I develop an algorithm for simulating such processes, building on a class of statistical lattice models of fracture that have been widely investigated in the physics literature. This algorithm is enabled through a recently published mathematical construction based on the inverse transform method of random number sampling. It yields a purely time domain stochastic jump process representing stress fluctuations in the medium. The latter can be readily extended by a mean field approximation that captures the averaged constitutive (stress-strain) behavior of the material. Numerical simulations and interactive examples demonstrate the ability of these algorithms to generate physically plausible acoustic and haptic signatures of fracture in complex, natural materials interactively at audio sampling rates.
CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.
Shalizi, Cosma Rohilla; Rinaldo, Alessandro
2013-04-01
The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling , or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.
CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS
Shalizi, Cosma Rohilla; Rinaldo, Alessandro
2015-01-01
The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling, or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM’s expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses. PMID:26166910
The effect of using bomb calorimeter in improving science process skills of physics students
NASA Astrophysics Data System (ADS)
Edie, S. S.; Masturi; Safitri, H. N.; Alighiri, D.; Susilawati; Sari, L. M. E. K.; Marwoto, P.; Iswari, R. S.
2018-03-01
The bomb calorimeter is laboratory equipment which serves to calculate the value of combustion heat or heat capacity of a sample in excess oxygen combustion. This study aims to determine the effect of using bomb calorimeter on science process skill of physics students. Influences include the effectiveness of using the equipment and knowing the improvement of students’ science process skills before and after using tools. The sample used simple random sampling with one group pretest-posttest research design. The instrument that used is written test that adjusts with science process skills aspect. Analysis of the effectiveness of bomb calorimeter showed useful result 87.88%, while the study of science skill improvement showed n-gain value 0.64 that is the medium category.
Dufresne, Jaimie; Florentinus-Mefailoski, Angelique; Ajambo, Juliet; Ferwa, Ammara; Bowden, Peter; Marshall, John
2017-01-01
Normal human EDTA plasma samples were collected on ice, processed ice cold, and stored in a freezer at - 80 °C prior to experiments. Plasma test samples from the - 80 °C freezer were thawed on ice or intentionally warmed to room temperature. Protein content was measured by CBBR binding and the release of alcohol soluble amines by the Cd ninhydrin assay. Plasma peptides released over time were collected over C18 for random and independent sampling by liquid chromatography micro electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) and correlated with X!TANDEM. Fully tryptic peptides by X!TANDEM returned a similar set of proteins, but was more computationally efficient, than "no enzyme" correlations. Plasma samples maintained on ice, or ice with a cocktail of protease inhibitors, showed lower background amounts of plasma peptides compared to samples incubated at room temperature. Regression analysis indicated that warming plasma to room temperature, versus ice cold, resulted in a ~ twofold increase in the frequency of peptide identification over hours-days of incubation at room temperature. The type I error rate of the protein identification from the X!TANDEM algorithm combined was estimated to be low compared to a null model of computer generated random MS/MS spectra. The peptides of human plasma were identified and quantified with low error rates by random and independent sampling that revealed 1000s of peptides from hundreds of human plasma proteins from endogenous tryptic peptides.
[Krigle estimation and its simulated sampling of Chilo suppressalis population density].
Yuan, Zheming; Bai, Lianyang; Wang, Kuiwu; Hu, Xiangyue
2004-07-01
In order to draw up a rational sampling plan for the larvae population of Chilo suppressalis, an original population and its two derivative populations, random population and sequence population, were sampled and compared with random sampling, gap-range-random sampling, and a new systematic sampling integrated Krigle interpolation and random original position. As for the original population whose distribution was up to aggregative and dependence range in line direction was 115 cm (6.9 units), gap-range-random sampling in line direction was more precise than random sampling. Distinguishing the population pattern correctly is the key to get a better precision. Gap-range-random sampling and random sampling are fit for aggregated population and random population, respectively, but both of them are difficult to apply in practice. Therefore, a new systematic sampling named as Krigle sample (n = 441) was developed to estimate the density of partial sample (partial estimation, n = 441) and population (overall estimation, N = 1500). As for original population, the estimated precision of Krigle sample to partial sample and population was better than that of investigation sample. With the increase of the aggregation intensity of population, Krigel sample was more effective than investigation sample in both partial estimation and overall estimation in the appropriate sampling gap according to the dependence range.
Flexible sampling large-scale social networks by self-adjustable random walk
NASA Astrophysics Data System (ADS)
Xu, Xiao-Ke; Zhu, Jonathan J. H.
2016-12-01
Online social networks (OSNs) have become an increasingly attractive gold mine for academic and commercial researchers. However, research on OSNs faces a number of difficult challenges. One bottleneck lies in the massive quantity and often unavailability of OSN population data. Sampling perhaps becomes the only feasible solution to the problems. How to draw samples that can represent the underlying OSNs has remained a formidable task because of a number of conceptual and methodological reasons. Especially, most of the empirically-driven studies on network sampling are confined to simulated data or sub-graph data, which are fundamentally different from real and complete-graph OSNs. In the current study, we propose a flexible sampling method, called Self-Adjustable Random Walk (SARW), and test it against with the population data of a real large-scale OSN. We evaluate the strengths of the sampling method in comparison with four prevailing methods, including uniform, breadth-first search (BFS), random walk (RW), and revised RW (i.e., MHRW) sampling. We try to mix both induced-edge and external-edge information of sampled nodes together in the same sampling process. Our results show that the SARW sampling method has been able to generate unbiased samples of OSNs with maximal precision and minimal cost. The study is helpful for the practice of OSN research by providing a highly needed sampling tools, for the methodological development of large-scale network sampling by comparative evaluations of existing sampling methods, and for the theoretical understanding of human networks by highlighting discrepancies and contradictions between existing knowledge/assumptions of large-scale real OSN data.
Systematic versus random sampling in stereological studies.
West, Mark J
2012-12-01
The sampling that takes place at all levels of an experimental design must be random if the estimate is to be unbiased in a statistical sense. There are two fundamental ways by which one can make a random sample of the sections and positions to be probed on the sections. Using a card-sampling analogy, one can pick any card at all out of a deck of cards. This is referred to as independent random sampling because the sampling of any one card is made without reference to the position of the other cards. The other approach to obtaining a random sample would be to pick a card within a set number of cards and others at equal intervals within the deck. Systematic sampling along one axis of many biological structures is more efficient than random sampling, because most biological structures are not randomly organized. This article discusses the merits of systematic versus random sampling in stereological studies.
Zaharov, V V; Farahi, R H; Snyder, P J; Davison, B H; Passian, A
2014-11-21
Resolving weak spectral variations in the dynamic response of materials that are either dominated or excited by stochastic processes remains a challenge. Responses that are thermal in origin are particularly relevant examples due to the delocalized nature of heat. Despite its inherent properties in dealing with stochastic processes, the Karhunen-Loève expansion has not been fully exploited in measurement of systems that are driven solely by random forces or can exhibit large thermally driven random fluctuations. Here, we present experimental results and analysis of the archetypes (a) the resonant excitation and transient response of an atomic force microscope probe by the ambient random fluctuations and nanoscale photothermal sample response, and (b) the photothermally scattered photons in pump-probe spectroscopy. In each case, the dynamic process is represented as an infinite series with random coefficients to obtain pertinent frequency shifts and spectral peaks and demonstrate spectral enhancement for a set of compounds including the spectrally complex biomass. The considered cases find important applications in nanoscale material characterization, biosensing, and spectral identification of biological and chemical agents.
Sample design effects in landscape genetics
Oyler-McCance, Sara J.; Fedy, Bradley C.; Landguth, Erin L.
2012-01-01
An important research gap in landscape genetics is the impact of different field sampling designs on the ability to detect the effects of landscape pattern on gene flow. We evaluated how five different sampling regimes (random, linear, systematic, cluster, and single study site) affected the probability of correctly identifying the generating landscape process of population structure. Sampling regimes were chosen to represent a suite of designs common in field studies. We used genetic data generated from a spatially-explicit, individual-based program and simulated gene flow in a continuous population across a landscape with gradual spatial changes in resistance to movement. Additionally, we evaluated the sampling regimes using realistic and obtainable number of loci (10 and 20), number of alleles per locus (5 and 10), number of individuals sampled (10-300), and generational time after the landscape was introduced (20 and 400). For a simulated continuously distributed species, we found that random, linear, and systematic sampling regimes performed well with high sample sizes (>200), levels of polymorphism (10 alleles per locus), and number of molecular markers (20). The cluster and single study site sampling regimes were not able to correctly identify the generating process under any conditions and thus, are not advisable strategies for scenarios similar to our simulations. Our research emphasizes the importance of sampling data at ecologically appropriate spatial and temporal scales and suggests careful consideration for sampling near landscape components that are likely to most influence the genetic structure of the species. In addition, simulating sampling designs a priori could help guide filed data collection efforts.
NASA Astrophysics Data System (ADS)
Chin, Fun-Tat; Lin, Yu-Hsien; Yang, Wen-Luh; Liao, Chin-Hsuan; Lin, Li-Min; Hsiao, Yu-Ping; Chao, Tien-Sheng
2015-01-01
A limited copper (Cu)-source Cu:SiO2 switching layer composed of various Cu concentrations was fabricated using a chemical soaking (CS) technique. The switching layer was then studied for developing applications in resistive random access memory (ReRAM) devices. Observing the resistive switching mechanism exhibited by all the samples suggested that Cu conductive filaments formed and ruptured during the set/reset process. The experimental results indicated that the endurance property failure that occurred was related to the joule heating effect. Moreover, the endurance switching cycle increased as the Cu concentration decreased. In high-temperature tests, the samples demonstrated that the operating (set/reset) voltages decreased as the temperature increased, and an Arrhenius plot was used to calculate the activation energy of the set/reset process. In addition, the samples demonstrated stable data retention properties when baked at 85 °C, but the samples with low Cu concentrations exhibited short retention times in the low-resistance state (LRS) during 125 °C tests. Therefore, Cu concentration is a crucial factor in the trade-off between the endurance and retention properties; furthermore, the Cu concentration can be easily modulated using this CS technique.
The Influence of Mark-Recapture Sampling Effort on Estimates of Rock Lobster Survival
Kordjazi, Ziya; Frusher, Stewart; Buxton, Colin; Gardner, Caleb; Bird, Tomas
2016-01-01
Five annual capture-mark-recapture surveys on Jasus edwardsii were used to evaluate the effect of sample size and fishing effort on the precision of estimated survival probability. Datasets of different numbers of individual lobsters (ranging from 200 to 1,000 lobsters) were created by random subsampling from each annual survey. This process of random subsampling was also used to create 12 datasets of different levels of effort based on three levels of the number of traps (15, 30 and 50 traps per day) and four levels of the number of sampling-days (2, 4, 6 and 7 days). The most parsimonious Cormack-Jolly-Seber (CJS) model for estimating survival probability shifted from a constant model towards sex-dependent models with increasing sample size and effort. A sample of 500 lobsters or 50 traps used on four consecutive sampling-days was required for obtaining precise survival estimations for males and females, separately. Reduced sampling effort of 30 traps over four sampling days was sufficient if a survival estimate for both sexes combined was sufficient for management of the fishery. PMID:26990561
NASA Astrophysics Data System (ADS)
Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato
2017-07-01
An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.
NASA Astrophysics Data System (ADS)
Liu, Zhangjun; Liu, Zenghui
2018-06-01
This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.
Applying Active Learning to Assertion Classification of Concepts in Clinical Text
Chen, Yukun; Mani, Subramani; Xu, Hua
2012-01-01
Supervised machine learning methods for clinical natural language processing (NLP) research require a large number of annotated samples, which are very expensive to build because of the involvement of physicians. Active learning, an approach that actively samples from a large pool, provides an alternative solution. Its major goal in classification is to reduce the annotation effort while maintaining the quality of the predictive model. However, few studies have investigated its uses in clinical NLP. This paper reports an application of active learning to a clinical text classification task: to determine the assertion status of clinical concepts. The annotated corpus for the assertion classification task in the 2010 i2b2/VA Clinical NLP Challenge was used in this study. We implemented several existing and newly developed active learning algorithms and assessed their uses. The outcome is reported in the global ALC score, based on the Area under the average Learning Curve of the AUC (Area Under the Curve) score. Results showed that when the same number of annotated samples was used, active learning strategies could generate better classification models (best ALC – 0.7715) than the passive learning method (random sampling) (ALC – 0.7411). Moreover, to achieve the same classification performance, active learning strategies required fewer samples than the random sampling method. For example, to achieve an AUC of 0.79, the random sampling method used 32 samples, while our best active learning algorithm required only 12 samples, a reduction of 62.5% in manual annotation effort. PMID:22127105
Quantum random bit generation using energy fluctuations in stimulated Raman scattering.
Bustard, Philip J; England, Duncan G; Nunn, Josh; Moffatt, Doug; Spanner, Michael; Lausten, Rune; Sussman, Benjamin J
2013-12-02
Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.
A new mosaic method for three-dimensional surface
NASA Astrophysics Data System (ADS)
Yuan, Yun; Zhu, Zhaokun; Ding, Yongjun
2011-08-01
Three-dimensional (3-D) data mosaic is a indispensable link in surface measurement and digital terrain map generation. With respect to the mosaic problem of the local unorganized cloud points with rude registration and mass mismatched points, a new mosaic method for 3-D surface based on RANSAC is proposed. Every circular of this method is processed sequentially by random sample with additional shape constraint, data normalization of cloud points, absolute orientation, data denormalization of cloud points, inlier number statistic, etc. After N random sample trials the largest consensus set is selected, and at last the model is re-estimated using all the points in the selected subset. The minimal subset is composed of three non-colinear points which form a triangle. The shape of triangle is considered in random sample selection in order to make the sample selection reasonable. A new coordinate system transformation algorithm presented in this paper is used to avoid the singularity. The whole rotation transformation between the two coordinate systems can be solved by twice rotations expressed by Euler angle vector, each rotation has explicit physical means. Both simulation and real data are used to prove the correctness and validity of this mosaic method. This method has better noise immunity due to its robust estimation property, and has high accuracy as the shape constraint is added to random sample and the data normalization added to the absolute orientation. This method is applicable for high precision measurement of three-dimensional surface and also for the 3-D terrain mosaic.
Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling
Barranca, Victor J.; Kovačič, Gregor; Zhou, Douglas; Cai, David
2016-01-01
Compressive sensing (CS) theory demonstrates that by using uniformly-random sampling, rather than uniformly-spaced sampling, higher quality image reconstructions are often achievable. Considering that the structure of sampling protocols has such a profound impact on the quality of image reconstructions, we formulate a new sampling scheme motivated by physiological receptive field structure, localized random sampling, which yields significantly improved CS image reconstructions. For each set of localized image measurements, our sampling method first randomly selects an image pixel and then measures its nearby pixels with probability depending on their distance from the initially selected pixel. We compare the uniformly-random and localized random sampling methods over a large space of sampling parameters, and show that, for the optimal parameter choices, higher quality image reconstructions can be consistently obtained by using localized random sampling. In addition, we argue that the localized random CS optimal parameter choice is stable with respect to diverse natural images, and scales with the number of samples used for reconstruction. We expect that the localized random sampling protocol helps to explain the evolutionarily advantageous nature of receptive field structure in visual systems and suggests several future research areas in CS theory and its application to brain imaging. PMID:27555464
A Statistical Method to Distinguish Functional Brain Networks
Fujita, André; Vidal, Maciel C.; Takahashi, Daniel Y.
2017-01-01
One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism (p < 0.001). PMID:28261045
A Statistical Method to Distinguish Functional Brain Networks.
Fujita, André; Vidal, Maciel C; Takahashi, Daniel Y
2017-01-01
One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism ( p < 0.001).
Direct generation of all-optical random numbers from optical pulse amplitude chaos.
Li, Pu; Wang, Yun-Cai; Wang, An-Bang; Yang, Ling-Zhen; Zhang, Ming-Jiang; Zhang, Jian-Zhong
2012-02-13
We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.
Effects of unstratified and centre-stratified randomization in multi-centre clinical trials.
Anisimov, Vladimir V
2011-01-01
This paper deals with the analysis of randomization effects in multi-centre clinical trials. The two randomization schemes most often used in clinical trials are considered: unstratified and centre-stratified block-permuted randomization. The prediction of the number of patients randomized to different treatment arms in different regions during the recruitment period accounting for the stochastic nature of the recruitment and effects of multiple centres is investigated. A new analytic approach using a Poisson-gamma patient recruitment model (patients arrive at different centres according to Poisson processes with rates sampled from a gamma distributed population) and its further extensions is proposed. Closed-form expressions for corresponding distributions of the predicted number of the patients randomized in different regions are derived. In the case of two treatments, the properties of the total imbalance in the number of patients on treatment arms caused by using centre-stratified randomization are investigated and for a large number of centres a normal approximation of imbalance is proved. The impact of imbalance on the power of the study is considered. It is shown that the loss of statistical power is practically negligible and can be compensated by a minor increase in sample size. The influence of patient dropout is also investigated. The impact of randomization on predicted drug supply overage is discussed. Copyright © 2010 John Wiley & Sons, Ltd.
Inference from clustering with application to gene-expression microarrays.
Dougherty, Edward R; Barrera, Junior; Brun, Marcel; Kim, Seungchan; Cesar, Roberto M; Chen, Yidong; Bittner, Michael; Trent, Jeffrey M
2002-01-01
There are many algorithms to cluster sample data points based on nearness or a similarity measure. Often the implication is that points in different clusters come from different underlying classes, whereas those in the same cluster come from the same class. Stochastically, the underlying classes represent different random processes. The inference is that clusters represent a partition of the sample points according to which process they belong. This paper discusses a model-based clustering toolbox that evaluates cluster accuracy. Each random process is modeled as its mean plus independent noise, sample points are generated, the points are clustered, and the clustering error is the number of points clustered incorrectly according to the generating random processes. Various clustering algorithms are evaluated based on process variance and the key issue of the rate at which algorithmic performance improves with increasing numbers of experimental replications. The model means can be selected by hand to test the separability of expected types of biological expression patterns. Alternatively, the model can be seeded by real data to test the expected precision of that output or the extent of improvement in precision that replication could provide. In the latter case, a clustering algorithm is used to form clusters, and the model is seeded with the means and variances of these clusters. Other algorithms are then tested relative to the seeding algorithm. Results are averaged over various seeds. Output includes error tables and graphs, confusion matrices, principal-component plots, and validation measures. Five algorithms are studied in detail: K-means, fuzzy C-means, self-organizing maps, hierarchical Euclidean-distance-based and correlation-based clustering. The toolbox is applied to gene-expression clustering based on cDNA microarrays using real data. Expression profile graphics are generated and error analysis is displayed within the context of these profile graphics. A large amount of generated output is available over the web.
On-field measurement trial of 4×128 Gbps PDM-QPSK signals by linear optical sampling
NASA Astrophysics Data System (ADS)
Bin Liu; Wu, Zhichao; Fu, Songnian; Feng, Yonghua; Liu, Deming
2017-02-01
Linear optical sampling is a promising characterization technique for advanced modulation formats, together with digital signal processing (DSP) and software-synchronized algorithm. We theoretically investigate the acquisition of optical sampling, when the high-speed signal under test is either periodic or random. Especially, when the profile of optical sampling pulse is asymmetrical, the repetition frequency of sampling pulse needs careful adjustment in order to obtain correct waveform. Then, we demonstrate on-field measurement trial of commercial four-channel 128 Gbps polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signals with truly random characteristics by self-developed equipment. A passively mode-locked fiber laser (PMFL) with a repetition frequency of 95.984 MHz is used as optical sampling source, meanwhile four balanced photo detectors (BPDs) with 400 MHz bandwidth and four-channel analog-to-digital convertor (ADC) with 1.25 GS/s sampling rate are used for data acquisition. The performance comparison with conventional optical modulation analyzer (OMA) verifies that the self-developed equipment has the advantages of low cost, easy implementation, and fast response.
The Bayesian group lasso for confounded spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.
2017-01-01
Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.
Radiation Transport in Random Media With Large Fluctuations
NASA Astrophysics Data System (ADS)
Olson, Aaron; Prinja, Anil; Franke, Brian
2017-09-01
Neutral particle transport in media exhibiting large and complex material property spatial variation is modeled by representing cross sections as lognormal random functions of space and generated through a nonlinear memory-less transformation of a Gaussian process with covariance uniquely determined by the covariance of the cross section. A Karhunen-Loève decomposition of the Gaussian process is implemented to effciently generate realizations of the random cross sections and Woodcock Monte Carlo used to transport particles on each realization and generate benchmark solutions for the mean and variance of the particle flux as well as probability densities of the particle reflectance and transmittance. A computationally effcient stochastic collocation method is implemented to directly compute the statistical moments such as the mean and variance, while a polynomial chaos expansion in conjunction with stochastic collocation provides a convenient surrogate model that also produces probability densities of output quantities of interest. Extensive numerical testing demonstrates that use of stochastic reduced-order modeling provides an accurate and cost-effective alternative to random sampling for particle transport in random media.
Random walks and diffusion on networks
NASA Astrophysics Data System (ADS)
Masuda, Naoki; Porter, Mason A.; Lambiotte, Renaud
2017-11-01
Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.
ERIC Educational Resources Information Center
Murray, David R.; And Others
Within the arena of public school reform, teacher empowerment and participation in the decision making process at the building level are of paramount importance. A collaborative team of teacher educators and public school staff was assembled to assess various perceptions of site-based decision making throughout Georgia. A random sample of 400…
Hamiltonian Monte Carlo acceleration using surrogate functions with random bases.
Zhang, Cheng; Shahbaba, Babak; Zhao, Hongkai
2017-11-01
For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov chain Monte Carlo methods, namely, Hamiltonian Monte Carlo. The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the-art methods.
Brown, Alexandra R; Gajewski, Byron J; Aaronson, Lauren S; Mudaranthakam, Dinesh Pal; Hunt, Suzanne L; Berry, Scott M; Quintana, Melanie; Pasnoor, Mamatha; Dimachkie, Mazen M; Jawdat, Omar; Herbelin, Laura; Barohn, Richard J
2016-08-31
In the last few decades, the number of trials using Bayesian methods has grown rapidly. Publications prior to 1990 included only three clinical trials that used Bayesian methods, but that number quickly jumped to 19 in the 1990s and to 99 from 2000 to 2012. While this literature provides many examples of Bayesian Adaptive Designs (BAD), none of the papers that are available walks the reader through the detailed process of conducting a BAD. This paper fills that gap by describing the BAD process used for one comparative effectiveness trial (Patient Assisted Intervention for Neuropathy: Comparison of Treatment in Real Life Situations) that can be generalized for use by others. A BAD was chosen with efficiency in mind. Response-adaptive randomization allows the potential for substantially smaller sample sizes, and can provide faster conclusions about which treatment or treatments are most effective. An Internet-based electronic data capture tool, which features a randomization module, facilitated data capture across study sites and an in-house computation software program was developed to implement the response-adaptive randomization. A process for adapting randomization with minimal interruption to study sites was developed. A new randomization table can be generated quickly and can be seamlessly integrated in the data capture tool with minimal interruption to study sites. This manuscript is the first to detail the technical process used to evaluate a multisite comparative effectiveness trial using adaptive randomization. An important opportunity for the application of Bayesian trials is in comparative effectiveness trials. The specific case study presented in this paper can be used as a model for conducting future clinical trials using a combination of statistical software and a web-based application. ClinicalTrials.gov Identifier: NCT02260388 , registered on 6 October 2014.
Unbiased feature selection in learning random forests for high-dimensional data.
Nguyen, Thanh-Tung; Huang, Joshua Zhexue; Nguyen, Thuy Thi
2015-01-01
Random forests (RFs) have been widely used as a powerful classification method. However, with the randomization in both bagging samples and feature selection, the trees in the forest tend to select uninformative features for node splitting. This makes RFs have poor accuracy when working with high-dimensional data. Besides that, RFs have bias in the feature selection process where multivalued features are favored. Aiming at debiasing feature selection in RFs, we propose a new RF algorithm, called xRF, to select good features in learning RFs for high-dimensional data. We first remove the uninformative features using p-value assessment, and the subset of unbiased features is then selected based on some statistical measures. This feature subset is then partitioned into two subsets. A feature weighting sampling technique is used to sample features from these two subsets for building trees. This approach enables one to generate more accurate trees, while allowing one to reduce dimensionality and the amount of data needed for learning RFs. An extensive set of experiments has been conducted on 47 high-dimensional real-world datasets including image datasets. The experimental results have shown that RFs with the proposed approach outperformed the existing random forests in increasing the accuracy and the AUC measures.
Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn
NASA Astrophysics Data System (ADS)
Gu, Anhui; Li, Dingshi; Wang, Bixiang; Yang, Han
2018-06-01
We investigate the regularity of random attractors for the non-autonomous non-local fractional stochastic reaction-diffusion equations in Hs (Rn) with s ∈ (0 , 1). We prove the existence and uniqueness of the tempered random attractor that is compact in Hs (Rn) and attracts all tempered random subsets of L2 (Rn) with respect to the norm of Hs (Rn). The main difficulty is to show the pullback asymptotic compactness of solutions in Hs (Rn) due to the noncompactness of Sobolev embeddings on unbounded domains and the almost sure nondifferentiability of the sample paths of the Wiener process. We establish such compactness by the ideas of uniform tail-estimates and the spectral decomposition of solutions in bounded domains.
Kretzschmar, A; Durand, E; Maisonnasse, A; Vallon, J; Le Conte, Y
2015-06-01
A new procedure of stratified sampling is proposed in order to establish an accurate estimation of Varroa destructor populations on sticky bottom boards of the hive. It is based on the spatial sampling theory that recommends using regular grid stratification in the case of spatially structured process. The distribution of varroa mites on sticky board being observed as spatially structured, we designed a sampling scheme based on a regular grid with circles centered on each grid element. This new procedure is then compared with a former method using partially random sampling. Relative error improvements are exposed on the basis of a large sample of simulated sticky boards (n=20,000) which provides a complete range of spatial structures, from a random structure to a highly frame driven structure. The improvement of varroa mite number estimation is then measured by the percentage of counts with an error greater than a given level. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Redfern, Julie; Adedoyin, Rufus Adesoji; Ofori, Sandra; Anchala, Raghupathy; Ajay, Vamadevan S; De Andrade, Luciano; Zelaya, Jose; Kaur, Harparkash; Balabanova, Dina; Sani, Mahmoud U
2016-01-01
Background Prevention and optimal management of hypertension in the general population is paramount to the achievement of the World Heart Federation (WHF) goal of reducing premature cardiovascular disease (CVD) mortality by 25% by the year 2025 and widespread access to good quality antihypertensive medicines is a critical component for achieving the goal. Despite research and evidence relating to other medicines such as antimalarials and antibiotics, there is very little known about the quality of generic antihypertensive medicines in low-income and middle-income countries. The aim of this study was to determine the physicochemical equivalence (percentage of active pharmaceutical ingredient, API) of generic antihypertensive medicines available in the retail market of a developing country. Methods An observational design will be adopted, which includes literature search, landscape assessment, collection and analysis of medicine samples. To determine physicochemical equivalence, a multistage sampling process will be used, including (1) identification of the 2 most commonly prescribed classes of antihypertensive medicines prescribed in Nigeria; (2) identification of a random sample of 10 generics from within each of the 2 most commonly prescribed classes; (3) a geographical representative sampling process to identify a random sample of 24 retail outlets in Nigeria; (4) representative sample purchasing, processing to assess the quality of medicines, storage and transport; and (5) assessment of the physical and chemical equivalence of the collected samples compared to the API in the relevant class. In total, 20 samples from each of 24 pharmacies will be tested (total of 480 samples). Discussion Availability of and access to quality antihypertensive medicines globally is therefore a vital strategy needed to achieve the WHF 25×25 targets. However, there is currently a scarcity of knowledge about the quality of antihypertensive medicines available in developing countries. Such information is important for enforcing and for ensuring the quality of antihypertensive medicines. PMID:28588941
NASA Technical Reports Server (NTRS)
Hornung, Steven D.; Biesinger, Paul; Kirsch, Mike; Beeson, Harold; Leuders, Kathy
1999-01-01
The NASA White Sands Test Facility (WSTF) has developed an entirely aqueous final cleaning and verification process to replace the current chlorofluorocarbon (CFC) 113 based process. This process has been accepted for final cleaning and cleanliness verification of WSTF ground support equipment. The aqueous process relies on ultrapure water at 50 C (323 K) and ultrasonic agitation for removal of organic compounds and particulate. The cleanliness is verified bv determining the total organic carbon (TOC) content and filtration with particulate counting. The effectiveness of the aqueous methods for detecting hydrocarbon contamination and particulate was compared to the accepted CFC 113 sampling procedures. Testing with known contaminants, such as hydraulic fluid and cutting and lubricating oils, to establish a correlation between aqueous TOC and CFC 113 nonvolatile residue (NVR) was performed. Particulate sampling on cleaned batches of hardware that were randomly separated and sampled by the two methods was performed. This paper presents the approach and results, and discusses the issues in establishing the equivalence of aqueous sampling to CFC 113 sampling, while describing the approach for implementing aqueous techniques on Space Shuttle Propulsion hardware.
Caperchione, Cristina M; Duncan, Mitch J; Rosenkranz, Richard R; Vandelanotte, Corneel; Van Itallie, Anetta K; Savage, Trevor N; Hooker, Cindy; Maeder, Anthony J; Mummery, W Kerry; Kolt, Gregory S
2016-04-15
To describe in detail the recruitment methods and enrollment rates, the screening methods, and the baseline characteristics of a sample of adults participating in the Walk 2.0 Study, an 18 month, 3-arm randomized controlled trial of a Web 2.0 based physical activity intervention. A two-fold recruitment plan was developed and implemented, including a direct mail-out to an extract from the Australian Electoral Commission electoral roll, and other supplementary methods including email and telephone. Physical activity screening involved two steps: a validated single-item self-report instrument and the follow-up Active Australia Questionnaire. Readiness for physical activity participation was also based on a two-step process of administering the Physical Activity Readiness Questionnaire and, where needed, further clearance from a medical practitioner. Across all recruitment methods, a total of 1244 participants expressed interest in participating, of which 656 were deemed eligible. Of these, 504 were later enrolled in the Walk 2.0 trial (77% enrollment rate) and randomized to the Walk 1.0 group (n = 165), the Walk 2.0 group (n = 168), or the Logbook group (n = 171). Mean age of the total sample was 50.8 years, with 65.2% female and 79.1% born in Australia. The results of this recruitment process demonstrate the successful use of multiple strategies to obtain a diverse sample of adults eligible to take part in a web-based physical activity promotion intervention. The use of dual screening processes ensured safe participation in the intervention. This approach to recruitment and physical activity screening can be used as a model for further trials in this area.
Williams, M S; Ebel, E D; Cao, Y
2013-01-01
The fitting of statistical distributions to microbial sampling data is a common application in quantitative microbiology and risk assessment applications. An underlying assumption of most fitting techniques is that data are collected with simple random sampling, which is often times not the case. This study develops a weighted maximum likelihood estimation framework that is appropriate for microbiological samples that are collected with unequal probabilities of selection. A weighted maximum likelihood estimation framework is proposed for microbiological samples that are collected with unequal probabilities of selection. Two examples, based on the collection of food samples during processing, are provided to demonstrate the method and highlight the magnitude of biases in the maximum likelihood estimator when data are inappropriately treated as a simple random sample. Failure to properly weight samples to account for how data are collected can introduce substantial biases into inferences drawn from the data. The proposed methodology will reduce or eliminate an important source of bias in inferences drawn from the analysis of microbial data. This will also make comparisons between studies and the combination of results from different studies more reliable, which is important for risk assessment applications. © 2012 No claim to US Government works.
Robert H. McAlister; Alexander Clark; Joseph R. Saucier
1997-01-01
The effect of rotation age on strength and stiffness of lumber produced from unthinned loblolly pine stands in the Coastal Plain of Georgia was examined. Six stands representing 22-, 28-, and 40-year-old roations were sampled. A stratified random sample of trees 8 to 16 inches in diameter at breast height was selected from each stand and processed into lumber....
Frequency position modulation using multi-spectral projections
NASA Astrophysics Data System (ADS)
Goodman, Joel; Bertoncini, Crystal; Moore, Michael; Nousain, Bryan; Cowart, Gregory
2012-10-01
In this paper we present an approach to harness multi-spectral projections (MSPs) to carefully shape and locate tones in the spectrum, enabling a new and robust modulation in which a signal's discrete frequency support is used to represent symbols. This method, called Frequency Position Modulation (FPM), is an innovative extension to MT-FSK and OFDM and can be non-uniformly spread over many GHz of instantaneous bandwidth (IBW), resulting in a communications system that is difficult to intercept and jam. The FPM symbols are recovered using adaptive projections that in part employ an analog polynomial nonlinearity paired with an analog-to-digital converter (ADC) sampling at a rate at that is only a fraction of the IBW of the signal. MSPs also facilitate using commercial of-the-shelf (COTS) ADCs with uniform-sampling, standing in sharp contrast to random linear projections by random sampling, which requires a full Nyquist rate sample-and-hold. Our novel communication system concept provides an order of magnitude improvement in processing gain over conventional LPI/LPD communications (e.g., FH- or DS-CDMA) and facilitates the ability to operate in interference laden environments where conventional compressed sensing receivers would fail. We quantitatively analyze the bit error rate (BER) and processing gain (PG) for a maximum likelihood based FPM demodulator and demonstrate its performance in interference laden conditions.
Is the Non-Dipole Magnetic Field Random?
NASA Technical Reports Server (NTRS)
Walker, Andrew D.; Backus, George E.
1996-01-01
Statistical modelling of the Earth's magnetic field B has a long history. In particular, the spherical harmonic coefficients of scalar fields derived from B can be treated as Gaussian random variables. In this paper, we give examples of highly organized fields whose spherical harmonic coefficients pass tests for independent Gaussian random variables. The fact that coefficients at some depth may be usefully summarized as independent samples from a normal distribution need not imply that there really is some physical, random process at that depth. In fact, the field can be extremely structured and still be regarded for some purposes as random. In this paper, we examined the radial magnetic field B(sub r) produced by the core, but the results apply to any scalar field on the core-mantle boundary (CMB) which determines B outside the CMB.
FOCIS: A forest classification and inventory system using LANDSAT and digital terrain data
NASA Technical Reports Server (NTRS)
Strahler, A. H.; Franklin, J.; Woodcook, C. E.; Logan, T. L.
1981-01-01
Accurate, cost-effective stratification of forest vegetation and timber inventory is the primary goal of a Forest Classification and Inventory System (FOCIS). Conventional timber stratification using photointerpretation can be time-consuming, costly, and inconsistent from analyst to analyst. FOCIS was designed to overcome these problems by using machine processing techniques to extract and process tonal, textural, and terrain information from registered LANDSAT multispectral and digital terrain data. Comparison of samples from timber strata identified by conventional procedures showed that both have about the same potential to reduce the variance of timber volume estimates over simple random sampling.
ERIC Educational Resources Information Center
Schierhorn, Ann B.; Endres, Kathleen L.
Editors of business and consumer magazines chosen by a random sample were asked in a mail survey what method they used in working with staff writers and free-lance writers. They were asked how they work with writers in the five stages of the writing process--idea, reporting, organizing, writing and rewriting. The first mailing to consumer…
ERIC Educational Resources Information Center
Velez, Clorinda E.; Wolchik, Sharlene A.; Tein, Jenn-Yun; Sandler, Irwin
2011-01-01
This study examines whether intervention-induced changes in mother-child relationship quality and discipline led to short-term (6 months) and long-term (6 years) changes in children's coping processes in a sample of 240 youth aged 9-12 years when assessed initially. Data were from a randomized, experimental trial of a parenting-focused preventive…
CBT Specific Process in Exposure-Based Treatments: Initial Examination in a Pediatric OCD Sample
Benito, Kristen Grabill; Conelea, Christine; Garcia, Abbe M.; Freeman, Jennifer B.
2012-01-01
Cognitive-Behavioral theory and empirical support suggest that optimal activation of fear is a critical component for successful exposure treatment. Using this theory, we developed coding methodology for measuring CBT-specific process during exposure. We piloted this methodology in a sample of young children (N = 18) who previously received CBT as part of a randomized controlled trial. Results supported the preliminary reliability and predictive validity of coding variables with 12 week and 3 month treatment outcome data, generally showing results consistent with CBT theory. However, given our limited and restricted sample, additional testing is warranted. Measurement of CBT-specific process using this methodology may have implications for understanding mechanism of change in exposure-based treatments and for improving dissemination efforts through identification of therapist behaviors associated with improved outcome. PMID:22523609
Generalized species sampling priors with latent Beta reinforcements
Airoldi, Edoardo M.; Costa, Thiago; Bassetti, Federico; Leisen, Fabrizio; Guindani, Michele
2014-01-01
Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of independent Beta random variables. We compare their theoretical clustering properties with those of the Dirichlet Process and the two parameters Poisson-Dirichlet process. The proposed construction provides a complete characterization of the joint process, differently from existing work. We then propose the use of such process as prior distribution in a hierarchical Bayes modeling framework, and we describe a Markov Chain Monte Carlo sampler for posterior inference. We evaluate the performance of the prior and the robustness of the resulting inference in a simulation study, providing a comparison with popular Dirichlet Processes mixtures and Hidden Markov Models. Finally, we develop an application to the detection of chromosomal aberrations in breast cancer by leveraging array CGH data. PMID:25870462
McGarvey, Richard; Burch, Paul; Matthews, Janet M
2016-01-01
Natural populations of plants and animals spatially cluster because (1) suitable habitat is patchy, and (2) within suitable habitat, individuals aggregate further into clusters of higher density. We compare the precision of random and systematic field sampling survey designs under these two processes of species clustering. Second, we evaluate the performance of 13 estimators for the variance of the sample mean from a systematic survey. Replicated simulated surveys, as counts from 100 transects, allocated either randomly or systematically within the study region, were used to estimate population density in six spatial point populations including habitat patches and Matérn circular clustered aggregations of organisms, together and in combination. The standard one-start aligned systematic survey design, a uniform 10 x 10 grid of transects, was much more precise. Variances of the 10 000 replicated systematic survey mean densities were one-third to one-fifth of those from randomly allocated transects, implying transect sample sizes giving equivalent precision by random survey would need to be three to five times larger. Organisms being restricted to patches of habitat was alone sufficient to yield this precision advantage for the systematic design. But this improved precision for systematic sampling in clustered populations is underestimated by standard variance estimators used to compute confidence intervals. True variance for the survey sample mean was computed from the variance of 10 000 simulated survey mean estimates. Testing 10 published and three newly proposed variance estimators, the two variance estimators (v) that corrected for inter-transect correlation (ν₈ and ν(W)) were the most accurate and also the most precise in clustered populations. These greatly outperformed the two "post-stratification" variance estimators (ν₂ and ν₃) that are now more commonly applied in systematic surveys. Similar variance estimator performance rankings were found with a second differently generated set of spatial point populations, ν₈ and ν(W) again being the best performers in the longer-range autocorrelated populations. However, no systematic variance estimators tested were free from bias. On balance, systematic designs bring more narrow confidence intervals in clustered populations, while random designs permit unbiased estimates of (often wider) confidence interval. The search continues for better estimators of sampling variance for the systematic survey mean.
10 CFR 431.383 - Enforcement process for electric motors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... general purpose electric motor of equivalent electrical design and enclosure rather than replacing the... equivalent electrical design and enclosure rather than machining and attaching an endshield. ... sample of up to 20 units will then be randomly selected from one or more subdivided groups within the...
Meredith-Dennis, Laura; Xu, Gege; Goonatilleke, Elisha; Lebrilla, Carlito B; Underwood, Mark A; Smilowitz, Jennifer T
2018-02-01
When human milk is unavailable, banked milk is recommended for feeding premature infants. Milk banks use processes to eliminate pathogens; however, variability among methods exists. Research aim: The aim of this study was to compare the macronutrient (protein, carbohydrate, fat, energy), immune-protective protein, and human milk oligosaccharide (HMO) content of human milk from three independent milk banks that use pasteurization (Holder vs. vat techniques) or retort sterilization. Randomly acquired human milk samples from three different milk banks ( n = 3 from each bank) were analyzed for macronutrient concentrations using a Fourier transform mid-infrared spectroscopy human milk analyzer. The concentrations of IgA, IgM, IgG, lactoferrin, lysozyme, α-lactalbumin, α antitrypsin, casein, and HMO were analyzed by mass spectrometry. The concentrations of protein and fat were significantly ( p < .05) less in the retort sterilized compared with the Holder and vat pasteurized samples, respectively. The concentrations of all immune-modulating proteins were significantly ( p < .05) less in the retort sterilized samples compared with vat and/or Holder pasteurized samples. The total HMO concentration and HMOs containing fucose, sialic acid, and nonfucosylated neutral sugars were significantly ( p < .05) less in retort sterilized compared with Holder pasteurized samples. Random milk samples that had undergone retort sterilization had significantly less immune-protective proteins and total and specific HMOs compared with samples that had undergone Holder and vat pasteurization. These data suggest that further analysis of the effect of retort sterilization on human milk components is needed prior to widespread adoption of this process.
From samples to populations in retinex models
NASA Astrophysics Data System (ADS)
Gianini, Gabriele
2017-05-01
Some spatial color algorithms, such as Brownian Milano retinex (MI-retinex) and random spray retinex (RSR), are based on sampling. In Brownian MI-retinex, memoryless random walks (MRWs) explore the neighborhood of a pixel and are then used to compute its output. Considering the relative redundancy and inefficiency of MRW exploration, the algorithm RSR replaced the walks by samples of points (the sprays). Recent works point to the fact that a mapping from the sampling formulation to the probabilistic formulation of the corresponding sampling process can offer useful insights into the models, at the same time featuring intrinsically noise-free outputs. The paper continues the development of this concept and shows that the population-based versions of RSR and Brownian MI-retinex can be used to obtain analytical expressions for the outputs of some test images. The comparison of the two analytic expressions from RSR and from Brownian MI-retinex demonstrates not only that the two outputs are, in general, different but also that they depend in a qualitatively different way upon the features of the image.
ERIC Educational Resources Information Center
Gomaa, Omema Mostafa Kamel
2016-01-01
This study investigated the effect of using metacognitive strategy training on science process skills and science self efficacy in learning disabled first year prep students. A total of 60 students identified with LD were invited to participate. The sample was randomly divided into two groups; experimental (n = 30 boys) and control (n = 30 boys ).…
ERIC Educational Resources Information Center
Barahmeh, Haytham Mousa; Hamad, Adwan Mohammad Bani; Barahmeh, Nabeel Mousa
2017-01-01
This study aimed at exploring the effect of Fermi question on the development of science process skills in the physics subject at ninth Grade students. The sample of the study consisted of (2) classes for males and (2) classes for females, which were randomly divided into (2) groups: An experimental group of (41) students divided into a class of…
ERIC Educational Resources Information Center
Fessehatsion, Petros Woldu
2017-01-01
The research tried to examine the role of school principal in facilitating change in teaching-learning process. Moreover, it has focused on the main roles of principal in implementing LCIP. The research employed both quantitative and qualitative methods. The study used a random sample of 62 teachers from a purposefully selected five junior schools…
2013-12-14
population covariance matrix with application to array signal processing; and 5) a sample covariance matrix for which a CLT is studied on linear...Applications , (01 2012): 1150004. doi: Walid Hachem, Malika Kharouf, Jamal Najim, Jack W. Silverstein. A CLT FOR INFORMATION- THEORETIC STATISTICS...for Multi-source Power Estimation, (04 2010) Malika Kharouf, Jamal Najim, Jack W. Silverstein, Walid Hachem. A CLT FOR INFORMATION- THEORETIC
Optical EVPA rotations in blazars: testing a stochastic variability model with RoboPol data
NASA Astrophysics Data System (ADS)
Kiehlmann, S.; Blinov, D.; Pearson, T. J.; Liodakis, I.
2017-12-01
We identify rotations of the polarization angle in a sample of blazars observed for three seasons with the RoboPol instrument. A simplistic stochastic variability model is tested against this sample of rotation events. The model is capable of producing samples of rotations with parameters similar to the observed ones, but fails to reproduce the polarization fraction at the same time. Even though we can neither accept nor conclusively reject the model, we point out various aspects of the observations that are fully consistent with a random walk process.
2014-09-01
optimal diagonal loading which minimizes the MSE. The be- havior of optimal diagonal loading when the arrival process is composed of plane waves embedded...observation vectors. The examples of the ensemble correlation matrix corresponding to the input process consisting of a single or multiple plane waves...Y ∗ij is a complex-conjugate of Yij. This result is used in order to evaluate the expectations of different quadratic forms. The Poincare -Nash
Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun
2017-08-01
Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2 = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.
Preliminary Characterization of Erythrocytes Deformability on the Entropy-Complexity Plane
Korol, Ana M; D’Arrigo, Mabel; Foresto, Patricia; Pérez, Susana; Martín, Maria T; Rosso, Osualdo A
2010-01-01
We present an application of wavelet-based Information Theory quantifiers (Normalized Total Shannon Entropy, MPR-Statistical Complexity and Entropy-Complexity plane) on red blood cells membrane viscoelasticity characterization. These quantifiers exhibit important localization advantages provided by the Wavelet Theory. The present approach produces a clear characterization of this dynamical system, finding out an evident manifestation of a random process on the red cell samples of healthy individuals, and its sharp reduction of randomness on analyzing a human haematological disease, such as β-thalassaemia minor. PMID:21611139
Yang, Z Janet; McComas, Katherine A; Gay, Geri K; Leonard, John P; Dannenberg, Andrew J; Dillon, Hildy
2012-01-01
This study extends a risk information seeking and processing model to explore the relative effect of cognitive processing strategies, positive and negative emotions, and normative beliefs on individuals' decision making about potential health risks. Most previous research based on this theoretical framework has examined environmental risks. Applying this risk communication model to study health decision making presents an opportunity to explore theoretical boundaries of the model, while also bringing this research to bear on a pressing medical issue: low enrollment in clinical trials. Comparative analysis of data gathered from 2 telephone surveys of a representative national sample (n = 500) and a random sample of cancer patients (n = 411) indicated that emotions played a more substantive role in cancer patients' decisions to enroll in a potential trial, whereas cognitive processing strategies and normative beliefs had greater influences on the decisions of respondents from the national sample.
Methodology Series Module 5: Sampling Strategies.
Setia, Maninder Singh
2016-01-01
Once the research question and the research design have been finalised, it is important to select the appropriate sample for the study. The method by which the researcher selects the sample is the ' Sampling Method'. There are essentially two types of sampling methods: 1) probability sampling - based on chance events (such as random numbers, flipping a coin etc.); and 2) non-probability sampling - based on researcher's choice, population that accessible & available. Some of the non-probability sampling methods are: purposive sampling, convenience sampling, or quota sampling. Random sampling method (such as simple random sample or stratified random sample) is a form of probability sampling. It is important to understand the different sampling methods used in clinical studies and mention this method clearly in the manuscript. The researcher should not misrepresent the sampling method in the manuscript (such as using the term ' random sample' when the researcher has used convenience sample). The sampling method will depend on the research question. For instance, the researcher may want to understand an issue in greater detail for one particular population rather than worry about the ' generalizability' of these results. In such a scenario, the researcher may want to use ' purposive sampling' for the study.
An Intrinsic Algorithm for Parallel Poisson Disk Sampling on Arbitrary Surfaces.
Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying
2013-03-08
Poisson disk sampling plays an important role in a variety of visual computing, due to its useful statistical property in distribution and the absence of aliasing artifacts. While many effective techniques have been proposed to generate Poisson disk distribution in Euclidean space, relatively few work has been reported to the surface counterpart. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. We propose a new technique for parallelizing the dart throwing. Rather than the conventional approaches that explicitly partition the spatial domain to generate the samples in parallel, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. It is worth noting that our algorithm is accurate as the generated Poisson disks are uniformly and randomly distributed without bias. Our method is intrinsic in that all the computations are based on the intrinsic metric and are independent of the embedding space. This intrinsic feature allows us to generate Poisson disk distributions on arbitrary surfaces. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.
The External Quality Assessment Scheme (EQAS): Experiences of a medium sized accredited laboratory.
Bhat, Vivek; Chavan, Preeti; Naresh, Chital; Poladia, Pratik
2015-06-15
We put forth our experiences of EQAS, analyzed the result discrepancies, reviewed the corrective actions and also put forth strategies for risk identification and prevention of potential errors in a medical laboratory. For hematology, EQAS samples - blood, peripheral and reticulocyte smears - were received quarterly every year. All the blood samples were processed on HMX hematology analyzer by Beckman-Coulter. For clinical chemistry, lyophilized samples were received and were processed on Siemens Dimension Xpand and RXL analyzers. For microbiology, EQAS samples were received quarterly every year as lyophilized strains along with smears and serological samples. In hematology no outliers were noted for reticulocyte and peripheral smear examination. Only one outlier was noted for CBC. In clinical chemistry outliers (SDI ≥ 2) were noted in 7 samples (23 parameters) out of total 36 samples (756 parameters) processed. Thirteen of these parameters were analyzed as random errors, 3 as transcriptional errors and seven instances of systemic error were noted. In microbiology, one discrepancy was noted in isolate identification and in the grading of smears for AFB by Ziehl Neelsen stain. EQAS along with IQC is a very important tool for maintaining optimal quality of services. Copyright © 2015 Elsevier B.V. All rights reserved.
Melvin, Neal R; Poda, Daniel; Sutherland, Robert J
2007-10-01
When properly applied, stereology is a very robust and efficient method to quantify a variety of parameters from biological material. A common sampling strategy in stereology is systematic random sampling, which involves choosing a random sampling [corrected] start point outside the structure of interest, and sampling relevant objects at [corrected] sites that are placed at pre-determined, equidistant intervals. This has proven to be a very efficient sampling strategy, and is used widely in stereological designs. At the microscopic level, this is most often achieved through the use of a motorized stage that facilitates the systematic random stepping across the structure of interest. Here, we report a simple, precise and cost-effective software-based alternative to accomplishing systematic random sampling under the microscope. We believe that this approach will facilitate the use of stereological designs that employ systematic random sampling in laboratories that lack the resources to acquire costly, fully automated systems.
An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces.
Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying
2013-09-01
Poisson disk sampling has excellent spatial and spectral properties, and plays an important role in a variety of visual computing. Although many promising algorithms have been proposed for multidimensional sampling in euclidean space, very few studies have been reported with regard to the problem of generating Poisson disks on surfaces due to the complicated nature of the surface. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. In sharp contrast to the conventional parallel approaches, our method neither partitions the given surface into small patches nor uses any spatial data structure to maintain the voids in the sampling domain. Instead, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. Our algorithm guarantees that the generated Poisson disks are uniformly and randomly distributed without bias. It is worth noting that our method is intrinsic and independent of the embedding space. This intrinsic feature allows us to generate Poisson disk patterns on arbitrary surfaces in IR(n). To our knowledge, this is the first intrinsic, parallel, and accurate algorithm for surface Poisson disk sampling. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.
Study Design Rigor in Animal-Experimental Research Published in Anesthesia Journals.
Hoerauf, Janine M; Moss, Angela F; Fernandez-Bustamante, Ana; Bartels, Karsten
2018-01-01
Lack of reproducibility of preclinical studies has been identified as an impediment for translation of basic mechanistic research into effective clinical therapies. Indeed, the National Institutes of Health has revised its grant application process to require more rigorous study design, including sample size calculations, blinding procedures, and randomization steps. We hypothesized that the reporting of such metrics of study design rigor has increased over time for animal-experimental research published in anesthesia journals. PubMed was searched for animal-experimental studies published in 2005, 2010, and 2015 in primarily English-language anesthesia journals. A total of 1466 publications were graded on the performance of sample size estimation, randomization, and blinding. Cochran-Armitage test was used to assess linear trends over time for the primary outcome of whether or not a metric was reported. Interrater agreement for each of the 3 metrics (power, randomization, and blinding) was assessed using the weighted κ coefficient in a 10% random sample of articles rerated by a second investigator blinded to the ratings of the first investigator. A total of 1466 manuscripts were analyzed. Reporting for all 3 metrics of experimental design rigor increased over time (2005 to 2010 to 2015): for power analysis, from 5% (27/516), to 12% (59/485), to 17% (77/465); for randomization, from 41% (213/516), to 50% (243/485), to 54% (253/465); and for blinding, from 26% (135/516), to 38% (186/485), to 47% (217/465). The weighted κ coefficients and 98.3% confidence interval indicate almost perfect agreement between the 2 raters beyond that which occurs by chance alone (power, 0.93 [0.85, 1.0], randomization, 0.91 [0.85, 0.98], and blinding, 0.90 [0.84, 0.96]). Our hypothesis that reported metrics of rigor in animal-experimental studies in anesthesia journals have increased during the past decade was confirmed. More consistent reporting, or explicit justification for absence, of sample size calculations, blinding techniques, and randomization procedures could better enable readers to evaluate potential sources of bias in animal-experimental research manuscripts. Future studies should assess whether such steps lead to improved translation of animal-experimental anesthesia research into successful clinical trials.
Do children with grapheme-colour synaesthesia show cognitive benefits?
Simner, Julia; Bain, Angela E
2018-02-01
Grapheme-colour synaesthesia is characterized by conscious and consistent associations between letters and colours, or between numbers and colours (e.g., synaesthetes might see A as red, 7 as green). Our study explored the development of this condition in a group of randomly sampled child synaesthetes. Two previous studies (Simner & Bain, 2013, Frontiers in Human Neuroscience, 7, 603; Simner, Harrold, Creed, Monro, & Foulkes, 2009, Brain, 132, 57) had screened over 600 primary school children to find the first randomly sampled cohort of child synaesthetes. In this study, we evaluate this cohort to ask whether their synaesthesia is associated with a particular cognitive profile of strengths and/or weaknesses. We tested our child synaesthetes at age 10-11 years in a series of cognitive tests, in comparison with matched controls and baseline norms. One previous study (Green & Goswami, 2008, Cognition, 106, 463) had suggested that child synaesthetes might perform differently to non-synaesthetes in such tasks, although those participants may have been a special type of population independent of their synaesthesia. In our own study of randomly sampled child synaesthetes, we found no significant advantages or disadvantages in a receptive vocabulary test and a memory matrix task. However, we found that synaesthetes demonstrated above-average performance in a processing-speed task and a near-significant advantage in a letter-span task (i.e., memory/recall task of letters). Our findings point to advantages for synaesthetes that go beyond those expected from enhanced coding accounts and we present the first picture of the broader cognitive profile of a randomly sampled population of child synaesthetes. © 2017 The British Psychological Society.
Efficient sampling of complex network with modified random walk strategies
NASA Astrophysics Data System (ADS)
Xie, Yunya; Chang, Shuhua; Zhang, Zhipeng; Zhang, Mi; Yang, Lei
2018-02-01
We present two novel random walk strategies, choosing seed node (CSN) random walk and no-retracing (NR) random walk. Different from the classical random walk sampling, the CSN and NR strategies focus on the influences of the seed node choice and path overlap, respectively. Three random walk samplings are applied in the Erdös-Rényi (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and the weighted USAir networks, respectively. Then, the major properties of sampled subnets, such as sampling efficiency, degree distributions, average degree and average clustering coefficient, are studied. The similar conclusions can be reached with these three random walk strategies. Firstly, the networks with small scales and simple structures are conducive to the sampling. Secondly, the average degree and the average clustering coefficient of the sampled subnet tend to the corresponding values of original networks with limited steps. And thirdly, all the degree distributions of the subnets are slightly biased to the high degree side. However, the NR strategy performs better for the average clustering coefficient of the subnet. In the real weighted USAir networks, some obvious characters like the larger clustering coefficient and the fluctuation of degree distribution are reproduced well by these random walk strategies.
Electrical conductivity and total dissolved solids in urine.
Fazil Marickar, Y M
2010-08-01
The objective of this paper is to study the relevance of electrical conductivity (EC) and total dissolved solids (TDS) in early morning and random samples of urine of urinary stone patients; 2,000 urine samples were studied. The two parameters were correlated with the extent of various urinary concrements. The early morning urine (EMU) and random samples of the patients who attended the urinary stone clinic were analysed routinely. The pH, specific gravity, EC, TDS, redox potential, albumin, sugar and microscopic study of the urinary sediments including red blood cells (RBC), pus cells (PC), crystals, namely calcium oxalate monohydrate (COM), calcium oxalate dihydrate (COD), uric acid (UA), and phosphates and epithelial cells were assessed. The extent of RBC, PC, COM, COD, UA and phosphates was correlated with EC and TDS. The values of EC ranged from 1.1 to 33.9 mS, the mean value being 21.5 mS. TDS ranged from 3,028 to 18,480 ppm, the mean value being 7,012 ppm. The TDS levels corresponded with EC of urine. Both values were significantly higher (P < 0.05) in the EMU samples than the random samples. There was a statistically significant correlation between the level of abnormality in the urinary deposits (r = +0.27, P < 0.05). In samples, where the TDS were more than 12,000 ppm, there were more crystals than those samples containing TDS less than 12,000 ppm. However, there were certain urine samples, where the TDS were over 12,000, which did not contain any urinary crystals. It is concluded that the value of TDS has relevance in the process of stone formation.
Methodology Series Module 5: Sampling Strategies
Setia, Maninder Singh
2016-01-01
Once the research question and the research design have been finalised, it is important to select the appropriate sample for the study. The method by which the researcher selects the sample is the ‘ Sampling Method’. There are essentially two types of sampling methods: 1) probability sampling – based on chance events (such as random numbers, flipping a coin etc.); and 2) non-probability sampling – based on researcher's choice, population that accessible & available. Some of the non-probability sampling methods are: purposive sampling, convenience sampling, or quota sampling. Random sampling method (such as simple random sample or stratified random sample) is a form of probability sampling. It is important to understand the different sampling methods used in clinical studies and mention this method clearly in the manuscript. The researcher should not misrepresent the sampling method in the manuscript (such as using the term ‘ random sample’ when the researcher has used convenience sample). The sampling method will depend on the research question. For instance, the researcher may want to understand an issue in greater detail for one particular population rather than worry about the ‘ generalizability’ of these results. In such a scenario, the researcher may want to use ‘ purposive sampling’ for the study. PMID:27688438
Badrick, Tony; Graham, Peter
2018-03-28
Internal Quality Control and External Quality Assurance are separate but related processes that have developed independently in laboratory medicine over many years. They have different sample frequencies, statistical interpretations and immediacy. Both processes have evolved absorbing new understandings of the concept of laboratory error, sample material matrix and assay capability. However, we do not believe at the coalface that either process has led to much improvement in patient outcomes recently. It is the increasing reliability and automation of analytical platforms along with improved stability of reagents that has reduced systematic and random error, which in turn has minimised the risk of running less frequent IQC. We suggest that it is time to rethink the role of both these processes and unite them into a single approach using an Average of Normals model supported by more frequent External Quality Assurance samples. This new paradigm may lead to less confusion for laboratory staff and quicker responses to and identification of out of control situations.
ARTS: automated randomization of multiple traits for study design.
Maienschein-Cline, Mark; Lei, Zhengdeng; Gardeux, Vincent; Abbasi, Taimur; Machado, Roberto F; Gordeuk, Victor; Desai, Ankit A; Saraf, Santosh; Bahroos, Neil; Lussier, Yves
2014-06-01
Collecting data from large studies on high-throughput platforms, such as microarray or next-generation sequencing, typically requires processing samples in batches. There are often systematic but unpredictable biases from batch-to-batch, so proper randomization of biologically relevant traits across batches is crucial for distinguishing true biological differences from experimental artifacts. When a large number of traits are biologically relevant, as is common for clinical studies of patients with varying sex, age, genotype and medical background, proper randomization can be extremely difficult to prepare by hand, especially because traits may affect biological inferences, such as differential expression, in a combinatorial manner. Here we present ARTS (automated randomization of multiple traits for study design), which aids researchers in study design by automatically optimizing batch assignment for any number of samples, any number of traits and any batch size. ARTS is implemented in Perl and is available at github.com/mmaiensc/ARTS. ARTS is also available in the Galaxy Tool Shed, and can be used at the Galaxy installation hosted by the UIC Center for Research Informatics (CRI) at galaxy.cri.uic.edu. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Makowski, David; Bancal, Rémi; Bensadoun, Arnaud; Monod, Hervé; Messéan, Antoine
2017-09-01
According to E.U. regulations, the maximum allowable rate of adventitious transgene presence in non-genetically modified (GM) crops is 0.9%. We compared four sampling methods for the detection of transgenic material in agricultural non-GM maize fields: random sampling, stratified sampling, random sampling + ratio reweighting, random sampling + regression reweighting. Random sampling involves simply sampling maize grains from different locations selected at random from the field concerned. The stratified and reweighting sampling methods make use of an auxiliary variable corresponding to the output of a gene-flow model (a zero-inflated Poisson model) simulating cross-pollination as a function of wind speed, wind direction, and distance to the closest GM maize field. With the stratified sampling method, an auxiliary variable is used to define several strata with contrasting transgene presence rates, and grains are then sampled at random from each stratum. With the two methods involving reweighting, grains are first sampled at random from various locations within the field, and the observations are then reweighted according to the auxiliary variable. Data collected from three maize fields were used to compare the four sampling methods, and the results were used to determine the extent to which transgene presence rate estimation was improved by the use of stratified and reweighting sampling methods. We found that transgene rate estimates were more accurate and that substantially smaller samples could be used with sampling strategies based on an auxiliary variable derived from a gene-flow model. © 2017 Society for Risk Analysis.
Sampling Large Graphs for Anticipatory Analytics
2015-05-15
low. C. Random Area Sampling Random area sampling [8] is a “ snowball ” sampling method in which a set of random seed vertices are selected and areas... Sampling Large Graphs for Anticipatory Analytics Lauren Edwards, Luke Johnson, Maja Milosavljevic, Vijay Gadepally, Benjamin A. Miller Lincoln...systems, greater human-in-the-loop involvement, or through complex algorithms. We are investigating the use of sampling to mitigate these challenges
Electromagnetic Scattering by Fully Ordered and Quasi-Random Rigid Particulate Samples
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.
2016-01-01
In this paper we have analyzed circumstances under which a rigid particulate sample can behave optically as a true discrete random medium consisting of particles randomly moving relative to each other during measurement. To this end, we applied the numerically exact superposition T-matrix method to model far-field scattering characteristics of fully ordered and quasi-randomly arranged rigid multiparticle groups in fixed and random orientations. We have shown that, in and of itself, averaging optical observables over movements of a rigid sample as a whole is insufficient unless it is combined with a quasi-random arrangement of the constituent particles in the sample. Otherwise, certain scattering effects typical of discrete random media (including some manifestations of coherent backscattering) may not be accurately replicated.
Paoletti, Claudia; Esbensen, Kim H
2015-01-01
Material heterogeneity influences the effectiveness of sampling procedures. Most sampling guidelines used for assessment of food and/or feed commodities are based on classical statistical distribution requirements, the normal, binomial, and Poisson distributions-and almost universally rely on the assumption of randomness. However, this is unrealistic. The scientific food and feed community recognizes a strong preponderance of non random distribution within commodity lots, which should be a more realistic prerequisite for definition of effective sampling protocols. Nevertheless, these heterogeneity issues are overlooked as the prime focus is often placed only on financial, time, equipment, and personnel constraints instead of mandating acquisition of documented representative samples under realistic heterogeneity conditions. This study shows how the principles promulgated in the Theory of Sampling (TOS) and practically tested over 60 years provide an effective framework for dealing with the complete set of adverse aspects of both compositional and distributional heterogeneity (material sampling errors), as well as with the errors incurred by the sampling process itself. The results of an empirical European Union study on genetically modified soybean heterogeneity, Kernel Lot Distribution Assessment are summarized, as they have a strong bearing on the issue of proper sampling protocol development. TOS principles apply universally in the food and feed realm and must therefore be considered the only basis for development of valid sampling protocols free from distributional constraints.
Shin, Hye Young; Suh, Mina; Baik, Hyung Won; Choi, Kui Son; Park, Boyoung; Jun, Jae Kwan; Hwang, Sang-Hyun; Kim, Byung Chang; Lee, Chan Wha; Oh, Jae Hwan; Lee, You Kyoung; Han, Dong Soo; Lee, Do-Hoon
2016-11-15
We are in the process of conducting a randomized trial to determine whether compliance with the fecal immunochemical test (FIT) for colorectal cancer screening differs according to the stool-collection method. This study was an interim analysis of the performance of two stool-collection devices (sampling bottle vs conventional container). In total, 1,701 individuals (age range, 50 to 74 years) were randomized into the sampling bottle group (intervention arm) or the conventional container group (control arm). In both groups, we evaluated the FIT positivity rate, the positive predictive value for advanced neoplasia, and the detection rate for advanced neoplasia. The FIT positivity rates were 4.1% for the sampling bottles and 2.0% for the conventional containers; these values were significantly different. The positive predictive values for advanced neoplasia in the sampling bottles and conventional containers were 11.1% (95% confidence interval [CI], -3.4 to 25.6) and 12.0% (95% CI, -0.7 to 24.7), respectively. The detection rates for advanced neoplasia in the sampling bottles and conventional containers were 4.5 per 1,000 persons (95% CI, 2.0 to 11.0) and 2.4 per 1,000 persons (95% CI, 0.0 to 5.0), respectively. The impact of these findings on FIT screening performance was unclear in this interim analysis. This impact should therefore be evaluated in the final analysis following the final enrollment period.
Miller, Michael A; Colby, Alison C C; Kanehl, Paul D; Blocksom, Karen
2009-03-01
The Wisconsin Department of Natural Resources (WDNR), with support from the U.S. EPA, conducted an assessment of wadeable streams in the Driftless Area ecoregion in western Wisconsin using a probabilistic sampling design. This ecoregion encompasses 20% of Wisconsin's land area and contains 8,800 miles of perennial streams. Randomly-selected stream sites (n = 60) equally distributed among stream orders 1-4 were sampled. Watershed land use, riparian and in-stream habitat, water chemistry, macroinvertebrate, and fish assemblage data were collected at each true random site and an associated "modified-random" site on each stream that was accessed via a road crossing nearest to the true random site. Targeted least-disturbed reference sites (n = 22) were also sampled to develop reference conditions for various physical, chemical, and biological measures. Cumulative distribution function plots of various measures collected at the true random sites evaluated with reference condition thresholds, indicate that high proportions of the random sites (and by inference the entire Driftless Area wadeable stream population) show some level of degradation. Study results show no statistically significant differences between the true random and modified-random sample sites for any of the nine physical habitat, 11 water chemistry, seven macroinvertebrate, or eight fish metrics analyzed. In Wisconsin's Driftless Area, 79% of wadeable stream lengths were accessible via road crossings. While further evaluation of the statistical rigor of using a modified-random sampling design is warranted, sampling randomly-selected stream sites accessed via the nearest road crossing may provide a more economical way to apply probabilistic sampling in stream monitoring programs.
Signal processor for processing ultrasonic receiver signals
Fasching, George E.
1980-01-01
A signal processor is provided which uses an analog integrating circuit in conjunction with a set of digital counters controlled by a precision clock for sampling timing to provide an improved presentation of an ultrasonic transmitter/receiver signal. The signal is sampled relative to the transmitter trigger signal timing at precise times, the selected number of samples are integrated and the integrated samples are transferred and held for recording on a strip chart recorder or converted to digital form for storage. By integrating multiple samples taken at precisely the same time with respect to the trigger for the ultrasonic transmitter, random noise, which is contained in the ultrasonic receiver signal, is reduced relative to the desired useful signal.
Yeheyis, Likawent; Kijora, Claudia; Wink, Michael; Peters, Kurt J
2011-01-01
The effect of a traditional Ethiopian lupin processing method on the chemical composition of lupin seed samples was studied. Two sampling districts, namely Mecha and Sekela, representing the mid- and high-altitude areas of north-western Ethiopia, respectively, were randomly selected. Different types of traditionally processed and marketed lupin seed samples (raw, roasted, and finished) were collected in six replications from each district. Raw samples are unprocessed, and roasted samples are roasted using firewood. Finished samples are those ready for human consumption as snack. Thousand seed weight for raw and roasted samples within a study district was similar (P > 0.05), but it was lower (P < 0.01) for finished samples compared to raw and roasted samples. The crude fibre content of finished lupin seed sample from Mecha was lower (P < 0.01) than that of raw and roasted samples. However, the different lupin samples from Sekela had similar crude fibre content (P > 0.05). The crude protein and crude fat contents of finished samples within a study district were higher (P < 0.01) than those of raw and roasted samples, respectively. Roasting had no effect on the crude protein content of lupin seed samples. The crude ash content of raw and roasted lupin samples within a study district was higher (P < 0.01) than that of finished lupin samples of the respective study districts. The content of quinolizidine alkaloids of finished lupin samples was lower than that of raw and roasted samples. There was also an interaction effect between location and lupin sample type. The traditional processing method of lupin seeds in Ethiopia has a positive contribution improving the crude protein and crude fat content, and lowering the alkaloid content of the finished product. The study showed the possibility of adopting the traditional processing method to process bitter white lupin for the use as protein supplement in livestock feed in Ethiopia, but further work has to be done on the processing method and animal evaluation.
A random spatial sampling method in a rural developing nation
Michelle C. Kondo; Kent D.W. Bream; Frances K. Barg; Charles C. Branas
2014-01-01
Nonrandom sampling of populations in developing nations has limitations and can inaccurately estimate health phenomena, especially among hard-to-reach populations such as rural residents. However, random sampling of rural populations in developing nations can be challenged by incomplete enumeration of the base population. We describe a stratified random sampling method...
Exclusion in Schools in Northern Ireland: The Pupils' Voice
ERIC Educational Resources Information Center
Knipe, Damian; Reynolds, Margaret; Milner, Sharon
2007-01-01
The Department of Education in Northern Ireland has been reviewing the procedures for suspending and expelling pupils from school. This article reports the views of a random sample of 114 children (11-16 years) towards the proposed changes. Pupils' thoughts on: dealing with misbehaviour; setting rules; the decision-making process; appropriate…
78 FR 20320 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
...: select from for a random sample, get the survey to the appropriate respondent, and increase response rates. The survey will not be added to this package; instead, it will be processed under a different... Medicaid Services is requesting clearance for two surveys to aid in understanding levels of awareness and...
An Employer Needs Assessment for Vocational Education.
ERIC Educational Resources Information Center
Muraski, Ed J.; Whiteman, Dick
An employer needs assessment study was performed at Porterville College (PC), in California in 1991 as part of a comprehensive educational planning process for PC and the surrounding area. A validated survey instrument was sent to a stratified random sampling of 593 employers in the community, asking them to provide general information about their…
Assessing Professional Openness to a Novel Publication Approach.
ERIC Educational Resources Information Center
DeFiore, Roberta M.; Kramer, Thomas J.
In response to criticism of the peer review publication process, a study surveyed a random sample of 600 members of the American Psychological Association (APA) to determine (1) whether professional openness exists regarding the publication of a journal highlighting studies that, due to a difficulty in the experimental procedure, would usually be…
Can Mission Predict School Performance? The Case of Basic Education in Oman
ERIC Educational Resources Information Center
Al-Ani, Wajeha Thabit; Ismail, Omer Hashim
2015-01-01
This article reports on a study that examined the relationship between the mission statements and performance of Basic Education Schools in Oman. The process of mission statement framing was also investigated. A sample of 161 school mission statements was randomly collected from the Ministry of Education school mission portal database representing…
The Reading Process--The Relationship Between Word Recognition and Comprehension.
ERIC Educational Resources Information Center
Hays, Warren S.
The purpose of this study was to determine the relationship between word recognition and comprehension achieved by second and fifth grade students when reading material at various levels of readability. A random sample of twenty-five second and twenty-five fifth graders, taken from three middle class schools, was administered a…
Nonparametric Bayesian predictive distributions for future order statistics
Richard A. Johnson; James W. Evans; David W. Green
1999-01-01
We derive the predictive distribution for a specified order statistic, determined from a future random sample, under a Dirichlet process prior. Two variants of the approach are treated and some limiting cases studied. A practical application to monitoring the strength of lumber is discussed including choices of prior expectation and comparisons made to a Bayesian...
Ghasemi, Fahimeh; Fassihi, Afshin; Pérez-Sánchez, Horacio; Mehri Dehnavi, Alireza
2017-02-05
Thousands of molecules and descriptors are available for a medicinal chemist thanks to the technological advancements in different branches of chemistry. This fact as well as the correlation between them has raised new problems in quantitative structure activity relationship studies. Proper parameter initialization in statistical modeling has merged as another challenge in recent years. Random selection of parameters leads to poor performance of deep neural network (DNN). In this research, deep belief network (DBN) was applied to initialize DNNs. DBN is composed of some stacks of restricted Boltzmann machine, an energy-based method that requires computing log likelihood gradient for all samples. Three different sampling approaches were suggested to solve this gradient. In this respect, the impact of DBN was applied based on the different sampling approaches mentioned above to initialize the DNN architecture in predicting biological activity of all fifteen Kaggle targets that contain more than 70k molecules. The same as other fields of processing research, the outputs of these models demonstrated significant superiority to that of DNN with random parameters. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Rigorously testing multialternative decision field theory against random utility models.
Berkowitsch, Nicolas A J; Scheibehenne, Benjamin; Rieskamp, Jörg
2014-06-01
Cognitive models of decision making aim to explain the process underlying observed choices. Here, we test a sequential sampling model of decision making, multialternative decision field theory (MDFT; Roe, Busemeyer, & Townsend, 2001), on empirical grounds and compare it against 2 established random utility models of choice: the probit and the logit model. Using a within-subject experimental design, participants in 2 studies repeatedly choose among sets of options (consumer products) described on several attributes. The results of Study 1 showed that all models predicted participants' choices equally well. In Study 2, in which the choice sets were explicitly designed to distinguish the models, MDFT had an advantage in predicting the observed choices. Study 2 further revealed the occurrence of multiple context effects within single participants, indicating an interdependent evaluation of choice options and correlations between different context effects. In sum, the results indicate that sequential sampling models can provide relevant insights into the cognitive process underlying preferential choices and thus can lead to better choice predictions. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Ensemble Bayesian forecasting system Part I: Theory and algorithms
NASA Astrophysics Data System (ADS)
Herr, Henry D.; Krzysztofowicz, Roman
2015-05-01
The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of predictand, possesses a Bayesian coherence property, constitutes a random sample of the predictand, and has an acceptable sampling error-which makes it suitable for rational decision making under uncertainty.
Nonlinear Estimation of Discrete-Time Signals Under Random Observation Delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero-Aguila, R.; Jimenez-Lopez, J. D.; Hermoso-Carazo, A.
2008-11-06
This paper presents an approximation to the nonlinear least-squares estimation problem of discrete-time stochastic signals using nonlinear observations with additive white noise which can be randomly delayed by one sampling time. The observation delay is modelled by a sequence of independent Bernoulli random variables whose values, zero or one, indicate that the real observation arrives on time or it is delayed and, hence, the available measurement to estimate the signal is not up-to-date. Assuming that the state-space model generating the signal is unknown and only the covariance functions of the processes involved in the observation equation are ready for use,more » a filtering algorithm based on linear approximations of the real observations is proposed.« less
Different hunting strategies select for different weights in red deer.
Martínez, María; Rodríguez-Vigal, Carlos; Jones, Owen R; Coulson, Tim; San Miguel, Alfonso
2005-09-22
Much insight can be derived from records of shot animals. Most researchers using such data assume that their data represents a random sample of a particular demographic class. However, hunters typically select a non-random subset of the population and hunting is, therefore, not a random process. Here, with red deer (Cervus elaphus) hunting data from a ranch in Toledo, Spain, we demonstrate that data collection methods have a significant influence upon the apparent relationship between age and weight. We argue that a failure to correct for such methodological bias may have significant consequences for the interpretation of analyses involving weight or correlated traits such as breeding success, and urge researchers to explore methods to identify and correct for such bias in their data.
NASA Technical Reports Server (NTRS)
Vangenderen, J. L. (Principal Investigator); Lock, B. F.
1976-01-01
The author has identified the following significant results. Scope of the preprocessing techniques was restricted to standard material from the EROS Data Center accompanied by some enlarging procedures and the use of the diazo process. Investigation has shown that the most appropriate sampling strategy for this study is the stratified random technique. A viable sampling procedure, together with a method for determining minimum number of sample points in order to test results of any interpretation are presented.
Reduction of display artifacts by random sampling
NASA Technical Reports Server (NTRS)
Ahumada, A. J., Jr.; Nagel, D. C.; Watson, A. B.; Yellott, J. I., Jr.
1983-01-01
The application of random-sampling techniques to remove visible artifacts (such as flicker, moire patterns, and paradoxical motion) introduced in TV-type displays by discrete sequential scanning is discussed and demonstrated. Sequential-scanning artifacts are described; the window of visibility defined in spatiotemporal frequency space by Watson and Ahumada (1982 and 1983) and Watson et al. (1983) is explained; the basic principles of random sampling are reviewed and illustrated by the case of the human retina; and it is proposed that the sampling artifacts can be replaced by random noise, which can then be shifted to frequency-space regions outside the window of visibility. Vertical sequential, single-random-sequence, and continuously renewed random-sequence plotting displays generating 128 points at update rates up to 130 Hz are applied to images of stationary and moving lines, and best results are obtained with the single random sequence for the stationary lines and with the renewed random sequence for the moving lines.
Pourazar, Morteza; Mirakhori, Fatemeh; Hemayattalab, Rasool; Bagherzadeh, Fazlolah
2017-09-21
The purpose of this study was to investigate the training effects of Virtual Reality (VR) intervention program on reaction time in children with cerebral palsy. Thirty boys ranging from 7 to 12 years (mean = 11.20; SD = .76) were selected by available sampling method and randomly divided into the experimental and control groups. Simple Reaction Time (SRT) and Discriminative Reaction Time (DRT) were measured at baseline and 1 day after completion of VR intervention. Multivariate analysis of variance (MANOVA) and paired sample t-test were performed to analyze the results. MANOVA test revealed significant effects for group in posttest phase, with lower reaction time in both measures for the experimental group. Based on paired sample t-test results, both RT measures significantly improved in experimental group following the VR intervention program. This paper proposes VR as a promising tool into the rehabilitation process for improving reaction time in children with cerebral palsy.
The genealogy of samples in models with selection.
Neuhauser, C; Krone, S M
1997-02-01
We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models. DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case.
The Genealogy of Samples in Models with Selection
Neuhauser, C.; Krone, S. M.
1997-01-01
We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models, DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case. PMID:9071604
Seismic random noise attenuation method based on empirical mode decomposition of Hausdorff dimension
NASA Astrophysics Data System (ADS)
Yan, Z.; Luan, X.
2017-12-01
Introduction Empirical mode decomposition (EMD) is a noise suppression algorithm by using wave field separation, which is based on the scale differences between effective signal and noise. However, since the complexity of the real seismic wave field results in serious aliasing modes, it is not ideal and effective to denoise with this method alone. Based on the multi-scale decomposition characteristics of the signal EMD algorithm, combining with Hausdorff dimension constraints, we propose a new method for seismic random noise attenuation. First of all, We apply EMD algorithm adaptive decomposition of seismic data and obtain a series of intrinsic mode function (IMF)with different scales. Based on the difference of Hausdorff dimension between effectively signals and random noise, we identify IMF component mixed with random noise. Then we use threshold correlation filtering process to separate the valid signal and random noise effectively. Compared with traditional EMD method, the results show that the new method of seismic random noise attenuation has a better suppression effect. The implementation process The EMD algorithm is used to decompose seismic signals into IMF sets and analyze its spectrum. Since most of the random noise is high frequency noise, the IMF sets can be divided into three categories: the first category is the effective wave composition of the larger scale; the second category is the noise part of the smaller scale; the third category is the IMF component containing random noise. Then, the third kind of IMF component is processed by the Hausdorff dimension algorithm, and the appropriate time window size, initial step and increment amount are selected to calculate the Hausdorff instantaneous dimension of each component. The dimension of the random noise is between 1.0 and 1.05, while the dimension of the effective wave is between 1.05 and 2.0. On the basis of the previous steps, according to the dimension difference between the random noise and effective signal, we extracted the sample points, whose fractal dimension value is less than or equal to 1.05 for the each IMF components, to separate the residual noise. Using the IMF components after dimension filtering processing and the effective wave IMF components after the first selection for reconstruction, we can obtained the results of de-noising.
Point process statistics in atom probe tomography.
Philippe, T; Duguay, S; Grancher, G; Blavette, D
2013-09-01
We present a review of spatial point processes as statistical models that we have designed for the analysis and treatment of atom probe tomography (APT) data. As a major advantage, these methods do not require sampling. The mean distance to nearest neighbour is an attractive approach to exhibit a non-random atomic distribution. A χ(2) test based on distance distributions to nearest neighbour has been developed to detect deviation from randomness. Best-fit methods based on first nearest neighbour distance (1 NN method) and pair correlation function are presented and compared to assess the chemical composition of tiny clusters. Delaunay tessellation for cluster selection has been also illustrated. These statistical tools have been applied to APT experiments on microelectronics materials. Copyright © 2012 Elsevier B.V. All rights reserved.
A study of active learning methods for named entity recognition in clinical text.
Chen, Yukun; Lasko, Thomas A; Mei, Qiaozhu; Denny, Joshua C; Xu, Hua
2015-12-01
Named entity recognition (NER), a sequential labeling task, is one of the fundamental tasks for building clinical natural language processing (NLP) systems. Machine learning (ML) based approaches can achieve good performance, but they often require large amounts of annotated samples, which are expensive to build due to the requirement of domain experts in annotation. Active learning (AL), a sample selection approach integrated with supervised ML, aims to minimize the annotation cost while maximizing the performance of ML-based models. In this study, our goal was to develop and evaluate both existing and new AL methods for a clinical NER task to identify concepts of medical problems, treatments, and lab tests from the clinical notes. Using the annotated NER corpus from the 2010 i2b2/VA NLP challenge that contained 349 clinical documents with 20,423 unique sentences, we simulated AL experiments using a number of existing and novel algorithms in three different categories including uncertainty-based, diversity-based, and baseline sampling strategies. They were compared with the passive learning that uses random sampling. Learning curves that plot performance of the NER model against the estimated annotation cost (based on number of sentences or words in the training set) were generated to evaluate different active learning and the passive learning methods and the area under the learning curve (ALC) score was computed. Based on the learning curves of F-measure vs. number of sentences, uncertainty sampling algorithms outperformed all other methods in ALC. Most diversity-based methods also performed better than random sampling in ALC. To achieve an F-measure of 0.80, the best method based on uncertainty sampling could save 66% annotations in sentences, as compared to random sampling. For the learning curves of F-measure vs. number of words, uncertainty sampling methods again outperformed all other methods in ALC. To achieve 0.80 in F-measure, in comparison to random sampling, the best uncertainty based method saved 42% annotations in words. But the best diversity based method reduced only 7% annotation effort. In the simulated setting, AL methods, particularly uncertainty-sampling based approaches, seemed to significantly save annotation cost for the clinical NER task. The actual benefit of active learning in clinical NER should be further evaluated in a real-time setting. Copyright © 2015 Elsevier Inc. All rights reserved.
United States Air Force Summer Faculty Research Program (1987). Program Technical Report. Volume 2.
1987-12-01
the area of statistical inference, distribution theory and stochastic * •processes. I have taught courses in random processes and sample % j .functions...controlled phase separation of isotropic, binary mixtures, the theory of spinodal decomposition has been developed by Cahn and Hilliard.5 ,6 This theory is...peak and its initial rate of growth at a given temperature are predicted by the spinodal theory . The angle of maximum intensity is then determined by
Effect of Processing Delay and Storage Conditions on Urine Albumin-to-Creatinine Ratio.
Herrington, William; Illingworth, Nicola; Staplin, Natalie; Kumar, Aishwarya; Storey, Ben; Hrusecka, Renata; Judge, Parminder; Mahmood, Maria; Parish, Sarah; Landray, Martin; Haynes, Richard; Baigent, Colin; Hill, Michael; Clark, Sarah
2016-10-07
Because there is substantial biologic intraindividual variation in albumin excretion, randomized trials of albuminuria-reducing therapies may need multiple urine samples to estimate daily urinary albumin excretion. Mailing spot urine samples could offer a convenient and cost-effective method to collect multiple samples, but urine albumin-to-creatinine ratio stability in samples stored at ambient temperatures for several days is unknown. Patients with kidney disease provided fresh urine samples in two tubes (with and without boric acid preservative). Reference aliquots from each participant were analyzed immediately, whereas remaining aliquots were subject to different handling/storage conditions before analysis, including delayed processing for up to 7 days at three different storage temperatures (4°C, 18°C, and 30°C), multiple freeze-thaw cycles, and long-term frozen storage at -80°C, -40°C, and -20°C. We calculated the mean percentage change in urine albumin-to-creatinine ratio for each condition, and we considered samples stable if the 95% confidence interval was within a ±5% threshold. Ninety-three patients provided samples with detectable albuminuria in the reference aliquot. Median (interquartile range) urine albumin-to-creatinine ratio was 87 (20-499) mg/g. The inclusion of preservative had minimal effect on fresh urine albumin-to-creatinine ratio measurements but reduced the changes in albumin and creatinine in samples subject to processing delay and storage conditions. The urine albumin-to-creatinine ratio was stable for 7 days in samples containing preservative at 4°C and 18°C and 2 days when stored at 30°C. It was also stable in samples with preservative after three freeze-thaw cycles and in frozen storage for 6 months at -80°C or -40°C but not at -20°C. Mailed urine samples collected with preservative and received within 7 days if ambient temperature is ≤18°C, or within 2 days if the temperature is higher but does not exceed 30°C, are suitable for the measurement of urine albumin-to-creatinine ratio in randomized trials. Preserved samples frozen to -40°C or -80°C for 6 months before analysis also seem suitable. Copyright © 2016 by the American Society of Nephrology.
Effect of Processing Delay and Storage Conditions on Urine Albumin-to-Creatinine Ratio
Illingworth, Nicola; Staplin, Natalie; Kumar, Aishwarya; Storey, Ben; Hrusecka, Renata; Judge, Parminder; Mahmood, Maria; Parish, Sarah; Landray, Martin; Haynes, Richard; Baigent, Colin; Hill, Michael; Clark, Sarah
2016-01-01
Background and objectives Because there is substantial biologic intraindividual variation in albumin excretion, randomized trials of albuminuria-reducing therapies may need multiple urine samples to estimate daily urinary albumin excretion. Mailing spot urine samples could offer a convenient and cost-effective method to collect multiple samples, but urine albumin-to-creatinine ratio stability in samples stored at ambient temperatures for several days is unknown. Design, setting, participants, & measurements Patients with kidney disease provided fresh urine samples in two tubes (with and without boric acid preservative). Reference aliquots from each participant were analyzed immediately, whereas remaining aliquots were subject to different handling/storage conditions before analysis, including delayed processing for up to 7 days at three different storage temperatures (4°C, 18°C, and 30°C), multiple freeze-thaw cycles, and long–term frozen storage at −80°C, −40°C, and −20°C. We calculated the mean percentage change in urine albumin-to-creatinine ratio for each condition, and we considered samples stable if the 95% confidence interval was within a ±5% threshold. Results Ninety-three patients provided samples with detectable albuminuria in the reference aliquot. Median (interquartile range) urine albumin-to-creatinine ratio was 87 (20–499) mg/g. The inclusion of preservative had minimal effect on fresh urine albumin-to-creatinine ratio measurements but reduced the changes in albumin and creatinine in samples subject to processing delay and storage conditions. The urine albumin-to-creatinine ratio was stable for 7 days in samples containing preservative at 4°C and 18°C and 2 days when stored at 30°C. It was also stable in samples with preservative after three freeze-thaw cycles and in frozen storage for 6 months at −80°C or −40°C but not at −20°C. Conclusions Mailed urine samples collected with preservative and received within 7 days if ambient temperature is ≤18°C, or within 2 days if the temperature is higher but does not exceed 30°C, are suitable for the measurement of urine albumin-to-creatinine ratio in randomized trials. Preserved samples frozen to −40°C or −80°C for 6 months before analysis also seem suitable. PMID:27654930
Pervasive randomness in physics: an introduction to its modelling and spectral characterisation
NASA Astrophysics Data System (ADS)
Howard, Roy
2017-10-01
An introduction to the modelling and spectral characterisation of random phenomena is detailed at a level consistent with a first exposure to the subject at an undergraduate level. A signal framework for defining a random process is provided and this underpins an introduction to common random processes including the Poisson point process, the random walk, the random telegraph signal, shot noise, information signalling random processes, jittered pulse trains, birth-death random processes and Markov chains. An introduction to the spectral characterisation of signals and random processes, via either an energy spectral density or a power spectral density, is detailed. The important case of defining a white noise random process concludes the paper.
Revisiting sample size: are big trials the answer?
Lurati Buse, Giovanna A L; Botto, Fernando; Devereaux, P J
2012-07-18
The superiority of the evidence generated in randomized controlled trials over observational data is not only conditional to randomization. Randomized controlled trials require proper design and implementation to provide a reliable effect estimate. Adequate random sequence generation, allocation implementation, analyses based on the intention-to-treat principle, and sufficient power are crucial to the quality of a randomized controlled trial. Power, or the probability of the trial to detect a difference when a real difference between treatments exists, strongly depends on sample size. The quality of orthopaedic randomized controlled trials is frequently threatened by a limited sample size. This paper reviews basic concepts and pitfalls in sample-size estimation and focuses on the importance of large trials in the generation of valid evidence.
Some practical problems in implementing randomization.
Downs, Matt; Tucker, Kathryn; Christ-Schmidt, Heidi; Wittes, Janet
2010-06-01
While often theoretically simple, implementing randomization to treatment in a masked, but confirmable, fashion can prove difficult in practice. At least three categories of problems occur in randomization: (1) bad judgment in the choice of method, (2) design and programming errors in implementing the method, and (3) human error during the conduct of the trial. This article focuses on these latter two types of errors, dealing operationally with what can go wrong after trial designers have selected the allocation method. We offer several case studies and corresponding recommendations for lessening the frequency of problems in allocating treatment or for mitigating the consequences of errors. Recommendations include: (1) reviewing the randomization schedule before starting a trial, (2) being especially cautious of systems that use on-demand random number generators, (3) drafting unambiguous randomization specifications, (4) performing thorough testing before entering a randomization system into production, (5) maintaining a dataset that captures the values investigators used to randomize participants, thereby allowing the process of treatment allocation to be reproduced and verified, (6) resisting the urge to correct errors that occur in individual treatment assignments, (7) preventing inadvertent unmasking to treatment assignments in kit allocations, and (8) checking a sample of study drug kits to allow detection of errors in drug packaging and labeling. Although we performed a literature search of documented randomization errors, the examples that we provide and the resultant recommendations are based largely on our own experience in industry-sponsored clinical trials. We do not know how representative our experience is or how common errors of the type we have seen occur. Our experience underscores the importance of verifying the integrity of the treatment allocation process before and during a trial. Clinical Trials 2010; 7: 235-245. http://ctj.sagepub.com.
Research on photodiode detector-based spatial transient light detection and processing system
NASA Astrophysics Data System (ADS)
Liu, Meiying; Wang, Hu; Liu, Yang; Zhao, Hui; Nan, Meng
2016-10-01
In order to realize real-time signal identification and processing of spatial transient light, the features and the energy of the captured target light signal are first described and quantitatively calculated. Considering that the transient light signal has random occurrence, a short duration and an evident beginning and ending, a photodiode detector based spatial transient light detection and processing system is proposed and designed in this paper. This system has a large field of view and is used to realize non-imaging energy detection of random, transient and weak point target under complex background of spatial environment. Weak signal extraction under strong background is difficult. In this paper, considering that the background signal changes slowly and the target signal changes quickly, filter is adopted for signal's background subtraction. A variable speed sampling is realized by the way of sampling data points with a gradually increased interval. The two dilemmas that real-time processing of large amount of data and power consumption required by the large amount of data needed to be stored are solved. The test results with self-made simulative signal demonstrate the effectiveness of the design scheme. The practical system could be operated reliably. The detection and processing of the target signal under the strong sunlight background was realized. The results indicate that the system can realize real-time detection of target signal's characteristic waveform and monitor the system working parameters. The prototype design could be used in a variety of engineering applications.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1974-01-01
A study was conducted of an alternate method for storage and use of bathymetry data in the Langley Research Center and Virginia Institute of Marine Science mid-Atlantic continental-shelf wave-refraction computer program. The regional bathymetry array was divided into 105 indexed modules which can be read individually into memory in a nonsequential manner from a peripheral file using special random-access subroutines. In running a sample refraction case, a 75-percent decrease in program field length was achieved by using the random-access storage method in comparison with the conventional method of total regional array storage. This field-length decrease was accompanied by a comparative 5-percent increase in central processing time and a 477-percent increase in the number of operating-system calls. A comparative Langley Research Center computer system cost savings of 68 percent was achieved by using the random-access storage method.
Modeling and Simulation of High Dimensional Stochastic Multiscale PDE Systems at the Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevrekidis, Ioannis
2017-03-22
The thrust of the proposal was to exploit modern data-mining tools in a way that will create a systematic, computer-assisted approach to the representation of random media -- and also to the representation of the solutions of an array of important physicochemical processes that take place in/on such media. A parsimonious representation/parametrization of the random media links directly (via uncertainty quantification tools) to good sampling of the distribution of random media realizations. It also links directly to modern multiscale computational algorithms (like the equation-free approach that has been developed in our group) and plays a crucial role in accelerating themore » scientific computation of solutions of nonlinear PDE models (deterministic or stochastic) in such media – both solutions in particular realizations of the random media, and estimation of the statistics of the solutions over multiple realizations (e.g. expectations).« less
An, Zhao; Wen-Xin, Zhang; Zhong, Yao; Yu-Kuan, Ma; Qing, Liu; Hou-Lang, Duan; Yi-di, Shang
2016-06-29
To optimize and simplify the survey method of Oncomelania hupensis snail in marshland endemic region of schistosomiasis and increase the precision, efficiency and economy of the snail survey. A quadrate experimental field was selected as the subject of 50 m×50 m size in Chayegang marshland near Henghu farm in the Poyang Lake region and a whole-covered method was adopted to survey the snails. The simple random sampling, systematic sampling and stratified random sampling methods were applied to calculate the minimum sample size, relative sampling error and absolute sampling error. The minimum sample sizes of the simple random sampling, systematic sampling and stratified random sampling methods were 300, 300 and 225, respectively. The relative sampling errors of three methods were all less than 15%. The absolute sampling errors were 0.221 7, 0.302 4 and 0.047 8, respectively. The spatial stratified sampling with altitude as the stratum variable is an efficient approach of lower cost and higher precision for the snail survey.
NASA Astrophysics Data System (ADS)
Wang, Shao-Jiang; Guo, Qi; Cai, Rong-Gen
2017-12-01
We investigate the impact of different redshift distributions of random samples on the baryon acoustic oscillations (BAO) measurements of D_V(z)r_d^fid/r_d from the two-point correlation functions of galaxies in the Data Release 12 of the Baryon Oscillation Spectroscopic Survey (BOSS). Big surveys, such as BOSS, usually assign redshifts to the random samples by randomly drawing values from the measured redshift distributions of the data, which would necessarily introduce fiducial signals of fluctuations into the random samples, weakening the signals of BAO, if the cosmic variance cannot be ignored. We propose a smooth function of redshift distribution that fits the data well to populate the random galaxy samples. The resulting cosmological parameters match the input parameters of the mock catalogue very well. The significance of BAO signals has been improved by 0.33σ for a low-redshift sample and by 0.03σ for a constant-stellar-mass sample, though the absolute values do not change significantly. Given the precision of the measurements of current cosmological parameters, it would be appreciated for the future improvements on the measurements of galaxy clustering.
Applying the Anderson-Darling test to suicide clusters: evidence of contagion at U. S. universities?
MacKenzie, Donald W
2013-01-01
Suicide clusters at Cornell University and the Massachusetts Institute of Technology (MIT) prompted popular and expert speculation of suicide contagion. However, some clustering is to be expected in any random process. This work tested whether suicide clusters at these two universities differed significantly from those expected under a homogeneous Poisson process, in which suicides occur randomly and independently of one another. Suicide dates were collected for MIT and Cornell for 1990-2012. The Anderson-Darling statistic was used to test the goodness-of-fit of the intervals between suicides to distribution expected under the Poisson process. Suicides at MIT were consistent with the homogeneous Poisson process, while those at Cornell showed clustering inconsistent with such a process (p = .05). The Anderson-Darling test provides a statistically powerful means to identify suicide clustering in small samples. Practitioners can use this method to test for clustering in relevant communities. The difference in clustering behavior between the two institutions suggests that more institutions should be studied to determine the prevalence of suicide clustering in universities and its causes.
Ulaczyk, Jan; Morawiec, Krzysztof; Zabierowski, Paweł; Drobiazg, Tomasz; Barreau, Nicolas
2017-09-01
A data mining approach is proposed as a useful tool for the control parameters analysis of the 3-stage CIGSe photovoltaic cell production process, in order to find variables that are the most relevant for cell electric parameters and efficiency. The analysed data set consists of stage duration times, heater power values as well as temperatures for the element sources and the substrate - there are 14 variables per sample in total. The most relevant variables of the process have been found based on the so-called random forest analysis with the application of the Boruta algorithm. 118 CIGSe samples, prepared at Institut des Matériaux Jean Rouxel, were analysed. The results are close to experimental knowledge on the CIGSe cells production process. They bring new evidence to production parameters of new cells and further research. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atanasov, Petar A., E-mail: paatanas@ie.bas.bg; Nedyalkov, Nikolay N.; Valova, Eugenia I.
We present an experimental analysis on surface structuring of polydimethylsiloxane films with UV (263 nm) femtosecond laser pulses, in air. Laser processed areas are analyzed by optical microscopy, SEM, and μ-Raman spectroscopy. The laser-treated sample shows the formation of a randomly nanostructured surface morphology. μ-Raman spectra, carried out at both 514 and 785 nm excitation wavelengths, prior and after laser treatment allow evidencing the changes in the sample structure. The influence of the laser fluence on the surface morphology is studied. Finally, successful electro-less metallization of the laser-processed sample is achieved, even after several months from the laser-treatment contrary to previous observationmore » with nanosecond pulses. Our findings address the effectiveness of fs-laser treatment and chemical metallization of polydimethylsiloxane films with perspective technological interest in micro-fabrication devices for MEMS and nano-electromechanical systems.« less
People's Need for Additional Job Training: Development and Evaluation of an Assessment Procedure.
ERIC Educational Resources Information Center
Copa, George H.; Maurice, Clyde F.
A procedure was developed and evaluated for assessing the self-perceived educational needs of people as one input to the process of planning, approving, and implementing relevant educational programs. The method of data collection involved selecting samples of people by randomly selecting households in a given geographic area, and then contacting…
Nursing Home Quality, Cost, Staffing, and Staff Mix
ERIC Educational Resources Information Center
Rantz, Marilyn J.; Hicks, Lanis; Grando, Victoria; Petroski, Gregory F.; Madsen, Richard W.; Mehr, David R.; Conn, Vicki; Zwygart-Staffacher, Mary; Scott, Jill; Flesner, Marcia; Bostick, Jane; Porter, Rose; Maas, Meridean
2004-01-01
Purpose: The purpose of this study was to describe the processes of care, organizational attributes, cost of care, staffing level, and staff mix in a sample of Missouri homes with good, average, and poor resident outcomes. Design and Methods: A three-group exploratory study design was used, with 92 nursing homes randomly selected from all nursing…
ERIC Educational Resources Information Center
Backman, Desiree; Gonzaga, Gian; Sugerman, Sharon; Francis, Dona; Cook, Sara
2011-01-01
Objective: To examine the impact of fresh fruit availability at worksites on the fruit and vegetable consumption and related psychosocial determinants of low-wage employees. Design: A prospective, randomized block experimental design. Setting: Seven apparel manufacturing and 2 food processing worksites. Participants: A convenience sample of 391…
Modeling Signal-Noise Processes Supports Student Construction of a Hierarchical Image of Sample
ERIC Educational Resources Information Center
Lehrer, Richard
2017-01-01
Grade 6 (modal age 11) students invented and revised models of the variability generated as each measured the perimeter of a table in their classroom. To construct models, students represented variability as a linear composite of true measure (signal) and multiple sources of random error. Students revised models by developing sampling…
Hope Therapy in a Community Sample: A Pilot Investigation
ERIC Educational Resources Information Center
Cheavens, Jennifer S.; Feldman, David B.; Gum, Amber; Michael, Scott T.; Snyder, C. R.
2006-01-01
We report findings from an initial empirical test of a hope-based, group therapy protocol. In this context, hope is defined as a cognitive process through which individuals pursue their goals [Snyder, C. R.: 1994, Free Press, New York]. As such, the eight-session group treatment emphasized building goal-pursuit skills. Findings from a randomized,…
ERIC Educational Resources Information Center
Young, I. Phillip; Young, Karen Holsey; Okhremtchouk, Irina; Castaneda, Jose Moreno
2009-01-01
Pay satisfaction was assessed according to different facets (pay level, benefits, pay structure, and pay raises) and potential referent groups (teachers and elementary school principals) for a random sample of male elementary school principals. A structural model approach was used that considers facets of the pay process, potential others as…
The effect of paclitaxel on conjunctival wound healing: a pilot study.
Koz, Ozlem Gurbuz; Ozhuy, Serife; Tezel, Gaye Guler; Karaman, Nazmiye; Unlu, Nursen; Yarangumeli, Alper; Kural, Gulcan
2007-01-01
To compare the effects of mitomycin C (MMC) and paclitaxel entrapped within Carbopol 980 hydrogel (CH) on conjunctival wound healing. Twenty rabbits were randomized into 2 groups. In group 1, limbal-based conjunctival flaps were created in both eyes. In this stage, eyes were randomized for 4 different processes. In process 1, a dry cellulose sponge soaked with 0.2 mg/mL of MMC was applied to the scleral surface. A cellulose sponge soaked with balanced saline solution was applied in the same manner in process 2. In process 3, paclitaxel 1 mg/mL entrapped within CH was placed between the conjunctiva and sclera. In process 4, CH without paclitaxel was applied in the same manner. The conjunctiva was then sutured. All procedures were applied in the same manner in both eyes of animals in group 2. Eyes from group 1 were sampled at the seventh day, and the sampling was also carried out in group 2 on day 14. The inflammatory response and fibrosis were evaluated with light microscopy. Among 4 different processes, lower cell counts and fibrosis scores were found in eyes treated with MMC and paclitaxel compared with balanced saline solution and CH groups (P<0.05). There was no difference between eyes treated with MMC and paclitaxel in terms of these histopathologic parameters (P>0.05). Paclitaxel was shown to provide MMC-like antifibrotic effects during conjunctival wound healing, particularly when delivered with CH and might be a promising alternative as an adjunctive antimetabolite in glaucoma filtration surgery.
Njage, Patrick Murigu Kamau; Sawe, Chemutai Tonui; Onyango, Cecilia Moraa; Habib, I; Njagi, Edmund Njeru; Aerts, Marc; Molenberghs, Geert
2017-01-01
Current approaches such as inspections, audits, and end product testing cannot detect the distribution and dynamics of microbial contamination. Despite the implementation of current food safety management systems, foodborne outbreaks linked to fresh produce continue to be reported. A microbial assessment scheme and statistical modeling were used to systematically assess the microbial performance of core control and assurance activities in five Kenyan fresh produce processing and export companies. Generalized linear mixed models and correlated random-effects joint models for multivariate clustered data followed by empirical Bayes estimates enabled the analysis of the probability of contamination across critical sampling locations (CSLs) and factories as a random effect. Salmonella spp. and Listeria monocytogenes were not detected in the final products. However, none of the processors attained the maximum safety level for environmental samples. Escherichia coli was detected in five of the six CSLs, including the final product. Among the processing-environment samples, the hand or glove swabs of personnel revealed a higher level of predicted contamination with E. coli , and 80% of the factories were E. coli positive at this CSL. End products showed higher predicted probabilities of having the lowest level of food safety compared with raw materials. The final products were E. coli positive despite the raw materials being E. coli negative for 60% of the processors. There was a higher probability of contamination with coliforms in water at the inlet than in the final rinse water. Four (80%) of the five assessed processors had poor to unacceptable counts of Enterobacteriaceae on processing surfaces. Personnel-, equipment-, and product-related hygiene measures to improve the performance of preventive and intervention measures are recommended.
Sampling methods to the statistical control of the production of blood components.
Pereira, Paulo; Seghatchian, Jerard; Caldeira, Beatriz; Santos, Paula; Castro, Rosa; Fernandes, Teresa; Xavier, Sandra; de Sousa, Gracinda; de Almeida E Sousa, João Paulo
2017-12-01
The control of blood components specifications is a requirement generalized in Europe by the European Commission Directives and in the US by the AABB standards. The use of a statistical process control methodology is recommended in the related literature, including the EDQM guideline. The control reliability is dependent of the sampling. However, a correct sampling methodology seems not to be systematically applied. Commonly, the sampling is intended to comply uniquely with the 1% specification to the produced blood components. Nevertheless, on a purely statistical viewpoint, this model could be argued not to be related to a consistent sampling technique. This could be a severe limitation to detect abnormal patterns and to assure that the production has a non-significant probability of producing nonconforming components. This article discusses what is happening in blood establishments. Three statistical methodologies are proposed: simple random sampling, sampling based on the proportion of a finite population, and sampling based on the inspection level. The empirical results demonstrate that these models are practicable in blood establishments contributing to the robustness of sampling and related statistical process control decisions for the purpose they are suggested for. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fractional Brownian motion and long term clinical trial recruitment
Zhang, Qiang; Lai, Dejian
2015-01-01
Prediction of recruitment in clinical trials has been a challenging task. Many methods have been studied, including models based on Poisson process and its large sample approximation by Brownian motion (BM), however, when the independent incremental structure is violated for BM model, we could use fractional Brownian motion to model and approximate the underlying Poisson processes with random rates. In this paper, fractional Brownian motion (FBM) is considered for such conditions and compared to BM model with illustrated examples from different trials and simulations. PMID:26347306
Fractional Brownian motion and long term clinical trial recruitment.
Zhang, Qiang; Lai, Dejian
2011-05-01
Prediction of recruitment in clinical trials has been a challenging task. Many methods have been studied, including models based on Poisson process and its large sample approximation by Brownian motion (BM), however, when the independent incremental structure is violated for BM model, we could use fractional Brownian motion to model and approximate the underlying Poisson processes with random rates. In this paper, fractional Brownian motion (FBM) is considered for such conditions and compared to BM model with illustrated examples from different trials and simulations.
2014-02-01
moisture level of 14% dry soil mass was maintained for the duration of the study by weekly additions of ASTM Type I water. Soil samples were collected...maintain the initial soil moisture level. One cluster of Orchard grass straw was harvested from a set of randomly selected replicate containers...decomposition is among the most integrating processes within the soil ecosystem because it involves complex interactions of soil microbial, plant , and
NASA Astrophysics Data System (ADS)
Vile, Douglas J.
In radiation therapy, interfraction organ motion introduces a level of geometric uncertainty into the planning process. Plans, which are typically based upon a single instance of anatomy, must be robust against daily anatomical variations. For this problem, a model of the magnitude, direction, and likelihood of deformation is useful. In this thesis, principal component analysis (PCA) is used to statistically model the 3D organ motion for 19 prostate cancer patients, each with 8-13 fractional computed tomography (CT) images. Deformable image registration and the resultant displacement vector fields (DVFs) are used to quantify the interfraction systematic and random motion. By applying the PCA technique to the random DVFs, principal modes of random tissue deformation were determined for each patient, and a method for sampling synthetic random DVFs was developed. The PCA model was then extended to describe the principal modes of systematic and random organ motion for the population of patients. A leave-one-out study tested both the systematic and random motion model's ability to represent PCA training set DVFs. The random and systematic DVF PCA models allowed the reconstruction of these data with absolute mean errors between 0.5-0.9 mm and 1-2 mm, respectively. To the best of the author's knowledge, this study is the first successful effort to build a fully 3D statistical PCA model of systematic tissue deformation in a population of patients. By sampling synthetic systematic and random errors, organ occupancy maps were created for bony and prostate-centroid patient setup processes. By thresholding these maps, PCA-based planning target volume (PTV) was created and tested against conventional margin recipes (van Herk for bony alignment and 5 mm fixed [3 mm posterior] margin for centroid alignment) in a virtual clinical trial for low-risk prostate cancer. Deformably accumulated delivered dose served as a surrogate for clinical outcome. For the bony landmark setup subtrial, the PCA PTV significantly (p<0.05) reduced D30, D20, and D5 to bladder and D50 to rectum, while increasing rectal D20 and D5. For the centroid-aligned setup, the PCA PTV significantly reduced all bladder DVH metrics and trended to lower rectal toxicity metrics. All PTVs covered the prostate with the prescription dose.
Majumdar, Angshul; Gogna, Anupriya; Ward, Rabab
2014-08-25
We address the problem of acquiring and transmitting EEG signals in Wireless Body Area Networks (WBAN) in an energy efficient fashion. In WBANs, the energy is consumed by three operations: sensing (sampling), processing and transmission. Previous studies only addressed the problem of reducing the transmission energy. For the first time, in this work, we propose a technique to reduce sensing and processing energy as well: this is achieved by randomly under-sampling the EEG signal. We depart from previous Compressed Sensing based approaches and formulate signal recovery (from under-sampled measurements) as a matrix completion problem. A new algorithm to solve the matrix completion problem is derived here. We test our proposed method and find that the reconstruction accuracy of our method is significantly better than state-of-the-art techniques; and we achieve this while saving sensing, processing and transmission energy. Simple power analysis shows that our proposed methodology consumes considerably less power compared to previous CS based techniques.
Shah, R; Worner, S P; Chapman, R B
2012-10-01
Pesticide resistance monitoring includes resistance detection and subsequent documentation/ measurement. Resistance detection would require at least one (≥1) resistant individual(s) to be present in a sample to initiate management strategies. Resistance documentation, on the other hand, would attempt to get an estimate of the entire population (≥90%) of the resistant individuals. A computer simulation model was used to compare the efficiency of simple random and systematic sampling plans to detect resistant individuals and to document their frequencies when the resistant individuals were randomly or patchily distributed. A patchy dispersion pattern of resistant individuals influenced the sampling efficiency of systematic sampling plans while the efficiency of random sampling was independent of such patchiness. When resistant individuals were randomly distributed, sample sizes required to detect at least one resistant individual (resistance detection) with a probability of 0.95 were 300 (1%) and 50 (10% and 20%); whereas, when resistant individuals were patchily distributed, using systematic sampling, sample sizes required for such detection were 6000 (1%), 600 (10%) and 300 (20%). Sample sizes of 900 and 400 would be required to detect ≥90% of resistant individuals (resistance documentation) with a probability of 0.95 when resistant individuals were randomly dispersed and present at a frequency of 10% and 20%, respectively; whereas, when resistant individuals were patchily distributed, using systematic sampling, a sample size of 3000 and 1500, respectively, was necessary. Small sample sizes either underestimated or overestimated the resistance frequency. A simple random sampling plan is, therefore, recommended for insecticide resistance detection and subsequent documentation.
Different hunting strategies select for different weights in red deer
Martínez, María; Rodríguez-Vigal, Carlos; Jones, Owen R; Coulson, Tim; Miguel, Alfonso San
2005-01-01
Much insight can be derived from records of shot animals. Most researchers using such data assume that their data represents a random sample of a particular demographic class. However, hunters typically select a non-random subset of the population and hunting is, therefore, not a random process. Here, with red deer (Cervus elaphus) hunting data from a ranch in Toledo, Spain, we demonstrate that data collection methods have a significant influence upon the apparent relationship between age and weight. We argue that a failure to correct for such methodological bias may have significant consequences for the interpretation of analyses involving weight or correlated traits such as breeding success, and urge researchers to explore methods to identify and correct for such bias in their data. PMID:17148205
Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model.
Dean, David S; Iorio, Antonio; Marinari, Enzo; Oshanin, Gleb
2016-09-01
The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential is given by a Brownian bridge on a finite interval (0,L) and then periodically repeated over the whole real line and study the power spectrum S(f) of the diffusive process x(t) in such a potential. We show that for most of realizations of x(t) in a given realization of the potential, the low-frequency behavior is S(f)∼A/f^{2}, i.e., the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with a finite support. Focusing on the statistical properties of this random variable, we determine the moments of A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k and a rather unusual dependence on the temperature and on the periodicity L, which are supported by atypical realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity. Our findings are based both on analytic results and on extensive numerical simulations of the process x(t).
On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo
NASA Astrophysics Data System (ADS)
Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl
2016-09-01
A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.
Kandler, Anne; Shennan, Stephen
2015-12-06
Cultural change can be quantified by temporal changes in frequency of different cultural artefacts and it is a central question to identify what underlying cultural transmission processes could have caused the observed frequency changes. Observed changes, however, often describe the dynamics in samples of the population of artefacts, whereas transmission processes act on the whole population. Here we develop a modelling framework aimed at addressing this inference problem. To do so, we firstly generate population structures from which the observed sample could have been drawn randomly and then determine theoretical samples at a later time t2 produced under the assumption that changes in frequencies are caused by a specific transmission process. Thereby we also account for the potential effect of time-averaging processes in the generation of the observed sample. Subsequent statistical comparisons (e.g. using Bayesian inference) of the theoretical and observed samples at t2 can establish which processes could have produced the observed frequency data. In this way, we infer underlying transmission processes directly from available data without any equilibrium assumption. We apply this framework to a dataset describing pottery from settlements of some of the first farmers in Europe (the LBK culture) and conclude that the observed frequency dynamic of different types of decorated pottery is consistent with age-dependent selection, a preference for 'young' pottery types which is potentially indicative of fashion trends. © 2015 The Author(s).
High throughput nonparametric probability density estimation.
Farmer, Jenny; Jacobs, Donald
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.
High throughput nonparametric probability density estimation
Farmer, Jenny
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference. PMID:29750803
RECAL: A Computer Program for Selecting Sample Days for Recreation Use Estimation
D.L. Erickson; C.J. Liu; H. Ken Cordell; W.L. Chen
1980-01-01
Recreation Calendar (RECAL) is a computer program in PL/I for drawing a sample of days for estimating recreation use. With RECAL, a sampling period of any length may be chosen; simple random, stratified random, and factorial designs can be accommodated. The program randomly allocates days to strata and locations.
Sample Selection in Randomized Experiments: A New Method Using Propensity Score Stratified Sampling
ERIC Educational Resources Information Center
Tipton, Elizabeth; Hedges, Larry; Vaden-Kiernan, Michael; Borman, Geoffrey; Sullivan, Kate; Caverly, Sarah
2014-01-01
Randomized experiments are often seen as the "gold standard" for causal research. Despite the fact that experiments use random assignment to treatment conditions, units are seldom selected into the experiment using probability sampling. Very little research on experimental design has focused on how to make generalizations to well-defined…
Xu, Chonggang; Gertner, George
2013-01-01
Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements. PMID:24143037
Xu, Chonggang; Gertner, George
2011-01-01
Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements.
Impact of Processing Method on Recovery of Bacteria from Wipes Used in Biological Surface Sampling
Olson, Nathan D.; Filliben, James J.; Morrow, Jayne B.
2012-01-01
Environmental sampling for microbiological contaminants is a key component of hygiene monitoring and risk characterization practices utilized across diverse fields of application. However, confidence in surface sampling results, both in the field and in controlled laboratory studies, has been undermined by large variation in sampling performance results. Sources of variation include controlled parameters, such as sampling materials and processing methods, which often differ among studies, as well as random and systematic errors; however, the relative contributions of these factors remain unclear. The objective of this study was to determine the relative impacts of sample processing methods, including extraction solution and physical dissociation method (vortexing and sonication), on recovery of Gram-positive (Bacillus cereus) and Gram-negative (Burkholderia thailandensis and Escherichia coli) bacteria from directly inoculated wipes. This work showed that target organism had the largest impact on extraction efficiency and recovery precision, as measured by traditional colony counts. The physical dissociation method (PDM) had negligible impact, while the effect of the extraction solution was organism dependent. Overall, however, extraction of organisms from wipes using phosphate-buffered saline with 0.04% Tween 80 (PBST) resulted in the highest mean recovery across all three organisms. The results from this study contribute to a better understanding of the factors that influence sampling performance, which is critical to the development of efficient and reliable sampling methodologies relevant to public health and biodefense. PMID:22706055
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, Erik; Trolinger, James D.; Lacey, Ian
This work reports on the development of a binary pseudo-random test sample optimized to calibrate the MTF of optical microscopes. The sample consists of a number of 1-D and 2-D patterns, with different minimum sizes of spatial artifacts from 300 nm to 2 microns. We describe the mathematical background, fabrication process, data acquisition and analysis procedure to return spatial frequency based instrument calibration. We show that the developed samples satisfy the characteristics of a test standard: functionality, ease of specification and fabrication, reproducibility, and low sensitivity to manufacturing error. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading ofmore » the abstract is permitted for personal use only.« less
NASA Astrophysics Data System (ADS)
Hubert, Maxime; Pacureanu, Alexandra; Guilloud, Cyril; Yang, Yang; da Silva, Julio C.; Laurencin, Jerome; Lefebvre-Joud, Florence; Cloetens, Peter
2018-05-01
In X-ray tomography, ring-shaped artifacts present in the reconstructed slices are an inherent problem degrading the global image quality and hindering the extraction of quantitative information. To overcome this issue, we propose a strategy for suppression of ring artifacts originating from the coherent mixing of the incident wave and the object. We discuss the limits of validity of the empty beam correction in the framework of a simple formalism. We then deduce a correction method based on two-dimensional random sample displacement, with minimal cost in terms of spatial resolution, acquisition, and processing time. The method is demonstrated on bone tissue and on a hydrogen electrode of a ceramic-metallic solid oxide cell. Compared to the standard empty beam correction, we obtain high quality nanotomography images revealing detailed object features. The resulting absence of artifacts allows straightforward segmentation and posterior quantification of the data.
Quantifying Adventitious Error in a Covariance Structure as a Random Effect
Wu, Hao; Browne, Michael W.
2017-01-01
We present an approach to quantifying errors in covariance structures in which adventitious error, identified as the process underlying the discrepancy between the population and the structured model, is explicitly modeled as a random effect with a distribution, and the dispersion parameter of this distribution to be estimated gives a measure of misspecification. Analytical properties of the resultant procedure are investigated and the measure of misspecification is found to be related to the RMSEA. An algorithm is developed for numerical implementation of the procedure. The consistency and asymptotic sampling distributions of the estimators are established under a new asymptotic paradigm and an assumption weaker than the standard Pitman drift assumption. Simulations validate the asymptotic sampling distributions and demonstrate the importance of accounting for the variations in the parameter estimates due to adventitious error. Two examples are also given as illustrations. PMID:25813463
Spline methods for approximating quantile functions and generating random samples
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Matthews, C. G.
1985-01-01
Two cubic spline formulations are presented for representing the quantile function (inverse cumulative distribution function) of a random sample of data. Both B-spline and rational spline approximations are compared with analytic representations of the quantile function. It is also shown how these representations can be used to generate random samples for use in simulation studies. Comparisons are made on samples generated from known distributions and a sample of experimental data. The spline representations are more accurate for multimodal and skewed samples and to require much less time to generate samples than the analytic representation.
van Knippenberg, Rosalia J M; de Vugt, Marjolein E; Ponds, Rudolf W; Myin-Germeys, Inez; Verhey, Frans R J
2016-05-11
There is an urgent need for psychosocial interventions that effectively support dementia caregivers in daily life. The Experience Sampling Methodology (ESM) offers the possibility to provide a more dynamic view of caregiver functioning. ESM-derived feedback may help to redirect caregivers' behavior towards situations that elicit positive emotions and to increase their feelings of competence in the caretaking process. This paper presents the design of a study that evaluates the process characteristics and effects of the ESM-based intervention 'Partner in Sight'. A randomized controlled trial with 90 spousal caregivers of people with dementia will be conducted. Participants will be randomly assigned to the experimental (6-week ESM intervention including feedback), pseudo-experimental (6-week ESM intervention without feedback), or control group (care as usual). Assessments will be performed pre- and post-intervention and at 2-, and 6-month follow-up. Main outcomes will be sense of competence, perceived control, momentary positive affect, and psychological complaints (depressive symptoms, perceived stress, anxiety, momentary negative affect). In addition to the effect evaluation, a process and economic evaluation will be conducted to investigate the credibility and generalizability of the intervention, and its cost-effectiveness. The potential effects of the ESM intervention may help caregivers to endure their care responsibilities and prevent them from becoming overburdened. This is the first ESM intervention for caregivers of people with dementia. The results of this study, therefore, provide a valuable contribution to the growing knowledge on m-health interventions for dementia caregivers. Dutch Trial Register NTR4847 ; date registered Oct 9, 2014.
Digital simulation of an arbitrary stationary stochastic process by spectral representation.
Yura, Harold T; Hanson, Steen G
2011-04-01
In this paper we present a straightforward, efficient, and computationally fast method for creating a large number of discrete samples with an arbitrary given probability density function and a specified spectral content. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In contrast to previous work, where the analyses were limited to auto regressive and or iterative techniques to obtain satisfactory results, we find that a single application of the inverse transform method yields satisfactory results for a wide class of arbitrary probability distributions. Although a single application of the inverse transform technique does not conserve the power spectra exactly, it yields highly accurate numerical results for a wide range of probability distributions and target power spectra that are sufficient for system simulation purposes and can thus be regarded as an accurate engineering approximation, which can be used for wide range of practical applications. A sufficiency condition is presented regarding the range of parameter values where a single application of the inverse transform method yields satisfactory agreement between the simulated and target power spectra, and a series of examples relevant for the optics community are presented and discussed. Outside this parameter range the agreement gracefully degrades but does not distort in shape. Although we demonstrate the method here focusing on stationary random processes, we see no reason why the method could not be extended to simulate non-stationary random processes. © 2011 Optical Society of America
Brandão, Marcelo L L; Almeida, Davi O; Bispo, Fernanda C P; Bricio, Silvia M L; Marin, Victor A; Miagostovich, Marize P
2014-05-01
This study aimed to assess the microbiological contamination of lettuces commercialized in Rio de Janeiro, Brazil, in order to investigate detection of norovirus genogroup II (NoV GII), Salmonella spp., total and fecal coliforms, such as Escherichia coli. For NoV detection samples were processed using the adsorption-elution concentration method associated to real-time quantitative polymerase chain reaction (qPCR). A total of 90 samples of lettuce including 30 whole fresh lettuces, 30 minimally processed (MP) lettuces, and 30 raw ready-to-eat (RTE) lettuce salads were randomly collected from different supermarkets (fresh and MP lettuce samples), food services, and self-service restaurants (RTE lettuce salads), all located in Rio de Janeiro, Brazil, from October 2010 to December 2011. NoV GII was not detected and PP7 bacteriophage used as internal control process (ICP) was recovered in 40.0%, 86.7%, and 76.7% of those samples, respectively. Salmonella spp. was not detected although fecal contamination has been observed by fecal coliform concentrations higher than 10(2) most probable number/g. E. coli was detected in 70.0%, 6.7%, and 30.0% of fresh, MP, and RTE samples, respectively. This study highlights the need to improve hygiene procedures at all stages of vegetable production and to show PP7 bacteriophage as an ICP for recovering RNA viruses' methods from MP and RTE lettuce samples, encouraging the evaluation of new protocols that facilitate the establishment of methodologies for NoV detection in a greater number of food microbiology laboratories. The PP7 bacteriophage can be used as an internal control process in methods for recovering RNA viruses from minimally processed and ready-to-eat lettuce samples. © 2014 Institute of Food Technologists®
Asis, Angelli Marie Jacynth M; Lacsamana, Joanne Krisha M; Santos, Mudjekeewis D
2016-01-01
Illegal trade has greatly affected marine fish stocks, decreasing fish populations worldwide. Despite having a number of aquatic species being regulated, illegal trade still persists through the transport of dried or processed products and juvenile species trafficking. In this regard, accurate species identification of illegally traded marine fish stocks by DNA barcoding is deemed to be a more efficient method in regulating and monitoring trade than by morphological means which is very difficult due to the absence of key morphological characters in juveniles and processed products. Here, live juvenile eels (elvers) and dried products of sharks and rays confiscated for illegal trade were identified. Twenty out of 23 (87%) randomly selected "elvers" were identified as Anguilla bicolor pacifica and 3 (13%) samples as Anguilla marmorata. On the other hand, 4 out of 11 (36%) of the randomly selected dried samples of sharks and rays were Manta birostris. The rest of the samples were identified as Alopias pelagicus, Taeniura meyeni, Carcharhinus falciformis, Himantura fai and Mobula japonica. These results confirm that wild juvenile eels and species of manta rays are still being caught in the country regardless of its protected status under Philippine and international laws. It is evident that the illegal trade of protected aquatic species is happening in the guise of dried or processed products thus the need to put emphasis on strengthening conservation measures. This study aims to underscore the importance of accurate species identification in such cases of illegal trade and the effectivity of DNA barcoding as a tool to do this.
Giguere, Anik Mc; Labrecque, Michel; Légaré, France; Grad, Roland; Cauchon, Michel; Greenway, Matthew; Haynes, R Brian; Pluye, Pierre; Syed, Iqra; Banerjee, Debi; Carmichael, Pierre-Hugues; Martin, Mélanie
2015-02-25
Decision boxes (DBoxes) are two-page evidence summaries to prepare clinicians for shared decision making (SDM). We sought to assess the feasibility of a clustered Randomized Controlled Trial (RCT) to evaluate their impact. A convenience sample of clinicians (nurses, physicians and residents) from six primary healthcare clinics who received eight DBoxes and rated their interest in the topic and satisfaction. After consultations, their patients rated their involvement in decision-making processes (SDM-Q-9 instrument). We measured clinic and clinician recruitment rates, questionnaire completion rates, patient eligibility rates, and estimated the RCT needed sample size. Among the 20 family medicine clinics invited to participate in this study, four agreed to participate, giving an overall recruitment rate of 20%. Of 148 clinicians invited to the study, 93 participated (63%). Clinicians rated an interest in the topics ranging 6.4-8.2 out of 10 (with 10 highest) and a satisfaction with DBoxes of 4 or 5 out of 5 (with 5 highest) for 81% DBoxes. For the future RCT, we estimated that a sample size of 320 patients would allow detecting a 9% mean difference in the SDM-Q-9 ratings between our two arms (0.02 ICC; 0.05 significance level; 80% power). Clinicians' recruitment and questionnaire completion rates support the feasibility of the planned RCT. The level of interest of participants for the DBox topics, and their level of satisfaction with the Dboxes demonstrate the acceptability of the intervention. Processes to recruit clinics and patients should be optimized.
Nanoscale silver-assisted wet etching of crystalline silicon for anti-reflection surface textures.
Li, Rui; Wang, Shuling; Chuwongin, Santhad; Zhou, Weidong
2013-01-01
We report here an electro-less metal-assisted chemical etching (MacEtch) process as light management surface-texturing technique for single crystalline Si photovoltaics. Random Silver nanostructures were formed on top of the Si surface based on the thin film evaporation and annealing process. Significant reflection reduction was obtained from the fabricated Si sample, with approximately 2% reflection over a wide spectra range (300 to 1050 nm). The work demonstrates the potential of MacEtch process for anti-reflection surface texture fabrication of large area, high efficiency, and low cost thin film solar cell.
Methods for sample size determination in cluster randomized trials
Rutterford, Clare; Copas, Andrew; Eldridge, Sandra
2015-01-01
Background: The use of cluster randomized trials (CRTs) is increasing, along with the variety in their design and analysis. The simplest approach for their sample size calculation is to calculate the sample size assuming individual randomization and inflate this by a design effect to account for randomization by cluster. The assumptions of a simple design effect may not always be met; alternative or more complicated approaches are required. Methods: We summarise a wide range of sample size methods available for cluster randomized trials. For those familiar with sample size calculations for individually randomized trials but with less experience in the clustered case, this manuscript provides formulae for a wide range of scenarios with associated explanation and recommendations. For those with more experience, comprehensive summaries are provided that allow quick identification of methods for a given design, outcome and analysis method. Results: We present first those methods applicable to the simplest two-arm, parallel group, completely randomized design followed by methods that incorporate deviations from this design such as: variability in cluster sizes; attrition; non-compliance; or the inclusion of baseline covariates or repeated measures. The paper concludes with methods for alternative designs. Conclusions: There is a large amount of methodology available for sample size calculations in CRTs. This paper gives the most comprehensive description of published methodology for sample size calculation and provides an important resource for those designing these trials. PMID:26174515
Robust non-parametric one-sample tests for the analysis of recurrent events.
Rebora, Paola; Galimberti, Stefania; Valsecchi, Maria Grazia
2010-12-30
One-sample non-parametric tests are proposed here for inference on recurring events. The focus is on the marginal mean function of events and the basis for inference is the standardized distance between the observed and the expected number of events under a specified reference rate. Different weights are considered in order to account for various types of alternative hypotheses on the mean function of the recurrent events process. A robust version and a stratified version of the test are also proposed. The performance of these tests was investigated through simulation studies under various underlying event generation processes, such as homogeneous and nonhomogeneous Poisson processes, autoregressive and renewal processes, with and without frailty effects. The robust versions of the test have been shown to be suitable in a wide variety of event generating processes. The motivating context is a study on gene therapy in a very rare immunodeficiency in children, where a major end-point is the recurrence of severe infections. Robust non-parametric one-sample tests for recurrent events can be useful to assess efficacy and especially safety in non-randomized studies or in epidemiological studies for comparison with a standard population. Copyright © 2010 John Wiley & Sons, Ltd.
Accounting for randomness in measurement and sampling in studying cancer cell population dynamics.
Ghavami, Siavash; Wolkenhauer, Olaf; Lahouti, Farshad; Ullah, Mukhtar; Linnebacher, Michael
2014-10-01
Knowing the expected temporal evolution of the proportion of different cell types in sample tissues gives an indication about the progression of the disease and its possible response to drugs. Such systems have been modelled using Markov processes. We here consider an experimentally realistic scenario in which transition probabilities are estimated from noisy cell population size measurements. Using aggregated data of FACS measurements, we develop MMSE and ML estimators and formulate two problems to find the minimum number of required samples and measurements to guarantee the accuracy of predicted population sizes. Our numerical results show that the convergence mechanism of transition probabilities and steady states differ widely from the real values if one uses the standard deterministic approach for noisy measurements. This provides support for our argument that for the analysis of FACS data one should consider the observed state as a random variable. The second problem we address is about the consequences of estimating the probability of a cell being in a particular state from measurements of small population of cells. We show how the uncertainty arising from small sample sizes can be captured by a distribution for the state probability.
Kaspi, Omer; Yosipof, Abraham; Senderowitz, Hanoch
2017-06-06
An important aspect of chemoinformatics and material-informatics is the usage of machine learning algorithms to build Quantitative Structure Activity Relationship (QSAR) models. The RANdom SAmple Consensus (RANSAC) algorithm is a predictive modeling tool widely used in the image processing field for cleaning datasets from noise. RANSAC could be used as a "one stop shop" algorithm for developing and validating QSAR models, performing outlier removal, descriptors selection, model development and predictions for test set samples using applicability domain. For "future" predictions (i.e., for samples not included in the original test set) RANSAC provides a statistical estimate for the probability of obtaining reliable predictions, i.e., predictions within a pre-defined number of standard deviations from the true values. In this work we describe the first application of RNASAC in material informatics, focusing on the analysis of solar cells. We demonstrate that for three datasets representing different metal oxide (MO) based solar cell libraries RANSAC-derived models select descriptors previously shown to correlate with key photovoltaic properties and lead to good predictive statistics for these properties. These models were subsequently used to predict the properties of virtual solar cells libraries highlighting interesting dependencies of PV properties on MO compositions.
Virtual reality exposure therapy for social anxiety disorder: a randomized controlled trial.
Anderson, Page L; Price, Matthew; Edwards, Shannan M; Obasaju, Mayowa A; Schmertz, Stefan K; Zimand, Elana; Calamaras, Martha R
2013-10-01
This is the first randomized trial comparing virtual reality exposure therapy to in vivo exposure for social anxiety disorder. Participants with a principal diagnosis of social anxiety disorder who identified public speaking as their primary fear (N = 97) were recruited from the community, resulting in an ethnically diverse sample (M age = 39 years) of mostly women (62%). Participants were randomly assigned to and completed 8 sessions of manualized virtual reality exposure therapy, exposure group therapy, or wait list. Standardized self-report measures were collected at pretreatment, posttreatment, and 12-month follow-up, and process measures were collected during treatment. A standardized speech task was delivered at pre- and posttreatment, and diagnostic status was reassessed at 3-month follow-up. Analysis of covariance showed that, relative to wait list, people completing either active treatment significantly improved on all but one measure (length of speech for exposure group therapy and self-reported fear of negative evaluation for virtual reality exposure therapy). At 12-month follow-up, people showed significant improvement from pretreatment on all measures. There were no differences between the active treatments on any process or outcome measure at any time, nor differences on achieving partial or full remission. Virtual reality exposure therapy is effective for treating social fears, and improvement is maintained for 1 year. Virtual reality exposure therapy is equally effective as exposure group therapy; further research with a larger sample is needed, however, to better control and statistically test differences between the treatments.
Evaluation of a women group led health communication program in Haryana, India.
Kaur, Manmeet; Jaswal, Nidhi; Saddi, Anil Kumar
2017-12-01
Sakshar Mahila Smooh (SMS) program was launched in rural areas of Haryana in India during 2008. A total of 6788 SMSs, each having 5-10 literate women, were equipped to enhance health communication. We carried out process evaluation of this program as an external agency. After a review of program documents, a random sample survey of Auxiliary Nurse Midwives (ANMs), SMS members, and village women was conducted. Out of four divisions of the state, one was randomly chosen, which had five districts. From 330 randomly chosen villages, 283 ANMs, 1164 SMS members, and 1123 village women were interviewed using a semi- structured interview schedule. Program inputs, processes, and outputs were compared in the five districts. Chi square was used for significance test. In the sampled division, out of 2009 villages, 1732 (86%) had functional SMS. In three years, SMS conducted 15036 group meetings, 2795 rallies, 2048 wall writings, and 803 competitions, and 44.5% of allocated budget was utilized. Most ANMs opined that SMSs are better health communicators. SMS members were aware about their roles and responsibilities. Majority of village women reported that SMS carry out useful health education activities. The characteristics of SMS members were similar but program performance was better in districts where health managers were proactive in program planning and monitoring. SMS Program has communicated health messages to majority of rural population, however, better planning & monitoring can improve program performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Silicon solar cell process development, fabrication and analysis
NASA Technical Reports Server (NTRS)
Iles, P. A.; Leung, D. C.
1982-01-01
For UCP Si, randomly selected wafers and wafers cut from two specific ingots were studied. For the randomly selected wafers, a moderate gettering diffusion had little effect. Moreover, an efficiency up to 14% AMI was achieved with advanced processes. For the two specific UCP ingots, ingot #5848-13C displayed severe impurity effects as shown by lower 3sc in the middle of the ingot and low CFF in the top of the ingot. Also the middle portions of this ingot responded to a series of progressively more severe gettering diffusion. Unexplained was the fact that severely gettered samples of this ingot displayed a negative light biased effect on the minority carrier diffusion length while the nongettered or moderately gettered ones had the more conventional positive light biased effect on diffusion length. On the other hand, ingot C-4-21A did not have the problem of ingot 5848-13C and behaved like to the randomly selected wafers. The top half of the ingot was shown to be slightly superior to the bottom half, but moderate gettering helped to narrow the gap.
Magis, David
2014-11-01
In item response theory, the classical estimators of ability are highly sensitive to response disturbances and can return strongly biased estimates of the true underlying ability level. Robust methods were introduced to lessen the impact of such aberrant responses on the estimation process. The computation of asymptotic (i.e., large-sample) standard errors (ASE) for these robust estimators, however, has not yet been fully considered. This paper focuses on a broad class of robust ability estimators, defined by an appropriate selection of the weight function and the residual measure, for which the ASE is derived from the theory of estimating equations. The maximum likelihood (ML) and the robust estimators, together with their estimated ASEs, are then compared in a simulation study by generating random guessing disturbances. It is concluded that both the estimators and their ASE perform similarly in the absence of random guessing, while the robust estimator and its estimated ASE are less biased and outperform their ML counterparts in the presence of random guessing with large impact on the item response process. © 2013 The British Psychological Society.
Scalability, Complexity and Reliability in Quantum Information Processing
2007-03-01
hidden subgroup framework to abelian groups which are not finitely generated. An extension of the basic algorithm breaks the Buchmann-Williams...finding short lattice vectors . In [2], we showed that the generalization of the standard method --- random coset state preparation followed by fourier...sampling --- required exponential time for sufficiently non-abelian groups including the symmetric group , at least when the fourier transforms are
49 CFR 40.151 - What are MROs prohibited from doing as part of the verification process?
Code of Federal Regulations, 2011 CFR
2011-10-01
... should have directed that a test occur. For example, if an employee tells you that the employer misidentified her as the subject of a random test, or directed her to take a reasonable suspicion or post... consider any evidence from tests of urine samples or other body fluids or tissues (e.g., blood or hair...
49 CFR 40.151 - What are MROs prohibited from doing as part of the verification process?
Code of Federal Regulations, 2013 CFR
2013-10-01
... should have directed that a test occur. For example, if an employee tells you that the employer misidentified her as the subject of a random test, or directed her to take a reasonable suspicion or post... consider any evidence from tests of urine samples or other body fluids or tissues (e.g., blood or hair...
49 CFR 40.151 - What are MROs prohibited from doing as part of the verification process?
Code of Federal Regulations, 2010 CFR
2010-10-01
... should have directed that a test occur. For example, if an employee tells you that the employer misidentified her as the subject of a random test, or directed her to take a reasonable suspicion or post... consider any evidence from tests of urine samples or other body fluids or tissues (e.g., blood or hair...
49 CFR 40.151 - What are MROs prohibited from doing as part of the verification process?
Code of Federal Regulations, 2012 CFR
2012-10-01
... should have directed that a test occur. For example, if an employee tells you that the employer misidentified her as the subject of a random test, or directed her to take a reasonable suspicion or post... consider any evidence from tests of urine samples or other body fluids or tissues (e.g., blood or hair...
49 CFR 40.151 - What are MROs prohibited from doing as part of the verification process?
Code of Federal Regulations, 2014 CFR
2014-10-01
... should have directed that a test occur. For example, if an employee tells you that the employer misidentified her as the subject of a random test, or directed her to take a reasonable suspicion or post... consider any evidence from tests of urine samples or other body fluids or tissues (e.g., blood or hair...
ERIC Educational Resources Information Center
Wilke, Lindsay A.; Speer, Paul W.
2011-01-01
Processes of psychological empowerment for members of community-based organizations may be strongly influenced by organizational factors. Using survey data from a random sample of urban residents (n = 974), the present study examines how individual perceptions of empowering features of organizations (group-based belief system, role opportunity,…
ERIC Educational Resources Information Center
Tzuriel, David; Egozi, Gila
2010-01-01
A sample of 116 children (M = 6 years 7 months) in Grade 1 was randomly assigned to experimental (n = 60) and control (n = 56) groups, with equal numbers of boys and girls in each group. The experimental group received a program aimed at improving representation and transformation of visuospatial information, whereas the control group received a…
Methods of Reverberation Mapping. I. Time-lag Determination by Measures of Randomness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelouche, Doron; Pozo-Nuñez, Francisco; Zucker, Shay, E-mail: doron@sci.haifa.ac.il, E-mail: francisco.pozon@gmail.com, E-mail: shayz@post.tau.ac.il
A class of methods for measuring time delays between astronomical time series is introduced in the context of quasar reverberation mapping, which is based on measures of randomness or complexity of the data. Several distinct statistical estimators are considered that do not rely on polynomial interpolations of the light curves nor on their stochastic modeling, and do not require binning in correlation space. Methods based on von Neumann’s mean-square successive-difference estimator are found to be superior to those using other estimators. An optimized von Neumann scheme is formulated, which better handles sparsely sampled data and outperforms current implementations of discretemore » correlation function methods. This scheme is applied to existing reverberation data of varying quality, and consistency with previously reported time delays is found. In particular, the size–luminosity relation of the broad-line region in quasars is recovered with a scatter comparable to that obtained by other works, yet with fewer assumptions made concerning the process underlying the variability. The proposed method for time-lag determination is particularly relevant for irregularly sampled time series, and in cases where the process underlying the variability cannot be adequately modeled.« less
Ghodrati, Sajjad; Kandi, Saeideh Gorji; Mohseni, Mohsen
2018-06-01
In recent years, various surface roughness measurement methods have been proposed as alternatives to the commonly used stylus profilometry, which is a low-speed, destructive, expensive but precise method. In this study, a novel method, called "image profilometry," has been introduced for nondestructive, fast, and low-cost surface roughness measurement of randomly rough metallic samples based on image processing and machine vision. The impacts of influential parameters such as image resolution and filtering approach for elimination of the long wavelength surface undulations on the accuracy of the image profilometry results have been comprehensively investigated. Ten surface roughness parameters were measured for the samples using both the stylus and image profilometry. Based on the results, the best image resolution was 800 dpi, and the most practical filtering method was Gaussian convolution+cutoff. In these conditions, the best and worst correlation coefficients (R 2 ) between the stylus and image profilometry results were 0.9892 and 0.9313, respectively. Our results indicated that the image profilometry predicted the stylus profilometry results with high accuracy. Consequently, it could be a viable alternative to the stylus profilometry, particularly in online applications.
Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.
1988-01-01
If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions. ?? 1988 International Association for Mathematical Geology.
Carrell, Douglas T; Cartmill, Deborah; Jones, Kirtly P; Hatasaka, Harry H; Peterson, C Matthew
2002-07-01
To evaluate variability in donor semen quality between seven commercial donor sperm banks, within sperm banks, and between intracervical insemination and intrauterine insemination. Prospective, randomized, blind evaluation of commercially available donor semen samples. An academic andrology laboratory. Seventy-five cryopreserved donor semen samples were evaluated. Samples were coded, then blindly evaluated for semen quality. Standard semen quality parameters, including concentration, motility parameters, World Health Organization criteria morphology, and strict criteria morphology. Significant differences were observed between donor semen banks for most semen quality parameters analyzed in intracervical insemination samples. In general, the greatest variability observed between banks was in percentage progressive sperm motility (range, 8.8 +/- 5.8 to 42.4 +/- 5.5) and normal sperm morphology (strict criteria; range, 10.1 +/- 3.3 to 26.6 +/- 4.7). Coefficients of variation within sperm banks were generally high. These data demonstrate the variability of donor semen quality provided by commercial sperm banks, both between banks and within a given bank. No relationship was observed between the size or type of sperm bank and the degree of variability. The data demonstrate the lack of uniformity in the criteria used to screen potential semen donors and emphasize the need for more stringent screening criteria and strict quality control in processing samples.
Study of Dynamic Characteristics of Aeroelastic Systems Utilizing Randomdec Signatures
NASA Technical Reports Server (NTRS)
Chang, C. S.
1975-01-01
The feasibility of utilizing the random decrement method in conjunction with a signature analysis procedure to determine the dynamic characteristics of an aeroelastic system for the purpose of on-line prediction of potential on-set of flutter was examined. Digital computer programs were developed to simulate sampled response signals of a two-mode aeroelastic system. Simulated response data were used to test the random decrement method. A special curve-fit approach was developed for analyzing the resulting signatures. A number of numerical 'experiments' were conducted on the combined processes. The method is capable of determining frequency and damping values accurately from randomdec signatures of carefully selected lengths.
NASA Astrophysics Data System (ADS)
Lai, Xiaoming; Zhu, Qing; Zhou, Zhiwen; Liao, Kaihua
2017-12-01
In this study, seven random combination sampling strategies were applied to investigate the uncertainties in estimating the hillslope mean soil water content (SWC) and correlation coefficients between the SWC and soil/terrain properties on a tea + bamboo hillslope. One of the sampling strategies is the global random sampling and the other six are the stratified random sampling on the top, middle, toe, top + mid, top + toe and mid + toe slope positions. When each sampling strategy was applied, sample sizes were gradually reduced and each sampling size contained 3000 replicates. Under each sampling size of each sampling strategy, the relative errors (REs) and coefficients of variation (CVs) of the estimated hillslope mean SWC and correlation coefficients between the SWC and soil/terrain properties were calculated to quantify the accuracy and uncertainty. The results showed that the uncertainty of the estimations decreased as the sampling size increasing. However, larger sample sizes were required to reduce the uncertainty in correlation coefficient estimation than in hillslope mean SWC estimation. Under global random sampling, 12 randomly sampled sites on this hillslope were adequate to estimate the hillslope mean SWC with RE and CV ≤10%. However, at least 72 randomly sampled sites were needed to ensure the estimated correlation coefficients with REs and CVs ≤10%. Comparing with all sampling strategies, reducing sampling sites on the middle slope had the least influence on the estimation of hillslope mean SWC and correlation coefficients. Under this strategy, 60 sites (10 on the middle slope and 50 on the top and toe slopes) were enough to ensure the estimated correlation coefficients with REs and CVs ≤10%. This suggested that when designing the SWC sampling, the proportion of sites on the middle slope can be reduced to 16.7% of the total number of sites. Findings of this study will be useful for the optimal SWC sampling design.
Sequential time interleaved random equivalent sampling for repetitive signal.
Zhao, Yijiu; Liu, Jingjing
2016-12-01
Compressed sensing (CS) based sampling techniques exhibit many advantages over other existing approaches for sparse signal spectrum sensing; they are also incorporated into non-uniform sampling signal reconstruction to improve the efficiency, such as random equivalent sampling (RES). However, in CS based RES, only one sample of each acquisition is considered in the signal reconstruction stage, and it will result in more acquisition runs and longer sampling time. In this paper, a sampling sequence is taken in each RES acquisition run, and the corresponding block measurement matrix is constructed using a Whittaker-Shannon interpolation formula. All the block matrices are combined into an equivalent measurement matrix with respect to all sampling sequences. We implemented the proposed approach with a multi-cores analog-to-digital converter (ADC), whose ADC cores are time interleaved. A prototype realization of this proposed CS based sequential random equivalent sampling method has been developed. It is able to capture an analog waveform at an equivalent sampling rate of 40 GHz while sampled at 1 GHz physically. Experiments indicate that, for a sparse signal, the proposed CS based sequential random equivalent sampling exhibits high efficiency.
The effect of science learning integrated with local potential to improve science process skills
NASA Astrophysics Data System (ADS)
Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih
2017-08-01
This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.
NASA Astrophysics Data System (ADS)
Sahu, Sandeep; Yadav, Prabhat Chand; Shekhar, Shashank
2018-02-01
In this investigation, Inconel 600 alloy was thermomechanically processed to different strains via hot rolling followed by a short-time annealing treatment to determine an appropriate thermomechanical process to achieve a high fraction of low-Σ CSL boundaries. Experimental results demonstrate that a certain level of deformation is necessary to obtain effective "grain boundary engineering"; i.e., the deformation must be sufficiently high to provide the required driving force for postdeformation static recrystallization, yet it should be low enough to retain a large fraction of original twin boundaries. Samples processed in such a fashion exhibited 77 pct length fraction of low-Σ CSL boundaries, a dominant fraction of which was from Σ3 ( 64 pct), the latter with very low deviation from its theoretical misorientation. The application of hot rolling also resulted in a very low fraction of Σ1 ( 1 pct) boundaries, as desired. The process also leads to so-called "triple junction engineering" with the generation of special triple junctions, which are very effective in disrupting the connectivity of the random grain boundary network.
Sampling large random knots in a confined space
NASA Astrophysics Data System (ADS)
Arsuaga, J.; Blackstone, T.; Diao, Y.; Hinson, K.; Karadayi, E.; Saito, M.
2007-09-01
DNA knots formed under extreme conditions of condensation, as in bacteriophage P4, are difficult to analyze experimentally and theoretically. In this paper, we propose to use the uniform random polygon model as a supplementary method to the existing methods for generating random knots in confinement. The uniform random polygon model allows us to sample knots with large crossing numbers and also to generate large diagrammatically prime knot diagrams. We show numerically that uniform random polygons sample knots with large minimum crossing numbers and certain complicated knot invariants (as those observed experimentally). We do this in terms of the knot determinants or colorings. Our numerical results suggest that the average determinant of a uniform random polygon of n vertices grows faster than O(e^{n^2}) . We also investigate the complexity of prime knot diagrams. We show rigorously that the probability that a randomly selected 2D uniform random polygon of n vertices is almost diagrammatically prime goes to 1 as n goes to infinity. Furthermore, the average number of crossings in such a diagram is at the order of O(n2). Therefore, the two-dimensional uniform random polygons offer an effective way in sampling large (prime) knots, which can be useful in various applications.
Li, Xiao-Zhou; Li, Song-Sui; Zhuang, Jun-Ping; Chan, Sze-Chun
2015-09-01
A semiconductor laser with distributed feedback from a fiber Bragg grating (FBG) is investigated for random bit generation (RBG). The feedback perturbs the laser to emit chaotically with the intensity being sampled periodically. The samples are then converted into random bits by a simple postprocessing of self-differencing and selecting bits. Unlike a conventional mirror that provides localized feedback, the FBG provides distributed feedback which effectively suppresses the information of the round-trip feedback delay time. Randomness is ensured even when the sampling period is commensurate with the feedback delay between the laser and the grating. Consequently, in RBG, the FBG feedback enables continuous tuning of the output bit rate, reduces the minimum sampling period, and increases the number of bits selected per sample. RBG is experimentally investigated at a sampling period continuously tunable from over 16 ns down to 50 ps, while the feedback delay is fixed at 7.7 ns. By selecting 5 least-significant bits per sample, output bit rates from 0.3 to 100 Gbps are achieved with randomness examined by the National Institute of Standards and Technology test suite.
NASA Technical Reports Server (NTRS)
Rao, R. G. S.; Ulaby, F. T.
1977-01-01
The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.
Bergh, Daniel
2015-01-01
Chi-square statistics are commonly used for tests of fit of measurement models. Chi-square is also sensitive to sample size, which is why several approaches to handle large samples in test of fit analysis have been developed. One strategy to handle the sample size problem may be to adjust the sample size in the analysis of fit. An alternative is to adopt a random sample approach. The purpose of this study was to analyze and to compare these two strategies using simulated data. Given an original sample size of 21,000, for reductions of sample sizes down to the order of 5,000 the adjusted sample size function works as good as the random sample approach. In contrast, when applying adjustments to sample sizes of lower order the adjustment function is less effective at approximating the chi-square value for an actual random sample of the relevant size. Hence, the fit is exaggerated and misfit under-estimated using the adjusted sample size function. Although there are big differences in chi-square values between the two approaches at lower sample sizes, the inferences based on the p-values may be the same.
NASA Astrophysics Data System (ADS)
Gerwe, David R.; Lee, David J.; Barchers, Jeffrey D.
2000-10-01
A post-processing methodology for reconstructing undersampled image sequences with randomly varying blur is described which can provide image enhancement beyond the sampling resolution of the sensor. This method is demonstrated on simulated imagery and on adaptive optics compensated imagery taken by the Starfire Optical Range 3.5 meter telescope that has been artificially undersampled. Also shown are the results of multiframe blind deconvolution of some of the highest quality optical imagery of low earth orbit satellites collected with a ground based telescope to date. The algorithm used is a generalization of multiframe blind deconvolution techniques which includes a representation of spatial sampling by the focal plane array elements in the forward stochastic model of the imaging system. This generalization enables the random shifts and shape of the adaptive compensated PSF to be used to partially eliminate the aliasing effects associated with sub- Nyquist sampling of the image by the focal plane array. The method could be used to reduce resolution loss which occurs when imaging in wide FOV modes.
NASA Astrophysics Data System (ADS)
Pospisil, J.; Jakubik, P.; Machala, L.
2005-11-01
This article reports the suggestion, realization and verification of the newly developed measuring means of the noiseless and locally shift-invariant modulation transfer function (MTF) of a digital video camera in a usual incoherent visible region of optical intensity, especially of its combined imaging, detection, sampling and digitizing steps which are influenced by the additive and spatially discrete photodetector, aliasing and quantization noises. Such means relates to the still camera automatic working regime and static two-dimensional spatially continuous light-reflection random target of white-noise property. The introduced theoretical reason for such a random-target method is also performed under exploitation of the proposed simulation model of the linear optical intensity response and possibility to express the resultant MTF by a normalized and smoothed rate of the ascertainable output and input power spectral densities. The random-target and resultant image-data were obtained and processed by means of a processing and evaluational PC with computation programs developed on the basis of MATLAB 6.5E The present examples of results and other obtained results of the performed measurements demonstrate the sufficient repeatability and acceptability of the described method for comparative evaluations of the performance of digital video cameras under various conditions.
Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis
Anton-Sanchez, Laura; Bielza, Concha; Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Larrañaga, Pedro
2014-01-01
The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers. PMID:25206325
Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis.
Anton-Sanchez, Laura; Bielza, Concha; Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Larrañaga, Pedro
2014-01-01
The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm(3) and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers.
Health plan auditing: 100-percent-of-claims vs. random-sample audits.
Sillup, George P; Klimberg, Ronald K
2011-01-01
The objective of this study was to examine the relative efficacy of two different methodologies for auditing self-funded medical claim expenses: 100-percent-of-claims auditing versus random-sampling auditing. Multiple data sets of claim errors or 'exceptions' from two Fortune-100 corporations were analysed and compared to 100 simulated audits of 300- and 400-claim random samples. Random-sample simulations failed to identify a significant number and amount of the errors that ranged from $200,000 to $750,000. These results suggest that health plan expenses of corporations could be significantly reduced if they audited 100% of claims and embraced a zero-defect approach.
NASA Astrophysics Data System (ADS)
WANG, P. T.
2015-12-01
Groundwater modeling requires to assign hydrogeological properties to every numerical grid. Due to the lack of detailed information and the inherent spatial heterogeneity, geological properties can be treated as random variables. Hydrogeological property is assumed to be a multivariate distribution with spatial correlations. By sampling random numbers from a given statistical distribution and assigning a value to each grid, a random field for modeling can be completed. Therefore, statistics sampling plays an important role in the efficiency of modeling procedure. Latin Hypercube Sampling (LHS) is a stratified random sampling procedure that provides an efficient way to sample variables from their multivariate distributions. This study combines the the stratified random procedure from LHS and the simulation by using LU decomposition to form LULHS. Both conditional and unconditional simulations of LULHS were develpoed. The simulation efficiency and spatial correlation of LULHS are compared to the other three different simulation methods. The results show that for the conditional simulation and unconditional simulation, LULHS method is more efficient in terms of computational effort. Less realizations are required to achieve the required statistical accuracy and spatial correlation.
Individualizing drug dosage with longitudinal data.
Zhu, Xiaolu; Qu, Annie
2016-10-30
We propose a two-step procedure to personalize drug dosage over time under the framework of a log-linear mixed-effect model. We model patients' heterogeneity using subject-specific random effects, which are treated as the realizations of an unspecified stochastic process. We extend the conditional quadratic inference function to estimate both fixed-effect coefficients and individual random effects on a longitudinal training data sample in the first step and propose an adaptive procedure to estimate new patients' random effects and provide dosage recommendations for new patients in the second step. An advantage of our approach is that we do not impose any distribution assumption on estimating random effects. Moreover, the new approach can accommodate more general time-varying covariates corresponding to random effects. We show in theory and numerical studies that the proposed method is more efficient compared with existing approaches, especially when covariates are time varying. In addition, a real data example of a clozapine study confirms that our two-step procedure leads to more accurate drug dosage recommendations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Moulton, Stephen R.; Carter, James L.; Grotheer, Scott A.; Cuffney, Thomas F.; Short, Terry M.
2000-01-01
Qualitative and quantitative methods to process benthic macroinvertebrate (BMI) samples have been developed and tested by the U.S. Geological Survey?s National Water Quality Laboratory Biological Group. The qualitative processing method is based on visually sorting a sample for up to 2 hours. Sorting focuses on attaining organisms that are likely to result in taxonomic identifications to lower taxonomic levels (for example, Genus or Species). Immature and damaged organisms are also sorted when they are likely to result in unique determinations. The sorted sample remnant is scanned briefly by a second person to determine if obvious taxa were missed. The quantitative processing method is based on a fixed-count approach that targets some minimum count, such as 100 or 300 organisms. Organisms are sorted from randomly selected 5.1- by 5.1-centimeter parts of a gridded subsampling frame. The sorted remnant from each sample is resorted by a second individual for at least 10 percent of the original sort time. A large-rare organism search is performed on the unsorted remnant to sort BMI taxa that were not likely represented in the sorted grids. After either qualitatively or quantitatively sorting the sample, BMIs are identified by using one of three different types of taxonomic assessment. The Standard Taxonomic Assessment is comparable to the U.S. Environmental Protection Agency Rapid Bioassessment Protocol III and typically provides Genus- or Species-level taxonomic resolution. The Rapid Taxonomic Assessment is comparable to the U.S. Environmental Protection Agency Rapid Bioassessment Protocol II and provides Familylevel and higher taxonomic resolution. The Custom Taxonomic Assessment provides Species-level resolution whenever possible for groups identified to higher taxonomic levels by using the Standard Taxonomic Assessment. The consistent use of standardized designations and notes facilitates the interpretation of BMI data within and among water-quality studies. Taxonomic identifications are quality assured by verifying all referenced taxa and randomly reviewing 10 percent of the taxonomic identifications performed weekly by Biological Group taxonomists. Taxonomic errors discovered during this review are corrected. BMI data are reviewed for accuracy and completeness prior to release. BMI data are released phylogenetically in spreadsheet format and unprocessed abundances are corrected for laboratory and field subsampling when necessary.
User's manual SIG: a general-purpose signal processing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lager, D.; Azevedo, S.
1983-10-25
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Many of the basic operations one would perform on digitized data are contained in the core SIG package. Out of these core commands, more powerful signal processing algorithms may be built. Many different operations on time- and frequency-domain signals can be performed by SIG. They include operations on the samples of a signal, such as adding a scalar tomore » each sample, operations on the entire signal such as digital filtering, and operations on two or more signals such as adding two signals. Signals may be simulated, such as a pulse train or a random waveform. Graphics operations display signals and spectra.« less
WAMS measurements pre-processing for detecting low-frequency oscillations in power systems
NASA Astrophysics Data System (ADS)
Kovalenko, P. Y.
2017-07-01
Processing the data received from measurement systems implies the situation when one or more registered values stand apart from the sample collection. These values are referred to as “outliers”. The processing results may be influenced significantly by the presence of those in the data sample under consideration. In order to ensure the accuracy of low-frequency oscillations detection in power systems the corresponding algorithm has been developed for the outliers detection and elimination. The algorithm is based on the concept of the irregular component of measurement signal. This component comprises measurement errors and is assumed to be Gauss-distributed random. The median filtering is employed to detect the values lying outside the range of the normally distributed measurement error on the basis of a 3σ criterion. The algorithm has been validated involving simulated signals and WAMS data as well.
40 CFR 761.130 - Sampling requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sampling scheme and the guidance document are available on EPA's PCB Web site at http://www.epa.gov/pcb, or... § 761.125(c) (2) through (4). Using its best engineering judgment, EPA may sample a statistically valid random or grid sampling technique, or both. When using engineering judgment or random “grab” samples, EPA...
40 CFR 761.130 - Sampling requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sampling scheme and the guidance document are available on EPA's PCB Web site at http://www.epa.gov/pcb, or... § 761.125(c) (2) through (4). Using its best engineering judgment, EPA may sample a statistically valid random or grid sampling technique, or both. When using engineering judgment or random “grab” samples, EPA...
Honest Importance Sampling with Multiple Markov Chains
Tan, Aixin; Doss, Hani; Hobert, James P.
2017-01-01
Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π1, is used to estimate an expectation with respect to another, π. The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asymptotic variance in the CLT, which makes for routine computation of standard errors. Importance sampling can also be used in the Markov chain Monte Carlo (MCMC) context. Indeed, if the random sample from π1 is replaced by a Harris ergodic Markov chain with invariant density π1, then the resulting estimator remains strongly consistent. There is a price to be paid however, as the computation of standard errors becomes more complicated. First, the two simple moment conditions that guarantee a CLT in the iid case are not enough in the MCMC context. Second, even when a CLT does hold, the asymptotic variance has a complex form and is difficult to estimate consistently. In this paper, we explain how to use regenerative simulation to overcome these problems. Actually, we consider a more general set up, where we assume that Markov chain samples from several probability densities, π1, …, πk, are available. We construct multiple-chain importance sampling estimators for which we obtain a CLT based on regeneration. We show that if the Markov chains converge to their respective target distributions at a geometric rate, then under moment conditions similar to those required in the iid case, the MCMC-based importance sampling estimator obeys a CLT. Furthermore, because the CLT is based on a regenerative process, there is a simple consistent estimator of the asymptotic variance. We illustrate the method with two applications in Bayesian sensitivity analysis. The first concerns one-way random effects models under different priors. The second involves Bayesian variable selection in linear regression, and for this application, importance sampling based on multiple chains enables an empirical Bayes approach to variable selection. PMID:28701855
Honest Importance Sampling with Multiple Markov Chains.
Tan, Aixin; Doss, Hani; Hobert, James P
2015-01-01
Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π 1 , is used to estimate an expectation with respect to another, π . The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asymptotic variance in the CLT, which makes for routine computation of standard errors. Importance sampling can also be used in the Markov chain Monte Carlo (MCMC) context. Indeed, if the random sample from π 1 is replaced by a Harris ergodic Markov chain with invariant density π 1 , then the resulting estimator remains strongly consistent. There is a price to be paid however, as the computation of standard errors becomes more complicated. First, the two simple moment conditions that guarantee a CLT in the iid case are not enough in the MCMC context. Second, even when a CLT does hold, the asymptotic variance has a complex form and is difficult to estimate consistently. In this paper, we explain how to use regenerative simulation to overcome these problems. Actually, we consider a more general set up, where we assume that Markov chain samples from several probability densities, π 1 , …, π k , are available. We construct multiple-chain importance sampling estimators for which we obtain a CLT based on regeneration. We show that if the Markov chains converge to their respective target distributions at a geometric rate, then under moment conditions similar to those required in the iid case, the MCMC-based importance sampling estimator obeys a CLT. Furthermore, because the CLT is based on a regenerative process, there is a simple consistent estimator of the asymptotic variance. We illustrate the method with two applications in Bayesian sensitivity analysis. The first concerns one-way random effects models under different priors. The second involves Bayesian variable selection in linear regression, and for this application, importance sampling based on multiple chains enables an empirical Bayes approach to variable selection.
Williamson, Graham R
2003-11-01
This paper discusses the theoretical limitations of the use of random sampling and probability theory in the production of a significance level (or P-value) in nursing research. Potential alternatives, in the form of randomization tests, are proposed. Research papers in nursing, medicine and psychology frequently misrepresent their statistical findings, as the P-values reported assume random sampling. In this systematic review of studies published between January 1995 and June 2002 in the Journal of Advanced Nursing, 89 (68%) studies broke this assumption because they used convenience samples or entire populations. As a result, some of the findings may be questionable. The key ideas of random sampling and probability theory for statistical testing (for generating a P-value) are outlined. The result of a systematic review of research papers published in the Journal of Advanced Nursing is then presented, showing how frequently random sampling appears to have been misrepresented. Useful alternative techniques that might overcome these limitations are then discussed. REVIEW LIMITATIONS: This review is limited in scope because it is applied to one journal, and so the findings cannot be generalized to other nursing journals or to nursing research in general. However, it is possible that other nursing journals are also publishing research articles based on the misrepresentation of random sampling. The review is also limited because in several of the articles the sampling method was not completely clearly stated, and in this circumstance a judgment has been made as to the sampling method employed, based on the indications given by author(s). Quantitative researchers in nursing should be very careful that the statistical techniques they use are appropriate for the design and sampling methods of their studies. If the techniques they employ are not appropriate, they run the risk of misinterpreting findings by using inappropriate, unrepresentative and biased samples.
ERIC Educational Resources Information Center
Vardeman, Stephen B.; Wendelberger, Joanne R.
2005-01-01
There is a little-known but very simple generalization of the standard result that for uncorrelated random variables with common mean [mu] and variance [sigma][superscript 2], the expected value of the sample variance is [sigma][superscript 2]. The generalization justifies the use of the usual standard error of the sample mean in possibly…
Harrison, Xavier A
2015-01-01
Overdispersion is a common feature of models of biological data, but researchers often fail to model the excess variation driving the overdispersion, resulting in biased parameter estimates and standard errors. Quantifying and modeling overdispersion when it is present is therefore critical for robust biological inference. One means to account for overdispersion is to add an observation-level random effect (OLRE) to a model, where each data point receives a unique level of a random effect that can absorb the extra-parametric variation in the data. Although some studies have investigated the utility of OLRE to model overdispersion in Poisson count data, studies doing so for Binomial proportion data are scarce. Here I use a simulation approach to investigate the ability of both OLRE models and Beta-Binomial models to recover unbiased parameter estimates in mixed effects models of Binomial data under various degrees of overdispersion. In addition, as ecologists often fit random intercept terms to models when the random effect sample size is low (<5 levels), I investigate the performance of both model types under a range of random effect sample sizes when overdispersion is present. Simulation results revealed that the efficacy of OLRE depends on the process that generated the overdispersion; OLRE failed to cope with overdispersion generated from a Beta-Binomial mixture model, leading to biased slope and intercept estimates, but performed well for overdispersion generated by adding random noise to the linear predictor. Comparison of parameter estimates from an OLRE model with those from its corresponding Beta-Binomial model readily identified when OLRE were performing poorly due to disagreement between effect sizes, and this strategy should be employed whenever OLRE are used for Binomial data to assess their reliability. Beta-Binomial models performed well across all contexts, but showed a tendency to underestimate effect sizes when modelling non-Beta-Binomial data. Finally, both OLRE and Beta-Binomial models performed poorly when models contained <5 levels of the random intercept term, especially for estimating variance components, and this effect appeared independent of total sample size. These results suggest that OLRE are a useful tool for modelling overdispersion in Binomial data, but that they do not perform well in all circumstances and researchers should take care to verify the robustness of parameter estimates of OLRE models.
Designing a national soil erosion monitoring network for England and Wales
NASA Astrophysics Data System (ADS)
Lark, Murray; Rawlins, Barry; Anderson, Karen; Evans, Martin; Farrow, Luke; Glendell, Miriam; James, Mike; Rickson, Jane; Quine, Timothy; Quinton, John; Brazier, Richard
2014-05-01
Although soil erosion is recognised as a significant threat to sustainable land use and may be a priority for action in any forthcoming EU Soil Framework Directive, those responsible for setting national policy with respect to erosion are constrained by a lack of robust, representative, data at large spatial scales. This reflects the process-orientated nature of much soil erosion research. Recognising this limitation, The UK Department for Environment, Food and Rural Affairs (Defra) established a project to pilot a cost-effective framework for monitoring of soil erosion in England and Wales (E&W). The pilot will compare different soil erosion monitoring methods at a site scale and provide statistical information for the final design of the full national monitoring network that will: provide unbiased estimates of the spatial mean of soil erosion rate across E&W (tonnes ha-1 yr-1) for each of three land-use classes - arable and horticultural grassland upland and semi-natural habitats quantify the uncertainty of these estimates with confidence intervals. Probability (design-based) sampling provides most efficient unbiased estimates of spatial means. In this study, a 16 hectare area (a square of 400 x 400 m) positioned at the centre of a 1-km grid cell, selected at random from mapped land use across E&W, provided the sampling support for measurement of erosion rates, with at least 94% of the support area corresponding to the target land use classes. Very small or zero erosion rates likely to be encountered at many sites reduce the sampling efficiency and make it difficult to compare different methods of soil erosion monitoring. Therefore, to increase the proportion of samples with larger erosion rates without biasing our estimates, we increased the inclusion probability density in areas where the erosion rate is likely to be large by using stratified random sampling. First, each sampling domain (land use class in E&W) was divided into strata; e.g. two sub-domains within which, respectively, small or no erosion rates, and moderate or larger erosion rates are expected. Each stratum was then sampled independently and at random. The sample density need not be equal in the two strata, but is known and is accounted for in the estimation of the mean and its standard error. To divide the domains into strata we used information on slope angle, previous interpretation of erosion susceptibility of the soil associations that correspond to the soil map of E&W at 1:250 000 (Soil Survey of England and Wales, 1983), and visual interpretation of evidence of erosion from aerial photography. While each domain could be stratified on the basis of the first two criteria, air photo interpretation across the whole country was not feasible. For this reason we used a two-phase random sampling for stratification (TPRS) design (de Gruijter et al., 2006). First, we formed an initial random sample of 1-km grid cells from the target domain. Second, each cell was then allocated to a stratum on the basis of the three criteria. A subset of the selected cells from each stratum were then selected for field survey at random, with a specified sampling density for each stratum so as to increase the proportion of cells where moderate or larger erosion rates were expected. Once measurements of erosion have been made, an estimate of the spatial mean of the erosion rate over the target domain, its standard error and associated uncertainty can be calculated by an expression which accounts for the estimated proportions of the two strata within the initial random sample. de Gruijter, J.J., Brus, D.J., Biekens, M.F.P. & Knotters, M. 2006. Sampling for Natural Resource Monitoring. Springer, Berlin. Soil Survey of England and Wales. 1983 National Soil Map NATMAP Vector 1:250,000. National Soil Research Institute, Cranfield University.
NASA Astrophysics Data System (ADS)
Yan, Yifang; Yang, Chunyu; Ma, Xiaoping; Zhou, Linna
2018-02-01
In this paper, sampled-data H∞ filtering problem is considered for Markovian jump singularly perturbed systems with time-varying delay and missing measurements. The sampled-data system is represented by a time-delay system, and the missing measurement phenomenon is described by an independent Bernoulli random process. By constructing an ɛ-dependent stochastic Lyapunov-Krasovskii functional, delay-dependent sufficient conditions are derived such that the filter error system satisfies the prescribed H∞ performance for all possible missing measurements. Then, an H∞ filter design method is proposed in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the feasibility and advantages of the obtained results.
Stochastic stability properties of jump linear systems
NASA Technical Reports Server (NTRS)
Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.
1992-01-01
Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.
Bacteriological analysis of street foods in Pune.
Chumber, Sushil K; Kaushik, K; Savy, S
2007-01-01
This study aimed to analyze the bacteriological profile of street foods sold in various parts of Pune city. A total of 75 randomly collected food samples were included in the study. Samples were processed for the presence of bacterial pathogens only. 88% of the food samples analyzed confirmed the presence of bacterial pathogens, indicating the need for stricter implementation of food sanitation practices to reduce the possible risk of transmission of infection on consumption of these foods. Other aspects related to the trade of street foods in the city like the age and sex profile of food vendors, educational status and the hygienic aspects involved in the preparation, selling and consumption of these items were also reviewed.
ERIC Educational Resources Information Center
Vinokur, Amiram D.; Merion, Robert M.; Couper, Mick P.; Jones, Eleanor G.; Dong, Yihui
2006-01-01
A sample of 490 high school students from 81 schools in Michigan participated in an experiment in which they were randomly assigned to either a control or an experimental Web site. The experimental Web site provided exposure to educational material about the process of organ donation and organ transplantation. The control Web site provided…
ERIC Educational Resources Information Center
Jenkins, Peter; Palmer, Joanne
2012-01-01
The primary objective of this study was to explore perceptions of UK school counsellors of confidentiality and information sharing in therapeutic work with children and young people, using qualitative methods. The research design employed a two-stage process, using questionnaires and follow-up interviews, with a small, non-random sample of school…
ERIC Educational Resources Information Center
Ray, Amber B.; Graham, Steve; Houston, Julia D.; Harris, Karen R.
2016-01-01
A random sample of middle school teachers (grades 6-9) from across the United States was surveyed about their use of writing to support students' learning. The selection process was stratified so there were an equal number of English language arts, social studies, and science teachers. More than one-half of the teachers reported applying 15 or…
ERIC Educational Resources Information Center
Neild, Ruth Curran; Weiss, Christopher C.
The Philadelphia Education Longitudinal Study (PELS) on the transition to ninth grade in Philadelphia highlights the high school choice process, course failure rates during ninth grade, and parents' responses to the transition to high school. The PELS study followed a city-wide random sample of public school students from the summer after eighth…
ERIC Educational Resources Information Center
Young, I. Phillip
2005-01-01
This study addresses the screening decisions for a national random sample of high school principals as viewed from the attraction-similarity theory of interpersonal perceptions. Independent variables are the sex of principals, sex of applicants, and the type of focal positions sought by hypothetical job applicants (teacher or counselor). Dependent…
Che, W W; Frey, H Christopher; Lau, Alexis K H
2014-12-01
Population and diary sampling methods are employed in exposure models to sample simulated individuals and their daily activity on each simulation day. Different sampling methods may lead to variations in estimated human exposure. In this study, two population sampling methods (stratified-random and random-random) and three diary sampling methods (random resampling, diversity and autocorrelation, and Markov-chain cluster [MCC]) are evaluated. Their impacts on estimated children's exposure to ambient fine particulate matter (PM2.5 ) are quantified via case studies for children in Wake County, NC for July 2002. The estimated mean daily average exposure is 12.9 μg/m(3) for simulated children using the stratified population sampling method, and 12.2 μg/m(3) using the random sampling method. These minor differences are caused by the random sampling among ages within census tracts. Among the three diary sampling methods, there are differences in the estimated number of individuals with multiple days of exposures exceeding a benchmark of concern of 25 μg/m(3) due to differences in how multiday longitudinal diaries are estimated. The MCC method is relatively more conservative. In case studies evaluated here, the MCC method led to 10% higher estimation of the number of individuals with repeated exposures exceeding the benchmark. The comparisons help to identify and contrast the capabilities of each method and to offer insight regarding implications of method choice. Exposure simulation results are robust to the two population sampling methods evaluated, and are sensitive to the choice of method for simulating longitudinal diaries, particularly when analyzing results for specific microenvironments or for exposures exceeding a benchmark of concern. © 2014 Society for Risk Analysis.
Chu, Hui-May; Ette, Ene I
2005-09-02
his study was performed to develop a new nonparametric approach for the estimation of robust tissue-to-plasma ratio from extremely sparsely sampled paired data (ie, one sample each from plasma and tissue per subject). Tissue-to-plasma ratio was estimated from paired/unpaired experimental data using independent time points approach, area under the curve (AUC) values calculated with the naïve data averaging approach, and AUC values calculated using sampling based approaches (eg, the pseudoprofile-based bootstrap [PpbB] approach and the random sampling approach [our proposed approach]). The random sampling approach involves the use of a 2-phase algorithm. The convergence of the sampling/resampling approaches was investigated, as well as the robustness of the estimates produced by different approaches. To evaluate the latter, new data sets were generated by introducing outlier(s) into the real data set. One to 2 concentration values were inflated by 10% to 40% from their original values to produce the outliers. Tissue-to-plasma ratios computed using the independent time points approach varied between 0 and 50 across time points. The ratio obtained from AUC values acquired using the naive data averaging approach was not associated with any measure of uncertainty or variability. Calculating the ratio without regard to pairing yielded poorer estimates. The random sampling and pseudoprofile-based bootstrap approaches yielded tissue-to-plasma ratios with uncertainty and variability. However, the random sampling approach, because of the 2-phase nature of its algorithm, yielded more robust estimates and required fewer replications. Therefore, a 2-phase random sampling approach is proposed for the robust estimation of tissue-to-plasma ratio from extremely sparsely sampled data.
Anticipatory processing in social anxiety: Investigation using attentional control theory.
Sluis, Rachel A; Boschen, Mark J; Neumann, David L; Murphy, Karen
2017-12-01
Cognitive models of social anxiety disorder (SAD) emphasize anticipatory processing as a prominent maintaining factor occurring before social-evaluative events. While anticipatory processing is a maladaptive process, the cognitive mechanisms that underlie ineffective control of attention are still unclear. The present study tested predictions derived from attentional control theory in a sample of undergraduate students high and low on social anxiety symptoms. Participants were randomly assigned to either engage in anticipatory processing prior to a threat of a speech task or a control condition with no social evaluative threat. After completing a series of questionnaires, participants performed pro-saccades and antisaccades in response to peripherally presented facial expressions presented in either single-task or mixed-task blocks. Correct antisaccade latencies were longer than correct pro-saccade latencies in-line with attentional control theory. High socially anxious individuals who anticipated did not exhibit impairment on the inhibition and shifting functions compared to high socially anxious individuals who did not anticipate or low socially anxious individuals in either the anticipatory or control condition. Low socially anxious individuals who anticipated exhibited shorter antisaccade latencies and a switch benefit compared to low socially anxious individuals in the control condition. The study used an analogue sample; however findings from analogue samples are generally consistent with clinical samples. The findings suggest that social threat induced anticipatory processing facilitates executive functioning for low socially anxious individuals when anticipating a social-evaluative situation. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Serang, Oliver
2012-01-01
Linear programming (LP) problems are commonly used in analysis and resource allocation, frequently surfacing as approximations to more difficult problems. Existing approaches to LP have been dominated by a small group of methods, and randomized algorithms have not enjoyed popularity in practice. This paper introduces a novel randomized method of solving LP problems by moving along the facets and within the interior of the polytope along rays randomly sampled from the polyhedral cones defined by the bounding constraints. This conic sampling method is then applied to randomly sampled LPs, and its runtime performance is shown to compare favorably to the simplex and primal affine-scaling algorithms, especially on polytopes with certain characteristics. The conic sampling method is then adapted and applied to solve a certain quadratic program, which compute a projection onto a polytope; the proposed method is shown to outperform the proprietary software Mathematica on large, sparse QP problems constructed from mass spectometry-based proteomics. PMID:22952741
Kerfriden, P.; Schmidt, K.M.; Rabczuk, T.; Bordas, S.P.A.
2013-01-01
We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model. PMID:27069423
Two stochastic models useful in petroleum exploration
NASA Technical Reports Server (NTRS)
Kaufman, G. M.; Bradley, P. G.
1972-01-01
A model of the petroleum exploration process that tests empirically the hypothesis that at an early stage in the exploration of a basin, the process behaves like sampling without replacement is proposed along with a model of the spatial distribution of petroleum reserviors that conforms to observed facts. In developing the model of discovery, the following topics are discussed: probabilitistic proportionality, likelihood function, and maximum likelihood estimation. In addition, the spatial model is described, which is defined as a stochastic process generating values of a sequence or random variables in a way that simulates the frequency distribution of areal extent, the geographic location, and shape of oil deposits
Point-Sampling and Line-Sampling Probability Theory, Geometric Implications, Synthesis
L.R. Grosenbaugh
1958-01-01
Foresters concerned with measuring tree populations on definite areas have long employed two well-known methods of representative sampling. In list or enumerative sampling the entire tree population is tallied with a known proportion being randomly selected and measured for volume or other variables. In area sampling all trees on randomly located plots or strips...
Jeddi, Maryam Zare; Yunesian, Masud; Gorji, Mohamad Es'haghi; Noori, Negin; Pourmand, Mohammad Reza
2014-01-01
ABSTRACT The aim of this study was to evaluate the bacterial and fungal quality of minimally-processed vegetables (MPV) and sprouts. A total of 116 samples of fresh-cut vegetables, ready-to-eat salads, and mung bean and wheat sprouts were randomly collected and analyzed. The load of aerobic mesophilic bacteria was minimum and maximum in the fresh-cut vegetables and fresh mung bean sprouts respectively, corresponding to populations of 5.3 and 8.5 log CFU/g. E. coli O157:H7 was found to be absent in all samples; however, other E. coli strains were detected in 21 samples (18.1%), and Salmonella spp. were found in one mung bean (3.1%) and one ready-to-eat salad sample (5%). Yeasts were the predominant organisms and were found in 100% of the samples. Geotrichum, Fusarium, and Penicillium spp. were the most prevalent molds in mung sprouts while Cladosporium and Penicillium spp. were most frequently found in ready-to-eat salad samples. According to results from the present study, effective control measures should be implemented to minimize the microbiological contamination of fresh produce sold in Tehran, Iran. PMID:25395902
Jeddi, Maryam Zare; Yunesian, Masud; Gorji, Mohamad Es'haghi; Noori, Negin; Pourmand, Mohammad Reza; Khaniki, Gholam Reza Jahed
2014-09-01
The aim of this study was to evaluate the bacterial and fungal quality of minimally-processed vegetables (MPV) and sprouts. A total of 116 samples of fresh-cut vegetables, ready-to-eat salads, and mung bean and wheat sprouts were randomly collected and analyzed. The load of aerobic mesophilic bacteria was minimum and maximum in the fresh-cut vegetables and fresh mung bean sprouts respectively, corresponding to populations of 5.3 and 8.5 log CFU/g. E. coli O157:H7 was found to be absent in all samples; however, other E. coli strains were detected in 21 samples (18.1%), and Salmonella spp. were found in one mung bean (3.1%) and one ready-to-eat salad sample (5%). Yeasts were the predominant organisms and were found in 100% of the samples. Geotrichum, Fusarium, and Penicillium spp. were the most prevalent molds in mung sprouts while Cladosporium and Penicillium spp. were most frequently found in ready-to-eat salad samples. According to results from the present study, effective control measures should be implemented to minimize the microbiological contamination of fresh produce sold in Tehran, Iran.
Harry T. Valentine
2002-01-01
Randomized branch sampling (RBS) is a special application of multistage probability sampling (see Sampling, environmental), which was developed originally by Jessen [3] to estimate fruit counts on individual orchard trees. In general, the method can be used to obtain estimates of many different attributes of trees or other branched plants. The usual objective of RBS is...
Image gathering and processing - Information and fidelity
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Halyo, N.; Samms, R. W.; Stacy, K.
1985-01-01
In this paper we formulate and use information and fidelity criteria to assess image gathering and processing, combining optical design with image-forming and edge-detection algorithms. The optical design of the image-gathering system revolves around the relationship among sampling passband, spatial response, and signal-to-noise ratio (SNR). Our formulations of information, fidelity, and optimal (Wiener) restoration account for the insufficient sampling (i.e., aliasing) common in image gathering as well as for the blurring and noise that conventional formulations account for. Performance analyses and simulations for ordinary optical-design constraints and random scences indicate that (1) different image-forming algorithms prefer different optical designs; (2) informationally optimized designs maximize the robustness of optimal image restorations and lead to the highest-spatial-frequency channel (relative to the sampling passband) for which edge detection is reliable (if the SNR is sufficiently high); and (3) combining the informationally optimized design with a 3 by 3 lateral-inhibitory image-plane-processing algorithm leads to a spatial-response shape that approximates the optimal edge-detection response of (Marr's model of) human vision and thus reduces the data preprocessing and transmission required for machine vision.
Deterministic multidimensional nonuniform gap sampling.
Worley, Bradley; Powers, Robert
2015-12-01
Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities. Copyright © 2015 Elsevier Inc. All rights reserved.
Barbut, F; Menuet, D; Verachten, M; Girou, E
2009-06-01
To compare a hydrogen peroxide dry-mist system and a 0.5% hypochlorite solution with respect to their ability to disinfect Clostridium difficile-contaminated surfaces in vitro and in situ. Prospective, randomized, before-after trial. Two French hospitals affected by C. difficile. In situ efficacy of disinfectants was assessed in rooms that had housed patients with C. difficile infection. A prospective study was performed at 2 hospitals that involved randomization of disinfection processes. When a patient with C. difficile infection was discharged, environmental contamination in the patient's room was evaluated before and after disinfection. Environmental surfaces were sampled for C. difficile by use of moistened swabs; swab samples were cultured on selective plates and in broth. Both disinfectants were tested in vitro with a spore-carrier test; in this test, 2 types of material, vinyl polychloride (representative of the room's floor) and laminate (representative of the room's furniture), were experimentally contaminated with spores from 3 C. difficile strains, including the epidemic clone ribotype 027-North American pulsed-field gel electrophoresis type 1. There were 748 surface samples collected (360 from rooms treated with hydrogen peroxide and 388 from rooms treated with hypochlorite). Before disinfection, 46 (24%) of 194 samples obtained in the rooms randomized to hypochlorite treatment and 34 (19%) of 180 samples obtained in the rooms randomized to hydrogen peroxide treatment showed environmental contamination. After disinfection, 23 (12%) of 194 samples from hypochlorite-treated rooms and 4 (2%) of 180 samples from hydrogen peroxide treated rooms showed environmental contamination, a decrease in contamination of 50% after hypochlorite decontamination and 91% after hydrogen peroxide decontamination (P < .005). The in vitro activity of 0.5% hypochlorite was time dependent. The mean (+/-SD) reduction in initial log(10) bacterial count was 4.32 +/- 0.35 log(10) colony-forming units after 10 minutes of exposure to hypochlorite and 4.18 +/- 0.8 log(10) colony-forming units after 1 cycle of hydrogen peroxide decontamination. In situ experiments indicate that the hydrogen peroxide dry-mist disinfection system is significantly more effective than 0.5% sodium hypochlorite solution at eradicating C. difficile spores and might represent a new alternative for disinfecting the rooms of patients with C. difficile infection.
Waśkiewicz, Agnieszka; Beszterda, Monika; Bocianowski, Jan; Goliński, Piotr
2013-12-01
Unsanitary conditions during harvesting, drying, packing and storage stages in production and processing of spices and herbs could introduce mycotoxin contamination. The occurrence of ochratoxin A and fumonisins in popular spices and herbs was studied, using liquid chromatography-electrospray-mass spectrometry. Apart from mycotoxins, ergosterol as a factor indicating fungal development was also analysed. A total of 79 different samples commercialized in Poland were randomly purchased from popular markets were tested for mycotoxins. The frequency of samples with fumonisins was lower (31%) than ochratoxin A (49%). Free from mycotoxins were samples of bay leaf and white mustard. ERG content - in spice samples with high concentration level of mycotoxins - was also significantly higher than in samples with little to no mycotoxins. Copyright © 2013 Elsevier Ltd. All rights reserved.
Prevalence of Listeria monocytogenes in Idiazabal cheese.
Arrese, E; Arroyo-Izaga, M
2012-01-01
Raw-milk cheese has been identified in risk assessment as a food of greater concern to public health due to listeriosis. To determine the prevalence and levels of Listeria monocytogenes in semi-hard Idiazabal cheese manufactured by different producers in the Basque Country at consumer level. A total of 51 Idiazabal cheese samples were obtained from 10 separate retail establishments, chosen by stratified random sampling. Samples were tested using the official standard ISO procedure 11290-1 for detection and enumeration methods. All cheese samples tested negative for L. monocytogenes. However, 9.8% tested positive for Listeria spp., different from L. monocytogenes. Positive samples came from two brands, two were natural and three were smoked. The presence of Listeria spss. suggests that the cheese making process and the hygiene whether at milking or during cheese making could be insufficient.
Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong
2015-12-26
This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.
Observational studies of patients in the emergency department: a comparison of 4 sampling methods.
Valley, Morgan A; Heard, Kennon J; Ginde, Adit A; Lezotte, Dennis C; Lowenstein, Steven R
2012-08-01
We evaluate the ability of 4 sampling methods to generate representative samples of the emergency department (ED) population. We analyzed the electronic records of 21,662 consecutive patient visits at an urban, academic ED. From this population, we simulated different models of study recruitment in the ED by using 2 sample sizes (n=200 and n=400) and 4 sampling methods: true random, random 4-hour time blocks by exact sample size, random 4-hour time blocks by a predetermined number of blocks, and convenience or "business hours." For each method and sample size, we obtained 1,000 samples from the population. Using χ(2) tests, we measured the number of statistically significant differences between the sample and the population for 8 variables (age, sex, race/ethnicity, language, triage acuity, arrival mode, disposition, and payer source). Then, for each variable, method, and sample size, we compared the proportion of the 1,000 samples that differed from the overall ED population to the expected proportion (5%). Only the true random samples represented the population with respect to sex, race/ethnicity, triage acuity, mode of arrival, language, and payer source in at least 95% of the samples. Patient samples obtained using random 4-hour time blocks and business hours sampling systematically differed from the overall ED patient population for several important demographic and clinical variables. However, the magnitude of these differences was not large. Common sampling strategies selected for ED-based studies may affect parameter estimates for several representative population variables. However, the potential for bias for these variables appears small. Copyright © 2012. Published by Mosby, Inc.
Gerbasi, David; Shapiro, Moshe; Brumer, Paul
2006-02-21
Enantiomeric control of 1,3 dimethylallene in a collisional environment is examined. Specifically, our previous "laser distillation" scenario wherein three perpendicular linearly polarized light fields are applied to excite a set of vib-rotational eigenstates of a randomly oriented sample is considered. The addition of internal conversion, dissociation, decoherence, and collisional relaxation mimics experimental conditions and molecular decay processes. Of greatest relevance is internal conversion which, in the case of dimethylallene, is followed by molecular dissociation. For various rates of internal conversion, enantiomeric control is maintained in this scenario by a delicate balance between collisional relaxation of excited dimethylallene that enhances control and collisional dephasing, which diminishes control.
The non-equilibrium allele frequency spectrum in a Poisson random field framework.
Kaj, Ingemar; Mugal, Carina F
2016-10-01
In population genetic studies, the allele frequency spectrum (AFS) efficiently summarizes genome-wide polymorphism data and shapes a variety of allele frequency-based summary statistics. While existing theory typically features equilibrium conditions, emerging methodology requires an analytical understanding of the build-up of the allele frequencies over time. In this work, we use the framework of Poisson random fields to derive new representations of the non-equilibrium AFS for the case of a Wright-Fisher population model with selection. In our approach, the AFS is a scaling-limit of the expectation of a Poisson stochastic integral and the representation of the non-equilibrium AFS arises in terms of a fixation time probability distribution. The known duality between the Wright-Fisher diffusion process and a birth and death process generalizing Kingman's coalescent yields an additional representation. The results carry over to the setting of a random sample drawn from the population and provide the non-equilibrium behavior of sample statistics. Our findings are consistent with and extend a previous approach where the non-equilibrium AFS solves a partial differential forward equation with a non-traditional boundary condition. Moreover, we provide a bridge to previous coalescent-based work, and hence tie several frameworks together. Since frequency-based summary statistics are widely used in population genetics, for example, to identify candidate loci of adaptive evolution, to infer the demographic history of a population, or to improve our understanding of the underlying mechanics of speciation events, the presented results are potentially useful for a broad range of topics. Copyright © 2016 Elsevier Inc. All rights reserved.
True randomness from an incoherent source
NASA Astrophysics Data System (ADS)
Qi, Bing
2017-11-01
Quantum random number generators (QRNGs) harness the intrinsic randomness in measurement processes: the measurement outputs are truly random, given the input state is a superposition of the eigenstates of the measurement operators. In the case of trusted devices, true randomness could be generated from a mixed state ρ so long as the system entangled with ρ is well protected. We propose a random number generation scheme based on measuring the quadrature fluctuations of a single mode thermal state using an optical homodyne detector. By mixing the output of a broadband amplified spontaneous emission (ASE) source with a single mode local oscillator (LO) at a beam splitter and performing differential photo-detection, we can selectively detect the quadrature fluctuation of a single mode output of the ASE source, thanks to the filtering function of the LO. Experimentally, a quadrature variance about three orders of magnitude larger than the vacuum noise has been observed, suggesting this scheme can tolerate much higher detector noise in comparison with QRNGs based on measuring the vacuum noise. The high quality of this entropy source is evidenced by the small correlation coefficients of the acquired data. A Toeplitz-hashing extractor is applied to generate unbiased random bits from the Gaussian distributed raw data, achieving an efficiency of 5.12 bits per sample. The output of the Toeplitz extractor successfully passes all the NIST statistical tests for random numbers.
A Bayesian sequential design with adaptive randomization for 2-sided hypothesis test.
Yu, Qingzhao; Zhu, Lin; Zhu, Han
2017-11-01
Bayesian sequential and adaptive randomization designs are gaining popularity in clinical trials thanks to their potentials to reduce the number of required participants and save resources. We propose a Bayesian sequential design with adaptive randomization rates so as to more efficiently attribute newly recruited patients to different treatment arms. In this paper, we consider 2-arm clinical trials. Patients are allocated to the 2 arms with a randomization rate to achieve minimum variance for the test statistic. Algorithms are presented to calculate the optimal randomization rate, critical values, and power for the proposed design. Sensitivity analysis is implemented to check the influence on design by changing the prior distributions. Simulation studies are applied to compare the proposed method and traditional methods in terms of power and actual sample sizes. Simulations show that, when total sample size is fixed, the proposed design can obtain greater power and/or cost smaller actual sample size than the traditional Bayesian sequential design. Finally, we apply the proposed method to a real data set and compare the results with the Bayesian sequential design without adaptive randomization in terms of sample sizes. The proposed method can further reduce required sample size. Copyright © 2017 John Wiley & Sons, Ltd.
A Mixed Kijima Model Using the Weibull-Based Generalized Renewal Processes
2015-01-01
Generalized Renewal Processes are useful for approaching the rejuvenation of dynamical systems resulting from planned or unplanned interventions. We present new perspectives for the Generalized Renewal Processes in general and for the Weibull-based Generalized Renewal Processes in particular. Disregarding from literature, we present a mixed Generalized Renewal Processes approach involving Kijima Type I and II models, allowing one to infer the impact of distinct interventions on the performance of the system under study. The first and second theoretical moments of this model are introduced as well as its maximum likelihood estimation and random sampling approaches. In order to illustrate the usefulness of the proposed Weibull-based Generalized Renewal Processes model, some real data sets involving improving, stable, and deteriorating systems are used. PMID:26197222
Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra
NASA Astrophysics Data System (ADS)
Rezakhah, Saeid; Maleki, Yasaman
2016-07-01
Imposing some flexible sampling scheme we provide some discretization of continuous time discrete scale invariant (DSI) processes which is a subsidiary discrete time DSI process. Then by introducing some simple random measure we provide a second continuous time DSI process which provides a proper approximation of the first one. This enables us to provide a bilateral relation between covariance functions of the subsidiary process and the new continuous time processes. The time varying spectral representation of such continuous time DSI process is characterized, and its spectrum is estimated. Also, a new method for estimation time dependent Hurst parameter of such processes is provided which gives a more accurate estimation. The performance of this estimation method is studied via simulation. Finally this method is applied to the real data of S & P500 and Dow Jones indices for some special periods.
NASA Astrophysics Data System (ADS)
Zhang, Jingdong; Zhu, Tao; Zheng, Hua; Kuang, Yang; Liu, Min; Huang, Wei
2017-04-01
The round trip time of the light pulse limits the maximum detectable frequency response range of vibration in phase-sensitive optical time domain reflectometry (φ-OTDR). We propose a method to break the frequency response range restriction of φ-OTDR system by modulating the light pulse interval randomly which enables a random sampling for every vibration point in a long sensing fiber. This sub-Nyquist randomized sampling method is suits for detecting sparse-wideband- frequency vibration signals. Up to MHz resonance vibration signal with over dozens of frequency components and 1.153MHz single frequency vibration signal are clearly identified for a sensing range of 9.6km with 10kHz maximum sampling rate.
Chrysohoou, Christina; Panagiotakos, Demosthenes B; Pitsavos, Christos; Skoumas, John; Economou, Manolis; Papadimitriou, Lambros; Stefanadis, Christodoulos
2007-05-01
We sought to evaluate the association between pre-hypertension status and oxidative stress markers (total antioxidant capacity (TAC) and oxidized low density lipoprotein (LDL)), in a random sample of cardiovascular disease-free adults. The ATTICA study is a cross-sectional population-based survey that conducted in Attica region during 2001-2002. Based on a multistage and stratified random sampling, 1514 men and 1528 women (18-89 years old) were enrolled. The survey included a detailed interview; blood samples collected after 12h of fasting and, among other clinical measurements, status of blood pressure levels was evaluated. Six hundred and fifty-three men (43%) and 535 women (35%) were defined as pre-hypertensives. Both systolic and diastolic blood pressures were inversely correlated with TAC (p<0.001) and positively correlated to oxidized LDL (p<0.001). Particularly, compared to normotensive subjects, pre-hypertensives had 7% lower TAC levels (p<0.001) and 15% higher oxidized LDL levels (p<0.05), after correcting for multiple comparisons and adjusting for age, body mass index, blood lipids, glucose, food groups consumed and other potential confounders. Studying a large sample of cardiovascular disease-free adults, we revealed an association of pre-hypertension with oxidative stress markers linking to atherosclerotic process.
Two-sample discrimination of Poisson means
NASA Technical Reports Server (NTRS)
Lampton, M.
1994-01-01
This paper presents a statistical test for detecting significant differences between two random count accumulations. The null hypothesis is that the two samples share a common random arrival process with a mean count proportional to each sample's exposure. The model represents the partition of N total events into two counts, A and B, as a sequence of N independent Bernoulli trials whose partition fraction, f, is determined by the ratio of the exposures of A and B. The detection of a significant difference is claimed when the background (null) hypothesis is rejected, which occurs when the observed sample falls in a critical region of (A, B) space. The critical region depends on f and the desired significance level, alpha. The model correctly takes into account the fluctuations in both the signals and the background data, including the important case of small numbers of counts in the signal, the background, or both. The significance can be exactly determined from the cumulative binomial distribution, which in turn can be inverted to determine the critical A(B) or B(A) contour. This paper gives efficient implementations of these tests, based on lookup tables. Applications include the detection of clustering of astronomical objects, the detection of faint emission or absorption lines in photon-limited spectroscopy, the detection of faint emitters or absorbers in photon-limited imaging, and dosimetry.
The topomer-sampling model of protein folding
Debe, Derek A.; Carlson, Matt J.; Goddard, William A.
1999-01-01
Clearly, a protein cannot sample all of its conformations (e.g., ≈3100 ≈ 1048 for a 100 residue protein) on an in vivo folding timescale (<1 s). To investigate how the conformational dynamics of a protein can accommodate subsecond folding time scales, we introduce the concept of the native topomer, which is the set of all structures similar to the native structure (obtainable from the native structure through local backbone coordinate transformations that do not disrupt the covalent bonding of the peptide backbone). We have developed a computational procedure for estimating the number of distinct topomers required to span all conformations (compact and semicompact) for a polypeptide of a given length. For 100 residues, we find ≈3 × 107 distinct topomers. Based on the distance calculated between different topomers, we estimate that a 100-residue polypeptide diffusively samples one topomer every ≈3 ns. Hence, a 100-residue protein can find its native topomer by random sampling in just ≈100 ms. These results suggest that subsecond folding of modest-sized, single-domain proteins can be accomplished by a two-stage process of (i) topomer diffusion: random, diffusive sampling of the 3 × 107 distinct topomers to find the native topomer (≈0.1 s), followed by (ii) intratopomer ordering: nonrandom, local conformational rearrangements within the native topomer to settle into the precise native state. PMID:10077555
SUNPLIN: Simulation with Uncertainty for Phylogenetic Investigations
2013-01-01
Background Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. Results In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. Conclusion We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets. PMID:24229408
SUNPLIN: simulation with uncertainty for phylogenetic investigations.
Martins, Wellington S; Carmo, Welton C; Longo, Humberto J; Rosa, Thierson C; Rangel, Thiago F
2013-11-15
Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets.
Health indicators: eliminating bias from convenience sampling estimators.
Hedt, Bethany L; Pagano, Marcello
2011-02-28
Public health practitioners are often called upon to make inference about a health indicator for a population at large when the sole available information are data gathered from a convenience sample, such as data gathered on visitors to a clinic. These data may be of the highest quality and quite extensive, but the biases inherent in a convenience sample preclude the legitimate use of powerful inferential tools that are usually associated with a random sample. In general, we know nothing about those who do not visit the clinic beyond the fact that they do not visit the clinic. An alternative is to take a random sample of the population. However, we show that this solution would be wasteful if it excluded the use of available information. Hence, we present a simple annealing methodology that combines a relatively small, and presumably far less expensive, random sample with the convenience sample. This allows us to not only take advantage of powerful inferential tools, but also provides more accurate information than that available from just using data from the random sample alone. Copyright © 2011 John Wiley & Sons, Ltd.
Planetary image conversion task
NASA Technical Reports Server (NTRS)
Martin, M. D.; Stanley, C. L.; Laughlin, G.
1985-01-01
The Planetary Image Conversion Task group processed 12,500 magnetic tapes containing raw imaging data from JPL planetary missions and produced an image data base in consistent format on 1200 fully packed 6250-bpi tapes. The output tapes will remain at JPL. A copy of the entire tape set was delivered to US Geological Survey, Flagstaff, Ariz. A secondary task converted computer datalogs, which had been stored in project specific MARK IV File Management System data types and structures, to flat-file, text format that is processable on any modern computer system. The conversion processing took place at JPL's Image Processing Laboratory on an IBM 370-158 with existing software modified slightly to meet the needs of the conversion task. More than 99% of the original digital image data was successfully recovered by the conversion task. However, processing data tapes recorded before 1975 was destructive. This discovery is of critical importance to facilities responsible for maintaining digital archives since normal periodic random sampling techniques would be unlikely to detect this phenomenon, and entire data sets could be wiped out in the act of generating seemingly positive sampling results. Reccomended follow-on activities are also included.
Perelló, Gemma; Martí-Cid, Roser; Llobet, Juan M; Domingo, José L
2008-12-10
The effects of cooking processes commonly used by the population of Catalonia (Spain) on total arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) concentrations in various foodstuffs were investigated. All food samples were randomly acquired in local markets, big supermarkets, and grocery stores of Reus (Catalonia). Foods included fish (sardine, hake, and tuna), meat (veal steak, loin of pork, breast and thigh of chicken, and steak and rib of lamb), string bean, potato, rice, and olive oil. For each food item, two composite samples were prepared for metal analyses, whose levels in raw and cooked (fried, grilled, roasted, and boiled) samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The highest concentrations of As, Hg, and Pb (raw and cooked samples) were mainly found in fish, with a clear tendency, in general, to increase metal concentrations after cooking. However, in these samples, Cd levels were very close to their detection limit. In turn, the concentrations of metals in raw and cooked meat samples were detected in all samples (As) or only in a very few samples (Cd, Hg, and Pb). A similar finding corresponded to string beans, rice, and olive oil, while in potatoes, Hg could not be detected and Pb only was detected in the raw samples. In summary, the results of the present study show that, in general terms, the cooking process is only of a very limited value as a means of reducing metal concentrations. This hypothetical reduction depends upon cooking conditions (time, temperature, and medium of cooking).
Spatial Sampling of Weather Data for Regional Crop Yield Simulations
NASA Technical Reports Server (NTRS)
Van Bussel, Lenny G. J.; Ewert, Frank; Zhao, Gang; Hoffmann, Holger; Enders, Andreas; Wallach, Daniel; Asseng, Senthold; Baigorria, Guillermo A.; Basso, Bruno; Biernath, Christian;
2016-01-01
Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50, 100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.
Chaudhry, Shazia H; Brehaut, Jamie C; Grimshaw, Jeremy M; Weijer, Charles; Boruch, Robert; Donner, Allan; Eccles, Martin P; McRae, Andrew D; Saginur, Raphael; Skea, Zoë C; Zwarenstein, Merrick; Taljaard, Monica
2013-04-01
Cluster randomized trials (CRTs) complicate the interpretation of standard research ethics guidelines for several reasons. For one, the units of allocation, intervention, and observation often may differ within a single trial. In the absence of tailored and internationally accepted ethics guidelines for CRTs, researchers and research ethics committees have no common standard by which to judge ethically appropriate practices in CRTs. Moreover, lack of familiarity with and consideration of the unique features of the CRT design by research ethics committees may cause difficulties in the research ethics review process, and amplify problems such as variability in the requirements and decisions reached by different research ethics committees. We aimed to characterize research ethics review of CRTs, examine investigator experiences with the ethics review process, and assess the need for ethics guidelines for CRTs. An electronic search strategy implemented in MEDLINE was used to identify and randomly sample 300 CRTs published in English language journals from 2000 to 2008. A web-based survey with closed- and open-ended questions was administered to corresponding authors in a series of six contacts. The survey response rate was 64%. Among 182 of 285 eligible respondents, 91% indicated that they had sought research ethics approval for the identified CRT, although only 70% respondents reported research ethics approval in the published article. Nearly one-third (31%) indicated that they have had to meet with ethics committees to explain aspects of their trials, nearly half (46%) experienced variability in the ethics review process in multijurisdictional trials, and 38% experienced negative impacts of the ethics review process on their trials, including delays in trial initiation (28%), increased costs (10%), compromised ability to recruit participants (16%), and compromised methodological quality (9%). Most respondents (74%; 95% confidence interval (CI): 67%-80%) agreed or strongly agreed that there is a need to develop ethics guidelines for CRTs, and (70%; 95% CI: 63%-77%) that ethics committees could be better informed about distinct ethical issues surrounding CRTs. Thirty-six percent of authors did not respond to the survey. Due to the absence of comparable results from a representative sample of authors of individually randomized trials, it is unclear to what extent the reported challenges result from the CRT design. CRT investigators are experiencing challenges in the research ethics review of their trials, including excessive delays, variability in process and outcome, and imposed requirements that can have negative consequences for study conduct. Investigators identified a clear need for ethics guidelines for CRTs and education of research ethics committees about distinct ethical issues in CRTs.
Li, Jianghong; Valente, Thomas W; Shin, Hee-Sung; Weeks, Margaret; Zelenev, Alexei; Moothi, Gayatri; Mosher, Heather; Heimer, Robert; Robles, Eduardo; Palmer, Greg; Obidoa, Chinekwu
2017-06-28
Intensive sociometric network data were collected from a typical respondent driven sample (RDS) of 528 people who inject drugs residing in Hartford, Connecticut in 2012-2013. This rich dataset enabled us to analyze a large number of unobserved network nodes and ties for the purpose of assessing common assumptions underlying RDS estimators. Results show that several assumptions central to RDS estimators, such as random selection, enrollment probability proportional to degree, and recruitment occurring over recruiter's network ties, were violated. These problems stem from an overly simplistic conceptualization of peer recruitment processes and dynamics. We found nearly half of participants were recruited via coupon redistribution on the street. Non-uniform patterns occurred in multiple recruitment stages related to both recruiter behavior (choosing and reaching alters, passing coupons, etc.) and recruit behavior (accepting/rejecting coupons, failing to enter study, passing coupons to others). Some factors associated with these patterns were also associated with HIV risk.
NASA Astrophysics Data System (ADS)
Lo, Chun-Chieh; Hsieh, Tsung-Eong
2016-09-01
Fully transparent resistive random access memory (TRRAM) containing amorphous indium gallium zinc oxide as the resistance switching (RS) layer and transparent conducting oxides (indium zinc oxide and indium tin oxide) as the electrodes was prepared. Optical measurement indicated the transmittance of device exceeds 80% in visible-light wavelength range. TRRAM samples exhibited the forming-free feature and the best electrical performance (V SET = 0.61 V V RESET = -0.76 V R HRS/R LRS (i.e. the R-ratio) >103) was observed in the device subject to a post-annealing at 300 °C for 1 hr in atmospheric ambient. Such a sample also exhibited satisfactory endurance and retention properties at 85 °C as revealed by the reliability tests. Electrical measurement performed in vacuum ambient indicated that the RS mechanism correlates with the charge trapping/de-trapping process associated with oxygen defects in the RS layer.
Voineskos, Sophocles H; Coroneos, Christopher J; Ziolkowski, Natalia I; Kaur, Manraj N; Banfield, Laura; Meade, Maureen O; Chung, Kevin C; Thoma, Achilleas; Bhandari, Mohit
2016-02-01
The authors examined industry support, conflict of interest, and sample size in plastic surgery randomized controlled trials that compared surgical interventions. They hypothesized that industry-funded trials demonstrate statistically significant outcomes more often, and randomized controlled trials with small sample sizes report statistically significant results more frequently. An electronic search identified randomized controlled trials published between 2000 and 2013. Independent reviewers assessed manuscripts and performed data extraction. Funding source, conflict of interest, primary outcome direction, and sample size were examined. Chi-squared and independent-samples t tests were used in the analysis. The search identified 173 randomized controlled trials, of which 100 (58 percent) did not acknowledge funding status. A relationship between funding source and trial outcome direction was not observed. Both funding status and conflict of interest reporting improved over time. Only 24 percent (six of 25) of industry-funded randomized controlled trials reported authors to have independent control of data and manuscript contents. The mean number of patients randomized was 73 per trial (median, 43, minimum, 3, maximum, 936). Small trials were not found to be positive more often than large trials (p = 0.87). Randomized controlled trials with small sample size were common; however, this provides great opportunity for the field to engage in further collaboration and produce larger, more definitive trials. Reporting of trial funding and conflict of interest is historically poor, but it greatly improved over the study period. Underreporting at author and journal levels remains a limitation when assessing the relationship between funding source and trial outcomes. Improved reporting and manuscript control should be goals that both authors and journals can actively achieve.
ERIC Educational Resources Information Center
Hewitt, Nicole M.
2010-01-01
This study employed a quasi-experimental non-equivalent control group design with pretest and posttest. Two waves of data were collected from a non-random sample of 180 human service professionals in Western and Central Pennsylvania using two research instruments: the Social Work Empowerment Scale and the Conditions of Work Effectiveness-II Scale.…
ERIC Educational Resources Information Center
Gbetodeme, Selom; Amankwa, Joana; Dzegblor, Noble Komla
2016-01-01
To facilitate the design process in every art form, there are certain guidelines that all professional designers should use. These are known as elements and principles of design. This study is a survey carried out to assess the knowledge of dressmakers about basic design in the Ho Municipality of Ghana. Sixty dressmakers were randomly sampled for…
1986 Proteus Survey: Technical Manual and Codebook
1992-06-01
Officer Candidate School and Direct Commission) and by gender. Female officers were oversampled (30% in the sample versus ap- proximately 16% in the...analyze the effects of this change in policy both on the individual cadets and on the Academy and to study the process of coeducation over four years...Candidate School (OCS), and Direct Commissioning (DC). Approximately 1,000 officers were randomly selected from each commissioning year group 1980-1984 from
Brandon, Catherine J; Holody, Michael; Inch, Geoffrey; Kabcenell, Michael; Schowalter, Diane; Mullan, Patricia B
2012-01-01
The aim of this study was to evaluate the feasibility of partnering with engineering students and critically examining the merit of the problem identification and analyses students generated in identifying sources impeding effective turnaround in a large university department of diagnostic radiology. Turnaround involves the time and activities beginning when a patient enters the magnetic resonance scanner room until the patient leaves, minus the time the scanner is conducting the protocol. A prospective observational study was conducted, in which four senior undergraduate industrial and operations engineering students interviewed magnetic resonance staff members and observed all shifts. On the basis of 150 hours of observation, the engineering students identified 11 process steps (eg, changing coils). They charted machine use for all shifts, providing a breakdown of turnaround time between appropriate process and non-value-added time. To evaluate the processes occurring in the scanning room, the students used a work-sampling schedule in which a beeper sounded 2.5 times per hour, signaling the technologist to identify which of 11 process steps was occurring. This generated 2147 random observations over a 3-week period. The breakdown of machine use over 105 individual studies showed that non-value-added time accounted for 62% of turnaround time. Analysis of 2147 random samples of work showed that scanners were empty and waiting for patients 15% of the total time. Analyses showed that poor communication delayed the arrival of patients and that no one had responsibility for communicating when scanning was done. Engineering students used rigorous study design and sampling methods to conduct interviews and observations. This led to data-driven definition of problems and potential solutions to guide systems-based improvement. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yeni, N.; Suryabayu, E. P.; Handayani, T.
2017-02-01
Based on the survey showed that mathematics teacher still dominated in teaching and learning process. The process of learning is centered on the teacher while the students only work based on instructions provided by the teacher without any creativity and activities that stimulate students to explore their potential. Realized the problem above the writer interested in finding the solution by applying teaching model ‘Learning Cycles 5E’. The purpose of his research is to know whether teaching model ‘Learning Cycles 5E’ is better than conventional teaching in teaching mathematic. The type of the research is quasi experiment by Randomized Control test Group Only Design. The population in this research were all X years class students. The sample is chosen randomly after doing normality, homogeneity test and average level of students’ achievement. As the sample of this research was X.7’s class as experiment class used teaching model learning cycles 5E and X.8’s class as control class used conventional teaching. The result showed us that the students achievement in the class that used teaching model ‘Learning Cycles 5E’ is better than the class which did not use the model.
High-speed imaging using CMOS image sensor with quasi pixel-wise exposure
NASA Astrophysics Data System (ADS)
Sonoda, T.; Nagahara, H.; Endo, K.; Sugiyama, Y.; Taniguchi, R.
2017-02-01
Several recent studies in compressive video sensing have realized scene capture beyond the fundamental trade-off limit between spatial resolution and temporal resolution using random space-time sampling. However, most of these studies showed results for higher frame rate video that were produced by simulation experiments or using an optically simulated random sampling camera, because there are currently no commercially available image sensors with random exposure or sampling capabilities. We fabricated a prototype complementary metal oxide semiconductor (CMOS) image sensor with quasi pixel-wise exposure timing that can realize nonuniform space-time sampling. The prototype sensor can reset exposures independently by columns and fix these amount of exposure by rows for each 8x8 pixel block. This CMOS sensor is not fully controllable via the pixels, and has line-dependent controls, but it offers flexibility when compared with regular CMOS or charge-coupled device sensors with global or rolling shutters. We propose a method to realize pseudo-random sampling for high-speed video acquisition that uses the flexibility of the CMOS sensor. We reconstruct the high-speed video sequence from the images produced by pseudo-random sampling using an over-complete dictionary.
ADAPTIVE MATCHING IN RANDOMIZED TRIALS AND OBSERVATIONAL STUDIES
van der Laan, Mark J.; Balzer, Laura B.; Petersen, Maya L.
2014-01-01
SUMMARY In many randomized and observational studies the allocation of treatment among a sample of n independent and identically distributed units is a function of the covariates of all sampled units. As a result, the treatment labels among the units are possibly dependent, complicating estimation and posing challenges for statistical inference. For example, cluster randomized trials frequently sample communities from some target population, construct matched pairs of communities from those included in the sample based on some metric of similarity in baseline community characteristics, and then randomly allocate a treatment and a control intervention within each matched pair. In this case, the observed data can neither be represented as the realization of n independent random variables, nor, contrary to current practice, as the realization of n/2 independent random variables (treating the matched pair as the independent sampling unit). In this paper we study estimation of the average causal effect of a treatment under experimental designs in which treatment allocation potentially depends on the pre-intervention covariates of all units included in the sample. We define efficient targeted minimum loss based estimators for this general design, present a theorem that establishes the desired asymptotic normality of these estimators and allows for asymptotically valid statistical inference, and discuss implementation of these estimators. We further investigate the relative asymptotic efficiency of this design compared with a design in which unit-specific treatment assignment depends only on the units’ covariates. Our findings have practical implications for the optimal design and analysis of pair matched cluster randomized trials, as well as for observational studies in which treatment decisions may depend on characteristics of the entire sample. PMID:25097298
NASA Technical Reports Server (NTRS)
Mccaskill, T. B.; Buisson, J. A.; Reid, W. G.
1984-01-01
An on-orbit frequency stability performance analysis of the GPS NAVSTAR-1 quartz clock and the NAVSTARs-6 and -8 rubidium clocks is presented. The clock offsets were obtained from measurements taken at the GPS monitor stations which use high performance cesium standards as a reference. Clock performance is characterized through the use of the Allan variance, which is evaluated for sample times of 15 minutes to two hours, and from one day to 10 days. The quartz and rubidium clocks' offsets were corrected for aging rate before computing the frequency stability. The effect of small errors in aging rate is presented for the NAVSTAR-8 rubidium clock's stability analysis. The analysis includes presentation of time and frequency residuals with respect to linear and quadratic models, which aid in obtaining aging rate values and identifying systematic and random effects. The frequency stability values were further processed with a time domain noise process analysis, which is used to classify random noise process and modulation type.
Diffusion Processes Satisfying a Conservation Law Constraint
Bakosi, J.; Ristorcelli, J. R.
2014-03-04
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Diffusion Processes Satisfying a Conservation Law Constraint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakosi, J.; Ristorcelli, J. R.
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Liang, Rui-ying; Li, Chang-yi; Han, Ya-jing; Hu, Xin; Zhang, Lian-yun
2008-11-01
To evaluate the effect of heat treatment and porcelain-fused-to-metal (PFM) processing on mechanical properties and microstructure of laser welding CoCr-NiCr dissimilar alloys. Samples of CoCr-NiCr dissimilar alloys with 0.5 mm thickness were laser-welded single-side under the setting parameters of 280 V, 10 ms pulse duration. After being welded, samples were randomly assigned to three groups, 10 each. Group1 and 2 received heat treatment and PFM processing, respectively. Group 3 was control group without any treatment. Tensile strength, microstructure and element distribution of samples in the three groups were tested and observed using tensile test, metallographic examinations, scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS) analysis. After heat treatment and PFM processing, tensile strength of the samples were (537.15 +/- 43.91) MPa and (534.58 +/- 48.47) MPa respectively, and elongation rates in Group 1 and 2 were (7.65 +/- 0.73)% and (7.40 +/- 0.45)%. Ductile structure can be found on tensile fracture surface of samples and it was more obvious in heat treatment group than in PFM group. The results of EDS analysis indicated that certain CoCr alloy diffused towards fusion zone and NiCr side after heat treatment and PFM processing. Compared with PFM processing group, the diffusion in the heat treatment group was more obvious. Heat treatment and PFM processing can improve the mechanical properties and microstructure of welded CoCr-NiCr dissimilar alloy to a certain degree. The improvements are more obvious with heat treatment than with porcelain treatment.
Adaptive Peer Sampling with Newscast
NASA Astrophysics Data System (ADS)
Tölgyesi, Norbert; Jelasity, Márk
The peer sampling service is a middleware service that provides random samples from a large decentralized network to support gossip-based applications such as multicast, data aggregation and overlay topology management. Lightweight gossip-based implementations of the peer sampling service have been shown to provide good quality random sampling while also being extremely robust to many failure scenarios, including node churn and catastrophic failure. We identify two problems with these approaches. The first problem is related to message drop failures: if a node experiences a higher-than-average message drop rate then the probability of sampling this node in the network will decrease. The second problem is that the application layer at different nodes might request random samples at very different rates which can result in very poor random sampling especially at nodes with high request rates. We propose solutions for both problems. We focus on Newscast, a robust implementation of the peer sampling service. Our solution is based on simple extensions of the protocol and an adaptive self-control mechanism for its parameters, namely—without involving failure detectors—nodes passively monitor local protocol events using them as feedback for a local control loop for self-tuning the protocol parameters. The proposed solution is evaluated by simulation experiments.
Edwards, Jerri D.; O’Connor, Melissa L.; Ball, Karlene K.; Wadley, Virginia G.; Vance, David E.
2016-01-01
Objectives. Multilevel models assessed the effects of cognitive speed of processing training (SPT) on older adults’ self-reported driving using intention-to-treat (ITT, randomization to training or control conditions) and dosage (treatment-received via number of training sessions) analyses across 5 years. Method. Participants randomized to SPT (n = 598) were compared with those randomized to either the no-contact control (n = 598) or memory training, which served as an active control (n = 610). Driving mobility (frequency, exposure, and space) was assessed over time. Results. No significant effects were found within the ITT analyses. However, number of SPT sessions did affect driving mobility outcomes. In the full sample (N = 1,806), higher SPT doses were associated with maintained driving frequency as compared with both control groups, but no effects were found for driving exposure or space. Subsample analyses (n = 315) revealed that persons at-risk for mobility declines (i.e., poor initial processing speed) who received additional booster SPT sessions reported greater maintenance of both driving frequency and exposure over time as compared with the no-contact and active control groups. Discussion. These results and prior research indicate that cognitive SPT transfers to prolonged driving mobility among older adults. Future research should investigate the mechanisms behind transfer effects to real-world activities, such as driving. PMID:25878053
Pascual de la Pisa, Beatriz; Márquez Calzada, Cristina; Cuberos Sánchez, Carla; Cruces Jiménez, José Miguel; Fernández Gamaza, Manuel; Martínez Martínez, María Isabel
2015-03-01
Pay-for-performance programs to improve the quality of health care are extending gradually, particularly en Primary Health Care. Our aim was to explore the relationship between the degree of compliance with the process indicators (PrI) of type 2 diabetes (T2DM) in Primary Care and linkage to incentives. Cross-sectional, descriptive, observational study. Six Primary Health Care centers in Seville Aljarafe District randomly selected and stratified by population size. From 3.647 adults included in Integrated Healthcare Process of T2DM during 2008, 366 patients were included according sample size calculation by stratified random sampling. PrI: eye and feet examination, glycated hemoglobin, lipid profile, microalbuminuria and electrocardiogram. Confounding: Age, gender, characteristics town for patients and professional variables. The mean age was 66.36 years (standard deviation [DE]: 11,56); 48.9% were women. PrI with better compliance were feet examination, glycated hemoglobin and lipid profile (59.6%, 44.3% and 44%, respectively). 2.7% of patients had simultaneous compliance of the six PrI and 11.74% of patients three PrI linkage to incentives. Statistical association was observed in the compliance of the PrI incentives linked or not (P=.001). The degree of compliance with the PrI for screening chronic complications of T2DM is mostly low but this was higher on indicators linked to incentives. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
Final report : sampling plan for pavement condition ratings of secondary roads.
DOT National Transportation Integrated Search
1984-01-01
The purpose of this project was to develop a random sampling plan for use in selecting segments of the secondary highway system for evaluation under the Department's PMS. The plan developed is described here. It is a simple, workable, random sampling...
Generating Random Samples of a Given Size Using Social Security Numbers.
ERIC Educational Resources Information Center
Erickson, Richard C.; Brauchle, Paul E.
1984-01-01
The purposes of this article are (1) to present a method by which social security numbers may be used to draw cluster samples of a predetermined size and (2) to describe procedures used to validate this method of drawing random samples. (JOW)
Subsampling for dataset optimisation
NASA Astrophysics Data System (ADS)
Ließ, Mareike
2017-04-01
Soil-landscapes have formed by the interaction of soil-forming factors and pedogenic processes. In modelling these landscapes in their pedodiversity and the underlying processes, a representative unbiased dataset is required. This concerns model input as well as output data. However, very often big datasets are available which are highly heterogeneous and were gathered for various purposes, but not to model a particular process or data space. As a first step, the overall data space and/or landscape section to be modelled needs to be identified including considerations regarding scale and resolution. Then the available dataset needs to be optimised via subsampling to well represent this n-dimensional data space. A couple of well-known sampling designs may be adapted to suit this purpose. The overall approach follows three main strategies: (1) the data space may be condensed and de-correlated by a factor analysis to facilitate the subsampling process. (2) Different methods of pattern recognition serve to structure the n-dimensional data space to be modelled into units which then form the basis for the optimisation of an existing dataset through a sensible selection of samples. Along the way, data units for which there is currently insufficient soil data available may be identified. And (3) random samples from the n-dimensional data space may be replaced by similar samples from the available dataset. While being a presupposition to develop data-driven statistical models, this approach may also help to develop universal process models and identify limitations in existing models.
Jones, Tineke H; Muehlhauser, Victoria
2017-10-16
Hepatitis E virus (HEV), rotavirus (RV), and porcine enteric calicivirus (PEC) infections are common in swine and raises concerns about the potential for zoonotic transmission through undercooked meat products. Enteric viruses can potentially contaminate carcasses during meat processing operations. There is a lack of information on the prevalence and control of enteric viruses in the pork processing chain. This study compared the incidence and levels of contamination of hog carcasses with HEV, RV and PEC at different stages of the dressing process. A total of 1000 swabs were collected from 2 pork processing plants on 10 separate occasions over the span of a year. The samples were obtained from random sites on hog carcasses at 4 dressing stages (plant A: bleeding, dehairing, pasteurization, and evisceration; plant B: bleeding, skinning, evisceration, and washing) and from meat cuts. Numbers of genome copies (gc) of HEV, RV and PEC were determined by RT-qPCR. RV and PEC were detected in 100%, and 18% of samples, respectively, after bleeding for plant A and in 98%, and 36% of samples, respectively, after bleeding for plant B. After evisceration, RV and PEC were detected in 21% and 3% of samples, respectively, for plant A and in 1%, and 0% of samples, respectively for plant B. RV and PEC were detected on 1%, and 5% of pork cuts, respectively, for plant A and on 0%, and 0% of pork cuts, respectively, for plant B. HEV was not detected in any pork carcass or retail pork samples from plants A or B. The frequency of PEC and RV on pork is progressively reduced along the pork processing chain but the viruses were not completely eliminated. The findings suggest that consumers could be at risk when consuming undercooked meat contaminated with pathogenic enteric viruses. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Cuevas, Erik; Díaz, Margarita
2015-01-01
In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC) algorithm and the evolutionary method harmony search (HS). With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples) are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.
Detection in fixed and random noise in foveal and parafoveal vision explained by template learning
NASA Technical Reports Server (NTRS)
Beard, B. L.; Ahumada, A. J. Jr; Watson, A. B. (Principal Investigator)
1999-01-01
Foveal and parafoveal contrast detection thresholds for Gabor and checkerboard targets were measured in white noise by means of a two-interval forced-choice paradigm. Two white-noise conditions were used: fixed and twin. In the fixed noise condition a single noise sample was presented in both intervals of all the trials. In the twin noise condition the same noise sample was used in the two intervals of a trial, but a new sample was generated for each trial. Fixed noise conditions usually resulted in lower thresholds than twin noise. Template learning models are presented that attribute this advantage of fixed over twin noise either to fixed memory templates' reducing uncertainty by incorporation of the noise or to the introduction, by the learning process itself, of more variability in the twin noise condition. Quantitative predictions of the template learning process show that it contributes to the accelerating nonlinear increase in performance with signal amplitude at low signal-to-noise ratios.
NASA Astrophysics Data System (ADS)
Ajithra, A. K.; Shanthi, G.
2016-07-01
Natural radionuclides of terrestrial origin have very long half - lives or driven from very long - lived parent radionuclides, which have been created in stellar processes before the earth formation. The study of natural radioactivity in marine and coastal environments is of significant importance for better understanding of oceanographic and sedimentological processes. The sampling sites are selected to cover randomly to cover the southern part. The soil samples have been collected in beach sides. In situ gamma measurements were conducted using a high-purity germanium (HPGe) detector (coaxial cylinder of 50.1 mm in diameter and 44 mm in length) with a relative efficiency of 50% and an energy resolution (FWHM) of 1.8 keV at the 1.33 MeV reference transition of 60Co. The measurements shows that the values of the absorbed dose rates in air in the investigated area are lower than the recommended limit by the United Nations Scientific Committee on the Effect of Atomic Radiation.
RandomSpot: A web-based tool for systematic random sampling of virtual slides.
Wright, Alexander I; Grabsch, Heike I; Treanor, Darren E
2015-01-01
This paper describes work presented at the Nordic Symposium on Digital Pathology 2014, Linköping, Sweden. Systematic random sampling (SRS) is a stereological tool, which provides a framework to quickly build an accurate estimation of the distribution of objects or classes within an image, whilst minimizing the number of observations required. RandomSpot is a web-based tool for SRS in stereology, which systematically places equidistant points within a given region of interest on a virtual slide. Each point can then be visually inspected by a pathologist in order to generate an unbiased sample of the distribution of classes within the tissue. Further measurements can then be derived from the distribution, such as the ratio of tumor to stroma. RandomSpot replicates the fundamental principle of traditional light microscope grid-shaped graticules, with the added benefits associated with virtual slides, such as facilitated collaboration and automated navigation between points. Once the sample points have been added to the region(s) of interest, users can download the annotations and view them locally using their virtual slide viewing software. Since its introduction, RandomSpot has been used extensively for international collaborative projects, clinical trials and independent research projects. So far, the system has been used to generate over 21,000 sample sets, and has been used to generate data for use in multiple publications, identifying significant new prognostic markers in colorectal, upper gastro-intestinal and breast cancer. Data generated using RandomSpot also has significant value for training image analysis algorithms using sample point coordinates and pathologist classifications.
SNP selection and classification of genome-wide SNP data using stratified sampling random forests.
Wu, Qingyao; Ye, Yunming; Liu, Yang; Ng, Michael K
2012-09-01
For high dimensional genome-wide association (GWA) case-control data of complex disease, there are usually a large portion of single-nucleotide polymorphisms (SNPs) that are irrelevant with the disease. A simple random sampling method in random forest using default mtry parameter to choose feature subspace, will select too many subspaces without informative SNPs. Exhaustive searching an optimal mtry is often required in order to include useful and relevant SNPs and get rid of vast of non-informative SNPs. However, it is too time-consuming and not favorable in GWA for high-dimensional data. The main aim of this paper is to propose a stratified sampling method for feature subspace selection to generate decision trees in a random forest for GWA high-dimensional data. Our idea is to design an equal-width discretization scheme for informativeness to divide SNPs into multiple groups. In feature subspace selection, we randomly select the same number of SNPs from each group and combine them to form a subspace to generate a decision tree. The advantage of this stratified sampling procedure can make sure each subspace contains enough useful SNPs, but can avoid a very high computational cost of exhaustive search of an optimal mtry, and maintain the randomness of a random forest. We employ two genome-wide SNP data sets (Parkinson case-control data comprised of 408 803 SNPs and Alzheimer case-control data comprised of 380 157 SNPs) to demonstrate that the proposed stratified sampling method is effective, and it can generate better random forest with higher accuracy and lower error bound than those by Breiman's random forest generation method. For Parkinson data, we also show some interesting genes identified by the method, which may be associated with neurological disorders for further biological investigations.
Vongkamjan, Kitiya; Benjakul, Soottawat; Kim Vu, Hue Thi; Vuddhakul, Varaporn
2017-09-01
Listeria monocytogenes is a foodborne pathogen commonly found in environments of seafood processing, thus presenting a challenge for eradication from seafood processing facilities. Monitoring the prevalence and subtype diversity of L. monocytogenes together with phages that are specific to Listeria spp. ("Listeria phages") will provide knowledge on the bacteria-phage ecology in food processing plants. In this work, a total of 595 samples were collected from raw material, finished seafood products and environmental samples from different sites of a seafood processing plant during 17 sampling visits in 1.5 years of study. L. monocytogenes and Listeria spp. (non-monocytogenes) were found in 22 (3.7%) and 43 (7.2%) samples, respectively, whereas 29 Listeria phages were isolated from 9 (1.5%) phage-positive samples. DNA fingerprint analysis of L. monocytogenes isolates revealed 11 Random Amplified Polymorphic DNA (RAPD) profiles, with two subtypes were frequently observed over time. Our data reveal a presence of Listeria phages within the same seafood processing environments where a diverse set of L. monocytogenes subtypes was also found. Although serotype 4b was observed at lower frequency, data indicate that isolates from this seafood processing plant belonged to both epidemiologically important serotypes 1/2a and 4b, which may suggest a potential public health risk. Phages (all showed a unique genome size of 65 ± 2 kb) were classified into 9 host range groups, representing both broad- and narrow-host range. While most L. monocytogenes isolates from this facility were susceptible to phages, five isolates showed resistance to 12-20 phages. Variations in phage host range among Listeria phages isolated from food processing plant may affect a presence of a diverse set of L. monocytogenes isolates derived from the same processing environment in Thailand. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wicherts, Jelte M
2016-01-01
Recent controversies highlighting substandard peer review in Open Access (OA) and traditional (subscription) journals have increased the need for authors, funders, publishers, and institutions to assure quality of peer-review in academic journals. I propose that transparency of the peer-review process may be seen as an indicator of the quality of peer-review, and develop and validate a tool enabling different stakeholders to assess transparency of the peer-review process. Based on editorial guidelines and best practices, I developed a 14-item tool to rate transparency of the peer-review process on the basis of journals' websites. In Study 1, a random sample of 231 authors of papers in 92 subscription journals in different fields rated transparency of the journals that published their work. Authors' ratings of the transparency were positively associated with quality of the peer-review process but unrelated to journal's impact factors. In Study 2, 20 experts on OA publishing assessed the transparency of established (non-OA) journals, OA journals categorized as being published by potential predatory publishers, and journals from the Directory of Open Access Journals (DOAJ). Results show high reliability across items (α = .91) and sufficient reliability across raters. Ratings differentiated the three types of journals well. In Study 3, academic librarians rated a random sample of 140 DOAJ journals and another 54 journals that had received a hoax paper written by Bohannon to test peer-review quality. Journals with higher transparency ratings were less likely to accept the flawed paper and showed higher impact as measured by the h5 index from Google Scholar. The tool to assess transparency of the peer-review process at academic journals shows promising reliability and validity. The transparency of the peer-review process can be seen as an indicator of peer-review quality allowing the tool to be used to predict academic quality in new journals.
Wicherts, Jelte M.
2016-01-01
Background Recent controversies highlighting substandard peer review in Open Access (OA) and traditional (subscription) journals have increased the need for authors, funders, publishers, and institutions to assure quality of peer-review in academic journals. I propose that transparency of the peer-review process may be seen as an indicator of the quality of peer-review, and develop and validate a tool enabling different stakeholders to assess transparency of the peer-review process. Methods and Findings Based on editorial guidelines and best practices, I developed a 14-item tool to rate transparency of the peer-review process on the basis of journals’ websites. In Study 1, a random sample of 231 authors of papers in 92 subscription journals in different fields rated transparency of the journals that published their work. Authors’ ratings of the transparency were positively associated with quality of the peer-review process but unrelated to journal’s impact factors. In Study 2, 20 experts on OA publishing assessed the transparency of established (non-OA) journals, OA journals categorized as being published by potential predatory publishers, and journals from the Directory of Open Access Journals (DOAJ). Results show high reliability across items (α = .91) and sufficient reliability across raters. Ratings differentiated the three types of journals well. In Study 3, academic librarians rated a random sample of 140 DOAJ journals and another 54 journals that had received a hoax paper written by Bohannon to test peer-review quality. Journals with higher transparency ratings were less likely to accept the flawed paper and showed higher impact as measured by the h5 index from Google Scholar. Conclusions The tool to assess transparency of the peer-review process at academic journals shows promising reliability and validity. The transparency of the peer-review process can be seen as an indicator of peer-review quality allowing the tool to be used to predict academic quality in new journals. PMID:26824759
Total-Evidence Dating under the Fossilized Birth–Death Process
Zhang, Chi; Stadler, Tanja; Klopfstein, Seraina; Heath, Tracy A.; Ronquist, Fredrik
2016-01-01
Bayesian total-evidence dating involves the simultaneous analysis of morphological data from the fossil record and morphological and sequence data from recent organisms, and it accommodates the uncertainty in the placement of fossils while dating the phylogenetic tree. Due to the flexibility of the Bayesian approach, total-evidence dating can also incorporate additional sources of information. Here, we take advantage of this and expand the analysis to include information about fossilization and sampling processes. Our work is based on the recently described fossilized birth–death (FBD) process, which has been used to model speciation, extinction, and fossilization rates that can vary over time in a piecewise manner. So far, sampling of extant and fossil taxa has been assumed to be either complete or uniformly at random, an assumption which is only valid for a minority of data sets. We therefore extend the FBD process to accommodate diversified sampling of extant taxa, which is standard practice in studies of higher-level taxa. We verify the implementation using simulations and apply it to the early radiation of Hymenoptera (wasps, ants, and bees). Previous total-evidence dating analyses of this data set were based on a simple uniform tree prior and dated the initial radiation of extant Hymenoptera to the late Carboniferous (309 Ma). The analyses using the FBD prior under diversified sampling, however, date the radiation to the Triassic and Permian (252 Ma), slightly older than the age of the oldest hymenopteran fossils. By exploring a variety of FBD model assumptions, we show that it is mainly the accommodation of diversified sampling that causes the push toward more recent divergence times. Accounting for diversified sampling thus has the potential to close the long-discussed gap between rocks and clocks. We conclude that the explicit modeling of fossilization and sampling processes can improve divergence time estimates, but only if all important model aspects, including sampling biases, are adequately addressed. PMID:26493827
Total-Evidence Dating under the Fossilized Birth-Death Process.
Zhang, Chi; Stadler, Tanja; Klopfstein, Seraina; Heath, Tracy A; Ronquist, Fredrik
2016-03-01
Bayesian total-evidence dating involves the simultaneous analysis of morphological data from the fossil record and morphological and sequence data from recent organisms, and it accommodates the uncertainty in the placement of fossils while dating the phylogenetic tree. Due to the flexibility of the Bayesian approach, total-evidence dating can also incorporate additional sources of information. Here, we take advantage of this and expand the analysis to include information about fossilization and sampling processes. Our work is based on the recently described fossilized birth-death (FBD) process, which has been used to model speciation, extinction, and fossilization rates that can vary over time in a piecewise manner. So far, sampling of extant and fossil taxa has been assumed to be either complete or uniformly at random, an assumption which is only valid for a minority of data sets. We therefore extend the FBD process to accommodate diversified sampling of extant taxa, which is standard practice in studies of higher-level taxa. We verify the implementation using simulations and apply it to the early radiation of Hymenoptera (wasps, ants, and bees). Previous total-evidence dating analyses of this data set were based on a simple uniform tree prior and dated the initial radiation of extant Hymenoptera to the late Carboniferous (309 Ma). The analyses using the FBD prior under diversified sampling, however, date the radiation to the Triassic and Permian (252 Ma), slightly older than the age of the oldest hymenopteran fossils. By exploring a variety of FBD model assumptions, we show that it is mainly the accommodation of diversified sampling that causes the push toward more recent divergence times. Accounting for diversified sampling thus has the potential to close the long-discussed gap between rocks and clocks. We conclude that the explicit modeling of fossilization and sampling processes can improve divergence time estimates, but only if all important model aspects, including sampling biases, are adequately addressed. ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Gill, C O; McGinnis, J C; Bryant, J
1998-07-21
The microbiological effects on the product of the series of operations for skinning the hindquarters of beef carcasses at three packing plants were assessed. Samples were obtained at each plant from randomly selected carcasses, by swabbing specified sites related to opening cuts, rump skinning or flank skinning operations, randomly selected sites along the lines of the opening cuts, or randomly selected sites on the skinned hindquarters of carcasses. A set of 25 samples of each type was collected at each plant, with the collection of a single sample from each selected carcass. Aerobic counts, coliforms and Escherichia coli were enumerated in each sample, and a log mean value was estimated for each set of 25 counts on the assumption of a log normal distribution of the counts. The data indicated that the hindquarters skinning operations at plant A were hygienically inferior to those at the other two plants, with mean numbers of coliforms and E. coli being about two orders of magnitude greater, and aerobic counts being an order of magnitude greater on the skinned hindquarters of carcasses from plant A than on those from plants B or C. The data further indicated that the operation for cutting open the skin at plant C was hygienically superior to the equivalent operation at plant B, but that the operations for skinning the rump and flank at plant B were hygienically superior to the equivalent operations at plant C. The findings suggest that objective assessment of the microbiological effects on carcasses of beef carcass dressing processes will be required to ensure that Hazard Analysis: Critical Control Point and Quality Management Systems are operated to control the microbiological condition of carcasses.
Unsupervised Metric Fusion Over Multiview Data by Graph Random Walk-Based Cross-View Diffusion.
Wang, Yang; Zhang, Wenjie; Wu, Lin; Lin, Xuemin; Zhao, Xiang
2017-01-01
Learning an ideal metric is crucial to many tasks in computer vision. Diverse feature representations may combat this problem from different aspects; as visual data objects described by multiple features can be decomposed into multiple views, thus often provide complementary information. In this paper, we propose a cross-view fusion algorithm that leads to a similarity metric for multiview data by systematically fusing multiple similarity measures. Unlike existing paradigms, we focus on learning distance measure by exploiting a graph structure of data samples, where an input similarity matrix can be improved through a propagation of graph random walk. In particular, we construct multiple graphs with each one corresponding to an individual view, and a cross-view fusion approach based on graph random walk is presented to derive an optimal distance measure by fusing multiple metrics. Our method is scalable to a large amount of data by enforcing sparsity through an anchor graph representation. To adaptively control the effects of different views, we dynamically learn view-specific coefficients, which are leveraged into graph random walk to balance multiviews. However, such a strategy may lead to an over-smooth similarity metric where affinities between dissimilar samples may be enlarged by excessively conducting cross-view fusion. Thus, we figure out a heuristic approach to controlling the iteration number in the fusion process in order to avoid over smoothness. Extensive experiments conducted on real-world data sets validate the effectiveness and efficiency of our approach.
Impact assessment and decontamination of pesticides from meat under different culinary processes.
Sengupta, Dwaipayan; Aktar, Md Wasim; Alam, Samsul; Chowdhury, Ashim
2010-10-01
A total of 75 animals between 1.5 and 8 years old were randomly selected for the study. Of these, 57.8% were cross-bred animals and the rest were non-descript. Moreover, 61.8% of the animals under study were brought for slaughter from local sources and the rest from farm houses. Samples collected from five districts revealed contamination with traces of organochlorine pesticides (0.01-0.22 microg g(-1)) and organophosphorus pesticides (0.111-0.098 microg g(-1)). In general, all the raw meat samples possessed dichlorodiphenyltrichloroethane at the highest level. Contamination was highest in cow meat samples and lowest in chicken samples. No particular district-wise trend was obtained for the pesticides selected for analysis. Subsequent decontamination study revealed that cooking is the best option in reducing pesticide load in raw meat samples. Cooked chicken is the safest foodstuff for consumption.
Choi, Sangdun; Chang, Mi Sook; Stuecker, Tara; Chung, Christine; Newcombe, David A; Venkateswaran, Kasthuri
2012-12-01
In this study, fosmid cloning strategies were used to assess the microbial populations in water from the International Space Station (ISS) drinking water system (henceforth referred to as Prebiocide and Tank A water samples). The goals of this study were: to compare the sensitivity of the fosmid cloning strategy with that of traditional culture-based and 16S rRNA-based approaches and to detect the widest possible spectrum of microbial populations during the water purification process. Initially, microbes could not be cultivated, and conventional PCR failed to amplify 16S rDNA fragments from these low biomass samples. Therefore, randomly primed rolling-circle amplification was used to amplify any DNA that might be present in the samples, followed by size selection by using pulsed-field gel electrophoresis. The amplified high-molecular-weight DNA from both samples was cloned into fosmid vectors. Several hundred clones were randomly selected for sequencing, followed by Blastn/Blastx searches. Sequences encoding specific genes from Burkholderia, a species abundant in the soil and groundwater, were found in both samples. Bradyrhizobium and Mesorhizobium, which belong to rhizobia, a large community of nitrogen fixers often found in association with plant roots, were present in the Prebiocide samples. Ralstonia, which is prevalent in soils with a high heavy metal content, was detected in the Tank A samples. The detection of many unidentified sequences suggests the presence of potentially novel microbial fingerprints. The bacterial diversity detected in this pilot study using a fosmid vector approach was higher than that detected by conventional 16S rRNA gene sequencing.
Steinhaus’ Geometric Location Problem for Random Samples in the Plane.
1982-05-11
NAL 411R A1, ’I 7 - I STEINHAUS ’ GEOMETRIC LOCATION PROBLEM FOR RANDOM SAMPLES IN THE PLANE By Dorit Hochbaum and J. Michael Steele TECHNICAL REPORT...DEPARTMENT OF STATISTICS -Dltrib’ytion/ STANFORD UNIVERSITY A-I.abilty Codes STANFORD, CALIFORNIA Dist Spciat ecial Steinhaus ’ Geometric Location Problem for...Random Samples in the Plane By Dorit Hochbaum and J. Michael Steele I. Introduction. The work of H. Steinhaus U wf94 as apparently the first explicit
Bullen, A; Patel, S S; Saggau, P
1997-07-01
The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.
Russo, Rennie; Coultas, David; Ashmore, Jamile; Peoples, Jennifer; Sloan, John; Jackson, Bradford E; Uhm, Minyong; Singh, Karan P; Blair, Steven N; Bae, Sejong
2015-03-01
To describe the recruitment methods, study participation rate, and baseline characteristics of a representative sample of outpatients with COPD eligible for pulmonary rehabilitation participating in a trial of a lifestyle behavioral intervention to increase physical activity. A patient registry was developed for recruitment using an administrative database from primary care and specialty clinics of an academic medical center in northeast Texas for a parallel group randomized trial. The registry was comprised of 5582 patients and over the course of the 30 month recruitment period 325 patients were enrolled for an overall study participation rate of 35.1%. After a 6-week COPD self-management education period provided to all enrolled patients, 305 patients were randomized into either usual care (UC; n=156) or the physical activity self-management intervention (PASM; n=149). There were no clinically significant differences in demographics, clinical characteristics, or health status indicators between the randomized groups. The results of this recruitment process demonstrate the successful use of a patient registry for enrolling a representative sample of outpatients eligible for pulmonary rehabilitation with COPD from primary and specialty care. Moreover, this approach to patient recruitment provides a model for future studies utilizing administrative databases and electronic health records. Published by Elsevier Inc.
Bullen, A; Patel, S S; Saggau, P
1997-01-01
The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging. Images FIGURE 6 PMID:9199810
Mosaic construction, processing, and review of very large electron micrograph composites
NASA Astrophysics Data System (ADS)
Vogt, Robert C., III; Trenkle, John M.; Harmon, Laurel A.
1996-11-01
A system of programs is described for acquisition, mosaicking, cueing and interactive review of large-scale transmission electron micrograph composite images. This work was carried out as part of a final-phase clinical analysis study of a drug for the treatment of diabetic peripheral neuropathy. MOre than 500 nerve biopsy samples were prepared, digitally imaged, processed, and reviewed. For a given sample, typically 1000 or more 1.5 megabyte frames were acquired, for a total of between 1 and 2 gigabytes of data per sample. These frames were then automatically registered and mosaicked together into a single virtual image composite, which was subsequently used to perform automatic cueing of axons and axon clusters, as well as review and marking by qualified neuroanatomists. Statistics derived from the review process were used to evaluate the efficacy of the drug in promoting regeneration of myelinated nerve fibers. This effort demonstrates a new, entirely digital capability for doing large-scale electron micrograph studies, in which all of the relevant specimen data can be included at high magnification, as opposed to simply taking a random sample of discrete locations. It opens up the possibility of a new era in electron microscopy--one which broadens the scope of questions that this imaging modality can be used to answer.
Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo
2016-06-01
The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil.
Racial discrimination and the stress process.
Ong, Anthony D; Fuller-Rowell, Thomas; Burrow, Anthony L
2009-06-01
The unique and combined effects of chronic and daily racial discrimination on psychological distress were examined in a sample of 174 African American doctoral students and graduates. Using a daily process design, 5 models of the stress process were tested. Multilevel random coefficient modeling analyses revealed that chronic exposure to racial discrimination predicted greater daily discrimination and psychological distress. Further, results show that differences in daily discrimination and negative events accounted for meaningful variation in daily distress responses. Finally, findings indicate that daily discrimination and negative events mediated the relationship between chronic discrimination and psychological distress. The study provides support for the need to measure chronic strains as distinctive from daily stressors in the lives of African Americans.
Reducing seed dependent variability of non-uniformly sampled multidimensional NMR data
NASA Astrophysics Data System (ADS)
Mobli, Mehdi
2015-07-01
The application of NMR spectroscopy to study the structure, dynamics and function of macromolecules requires the acquisition of several multidimensional spectra. The one-dimensional NMR time-response from the spectrometer is extended to additional dimensions by introducing incremented delays in the experiment that cause oscillation of the signal along "indirect" dimensions. For a given dimension the delay is incremented at twice the rate of the maximum frequency (Nyquist rate). To achieve high-resolution requires acquisition of long data records sampled at the Nyquist rate. This is typically a prohibitive step due to time constraints, resulting in sub-optimal data records to the detriment of subsequent analyses. The multidimensional NMR spectrum itself is typically sparse, and it has been shown that in such cases it is possible to use non-Fourier methods to reconstruct a high-resolution multidimensional spectrum from a random subset of non-uniformly sampled (NUS) data. For a given acquisition time, NUS has the potential to improve the sensitivity and resolution of a multidimensional spectrum, compared to traditional uniform sampling. The improvements in sensitivity and/or resolution achieved by NUS are heavily dependent on the distribution of points in the random subset acquired. Typically, random points are selected from a probability density function (PDF) weighted according to the NMR signal envelope. In extreme cases as little as 1% of the data is subsampled. The heavy under-sampling can result in poor reproducibility, i.e. when two experiments are carried out where the same number of random samples is selected from the same PDF but using different random seeds. Here, a jittered sampling approach is introduced that is shown to improve random seed dependent reproducibility of multidimensional spectra generated from NUS data, compared to commonly applied NUS methods. It is shown that this is achieved due to the low variability of the inherent sensitivity of the random subset chosen from a given PDF. Finally, it is demonstrated that metrics used to find optimal NUS distributions are heavily dependent on the inherent sensitivity of the random subset, and such optimisation is therefore less critical when using the proposed sampling scheme.
ERIC Educational Resources Information Center
Montague, Margariete A.
This study investigated the feasibility of concurrently and randomly sampling examinees and items in order to estimate group achievement. Seven 32-item tests reflecting a 640-item universe of simple open sentences were used such that item selection (random, systematic) and assignment (random, systematic) of items (four, eight, sixteen) to forms…
ERIC Educational Resources Information Center
Tipton, Elizabeth
2013-01-01
As a result of the use of random assignment to treatment, randomized experiments typically have high internal validity. However, units are very rarely randomly selected from a well-defined population of interest into an experiment; this results in low external validity. Under nonrandom sampling, this means that the estimate of the sample average…
NASA Astrophysics Data System (ADS)
Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.
2018-05-01
A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.
40 CFR 761.306 - Sampling 1 meter square surfaces by random selection of halves.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling 1 meter square surfaces by...(b)(3) § 761.306 Sampling 1 meter square surfaces by random selection of halves. (a) Divide each 1 meter square portion where it is necessary to collect a surface wipe test sample into two equal (or as...
40 CFR 761.306 - Sampling 1 meter square surfaces by random selection of halves.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling 1 meter square surfaces by...(b)(3) § 761.306 Sampling 1 meter square surfaces by random selection of halves. (a) Divide each 1 meter square portion where it is necessary to collect a surface wipe test sample into two equal (or as...
40 CFR 761.306 - Sampling 1 meter square surfaces by random selection of halves.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling 1 meter square surfaces by...(b)(3) § 761.306 Sampling 1 meter square surfaces by random selection of halves. (a) Divide each 1 meter square portion where it is necessary to collect a surface wipe test sample into two equal (or as...
40 CFR 761.306 - Sampling 1 meter square surfaces by random selection of halves.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling 1 meter square surfaces by...(b)(3) § 761.306 Sampling 1 meter square surfaces by random selection of halves. (a) Divide each 1 meter square portion where it is necessary to collect a surface wipe test sample into two equal (or as...
40 CFR 761.306 - Sampling 1 meter square surfaces by random selection of halves.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling 1 meter square surfaces by...(b)(3) § 761.306 Sampling 1 meter square surfaces by random selection of halves. (a) Divide each 1 meter square portion where it is necessary to collect a surface wipe test sample into two equal (or as...
Repeated Random Sampling in Year 5
ERIC Educational Resources Information Center
Watson, Jane M.; English, Lyn D.
2016-01-01
As an extension to an activity introducing Year 5 students to the practice of statistics, the software "TinkerPlots" made it possible to collect repeated random samples from a finite population to informally explore students' capacity to begin reasoning with a distribution of sample statistics. This article provides background for the…
Quiet Ego, Self-Regulatory Skills, and Perceived Stress in College Students.
Wayment, Heidi A; Cavolo, Keragan
2018-04-13
Examine the unique contributions of self-control and grit subscales (perseverance, interest consistency) as potential mediators of the relationship between quiet ego characteristics and less perceived stress in college students. Data from 1117 college students were collected between October, 2015 and May, 2016. The sample was split randomly into exploratory and confirmatory samples. Multiple mediator models were tested with PROCESS module (SPSS v. 24) in both samples. Hypotheses were largely confirmed with self-control fully mediating the link between quiet ego and perceived stress in both samples. Although many self-regulatory constructs may argue for their positive impact on college student outcomes, interventions that strengthen self-control, and not grit, may be most promising to reduce perceived stress. Further, interventions to strengthen quiet ego characteristics may be beneficial for strengthening self-control in college students.
Ensemble Feature Learning of Genomic Data Using Support Vector Machine
Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R.; Braytee, Ali; Kennedy, Paul J.
2016-01-01
The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data. PMID:27304923
Characterization of addressability by simultaneous randomized benchmarking.
Gambetta, Jay M; Córcoles, A D; Merkel, S T; Johnson, B R; Smolin, John A; Chow, Jerry M; Ryan, Colm A; Rigetti, Chad; Poletto, S; Ohki, Thomas A; Ketchen, Mark B; Steffen, M
2012-12-14
The control and handling of errors arising from cross talk and unwanted interactions in multiqubit systems is an important issue in quantum information processing architectures. We introduce a benchmarking protocol that provides information about the amount of addressability present in the system and implement it on coupled superconducting qubits. The protocol consists of randomized benchmarking experiments run both individually and simultaneously on pairs of qubits. A relevant figure of merit for the addressability is then related to the differences in the measured average gate fidelities in the two experiments. We present results from two similar samples with differing cross talk and unwanted qubit-qubit interactions. The results agree with predictions based on simple models of the classical cross talk and Stark shifts.
Experiments in fault tolerant software reliability
NASA Technical Reports Server (NTRS)
Mcallister, David F.; Tai, K. C.; Vouk, Mladen A.
1987-01-01
The reliability of voting was evaluated in a fault-tolerant software system for small output spaces. The effectiveness of the back-to-back testing process was investigated. Version 3.0 of the RSDIMU-ATS, a semi-automated test bed for certification testing of RSDIMU software, was prepared and distributed. Software reliability estimation methods based on non-random sampling are being studied. The investigation of existing fault-tolerance models was continued and formulation of new models was initiated.
Computer simulation of stochastic processes through model-sampling (Monte Carlo) techniques.
Sheppard, C W.
1969-03-01
A simple Monte Carlo simulation program is outlined which can be used for the investigation of random-walk problems, for example in diffusion, or the movement of tracers in the blood circulation. The results given by the simulation are compared with those predicted by well-established theory, and it is shown how the model can be expanded to deal with drift, and with reflexion from or adsorption at a boundary.
Have We Really Been Analyzing Terminating Simulations Incorrectly All These Years?
2013-12-01
TERMINATING SIMULATIONS INCORRECTLY ALL THESE YEARS? Paul J. Sánchez Operations Research Naval Postgraduate School 1411 Cunningham Road Monterey, CA...measure. If that observation directly represents an end state such as the number of failed components after a week’s operation , or the number of patients...processed in 24 hours of emergency room operations , there’s no problem—the set of values obtained by replication represent a random sample from the
Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong
2015-01-01
This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765
Latin Hypercube Sampling (LHS) UNIX Library/Standalone
DOE Office of Scientific and Technical Information (OSTI.GOV)
2004-05-13
The LHS UNIX Library/Standalone software provides the capability to draw random samples from over 30 distribution types. It performs the sampling by a stratified sampling method called Latin Hypercube Sampling (LHS). Multiple distributions can be sampled simultaneously, with user-specified correlations amongst the input distributions, LHS UNIX Library/ Standalone provides a way to generate multi-variate samples. The LHS samples can be generated either as a callable library (e.g., from within the DAKOTA software framework) or as a standalone capability. LHS UNIX Library/Standalone uses the Latin Hypercube Sampling method (LHS) to generate samples. LHS is a constrained Monte Carlo sampling scheme. Inmore » LHS, the range of each variable is divided into non-overlapping intervals on the basis of equal probability. A sample is selected at random with respect to the probability density in each interval, If multiple variables are sampled simultaneously, then values obtained for each are paired in a random manner with the n values of the other variables. In some cases, the pairing is restricted to obtain specified correlations amongst the input variables. Many simulation codes have input parameters that are uncertain and can be specified by a distribution, To perform uncertainty analysis and sensitivity analysis, random values are drawn from the input parameter distributions, and the simulation is run with these values to obtain output values. If this is done repeatedly, with many input samples drawn, one can build up a distribution of the output as well as examine correlations between input and output variables.« less
Reply to Jackson, O'Keefe, and Jacobs.
ERIC Educational Resources Information Center
Morley, Donald Dean
1988-01-01
Replies to Sally Jackson, Daniel O'Keefe, and Scott Jacobs' article (same issue), maintaining that randomness requirements can not be relaxed for generalizing from message samples, since systematic samples are not truly random. (MS)
Assessing technical performance at diverse ambulatory care sites.
Osterweis, M; Bryant, E
1978-01-01
The purpose of the large study reported here was to develop and test methods for assessing the quality of health care that would be broadly applicable to diverse ambulatory care organizations for periodic comparative review. Methodological features included the use of an age-sex stratified random sampling scheme, dependence on medical records as the source of data, a fixed study period year, use of Kessner's tracer methodology (including not only acute and chronic diseases but also screening and immunization rates as indicators), and a fixed tracer matrix at all test sites. This combination of methods proved more efficacious in estimating certain parameters for the total patient populations at each site (including utilization patterns, screening, and immunization rates) and the process of care for acute conditions than it did in examining the process of care for the selected chronic condition. It was found that the actual process of care at all three sites for the three acute conditions (streptococcal pharyngitis, urinary tract infection, and iron deficiency anemia) often differed from the expected process in terms of both diagnostic procedures and treatment. For hypertension, the chronic disease tracer, medical records were frequently a deficient data source from which to draw conclusions about the adequacy of treatment. Several aspects of the study methodology were found to be detrimental to between-site comparisons of the process of care for chronic disease management. The use of an age-sex stratified random sampling scheme resulted in the identification of too few cases of hypertension at some sites for analytic purposes, thereby necessitating supplementary sampling by diagnosis. The use of a fixed study period year resulted in an arbitrary starting point in the course of the disease. Furthermore, in light of the diverse sociodemographic characteristics of the patient populations, the use of a fixed matrix of tracer conditions for all test sites is questionable. The discussion centers on these and other problems encountered in attempting to compare technical performance within diverse ambulatory care organizations and provides some guidelines as to the utility of alternative methods for assessing the quality of health care.
Alderson-Day, Ben; Fernyhough, Charles
2015-01-01
Inner speech is often reported to be a common and central part of inner experience, but its true prevalence is unclear. Many questionnaire-based measures appear to lack convergent validity and it has been claimed that they overestimate inner speech in comparison to experience sampling methods (which involve collecting data at random timepoints). The present study compared self-reporting of inner speech collected via a general questionnaire and experience sampling, using data from a custom-made smartphone app (Inner Life). Fifty-one university students completed a generalized self-report measure of inner speech (the Varieties of Inner Speech Questionnaire, VISQ) and responded to at least seven random alerts to report on incidences of inner speech over a 2-week period. Correlations and pairwise comparisons were used to compare generalized endorsements and randomly sampled scores for each VISQ subscale. Significant correlations were observed between general and randomly sampled measures for only two of the four VISQ subscales, and endorsements of inner speech with evaluative or motivational characteristics did not correlate at all across different measures. Endorsement of inner speech items was significantly lower for random sampling compared to generalized self-report, for all VISQ subscales. Exploratory analysis indicated that specific inner speech characteristics were also related to anxiety and future-oriented thinking. PMID:25964773
Madden, Jennifer R; Mowry, Patricia; Gao, Dexiang; Cullen, Patsy McGuire; Foreman, Nicholas K
2010-01-01
This mixed methods pilot study evaluated the effects of the creative arts therapy (CAT) on the quality of life (QOL) of children receiving chemotherapy. A 2-group, repeated measures randomized design compared CAT with a volunteer's attention (n = 16). Statistical analysis of the randomized controlled phase of the study suggested an improvement in the following areas after the CAT: parent report of child's hurt (P = .03) and parent report of child's nausea (P = .0061). A nonrandomized phase, using a different instrument showed improved mood with statistical significance on the Faces Scale (P < .01), and patients were more excited (P < .05), happier (P < .02), and less nervous (P < .02). Provider focus groups revealed positive experiences. Case studies are included to exemplify the therapeutic process. With heightened interest in complementary therapy for children with cancer, future research with a larger sample size is needed to document the impact of incorporating creative arts into the healing process.
Infinite hidden conditional random fields for human behavior analysis.
Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja
2013-01-01
Hidden conditional random fields (HCRFs) are discriminative latent variable models that have been shown to successfully learn the hidden structure of a given classification problem (provided an appropriate validation of the number of hidden states). In this brief, we present the infinite HCRF (iHCRF), which is a nonparametric model based on hierarchical Dirichlet processes and is capable of automatically learning the optimal number of hidden states for a classification task. We show how we learn the model hyperparameters with an effective Markov-chain Monte Carlo sampling technique, and we explain the process that underlines our iHCRF model with the Restaurant Franchise Rating Agencies analogy. We show that the iHCRF is able to converge to a correct number of represented hidden states, and outperforms the best finite HCRFs--chosen via cross-validation--for the difficult tasks of recognizing instances of agreement, disagreement, and pain. Moreover, the iHCRF manages to achieve this performance in significantly less total training, validation, and testing time.
Sample size considerations when groups are the appropriate unit of analyses
Sadler, Georgia Robins; Ko, Celine Marie; Alisangco, Jennifer; Rosbrook, Bradley P.; Miller, Eric; Fullerton, Judith
2007-01-01
This paper discusses issues to be considered by nurse researchers when groups should be used as a unit of randomization. Advantages and disadvantages are presented, with statistical calculations needed to determine effective sample size. Examples of these concepts are presented using data from the Black Cosmetologists Promoting Health Program. Different hypothetical scenarios and their impact on sample size are presented. Given the complexity of calculating sample size when using groups as a unit of randomization, it’s advantageous for researchers to work closely with statisticians when designing and implementing studies that anticipate the use of groups as the unit of randomization. PMID:17693219
Practical quantum random number generator based on measuring the shot noise of vacuum states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen Yong; Zou Hongxin; Tian Liang
2010-06-15
The shot noise of vacuum states is a kind of quantum noise and is totally random. In this paper a nondeterministic random number generation scheme based on measuring the shot noise of vacuum states is presented and experimentally demonstrated. We use a homodyne detector to measure the shot noise of vacuum states. Considering that the frequency bandwidth of our detector is limited, we derive the optimal sampling rate so that sampling points have the least correlation with each other. We also choose a method to extract random numbers from sampling values, and prove that the influence of classical noise canmore » be avoided with this method so that the detector does not have to be shot-noise limited. The random numbers generated with this scheme have passed ent and diehard tests.« less
The stochastic dynamics of intermittent porescale particle motion
NASA Astrophysics Data System (ADS)
Dentz, Marco; Morales, Veronica; Puyguiraud, Alexandre; Gouze, Philippe; Willmann, Matthias; Holzner, Markus
2017-04-01
Numerical and experimental data for porescale particle dynamics show intermittent patterns in Lagrangian velocities and accelerations, which manifest in long time intervals of low and short durations of high velocities [1, 2]. This phenomenon is due to the spatial persistence of particle velocities on characteristic heterogeneity length scales. In order to systematically quantify these behaviors and extract the stochastic dynamics of particle motion, we focus on the analysis of Lagrangian velocities sampled equidistantly along trajectories [3]. This method removes the intermittency observed under isochrone sampling. The space-Lagrangian velocity series can be quantified by a Markov process that is continuous in distance along streamline. It is fully parameterized in terms of the flux-weighted Eulerian velocity PDF and the characteristic pore-length. The resulting stochastic particle motion describes a continuous time random walk (CTRW). This approach allows for the process based interpretation of experimental and numerical porescale velocity, acceleration and displacement data. It provides a framework for the characterization and upscaling of particle transport and dispersion from the pore to the Darcy-scale based on the medium geometry and Eulerian flow attributes. [1] P. De Anna, T. Le Borgne, M. Dentz, A.M. Tartakovsky, D. Bolster, and P. Davy, "Flow intermittency, dispersion, and correlated continuous time random walks in porous media," Phys. Rev. Lett. 110, 184502 (2013). [2] M. Holzner, V. L. Morales, M. Willmann, and M. Dentz, "Intermittent Lagrangian velocities and accelerations in three- dimensional porous medium flow," Phys. Rev. E 92, 013015 (2015). [3] M. Dentz, P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, "Continuous time random walks for the evolution of Lagrangian velocities," Phys. Rev. Fluids (2016).
Multidimensional Normalization to Minimize Plate Effects of Suspension Bead Array Data.
Hong, Mun-Gwan; Lee, Woojoo; Nilsson, Peter; Pawitan, Yudi; Schwenk, Jochen M
2016-10-07
Enhanced by the growing number of biobanks, biomarker studies can now be performed with reasonable statistical power by using large sets of samples. Antibody-based proteomics by means of suspension bead arrays offers one attractive approach to analyze serum, plasma, or CSF samples for such studies in microtiter plates. To expand measurements beyond single batches, with either 96 or 384 samples per plate, suitable normalization methods are required to minimize the variation between plates. Here we propose two normalization approaches utilizing MA coordinates. The multidimensional MA (multi-MA) and MA-loess both consider all samples of a microtiter plate per suspension bead array assay and thus do not require any external reference samples. We demonstrate the performance of the two MA normalization methods with data obtained from the analysis of 384 samples including both serum and plasma. Samples were randomized across 96-well sample plates, processed, and analyzed in assay plates, respectively. Using principal component analysis (PCA), we could show that plate-wise clusters found in the first two components were eliminated by multi-MA normalization as compared with other normalization methods. Furthermore, we studied the correlation profiles between random pairs of antibodies and found that both MA normalization methods substantially reduced the inflated correlation introduced by plate effects. Normalization approaches using multi-MA and MA-loess minimized batch effects arising from the analysis of several assay plates with antibody suspension bead arrays. In a simulated biomarker study, multi-MA restored associations lost due to plate effects. Our normalization approaches, which are available as R package MDimNormn, could also be useful in studies using other types of high-throughput assay data.
A Comparison of Single Sample and Bootstrap Methods to Assess Mediation in Cluster Randomized Trials
ERIC Educational Resources Information Center
Pituch, Keenan A.; Stapleton, Laura M.; Kang, Joo Youn
2006-01-01
A Monte Carlo study examined the statistical performance of single sample and bootstrap methods that can be used to test and form confidence interval estimates of indirect effects in two cluster randomized experimental designs. The designs were similar in that they featured random assignment of clusters to one of two treatment conditions and…
Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.
Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel
2015-12-16
Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV (32)Si and 50 MeV (or 60 MeV) (63)Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm(-1)) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10(11)-10(16) cm(-2)) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~10(14) cm(-2). Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10(14) cm(-2)), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm(-1) is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units.
Psychometric assessment of the processes of change scale for sun protection.
Sillice, Marie A; Babbin, Steven F; Redding, Colleen A; Rossi, Joseph S; Paiva, Andrea L; Velicer, Wayne F
2018-01-01
The fourteen-factor Processes of Change Scale for Sun Protection assesses behavioral and experiential strategies that underlie the process of sun protection acquisition and maintenance. Variations of this measure have been used effectively in several randomized sun protection trials, both for evaluation and as a basis for intervention. However, there are no published studies, to date, that evaluate the psychometric properties of the scale. The present study evaluated factorial invariance and scale reliability in a national sample (N = 1360) of adults involved in a Transtheoretical model tailored intervention for exercise and sun protection, at baseline. Invariance testing ranged from least to most restrictive: Configural Invariance (constraints only factor structure and zero loadings); Pattern Identity Invariance (equal factor loadings across target groups); and Strong Factorial Invariance (equal factor loadings and measurement errors). Multi-sample structural equation modeling tested the invariance of the measurement model across seven subgroups: age, education, ethnicity, gender, race, skin tone, and Stage of Change for Sun Protection. Strong factorial invariance was found across all subgroups. Internal consistency coefficient Alpha and factor rho reliability, respectively, were .83 and .80 for behavioral processes, .91 and .89 for experiential processes, and .93 and .91 for the global scale. These results provide strong empirical evidence that the scale is consistent, has internal validity and can be used in research interventions with population-based adult samples.
Winer, Rachel L; Tiro, Jasmin A; Miglioretti, Diana L; Thayer, Chris; Beatty, Tara; Lin, John; Gao, Hongyuan; Kimbel, Kilian; Buist, Diana S M
2018-01-01
Women who delay or do not attend Papanicolaou (Pap) screening are at increased risk for cervical cancer. Trials in countries with organized screening programs have demonstrated that mailing high-risk (hr) human papillomavirus (HPV) self-sampling kits to under-screened women increases participation, but U.S. data are lacking. HOME is a pragmatic randomized controlled trial set within a U.S. integrated healthcare delivery system to compare two programmatic approaches for increasing cervical cancer screening uptake and effectiveness in under-screened women (≥3.4years since last Pap) aged 30-64years: 1) usual care (annual patient reminders and ad hoc outreach by clinics) and 2) usual care plus mailed hrHPV self-screening kits. Over 2.5years, eligible women were identified through electronic medical record (EMR) data and randomized 1:1 to the intervention or control arm. Women in the intervention arm were mailed kits with pre-paid envelopes to return samples to the central clinical laboratory for hrHPV testing. Results were documented in the EMR to notify women's primary care providers of appropriate follow-up. Primary outcomes are detection and treatment of cervical neoplasia. Secondary outcomes are cervical cancer screening uptake, abnormal screening results, and women's experiences and attitudes towards hrHPV self-sampling and follow-up of hrHPV-positive results (measured through surveys and interviews). The trial was designed to evaluate whether a programmatic strategy incorporating hrHPV self-sampling is effective in promoting adherence to the complete screening process (including follow-up of abnormal screening results and treatment). The objective of this report is to describe the rationale and design of this pragmatic trial. Copyright © 2017 Elsevier Inc. All rights reserved.
Redlich, R; Bürger, C; Dohm, K; Grotegerd, D; Opel, N; Zaremba, D; Meinert, S; Förster, K; Repple, J; Schnelle, R; Wagenknecht, C; Zavorotnyy, M; Heindel, W; Kugel, H; Gerbaulet, M; Alferink, J; Arolt, V; Zwanzger, P; Dannlowski, U
2017-09-01
Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depression. However, little is known regarding brain functional processes mediating ECT effects. In a non-randomized prospective study, functional magnetic resonance imaging data during the automatic processing of subliminally presented emotional faces were obtained twice, about 6 weeks apart, in patients with major depressive disorder (MDD) before and after treatment with ECT (ECT, n = 24). Additionally, a control sample of MDD patients treated solely with pharmacotherapy (MED, n = 23) and a healthy control sample (HC, n = 22) were obtained. Before therapy, both patient groups equally showed elevated amygdala reactivity to sad faces compared with HC. After treatment, a decrease in amygdala activity to negative stimuli was discerned in both patient samples indicating a normalization of amygdala function, suggesting mechanisms potentially unspecific for ECT. Moreover, a decrease in amygdala activity to sad faces was associated with symptomatic improvements in the ECT sample (r spearman = -0.48, p = 0.044), and by tendency also for the MED sample (r spearman = -0.38, p = 0.098). However, we did not find any significant association between pre-treatment amygdala function to emotional stimuli and individual symptom improvement, neither for the ECT sample, nor for the MED sample. In sum, the present study provides first results regarding functional changes in emotion processing due to ECT treatment using a longitudinal design, thus validating and extending our knowledge gained from previous treatment studies. A limitation was that ECT patients received concurrent medication treatment.
Performance of Random Effects Model Estimators under Complex Sampling Designs
ERIC Educational Resources Information Center
Jia, Yue; Stokes, Lynne; Harris, Ian; Wang, Yan
2011-01-01
In this article, we consider estimation of parameters of random effects models from samples collected via complex multistage designs. Incorporation of sampling weights is one way to reduce estimation bias due to unequal probabilities of selection. Several weighting methods have been proposed in the literature for estimating the parameters of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.; Cannon, Bret D.; Martinez, Alonzo
The International Atomic Energy Agency’s (IAEA’s) long-term research and development plan calls for more cost-effective and efficient safeguard methods to detect and deter misuse of gaseous centrifuge enrichment plants (GCEPs). The IAEA’s current safeguards approaches at GCEPs are based on a combination of routine and random inspections that include environmental sampling and destructive assay (DA) sample collection from UF6 in-process material and selected cylinders. Samples are then shipped offsite for subsequent laboratory analysis. In this paper, a new DA sample collection and onsite analysis approach that could help to meet challenges in transportation and chain of custody for UF6 DAmore » samples is introduced. This approach uses a handheld sampler concept and a Laser Ablation, Laser Absorbance Spectrometry (LAARS) analysis instrument, both currently under development at the Pacific Northwest National Laboratory. A LAARS analysis instrument could be temporarily or permanently deployed in the IAEA control room of the facility, in the IAEA data acquisition cabinet, for example. The handheld PNNL DA sampler design collects and stabilizes a much smaller DA sample mass compared to current sampling methods. The significantly lower uranium mass reduces the sample radioactivity and the stabilization approach diminishes the risk of uranium and hydrogen fluoride release. These attributes enable safe sample handling needed during onsite LAARS assay and may help ease shipping challenges for samples to be processed at the IAEA’s offsite laboratory. The LAARS and DA sampler implementation concepts will be described and preliminary technical viability results presented.« less
ISOLOK VALVE ACCEPTANCE TESTING FOR DWPF SME SAMPLING PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T.; Hera, K.; Coleman, C.
2011-12-05
Evaluation of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. Of the opportunities, a focus area related to optimizing the equipment and efficiency of the sample turnaround time for DWPF Analytical Laboratory was identified. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) evaluated the possibility of using an Isolok{reg_sign} sampling valve as an alternative to the Hydragard{reg_sign} valve for taking process samples. Previous viability testing was conducted with favorable results using the Isolok sampler and reported in SRNL-STI-2010-00749 (1).more » This task has the potential to improve operability, reduce maintenance time and decrease CPC cycle time. This report summarizes the results from acceptance testing which was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 (2) and which was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNL-RP-2011-00145 (3). The Isolok to be tested is the same model which was tested, qualified, and installed in the Sludge Receipt Adjustment Tank (SRAT) sample system. RW-0333P QA requirements apply to this task. This task was to qualify the Isolok sampler for use in the DWPF Slurry Mix Evaporator (SME) sampling process. The Hydragard, which is the current baseline sampling method, was used for comparison to the Isolok sampling data. The Isolok sampler is an air powered grab sampler used to 'pull' a sample volume from a process line. The operation of the sampler is shown in Figure 1. The image on the left shows the Isolok's spool extended into the process line and the image on the right shows the sampler retracted and then dispensing the liquid into the sampling container. To determine tank homogeneity, a Coliwasa sampler was used to grab samples at a high and low location within the mixing tank. Data from the two locations were compared to determine if the contents of the tank were well mixed. The Coliwasa sampler is a tube with a stopper at the bottom and is designed to obtain grab samples from specific locations within the drum contents. A position paper (4) was issued to address the prototypic flow loop issues and simulant selections. A statistically designed plan (5) was issued to address the total number of samples each sampler needed to pull, to provide the random order in which samples were pulled and to group samples for elemental analysis. The TTR required that the Isolok sampler perform as well as the Hydragard sampler during these tests to ensure the acceptability of the Isolok sampler for use in the DWPF sampling cells. Procedure No.L9.4-5015 was used to document the sample parameters and process steps. Completed procedures are located in R&D Engineering job folder 23269.« less
Topaz, Maxim; Lai, Kenneth; Dowding, Dawn; Lei, Victor J; Zisberg, Anna; Bowles, Kathryn H; Zhou, Li
2016-12-01
Electronic health records are being increasingly used by nurses with up to 80% of the health data recorded as free text. However, only a few studies have developed nursing-relevant tools that help busy clinicians to identify information they need at the point of care. This study developed and validated one of the first automated natural language processing applications to extract wound information (wound type, pressure ulcer stage, wound size, anatomic location, and wound treatment) from free text clinical notes. First, two human annotators manually reviewed a purposeful training sample (n=360) and random test sample (n=1100) of clinical notes (including 50% discharge summaries and 50% outpatient notes), identified wound cases, and created a gold standard dataset. We then trained and tested our natural language processing system (known as MTERMS) to process the wound information. Finally, we assessed our automated approach by comparing system-generated findings against the gold standard. We also compared the prevalence of wound cases identified from free-text data with coded diagnoses in the structured data. The testing dataset included 101 notes (9.2%) with wound information. The overall system performance was good (F-measure is a compiled measure of system's accuracy=92.7%), with best results for wound treatment (F-measure=95.7%) and poorest results for wound size (F-measure=81.9%). Only 46.5% of wound notes had a structured code for a wound diagnosis. The natural language processing system achieved good performance on a subset of randomly selected discharge summaries and outpatient notes. In more than half of the wound notes, there were no coded wound diagnoses, which highlight the significance of using natural language processing to enrich clinical decision making. Our future steps will include expansion of the application's information coverage to other relevant wound factors and validation of the model with external data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimating rare events in biochemical systems using conditional sampling.
Sundar, V S
2017-01-28
The paper focuses on development of variance reduction strategies to estimate rare events in biochemical systems. Obtaining this probability using brute force Monte Carlo simulations in conjunction with the stochastic simulation algorithm (Gillespie's method) is computationally prohibitive. To circumvent this, important sampling tools such as the weighted stochastic simulation algorithm and the doubly weighted stochastic simulation algorithm have been proposed. However, these strategies require an additional step of determining the important region to sample from, which is not straightforward for most of the problems. In this paper, we apply the subset simulation method, developed as a variance reduction tool in the context of structural engineering, to the problem of rare event estimation in biochemical systems. The main idea is that the rare event probability is expressed as a product of more frequent conditional probabilities. These conditional probabilities are estimated with high accuracy using Monte Carlo simulations, specifically the Markov chain Monte Carlo method with the modified Metropolis-Hastings algorithm. Generating sample realizations of the state vector using the stochastic simulation algorithm is viewed as mapping the discrete-state continuous-time random process to the standard normal random variable vector. This viewpoint opens up the possibility of applying more sophisticated and efficient sampling schemes developed elsewhere to problems in stochastic chemical kinetics. The results obtained using the subset simulation method are compared with existing variance reduction strategies for a few benchmark problems, and a satisfactory improvement in computational time is demonstrated.
Ma, Li; Fan, Suohai
2017-03-14
The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.
Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes
NASA Astrophysics Data System (ADS)
Orsingher, Enzo; Polito, Federico
2012-08-01
In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.
Security of practical private randomness generation
NASA Astrophysics Data System (ADS)
Pironio, Stefano; Massar, Serge
2013-01-01
Measurements on entangled quantum systems necessarily yield outcomes that are intrinsically unpredictable if they violate a Bell inequality. This property can be used to generate certified randomness in a device-independent way, i.e., without making detailed assumptions about the internal working of the quantum devices used to generate the random numbers. Furthermore these numbers are also private; i.e., they appear random not only to the user but also to any adversary that might possess a perfect description of the devices. Since this process requires a small initial random seed to sample the behavior of the quantum devices and to extract uniform randomness from the raw outputs of the devices, one usually speaks of device-independent randomness expansion. The purpose of this paper is twofold. First, we point out that in most real, practical situations, where the concept of device independence is used as a protection against unintentional flaws or failures of the quantum apparatuses, it is sufficient to show that the generated string is random with respect to an adversary that holds only classical side information; i.e., proving randomness against quantum side information is not necessary. Furthermore, the initial random seed does not need to be private with respect to the adversary, provided that it is generated in a way that is independent from the measured systems. The devices, however, will generate cryptographically secure randomness that cannot be predicted by the adversary, and thus one can, given access to free public randomness, talk about private randomness generation. The theoretical tools to quantify the generated randomness according to these criteria were already introduced in S. Pironio [Nature (London)NATUAS0028-083610.1038/nature09008 464, 1021 (2010)], but the final results were improperly formulated. The second aim of this paper is to correct this inaccurate formulation and therefore lay out a precise theoretical framework for practical device-independent randomness generation.
The patient safety climate in healthcare organizations (PSCHO) survey: Short-form development.
Benzer, Justin K; Meterko, Mark; Singer, Sara J
2017-08-01
Measures of safety climate are increasingly used to guide safety improvement initiatives. However, cost and respondent burden may limit the use of safety climate surveys. The purpose of this study was to develop a 15- to 20-item safety climate survey based on the Patient Safety Climate in Healthcare Organizations survey, a well-validated 38-item measure of safety climate. The Patient Safety Climate in Healthcare Organizations was administered to all senior managers, all physicians, and a 10% random sample of all other hospital personnel in 69 private sector hospitals and 30 Veterans Health Administration hospitals. Both samples were randomly divided into a derivation sample to identify a short-form subset and a confirmation sample to assess the psychometric properties of the proposed short form. The short form consists of 15 items represented 3 overarching domains in the long-form scale-organization, work unit, and interpersonal. The proposed short form efficiently captures 3 important sources of variance in safety climate: organizational, work-unit, and interpersonal. The short-form development process was a practical method that can be applied to other safety climate surveys. This safety climate short form may increase response rates in studies that involve busy clinicians or repeated measures. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Baumes, Laurent A
2006-01-01
One of the main problems in high-throughput research for materials is still the design of experiments. At early stages of discovery programs, purely exploratory methodologies coupled with fast screening tools should be employed. This should lead to opportunities to find unexpected catalytic results and identify the "groups" of catalyst outputs, providing well-defined boundaries for future optimizations. However, very few new papers deal with strategies that guide exploratory studies. Mostly, traditional designs, homogeneous covering, or simple random samplings are exploited. Typical catalytic output distributions exhibit unbalanced datasets for which an efficient learning is hardly carried out, and interesting but rare classes are usually unrecognized. Here is suggested a new iterative algorithm for the characterization of the search space structure, working independently of learning processes. It enhances recognition rates by transferring catalysts to be screened from "performance-stable" space zones to "unsteady" ones which necessitate more experiments to be well-modeled. The evaluation of new algorithm attempts through benchmarks is compulsory due to the lack of past proofs about their efficiency. The method is detailed and thoroughly tested with mathematical functions exhibiting different levels of complexity. The strategy is not only empirically evaluated, the effect or efficiency of sampling on future Machine Learning performances is also quantified. The minimum sample size required by the algorithm for being statistically discriminated from simple random sampling is investigated.
USGS Blind Sample Project: monitoring and evaluating laboratory analytical quality
Ludtke, Amy S.; Woodworth, Mark T.
1997-01-01
The U.S. Geological Survey (USGS) collects and disseminates information about the Nation's water resources. Surface- and ground-water samples are collected and sent to USGS laboratories for chemical analyses. The laboratories identify and quantify the constituents in the water samples. Random and systematic errors occur during sample handling, chemical analysis, and data processing. Although all errors cannot be eliminated from measurements, the magnitude of their uncertainty can be estimated and tracked over time. Since 1981, the USGS has operated an independent, external, quality-assurance project called the Blind Sample Project (BSP). The purpose of the BSP is to monitor and evaluate the quality of laboratory analytical results through the use of double-blind quality-control (QC) samples. The information provided by the BSP assists the laboratories in detecting and correcting problems in the analytical procedures. The information also can aid laboratory users in estimating the extent that laboratory errors contribute to the overall errors in their environmental data.
Rumor Processes in Random Environment on and on Galton-Watson Trees
NASA Astrophysics Data System (ADS)
Bertacchi, Daniela; Zucca, Fabio
2013-11-01
The aim of this paper is to study rumor processes in random environment. In a rumor process a signal starts from the stations of a fixed vertex (the root) and travels on a graph from vertex to vertex. We consider two rumor processes. In the firework process each station, when reached by the signal, transmits it up to a random distance. In the reverse firework process, on the other hand, stations do not send any signal but they “listen” for it up to a random distance. The first random environment that we consider is the deterministic 1-dimensional tree with a random number of stations on each vertex; in this case the root is the origin of . We give conditions for the survival/extinction on almost every realization of the sequence of stations. Later on, we study the processes on Galton-Watson trees with random number of stations on each vertex. We show that if the probability of survival is positive, then there is survival on almost every realization of the infinite tree such that there is at least one station at the root. We characterize the survival of the process in some cases and we give sufficient conditions for survival/extinction.
Caries status in 16 year-olds with varying exposure to water fluoridation in Ireland.
Mullen, J; McGaffin, J; Farvardin, N; Brightman, S; Haire, C; Freeman, R
2012-12-01
Most of the Republic of Ireland's public water supplies have been fluoridated since the mid-1960s while Northern Ireland has never been fluoridated, apart from some small short-lived schemes in east Ulster. This study examines dental caries status in 16 year-olds in a part of Ireland straddling fluoridated and non-fluoridated water supply areas and compares two methods of assessing the effectiveness of water fluoridation. The cross-sectional survey tested differences in caries status by two methods: 1, Estimated Fluoridation Status as used previously in national and regional studies in the Republic and in the All-Island study of 2002; 2, Percentage Lifetime Exposure, a modification of a system described by Slade in 1995 and used in Australian caries research. Adolescents were selected for the study by a two-part random sampling process. Firstly, schools were selected in each area by creating three tiers based on school size, and selecting schools randomly from each tier. Then random sampling of 16-year-olds from these schools, based on a pre-set sampling fraction for each tier of schools. With both systems of measurement, significantly lower caries levels were found in those children with the greatest exposure to fluoridated water when compared to those with the least exposure. The survey provides further evidence of the effectiveness in reducing dental caries experience up to 16 years of age. The extra intricacies involved in using the Percentage Lifetime Exposure method did not provide much more information when compared to the simpler Estimated Fluoridation Status method.
Longitudinal analysis of bioaccumulative contaminants in freshwater fishes
Sun, Jielun; Kim, Y.; Schmitt, C.J.
2003-01-01
The National Contaminant Biomonitoring Program (NCBP) was initiated in 1967 as a component of the National Pesticide Monitoring program. It consists of periodic collection of freshwater fish and other samples and the analysis of the concentrations of persistent environmental contaminants in these samples. For the analysis, the common approach has been to apply the mixed two-way ANOVA model to combined data. A main disadvantage of this method is that it cannot give a detailed temporal trend of the concentrations since the data are grouped. In this paper, we present an alternative approach that performs a longitudinal analysis of the information using random effects models. In the new approach, no grouping is needed and the data are treated as samples from continuous stochastic processes, which seems more appropriate than ANOVA for the problem.
Complexity multiscale asynchrony measure and behavior for interacting financial dynamics
NASA Astrophysics Data System (ADS)
Yang, Ge; Wang, Jun; Niu, Hongli
2016-08-01
A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.
Robust Learning Control Design for Quantum Unitary Transformations.
Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi
2017-12-01
Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.
What Randomized Benchmarking Actually Measures
Proctor, Timothy; Rudinger, Kenneth; Young, Kevin; ...
2017-09-28
Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not amore » well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. Here, these theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed (completely positive) representation of the imperfect gates.« less
40 CFR 761.355 - Third level of sample selection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...
40 CFR 761.355 - Third level of sample selection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...
40 CFR 761.355 - Third level of sample selection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...
40 CFR 761.355 - Third level of sample selection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...
40 CFR 761.355 - Third level of sample selection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...
ERIC Educational Resources Information Center
Ng'eno, J. K.; Chesimet, M. C.
2016-01-01
A sample of 300 mathematics teachers drawn from a population of 1500 participated in this study. The participants were selected using systematic random sampling and stratified random sampling (stratified by qualification and gender). The data was collected using self-report questionnaires for mathematics teachers. One tool was used to collect…
ERIC Educational Resources Information Center
Zullig, Keith J.; Ward, Rose Marie; King, Keith A.; Patton, Jon M.; Murray, Karen A.
2009-01-01
The purpose of this investigation was to assess the reliability and validity of eight developmental asset measures among a stratified, random sample (N = 540) of college students to guide health promotion efforts. The sample was randomly split to produce exploratory and confirmatory samples for factor analysis using principal axis factoring and…
Use of LANDSAT imagery for wildlife habitat mapping in northeast and eastcentral Alaska
NASA Technical Reports Server (NTRS)
Lent, P. C. (Principal Investigator)
1976-01-01
The author has identified the following significant results. There is strong indication that spatially rare feature classes may be missed in clustering classifications based on 2% random sampling. Therefore, it seems advisable to augment random sampling for cluster analysis with directed sampling of any spatially rare features which are relevant to the analysis.
Workforce Readiness: A Study of University Students' Fluency with Information Technology
ERIC Educational Resources Information Center
Kaminski, Karen; Switzer, Jamie; Gloeckner, Gene
2009-01-01
This study with data collected from a large sample of freshmen in 2001 and a random stratified sample of seniors in 2005 examined students perceived FITness (fluency with Information Technology). In the fall of 2001 freshmen at a medium sized research-one institution completed a survey and in spring 2005 a random sample of graduating seniors…
Gender Differentiation in the New York "Times": 1885 and 1985.
ERIC Educational Resources Information Center
Jolliffe, Lee
A study examined the descriptive language and sex-linked roles ascribed to women and men in articles of the New York "Times" from 1885 and 1985. Seven content analysis methods were applied to four random samples from the "Times"; one sample each for women and men from both years. Samples were drawn using randomly constructed…
Filtering Drifter Trajectories Sampled at Submesoscale Resolution
2015-07-10
interval 5 min and a positioning error 1.5 m, the acceleration error is 4 10 m/s , a value comparable with the typical Coriolis acceleration of a water...10 ms , corresponding to the Coriolis acceleration experi- enced by a water parcel traveling at a speed of 2.2 m/s. This value corresponds to the...computed by integrating the NCOM velocity field contaminated by a random walk process whose effective dispersion coefficient (150 m /s) was specified as the
Use of LANDSAT imagery for wildlife habitat mapping in northeast and east central Alaska
NASA Technical Reports Server (NTRS)
Lent, P. C. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Two scenes were analyzed by applying an iterative cluster analysis to a 2% random data sample and then using the resulting clusters as a training set basis for maximum likelihood classification. Twenty-six and twenty-seven categorical classes, respectively resulted from this process. The majority of classes in each case were quite specific vegetation types; each of these types has specific value as moose habitat.
Rochefort, Christian M; Buckeridge, David L; Tanguay, Andréanne; Biron, Alain; D'Aragon, Frédérick; Wang, Shengrui; Gallix, Benoit; Valiquette, Louis; Audet, Li-Anne; Lee, Todd C; Jayaraman, Dev; Petrucci, Bruno; Lefebvre, Patricia
2017-02-16
Adverse events (AEs) in acute care hospitals are frequent and associated with significant morbidity, mortality, and costs. Measuring AEs is necessary for quality improvement and benchmarking purposes, but current detection methods lack in accuracy, efficiency, and generalizability. The growing availability of electronic health records (EHR) and the development of natural language processing techniques for encoding narrative data offer an opportunity to develop potentially better methods. The purpose of this study is to determine the accuracy and generalizability of using automated methods for detecting three high-incidence and high-impact AEs from EHR data: a) hospital-acquired pneumonia, b) ventilator-associated event and, c) central line-associated bloodstream infection. This validation study will be conducted among medical, surgical and ICU patients admitted between 2013 and 2016 to the Centre hospitalier universitaire de Sherbrooke (CHUS) and the McGill University Health Centre (MUHC), which has both French and English sites. A random 60% sample of CHUS patients will be used for model development purposes (cohort 1, development set). Using a random sample of these patients, a reference standard assessment of their medical chart will be performed. Multivariate logistic regression and the area under the curve (AUC) will be employed to iteratively develop and optimize three automated AE detection models (i.e., one per AE of interest) using EHR data from the CHUS. These models will then be validated on a random sample of the remaining 40% of CHUS patients (cohort 1, internal validation set) using chart review to assess accuracy. The most accurate models developed and validated at the CHUS will then be applied to EHR data from a random sample of patients admitted to the MUHC French site (cohort 2) and English site (cohort 3)-a critical requirement given the use of narrative data -, and accuracy will be assessed using chart review. Generalizability will be determined by comparing AUCs from cohorts 2 and 3 to those from cohort 1. This study will likely produce more accurate and efficient measures of AEs. These measures could be used to assess the incidence rates of AEs, evaluate the success of preventive interventions, or benchmark performance across hospitals.
Errors in radial velocity variance from Doppler wind lidar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; Barthelmie, R. J.; Doubrawa, P.
A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less
Errors in radial velocity variance from Doppler wind lidar
Wang, H.; Barthelmie, R. J.; Doubrawa, P.; ...
2016-08-29
A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less
NASA Astrophysics Data System (ADS)
Takamasu, Kiyoshi; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami
2018-03-01
LER (Line Edge Roughness) and LWR (Line Width Roughness) of the semiconductor device are an important evaluation scale of the performance of the device. Conventionally, LER and LWR is evaluated from CD-SEM (Critical Dimension Scanning Electron Microscope) images. However, CD-SEM measurement has a problem that high frequency random noise is large, and resolution is not sufficiently high. For random noise of CD-SEM measurement, some techniques are proposed. In these methods, it is necessary to set parameters for model and processing, and it is necessary to verify the correctness of these parameters using reference metrology. We have already proposed a novel reference metrology using FIB (Focused Ion Beam) process and planar-TEM (Transmission Electron Microscope) method. In this study, we applied the proposed method to three new samples such as SAQP (Self-Aligned Quadruple Patterning) FinFET device, EUV (Extreme Ultraviolet Lithography) conventional resist, and EUV new material resist. LWR and PSD (Power Spectral Density) of LWR are calculated from the edge positions on planar-TEM images. We confirmed that LWR and PSD of LWR can be measured with high accuracy and evaluated the difference by the proposed method. Furthermore, from comparisons with PSD of the same sample by CD-SEM, the validity of measurement of PSD and LWR by CD-SEM can be verified.
Microfracture spacing distributions and the evolution of fracture patterns in sandstones
NASA Astrophysics Data System (ADS)
Hooker, J. N.; Laubach, S. E.; Marrett, R.
2018-03-01
Natural fracture patterns in sandstone were sampled using scanning electron microscope-based cathodoluminescence (SEM-CL) imaging. All fractures are opening-mode and are fully or partially sealed by quartz cement. Most sampled fractures are too small to be height-restricted by sedimentary layers. At very low strains (<∼0.001), fracture spatial distributions are indistinguishable from random, whereas at higher strains, fractures are generally statistically clustered. All 12 large (N > 100) datasets show spacings that are best fit by log-normal size distributions, compared to exponential, power law, or normal distributions. The clustering of fractures suggests that the locations of natural factures are not determined by a random process. To investigate natural fracture localization, we reconstructed the opening history of a cluster of fractures within the Huizachal Group in northeastern Mexico, using fluid inclusions from synkinematic cements and thermal-history constraints. The largest fracture, which is the only fracture in the cluster visible to the naked eye, among 101 present, opened relatively late in the sequence. This result suggests that the growth of sets of fractures is a self-organized process, in which small, initially isolated fractures grow and progressively interact, with preferential growth of a subset of fractures developing at the expense of growth of the rest. Size-dependent sealing of fractures within sets suggests that synkinematic cementation may contribute to fracture clustering.
Ross, Lesley A; Edwards, Jerri D; O'Connor, Melissa L; Ball, Karlene K; Wadley, Virginia G; Vance, David E
2016-01-01
Multilevel models assessed the effects of cognitive speed of processing training (SPT) on older adults' self-reported driving using intention-to-treat (ITT, randomization to training or control conditions) and dosage (treatment-received via number of training sessions) analyses across 5 years. Participants randomized to SPT (n = 598) were compared with those randomized to either the no-contact control (n = 598) or memory training, which served as an active control (n = 610). Driving mobility (frequency, exposure, and space) was assessed over time. No significant effects were found within the ITT analyses. However, number of SPT sessions did affect driving mobility outcomes. In the full sample (N = 1,806), higher SPT doses were associated with maintained driving frequency as compared with both control groups, but no effects were found for driving exposure or space. Subsample analyses (n = 315) revealed that persons at-risk for mobility declines (i.e., poor initial processing speed) who received additional booster SPT sessions reported greater maintenance of both driving frequency and exposure over time as compared with the no-contact and active control groups. These results and prior research indicate that cognitive SPT transfers to prolonged driving mobility among older adults. Future research should investigate the mechanisms behind transfer effects to real-world activities, such as driving. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields
Osborn, Sarah; Vassilevski, Panayot S.; Villa, Umberto
2017-10-26
In this paper, we propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loève (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving amore » mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Lastly, numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media flow application using the proposed sampling method.« less
A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, Sarah; Vassilevski, Panayot S.; Villa, Umberto
In this paper, we propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loève (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving amore » mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Lastly, numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media flow application using the proposed sampling method.« less
Seo, Min-Woong; Kawahito, Shoji
2017-12-01
A large full well capacity (FWC) for wide signal detection range and low temporal random noise for high sensitivity lock-in pixel CMOS image sensor (CIS) embedded with two in-pixel storage diodes (SDs) has been developed and presented in this paper. For fast charge transfer from photodiode to SDs, a lateral electric field charge modulator (LEFM) is used for the developed lock-in pixel. As a result, the time-resolved CIS achieves a very large SD-FWC of approximately 7ke-, low temporal random noise of 1.2e-rms at 20 fps with true correlated double sampling operation and fast intrinsic response less than 500 ps at 635 nm. The proposed imager has an effective pixel array of and a pixel size of . The sensor chip is fabricated by Dongbu HiTek 1P4M 0.11 CIS process.
Process to Selectively Distinguish Viable from Non-Viable Bacterial Cells
NASA Technical Reports Server (NTRS)
LaDuc, Myron T.; Bernardini, Jame N.; Stam, Christina N.
2010-01-01
The combination of ethidium monoazide (EMA) and post-fragmentation, randomly primed DNA amplification technologies will enhance the analytical capability to discern viable from non-viable bacterial cells in spacecraft-related samples. Intercalating agents have been widely used since the inception of molecular biology to stain and visualize nucleic acids. Only recently, intercalating agents such as EMA have been exploited to selectively distinguish viable from dead bacterial cells. Intercalating dyes can only penetrate the membranes of dead cells. Once through the membrane and actually inside the cell, they intercalate DNA and, upon photolysis with visible light, produce stable DNA monoadducts. Once the DNA is crosslinked, it becomes insoluble and unable to be fragmented for post-fragmentation, randomly primed DNA library formation. Viable organisms DNA remains unaffected by the intercalating agents, allowing for amplification via post-fragmentation, randomly primed technologies. This results in the ability to carry out downstream nucleic acid-based analyses on viable microbes to the exclusion of all non-viable cells.
NASA Astrophysics Data System (ADS)
Hu, Guiqiang; Xiao, Di; Wang, Yong; Xiang, Tao; Zhou, Qing
2017-11-01
Recently, a new kind of image encryption approach using compressive sensing (CS) and double random phase encoding has received much attention due to the advantages such as compressibility and robustness. However, this approach is found to be vulnerable to chosen plaintext attack (CPA) if the CS measurement matrix is re-used. Therefore, designing an efficient measurement matrix updating mechanism that ensures resistance to CPA is of practical significance. In this paper, we provide a novel solution to update the CS measurement matrix by altering the secret sparse basis with the help of counter mode operation. Particularly, the secret sparse basis is implemented by a reality-preserving fractional cosine transform matrix. Compared with the conventional CS-based cryptosystem that totally generates all the random entries of measurement matrix, our scheme owns efficiency superiority while guaranteeing resistance to CPA. Experimental and analysis results show that the proposed scheme has a good security performance and has robustness against noise and occlusion.
Modeling and complexity of stochastic interacting Lévy type financial price dynamics
NASA Astrophysics Data System (ADS)
Wang, Yiduan; Zheng, Shenzhou; Zhang, Wei; Wang, Jun; Wang, Guochao
2018-06-01
In attempt to reproduce and investigate nonlinear dynamics of security markets, a novel nonlinear random interacting price dynamics, which is considered as a Lévy type process, is developed and investigated by the combination of lattice oriented percolation and Potts dynamics, which concerns with the instinctive random fluctuation and the fluctuation caused by the spread of the investors' trading attitudes, respectively. To better understand the fluctuation complexity properties of the proposed model, the complexity analyses of random logarithmic price return and corresponding volatility series are preformed, including power-law distribution, Lempel-Ziv complexity and fractional sample entropy. In order to verify the rationality of the proposed model, the corresponding studies of actual security market datasets are also implemented for comparison. The empirical results reveal that this financial price model can reproduce some important complexity features of actual security markets to some extent. The complexity of returns decreases with the increase of parameters γ1 and β respectively, furthermore, the volatility series exhibit lower complexity than the return series
Choi, Sangdun; Chang, Mi Sook; Stuecker, Tara; Chung, Christine; Newcombe, David A.; Venkateswaran, Kasthuri
2012-01-01
In this study, fosmid cloning strategies were used to assess the microbial populations in water from the International Space Station (ISS) drinking water system (henceforth referred to as Prebiocide and Tank A water samples). The goals of this study were: to compare the sensitivity of the fosmid cloning strategy with that of traditional culture-based and 16S rRNA-based approaches and to detect the widest possible spectrum of microbial populations during the water purification process. Initially, microbes could not be cultivated, and conventional PCR failed to amplify 16S rDNA fragments from these low biomass samples. Therefore, randomly primed rolling-circle amplification was used to amplify any DNA that might be present in the samples, followed by size selection by using pulsed-field gel electrophoresis. The amplified high-molecular-weight DNA from both samples was cloned into fosmid vectors. Several hundred clones were randomly selected for sequencing, followed by Blastn/Blastx searches. Sequences encoding specific genes from Burkholderia, a species abundant in the soil and groundwater, were found in both samples. Bradyrhizobium and Mesorhizobium, which belong to rhizobia, a large community of nitrogen fixers often found in association with plant roots, were present in the Prebiocide samples. Ralstonia, which is prevalent in soils with a high heavy metal content, was detected in the Tank A samples. The detection of many unidentified sequences suggests the presence of potentially novel microbial fingerprints. The bacterial diversity detected in this pilot study using a fosmid vector approach was higher than that detected by conventional 16S rRNA gene sequencing. PMID:23346038
Irregular analytical errors in diagnostic testing - a novel concept.
Vogeser, Michael; Seger, Christoph
2018-02-23
In laboratory medicine, routine periodic analyses for internal and external quality control measurements interpreted by statistical methods are mandatory for batch clearance. Data analysis of these process-oriented measurements allows for insight into random analytical variation and systematic calibration bias over time. However, in such a setting, any individual sample is not under individual quality control. The quality control measurements act only at the batch level. Quantitative or qualitative data derived for many effects and interferences associated with an individual diagnostic sample can compromise any analyte. It is obvious that a process for a quality-control-sample-based approach of quality assurance is not sensitive to such errors. To address the potential causes and nature of such analytical interference in individual samples more systematically, we suggest the introduction of a new term called the irregular (individual) analytical error. Practically, this term can be applied in any analytical assay that is traceable to a reference measurement system. For an individual sample an irregular analytical error is defined as an inaccuracy (which is the deviation from a reference measurement procedure result) of a test result that is so high it cannot be explained by measurement uncertainty of the utilized routine assay operating within the accepted limitations of the associated process quality control measurements. The deviation can be defined as the linear combination of the process measurement uncertainty and the method bias for the reference measurement system. Such errors should be coined irregular analytical errors of the individual sample. The measurement result is compromised either by an irregular effect associated with the individual composition (matrix) of the sample or an individual single sample associated processing error in the analytical process. Currently, the availability of reference measurement procedures is still highly limited, but LC-isotope-dilution mass spectrometry methods are increasingly used for pre-market validation of routine diagnostic assays (these tests also involve substantial sets of clinical validation samples). Based on this definition/terminology, we list recognized causes of irregular analytical error as a risk catalog for clinical chemistry in this article. These issues include reproducible individual analytical errors (e.g. caused by anti-reagent antibodies) and non-reproducible, sporadic errors (e.g. errors due to incorrect pipetting volume due to air bubbles in a sample), which can both lead to inaccurate results and risks for patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Alfonsi; C. Rabiti; D. Mandelli
The Reactor Analysis and Virtual control ENviroment (RAVEN) code is a software tool that acts as the control logic driver and post-processing engine for the newly developed Thermal-Hydraulic code RELAP-7. RAVEN is now a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities: Derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures), allowing on-line monitoring/controlling in the Phase Space Perform both Monte-Carlo sampling of random distributed events and Dynamic Event Tree based analysis Facilitate the input/output handling through a Graphical User Interface (GUI) and a post-processing data miningmore » module« less
Manterola, Carlos; Torres, Rodrigo; Burgos, Luis; Vial, Manuel; Pineda, Viviana
2006-07-01
Surgery is a curative treatment for gastric cancer (GC). As relapse is frequent, adjuvant therapies such as postoperative chemo radiotherapy have been tried. In Chile, some hospitals adopted Macdonald's study as a protocol for the treatment of GC. To determine methodological quality and internal and external validity of the Macdonald study. Three instruments were applied that assess methodological quality. A critical appraisal was done and the internal and external validity of the methodological quality was analyzed with two scales: MINCIR (Methodology and Research in Surgery), valid for therapy studies and CONSORT (Consolidated Standards of Reporting Trials), valid for randomized controlled trials (RCT). Guides and scales were applied by 5 researchers with training in clinical epidemiology. The reader's guide verified that the Macdonald study was not directed to answer a clearly defined question. There was random assignment, but the method used is not described and the patients were not considered until the end of the study (36% of the group with surgery plus chemo radiotherapy did not complete treatment). MINCIR scale confirmed a multicentric RCT, not blinded, with an unclear randomized sequence, erroneous sample size estimation, vague objectives and no exclusion criteria. CONSORT system proved the lack of working hypothesis and specific objectives as well as an absence of exclusion criteria and identification of the primary variable, an imprecise estimation of sample size, ambiguities in the randomization process, no blinding, an absence of statistical adjustment and the omission of a subgroup analysis. The instruments applied demonstrated methodological shortcomings that compromise the internal and external validity of the.
Martin, Corby K.; Anton, Stephen D.; Han, Hongmei; York-Crowe, Emily; Redman, Leanne M.; Ravussin, Eric; Williamson, Donald A.
2009-01-01
Background Calorie restriction increases longevity in many organisms, and calorie restriction or its mimetic might increase longevity in humans. It is unclear if calorie restriction/dieting contributes to cognitive impairment. During this randomized controlled trial, the effect of 6 months of calorie restriction on cognitive functioning was tested. Methods Participants (n = 48) were randomized to one of four groups: (1) control (weight maintenance), (2) calorie restriction (CR; 25% restriction), (3) CR plus structured exercise (CR + EX, 12.5% restriction plus 12.5% increased energy expenditure via exercise), or (4) low-calorie diet (LCD; 890 kcal/d diet until 15% weight loss, followed by weight maintenance). Cognitive tests (verbal memory, visual memory, attention/concentration) were conducted at baseline and months 3 and 6. Mixed linear models tested if cognitive function changed significantly from baseline to months 3 and 6, and if this change differed by group. Correlation analysis was used to determine if average daily energy deficit (quantified from change in body energy stores) was associated with change in cognitive test performance for the three dieting groups combined. Results No consistent pattern of verbal memory, visual retention/memory, or attention/concentration deficits emerged during the trial. Daily energy deficit was not significantly associated with change in cognitive test performance. Conclusions This randomized controlled trial suggests that calorie restriction/dieting was not associated with a consistent pattern of cognitive impairment. These conclusions must be interpreted in the context of study limitations, namely small sample size and limited statistical power. Previous reports of cognitive impairment might reflect sampling biases or information processing biases. PMID:17518698
Cai, Tianxi; Karlson, Elizabeth W.
2013-01-01
Objectives To test whether data extracted from full text patient visit notes from an electronic medical record (EMR) would improve the classification of PsA compared to an algorithm based on codified data. Methods From the > 1,350,000 adults in a large academic EMR, all 2318 patients with a billing code for PsA were extracted and 550 were randomly selected for chart review and algorithm training. Using codified data and phrases extracted from narrative data using natural language processing, 31 predictors were extracted and three random forest algorithms trained using coded, narrative, and combined predictors. The receiver operator curve (ROC) was used to identify the optimal algorithm and a cut point was chosen to achieve the maximum sensitivity possible at a 90% positive predictive value (PPV). The algorithm was then used to classify the remaining 1768 charts and finally validated in a random sample of 300 cases predicted to have PsA. Results The PPV of a single PsA code was 57% (95%CI 55%–58%). Using a combination of coded data and NLP the random forest algorithm reached a PPV of 90% (95%CI 86%–93%) at sensitivity of 87% (95% CI 83% – 91%) in the training data. The PPV was 93% (95%CI 89%–96%) in the validation set. Adding NLP predictors to codified data increased the area under the ROC (p < 0.001). Conclusions Using NLP with text notes from electronic medical records improved the performance of the prediction algorithm significantly. Random forests were a useful tool to accurately classify psoriatic arthritis cases to enable epidemiological research. PMID:20701955
Theory of Dielectric Breakdown in Randomly Inhomogeneous Materials
NASA Astrophysics Data System (ADS)
Gyure, Mark Franklin
1990-01-01
Two models of dielectric breakdown in disordered metal-insulator composites have been developed in an attempt to explain in detail the greatly reduced breakdown electric field observed in these materials. The first model is a two dimensional model in which the composite is treated as a random array of conducting cylinders embedded in an otherwise uniform dielectric background. The two dimensional samples are generated by the Monte Carlo method and a discretized version of the integral form of Laplace's equation is solved to determine the electric field in each sample. Breakdown is modeled as a quasi-static process by which one breakdown at a time occurs at the point of maximum electric field in the system. A cascade of these local breakdowns leads to complete dielectric failure of the system after which the breakdown field can be determined. A second model is developed that is similar to the first in terms of breakdown dynamics, but uses coupled multipole expansions of the electrostatic potential centered at each particle to obtain a more computationally accurate and faster solution to the problem of determining the electric field at an arbitrary point in a random medium. This new algorithm allows extension of the model to three dimensions and treats conducting spherical inclusions as well as cylinders. Successful implementation of this algorithm relies on the use of analytical forms for off-centered expansions of cylindrical and spherical harmonics. Scaling arguments similar to those used in theories of phase transitions are developed for the breakdown field and these arguments are discussed in context with other theories that have been developed to explain the break-down behavior of random resistor and fuse networks. Finally, one of the scaling arguments is used to predict the breakdown field for some samples of solid fuel rocket propellant tested at the China Lake Naval Weapons Center and is found to compare quite well with the experimentally measured breakdown fields.
Cuevas, Erik; Díaz, Margarita
2015-01-01
In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC) algorithm and the evolutionary method harmony search (HS). With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples) are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness. PMID:26339228
Evaluation of Bayesian Sequential Proportion Estimation Using Analyst Labels
NASA Technical Reports Server (NTRS)
Lennington, R. K.; Abotteen, K. M. (Principal Investigator)
1980-01-01
The author has identified the following significant results. A total of ten Large Area Crop Inventory Experiment Phase 3 blind sites and analyst-interpreter labels were used in a study to compare proportional estimates obtained by the Bayes sequential procedure with estimates obtained from simple random sampling and from Procedure 1. The analyst error rate using the Bayes technique was shown to be no greater than that for the simple random sampling. Also, the segment proportion estimates produced using this technique had smaller bias and mean squared errors than the estimates produced using either simple random sampling or Procedure 1.
A mathematical study of a random process proposed as an atmospheric turbulence model
NASA Technical Reports Server (NTRS)
Sidwell, K.
1977-01-01
A random process is formed by the product of a local Gaussian process and a random amplitude process, and the sum of that product with an independent mean value process. The mathematical properties of the resulting process are developed, including the first and second order properties and the characteristic function of general order. An approximate method for the analysis of the response of linear dynamic systems to the process is developed. The transition properties of the process are also examined.
NASA Astrophysics Data System (ADS)
Voss, Sebastian; Zimmermann, Beate; Zimmermann, Alexander
2016-04-01
In the last three decades, an increasing number of studies analyzed spatial patterns in throughfall to investigate the consequences of rainfall redistribution for biogeochemical and hydrological processes in forests. In the majority of cases, variograms were used to characterize the spatial properties of the throughfall data. The estimation of the variogram from sample data requires an appropriate sampling scheme: most importantly, a large sample and an appropriate layout of sampling locations that often has to serve both variogram estimation and geostatistical prediction. While some recommendations on these aspects exist, they focus on Gaussian data and high ratios of the variogram range to the extent of the study area. However, many hydrological data, and throughfall data in particular, do not follow a Gaussian distribution. In this study, we examined the effect of extent, sample size, sampling design, and calculation methods on variogram estimation of throughfall data. For our investigation, we first generated non-Gaussian random fields based on throughfall data with heavy outliers. Subsequently, we sampled the fields with three extents (plots with edge lengths of 25 m, 50 m, and 100 m), four common sampling designs (two grid-based layouts, transect and random sampling), and five sample sizes (50, 100, 150, 200, 400). We then estimated the variogram parameters by method-of-moments and residual maximum likelihood. Our key findings are threefold. First, the choice of the extent has a substantial influence on the estimation of the variogram. A comparatively small ratio of the extent to the correlation length is beneficial for variogram estimation. Second, a combination of a minimum sample size of 150, a design that ensures the sampling of small distances and variogram estimation by residual maximum likelihood offers a good compromise between accuracy and efficiency. Third, studies relying on method-of-moments based variogram estimation may have to employ at least 200 sampling points for reliable variogram estimates. These suggested sample sizes exceed the numbers recommended by studies dealing with Gaussian data by up to 100 %. Given that most previous throughfall studies relied on method-of-moments variogram estimation and sample sizes << 200, our current knowledge about throughfall spatial variability stands on shaky ground.
Sample and population exponents of generalized Taylor's law.
Giometto, Andrea; Formentin, Marco; Rinaldo, Andrea; Cohen, Joel E; Maritan, Amos
2015-06-23
Taylor's law (TL) states that the variance V of a nonnegative random variable is a power function of its mean M; i.e., V = aM(b). TL has been verified extensively in ecology, where it applies to population abundance, physics, and other natural sciences. Its ubiquitous empirical verification suggests a context-independent mechanism. Sample exponents b measured empirically via the scaling of sample mean and variance typically cluster around the value b = 2. Some theoretical models of population growth, however, predict a broad range of values for the population exponent b pertaining to the mean and variance of population density, depending on details of the growth process. Is the widely reported sample exponent b ≃ 2 the result of ecological processes or could it be a statistical artifact? Here, we apply large deviations theory and finite-sample arguments to show exactly that in a broad class of growth models the sample exponent is b ≃ 2 regardless of the underlying population exponent. We derive a generalized TL in terms of sample and population exponents b(jk) for the scaling of the kth vs. the jth cumulants. The sample exponent b(jk) depends predictably on the number of samples and for finite samples we obtain b(jk) ≃ k = j asymptotically in time, a prediction that we verify in two empirical examples. Thus, the sample exponent b ≃ 2 may indeed be a statistical artifact and not dependent on population dynamics under conditions that we specify exactly. Given the broad class of models investigated, our results apply to many fields where TL is used although inadequately understood.
Multiple Point Statistics algorithm based on direct sampling and multi-resolution images
NASA Astrophysics Data System (ADS)
Julien, S.; Renard, P.; Chugunova, T.
2017-12-01
Multiple Point Statistics (MPS) has become popular for more than one decade in Earth Sciences, because these methods allow to generate random fields reproducing highly complex spatial features given in a conceptual model, the training image, while classical geostatistics techniques based on bi-point statistics (covariance or variogram) fail to generate realistic models. Among MPS methods, the direct sampling consists in borrowing patterns from the training image to populate a simulation grid. This latter is sequentially filled by visiting each of these nodes in a random order, and then the patterns, whose the number of nodes is fixed, become narrower during the simulation process, as the simulation grid is more densely informed. Hence, large scale structures are caught in the beginning of the simulation and small scale ones in the end. However, MPS may mix spatial characteristics distinguishable at different scales in the training image, and then loose the spatial arrangement of different structures. To overcome this limitation, we propose to perform MPS simulation using a decomposition of the training image in a set of images at multiple resolutions. Applying a Gaussian kernel onto the training image (convolution) results in a lower resolution image, and iterating this process, a pyramid of images depicting fewer details at each level is built, as it can be done in image processing for example to lighten the space storage of a photography. The direct sampling is then employed to simulate the lowest resolution level, and then to simulate each level, up to the finest resolution, conditioned to the level one rank coarser. This scheme helps reproduce the spatial structures at any scale of the training image and then generate more realistic models. We illustrate the method with aerial photographies (satellite images) and natural textures. Indeed, these kinds of images often display typical structures at different scales and are well-suited for MPS simulation techniques.
Excitonic lasing in solution-processed subwavelength nanosphere assemblies
Appavoo, Kannatassen; Liu, Xiaoze; Menon, Vinod; ...
2016-02-03
Lasing in solution-processed nanomaterials has gained significant interest because of the potential for low-cost integrated photonic devices. Still, a key challenge is to utilize a comprehensive knowledge of the system’s spectral and temporal dynamics to design low-threshold lasing devices. Here, we demonstrate intrinsic lasing (without external cavity) at low-threshold in an ultrathin film of coupled, highly crystalline nanospheres with overall thickness on the order of ~λ/4. The cavity-free geometry consists of ~35 nm zinc oxide nanospheres that collectively localize the in-plane emissive light fields while minimizing scattering losses, resulting in excitonic lasing with fluence thresholds at least an order ofmore » magnitude lower than previous UV-blue random and quantum-dot lasers (<75 μJ/cm 2). Fluence-dependent effects, as quantified by subpicosecond transient spectroscopy, highlight the role of phonon-mediated processes in excitonic lasing. Subpicosecond evolution of distinct lasing modes, together with three-dimensional electromagnetic simulations, indicate a random lasing process, which is in violation of the commonly cited criteria of strong scattering from individual nanostructures and an optically thick sample. Subsequently, an electron–hole plasma mechanism is observed with increased fluence. Furthermore, these results suggest that coupled nanostructures with high crystallinity, fabricated by low-cost solution-processing methods, can function as viable building blocks for high-performance optoelectronics devices.« less
Hensman, James; Lawrence, Neil D; Rattray, Magnus
2013-08-20
Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.
ERIC Educational Resources Information Center
Utami, Sri; Nursalam; Hargono, Rachmat; Susilaningrum, Rekawati
2016-01-01
The purpose of this study was to analyze the performance of midwives based on the task commitment. This was an observational analytic with cross sectional approach. Multistage random sampling was used to determine the public health center, proportional random sampling to selected participants. The samples were 222 midwives in the public health…
The level of use of PDAs by nurse practitioners and administrative barriers.
Abell, Cathy Hoots; Jepson, Terry; Gabbard, Jay
2012-10-01
The purpose of this descriptive, correlational research study was to examine the relationship between the level of use of PDAs by nurse practitioners and their perception of managers following established change strategies. A convenience sample of 159 NPs was obtained for the study. Findings included a low, positive correlation between the level of PDA use and total Change Process Survey score (r = 0.23) that was significant (P = .006) at the .01 level. The use of PDAs by NPs is important to patient safety; therefore, administrators must be aware of change strategies that may enhance the use of PDAs. Recommendations for future research include replicating the study using a larger, randomized sample.
Random bits, true and unbiased, from atmospheric turbulence
Marangon, Davide G.; Vallone, Giuseppe; Villoresi, Paolo
2014-01-01
Random numbers represent a fundamental ingredient for secure communications and numerical simulation as well as to games and in general to Information Science. Physical processes with intrinsic unpredictability may be exploited to generate genuine random numbers. The optical propagation in strong atmospheric turbulence is here taken to this purpose, by observing a laser beam after a 143 km free-space path. In addition, we developed an algorithm to extract the randomness of the beam images at the receiver without post-processing. The numbers passed very selective randomness tests for qualification as genuine random numbers. The extracting algorithm can be easily generalized to random images generated by different physical processes. PMID:24976499
Host-Associated Metagenomics: A Guide to Generating Infectious RNA Viromes
Robert, Catherine; Pascalis, Hervé; Michelle, Caroline; Jardot, Priscilla; Charrel, Rémi; Raoult, Didier; Desnues, Christelle
2015-01-01
Background Metagenomic analyses have been widely used in the last decade to describe viral communities in various environments or to identify the etiology of human, animal, and plant pathologies. Here, we present a simple and standardized protocol that allows for the purification and sequencing of RNA viromes from complex biological samples with an important reduction of host DNA and RNA contaminants, while preserving the infectivity of viral particles. Principal Findings We evaluated different viral purification steps, random reverse transcriptions and sequence-independent amplifications of a pool of representative RNA viruses. Viruses remained infectious after the purification process. We then validated the protocol by sequencing the RNA virome of human body lice engorged in vitro with artificially contaminated human blood. The full genomes of the most abundant viruses absorbed by the lice during the blood meal were successfully sequenced. Interestingly, random amplifications differed in the genome coverage of segmented RNA viruses. Moreover, the majority of reads were taxonomically identified, and only 7–15% of all reads were classified as “unknown”, depending on the random amplification method. Conclusion The protocol reported here could easily be applied to generate RNA viral metagenomes from complex biological samples of different origins. Our protocol allows further virological characterizations of the described viral communities because it preserves the infectivity of viral particles and allows for the isolation of viruses. PMID:26431175
Spend today, clean tomorrow: Predicting methamphetamine abstinence in a randomized controlled trial
Murtaugh, Kimberly Ling; Krishnamurti, Tamar; Davis, Alexander L.; Reback, Cathy J.; Shoptaw, Steven
2013-01-01
Objective This secondary analysis of data from a randomized controlled trial tested two behavioral economics mechanisms (substitutability and delay discounting) to explain outcomes using contingency management (CM) for methamphetamine dependence. Frequency and purchase type (hedonic/utilitarian and consumable/durable) of CM payments were also examined. Methods 82 methamphetamine-dependent gay/bisexual men randomly assigned to conditions delivering CM received monetary vouchers in exchange for stimulant-negative urine samples in a 16-week trial requiring thrice weekly visits (Shoptaw et al., 2005). At any visit participants could redeem vouchers for goods. A time-lagged counting process Cox Proportional Hazards model for recurrent event survival analysis examined aspects of the frequency and type of these CM purchases. Results After controlling for severity of baseline methamphetamine use and accumulated CM wealth, as measured by cumulative successful earning days, participants who redeemed CM earnings at any visit (“spenders”) were significantly more likely to produce stimulant-negative urine samples in the subsequent visit, compared to those who did not redeem (“savers”) 1.011* [1.005, 1.017], Z=3.43, p<0.001. Conclusions Findings support the economic concept of substitutability of CM purchases and explain trial outcomes as a function of frequency of CM purchases rather than frequency or accumulated total CM earnings. Promotion of frequent purchases in incentive-based programs should facilitate substitution for the perceived value of methamphetamine and improve abstinence outcomes. PMID:24001246
Exact intervals and tests for median when one sample value possibly an outliner
NASA Technical Reports Server (NTRS)
Keller, G. J.; Walsh, J. E.
1973-01-01
Available are independent observations (continuous data) that are believed to be a random sample. Desired are distribution-free confidence intervals and significance tests for the population median. However, there is the possibility that either the smallest or the largest observation is an outlier. Then, use of a procedure for rejection of an outlying observation might seem appropriate. Such a procedure would consider that two alternative situations are possible and would select one of them. Either (1) the n observations are truly a random sample, or (2) an outlier exists and its removal leaves a random sample of size n-1. For either situation, confidence intervals and tests are desired for the median of the population yielding the random sample. Unfortunately, satisfactory rejection procedures of a distribution-free nature do not seem to be available. Moreover, all rejection procedures impose undesirable conditional effects on the observations, and also, can select the wrong one of the two above situations. It is found that two-sided intervals and tests based on two symmetrically located order statistics (not the largest and smallest) of the n observations have this property.
Sparsely sampling the sky: Regular vs. random sampling
NASA Astrophysics Data System (ADS)
Paykari, P.; Pires, S.; Starck, J.-L.; Jaffe, A. H.
2015-09-01
Aims: The next generation of galaxy surveys, aiming to observe millions of galaxies, are expensive both in time and money. This raises questions regarding the optimal investment of this time and money for future surveys. In a previous work, we have shown that a sparse sampling strategy could be a powerful substitute for the - usually favoured - contiguous observation of the sky. In our previous paper, regular sparse sampling was investigated, where the sparse observed patches were regularly distributed on the sky. The regularity of the mask introduces a periodic pattern in the window function, which induces periodic correlations at specific scales. Methods: In this paper, we use a Bayesian experimental design to investigate a "random" sparse sampling approach, where the observed patches are randomly distributed over the total sparsely sampled area. Results: We find that in this setting, the induced correlation is evenly distributed amongst all scales as there is no preferred scale in the window function. Conclusions: This is desirable when we are interested in any specific scale in the galaxy power spectrum, such as the matter-radiation equality scale. As the figure of merit shows, however, there is no preference between regular and random sampling to constrain the overall galaxy power spectrum and the cosmological parameters.
Pageler, Natalie M; Grazier G'Sell, Max Jacob; Chandler, Warren; Mailes, Emily; Yang, Christine; Longhurst, Christopher A
2016-09-01
The objective of this project was to use statistical techniques to determine the completeness and accuracy of data migrated during electronic health record conversion. Data validation during migration consists of mapped record testing and validation of a sample of the data for completeness and accuracy. We statistically determined a randomized sample size for each data type based on the desired confidence level and error limits. The only error identified in the post go-live period was a failure to migrate some clinical notes, which was unrelated to the validation process. No errors in the migrated data were found during the 12- month post-implementation period. Compared to the typical industry approach, we have demonstrated that a statistical approach to sampling size for data validation can ensure consistent confidence levels while maximizing efficiency of the validation process during a major electronic health record conversion. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Duchêne, Sebastián; Duchêne, David; Holmes, Edward C; Ho, Simon Y W
2015-07-01
Rates and timescales of viral evolution can be estimated using phylogenetic analyses of time-structured molecular sequences. This involves the use of molecular-clock methods, calibrated by the sampling times of the viral sequences. However, the spread of these sampling times is not always sufficient to allow the substitution rate to be estimated accurately. We conducted Bayesian phylogenetic analyses of simulated virus data to evaluate the performance of the date-randomization test, which is sometimes used to investigate whether time-structured data sets have temporal signal. An estimate of the substitution rate passes this test if its mean does not fall within the 95% credible intervals of rate estimates obtained using replicate data sets in which the sampling times have been randomized. We find that the test sometimes fails to detect rate estimates from data with no temporal signal. This error can be minimized by using a more conservative criterion, whereby the 95% credible interval of the estimate with correct sampling times should not overlap with those obtained with randomized sampling times. We also investigated the behavior of the test when the sampling times are not uniformly distributed throughout the tree, which sometimes occurs in empirical data sets. The test performs poorly in these circumstances, such that a modification to the randomization scheme is needed. Finally, we illustrate the behavior of the test in analyses of nucleotide sequences of cereal yellow dwarf virus. Our results validate the use of the date-randomization test and allow us to propose guidelines for interpretation of its results. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Prevalence of food contamination with Listeria spp. in Kermanshah, Islamic Republic of Iran.
Akya, A; Najafi, A; Moradi, J; Mohebi, Z; Adabagher, S
2013-05-01
Listeria monocytogenes is a human pathogen causing serious diseases. We aimed to determine food contamination with Listeria spp. in Kermanshah, Islamic Republic of Iran. Samples (185 dairy, 187 meat products and 158 ready-to-eat foods such as salads) were randomly collected from markets. After processing, samples were cultured in half-Fraser and Fraser broth followed by cultivation on PALCAM and Oxford media. Confirmatory tests including carbohydrate utilization were performed on isolates to determine species. Bacteria were isolated from 66/530 samples (12.5%). Meat products showed the highest (27.2%) and dairy products the lowest (3.8%) contamination rates. L. innocua was found in 56 (10.6%) samples, but L. monocytogenes was only found in 3 samples (0.6%). The results indicate that the rate of contamination with L. monocytogenes, even for ready-to-eat foods, was low but for other Listeria spp., in particular strains of L. innocua, the rate of contamination was higher, suggesting that more control on food sanitation is required.
Time multiplexing super-resolution nanoscopy based on the Brownian motion of gold nanoparticles
NASA Astrophysics Data System (ADS)
Ilovitsh, Tali; Ilovitsh, Asaf; Wagner, Omer; Zalevsky, Zeev
2017-02-01
Super-resolution localization microscopy can overcome the diffraction limit and achieve a tens of order improvement in resolution. It requires labeling the sample with fluorescent probes followed with their repeated cycles of activation and photobleaching. This work presents an alternative approach that is free from direct labeling and does not require the activation and photobleaching cycles. Fluorescently labeled gold nanoparticles in a solution are distributed on top of the sample. The nanoparticles move in a random Brownian motion, and interact with the sample. By obscuring different areas in the sample, the nanoparticles encode the sub-wavelength features. A sequence of images of the sample is captured and decoded by digital post processing to create the super-resolution image. The achievable resolution is limited by the additive noise and the size of the nanoparticles. Regular nanoparticles with diameter smaller than 100nm are barely seen in a conventional bright field microscope, thus fluorescently labeled gold nanoparticles were used, with proper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Vicente; Bonney, Matthew; Schroeder, Benjamin
When very few samples of a random quantity are available from a source distribution of unknown shape, it is usually not possible to accurately infer the exact distribution from which the data samples come. Under-estimation of important quantities such as response variance and failure probabilities can result. For many engineering purposes, including design and risk analysis, we attempt to avoid under-estimation with a strategy to conservatively estimate (bound) these types of quantities -- without being overly conservative -- when only a few samples of a random quantity are available from model predictions or replicate experiments. This report examines a classmore » of related sparse-data uncertainty representation and inference approaches that are relatively simple, inexpensive, and effective. Tradeoffs between the methods' conservatism, reliability, and risk versus number of data samples (cost) are quantified with multi-attribute metrics use d to assess method performance for conservative estimation of two representative quantities: central 95% of response; and 10 -4 probability of exceeding a response threshold in a tail of the distribution. Each method's performance is characterized with 10,000 random trials on a large number of diverse and challenging distributions. The best method and number of samples to use in a given circumstance depends on the uncertainty quantity to be estimated, the PDF character, and the desired reliability of bounding the true value. On the basis of this large data base and study, a strategy is proposed for selecting the method and number of samples for attaining reasonable credibility levels in bounding these types of quantities when sparse samples of random variables or functions are available from experiments or simulations.« less
Nidaullah, Hafiz; Abirami, Nadarajan; Shamila-Syuhada, Ahamed Kamal; Chuah, Li-Oon; Nurul, Huda; Tan, Teik Pei; Abidin, Farah Wahida Zainal; Rusul, Gulam
2017-03-01
The aim of this study was to determine the prevalence of various Salmonella serotypes in chickens, carcass contact surfaces as well as environmental samples collected from wet markets and small scale processing plant. A total of 182 poultry and environmental samples were collected at random on separate occasions from wet markets and small scale processing plant, during the period of October 2014 to July 2015 in Penang and Perlis, Malaysia. The samples were analyzed for the presence of Salmonella using ISO 6579:2002 conventional culture-based method. Presumptive Salmonella colonies were subjected to various biochemical tests (such as triple sugar iron and lysine iron test), serologically confirmed using polyvalent O and H antisera and further serotyped at Public Health Laboratory, Ministry of Health, Perak, Malaysia. Salmonella serotypes were isolated from 161 out of 182 samples (88.46%) with 100% prevalence in the whole chicken carcass and chicken cuts - as well as transport crate, cage, drum, knife, chopping board, display table, floor, bench wash water, wash water, and drain water. Salmonella was isolated from 91.67%, 83.33%, and 66.67% of defeathering machines, drain swabs, and apron, respectively. 17 serotypes were isolated in this study with Salmonella Albany (57/161), Salmonella Corvallis (42/161), and Salmonella Brancaster (37/161) being the predominant serovars. The most carcass contact and environmental samples collected along the wet market chicken processing line were consistently contaminated with Salmonella . This indicates that Salmonella has established itself in poultry processing environments by colonizing the surfaces of the equipment and survives in these environments by establishing biofilms. Our results highlight the need of implementing strict hygiene and sanitation standards to reduce the incidence of Salmonella . The prevalence of Salmonella in poultry can be reduced effectively by identifying and eliminating the sources and contamination sites during slaughter and processing of poultry.
Nidaullah, Hafiz; Abirami, Nadarajan; Shamila-Syuhada, Ahamed Kamal; Chuah, Li-Oon; Nurul, Huda; Tan, Teik Pei; Abidin, Farah Wahida Zainal; Rusul, Gulam
2017-01-01
Aim: The aim of this study was to determine the prevalence of various Salmonella serotypes in chickens, carcass contact surfaces as well as environmental samples collected from wet markets and small scale processing plant. Materials and Methods: A total of 182 poultry and environmental samples were collected at random on separate occasions from wet markets and small scale processing plant, during the period of October 2014 to July 2015 in Penang and Perlis, Malaysia. The samples were analyzed for the presence of Salmonella using ISO 6579:2002 conventional culture-based method. Presumptive Salmonella colonies were subjected to various biochemical tests (such as triple sugar iron and lysine iron test), serologically confirmed using polyvalent O and H antisera and further serotyped at Public Health Laboratory, Ministry of Health, Perak, Malaysia. Results: Salmonella serotypes were isolated from 161 out of 182 samples (88.46%) with 100% prevalence in the whole chicken carcass and chicken cuts - as well as transport crate, cage, drum, knife, chopping board, display table, floor, bench wash water, wash water, and drain water. Salmonella was isolated from 91.67%, 83.33%, and 66.67% of defeathering machines, drain swabs, and apron, respectively. 17 serotypes were isolated in this study with Salmonella Albany (57/161), Salmonella Corvallis (42/161), and Salmonella Brancaster (37/161) being the predominant serovars. Conclusion: The most carcass contact and environmental samples collected along the wet market chicken processing line were consistently contaminated with Salmonella. This indicates that Salmonella has established itself in poultry processing environments by colonizing the surfaces of the equipment and survives in these environments by establishing biofilms. Our results highlight the need of implementing strict hygiene and sanitation standards to reduce the incidence of Salmonella. The prevalence of Salmonella in poultry can be reduced effectively by identifying and eliminating the sources and contamination sites during slaughter and processing of poultry. PMID:28435190
Expedite random structure searching using objects from Wyckoff positions
NASA Astrophysics Data System (ADS)
Wang, Shu-Wei; Hsing, Cheng-Rong; Wei, Ching-Ming
2018-02-01
Random structure searching has been proved to be a powerful approach to search and find the global minimum and the metastable structures. A true random sampling is in principle needed yet it would be highly time-consuming and/or practically impossible to find the global minimum for the complicated systems in their high-dimensional configuration space. Thus the implementations of reasonable constraints, such as adopting system symmetries to reduce the independent dimension in structural space and/or imposing chemical information to reach and relax into low-energy regions, are the most essential issues in the approach. In this paper, we propose the concept of "object" which is either an atom or composed of a set of atoms (such as molecules or carbonates) carrying a symmetry defined by one of the Wyckoff positions of space group and through this process it allows the searching of global minimum for a complicated system to be confined in a greatly reduced structural space and becomes accessible in practice. We examined several representative materials, including Cd3As2 crystal, solid methanol, high-pressure carbonates (FeCO3), and Si(111)-7 × 7 reconstructed surface, to demonstrate the power and the advantages of using "object" concept in random structure searching.
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
Liu, Wenfen
2017-01-01
Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447
Pagonis, Vasilis; Kulp, Christopher; Chaney, Charity-Grace; Tachiya, M
2017-09-13
During the past 10 years, quantum tunneling has been established as one of the dominant mechanisms for recombination in random distributions of electrons and positive ions, and in many dosimetric materials. Specifically quantum tunneling has been shown to be closely associated with two important effects in luminescence materials, namely long term afterglow luminescence and anomalous fading. Two of the common assumptions of quantum tunneling models based on random distributions of electrons and positive ions are: (a) An electron tunnels from a donor to the nearest acceptor, and (b) the concentration of electrons is much lower than that of positive ions at all times during the tunneling process. This paper presents theoretical studies for arbitrary relative concentrations of electrons and positive ions in the solid. Two new differential equations are derived which describe the loss of charge in the solid by tunneling, and they are solved analytically. The analytical solution compares well with the results of Monte Carlo simulations carried out in a random distribution of electrons and positive ions. Possible experimental implications of the model are discussed for tunneling phenomena in long term afterglow signals, and also for anomalous fading studies in feldspars and apatite samples.
Multiple mechanisms of early plant community assembly with stochasticity driving the process.
Marteinsdóttir, Bryndís; Svavarsdóttir, Kristín; Thórhallsdóttir, Thóra Ellen
2018-01-01
Initial plant establishment is one of the most critical phases in ecosystem development, where an early suite of physical (environmental filtering), biological (seed limitation, species interactions) and stochastic factors may affect successional trajectories and rates. While functional traits are commonly used to study processes that influence plant community assembly in late successional communities, few studies have applied them to primary succession. The objective here was to determine the importance of these factors in shaping early plant community assembly on a glacial outwash plain, Skeiðarársandur, in SE Iceland using a trait based approach. We used data on vascular plant assemblages at two different spatial scales (community and neighborhood) sampled in 2005 and 2012, and compiled a dataset on seven functional traits linked to species dispersal abilities, establishment, and persistence for all species within these assemblages. Trait-based null model analyses were used to determine the processes that influenced plant community assembly from the regional species pool into local communities, and to determine if the importance of these processes in community assembly was dependent on local environment or changed with time. On the community scale, for most traits, random processes dominated the assembly from the regional species pool. However, in some communities, there was evidence of non-random assembly in relation to traits linked to species dispersal abilities, persistence, and establishment. On the neighborhood scale, assembly was mostly random. The relative importance of different processes varied spatially and temporally and the variation was linked to local soil conditions. While stochasticity dominated assembly patterns of our early successional communities, there was evidence of both seed limitation and environmental filtering. Our results indicated that as soil conditions improved, environmental constraints on assembly became weaker and the assembly became more dependent on species availability. © 2017 by the Ecological Society of America.
NASA Technical Reports Server (NTRS)
Tomberlin, T. J.
1985-01-01
Research studies of residents' responses to noise consist of interviews with samples of individuals who are drawn from a number of different compact study areas. The statistical techniques developed provide a basis for those sample design decisions. These techniques are suitable for a wide range of sample survey applications. A sample may consist of a random sample of residents selected from a sample of compact study areas, or in a more complex design, of a sample of residents selected from a sample of larger areas (e.g., cities). The techniques may be applied to estimates of the effects on annoyance of noise level, numbers of noise events, the time-of-day of the events, ambient noise levels, or other factors. Methods are provided for determining, in advance, how accurately these effects can be estimated for different sample sizes and study designs. Using a simple cost function, they also provide for optimum allocation of the sample across the stages of the design for estimating these effects. These techniques are developed via a regression model in which the regression coefficients are assumed to be random, with components of variance associated with the various stages of a multi-stage sample design.
NASA Astrophysics Data System (ADS)
Yoon, Dai Geon; Chin, Byung Doo; Bail, Robert
2017-03-01
A convenient process for fabricating a transparent conducting electrode on a flexible substrate is essential for numerous low-cost optoelectronic devices, including organic solar cells (OSCs), touch sensors, and free-form lighting applications. Solution-processed metal-nanowire arrays are attractive due to their low sheet resistance and optical clarity. However, the limited conductance at wire junctions and the rough surface topology still need improvement. Here, we present a facile process of electrohydrodynamic spinning using a silver (Ag) - polymer composite paste with high viscosity. Unlike the metal-nanofiber web formed by conventional electrospinning, a relatively thick, but still invisible-to-naked eye, Ag-web random pattern was formed on a glass substrate. The process parameters such as the nozzle diameter, voltage, flow rate, standoff height, and nozzle-scanning speed, were systematically engineered. The formed random texture Ag webs were embedded in a flexible substrate by in-situ photo-polymerization, release from the glass substrate, and post-annealing. OSCs with a donor-acceptor polymeric heterojunction photoactive layer were prepared on the Ag-web-embedded flexible films with various Ag-web densities. The short-circuit current and the power conversion efficiency of an OSC with a Ag-web-embedded electrode were not as high as those of the control sample with an indium-tin-oxide electrode. However, the Ag-web textures embedded in the OSC served well as electrodes when bent (6-mm radius), showing a power conversion efficiency of 2.06% (2.72% for the flat OSC), and the electrical stability of the Ag-web-textured patterns was maintained for up to 1,000 cycles of bending.
Pooler, P.S.; Smith, D.R.
2005-01-01
We compared the ability of simple random sampling (SRS) and a variety of systematic sampling (SYS) designs to estimate abundance, quantify spatial clustering, and predict spatial distribution of freshwater mussels. Sampling simulations were conducted using data obtained from a census of freshwater mussels in a 40 X 33 m section of the Cacapon River near Capon Bridge, West Virginia, and from a simulated spatially random population generated to have the same abundance as the real population. Sampling units that were 0.25 m 2 gave more accurate and precise abundance estimates and generally better spatial predictions than 1-m2 sampling units. Systematic sampling with ???2 random starts was more efficient than SRS. Estimates of abundance based on SYS were more accurate when the distance between sampling units across the stream was less than or equal to the distance between sampling units along the stream. Three measures for quantifying spatial clustering were examined: Hopkins Statistic, the Clumping Index, and Morisita's Index. Morisita's Index was the most reliable, and the Hopkins Statistic was prone to false rejection of complete spatial randomness. SYS designs with units spaced equally across and up stream provided the most accurate predictions when estimating the spatial distribution by kriging. Our research indicates that SYS designs with sampling units equally spaced both across and along the stream would be appropriate for sampling freshwater mussels even if no information about the true underlying spatial distribution of the population were available to guide the design choice. ?? 2005 by The North American Benthological Society.
Fatigue crack growth model RANDOM2 user manual, appendix 1
NASA Technical Reports Server (NTRS)
Boyce, Lola; Lovelace, Thomas B.
1989-01-01
The FORTRAN program RANDOM2 is documented. RANDOM2 is based on fracture mechanics using a probabilistic fatigue crack growth model. It predicts the random lifetime of an engine component to reach a given crack size. Included in this user manual are details regarding the theoretical background of RANDOM2, input data, instructions and a sample problem illustrating the use of RANDOM2. Appendix A gives information on the physical quantities, their symbols, FORTRAN names, and both SI and U.S. Customary units. Appendix B includes photocopies of the actual computer printout corresponding to the sample problem. Appendices C and D detail the IMSL, Ver. 10(1), subroutines and functions called by RANDOM2 and a SAS/GRAPH(2) program that can be used to plot both the probability density function (p.d.f.) and the cumulative distribution function (c.d.f.).
Policy and organizational implications of gender imbalance in the NHS.
Miller, Karen
2007-01-01
The purpose of the paper is to examine the policy and organizational implications of gender imbalance in management, which research suggests exists in the NHS. The research in this paper involved a qualitative approach with an analysis of elite interviews conducted with a non-random sample of officials involved in health policy and interviews with a random sample of senior managers in NHS Scotland. The research formed part of a larger study, which explored the enablers and inhibitors to female career progression in various Scottish sectors. The paper finds that gender imbalance in management exists in the NHS. This is manifested in a masculine organizational context, leadership and policy decision-making process, which have implications for female career advancement opportunities and subsequently access to macro policy decisions. The paper involved a sample (30 percent) of senior managers and examined policy processes in NHS Scotland. To improve the external validity of the findings further research should be conducted in NHS organizations in England and Wales. The findings in the paper suggest that gender imbalance in management and a masculine organizational context and leadership style within the NHS create a less than conducive environment for female employees. This has practical implications in terms of levels of part-time employment, career progression and attrition rates. The paper adds to the debate of gender and organizational studies by examining the health sector, which has high levels of female employment but low levels of female representation at senior management levels. The paper therefore adds to an often-neglected area of study, women in leadership and senior managerial positions. The paper is original in its approach by examining the micro and meso organizational dimensions which impact on women's ability to influence macro health policy.
Toward a Principled Sampling Theory for Quasi-Orders
Ünlü, Ali; Schrepp, Martin
2016-01-01
Quasi-orders, that is, reflexive and transitive binary relations, have numerous applications. In educational theories, the dependencies of mastery among the problems of a test can be modeled by quasi-orders. Methods such as item tree or Boolean analysis that mine for quasi-orders in empirical data are sensitive to the underlying quasi-order structure. These data mining techniques have to be compared based on extensive simulation studies, with unbiased samples of randomly generated quasi-orders at their basis. In this paper, we develop techniques that can provide the required quasi-order samples. We introduce a discrete doubly inductive procedure for incrementally constructing the set of all quasi-orders on a finite item set. A randomization of this deterministic procedure allows us to generate representative samples of random quasi-orders. With an outer level inductive algorithm, we consider the uniform random extensions of the trace quasi-orders to higher dimension. This is combined with an inner level inductive algorithm to correct the extensions that violate the transitivity property. The inner level correction step entails sampling biases. We propose three algorithms for bias correction and investigate them in simulation. It is evident that, on even up to 50 items, the new algorithms create close to representative quasi-order samples within acceptable computing time. Hence, the principled approach is a significant improvement to existing methods that are used to draw quasi-orders uniformly at random but cannot cope with reasonably large item sets. PMID:27965601
Toward a Principled Sampling Theory for Quasi-Orders.
Ünlü, Ali; Schrepp, Martin
2016-01-01
Quasi-orders, that is, reflexive and transitive binary relations, have numerous applications. In educational theories, the dependencies of mastery among the problems of a test can be modeled by quasi-orders. Methods such as item tree or Boolean analysis that mine for quasi-orders in empirical data are sensitive to the underlying quasi-order structure. These data mining techniques have to be compared based on extensive simulation studies, with unbiased samples of randomly generated quasi-orders at their basis. In this paper, we develop techniques that can provide the required quasi-order samples. We introduce a discrete doubly inductive procedure for incrementally constructing the set of all quasi-orders on a finite item set. A randomization of this deterministic procedure allows us to generate representative samples of random quasi-orders. With an outer level inductive algorithm, we consider the uniform random extensions of the trace quasi-orders to higher dimension. This is combined with an inner level inductive algorithm to correct the extensions that violate the transitivity property. The inner level correction step entails sampling biases. We propose three algorithms for bias correction and investigate them in simulation. It is evident that, on even up to 50 items, the new algorithms create close to representative quasi-order samples within acceptable computing time. Hence, the principled approach is a significant improvement to existing methods that are used to draw quasi-orders uniformly at random but cannot cope with reasonably large item sets.
A novel 3D Cartesian random sampling strategy for Compressive Sensing Magnetic Resonance Imaging.
Valvano, Giuseppe; Martini, Nicola; Santarelli, Maria Filomena; Chiappino, Dante; Landini, Luigi
2015-01-01
In this work we propose a novel acquisition strategy for accelerated 3D Compressive Sensing Magnetic Resonance Imaging (CS-MRI). This strategy is based on a 3D cartesian sampling with random switching of the frequency encoding direction with other K-space directions. Two 3D sampling strategies are presented. In the first strategy, the frequency encoding direction is randomly switched with one of the two phase encoding directions. In the second strategy, the frequency encoding direction is randomly chosen between all the directions of the K-Space. These strategies can lower the coherence of the acquisition, in order to produce reduced aliasing artifacts and to achieve a better image quality after Compressive Sensing (CS) reconstruction. Furthermore, the proposed strategies can reduce the typical smoothing of CS due to the limited sampling of high frequency locations. We demonstrated by means of simulations that the proposed acquisition strategies outperformed the standard Compressive Sensing acquisition. This results in a better quality of the reconstructed images and in a greater achievable acceleration.
Palacios, Julia A; Minin, Vladimir N
2013-03-01
Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly sampled individuals from the population of interest. These genealogies serve as a glue between the population demographic history and genomic sequences. It turns out that only the times of genealogical lineage coalescences contain information about population size dynamics. Viewing these coalescent times as a point process, estimating population size trajectories is equivalent to estimating a conditional intensity of this point process. Therefore, our inverse problem is similar to estimating an inhomogeneous Poisson process intensity function. We demonstrate how recent advances in Gaussian process-based nonparametric inference for Poisson processes can be extended to Bayesian nonparametric estimation of population size dynamics under the coalescent. We compare our Gaussian process (GP) approach to one of the state-of-the-art Gaussian Markov random field (GMRF) methods for estimating population trajectories. Using simulated data, we demonstrate that our method has better accuracy and precision. Next, we analyze two genealogies reconstructed from real sequences of hepatitis C and human Influenza A viruses. In both cases, we recover more believed aspects of the viral demographic histories than the GMRF approach. We also find that our GP method produces more reasonable uncertainty estimates than the GMRF method. Copyright © 2013, The International Biometric Society.
Foong, Hui F; Hamid, Tengku A; Ibrahim, Rahimah; Haron, Sharifah A
2018-01-01
The link between psychosocial stress and cognitive function is complex, and previous studies have indicated that it may be mediated by processing speed. Therefore, the main aim of this study was to examine whether processing speed mediates the association between psychosocial stress and global cognition in older adults. Moreover, the moderating role of gender in this model is examined as well. The study included 2322 community-dwelling older adults in Malaysia who were randomly selected through a multistage proportional cluster random sampling technique. Global cognition construct was measured by the Mini-Mental State Examination and Montreal Cognitive Assessment; psychosocial stress construct was measured by perceived stress, depression, loneliness, and neuroticism; and processing speed was assessed by the Digit Symbol Substitution Test. Structural equation modelling was used to analyze the mediation and moderation tests. Processing speed was found to partially mediate the relationship between psychosocial stress and global cognition (β in the direct model = -0.15, P < 0.001; β in the full mediation model = -0.11, P < 0.001). Moreover, the relationship between psychosocial stress and global cognition was found to be significant in men only, whereas the association between processing speed and global cognition was significant in men and women. Psychosocial stress may increase the likelihood that older adults will experience poor processing capacity, which could reduce their higher level cognition. Results indicate that there is a need to develop processing capacity intervention programmes for psychologically distressed older adults to prevent them from suffering cognitive decline. © 2018 Japanese Psychogeriatric Society.
ERIC Educational Resources Information Center
Steel, Jennifer L.; Herlitz, Claes A.
2005-01-01
Objective: Several studies with small and ''high risk'' samples have demonstrated that a history of childhood or adolescent sexual abuse (CASA) is associated with sexual risk behaviors (SRBs). However, few studies with large random samples from the general population have specifically examined the relationship between CASA and SRBs with a…
NASA Astrophysics Data System (ADS)
Zhu, Daibo; Liu, Chuming; Yu, Haijun; Han, Tan
2018-03-01
A hot rolling scheme (cross-rolling and unidirectional rolling) was adopted to process Cu-2.7Be sheets used as multiplier dynodes in photomultiplier. The effects of changing rolling direction on microstructure, texture and mechanical properties were studied by a combination of XRD, EBSD and TEM. It was found that higher copper-type texture and lower brass texture intensity were obtained in the ultimately cross-rolling (CR) sheet compared with the unidirectional rolling (UR) sheet.The EBSD results indicated that the grain orientation from mainly < {101} > for UR sample turns to random for CR sample. Great enhancements in YS and UTS after unidirectional rolling were attributed to the massive and polygonal γ precipitates. The CR sample exhibited lower anisotropy, because of the increase of S and γ precipitates with spherical and tiny shape.
An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response
Stipčević, Mario; Ursin, Rupert
2015-01-01
Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physicsal process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, wich can be described by a probabilistic theory only, even in principle. Here we present a conceptualy simple implementation, which offers a 100% efficiency of producing a random bit upon a request and simultaneously exhibits an ultra low latency. A careful technical and statistical analysis demonstrates its robustness against imperfections of the actual implemented technology and enables to quickly estimate randomness of very long sequences. Generated random numbers pass standard statistical tests without any post-processing. The setup described, as well as the theory presented here, demonstrate the maturity and overall understanding of the technology. PMID:26057576
Stable Lévy motion with inverse Gaussian subordinator
NASA Astrophysics Data System (ADS)
Kumar, A.; Wyłomańska, A.; Gajda, J.
2017-09-01
In this paper we study the stable Lévy motion subordinated by the so-called inverse Gaussian process. This process extends the well known normal inverse Gaussian (NIG) process introduced by Barndorff-Nielsen, which arises by subordinating ordinary Brownian motion (with drift) with inverse Gaussian process. The NIG process found many interesting applications, especially in financial data description. We discuss here the main features of the introduced subordinated process, such as distributional properties, existence of fractional order moments and asymptotic tail behavior. We show the connection of the process with continuous time random walk. Further, the governing fractional partial differential equations for the probability density function is also obtained. Moreover, we discuss the asymptotic distribution of sample mean square displacement, the main tool in detection of anomalous diffusion phenomena (Metzler et al., 2014). In order to apply the stable Lévy motion time-changed by inverse Gaussian subordinator we propose a step-by-step procedure of parameters estimation. At the end, we show how the examined process can be useful to model financial time series.
Random Walks in a One-Dimensional Lévy Random Environment
NASA Astrophysics Data System (ADS)
Bianchi, Alessandra; Cristadoro, Giampaolo; Lenci, Marco; Ligabò, Marilena
2016-04-01
We consider a generalization of a one-dimensional stochastic process known in the physical literature as Lévy-Lorentz gas. The process describes the motion of a particle on the real line in the presence of a random array of marked points, whose nearest-neighbor distances are i.i.d. and long-tailed (with finite mean but possibly infinite variance). The motion is a continuous-time, constant-speed interpolation of a symmetric random walk on the marked points. We first study the quenched random walk on the point process, proving the CLT and the convergence of all the accordingly rescaled moments. Then we derive the quenched and annealed CLTs for the continuous-time process.
Estimation After a Group Sequential Trial.
Milanzi, Elasma; Molenberghs, Geert; Alonso, Ariel; Kenward, Michael G; Tsiatis, Anastasios A; Davidian, Marie; Verbeke, Geert
2015-10-01
Group sequential trials are one important instance of studies for which the sample size is not fixed a priori but rather takes one of a finite set of pre-specified values, dependent on the observed data. Much work has been devoted to the inferential consequences of this design feature. Molenberghs et al (2012) and Milanzi et al (2012) reviewed and extended the existing literature, focusing on a collection of seemingly disparate, but related, settings, namely completely random sample sizes, group sequential studies with deterministic and random stopping rules, incomplete data, and random cluster sizes. They showed that the ordinary sample average is a viable option for estimation following a group sequential trial, for a wide class of stopping rules and for random outcomes with a distribution in the exponential family. Their results are somewhat surprising in the sense that the sample average is not optimal, and further, there does not exist an optimal, or even, unbiased linear estimator. However, the sample average is asymptotically unbiased, both conditionally upon the observed sample size as well as marginalized over it. By exploiting ignorability they showed that the sample average is the conventional maximum likelihood estimator. They also showed that a conditional maximum likelihood estimator is finite sample unbiased, but is less efficient than the sample average and has the larger mean squared error. Asymptotically, the sample average and the conditional maximum likelihood estimator are equivalent. This previous work is restricted, however, to the situation in which the the random sample size can take only two values, N = n or N = 2 n . In this paper, we consider the more practically useful setting of sample sizes in a the finite set { n 1 , n 2 , …, n L }. It is shown that the sample average is then a justifiable estimator , in the sense that it follows from joint likelihood estimation, and it is consistent and asymptotically unbiased. We also show why simulations can give the false impression of bias in the sample average when considered conditional upon the sample size. The consequence is that no corrections need to be made to estimators following sequential trials. When small-sample bias is of concern, the conditional likelihood estimator provides a relatively straightforward modification to the sample average. Finally, it is shown that classical likelihood-based standard errors and confidence intervals can be applied, obviating the need for technical corrections.
Recording 2-D Nutation NQR Spectra by Random Sampling Method
Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw
2010-01-01
The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution. PMID:20949121
Yarmus, Lonny B; Semaan, Roy W; Arias, Sixto A; Feller-Kopman, David; Ortiz, Ricardo; Bösmüller, Hans; Illei, Peter B; Frimpong, Bernice O; Oakjones-Burgess, Karen; Lee, Hans J
2016-08-01
Transbronchial forceps biopsy (FBx) has been the preferred method for obtaining bronchoscopic lung biopsy specimens. Cryoprobe biopsy (CBx) has been shown to obtain larger and higher quality samples, but is limited by its inability to retrieve the sample through the working channel of the bronchoscope, requiring the bronchoscope to leave the airway for sample retrieval. We evaluated a novel device using a sheath cryobiopsy (SCBx). This method allows for specimen retrieval through the working channel of the bronchoscope, with the scope remaining inside the airway. This prospective, randomized controlled, single-blinded porcine study compared a 1.1-mm SCBx probe, a 1.9-mm CBx probe, and 2.0-mm FBx forceps. Assessment of histologic accessibility, sample quantity and quality, number of attempts to acquire and retrieve samples, cryoprobe activation time, fluoroscopy activation time, technical feasibility, and complications were compared. Samples adequate for standard pathologic processing were retrieved with 82.1% of the SCBx specimens, 82.9%% of the CBx specimens, and 30% of the FBx specimens. The histologic accessibility of both SCBx (P = .0002) and CBx (P = .0003) was superior to FBx. Procedure time for FBx was faster than for both SCBx and CBx, but SCBx was significantly faster than CBx (P < .0001). Fluoroscopy time was lower for both SCBx and CBx compared with FBx. There were no significant bleeding events. SCBx is a feasible technique providing a higher quality lung biopsy specimen compared with FBx and can successfully be retrieved through the working channel. Human studies are needed to further assess this technique with additional safety data. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Abate, Samantha V; Zucconi, Michele; Boxer, Bruce Alan
2011-01-01
Chronic heart failure (HF) is a prevalent and costly disease process. Early ambulation has been shown to have a positive impact on patient outcomes and length of stay. Animal-assisted therapy is a novel modality that has shown to be a safe and effective adjunct to a number of traditional treatment plans. This study sought to synergistically combine ambulation and animal-assisted therapy by using canine-assisted ambulation (CAA) to improve the ambulation outcomes of HF patients. Sixty-nine hospitalized patients with a primary diagnosis of HF were approached to ambulate with a restorative aide. After recording their initial response, they were given the opportunity to participate in CAA (walking with a therapy dog). Initial ambulation refusal rate was compared with a historical population of 537 HF patients. Distance ambulated was recorded using a pedometer and compared with a randomly selected, 64-patient sample from the historical HF patient population, stratified by day of hospital stay. Patient satisfaction was assessed through a 5-item Likert scale survey. The 537-patient historical HF population had an ambulation refusal rate of 28%. When offered the chance to participate in CAA, only 7.2% of the study population refused ambulation (P = .0002). Of the 69-patient study sample, 13 initially refused ambulation then agreed when offered CAA (P = .0009). Distance ambulated increased from 120.2 steps in a randomly selected, stratified historical sample to 235.07 in the CAA study sample (P < .0001). Patients unanimously agreed that they enjoyed CAA and would like to participate in CAA again. Canine-assisted ambulation is a safe and effective adjunct to an early ambulation program for HF patients. Canine-assisted ambulation may decrease hospital length of stay and thereby decrease the costs of HF care. Additional research involving CAA's application to other disease processes in various settings is warranted.
Pinket, An-Sofie; Van Lippevelde, Wendy; De Bourdeaudhuij, Ilse; Deforche, Benedicte; Cardon, Greet; Androutsos, Odysseas; Koletzko, Berthold; Moreno, Luis A.; Socha, Piotr; Iotova, Violeta; Manios, Yannis; De Craemer, Marieke
2016-01-01
Background Within the ToyBox-study, a kindergarten-based, family-involved intervention was developed to prevent overweight and obesity in European preschoolers, targeting four key behaviours related to early childhood obesity, including water consumption. The present study aimed to examine the effect of the ToyBox-intervention (cluster randomized controlled trial) on water intake and beverage consumption in European preschoolers and to investigate if the intervention effects differed by implementation score of kindergartens and parents/caregivers. Method A sample of 4964 preschoolers (4.7±0.4 years; 51.5% boys) from six European countries (Belgium, Bulgaria, Germany, Greece, Poland, Spain) was included in the data analyses. A standardized protocol was used and parents/caregivers filled in socio-demographic data and a food-frequency questionnaire. To assess intervention effects, multilevel repeated measures analyses were conducted for the total sample and for the six country-specific samples. Based on the process evaluation questionnaire of teachers and parents/caregivers, an implementation score was constructed. To assess differences in water intake and beverage consumption by implementation score in the total sample, multilevel repeated measures analyses were performed. Results Limited intervention effects on water intake from beverages and overall beverage consumption were found. However, important results were found on prepacked fruit juice consumption, with a larger decrease in the intervention group compared to the control group. However, also a decline in plain milk consumption was found. Implementation scores were rather low in both kindergartens and parents/caregivers. Nevertheless, more favorable effects on beverage choices were found in preschoolers whose parents/caregivers and kindergarten teachers had higher implementation scores compared to those with lower implementation scores. Conclusion The ToyBox-intervention can provide the basis for the development of more tailor-made interventions. However, new strategies to improve implementation of interventions should be created. PMID:27064274
NASA Astrophysics Data System (ADS)
Rusakov, Oleg; Laskin, Michael
2017-06-01
We consider a stochastic model of changes of prices in real estate markets. We suppose that in a book of prices the changes happen in points of jumps of a Poisson process with a random intensity, i.e. moments of changes sequently follow to a random process of the Cox process type. We calculate cumulative mathematical expectations and variances for the random intensity of this point process. In the case that the process of random intensity is a martingale the cumulative variance has a linear grows. We statistically process a number of observations of real estate prices and accept hypotheses of a linear grows for estimations as well for cumulative average, as for cumulative variance both for input and output prises that are writing in the book of prises.
Velasco, J Marquez; Giamini, S A; Kelaidis, N; Tsipas, P; Tsoutsou, D; Kordas, G; Raptis, Y S; Boukos, N; Dimoulas, A
2015-10-09
Controlling the number of layers of graphene grown by chemical vapor deposition is crucial for large scale graphene application. We propose here an etching process of graphene which can be applied immediately after growth to control the number of layers. We use nickel (Ni) foil at high temperature (T = 900 °C) to produce multilayer-AB-stacked-graphene (MLG). The etching process is based on annealing the samples in a hydrogen/argon atmosphere at a relatively low temperature (T = 450 °C) inside the growth chamber. The extent of etching is mainly controlled by the annealing process duration. Using Raman spectroscopy we demonstrate that the number of layers was reduced, changing from MLG to few-layer-AB-stacked-graphene and in some cases to randomly oriented few layer graphene near the substrate. Furthermore, our method offers the significant advantage that it does not introduce defects in the samples, maintaining their original high quality. This fact and the low temperature our method uses make it a good candidate for controlling the layer number of already grown graphene in processes with a low thermal budget.
The effectivenes of science domain-based science learning integrated with local potency
NASA Astrophysics Data System (ADS)
Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu
2017-08-01
This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.
Multilattice sampling strategies for region of interest dynamic MRI.
Rilling, Gabriel; Tao, Yuehui; Marshall, Ian; Davies, Mike E
2013-08-01
A multilattice sampling approach is proposed for dynamic MRI with Cartesian trajectories. It relies on the use of sampling patterns composed of several different lattices and exploits an image model where only some parts of the image are dynamic, whereas the rest is assumed static. Given the parameters of such an image model, the methodology followed for the design of a multilattice sampling pattern adapted to the model is described. The multi-lattice approach is compared to single-lattice sampling, as used by traditional acceleration methods such as UNFOLD (UNaliasing by Fourier-Encoding the Overlaps using the temporal Dimension) or k-t BLAST, and random sampling used by modern compressed sensing-based methods. On the considered image model, it allows more flexibility and higher accelerations than lattice sampling and better performance than random sampling. The method is illustrated on a phase-contrast carotid blood velocity mapping MR experiment. Combining the multilattice approach with the KEYHOLE technique allows up to 12× acceleration factors. Simulation and in vivo undersampling results validate the method. Compared to lattice and random sampling, multilattice sampling provides significant gains at high acceleration factors. © 2012 Wiley Periodicals, Inc.
DOT National Transportation Integrated Search
2016-09-01
We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...
HABITAT ASSESSMENT USING A RANDOM PROBABILITY BASED SAMPLING DESIGN: ESCAMBIA RIVER DELTA, FLORIDA
Smith, Lisa M., Darrin D. Dantin and Steve Jordan. In press. Habitat Assessment Using a Random Probability Based Sampling Design: Escambia River Delta, Florida (Abstract). To be presented at the SWS/GERS Fall Joint Society Meeting: Communication and Collaboration: Coastal Systems...
Assessing map accuracy in a remotely sensed, ecoregion-scale cover map
Edwards, T.C.; Moisen, Gretchen G.; Cutler, D.R.
1998-01-01
Landscape- and ecoregion-based conservation efforts increasingly use a spatial component to organize data for analysis and interpretation. A challenge particular to remotely sensed cover maps generated from these efforts is how best to assess the accuracy of the cover maps, especially when they can exceed 1000 s/km2 in size. Here we develop and describe a methodological approach for assessing the accuracy of large-area cover maps, using as a test case the 21.9 million ha cover map developed for Utah Gap Analysis. As part of our design process, we first reviewed the effect of intracluster correlation and a simple cost function on the relative efficiency of cluster sample designs to simple random designs. Our design ultimately combined clustered and subsampled field data stratified by ecological modeling unit and accessibility (hereafter a mixed design). We next outline estimation formulas for simple map accuracy measures under our mixed design and report results for eight major cover types and the three ecoregions mapped as part of the Utah Gap Analysis. Overall accuracy of the map was 83.2% (SE=1.4). Within ecoregions, accuracy ranged from 78.9% to 85.0%. Accuracy by cover type varied, ranging from a low of 50.4% for barren to a high of 90.6% for man modified. In addition, we examined gains in efficiency of our mixed design compared with a simple random sample approach. In regard to precision, our mixed design was more precise than a simple random design, given fixed sample costs. We close with a discussion of the logistical constraints facing attempts to assess the accuracy of large-area, remotely sensed cover maps.
Mosci, D; Marmo, G W; Sciolino, L; Zaccaro, C; Antonellini, R; Accogli, L; Lazzarotto, T; Mongardi, M; Landini, M P
2017-10-01
New technologies for automated disinfection have been developed, including the use of hydrogen peroxide atomized by specific equipment, with associated silver compounds. To compare the effectiveness of an automated disinfection system with hydrogen peroxide <8% and silver ion versus a manual method with 0.5% sodium hypochlorite solution when evaluating the reduction of microbial mesophilic contamination and Clostridium difficile presence; and to evaluate the time required for both of these processes. This was a randomized multicentre trial performed in different hospital wards that had been occupied previously by patients with Clostridium difficile infection. When patients were discharged their rooms were randomized to one of two decontamination arms. The surfaces where sampled using swabs, before and after disinfection. Swab samples were cultured for quantitative detection of microbial mesophilic contamination and qualitative detection of C. difficile. Before disinfection, 13% of surfaces decontaminated with hydrogen peroxide and silver ions and 20% of surfaces decontaminated with sodium hypochlorite showed presence of C. difficile spores. After disinfection, the samples containing C. difficile were 0% (P < 0.001) in the group decontaminated with hydrogen peroxide and silver ions, and were 3% (P < 0.001) in the group decontaminated with sodium hypochlorite. This difference was not statistically significant; nor was the difference in the reduction of the microbial mesophilic contamination. The differences between the groups were not statistically significant; however, the disinfection with hydrogen peroxide and silver ions is preferable due to less dependence on operators. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua
2016-07-01
On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.
On the repeated measures designs and sample sizes for randomized controlled trials.
Tango, Toshiro
2016-04-01
For the analysis of longitudinal or repeated measures data, generalized linear mixed-effects models provide a flexible and powerful tool to deal with heterogeneity among subject response profiles. However, the typical statistical design adopted in usual randomized controlled trials is an analysis of covariance type analysis using a pre-defined pair of "pre-post" data, in which pre-(baseline) data are used as a covariate for adjustment together with other covariates. Then, the major design issue is to calculate the sample size or the number of subjects allocated to each treatment group. In this paper, we propose a new repeated measures design and sample size calculations combined with generalized linear mixed-effects models that depend not only on the number of subjects but on the number of repeated measures before and after randomization per subject used for the analysis. The main advantages of the proposed design combined with the generalized linear mixed-effects models are (1) it can easily handle missing data by applying the likelihood-based ignorable analyses under the missing at random assumption and (2) it may lead to a reduction in sample size, compared with the simple pre-post design. The proposed designs and the sample size calculations are illustrated with real data arising from randomized controlled trials. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A qualitative assessment of a random process proposed as an atmospheric turbulence model
NASA Technical Reports Server (NTRS)
Sidwell, K.
1977-01-01
A random process is formed by the product of two Gaussian processes and the sum of that product with a third Gaussian process. The resulting total random process is interpreted as the sum of an amplitude modulated process and a slowly varying, random mean value. The properties of the process are examined, including an interpretation of the process in terms of the physical structure of atmospheric motions. The inclusion of the mean value variation gives an improved representation of the properties of atmospheric motions, since the resulting process can account for the differences in the statistical properties of atmospheric velocity components and their gradients. The application of the process to atmospheric turbulence problems, including the response of aircraft dynamic systems, is examined. The effects of the mean value variation upon aircraft loads are small in most cases, but can be important in the measurement and interpretation of atmospheric turbulence data.
Randomized subspace-based robust principal component analysis for hyperspectral anomaly detection
NASA Astrophysics Data System (ADS)
Sun, Weiwei; Yang, Gang; Li, Jialin; Zhang, Dianfa
2018-01-01
A randomized subspace-based robust principal component analysis (RSRPCA) method for anomaly detection in hyperspectral imagery (HSI) is proposed. The RSRPCA combines advantages of randomized column subspace and robust principal component analysis (RPCA). It assumes that the background has low-rank properties, and the anomalies are sparse and do not lie in the column subspace of the background. First, RSRPCA implements random sampling to sketch the original HSI dataset from columns and to construct a randomized column subspace of the background. Structured random projections are also adopted to sketch the HSI dataset from rows. Sketching from columns and rows could greatly reduce the computational requirements of RSRPCA. Second, the RSRPCA adopts the columnwise RPCA (CWRPCA) to eliminate negative effects of sampled anomaly pixels and that purifies the previous randomized column subspace by removing sampled anomaly columns. The CWRPCA decomposes the submatrix of the HSI data into a low-rank matrix (i.e., background component), a noisy matrix (i.e., noise component), and a sparse anomaly matrix (i.e., anomaly component) with only a small proportion of nonzero columns. The algorithm of inexact augmented Lagrange multiplier is utilized to optimize the CWRPCA problem and estimate the sparse matrix. Nonzero columns of the sparse anomaly matrix point to sampled anomaly columns in the submatrix. Third, all the pixels are projected onto the complemental subspace of the purified randomized column subspace of the background and the anomaly pixels in the original HSI data are finally exactly located. Several experiments on three real hyperspectral images are carefully designed to investigate the detection performance of RSRPCA, and the results are compared with four state-of-the-art methods. Experimental results show that the proposed RSRPCA outperforms four comparison methods both in detection performance and in computational time.
Fácio, Cássio L; Previato, Lígia F; Machado-Paula, Ligiane A; Matheus, Paulo Cs; Araújo, Edilberto
2016-12-01
This study aimed to assess and compare sperm motility, concentration, and morphology recovery rates, before and after processing through sperm washing followed by swim-up or discontinuous density gradient centrifugation in normospermic individuals. Fifty-eight semen samples were used in double intrauterine insemination procedures; 17 samples (group 1) were prepared with sperm washing followed by swim-up, and 41 (group 2) by discontinuous density gradient centrifugation. This prospective non-randomized study assessed seminal parameters before and after semen processing. A dependent t-test was used for the same technique to analyze seminal parameters before and after semen processing; an independent t-test was used to compare the results before and after processing for both techniques. The two techniques produced decreases in sample concentration (sperm washing followed by swim-up: P<0.000006; discontinuous density gradient centrifugation: P=0.008457) and increases in motility and normal morphology sperm rates after processing. The difference in sperm motility between the two techniques was not statistically significant. Sperm washing followed by swim-up had better morphology recovery rates than discontinuous density gradient centrifugation (P=0.0095); and the density gradient group had better concentration recovery rates than the swim-up group (P=0.0027). The two methods successfully recovered the minimum sperm values needed to perform intrauterine insemination. Sperm washing followed by swim-up is indicated for semen with high sperm concentration and better morphology recovery rates. Discontinuous density gradient centrifugation produced improved concentration recovery rates.