Andres Susaeta; Pankaj Lal; Janaki Alavalapati; Evan Mercer
2011-01-01
This paper contrasts alternate methodological approaches of investigating public preferences, the random parameter logit (RPL) where tastes and preferences of respondents are assumed to be heterogeneous and the conditional logit (CL) approach where tastes and preferences remain fixed for individuals. We conducted a choice experiment to assess preferences for woody...
Pain-Relieving Interventions for Retinopathy of Prematurity: A Meta-analysis.
Disher, Timothy; Cameron, Chris; Mitra, Souvik; Cathcart, Kelcey; Campbell-Yeo, Marsha
2018-06-01
Retinopathy of prematurity eye examinations conducted in the neonatal intensive care. To combine randomized trials of pain-relieving interventions for retinopathy of prematurity examinations using network meta-analysis. Systematic review and network meta-analysis of Medline, Embase, Cochrane Central Register of Controlled Trials, Web of Science, and the World Health Organization International Clinical Trials Registry Platform. All databases were searched from inception to February 2017. Abstract and title screen and full-text screening were conducted independently by 2 reviewers. Data were extracted by 2 reviewers and pooled with random effect models if the number of trials within a comparison was sufficient. The primary outcome was pain during the examination period; secondary outcomes were pain after the examination, physiologic response, and adverse events. Twenty-nine studies ( N = 1487) were included. Topical anesthetic (TA) combined with sweet taste and an adjunct intervention (eg, nonnutritive sucking) had the highest probability of being the optimal treatment (mean difference [95% credible interval] versus TA alone = -3.67 [-5.86 to -1.47]; surface under the cumulative ranking curve = 0.86). Secondary outcomes were sparsely reported (2-4 studies, N = 90-248) but supported sweet-tasting solutions with or without adjunct interventions as optimal. Limitations included moderate heterogeneity in pain assessment reactivity phase and severe heterogeneity in the regulation phase. Multisensory interventions including sweet taste is likely the optimal treatment for reducing pain resulting from eye examinations in preterm infants. No interventions were effective in absolute terms. Copyright © 2018 by the American Academy of Pediatrics.
Wilson, David M.; Brasser, Susan M.
2011-01-01
In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S1) or relatively low (S0) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S1 neurons that were larger than those in S0 cells. Although responses to ethanol by S1 cells did not differ between lines, neuronal firing rates to ethanol in S0 cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol. PMID:21918002
Lemon, Christian H; Wilson, David M; Brasser, Susan M
2011-12-01
In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S(1)) or relatively low (S(0)) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S(1) neurons that were larger than those in S(0) cells. Although responses to ethanol by S(1) cells did not differ between lines, neuronal firing rates to ethanol in S(0) cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol.
Radiation effects on bovine taste bud membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shatzman, A.R.; Mossman, K.L.
1982-11-01
In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enrichedmore » fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy.« less
Palatability of a Novel Oral Formulation of Prednisone in Healthy Young Adults
Bai, Shasha; Dormer, Nathan; Shoults, Catherine; Meyer, Amanda; Pierce, Carol D'Ann; Neville, Kathleen A.; Kearns, Gregory L.
2017-01-01
Objectives Prednisone is a widely used anti-inflammatory for a variety of conditions. While oral liquid formulations of prednisone enable weight-based dosing, children frequently find them to be objectionable due to bitter taste. This limitation of prednisone can adversely impact patient acceptance and may result in non-compliance. Efforts to mask flavors often result in poorly controlled, heterogeneous particle distributions and can provide ineffective taste masking. The present work utilized a novel drug delivery technology developed by Orbis Biosciences, Inc., to create an oral taste-masked formulation of prednisone. Methods The study examined the palatability of Orbis’ microsphere prednisone formulation in healthy young adults (n=24). Four test articles were used in the study including a reference formulation (Roxane Laboratories), a control, and the test formulation (Orbis) prepared in two different ways. Study participants were randomized in a crossover design. Key Findings Results indicated that the test prednisone formulation was indistinguishable from the control, and both were preferable to the reference formulation in every category of palatability assessed using a validated 9-point Hedonic Scale. The data also suggested that preparing the microsphere suspension immediately prior to administration results in the most ideal palatability properties. Conclusions In conclusion, the novel microsphere formulation technology was effective in taste-masking prednisone. PMID:28271493
Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.
Mistretta, Charlotte M; Kumari, Archana
2017-02-10
The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.
Wilkie, Lynn M; Capaldi Phillips, Elizabeth D
2014-11-01
Complex taste experiences arise from the combinations of five taste primaries. Here we review the literature on binary interactions of heterogeneous taste primaries, focusing on perceptual results of administering mixtures of aqueous solutions to human participants. Some interactions proved relatively consistent across tastants and experimental methods: sour acids enhanced saltiness, salts and sweeteners suppressed bitterness, sweeteners suppressed sourness, and sour acids enhanced bitterness. However, for the majority of interactions there were differential effects based on the tastants and their concentrations. Drawing conclusions about interactions with umami is currently not possible due to the low number of primary source studies investigating it and the confounding sodium ions in monosodium glutamate (MSG). Speculative physiological explanations are provided that fit the current data and suggestions for future research studies are proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bitter Taste Stimuli Induce Differential Neural Codes in Mouse Brain
Wilson, David M.; Boughter, John D.; Lemon, Christian H.
2012-01-01
A growing literature suggests taste stimuli commonly classified as “bitter” induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes) was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total), including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA), presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5) were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05) to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05) from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among “bitter” stimuli, data that challenge a strict monoguesia model for the bitter quality. PMID:22844505
Staggered chiral random matrix theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, James C.
2011-02-01
We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.
Romanov, R A
2013-01-01
Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.
Peptide regulators of peripheral taste function.
Dotson, Cedrick D; Geraedts, Maartje C P; Munger, Steven D
2013-03-01
The peripheral sensory organ of the gustatory system, the taste bud, contains a heterogeneous collection of sensory cells. These taste cells can differ in the stimuli to which they respond and the receptors and other signaling molecules they employ to transduce and encode those stimuli. This molecular diversity extends to the expression of a varied repertoire of bioactive peptides that appear to play important functional roles in signaling taste information between the taste cells and afferent sensory nerves and/or in processing sensory signals within the taste bud itself. Here, we review studies that examine the expression of bioactive peptides in the taste bud and the impact of those peptides on taste functions. Many of these peptides produced in taste buds are known to affect appetite, satiety or metabolism through their actions in the brain, pancreas and other organs, suggesting a functional link between the gustatory system and the neural and endocrine systems that regulate feeding and nutrient utilization. Copyright © 2013 Elsevier Ltd. All rights reserved.
Glendinning, John I; Davis, Adrienne; Ramaswamy, Sudha
2002-08-15
Animals can discriminate among many different types of foods. This discrimination process involves multiple sensory systems, but the sense of taste is known to play a central role. We asked how the taste system contributes to the discrimination of different "bitter" taste stimuli in Manduca sexta caterpillars. This insect has approximately eight bilateral pairs of taste cells that respond selectively to bitter taste stimuli. Each bilateral pair of bitter-sensitive taste cells has a different molecular receptive range (MRR); some of these taste cells also contain two signaling pathways with distinctive MRRs and temporal patterns of spiking. To test for discrimination, we habituated the caterpillar's taste-mediated aversive response to one bitter taste stimulus (salicin) and then asked whether this habituation phenomenon generalized to four other bitter taste stimuli (caffeine, aristolochic acid, Grindelia extract, and Canna extract). We inferred that the two compounds were discriminable if the habituation phenomenon failed to generalize (e.g., from salicin to aristolochic acid). We found that M. sexta could discriminate between salicin and those bitter taste stimuli that activate (1) different populations of bitter-sensitive taste cells (Grindelia extract and Canna extract) or (2) different signaling pathways within the same bitter-sensitive taste cell (aristolochic acid). M. sexta could not discriminate between salicin and a bitter taste stimulus that activates the same signaling pathway within the same bitter-sensitive taste cell (caffeine). We propose that the heterogeneous population of bitter-sensitive taste cells and signaling pathways within this insect facilitates the discrimination of bitter taste stimuli.
Reutter, K; Boudriot, F; Witt, M
2000-01-01
Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct systematic groups and that this description is not representative of those taste buds in other main taxa of fishes, such as selachians, holosteans and dipnoans. Furthermore, it is not known how variable the micromorphologies of non-teleostean taste buds are. For this reason the taste buds of two holosteans, Lepisosteus oculatus and Amia calva, were investigated and compared. While in both species the taste buds are of the same shapes and sizes, the cellular components of their sensory epithelia differ: in Lepisosteus taste buds comprise two types of elongated light cells and one type of dark cells. In contrast, Amia taste buds contain only one type of light, but two types of dark elongated cells. Afferent synapses are common in the buds of both species, efferent synapses occur only in Lepisosteus taste buds. These differences show that even in the small group of holostean fishes the taste buds are differently organized. Consequently, a representative type of fish taste buds does not exist. PMID:11079403
Reutter, K; Boudriot, F; Witt, M
2000-09-29
Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct systematic groups and that this description is not representative of those taste buds in other main taxa of fishes, such as selachians, holosteans and dipnoans. Furthermore, it is not known how variable the micromorphologies of non-teleostean taste buds are. For this reason the taste buds of two holosteans, Lepisosteus oculatus and Amia calva, were investigated and compared. While in both species the taste buds are of the same shapes and sizes, the cellular components of their sensory epithelia differ: in Lepisosteus taste buds comprise two types of elongated light cells and one type of dark cells. In contrast, Amia taste buds contain only one type of light, but two types of dark elongated cells. Afferent synapses are common in the buds of both species, efferent synapses occur only in Lepisosteus taste buds. These differences show that even in the small group of holostean fishes the taste buds are differently organized. Consequently, a representative type of fish taste buds does not exist.
Differences in taste between three polyethylene glycol preparations: a randomized double-blind study
Lam, Tze J; Mulder, Chris JJ; Felt-Bersma, Richelle JF
2011-01-01
Background and aim Patients suffering from chronic constipation require long-term, regular therapy with laxatives. Literature regarding patient preference and acceptance in polyethylene glycol preparations is scarce. Therefore, this research aimed to identify preference between the three polyethylene glycol 3350, namely Molaxole®, Movicol®, and Laxtra Orange®. Furthermore, taste is one of the most important factors leading to patients’ adherence, particularly when the treatment lasts for a long time. Methods In this randomized, cross-over double-blind study, 100 volunteers were recruited by advertisement. The volunteers were invited to taste the preparations and grade the taste using a five-point hedonic scale (extremely poor taste [1] to extremely good taste [5]). The volunteers were then asked to choose the most palatable preparation. Results One hundred volunteers with a mean age of 35 years (range 20–61) were randomized (76 females). Molaxole®, Movicol®, and Laxtra Orange® had a mean hedonic score of 2.76 (SD: 0.82), 2.81 (SD: 0.76) and 3.12 (SD: 0.82) respectively. The hedonic taste score for Laxtra Orange® was significantly better than Molaxole® (P = 0.001) and Movicol® (P = 0.001). No difference was found between Molaxole® and Movicol® (P = 0.61). Molaxole® was the most preferred preparation for 19 volunteers (19%), Movicol® for 24 volunteers (25%) and Laxtra Orange® for 55 volunteers (56%). Two volunteers had no preference. The order in which volunteers tested the preparations had no influence on the taste results. No significant differences in age or gender were observed. Conclusion Laxtra Orange® was most palatable preparation. This may have implications for adherence in patients with chronic constipation. PMID:21949605
Lam, Tze J; Mulder, Chris Jj; Felt-Bersma, Richelle Jf
2011-01-01
Patients suffering from chronic constipation require long-term, regular therapy with laxatives. Literature regarding patient preference and acceptance in polyethylene glycol preparations is scarce. Therefore, this research aimed to identify preference between the three polyethylene glycol 3350, namely Molaxole(®), Movicol(®), and Laxtra Orange(®). Furthermore, taste is one of the most important factors leading to patients' adherence, particularly when the treatment lasts for a long time. In this randomized, cross-over double-blind study, 100 volunteers were recruited by advertisement. The volunteers were invited to taste the preparations and grade the taste using a five-point hedonic scale (extremely poor taste [1] to extremely good taste [5]). The volunteers were then asked to choose the most palatable preparation. One hundred volunteers with a mean age of 35 years (range 20-61) were randomized (76 females). Molaxole(®), Movicol(®), and Laxtra Orange(®) had a mean hedonic score of 2.76 (SD: 0.82), 2.81 (SD: 0.76) and 3.12 (SD: 0.82) respectively. The hedonic taste score for Laxtra Orange(®) was significantly better than Molaxole(®) (P = 0.001) and Movicol(®) (P = 0.001). No difference was found between Molaxole(®) and Movicol(®) (P = 0.61). Molaxole(®) was the most preferred preparation for 19 volunteers (19%), Movicol(®) for 24 volunteers (25%) and Laxtra Orange(®) for 55 volunteers (56%). Two volunteers had no preference. The order in which volunteers tested the preparations had no influence on the taste results. No significant differences in age or gender were observed. Laxtra Orange(®) was most palatable preparation. This may have implications for adherence in patients with chronic constipation.
Appleton, K M; Tuorila, H; Bertenshaw, E J; de Graaf, C; Mela, D J
2018-03-01
There are consistent, evidence-based global public health recommendations to reduce intakes of free sugars. However, the corresponding evidence for recommending reduced exposure to sweetness is less clear. Our aim was to identify and review the published evidence investigating the impact of dietary exposure to sweet-tasting foods or beverages on the subsequent generalized acceptance, preference, or choice of sweet foods and beverages in the diet. Systematic searches were conducted to identify all studies testing relations of variation in exposure to sweetness through foods and beverages with subsequent variation in the generalized acceptance, preference, or choice of sweetened foods or beverages, in humans aged >6 mo. Twenty-one studies met our inclusion criteria, comprising 7 population cohort studies involving 2320 children and 14 controlled trials involving 1113 individuals. These studies were heterogeneous in study design, population, exposure, and outcomes measured, and few were explicitly designed to address our research question. The findings from these were inconsistent. We found equivocal evidence from population cohort studies. The evidence from controlled studies suggests that a higher sweet taste exposure tends to lead to reduced preferences for sweetness in the shorter term, but very limited effects were found in the longer term. A small and heterogeneous body of research currently has considered the impact of varying exposure to sweet taste on subsequent generalized sweet taste preferences, and this evidence is equivocal regarding the presence and possible direction of a relation. Future work should focus on adequately powered studies with well-characterized exposures of sufficient duration. This review was registered with PROSPERO as CRD42016051840, 24 November 2016.
Dolan, Raymond J.
2016-01-01
The weight with which a specific outcome feature contributes to preference quantifies a person’s ‘taste’ for that feature. However, far from being fixed personality characteristics, tastes are plastic. They tend to align, for example, with those of others even if such conformity is not rewarded. We hypothesised that people can be uncertain about their tastes. Personal tastes are therefore uncertain beliefs. People can thus learn about them by considering evidence, such as the preferences of relevant others, and then performing Bayesian updating. If a person’s choice variability reflects uncertainty, as in random-preference models, then a signature of Bayesian updating is that the degree of taste change should correlate with that person’s choice variability. Temporal discounting coefficients are an important example of taste–for patience. These coefficients quantify impulsivity, have good psychometric properties and can change upon observing others’ choices. We examined discounting preferences in a novel, large community study of 14–24 year olds. We assessed discounting behaviour, including decision variability, before and after participants observed another person’s choices. We found good evidence for taste uncertainty and for Bayesian taste updating. First, participants displayed decision variability which was better accounted for by a random-taste than by a response-noise model. Second, apparent taste shifts were well described by a Bayesian model taking into account taste uncertainty and the relevance of social information. Our findings have important neuroscientific, clinical and developmental significance. PMID:27447491
ERIC Educational Resources Information Center
Pope, Lizzy; Wolf, Randi L.
2012-01-01
Objective: This pilot study examined whether informing children of the presence of vegetables in select snack food items alters taste preference. Methods: A random sample of 68 elementary and middle school children tasted identical pairs of 3 snack food items containing vegetables. In each pair, 1 sample's label included the food's vegetable (eg,…
Nehring, Ina; Kostka, Tanja; von Kries, Rüdiger; Rehfuess, Eva A
2015-06-01
Dietary behavior exerts a critical influence on health and is the outcome of a broad range of interacting factors, including food and taste acceptance. These may be programmed in utero and during early infancy. We examined the hypothesis that fetuses and infants exposed to sweet, salty, sour, bitter, umami, or specific tastes show greater acceptance of that same taste later in life. We conducted a systematic review of the literature, using comprehensive searches and following established procedures for screening, data extraction, and quality appraisal. We used harvest plots to synthesize the evidence graphically. Twenty studies comprising 38 subgroups that differed by taste, age, medium, and duration of exposure were included. Exposure to bitter and specific tastes increased the acceptance of these tastes. Studies on sweet and salty tastes showed equivocal results. Studies on sour tastes were sparse. Our systematic review clearly shows programming of the acceptance of bitter and specific tastes. For other tastes the results were either equivocal or confined to a few number of studies that precluded us from drawing conclusions. Further research should examine the association of salty and sour taste exposures on later preferences of these tastes. Long-term studies and randomized clinical trials on each type of taste are needed. © 2015 American Society for Nutrition.
Functional cell types in taste buds have distinct longevities.
Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa
2013-01-01
Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.
Functional Cell Types in Taste Buds Have Distinct Longevities
Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa
2013-01-01
Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8–12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2′-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells. PMID:23320081
ERIC Educational Resources Information Center
Grove, Wayne A.; Hussey, Andrew; Jetter, Michael
2011-01-01
Focused on human capital, economists typically explain about half of the gender earnings gap. For a national sample of MBAs, we account for 82 percent of the gap by incorporating noncognitive skills (for example, confidence and assertiveness) and preferences regarding family, career, and jobs. Those two sources of gender heterogeneity account for…
Hamze, Benjamin; Vaillancourt, Régis; Sharp, Diane; Villarreal, Gilda
2016-01-01
The aim of this randomized single-blind study is to compare taste and odor disturbances in patients receiving 0.9% sodium chloride flushes from 2 brands. Seventy-five patients from 6 to 18 years of age received intravenous 0.9% sodium chloride infusions, and 50 healthy volunteers who tasted the 2 brands of 0.9% sodium chloride from prefilled syringes were assessed for taste and/or odor disturbances. Taste or odor disturbances were equally present in patients flushed with MedXL and Becton-Dickinson 0.9% sodium chloride. Disturbances are more frequent when 0.9% sodium chloride is flushed through central venous access devices than through peripheral catheters. No difference between the brands was found when healthy volunteers tasted it orally.
Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu
2015-06-01
The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.
A High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing.
Hsiao, Yi-Hsing; Hsu, Chia-Hsien; Chen, Chihchen
2016-07-08
The human enteroendocrine L cell line NCI-H716, expressing taste receptors and taste signaling elements, constitutes a unique model for the studies of cellular responses to glucose, appetite regulation, gastrointestinal motility, and insulin secretion. Targeting these gut taste receptors may provide novel treatments for diabetes and obesity. However, NCI-H716 cells are cultured in suspension and tend to form multicellular aggregates, preventing high-throughput calcium imaging due to interferences caused by laborious immobilization and stimulus delivery procedures. Here, we have developed an automated microfluidic platform that is capable of trapping more than 500 single cells into microwells with a loading efficiency of 77% within two minutes, delivering multiple chemical stimuli and performing calcium imaging with enhanced spatial and temporal resolutions when compared to bath perfusion systems. Results revealed the presence of heterogeneity in cellular responses to the type, concentration, and order of applied sweet and bitter stimuli. Sucralose and denatonium benzoate elicited robust increases in the intracellular Ca(2+) concentration. However, glucose evoked a rapid elevation of intracellular Ca(2+) followed by reduced responses to subsequent glucose stimulation. Using Gymnema sylvestre as a blocking agent for the sweet taste receptor confirmed that different taste receptors were utilized for sweet and bitter tastes. This automated microfluidic platform is cost-effective, easy to fabricate and operate, and may be generally applicable for high-throughput and high-content single-cell analysis and drug screening.
Taste of Clindamycin and Acetaminophen.
Hashiba, Kimberlee A; Wo, Shane R; Yamamoto, Loren G
2017-02-01
This study evaluated the taste palatability of liquid clindamycin and acetaminophen products on the market. Subjects rated the palatability of 3 clindamycin suspensions, 1 amoxicillin suspension (tasted twice), an acetaminophen elixir, and an acetaminophen suspension in a randomized blinded fashion on a 0 to 5 scale. Forty-six adults aged 20 to 82 years volunteered for this study. Means (and 95% confidence intervals) were as follows: amoxicillin-first taste 3.6 (3.3-3.9), amoxicillin-second taste 3.5 (3.2-3.7). Clindamycin Rising, Perrigo, Greenstone; 2.0 (1.6-2.5), 3.0 (2.7-3.3), and 2.2 (1.8-2.6), respectively. Acetaminophen elixir 0.6 (0.4-0.8) and acetaminophen suspension 3.4 (3.1-3.6). One clindamycin tasted significantly better than the others. Additionally, although 2 acetaminophen formulations are currently available over-the-counter, the suspension is more palatable and less costly. Medicaid drug programs that perpetuate the use of elixir should change their coverage to save money and provide patients access to better tasting acetaminophen.
Contact and nutrient caregiving effects on newborn infant pain responses.
Gormally, S; Barr, R G; Wertheim, L; Alkawaf, R; Calinoiu, N; Young, S N
2001-01-01
To understand how the 'caregiving context' could affect responses to procedural pain, the authors sought to determine whether (1) the combined effects of sweet taste and holding (caregiving contact) were greater than the effects of either alone, (2) any combined effects were additive or interactive, and (3) the interventions had similar effects on behavioral (crying and facial activity) and physiological (heart rate, vagal tone) responses to the heel-stick procedure in newborn infants in a randomized two-factorial intervention trial. Eighty-five normally developing newborn infants were studied with a mean gestational age of 39.4 weeks on the 2nd or 3rd day of life. Infants were randomized in blocks of eight to receive (1) no holding and water taste (control participants), (2) no holding and sucrose taste (sucrose group), (3) holding and water taste (holding group), or (4) holding and sucrose taste (holding and sucrose group). Crying was reduced significantly by taste and holding, and the interventions combined additively. Facial activity was only significantly reduced by holding. For physiological measures, the interventions interacted with each other and preintervention levels to reduce heart rate and lower vagal tone more during the procedure in infants in whom heart rate and vagal tone were higher before intervention. Consequently, sweet taste and holding interventions combined in complex ways when acting on different behavioral and physiological response systems to modify stressful pain experiences. The results suggest that providing a caregiving context when painful procedures are performed may be a simple and practical method of reducing pain experience in infants, and that no one measure captures these effects.
Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika
2016-06-01
Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. © 2016. Published by The Company of Biologists Ltd.
Iwata, Kentaro; Fukuchi, Takahiko; Yoshimura, Kenichi
2015-05-01
Sushi is a traditional Japanese cuisine enjoyed worldwide. However, using raw fish to make sushi may pose risk of certain parasitic infections, such as anisakidosis, which is most reported in Japan. This risk of infection can be eliminated by freezing fish; however, Japanese people are hesitant to freeze fish because it is believed that freezing ruins sushi's taste. A randomized double-blind trial with discrimination testing was conducted to examine the ability of Japanese individuals to distinguish between frozen and unfrozen sushi. A pair of mackerel and squid sushi, one once frozen and the other not, was provided to the participants, and they were asked to answer which one tasted better. Among 120 rounds of discrimination testing involving the consumption of 240 pieces of mackerel sushi, unfrozen sushi was believed to taste better in 42.5% (51 dishes) of cases, frozen sushi was thought to taste better in 49.2% (59 dishes), and the participants felt the taste was the same in 8.3% (10 dishes). The odds ratio for selecting unfrozen sushi as "tastes better" over frozen sushi was 0.86 (95% confidence interval [CI], .59-1.26; P = .45). For squid, unfrozen sushi was believed to be superior 48.3% of the time (58 dishes), and frozen sushi, 35.0% of the time (42 dishes). They were felt to be the same in 16.7% (20 dishes) (odds ratio, 1.38; 95% CI, .93-2.05; P = .11). Freezing raw fish did not ruin sushi's taste. These findings may encourage the practice of freezing fish before using it in sushi, helping to decrease the incidence of anisakidosis. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Double blind study of the effects of zinc sulfate on taste and smell dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henkin, R.I.; Schecter, P.J.; Friedewald, W.T.
1976-01-01
A randomized, double blind crossover study of the effects of zinc sulfate and placebo was carried out in 106 patients with taste and smell dysfunction secondary to a variety of etiological factors. In the patient group prior to treatment, mean serum zinc concentration and leukocyte alkaline phosphatase activity were significantly lower than normal. Results indicate that zinc sulfate was effectively equivalent to placebo in the treatment of these disorders. Although these results demonstrate abnormalities of zinc metabolism in some patients with taste and smell dysfunction they fail to provide evidence for a single, therapeutic approach to the many disorders whichmore » are associated with abnormalities of taste and smell. However, the methods and procedures developed in this study demonstrate that taste and smell dysfunction can be studied in a quantitative, systematic manner.« less
Nagy, Ahmed; Steele, Catriona M; Pelletier, Cathy A
2014-06-01
The authors examined the impact of barium on the perceived taste intensity of 7 different liquid tastant stimuli and the modulatory effect that these differences in perceived taste intensity have on swallowing behaviors. Participants were 80 healthy women, stratified by age group (<40; >60) and genetic taste status (supertasters; nontasters). Perceived taste intensity and chemesthetic properties (fizziness; burning-stinging) were rated for 7 tastant solutions (each prepared with and without barium) using the general Labeled Magnitude Scale. Tongue-palate pressures and submental surface electromyography (sEMG) were simultaneously measured during swallowing of these same randomized liquids. Path analysis differentiated the effects of stimulus, genetic taste status, age, barium condition, taste intensity, and an effortful saliva swallow strength covariate on swallowing. Barium stimuli were rated as having reduced taste intensity compared with nonbarium stimuli. Barium also dampened fizziness but did not influence burning-stinging sensation. The amplitudes of tongue-palate pressure or submental sEMG did not differ when swallowing barium versus nonbarium stimuli. Despite impacting taste intensity, the addition of barium to liquid stimuli does not appear to alter behavioral parameters of swallowing. Barium solutions can be considered to elicit behaviors that are similar to those used with nonbarium liquids outside the assessment situation.
A Randomized Controlled Comparison of Esophageal Clearance Times of Oral Budesonide Preparations.
Hefner, Jody N; Howard, Robin S; Massey, Robert; Valencia, Miland; Stocker, Derek J; Philla, Katherine Q; Goldman, Matthew D; Nylund, Cade M; Min, Steve B
2016-06-01
Topical steroids prepared as oral viscous slurries have become common in the treatment of eosinophilic esophagitis. Esophageal mucosal contact time correlates with clinical and histologic improvement. To compare the mucosal contact time of alternative oral viscous budesonide (OVB) slurries with the conventional sucralose OVB. A blinded randomized crossover trial investigating esophageal clearance of three OVB slurry preparations was done on healthy adults. Honey and xanthan gum OVB slurries were compared with standard sucralose OVB in 24 randomly assigned subjects. Each subject ingested the sucralose OVB and either the honey or xanthan gum OVB slurries. The esophageal clearance of each slurry was evaluated as an area under the curve (AUC) using 1 millicurie of technetium-99m-sulfur colloid (Tc99) co-administered in each OVB preparation using nuclear scintigraphy. A standardized taste survey was also administered. Xanthan gum had greater mucosal contact time compared to sucralose as measured by a higher AUC at 3 min (P = 0.002), while honey showed no significant difference in esophageal clearance relative to sucralose. Taste scores were significantly higher in the honey group, while scores for xanthan gum were no different from standard sucralose. OVB slurries utilizing xanthan gum may be a superior alternative to a sucralose-based slurry due to its increased mucosal contact time and similar taste tolerance. Honey may be a suitable alternative as well, due to its similar contact time and favorable taste.
Mattes, Richard D
2007-05-01
Evidence supporting a taste component for dietary fat has prompted study of plausible transduction mechanisms. One hypothesizes that long-chain, unsaturated fatty acids block selected delayed-rectifying potassium channels, resulting in a sensitization of taste receptor cells to stimulation by other taste compounds. This was tested in 17 male and 17 female adult (mean +/- SE age = 23.4 +/- 0.7 yr) propylthiouracil tasters with normal resting triglyceride concentrations (87.3 +/- 5.6 mg/day) and body mass index (23.3 +/- 0.4 kg/m(2)). Participants were tested during two approximately 30-min test sessions per week for 8 wk. Eight stimuli were assessed in duplicate via an ascending, three-alternative, forced-choice procedure. Qualities were randomized over weeks. Stimuli were presented as room-temperature, 5-ml portions. They included 1% solutions of linoleic acid with added sodium chloride (salty), sucrose (sweet), citric acid (sour), and caffeine (bitter) as well as solutions of these taste compounds alone. Participants also rated the intensity of the five strongest concentrations using the general labeled magnitude scale. The suprathreshold samples were presented in random order with a rinse between each. Subjects made the ratings self-paced while wearing nose clips. It was hypothesized that taste thresholds would be lower and absolute intensity ratings or slopes of intensity functions would be higher for the stimuli mixed with the linoleic acid. Thresholds were compared by paired t-tests and intensity ratings by repeated measures analysis of variance. Thresholds were significantly higher (i.e., lower sensitivity) for the sodium chloride, citric acid, and caffeine solutions with added fatty acid. Sweet, sour, and salty intensity ratings were lower or unchanged by the addition of a fatty acid. The two highest concentrations of caffeine were rated as weaker in the presence of linoleic acid. These data do not support a mechanism for detecting dietary fats whereby fatty acids sensitize taste receptor cells to stimulation by taste compounds.
Cheng, Feon W.; Monnat, Shannon M.; Lohse, Barbara
2015-01-01
BACKGROUND NEEDs for Bones (NFB), based on the Health Belief Model, is a 4-lesson osteoporosis-prevention curriculum for 11-14 year-olds. This study examined the relationship between enjoyment of food tastings and interest in NFB. METHODS NFB was administered by teachers as part of standard practice and evaluated after the 4th lesson using a 21-item survey. Significant clustering of students within classrooms required use of random-intercept multilevel ordinal regression models in SAS proc GLIMMIX, with students nested within classrooms. Analyses considered tasting experience, eating attitudes, sex, grade, and cohort. RESULTS Students (N = 1619; 50% girls) participated from 85 4th-8th grade classrooms (47% 6th grade; 31% 7th grade) in 16 Pennsylvania SNAP-Ed eligible schools over 2 academic years. For all foods tasted, students who did not enjoy the food tasting were less interested in the lesson than students who did enjoy the food tasting (all p < .001); refried beans (OR 0.30), soy milk (OR = 0.55), cranapple juice (OR = 0.51), sunflower kernels (OR = 0.48), and Swiss cheese (OR = 0.49). CONCLUSIONS Enjoyment of food tasting activities can predict interest in nutrition education on osteoporosis prevention, supporting resource allocation and inclusion of food tasting activities in school-age nutrition education. PMID:26032277
A High Throughput In Vivo Assay for Taste Quality and Palatability
Palmer, R. Kyle; Long, Daniel; Brennan, Francis; Buber, Tulu; Bryant, Robert; Salemme, F. Raymond
2013-01-01
Taste quality and palatability are two of the most important properties measured in the evaluation of taste stimuli. Human panels can report both aspects, but are of limited experimental flexibility and throughput capacity. Relatively efficient animal models for taste evaluation have been developed, but each of them is designed to measure either taste quality or palatability as independent experimental endpoints. We present here a new apparatus and method for high throughput quantification of both taste quality and palatability using rats in an operant taste discrimination paradigm. Cohorts of four rats were trained in a modified operant chamber to sample taste stimuli by licking solutions from a 96-well plate that moved in a randomized pattern beneath the chamber floor. As a rat’s tongue entered the well it disrupted a laser beam projecting across the top of the 96-well plate, consequently producing two retractable levers that operated a pellet dispenser. The taste of sucrose was associated with food reinforcement by presses on a sucrose-designated lever, whereas the taste of water and other basic tastes were associated with the alternative lever. Each disruption of the laser was counted as a lick. Using this procedure, rats were trained to discriminate 100 mM sucrose from water, quinine, citric acid, and NaCl with 90-100% accuracy. Palatability was determined by the number of licks per trial and, due to intermediate rates of licking for water, was quantifiable along the entire spectrum of appetitiveness to aversiveness. All 96 samples were evaluated within 90 minute test sessions with no evidence of desensitization or fatigue. The technology is capable of generating multiple concentration–response functions within a single session, is suitable for in vivo primary screening of tastant libraries, and potentially can be used to evaluate stimuli for any taste system. PMID:23951319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halyard, Michele Y.; Jatoi, Aminah; Sloan, Jeff A.
2007-04-01
Purpose: Taste alterations (dysgeusia) are well described in head and neck cancer patients who undergo radiotherapy (RT). Anecdotal observations and pilot studies have suggested zinc may mitigate these symptoms. This multi-institutional, double-blind, placebo-controlled trial was conducted to provide definitive evidence of this mineral's palliative efficacy. Methods and Materials: A total of 169 evaluable patients were randomly assigned to zinc sulfate 45 mg orally three times daily vs. placebo. Treatment was to be given throughout RT and for 1 month after. All patients were scheduled to receive {>=}2,000 cGy of external beam RT to {>=}30% of the oral cavity, were ablemore » to take oral medication, and had no oral thrush at study entry. Changes in taste were assessed using the previously validated Wickham questionnaire. Results: At baseline, the groups were comparable in age, gender, and planned radiation dose (<6,000 vs. {>=}6,000 cGy). Overall, 61 zinc-treated (73%) and 71 placebo-exposed (84%) patients described taste alterations during the first 2 months (p = 0.16). The median interval to taste alterations was 2.3 vs. 1.6 weeks in the zinc-treated and placebo-exposed patients, respectively (p = 0.09). The reported taste alterations included the absence of any taste (16%), bitter taste (8%), salty taste (5%), sour taste (4%), sweet taste (5%), and the presence of a metallic taste (10%), as well as other descriptions provided by a write in response (81%). Zinc sulfate did not favorably affect the interval to taste recovery. Conclusion: Zinc sulfate, as prescribed in this trial, did not prevent taste alterations in cancer patients who were undergoing RT to the oral pharynx.« less
The effects of energy balance, obesity-proneness and sex on the neuronal response to sweet taste.
Cornier, Marc-Andre; Shott, Megan E; Thomas, Elizabeth A; Bechtell, Jamie L; Bessesen, Daniel H; Tregellas, Jason R; Frank, Guido K
2015-02-01
We have previously shown that propensity for weight gain, energy balance state and sex are important determinants of the neuronal response to visual food cues. It is not clear, though, whether these factors also impact the neuronal response to taste. The objective of this study was to examine the neuronal response to sweet taste during energy imbalance in men and women recruited to be obesity-prone (OP) or obesity-resistant (OR). OP (13 men and 12 women) and OR (12 men and 12 women) subjects were studied after 1 day of eucaloric, overfed and underfed conditions in a randomized crossover design. On each test day, fMRI was performed in the respective acute fed state while subjects received in random order 60 trials each of 1M sucrose solution (SU), or artificial saliva (AS) following a visual cue predicting the taste. The neuronal response to SU versus AS expectation was significantly greater in the amygdala, orbitofrontal cortex, putamen and insula in OR versus OP; SU receipt was not different between groups. There were also sex-based differences with men having greater neuronal response to SU versus AS receipt in the caudate than women. The results, however, were not impacted by the state of energy balance. In summary, response to expectation but not receipt of basic sweet taste was different in OR compared to OP, highlighting the importance of learning and conditioning in the propensity to gain weight. Response to sucrose taste receipt was stronger in men than women, raising questions about the effect of sex hormones on brain response to food. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Banerjee, Priyanka; Preissner, Robert
2018-04-01
Taste of a chemical compounds present in food stimulates us to take in nutrients and avoid poisons. However, the perception of taste greatly depends on the genetic as well as evolutionary perspectives. The aim of this work was the development and validation of a machine learning model based on molecular fingerprints to discriminate between sweet and bitter taste of molecules. BitterSweetForest is the first open access model based on KNIME workflow that provides platform for prediction of bitter and sweet taste of chemical compounds using molecular fingerprints and Random Forest based classifier. The constructed model yielded an accuracy of 95% and an AUC of 0.98 in cross-validation. In independent test set, BitterSweetForest achieved an accuracy of 96 % and an AUC of 0.98 for bitter and sweet taste prediction. The constructed model was further applied to predict the bitter and sweet taste of natural compounds, approved drugs as well as on an acute toxicity compound data set. BitterSweetForest suggests 70% of the natural product space, as bitter and 10 % of the natural product space as sweet with confidence score of 0.60 and above. 77 % of the approved drug set was predicted as bitter and 2% as sweet with a confidence scores of 0.75 and above. Similarly, 75% of the total compounds from acute oral toxicity class were predicted only as bitter with a minimum confidence score of 0.75, revealing toxic compounds are mostly bitter. Furthermore, we applied a Bayesian based feature analysis method to discriminate the most occurring chemical features between sweet and bitter compounds from the feature space of a circular fingerprint.
Banerjee, Priyanka; Preissner, Robert
2018-01-01
Taste of a chemical compound present in food stimulates us to take in nutrients and avoid poisons. However, the perception of taste greatly depends on the genetic as well as evolutionary perspectives. The aim of this work was the development and validation of a machine learning model based on molecular fingerprints to discriminate between sweet and bitter taste of molecules. BitterSweetForest is the first open access model based on KNIME workflow that provides platform for prediction of bitter and sweet taste of chemical compounds using molecular fingerprints and Random Forest based classifier. The constructed model yielded an accuracy of 95% and an AUC of 0.98 in cross-validation. In independent test set, BitterSweetForest achieved an accuracy of 96% and an AUC of 0.98 for bitter and sweet taste prediction. The constructed model was further applied to predict the bitter and sweet taste of natural compounds, approved drugs as well as on an acute toxicity compound data set. BitterSweetForest suggests 70% of the natural product space, as bitter and 10% of the natural product space as sweet with confidence score of 0.60 and above. 77% of the approved drug set was predicted as bitter and 2% as sweet with a confidence score of 0.75 and above. Similarly, 75% of the total compounds from acute oral toxicity class were predicted only as bitter with a minimum confidence score of 0.75, revealing toxic compounds are mostly bitter. Furthermore, we applied a Bayesian based feature analysis method to discriminate the most occurring chemical features between sweet and bitter compounds using the feature space of a circular fingerprint. PMID:29696137
Evaluation of young smokers and non-smokers with Electrogustometry and Contact Endoscopy.
Pavlos, Pavlidis; Vasilios, Nikolaidis; Antonia, Anogeianaki; Dimitrios, Koutsonikolas; Georgios, Kekes; Georgios, Anogianakis
2009-08-20
Smoking is the cause of inducing changes in taste functionality under conditions of chronic exposure. The objective of this study was to evaluate taste sensitivity in young smokers and non-smokers and identify any differences in the shape, density and vascularisation of the fungiform papillae (fPap) of their tongue. Sixty-two male subjects who served in the Greek military forces were randomly chosen for this study. Thirty-four were non-smokers and 28 smokers. Smokers were chosen on the basis of their habit to hold the cigarette at the centre of their lips. Taste thresholds were measured with Electrogustometry (EGM). The morphology and density of the fungiform papillae (fPap) at the tip of the tongue were examined with Contact Endoscopy (CE). There was found statistically important difference (p < 0.05) between the taste thresholds of the two groups although not all smokers presented with elevated taste thresholds: Six of them (21%) had taste thresholds similar to those of non-smokers. Differences concerning the shape and the vessels of the fungiform papillae between the groups were also detected. Fewer and flatter fPap were found in 22 smokers (79%). The majority of smokers shown elevated taste thresholds in comparison to non-smokers. Smoking is an important factor which can lead to decreased taste sensitivity. The combination of methods, such as EGM and CE, can provide useful information about the vascularisation of taste buds and their functional ability.
Noel, Corinna A; Sugrue, Meaghan; Dando, Robin
2017-10-01
Research suggests a weaker sense of taste in people with obesity, with the assumption that a debilitated taste response increases the desire for more intensely tasting stimuli to compensate for decreased taste input. However, empirical testing of this supposition remains largely absent. In a randomized, repeated measures design, 51 healthy subjects were treated with varying concentrations of a tea containing Gymnema sylvestre (GS), to temporarily and selectively diminish sweet taste perception, or a control tea. Following treatment in the four testing sessions, taste intensity ratings for various sweet stimuli were captured on the generalized Labeled Magnitude Scale (gLMS), liking for real foods assessed on the hedonic gLMS, and optimal level of sweetness quantified via an ad-libitum mixing task. Data were analyzed with mixed models assessing both treatment condition and each subject's resultant sweet response with various taste-related outcomes, controlling for covariates. GS treatment diminished sweet intensity perception (p < 0.001), reduced liking for sweet foods (p < 0.001), and increased the desired sucrose content of these foods (p < 0.001). Regression modeling revealed a 1% reduction in sweet taste response was associated with a 0.40 g/L increase in optimal concentration of sucrose (p < 0.001). Our results show that an attenuation in the perceived taste intensity of sweeteners correlates with shifted preference and altered hedonic response to select sweet foods. This suggests that those with a diminished sense of taste may desire more intense stimuli to attain a satisfactory level of reward, potentially influencing eating habits to compensate for a lower gustatory input. Copyright © 2017. Published by Elsevier Ltd.
Surface morphology of taste buds in catfish barbels.
Ovalle, W K; Shinn, S L
1977-03-16
External taste buds abound on barbels of the adult catfish Corydoras arcuatus. When examined by scanning electron microscopy, they are visualized as a series of punctate, conical elevations projecting from the general surface epithelium. All taste buds were found to be of one type. Both their external and internal surface features could be clearly elucidated on intact barbels and in barbels fractured transversely at various positions along their length. An extensive nerve terminal network penetrates the base of each taste bud. Two populations of elongated cells bearing prominent microvilli project through the central pore at the tip of each bud. One set of microvilli is thicker, longer and more club-shaped than its counterpart. While both are randomly distributed within each central pore, the small, short microvilli appear to outnumber the larger ones. A third population of cells, devoid of any apical microvilli, was also seen in some of the taste buds examined internally. These cells do not project to the external surface and are interpreted as "basal" cells described in previous light and transmission electron microscope studies of taste buds in other vertebrate species. The functional significance of some of these morphological findings is discussed.
Mechlin, Clay; Kalorin, Carmin; Asplin, John; White, Mark
2011-09-01
Oral citrate supplements have been shown to decrease kidney stone recurrence rates in both laboratory and clinical studies. The taste of the citrate supplements, however, is poor, and long-term compliance is low. Our objective was to determine if Splenda(®) added to potassium citrate (KCit) improves palatability without changing 24-hour urine parameters. 12 subjects were randomly assigned to receive either KCit alone for 3 days or KCit + Splenda in a double-blind trial. The 24-hour urine collections were performed before and after 3 days of therapy. After 1 week, the two groups switched treatments. After each treatment, a visual analog taste scale was completed to gauge the taste and palatability. The 24-hour urine parameters of kidney stone risk factors were compared between groups. The primary end points were to determine whether Splenda improved palatability of citrate supplementation and whether it altered 24-hour urine parameters. Taste was judged to be 2.5 ± 0.9 points better in the Splenda + KCit compared with KCit alone (P=0.02). The 24-hour Cit, K, and pH were significantly higher in the KCit and KCit + Splenda groups compared with baseline, but not significantly different from each other. Splenda significantly improves the palatability of KCit therapy and does not alter the beneficial effects of KCit on 24-hour urine Cit, K, or pH. The addition of Splenda altered the average taste score from one that might prohibit compliance to one that would not.
Spetter, Maartje S; de Graaf, Cees; Viergever, Max A; Smeets, Paul A M
2012-04-01
After food consumption, the motivation to eat (wanting) decreases and associated brain reward responses change. Wanting-related brain responses and how these are affected by consumption of specific foods are ill documented. Moreover, the predictive value of food-induced brain responses for subsequent consumption has not been assessed. We aimed to determine the effects of consumption of sweet and savory foods on taste activation in the brain and to assess how far taste activation can predict subsequent ad libitum intake. Fifteen healthy men (age: 27 ± 2 y, BMI: 22.0 ± 1.5 kg/m2) participated in a randomized crossover trial. After a >3-h fast, participants were scanned with the use of functional MRI before and after consumption of a sweet or savory preload (0.35 L fruit or tomato juice) on two occasions. After the scans, the preload juice was consumed ad libitum. During scanning, participants tasted the juices and rated their pleasantness. Striatal taste activation decreased after juice consumption, independent of pleasantness. Sweet and savory taste activation were not differentially affected by consumption. Anterior cingulate taste activation predicted subsequent ad libitum intake of sweet (r = -0.78; P < 0.001(uncorrected)) as well as savory juice (r = -0.70; P < 0.001(uncorrected)). In conclusion, we showed how taste activation of brain reward areas changes following food consumption. These changes may be associated with the food's physiological relevance. Further, the results suggest that anterior cingulate taste activation reflects food-specific satiety. This extends our understanding of the representation of food specific-appetite in the brain and shows that neuroimaging may provide objective and more accurate measures of food motivation than self-report measures.
Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli.
Geran, Laura C; Travers, Susan P
2006-11-01
Molecular data suggest that receptors for all bitter ligands are coexpressed in the same taste receptor cells (TRCs), whereas physiological results indicate that individual TRCs respond to only a subset of bitter stimuli. It is also unclear to what extent bitter-responsive neurons are stimulated by nonbitter stimuli. To explore these issues, single neuron responses were recorded from the rat nucleus of the solitary tract (NST) during whole mouth stimulation with a variety of bitter compounds: 10 microM cycloheximide, 7 mM propylthiouracil, 10 mM denatonium benzoate, and 3 mM quinine hydrochloride at intensities matched for behavioral effectiveness. Stimuli representing the remaining putative taste qualities were also tested. Particular emphasis was given to activating taste receptors in the foliate papillae innervated by the quinine-sensitive glossopharyngeal nerve. This method revealed a novel population of bitter-best (B-best) cells with foliate receptive fields and significant selectivity for bitter tastants. Across all neurons, multidimensional scaling depicted bitter stimuli as loosely clustered yet clearly distinct from nonbitter tastants. When neurons with posterior receptive fields were analyzed alone, bitter stimuli formed a tighter cluster. Nevertheless, responses to bitter stimuli were variable across B-best neurons, with cycloheximide the most, and quinine the least frequent optimal stimulus. These results indicate heterogeneity for the processing of ionic and nonionic bitter tastants, which is dependent on receptive field. Further, they suggest that neurons selective for bitter substances could contribute to taste coding.
Modeling the Losses of Dissolved CO(2) from Laser-Etched Champagne Glasses.
Liger-Belair, Gérard
2016-04-21
Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate definitely impacts champagne tasting by modifying the neuro-physicochemical mechanisms responsible for aroma release and flavor perception. On the basis of theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics, and mass transfer equations, a global model is proposed, depending on various parameters of both the wine and the glass itself, which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses. The question of champagne temperature was closely examined, and its role on the modeled losses of dissolved CO2 was corroborated by a set of experimental data.
Tobacco Influence on Taste and Smell: Systematic Review of the Literature
Da Ré, Allessandra Fraga; Gurgel, Léia Gonçalves; Buffon, Gabriela; Moura, Weluma Evelyn Rodrigues; Marques Vidor, Deisi Cristina Gollo; Maahs, Márcia Angelica Peter
2018-01-01
Introduction In Brazil, estimates show that 14.7% of the adult population smokes, and changes in smell and taste arising from tobacco consumption are largely present in this population, which is an aggravating factor to these dysfunctions. Objectives The objective of this study is to systematically review the findings in the literature about the influence of smoking on smell and taste. Data Synthesis Our research covered articles published from January 1980 to August 2014 in the following databases: MEDLINE (accessed through PubMed), LILACS, Cochrane Library, and SciELO. We conducted separate lines of research: one concerning smell and the other, taste. We analyzed all the articles that presented randomized controlled studies involving the relation between smoking and smell and taste. Articles that presented unclear methodologies and those whose main results did not target the smell or taste of the subjects were excluded. Titles and abstracts of the articles identified by the research strategy were evaluated by researchers. We included four studies, two of which were exclusively about smell: the first noted the relation between the perception of puff strength and nicotine content; the second did not find any differences in the thresholds and discriminative capacity between smokers and nonsmokers. One article considered only taste and supports the relation between smoking and flavor, another considered both sensory modalities and observes positive results toward the relation immediately after smoking cessation. Conclusion Three of the four studies presented positive results for the researched variables. PMID:29371903
ERIC Educational Resources Information Center
Vila, Luis E.; Garcia-Aracil, Adela; Mora, Jose-Gines
2007-01-01
A student's choice of a field of study is a personal decision that combines individual tastes, inclinations, preferences, and prospects related to the working life with a number of financial and academic constraints. Therefore, the analysis of the effects of degree field on job satisfaction should also address the unobserved heterogeneity among…
Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila
Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Martín; Burke, Christopher; Waddell, Scott
2015-01-01
Summary Dopaminergic neurons provide reward learning signals in mammals and insects [1–4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β′2 and γ4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ5b regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population. PMID:25728694
Pope, Lizzy; Wolf, Randi L
2012-01-01
This pilot study examined whether informing children of the presence of vegetables in select snack food items alters taste preference. A random sample of 68 elementary and middle school children tasted identical pairs of 3 snack food items containing vegetables. In each pair, 1 sample's label included the food's vegetable (eg, broccoli gingerbread spice cake), and 1 sample's label did not (eg, gingerbread spice cake). Participants reported whether the samples tasted the same, or whether they preferred one sample. Frequency of vegetable consumption was also assessed. Taste preferences did not differ for the labeled versus the unlabeled sample of zucchini chocolate chip bread, χ(2) (2, n = 68) = 3.21, P = .20 or broccoli gingerbread spice cake χ(2) (2, n = 68) = 2.15, P = .34. However, students preferred the unlabeled cookies (ie, chocolate chip cookies) over the vegetable-labeled version (ie, chickpea chocolate chip cookies), χ(2) = (2, n = 68) 9.21, P = .01. Chickpeas were consumed less frequently (81% had not tried in past year) as compared to zucchini and broccoli. Informing children of the presence of vegetables hidden within snack food may or may not alter taste preference and may depend on the frequency of prior exposure to the vegetable. Copyright © 2012 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Gold and Silver Health Plans: Accommodating Demand Heterogeneity in Managed Competition
Glazer, Jacob; McGuire, Thomas G.
2011-01-01
New regulation of health insurance markets creates multiple levels of health plans, with designations like “Gold” and “Silver”. The underlying rationale for the heavy-metal approach to insurance regulation is that heterogeneity in demand for health care is not only due to health status (sick demand more than the healthy) but also to other, “taste” related factors (rich demand more than the poor). This paper models managed competition with demand heterogeneity to consider plan payment and enrollee premium policies in relation to efficiency (net consumer benefit) and fairness (the European concept of “solidarity”). Specifically, this paper studies how to implement a “Silver” and “Gold” health plan efficiently and fairly in a managed competition context. We show that there are sharp tradeoffs between efficiency and fairness. When health plans cannot or may not (because of regulation) base premiums on any factors affecting demand, enrollees do not choose the efficient plan. When taste (e.g. income) can be used as a basis of payment, a simple tax can achieve both efficiency and fairness. When only health status (and not taste) can be used as a basis of payment, health status-based taxes and subsidies are required and efficiency can only be achieved with a modified version of fairness we refer to as “weak solidarity.” An overriding conclusion is that the regulation of premiums for both the basic and the higher level plans is necessary for efficiency. PMID:21767887
Choosing between an Apple and a Chocolate Bar: the Impact of Health and Taste Labels
Forwood, Suzanna E.; Walker, Alexander D.; Hollands, Gareth J.; Marteau, Theresa M.
2013-01-01
Increasing the consumption of fruit and vegetables is a central component of improving population health. Reasons people give for choosing one food over another suggest health is of lower importance than taste. This study assesses the impact of using a simple descriptive label to highlight the taste as opposed to the health value of fruit on the likelihood of its selection. Participants (N=439) were randomly allocated to one of five groups that varied in the label added to an apple: apple; healthy apple; succulent apple; healthy and succulent apple; succulent and healthy apple. The primary outcome measure was selection of either an apple or a chocolate bar as a dessert. Measures of the perceived qualities of the apple (taste, health, value, quality, satiety) and of participant characteristics (restraint, belief that tasty foods are unhealthy, BMI) were also taken. When compared with apple selection without any descriptor (50%), the labels combining both health and taste descriptors significantly increased selection of the apple (’healthy & succulent’ 65.9% and ‘succulent & healthy’ 62.4%), while the use of a single descriptor had no impact on the rate of apple selection (‘healthy’ 50.5% and ‘succulent’ 52%). The strongest predictors of individual dessert choice were the taste score given to the apple, and the lack of belief that healthy foods are not tasty. Interventions that emphasize the taste attributes of healthier foods are likely to be more effective at achieving healthier diets than those emphasizing health alone. PMID:24155964
ERIC Educational Resources Information Center
Heim, Bradley T.
2009-01-01
This paper proposes a new method for estimating family labor supply in the presence of taxes. This method accounts for continuous hours choices, measurement error, unobserved heterogeneity in tastes for work, the nonlinear form of the tax code, and fixed costs of work in one comprehensive specification. Estimated on data from the 2001 PSID, the…
Beverage intake preference and bowel preparation laxative taste preference for colonoscopy
Laiyemo, Adeyinka O; Burnside, Clinton; Laiyemo, Maryam A; Kwagyan, John; Williams, Carla D; Idowu, Kolapo A; Ashktorab, Hassan; Kibreab, Angesom; Scott, Victor F; Sanderson, Andrew K
2015-01-01
AIM: To examine whether non-alcoholic beverage intake preferences can guide polyethylene glycol (PEG)-based bowel laxative preparation selection for patients. METHODS: We conducted eight public taste test sessions using commercially procured (A) unflavored PEG, (B) citrus flavored PEG and (C) PEG with ascorbate (Moviprep). We collected characteristics of volunteers including their beverage intake preferences. The volunteers tasted the laxatives in randomly assigned orders and ranked the laxatives as 1st, 2nd, and 3rd based on their taste preferences. Our primary outcome is the number of 1st place rankings for each preparation. RESULTS: A total of 777 volunteers completed the study. Unflavored PEG was ranked as 1st by 70 (9.0%), flavored PEG by 534 (68.7%) and PEG with ascorbate by 173 (22.3%) volunteers. Demographic, lifestyle characteristics and beverage intake patterns for coffee, tea, and carbonated drinks did not predict PEG-based laxative preference. CONCLUSION: Beverage intake pattern was not a useful guide for PEG-based laxative preference. It is important to develop more tolerable and affordable bowel preparation laxatives for colonoscopy. Also, patients should taste their PEG solution with and without flavoring before flavoring the entire gallon as this may give them more opportunity to pick a pattern that may be more tolerable. PMID:26261736
Beverage intake preference and bowel preparation laxative taste preference for colonoscopy.
Laiyemo, Adeyinka O; Burnside, Clinton; Laiyemo, Maryam A; Kwagyan, John; Williams, Carla D; Idowu, Kolapo A; Ashktorab, Hassan; Kibreab, Angesom; Scott, Victor F; Sanderson, Andrew K
2015-08-06
To examine whether non-alcoholic beverage intake preferences can guide polyethylene glycol (PEG)-based bowel laxative preparation selection for patients. We conducted eight public taste test sessions using commercially procured (A) unflavored PEG, (B) citrus flavored PEG and (C) PEG with ascorbate (Moviprep). We collected characteristics of volunteers including their beverage intake preferences. The volunteers tasted the laxatives in randomly assigned orders and ranked the laxatives as 1(st), 2(nd), and 3(rd) based on their taste preferences. Our primary outcome is the number of 1(st) place rankings for each preparation. A total of 777 volunteers completed the study. Unflavored PEG was ranked as 1(st) by 70 (9.0%), flavored PEG by 534 (68.7%) and PEG with ascorbate by 173 (22.3%) volunteers. Demographic, lifestyle characteristics and beverage intake patterns for coffee, tea, and carbonated drinks did not predict PEG-based laxative preference. Beverage intake pattern was not a useful guide for PEG-based laxative preference. It is important to develop more tolerable and affordable bowel preparation laxatives for colonoscopy. Also, patients should taste their PEG solution with and without flavoring before flavoring the entire gallon as this may give them more opportunity to pick a pattern that may be more tolerable.
Effect of acute stress on taste perception: in relation with baseline anxiety level and body weight.
Ileri-Gurel, Esin; Pehlivanoglu, Bilge; Dogan, Murat
2013-01-01
We aimed to determine the effect of acute stress on taste perception and its modulation in relation to body weight and baseline anxiety in this study. The anxiety of the participants, randomly allocated to stress (n = 35) or control (n = 16) groups, was assessed by State Trait Anxiety Inventory. Stroop color-word interference and cold pressor tests were applied as stress protocol. Glucose and salt taste detection thresholds were evaluated before and after the stress protocol in the stress group and corresponding times in the control group. Stress protocol increased heart rate and blood pressure as an indicator of stress system activation. Following stress glucose and salt thresholds decreased in the stress group, unchanged in the control group. Prestress salt thresholds were positively and decrements in salt thresholds were negatively correlated with trait anxiety scores of participants. The state anxiety levels of stress group positively correlated with the decrease in glucose thresholds. Waist-to-hip ratio was negatively correlated with prestress salt thresholds of the subjects. Our results revealed that thresholds for sweet and salty tastes are modulated during stressful conditions. Our data also demonstrated a relationship between taste perception and baseline anxiety levels of healthy individuals, which may be important to understand the appetite alterations in individuals under stressful conditions.
Changes in taste preference and steps taken after sleep curtailment.
Smith, Shannon L; Ludy, Mary-Jon; Tucker, Robin M
2016-09-01
A substantial proportion of the population does not achieve the recommended amount of sleep. Previous work demonstrates that sleep alterations perturb energy balance by disrupting appetite hormones, increasing energy intake, and decreasing physical activity. This study explored the influence of sleep duration on taste perception as well as effects on dietary intake and physical activity. Participants (n=24 habitual short sleepers and n=27 habitual long sleepers, 82.4% female, 88.2% white, 25.2±7.7years) completed two randomized taste visits; one following short sleep duration (≤7h) and one following long sleep duration (>7h). Taste perception measures included sweet and salt detection thresholds (ascending 3-alternative, forced-choice method), as well as sweet preference (Monell 2-series, forced-choice, paired-comparison, tracking method). Steps and sleep were tracked via FitBit, an activity monitoring device. Dietary intake was assessed using 24-hour recalls and analyzed using Nutritionist Pro. Habitual long-sleepers had a higher sweet taste preference (p=0.042) and took fewer steps (p=0.036) following sleep curtailment compared to the night where they slept >7h but did not experience changes in dietary intake or detection thresholds. Habitual short-sleepers did not experience changes in taste perception, activity, or dietary intake following sleep alteration. Habitual long-sleepers may be at greater risk of gaining weight when typical sleep patterns are disrupted. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Forty hair-type lambs were examined in a 70-d study to determine the effects of gender (castrate; C vs. intact; I) and forage type on carcass traits and sensory acceptability. Lambs were procured from a single source in Missouri and one-half were randomly castrated. Lambs were randomly assigned to t...
Takachi, Ribeka; Ishihara, Junko; Iwasaki, Motoki; Ishii, Yuri; Tsugane, Shoichiro
2014-05-01
Reducing dietary salt intake remains a challenging issue in the management of chronic disease. Taste preference is suspected to be an important proxy index of daily sodium consumption. This study examined the difference in daily sodium intake according to self-reported taste preference for miso soup as representative of homemade cooking in middle-aged urban Japanese adults. Among 896 candidates randomly selected from examinees of cancer screening provided by the National Cancer Center, Japan, 143 men and women participated in this cross-sectional study. During the period from May 2007 through April 2008, participants provided a food frequency questionnaire, which included information on taste preference and dietary behaviors, a weighed food record over 4 consecutive days, a simultaneous 24-hour urine collection, and a sample of miso soup as it is usually prepared in the home. Mean 24-hour urinary sodium excretion and daily sodium intake were compared according to the self-reported taste preference for miso soup. Taste preference was significantly associated with both 24-hour urinary sodium excretion (trend P<0.01) and daily sodium intake (trend P=0.01), with a corresponding regression coefficient per 1 rank preference increment of 403 mg and 315 mg/day, respectively. The observed association between preference and urinary excretion was attenuated by further adjustment for discretionary salt-related behaviors. These findings suggest that self-reported taste preference for homemade cooking is a defining feature of daily sodium intake through discretionary salt-related dietary behaviors. A reduction in daily sodium consumption per 1 rank light preference was estimated to equate to approximately 1 g salt/day. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Byrd, Karen; Almanza, Barbara; Ghiselli, Richard F; Behnke, Carl; Eicher-Miller, Heather A
2018-06-01
High sodium levels in restaurant food have prompted Philadelphia and New York City to require inclusion of sodium content in addition to calories on menus to "nudge" consumers toward lower sodium foods. However, taste perceptions may impact the effectiveness of this intervention. An online survey tested whether sodium and calorie menu nutrition information (MNI) influenced consumer choices from a casual dining restaurant menu, accounting for consumers' intuition about taste of food relative to sodium, calories, and healthiness. Consumer choices were assessed based on calorie and sodium content of the menu items they selected. Participants were randomized to a menu with (1) calorie MNI only, (2) calorie plus numeric sodium MNI, (3) calorie MNI plus a sodium warning symbol for foods with 2300 mg of sodium or more, or (4) no MNI. Calorie plus numeric sodium MNI was associated with selection of meals lower in sodium compared to meals from the calorie MNI only menu or no MNI menu, but only for consumers with a taste intuition that (relatively) lower sodium, lower calorie, healthy foods were tasty. Consumers with the opposite taste intuition *(foods with these characteristics are not tasty) ordered meals higher in sodium. Inclusion of the sodium warning symbol did not result in a significantly different meal sodium content compared to the other menu conditions, regardless of taste intuition. However, differing levels of taste intuition alone, without consideration of MNI, was associated with ordering meals of significantly different calorie content. Overall, findings suggest adding calorie plus numeric sodium MNI may lead to beneficial outcomes (i.e., selecting meals lower in sodium) for some consumers and detrimental outcomes (i.e., selecting meals higher in sodium) for others, depending on their taste intuition. Copyright © 2018 Elsevier Ltd. All rights reserved.
da Silva, Paula Porrelli Moreira; Casemiro, Renata Cristina; Zillo, Rafaela Rebessi; de Camargo, Adriano Costa; Prospero, Evanilda Teresinha Perissinotto; Spoto, Marta Helena Fillet
2014-01-01
This study evaluated the effect of pasteurization followed by storage under different conditions on the sensory attributes of frozen juçara pulp using quantitative descriptive analysis (QDA). Pasteurization of packed frozen pulp was performed by its immersion in stainless steel tank containing water (80°C) for 5 min, followed by storage under refrigerated and frozen conditions. A trained sensory panel evaluated the samples (6°C) on day 1, 15, 30, 45, 60, 75, and 90. Sensory attributes were separated as follows: appearance (foamy, heterogeneous, purple, brown, oily, and creamy), aroma (sweet and fermented), taste (astringent, bitter, and sweet), and texture (oily and consistent), and compared to a reference material. In general, unpasteurized frozen pulp showed the highest score for foamy appearance, and pasteurized samples showed highest scores to creamy appearance. Pasteurized samples remained stable regarding brown color development while unpasteurized counterparts presented increase. Color is an important attribute related to the product identity. All attributes related to taste and texture remained constant during storage for all samples. Pasteurization followed by storage under frozen conditions has shown to be the best conservation method as samples submitted to such process received the best sensory evaluation, described as foamy, slightly heterogeneous, slightly bitter, and slightly astringent. PMID:25473489
da Silva, Paula Porrelli Moreira; Casemiro, Renata Cristina; Zillo, Rafaela Rebessi; de Camargo, Adriano Costa; Prospero, Evanilda Teresinha Perissinotto; Spoto, Marta Helena Fillet
2014-07-01
This study evaluated the effect of pasteurization followed by storage under different conditions on the sensory attributes of frozen juçara pulp using quantitative descriptive analysis (QDA). Pasteurization of packed frozen pulp was performed by its immersion in stainless steel tank containing water (80°C) for 5 min, followed by storage under refrigerated and frozen conditions. A trained sensory panel evaluated the samples (6°C) on day 1, 15, 30, 45, 60, 75, and 90. Sensory attributes were separated as follows: appearance (foamy, heterogeneous, purple, brown, oily, and creamy), aroma (sweet and fermented), taste (astringent, bitter, and sweet), and texture (oily and consistent), and compared to a reference material. In general, unpasteurized frozen pulp showed the highest score for foamy appearance, and pasteurized samples showed highest scores to creamy appearance. Pasteurized samples remained stable regarding brown color development while unpasteurized counterparts presented increase. Color is an important attribute related to the product identity. All attributes related to taste and texture remained constant during storage for all samples. Pasteurization followed by storage under frozen conditions has shown to be the best conservation method as samples submitted to such process received the best sensory evaluation, described as foamy, slightly heterogeneous, slightly bitter, and slightly astringent.
Owen, Laura H; Kennedy, Orla B; Hill, Claire; Houston-Price, Carmel
2018-05-26
Repeated taste exposure is an established means of increasing children's liking and intake of fruit and vegetables. However, parents find it difficult to offer children disliked foods repeatedly, often giving up after a few attempts. Studies show that familiarizing children to fruit and vegetables through picture books can increase their interest in tasting targeted foods. This study explored whether looking at picture books before providing foods to taste improved the outcomes of a home-delivered taste exposure regime. Parents of 127 toddlers (aged 21-24 months) identified two 'target' foods they wanted their child to eat (1 fruit, 1 vegetable). Families were randomly assigned to one of three groups. Parents and children in two experimental groups looked at books about either the target fruit or vegetable every day for two weeks; the control group did not receive a book. Parents in all three groups were then asked to offer their child both target foods every day during a 2-week taste-exposure phase. Parental ratings of children's liking and consumption of the foods were collected at baseline, immediately following taste-exposure (post-intervention), and 3 months later (follow-up). In all groups, liking of both foods increased following taste exposure and remained above baseline at follow-up (all ps < .001). In addition, compared to the control group who experienced only taste exposure, looking at vegetable books enhanced children's liking of their target vegetable post-intervention (p < .001) and at follow-up (p < .05), and increased consumption of the vegetable at follow-up (p < .01). Exposure to vegetable books was also associated with smaller increases in neophobia and food fussiness over the period of the study compared to controls (ps < .01), suggesting that picture books may have positive, long-term impacts on children's attitudes towards new foods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Interventions for the management of taste disturbances.
Nagraj, Sumanth Kumbargere; Naresh, Shetty; Srinivas, Kandula; Renjith George, P; Shrestha, Ashish; Levenson, David; Ferraiolo, Debra M
2014-11-26
The sense of taste is very much essential to the overall health of the individual. It is a necessary component to enjoying one's food, which in turn provides nutrition to an individual. Any disturbance in taste perception can hamper the quality of life in such patients by influencing their appetite, body weight and psychological well-being. Taste disorders have been treated using different modalities of treatment and there is no consensus for the best intervention. Hence this Cochrane systematic review was undertaken. To assess the effects of interventions for the management of patients with taste disturbances. We searched the Cochrane Oral Health Group Trials Register (to 5 March 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 1, 2014), MEDLINE via OVID (1948 to 5 March 2014), EMBASE via OVID (1980 to 5 March 2014), CINAHL via EBSCO (1980 to 5 March 2014) and AMED via OVID (1985 to 5 March 2014). We also searched the relevant clinical trial registries and conference proceedings from the International Association of Dental Research/American Association of Dental Research (to 5 March 2014), Association for Research in Otolaryngology (to 5 March 2014), the US National Institutes of Health Trials Register (to 5 March 2014), metaRegister of Controlled Trials (mRCT) (to 5 March 2014), World Health Organization's International Clinical Trials Registry Platform (WHO ICTRP) (to 5 March 2014) and International Federation of Pharmaceutical Manufacturers and Associations (IFPMA) Clinical Trials Portal (to 5 March 2014). We included all randomised controlled trials (RCTs) comparing any pharmacological agent with a control intervention or any non-pharmacological agent with a control intervention. We also included cross-over trials in the review. Two authors independently, and in duplicate, assessed the quality of trials and extracted data. Wherever possible, we contacted study authors for additional information. We collected adverse events information from the trials. We included nine trials (seven parallel and two cross-over RCTs) with 566 participants. We assessed three trials (33.3%) as having a low risk of bias, four trials (44.5%) at high risk of bias and two trials (22.2%) as having an unclear risk of bias. We only included studies on taste disorders in this review that were either idiopathic, or resulting from zinc deficiency or chronic renal failure.Of these, eight trials with 529 people compared zinc supplements to placebo for patients with taste disorders. The participants in two trials were children and adolescents with respective mean ages of 10 and 11.2 years and the other six trials had adult participants. Out of these eight, two trials assessed the patient reported outcome for improvement in taste acuity using zinc supplements (RR 1.45, 95% CI 1.0 to 2.1; very low quality evidence). We included three trials in the meta-analysis for overall taste improvement (effect size 0.44, 95% CI 0.23 to 0.65; moderate quality evidence). Two other trials described the results as taste acuity improvement and we conducted subgroup analyses due to clinical heterogeneity. One trial described the results as taste recognition improvement for each taste sensation and we analysed this separately. We also analysed one cross-over trial separately using the first half of the results. None of the zinc trials tested taste discrimination. Only one trial tested taste discrimination using acupuncture (effect size 2.80, 95% CI -1.18 to 6.78; low quality evidence).Out of the eight trials using zinc supplementation, four reported adverse events like eczema, nausea, abdominal pain, diarrhoea, constipation, decrease in blood iron, increase in blood alkaline phosphatase, and minor increase in blood triglycerides. No adverse events were reported in the acupuncture trial.None of the included trials could be included in the meta-analysis for health-related quality of life in taste disorder patients. We found very low quality evidence that was insufficient to conclude on the role of zinc supplements to improve taste perception by patients, however we found moderate quality evidence that zinc supplements improve overall taste improvement in patients with zinc deficiency/idiopathic taste disorders. We also found low quality evidence that zinc supplements improve taste acuity in zinc deficient/idiopathic taste disorders and very low quality evidence for taste recognition improvement in children with taste disorders secondary to chronic renal failure. We did not find any evidence to conclude the role of zinc supplements for improving taste discrimination, or any evidence addressing health-related quality of life due to taste disorders.We found low quality evidence that is not sufficient to conclude on the role of acupuncture for improving taste discrimination in cases of idiopathic dysgeusia (distortion of taste) and hypogeusia (reduced ability to taste). We were unable to draw any conclusions regarding the superiority of zinc supplements or acupuncture as none of the trials compared these interventions.
Yi, Sunghwan; Kanetkar, Vinay; Brauer, Paula
2015-10-01
While vegetables are often studied as one food group, global measures may mask variation in the types and forms of vegetables preferred by different individuals. To explore preferences for and perceptions of vegetables, we assessed main food preparers based on their preparation of eight specific vegetables and mushrooms. An online self-report survey. Ontario, Canada. Measures included perceived benefits and obstacles of vegetables, convenience orientation and variety seeking in meal preparation. Of the 4517 randomly selected consumers who received the invitation, 1013 responded to the survey (22·4 % response). Data from the main food preparers were analysed (n 756). Latent profile analysis indicated three segments of food preparers. More open to new recipes, the 'crucifer lover' segment (13 %) prepared and consumed substantially more Brussels sprouts, broccoli and asparagus than the other segments. Although similar to the 'average consumer' segment (54 %) in many ways, the 'frozen vegetable user' segment (33 %) used significantly more frozen vegetables than the other segments due to higher prioritization of time and convenience in meal preparation and stronger 'healthy=not tasty' perception. Perception of specific vegetables on taste, healthiness, ease of preparation and cost varied significantly across the three consumer segments. Crucifer lovers also differed with respect to shopping and cooking habits compared with the frozen vegetable users. The substantial heterogeneity in the types of vegetables consumed and perceptions across the three consumer segments has implications for the development of new approaches to promoting these foods.
Choo, Ezen; Picket, Benjamin; Dando, Robin
2017-09-01
Multiple recent reports have detailed the presence of adenosine receptors in sweet sensitive taste cells of mice. These receptors are activated by endogenous adenosine in the plasma to enhance sweet signals within the taste bud, before reporting to the primary afferent. As we commonly consume caffeine, a powerful antagonist for such receptors, in our daily lives, an intriguing question we sought to answer was whether the caffeine we habitually consume in coffee can inhibit the perception of sweet taste in humans. 107 panelists were randomly assigned to 2 groups, sampling decaffeinated coffee supplemented with either 200 mg of caffeine, about the level found in a strong cup of coffee, or an equally bitter concentration of quinine. Participants subsequently performed sensory testing, with the session repeated in the alternative condition in a second session on a separate day. Panelists rated both the sweetened coffee itself and subsequent sucrose solutions as less sweet in the caffeine condition, despite the treatment having no effect on bitter, sour, salty, or umami perception. Panelists were also unable to discern whether they had consumed the caffeinated or noncaffeinated coffee, with ratings of alertness increased equally, but no significant improvement in reaction times, highlighting coffee's powerful placebo effect. This work validates earlier observations in rodents in a human population. © 2017 Institute of Food Technologists®.
Effect of a local anesthetic lozenge in relief of symptoms in burning mouth syndrome.
Treldal, C; Jacobsen, C B; Mogensen, S; Rasmussen, M; Jacobsen, J; Petersen, J; Lynge Pedersen, A M; Andersen, O
2016-03-01
Patients with burning mouth syndrome (BMS) often represent a clinical challenge as available agents for symptomatic treatment are few and often ineffective. The aim was to evaluate the effect of a bupivacaine lozenge on oral mucosal pain, xerostomia, and taste alterations in patients with BMS. Eighteen patients (4 men and 14 women) aged 39-71 years with BMS were included in this randomized, double-blinded, placebo-controlled, crossover trial. Lozenges (containing bupivacaine or placebo) were administrated three times a day for 2 weeks for two separate treatment periods. Assessment of oral mucosal pain, xerostomia, and taste alterations was performed in a patient diary on a visual analog scale (ranging from 0 to 100 mm) before and after the lozenge was dissolved. The bupivacaine lozenge significantly reduced the burning oral pain (P < 0.001), increased the sense of taste disturbances (P < 0.001), and had no impact on xerostomia, when adjusted for the treatment period. Our results indicate that the bupivacaine lozenge offers a novel therapeutic modality to patients with BMS, although without alleviating effect on the associated symptoms, taste alterations, and xerostomia. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Behavioral Evidence for More than One Taste Signaling Pathway for Sugars in Rats
Schier, Lindsey A.
2016-01-01
By conventional behavioral measures, rodents respond to natural sugars, such as glucose and fructose, as though they elicit an identical perceptual taste quality. Beyond that, the metabolic and sensory effects of these two sugars are quite different. Considering the capacity to immediately respond to the more metabolically expedient sugar, glucose, would seem advantageous for energy intake, the present experiment assessed whether experience consuming these two sugars would modify taste-guided ingestive responses to their yet unknown distinguishing orosensory properties. One group (GvF) had randomized access to three concentrations of glucose and fructose (0.316, 0.56, 1.1 m) in separate 30-min single access training sessions, whereas control groups received equivalent exposure to the three glucose or fructose concentrations only, or remained sugar naive. Comparison of the microstructural licking patterns for the two sugars revealed that GvF responded more positively to glucose (increased total intake, increased burst size, decreased number of pauses), relative to fructose, across training. As training progressed, GvF rats began to respond more positively to glucose in the first minute of the session when intake is principally taste-driven. During post-training brief-access taste tests, GvF rats licked more for glucose than for fructose, whereas the other training groups did not respond differentially to the two sugars. Additional brief access testing showed that this did not generalize to Na-saccharin or galactose. Thus, in addition to eliciting a common taste signal, glucose and fructose produce distinct signals that are apparently rendered behaviorally relevant and hedonically distinct through experience. The taste pathway(s) underlying this remain to be identified. SIGNIFICANCE STATEMENT The T1R2+T1R3 heterodimer is thought by many to be the only taste receptor for sugars. Although most sugars have been conventionally shown to correspondingly produce a unitary taste percept (sweet), there is reason to question this model. Here, we demonstrate that rats that repeatedly consumed two metabolically distinct sugars (glucose and fructose), and thus have had the opportunity to associate the tastes of these sugars with their differential postoral consequences, initially respond identically to the orosensory properties of the two sugars but eventually respond more positively to glucose. Thus, in addition to the previously identified common taste pathway, glucose and fructose must engage distinct orosensory pathways, the underlying molecular and neural mechanisms of which now await discovery. PMID:26740654
Table salt and blood pressure in Greek children.
Adamopoulos, P N; Chaniotis, F; Kodoyianis, S; Boutsicakis, J; Madalos, P; Kassos, D; Gatos, A; Moulopoulos, S
1987-12-01
The habit of adding table salt was studied in a random sample of 2209 children 6-18 years old. Of these 10% routinely added table salt to prepared food before tasting it (group A), 29% after tasting it (group B) and 61% ate their food as it was prepared, without additional use of table salt (group C). Group A had higher blood pressure (BP), prevalence of systolic BP greater than or equal to 130 mmHG and body mass index (BMI) than groups B and C (P less than 0.0001). These differences were also observed in group B versus C (P less than 0.0001).
de Bruijn, Suzanne E M; de Graaf, Cees; Witkamp, Renger F; Jager, Gerry
2017-01-01
Introduction: The endocannabinoid system (ECS) plays an important role in food reward. For example, in humans, liking of palatable foods is assumed to be modulated by endocannabinoid activity. Studies in rodents suggest that the ECS also plays a role in sweet taste intensity perception, but it is unknown to what extent this can be extrapolated to humans. Therefore, this study aimed at elucidating whether Δ9-tetrahydrocannabinol (THC) or cannabidiol (CBD) affects sweet taste intensity perception and liking in humans, potentially resulting in alterations in food preferences. Materials and Methods: In a randomized placebo-controlled, double-blind crossover study, 10 healthy males participated in three test sessions that were 2 weeks apart. During the test sessions, participants received THC-rich, CBD-rich, or placebo Cannabis by inhalation divided over two doses (4 + 1 mg THC; 25 + 10 mg CBD). Participants tasted seven chocolate milk-like drinks that differed in sugar concentration and they rated sweet taste intensity and liking of the drinks. They were then asked to rank the seven drinks according to how much they liked the drinks and were offered ad libitum access to their favorite drink. In addition, they completed a computerized food preference task and completed an appetite questionnaire at the start, midway, and end of the test sessions. Results: Inhalation of the Cannabis preparations did not affect sweet taste intensity perception and liking, ranking order, or ad libitum consumption of the favorite drink. In addition, food preferences were not influenced by the interventions. Reported fullness was lower, whereas desire to eat was higher throughout the THC compared to the CBD condition. Conclusions: These results suggest that administration of Cannabis preparations at the low doses tested does not affect sweet taste intensity perception and liking, nor does it influence food preferences in humans.
Alterations of sucrose preference after Roux-en-Y gastric bypass.
Bueter, M; Miras, A D; Chichger, H; Fenske, W; Ghatei, M A; Bloom, S R; Unwin, R J; Lutz, T A; Spector, A C; le Roux, C W
2011-10-24
Roux-en-Y gastric bypass (gastric bypass) patients reportedly have changes in perception and consumption of sweet-tasting foods. This study aimed to further investigate alterations in sweet food intake in rats and sucrose detection in humans after gastric bypass. Wistar rats were randomized to gastric bypass or sham-operations and preference for sucrose (sweet), sodium chloride (salty), citric acid (sour) and quinine hydrochloride (bitter) was assessed with standard two-bottle intake tests (vs. water). Intestinal T1R2 and T1R3 expression and plasma levels of glucagon-like-peptide 1 (GLP-1) and peptide YY (PYY) were measured. Furthermore, obese patients and normal weight controls were tested for sucrose taste detection thresholds pre- and postoperatively. Visual analogue scales measuring hedonic perception were used to determine the sucrose concentration considered by patients and controls as "just about right" pre- and postoperatively. Gastric bypass reduced the sucrose intake relative to water in rats (p<0.001). Preoperative sucrose exposure reduced this effect. Preference or aversion for compounds representative of other taste qualities in naïve rats remained unaffected. Intestinal T1R2 and T1R3 expression was significantly decreased in the alimentary limb while plasma levels of GLP-1 and PYY were elevated after bypass in rats (p=0.01). Bypass patients showed increased taste sensitivity to low sucrose concentrations compared with controls (p<0.05), but both groups considered the same sucrose concentration as "just about right" postoperatively. In conclusion, gastric bypass reduces sucrose intake relative to water in sucrose-naïve rats, but preoperative sucrose experience attenuates this effect. Changes in sucrose taste detection do not predict hedonic taste ratings of sucrose in bypass patients which remain unchanged. Thus, factors other than the unconditional affective value of the taste may also play a role in determining food preferences after gastric bypass. Copyright © 2011 Elsevier Inc. All rights reserved.
Schmidt, Liu-Ming; Williams, Pamela; King, Denis; Perera, Dayashan
2004-02-01
Bowel preparations for colonoscopy have to balance the demand for adequate cleansing action of the bowel and patient acceptability. There has been no study comparing Picoprep-3 (sodium picosulfate), a relatively new product, to Fleet (sodium phosphate), a well-studied and widely used preparation. This study was designed to compare the efficacy and patient tolerance of these two bowel preparations for colonoscopy. A randomized, single-blinded, prospective trial was conducted. A total of 400 consecutive patients presenting for elective colonoscopy at St George Private Hospital during a 20-week period were randomly assigned to receive Picoprep-3 or Fleet. Patients were asked to record the effects of the preparation, noting tolerability, taste, and side effects. Two hundred patients were assigned to the Picoprep-3 group and 200 to the Fleet group. Surgeons were blinded to the preparation used and rated the quality of the bowel preparation on a scale of 1 to 5 (1 being the optimal score). Picoprep-3 was found to be better tolerated (P < 0.0001) and better tasting (P < 0.0001) than Fleet. Patients in the Picoprep-3 group reported significantly less nausea (P < 0.001), vomiting (P < 0.004), dizziness (P < 0.01), abdominal pains (P = 0.0005), and thirst (P < 0.0001) associated with the preparation. There was no significant difference in visualization of the colon between the two groups as judged by the two colonoscopists (P = 0.06). Colonoscopy preparation with Picoprep-3 has similar efficacy but superior taste and tolerability compared with Fleet. Picoprep-3 caused less adverse side effects in the study population.
Tasting calories differentially affects brain activation during hunger and satiety.
van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M
2015-02-15
An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. Copyright © 2014 Elsevier B.V. All rights reserved.
Psychoactive effects of tasting chocolate and desire for more chocolate.
Nasser, Jennifer A; Bradley, Lauren E; Leitzsch, Jessica B; Chohan, Omar; Fasulo, Kristy; Haller, Josie; Jaeger, Kristin; Szulanczyk, Benjamin; Del Parigi, Angelo
2011-07-25
The purpose of this study was to characterize the psychoactive effects of tasting chocolate and to evaluate the contribution of the main chocolate components to the desire to consume more of it. A total of 280 participants, (F-155; M=125) ranging in age from 18-65, completed the study. Participants were randomly assigned to taste 12.5 g of either white chocolate ("control") or one of four chocolate ("cocoa") samples varying in sugar, fat and percent cocoa content, then answered the question: "Do you want more of this chocolate?" and "If yes, how many more pieces of this chocolate would you like to eat?" They completed pre- and post-consumption surveys, consisting of 30 questions derived from the Addiction Research Center Inventory (ARCI) subscales, Morphine-Benzedrine Group (MBG), Morphine (M) and Excitement (E). Significant decreases in post-pre consumption changes in MBG subscale were observed between the control sample and the 70% cocoa (p=0.046) or the 85% cocoa sample (p=0.0194). Proportionally more men than women wanted more of the tasted chocolate (p=0.035). Participants were more likely to want more of the tasted chocolate if they displayed a greater change in the MBG scale, and if their chocolate sample had high sugar and cocoa content, as assessed by multiple logistic regression. Our results suggest that multiple characteristics of chocolate, including sugar, cocoa and the drug-like effects experienced, play a role in the desire to consume chocolate. Copyright © 2011 Elsevier Inc. All rights reserved.
Miraglia Del Giudice, Michele; D'Auria, Enza; Peroni, Diego; Palazzo, Samuele; Radaelli, Giovanni; Comberiati, Pasquale; Galdo, Francesca; Maiello, Nunzia; Riva, Enrica
2015-06-03
Both extensively hydrolysed formulas (eHF) and amino acid-based formula (AAFs) have been demonstrated effective for the treatment of CMA. However, in clinical practice, parents complain that hydrolysates are rejected by children due to their bad taste. Flavor of hydrolysed formulas has been poorly investigated although it affects the acceptance of milk over all the other attributes. The aim of the present study was to understand the factors underlying the unpleasant flavor of hydrolysed 25 formulas and amino acid-based formula. One hundred and fifty trained panelists performed a randomized-double-blind test with different milks. The smell, texture, taste and aftertaste of each formula were evaluated on a scale ranging from -2 (worst) to 2 (best). Formulas showed significant difference, as compared to cow's milk, in smell, texture, taste and aftertaste. Overall, whey eHFs were judged of better palatability than casein eHF and the AAFs (p < 0.05). Whey eHF showed significant differences among them for sensory attributes, especially for taste and aftertaste. These results suggest that a broad range of flavor exists among the hydrolysed formulas. Further studies, adequately designed to investigate the relationship between milks' flavor and nutrient profile of hydrolysed formulas are warranted.
Comparative study of four antacids.
Jacyna, M. R.; Boyd, E. J.; Wormsley, K. G.
1984-01-01
Four antacid preparations have been studied in a stratified, randomized, double-blind trial to evaluate criteria which determine patients' acceptance of this type of therapy. There was a considerable range of judgements about palatability, but preference was determined not only by factors such as the smell, taste, texture and after-taste of the preparation, but also by the order in which the antacids were tested and by the age and sex of the patient. The preparations also differed considerably in acid-neutralizing capacity and ability to bind bile salts, as well as cost. We conclude that individuals requiring antacid therapy should be allowed to chose from among a range of preparations, in order to maximize compliance. PMID:6091079
NASA Astrophysics Data System (ADS)
HerdaǦDELEN, Amaç; Bingol, Haluk
Social interactions and personal tastes shape our consumption behavior of cultural products. In this study, we present a computational model of a cultural market and we aim to analyze the behavior of the consumer population as an emergent phenomena. Our results suggest that the final market shares of cultural products dramatically depend on consumer heterogeneity and social interaction pressure. Furthermore, the relation between the resulting market shares and social interaction is robust with respect to a wide range of variation in the parameter values and the type of topology.
What factors drive heterogeneity of preferences for micro-health insurance in rural Malawi?
Abiiro, Gilbert Abotisem; Torbica, Aleksandra; Kwalamasa, Kassim; De Allegri, Manuela
2016-11-01
Investigating the factors that drive differences in preferences for health insurance products among rural populations is a relevant policy issue that has so far received little attention. This study used a discrete choice experiment to explore heterogeneity of preferences for a prospective micro-health insurance (MHI) product in Malawi. Through an extensive qualitative study, six attributes, each associated with three levels, were derived and used to construct a D-efficient design. The attributes included unit of enrollment, management structure, health service benefit package, copayment levels, transportation coverage and monthly premium. The experiment was interviewer administered to a stratified random sample of household heads and their spouse(s). Using mixed logit and generalized multinomial logit models, respondent characteristics were interacted with MHI attributes to explore heterogeneity of preferences. The results showed that those in the higher age group (≥55 years) and those from households with higher household expenditure had significantly higher preferences for comprehensive and medium benefit packages than for a basic package. Those from households that incurred any healthcare expenditure within the past 4 weeks had lower preferences for the core family as a unit of enrollment than the individual, and higher preferences for coverage of transport costs. Women and non-micro-finance members had higher preferences for 25% copayment than for 50% copayment. There was evidence of scale heterogeneity signifying that the observed preference variations could have resulted from scale and variance differences, rather than real variations in the taste of respondents. To attract the relatively older and wealthier, prospective MHI should offer comprehensive health services benefit packages. Premium exemptions or subsidies should also be offered to the poor. Lower copayments can provide an incentive for women and non-micro-finance members, whilst coverage of transport costs can also attract those with recent history of incurring out-of-pocket healthcare expenditure to accept MHI. © The Author 2016. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yen, A M-F; Liou, H-H; Lin, H-L; Chen, T H-H
2006-01-01
The study aimed to develop a predictive model to deal with data fraught with heterogeneity that cannot be explained by sampling variation or measured covariates. The random-effect Poisson regression model was first proposed to deal with over-dispersion for data fraught with heterogeneity after making allowance for measured covariates. Bayesian acyclic graphic model in conjunction with Markov Chain Monte Carlo (MCMC) technique was then applied to estimate the parameters of both relevant covariates and random effect. Predictive distribution was then generated to compare the predicted with the observed for the Bayesian model with and without random effect. Data from repeated measurement of episodes among 44 patients with intractable epilepsy were used as an illustration. The application of Poisson regression without taking heterogeneity into account to epilepsy data yielded a large value of heterogeneity (heterogeneity factor = 17.90, deviance = 1485, degree of freedom (df) = 83). After taking the random effect into account, the value of heterogeneity factor was greatly reduced (heterogeneity factor = 0.52, deviance = 42.5, df = 81). The Pearson chi2 for the comparison between the expected seizure frequencies and the observed ones at two and three months of the model with and without random effect were 34.27 (p = 1.00) and 1799.90 (p < 0.0001), respectively. The Bayesian acyclic model using the MCMC method was demonstrated to have great potential for disease prediction while data show over-dispersion attributed either to correlated property or to subject-to-subject variability.
Random sphere packing model of heterogeneous propellants
NASA Astrophysics Data System (ADS)
Kochevets, Sergei Victorovich
It is well recognized that combustion of heterogeneous propellants is strongly dependent on the propellant morphology. Recent developments in computing systems make it possible to start three-dimensional modeling of heterogeneous propellant combustion. A key component of such large scale computations is a realistic model of industrial propellants which retains the true morphology---a goal never achieved before. The research presented develops the Random Sphere Packing Model of heterogeneous propellants and generates numerical samples of actual industrial propellants. This is done by developing a sphere packing algorithm which randomly packs a large number of spheres with a polydisperse size distribution within a rectangular domain. First, the packing code is developed, optimized for performance, and parallelized using the OpenMP shared memory architecture. Second, the morphology and packing fraction of two simple cases of unimodal and bimodal packs are investigated computationally and analytically. It is shown that both the Loose Random Packing and Dense Random Packing limits are not well defined and the growth rate of the spheres is identified as the key parameter controlling the efficiency of the packing. For a properly chosen growth rate, computational results are found to be in excellent agreement with experimental data. Third, two strategies are developed to define numerical samples of polydisperse heterogeneous propellants: the Deterministic Strategy and the Random Selection Strategy. Using these strategies, numerical samples of industrial propellants are generated. The packing fraction is investigated and it is shown that the experimental values of the packing fraction can be achieved computationally. It is strongly believed that this Random Sphere Packing Model of propellants is a major step forward in the realistic computational modeling of heterogeneous propellant of combustion. In addition, a method of analysis of the morphology of heterogeneous propellants is developed which uses the concept of multi-point correlation functions. A set of intrinsic length scales of local density fluctuations in random heterogeneous propellants is identified by performing a Monte-Carlo study of the correlation functions. This method of analysis shows great promise for understanding the origins of the combustion instability of heterogeneous propellants, and is believed to become a valuable tool for the development of safe and reliable rocket engines.
Scattering Properties of Heterogeneous Mineral Particles with Absorbing Inclusions
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2015-01-01
We analyze the results of numerically exact computer modeling of scattering and absorption properties of randomly oriented poly-disperse heterogeneous particles obtained by placing microscopic absorbing grains randomly on the surfaces of much larger spherical mineral hosts or by imbedding them randomly inside the hosts. These computations are paralleled by those for heterogeneous particles obtained by fully encapsulating fractal-like absorbing clusters in the mineral hosts. All computations are performed using the superposition T-matrix method. In the case of randomly distributed inclusions, the results are compared with the outcome of Lorenz-Mie computations for an external mixture of the mineral hosts and absorbing grains. We conclude that internal aggregation can affect strongly both the integral radiometric and differential scattering characteristics of the heterogeneous particle mixtures.
Ebneter, Daria S; Latner, Janet D; Nigg, Claudio R
2013-09-01
The present study examined whether low-fat labeling and caloric information affect food intake, calorie estimates, taste preference, and health perceptions. Participants included 175 female undergraduate students who were randomly assigned to one of four experimental conditions. A 2×2 between subjects factorial design was used in which the fat content label and caloric information of chocolate candy was manipulated. The differences in food intake across conditions did not reach statistical significance. However, participants significantly underestimated the calorie content of low-fat-labeled candy. Participants also rated low-fat-labeled candy as significantly better tasting when they had caloric information available. Participants endorsed more positive health attributions for low-fat-labeled candy than for regular-labeled candy, independent of caloric information. The inclusion of eating attitudes and behaviors as covariates did not alter the results. The study findings may be related to the "health halo" associated with low-fat foods and add to the research base by examining the interaction between low-fat and calorie labeling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zero-inflated count models for longitudinal measurements with heterogeneous random effects.
Zhu, Huirong; Luo, Sheng; DeSantis, Stacia M
2017-08-01
Longitudinal zero-inflated count data arise frequently in substance use research when assessing the effects of behavioral and pharmacological interventions. Zero-inflated count models (e.g. zero-inflated Poisson or zero-inflated negative binomial) with random effects have been developed to analyze this type of data. In random effects zero-inflated count models, the random effects covariance matrix is typically assumed to be homogeneous (constant across subjects). However, in many situations this matrix may be heterogeneous (differ by measured covariates). In this paper, we extend zero-inflated count models to account for random effects heterogeneity by modeling their variance as a function of covariates. We show via simulation that ignoring intervention and covariate-specific heterogeneity can produce biased estimates of covariate and random effect estimates. Moreover, those biased estimates can be rectified by correctly modeling the random effects covariance structure. The methodological development is motivated by and applied to the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study, the largest clinical trial of alcohol dependence performed in United States with 1383 individuals.
A comparison of the palatability of flavored oral contrasts.
Arya, Rajiv; Hansen, Allison; Taira, Breena R; Packy, Theodore; Singer, Adam J
2009-09-01
The aim of this study was to compare the taste of computed tomography (CT) oral contrast diluted with various flavored drinks. We performed a prospective, blinded, controlled trial in healthy adult volunteers. Subjects were assigned to ingest four 250-mL aliquots of oral contrast media diluted in water, Crystal Light Lemonade (Kraft Food, Northfield, Ill), Tropical Punch Kool-Aid (Kraft Food), and Tropicana orange juice (Pepsi Bottling Company, Sommers, NY) in random order; and the taste of the solution was measured with a 100-mm visual analogue scale and 5-point Likert scale from very worst to best. Between-group comparison of the taste scores was performed with repeated-measures analysis of variance and pairwise t tests. The study had 80% power to detect an effect size 0.75 SDs. There were 23 subjects; mean (SD) age was 33 (7.7) and 30% were female. The mean (SD) taste scores were water 12 (5), lemonade 37 (21), Kool-Aid 44 (20), and orange juice 40 (20) (P < .05). The proportion of subjects completely ingesting the contrast in water (65%) was significantly less than that with other 3 study solutions (100% each, P < .001). Dilution of oral contrast media with lemonade, fruit punch, or orange juice is tastier than with water. The choice of the specific juice used to dilute the oral contrast should be individualized based on patient preferences and availability.
Wang, Youcheng; Zhang, Lijuan; Hu, Guohua; Wang, Menghe; Tang, Xiaoyuan; Guo, Hui; Shi, Yimei; Chen, Shufang; Shi, Changchun
2012-04-01
To investigate the therapeutic effect of double fill nine tastes soup in treating children recurrent respiratory infection (RRTI) and the change of immune function. 77 RRTI patients were randomly selected into observation and control groups. The observation group was treated with Chinese medicine- double fill nine tastes soup,water frying points 2 times oral. The control was treated with transfer factor oral liquid,every 10 mL,2 times daily oral. Treatment periods were both two months. IgA, IgG, IgM and IL-12, TNF-alpha, INF-gamma were detected before and after treatment to assess the clinical effects and the changes of immune factors, meanwhile, a health group was established. Before treatment, compared with the health group, the serum IgA, IgG, IgM, IgE, IL-12, TNF-alpha, IFN-gamma in both groups were significantly different (P < 0.01). After treatment, the ratio of IgA, IgG, Ig M, IL-12, TNF-alpha, IFN-gamma in two groups were significantly different (P < 0.01). Compared with the recurrence rate and clinical effects, the observation group was better than control, and the differences were significant (P < 0.01). Double fill nine tastes soup has significant effects in treating recurrent respiratory infection (RRI) and enhance the immune function in children.
Wang, Yan; Wang, Guosen; Zhang, Dingyuan; Wang, Lei; Cui, Xianghua; Zhu, Jinglei; Fang, Yuan
2017-01-01
Evaluative conditioning (EC) procedures can be used to form and change attitudes toward a wide variety of objects. The current study examined the effects of a negative EC procedure on attitudes toward chocolate, and whether it influenced chocolate evaluation and consumption. Participants were randomly assigned to the experimental condition in which chocolate images were paired with negative stimuli, or the control condition in which chocolate images were randomly paired with positive stimuli (50%) and negative stimuli (50%). Explicit and implicit attitudes toward chocolate images were collected. During an ostensible taste test, chocolate evaluation and consumption were assessed. Results revealed that compared to participants in the control condition, participants in the experimental condition showed more negative explicit and implicit attitudes toward chocolate images and evaluated chocolate more negatively during the taste test. However, chocolate consumption did not differ between experimental and control conditions. These findings suggest that pairing chocolate with negative stimuli can influence attitudes toward chocolate, though behavioral effects are absent. Intervention applications of EC provide avenues for future research and practices.
Wang, Yan; Wang, Guosen; Zhang, Dingyuan; Wang, Lei; Cui, Xianghua; Zhu, Jinglei; Fang, Yuan
2017-01-01
Evaluative conditioning (EC) procedures can be used to form and change attitudes toward a wide variety of objects. The current study examined the effects of a negative EC procedure on attitudes toward chocolate, and whether it influenced chocolate evaluation and consumption. Participants were randomly assigned to the experimental condition in which chocolate images were paired with negative stimuli, or the control condition in which chocolate images were randomly paired with positive stimuli (50%) and negative stimuli (50%). Explicit and implicit attitudes toward chocolate images were collected. During an ostensible taste test, chocolate evaluation and consumption were assessed. Results revealed that compared to participants in the control condition, participants in the experimental condition showed more negative explicit and implicit attitudes toward chocolate images and evaluated chocolate more negatively during the taste test. However, chocolate consumption did not differ between experimental and control conditions. These findings suggest that pairing chocolate with negative stimuli can influence attitudes toward chocolate, though behavioral effects are absent. Intervention applications of EC provide avenues for future research and practices. PMID:28900409
Meernik, Clare; Ranney, Leah M; Lazard, Allison J; Kim, KyungSu; Queen, Tara L; Avishai, Aya; Boynton, Marcella H; Sheeran, Paschal J; Goldstein, Adam O
2018-01-01
Product packaging has long been used by the tobacco industry to target consumers and manipulate product perceptions. This study examines the extent to which cigarillo packaging influences perceptions of product flavor, taste, smell, and appeal. A web-based experiment was conducted among young adults. Participants viewed three randomly selected cigarillo packs, varying on pack flavor descriptor, color, type, branding, and warning-totaling 180 pack images. Mixed-effects models were used to estimate the effect of pack elements on product perceptions. A total of 2,664 current, ever, and never little cigar and cigarillo users participated. Cigarillo packs with a flavor descriptor were perceived as having a more favorable taste (β = 0.21, p < .001) and smell (β = 0.14, p < .001) compared to packs with no flavor descriptor. Compared to packs with no color, pink and purple packs were more likely to be perceived as containing a flavor (β = 0.11, p < .001), and were rated more favorably on taste (β = 0.17, p < .001), smell (β = 0.15, p < .001), and appeal (β = 0.16, p < .001). While warnings on packs decreased favorable perceptions of product taste (pictorial: β = -0.07, p = .03) and smell (text-only: β = -0.08, p = .01; pictorial: β = -0.09, p = .007), warnings did not moderate the effects of flavor descriptor or color. To our knowledge, this study provides the first quantitative evidence that cigarillo packaging alters consumers' cognitive responses, and warnings on packs do not suffice to overcome the effects of product packaging. The findings support efforts at federal, state, and local levels to prohibit flavor descriptors and their associated product flavoring in non-cigarette products such as cigarillos, along with new data that supports restrictions on flavor cues and colors.
Chiappetta, Diego A; Carcaboso, Angel M; Bregni, Carlos; Rubio, Modesto; Bramuglia, Guillermo; Sosnik, Alejandro
2009-01-01
The aim of this work was to develop indinavir pediatric anti-HIV/AIDS formulations enabling convenient dose adjustment, ease of oral administration, and improved organoleptic properties by means of the generation of drug-loaded microparticles made of a polymer that is insoluble under intake conditions and dissolves fast in the stomach in order to completely release the active agent. Indinavir-loaded microparticles made of a pH-dependent polymeric excipient soluble at pH < 5, Eudragit E100, were prepared using a double emulsion solvent diffusion technique and the in vitro release profiles characterized. Finally, taste masking properties were evaluated in blind randomized sensory experiments by ten healthy human volunteers. The use of a w/o/o emulsion system resulted in indinavir loads around 90%. Thermal analysis of the microparticles by differential scanning calorimetry revealed that indinavir appeared mainly dispersed at the molecular level. Concentrations of residual organic solvents as determined by gas chromatography were below the upper limits specified by the European Pharmacopeia for pharmaceutical oral formulations. Then, the behavior of drug-containing microparticles in aqueous media at different pH values was assessed. While they selectively dissolved in gastric-like medium, in tap water (intake conditions), the matrix remained almost unchanged and efficiently prevented drug dissolution. Finally, sensoring taste tests performed by volunteers indicated that systems with indinavir loads approximately 15% displayed acceptable taste. This work explored the production of indinavir-containing microparticles based on a common pharmaceutical excipient as a means for the improvement of medicines of drugs involved in the treatment of HIV/AIDS. For systems containing about 15% drug, taste studies confirmed the acceptability of the formulation. In pediatric regimes, this composition would require an acceptable amount of formulation (0.7-1.5 g).
Patadia, Jalashri; Tripathi, Rahul; Joshi, Amita
2016-08-01
Generally, pellets obtained from extrusion/spheronization, containing microcrystalline cellulose (MCC), do not disintegrate. An attempt has been made to develop melt-in-mouth pellets of taste-masked atomoxetine hydrochloride, using extrusion-spheronization, for pediatric patients. Melt-in-mouth pellets were prepared using extrusion-spheronization method and optimized using 3(3) FFD. MCC (X1, %), mannitol (X2, %) and Indion 414: Pharmaburst 500 ratio (X3, ratio) were the factors (independent variables) studied, whereas responses studied (dependent variables) were friability (Y1, %), yield (Y2, %) shape (Y3, roundness) in vitro disintegration time (Y4, seconds). The optimized formulation obtained from FFD was characterized for friability, shape and morphology, in vitro disintegration time, porosity, moisture uptake, in vitro release study and in vivo taste and disintegration time in healthy human volunteers. Randomized, two-treatment, two-sequence, two-period, single dose, crossover sensory evaluation study of taste-masked melt-in-mouth pellet was carried out in 10 healthy human subjects. A statistically significant polynomial mathematical relationship was generated between the factors and responses to obtain an optimized formulation. The optimized formulation was characterized (in vitro and in vivo) and exhibited a rapid drug release in vitro attributed to fast disintegration of pellets and high solubility of drug in 0.1 N HCl and buffer (pH 6.8). In vivo, 40% of volunteers ranked taste-masked optimized formulation as slightly bitter while 60% ranked it as no taste. The optimized pellets were conveniently administered in volunteers and exhibited rapid in-vivo disintegration in the oral cavity. Melt-in-mouth pellets can be a used as a platform technology for administering drugs to paediatric patients accurately and conveniently resulting in patient compliance.
Awareness, persuasion, and adoption: Enriching the Bass model
NASA Astrophysics Data System (ADS)
Colapinto, Cinzia; Sartori, Elena; Tolotti, Marco
2014-02-01
In the context of diffusion of innovations, we propose a probabilistic model based on interacting populations connected through new communication channels. The potential adopters are heterogeneous in the connectivity levels and in their taste for innovation. The proposed framework can model the different stages of the adoption dynamics. In particular, the adoption curve is the result of a micro-founded decision process following the awareness phase. Eventually, we recover stylized facts pointed out by the extant literature in the field, such as delayed adoptions and non-monotonic adoption curves.
Wong, C L; Mendoza, J; Henson, S J; Qi, Y; Lou, W; L'Abbé, M R
2014-08-01
Few studies have examined consumer acceptability or comprehension of cholesterol-lowering claims on food labels. Our objective was to assess consumer attitudes and understanding of cholesterol-lowering claims regarding plant sterols (PS) and oat fibre (OF). We conducted two studies on: (1) PS claims and (2) OF claims. Both studies involved a randomized mock-packaged experiment within an online survey administered to Canadian consumers. In the PS study (n=721), we tested three PS-related claims (disease risk reduction claim, function claim and nutrient content claim) and a 'tastes great' claim (control) on identical margarine containers. Similarly, in the OF study (n=710), we tested three claims related to OF and a 'taste great' claim on identical cereal boxes. In both studies, participants answered the same set of questions on attitudes and understanding of claims after seeing each mock package. All claims that mentioned either PS or OF resulted in more positive attitudes than the taste control claim (P<0.0001), despite all products within each study having the same nutrition profile. How consumers responded to the nutrition claims between the two studies was influenced by contextual factors such as familiarity with the functional food/component and the food product that carried the claim. Permitted nutrition claims are approved based on physiological evidence and are allowed on any food product as long as it meets the associated nutrient criteria. However, it is difficult to generalize attitudes and understanding of claims when they are so highly dependent on contextual factors.
Discrimination of taste qualities among mouse fungiform taste bud cells.
Yoshida, Ryusuke; Miyauchi, Aya; Yasuo, Toshiaki; Jyotaki, Masafumi; Murata, Yoshihiro; Yasumatsu, Keiko; Shigemura, Noriatsu; Yanagawa, Yuchio; Obata, Kunihiko; Ueno, Hiroshi; Margolskee, Robert F; Ninomiya, Yuzo
2009-09-15
Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.
Clinical effectiveness of lidocaine and benzocaine for topical anesthesia.
Rosa, A. L.; Sverzut, C. E.; Xavier, S. P.; Lavrador, M. A.
1999-01-01
The effectiveness of lidocaine and benzocaine in reducing pain produced by needle insertion into the palate was evaluated in a double-blind and placebo-controlled study using a more suitable method. Twenty subjects, 10 men and 10 women, submitted to 4 sessions in which they were randomly treated with 5% lidocaine, a placebo that tasted like lidocaine, 20% benzocaine, and a placebo that tasted like benzocaine. At each session, a 27-gauge needle was inserted into the palate twice, once before (baseline) and once after drug application for 1 minute. Immediately after each insertion, subjects indicated on a visual analog scale the pain intensity perceived. Lidocaine and benzocaine were equally efficient, and both were better than placebo in reducing pain caused by insertion of needles into the palate. PMID:11692349
Thompson, Alex; Reader, Sandie; Field, Emma; Shephard, Adrian
2013-06-01
Acute sore throat (pharyngitis) is one of the most common illnesses for which children are seen by primary care physicians. Most cases are caused by viruses and are benign and self-limiting. Clinically proven, over-the-counter throat lozenges provide rapid and effective relief of acute sore throat symptoms, and are increasingly important in self-management of this condition. The purpose of this study (International Standard Randomized Controlled Trial Number: ISRCTN34958871) was to evaluate the acceptability of two licensed, commercially available sore throat lozenges containing amylmetacresol and 2,4-dichlorobenzyl (AMC/DCBA)--one strawberry flavored and the other orange flavored--in healthy children. This was an open-label, single-dose, crossover, taste-testing study in children recruited via a clinical database and advertisements over a 3.5-week period. Potentially eligible participants were invited to attend the taste-testing session at a clinic. At the screening session, which took place either before or on the day of taste testing, details of relevant medical history, medication, and demographics were recorded. Of the 108 screened subjects, 102 were recruited. These were healthy male and female children aged 6-12 years. Each child cleansed their palate with water and water biscuits before tasting a strawberry-flavored lozenge (Strepsils® strawberry sugar free, Reckitt Benckiser Healthcare Limited, Nottingham, UK; PL 00063/0395), which was sucked for 1 minute and then expelled. The orange-flavored lozenge (Strepsils® orange with vitamin C, Reckitt Benckiser Healthcare Limited, Nottingham, UK; PL 016242152) was tasted at least 15 minutes later following further cleansing of the palate. The spontaneous reaction of the child on tasting each lozenge was observed and recorded. Subjects were asked to indicate their liking for each lozenge, using a 7-point hedonic facial scale, and were required to answer a series of questions relating to what they liked and disliked about the taste and the feel of the lozenge in the mouth and throat. The primary endpoint was the proportion of subjects with a hedonic facial score of >4. Secondary endpoints included the spontaneous reaction of the child on tasting the lozenge and responses to questions related to taste. The taste of the lozenge was scored >4 (i.e. 'good', 'really good', or 'super good') by 85.3% of subjects for the strawberry flavor and 49.0% for the orange flavor (p < 0.0001). The mean (standard deviation) score was 5.72 (1) for the strawberry-flavored lozenge and 4.35 (2) for the orange-flavored lozenge. The proportion of subjects willing to take the lozenge again was 94% for the strawberry flavor and 56% for the orange flavor. Strawberry-flavored AMC/DCBA lozenges were liked by, and acceptable to, the majority of the children. AMC/DCBA orange-flavored lozenges were also liked by, and acceptable to, approximately half the children. Overall, both strawberry and orange would be suitable flavors for lozenges intended for children when they suffer from sore throat.
Taste transductions in taste receptor cells: basic tastes and moreover.
Iwata, Shusuke; Yoshida, Ryusuke; Ninomiya, Yuzo
2014-01-01
In the oral cavity, taste receptor cells dedicate to detecting chemical compounds in foodstuffs and transmitting their signals to gustatory nerve fibers. Heretofore, five taste qualities (sweet, umami, bitter, salty and sour) are generally accepted as basic tastes. Each of these may have a specific role in the detection of nutritious and poisonous substances; sweet for carbohydrate sources of calories, umami for protein and amino acid contents, bitter for harmful compounds, salty for minerals and sour for ripeness of fruits and spoiled foods. Recent studies have revealed molecular mechanisms for reception and transduction of these five basic tastes. Sweet, umami and bitter tastes are mediated by G-protein coupled receptors (GPCRs) and second-messenger signaling cascades. Salty and sour tastes are mediated by channel-type receptors. In addition to five basic tastes, taste receptor cells may have the ability to detect fat taste, which is elicited by fatty acids, and calcium taste, which is elicited by calcium. Taste compounds eliciting either fat taste or calcium taste may be detected by specific GPCRs expressed in taste receptor cells. This review will focus on transduction mechanisms and cellular characteristics responsible for each of basic tastes, fat taste and calcium taste.
Increasing vegetable intake in Mexican-American youth: a randomized controlled trial.
Johnston, Craig A; Palcic, Jennette L; Tyler, Chermaine; Stansberry, Sandra; Reeves, Rebecca S; Foreyt, John P
2011-05-01
Despite the health benefits, vegetable intake in youth remains below recommended levels. The purpose of our study was to compare two methods for increasing vegetable consumption. It was hypothesized that participants randomized to both the exposure-only and the pairing condition would increase their vegetable consumption and increase the variety of vegetables consumed. A total of 78 Mexican-American middle school-aged children from a charter school in Houston, TX, were randomized to a pairing condition (n=40) or an exposure-only condition (n=38) during the Spring 2009 semester. Children in the pairing condition were provided a preferred taste (peanut butter) paired with vegetables weekly at school during a nutrition class for 4 months. Children in the exposure-only condition received vegetables weekly during a nutrition class that covered the same material as the pairing condition. After 4 months, the pairing condition participants demonstrated significant increases in vegetable consumption (F=13.40, P<0.001) as well as variety of vegetables eaten (F=13.69, P<0.001) when compared to those in the exposure-only condition. The findings of this study suggest that the pairing of vegetables with a preferred taste, such as peanut butter, may be an effective technique in increasing consumption, especially in children who report being resistant to eating vegetables. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying.
Shigemura, Noriatsu; Ninomiya, Yuzo
2016-01-01
The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells. Then particular transmitters are released from the taste cells and activate corresponding afferent gustatory nerve fibers. Recent studies have revealed that taste sensitivities are defined by distinct taste receptors and modulated by endogenous humoral factors in a specific group of taste cells. Such peripheral taste generations and modifications would directly influence intake of nutritive substances. This review will highlight current understanding of molecular mechanisms for taste reception, signal transduction in taste bud cells, transmission between taste cells and nerves, regeneration from taste stem cells, and modification by humoral factors at peripheral taste organs. Copyright © 2016 Elsevier Inc. All rights reserved.
Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E
2009-06-01
The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects.
Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.
2009-01-01
The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects. PMID:19428502
Taste and Temperature in Swallowing Transit Time after Stroke
Cola, Paula C.; Gatto, Ana R.; da Silva, Roberta G.; Spadotto, André A.; Ribeiro, Priscila W.; Schelp, Arthur O.; Carvalho, Lidia R.; Henry, Maria A.C.A.
2012-01-01
Background Oropharyngeal dysphagia is common in individuals after stroke. Taste and temperature are used in dysphagia rehabilitation. The influence of stimuli, such as taste and temperature, on swallowing biomechanics has been investigated in both healthy individuals and in individuals with neurological disease. However, some questions still remain unanswered, such as how the sequence of offered stimuli influences the pharyngeal response. The goal of the present study was to determine the influence of the sequence of stimuli, sour taste and cold temperature, on pharyngeal transit time during deglutition in individuals after stroke. Methods The study included 60 individuals with unilateral ischemic stroke, 29 males and 31 females, aged 41–88 years (mean age: 66.2 years) examined 0–50 days after ictus (median: 6 days), with mild to moderate oropharyngeal dysphagia. Exclusion criteria were hemorrhagic stroke patients, patients with decreased level of consciousness, and clinically unstable patients, as confirmed by medical evaluation. The individuals were divided into two groups of 30 individuals each. Group 1 received a nonrandomized sequence of stimuli (i.e. natural, cold, sour, and sour-cold) and group 2 received a randomized sequence of stimuli. A videofluoroscopic swallowing study was performed to analyze the pharyngeal transit time. Four different stimuli (natural, cold, sour, and sour-cold) were offered. The images were digitalized and specific software was used to measure the pharyngeal transit time. Since the values did not present regular distribution and uniform variances, nonparametric tests were performed. Results Individuals in group 1 presented a significantly shorter pharyngeal transit time with the sour-cold stimulus than with the other stimuli. Individuals in group 2 did not show a significant difference in pharyngeal transit time between stimuli. Conclusions The results showed that the sequence of offered stimuli influences the pharyngeal transit time in a different way in individuals after stroke and suggest that, when the sour-cold stimulus is offered in a randomized sequence, it can influence the response to the other stimuli in stroke patients. Hence, the sour-cold stimulus could be used as a therapeutic aid in dysphagic stroke patients. PMID:23139681
2011-01-01
Background Clinical researchers have often preferred to use a fixed effects model for the primary interpretation of a meta-analysis. Heterogeneity is usually assessed via the well known Q and I2 statistics, along with the random effects estimate they imply. In recent years, alternative methods for quantifying heterogeneity have been proposed, that are based on a 'generalised' Q statistic. Methods We review 18 IPD meta-analyses of RCTs into treatments for cancer, in order to quantify the amount of heterogeneity present and also to discuss practical methods for explaining heterogeneity. Results Differing results were obtained when the standard Q and I2 statistics were used to test for the presence of heterogeneity. The two meta-analyses with the largest amount of heterogeneity were investigated further, and on inspection the straightforward application of a random effects model was not deemed appropriate. Compared to the standard Q statistic, the generalised Q statistic provided a more accurate platform for estimating the amount of heterogeneity in the 18 meta-analyses. Conclusions Explaining heterogeneity via the pre-specification of trial subgroups, graphical diagnostic tools and sensitivity analyses produced a more desirable outcome than an automatic application of the random effects model. Generalised Q statistic methods for quantifying and adjusting for heterogeneity should be incorporated as standard into statistical software. Software is provided to help achieve this aim. PMID:21473747
Zhang, Renduo; Wood, A Lynn; Enfield, Carl G; Jeong, Seung-Woo
2003-01-01
Stochastical analysis was performed to assess the effect of soil spatial variability and heterogeneity on the recovery of denser-than-water nonaqueous phase liquids (DNAPL) during the process of surfactant-enhanced remediation. UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model, was used to simulate water flow and chemical transport processes in heterogeneous soils. Soil spatial variability and heterogeneity were accounted for by considering the soil permeability as a spatial random variable and a geostatistical method was used to generate random distributions of the permeability. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL transport in heterogeneous media and stochastical analysis was conducted based on the simulated results. From the analysis, an exponential relationship between average DNAPL recovery and soil heterogeneity (defined as the standard deviation of log of permeability) was established with a coefficient of determination (r2) of 0.991, which indicated that DNAPL recovery decreased exponentially with increasing soil heterogeneity. Temporal and spatial distributions of relative saturations in the water phase, DNAPL, and microemulsion in heterogeneous soils were compared with those in homogeneous soils and related to soil heterogeneity. Cleanup time and uncertainty to determine DNAPL distributions in heterogeneous soils were also quantified. The study would provide useful information to design strategies for the characterization and remediation of nonaqueous phase liquid-contaminated soils with spatial variability and heterogeneity.
Acetylcholine is released from taste cells, enhancing taste signalling
Dando, Robin; Roper, Stephen D
2012-01-01
Acetylcholine (ACh), a candidate neurotransmitter that has been implicated in taste buds, elicits calcium mobilization in Receptor (Type II) taste cells. Using RT-PCR analysis and pharmacological interventions, we demonstrate that the muscarinic acetylcholine receptor M3 mediates these actions. Applying ACh enhanced both taste-evoked Ca2+ responses and taste-evoked afferent neurotransmitter (ATP) secretion from taste Receptor cells. Blocking muscarinic receptors depressed taste-evoked responses in Receptor cells, suggesting that ACh is normally released from taste cells during taste stimulation. ACh biosensors confirmed that, indeed, taste Receptor cells secrete acetylcholine during gustatory stimulation. Genetic deletion of muscarinic receptors resulted in significantly diminished ATP secretion from taste buds. The data demonstrate a new role for acetylcholine as a taste bud transmitter. Our results imply specifically that ACh is an autocrine transmitter secreted by taste Receptor cells during gustatory stimulation, enhancing taste-evoked responses and afferent transmitter secretion. PMID:22570381
Heterogeneous continuous-time random walks
NASA Astrophysics Data System (ADS)
Grebenkov, Denis S.; Tupikina, Liubov
2018-01-01
We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
Subjective and objective taste and smell changes in cancer.
Spotten, L E; Corish, C A; Lorton, C M; Ui Dhuibhir, P M; O'Donoghue, N C; O'Connor, B; Walsh, T D
2017-05-01
Malnutrition is highly prevalent in cancer patients and an important predictor of morbidity, mortality, treatment response, and toxicity. Taste and smell changes (TSCs) are common and may contribute to malnutrition. Research has previously focused on patients receiving chemotherapy (CT) or head and neck radiotherapy (RT). However, TSCs may occur pre-treatment, with other treatment modalities, and in cancer survivors. This review evaluates objective and subjective assessment of taste and smell, discusses the prevalence of TSCs in cancer, and reviews the clinical sequelae of TSCs in cancer patients. To critically evaluate objective and subjective assessment of TSCs, and the prevalence and clinical sequelae of TSCs in cancer. A literature search was conducted using PubMed, CINAHL and Embase for English-language articles published January 2009-June 2016. Search terms included combinations of the following: chemosensory, taste, smell, cancer, chemotherapy, radiotherapy, hormone therapy, immunotherapy, survivors. Reference lists of articles retrieved were also reviewed. Variation in objective and subjective assessment methodologies has resulted in difficulties interpreting the literature. TSC prevalence varies depending on stage of disease and treatment regimens, from 16% to 70% and 50% to 70% during CT and RT, respectively. TSCs in patients who are treatment-naïve, receiving hormone or immunotherapy treatment, post-treatment and cancer survivors have not been adequately studied. TSCs are associated with impaired nutritional status. The relationship between cancer-associated symptoms and nutritional status is not clearly defined. There is no gold standard assessment tool for TSCs. Heterogeneity in study methods hinders conclusive identification of the most appropriate way to measure TSCs. Subjective measures may reflect the patient experience and more reliably predict changes in dietary behaviour. Evaluation of TSCs should form part of all nutritional assessments in cancer patients. The true prevalence and severity of TSCs at all stages of cancer could then be established. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Gold, Abby; Larson, Mary; Tucker, Jared; Strang, Michelle
2017-01-01
Background: We tested the effectiveness of the Go Wild With Fruits and Veggies! (GWWFV) Extension curriculum on increasing fruit and vegetable (FV) intake of third graders. Methods: An intervention study was used testing self-reported FV intake pre/post GWWFV. Recruited schools were randomized to control (12 schools, N = 369, third grade children)…
DiPalma, J A; Marshall, J B
1990-01-01
A new sulfate-free polyethylene glycol electrolyte lavage solution (SF-ELS) for colonoscopy was formulated to taste better and have less net water and electrolyte secretion and absorption than a standard polyethylene glycolelectrolyte lavage solution (PEG-ELS). At two centers, 157 patients were prospectively randomized to receive SF-ELS or PEG-ELS to assess adequacy of preparation, patient tolerance, weight changes, and various hematologic and biochemical parameters. Physician assessment of colon cleansing showed no difference between those patients receiving SF-ELS (N = 74) or PEG-ELS (N = 78). Eighty-two percent of all preps were found to be "clinically acceptable." Subjects receiving SF-ELS had significantly less fullness and cramps, while PEG-ELS subjects reported less nausea. There was no difference between groups for vomiting, overall discomfort, or willingness to repeat the preparation received. Eighty percent of all patients would repeat the randomized cleansing methods. There were no clinically significant changes in weight or assessed laboratory parameters, with the exception of potassium where PEG-ELS patients had an mean decrease of 0.22 mEq/liter vs. 0.01 mEq/liter for SF-ELS (p less than or equal to 0.01). Patient taste questionnaires in those patients expressing a preference showed a preference for SF-ELS (76.6%) over PEG-ELS (23.4%) (p less than or equal to 0.001). Thirty-two (22.5%) of total respondents indicated no preference. We conclude that SF-ELS when compared with PEG-ELS is similarly a safe and effective method of colon cleansing for colonoscopy that is well tolerated. Patients prefer the taste of the new solution.
Sugar Detection Threshold After Laparoscopic Sleeve Gastrectomy in Adolescents.
Abdeen, Ghalia N; Miras, Alexander D; Alqhatani, Aayed R; le Roux, Carel W
2018-05-01
Obesity in young people is one of the most serious public health problems worldwide. Moreover, the mechanisms preventing obese adolescents from losing and maintaining weight loss have been elusive. Laparoscopic sleeve gastrectomy (LSG) is successful at achieving long-term weight loss in patients across all age groups, including children and adolescents. Anecdotal clinical observation as well as evidence in rodents suggests that LSG induces a shift in preference of sugary foods. However, it is not known whether this shift is due to a change in the threshold for gustatory detection of sucrose, or whether LSG induces behavioral change without affecting the gustatory threshold for sugar. The objective of this study was to determine whether adolescents who undergo LSG experience a change in their threshold for detecting sweet taste. We studied the sucrose detection threshold of 14 obese adolescents (age 15.3 ± 0.5 years, range 12-18) who underwent LSG 2 weeks before surgery and at 12 and 52 weeks after surgery. Matched non-surgical subjects were tested on two occasions 12 weeks apart to control for potential learning of the test that may have confounded the results. Seven sucrose concentrations were used and were tested in eight blocks with each block consisting of a random seven sucrose and seven water stimuli. The subjects were asked to report whether the sample contained water or not after they tasted 15 ml of the fluid for 10 s. The bodyweight of the LSG group decreased from 136.7 ± 5.4 to 109.6 ± 5.1 and 86.5 ± 4.0 kg after 12 and 52 weeks, respectively (p < 0.001). There was no significant difference after surgery in taste detection threshold of patients after LSG (p = 0.60), and no difference was observed comparing the taste detection threshold of the LSG group with the non-surgical controls (p = 0.38). LSG did not affect the taste detection threshold for sucrose, suggesting that the shift in preference for sugary foods may be due to factors other than fundamental changes in taste sensitivity.
Taste identification in adults with autism spectrum conditions.
Tavassoli, T; Baron-Cohen, S
2012-07-01
Sensory issues are widely reported in Autism Spectrum Conditions (ASC). Since taste perception is one of the least studied senses in ASC we explored taste identification in adults with ASC (12 males, 11 females) compared to control participants (14 males, 12 females). 'Taste strips' were used to measure taste identification overall, as well as bitter, sour, sweet and salty tastes. Results revealed lower taste scores overall in the ASC group, as well as for bitter, sour and sweet tastes. Salty taste scores did not differ between the groups. Examining error types showed that adults with ASC more often misidentified a taste as salty or as no taste. Future studies should investigate underlying mechanisms of taste identification difficulties in ASC.
Taste Bud Homeostasis in Health, Disease, and Aging
2014-01-01
The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552
Taste bud homeostasis in health, disease, and aging.
Feng, Pu; Huang, Liquan; Wang, Hong
2014-01-01
The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.
Taste information derived from T1R-expressing taste cells in mice.
Yoshida, Ryusuke; Ninomiya, Yuzo
2016-03-01
The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination. © 2016 Authors; published by Portland Press Limited.
Participation of the peripheral taste system in aging-dependent changes in taste sensitivity.
Narukawa, Masataka; Kurokawa, Azusa; Kohta, Rie; Misaka, Takumi
2017-09-01
Previous studies have shown that aging modifies taste sensitivity. However, the factors affecting the changes in taste sensitivity remain unclear. To investigate the cause of the age-related changes in taste sensitivity, we compared the peripheral taste detection systems in young and old mice. First, we examined whether taste sensitivity varied according to age using behavioral assays. We confirmed that the taste sensitivities to salty and bitter tastes decreased with aging. In other assays, the gustatory nerve responses to salty and sweet tastes increased significantly with aging, while those to bitter taste did not change. Thus, the profile of the gustatory nerve responses was inconsistent with the profile of the behavioral responses. Next, we evaluated the expressions of taste-related molecules in the taste buds. Although no apparent differences in the expressions of representative taste receptors were observed between the two age groups, the mRNA expressions of signaling effectors were slightly, but significantly, decreased in old mice. No significant differences in the turnover rates of taste bud cells were observed between the two age groups. Thus, we did not observe any large decreases in the expressions of taste-related molecules and turnover rates of taste bud cells with aging. Based on these findings, we conclude that changes in taste sensitivity with aging were not caused by aging-related degradation of peripheral taste organs. Meanwhile, the concentrations of several serum components that modify taste responses changed with age. Thus, taste signal-modifying factors such as serum components may have a contributing role in aging-related changes in taste sensitivity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Functional diversification of taste cells in vertebrates
Matsumoto, Ichiro; Ohmoto, Makoto; Abe, Keiko
2012-01-01
Tastes are senses resulting from the activation of taste cells distributed in oral epithelia. Sweet, umami, bitter, sour, and salty tastes are called the five “basic” tastes, but why five, and why these five? In this review, we dissect the peripheral gustatory system in vertebrates from molecular and cellular perspectives. Recent behavioral and molecular genetic studies have revealed the nature of functional taste receptors and cells and show that different taste qualities are accounted for by the activation of different subsets of taste cells. Based on this concept, the diversity of basic tastes should be defined by the diversity of taste cells in taste buds, which varies among species. PMID:23085625
AP1 transcription factors are required to maintain the peripheral taste system.
Shandilya, Jayasha; Gao, Yankun; Nayak, Tapan K; Roberts, Stefan G E; Medler, Kathryn F
2016-10-27
The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance.
AP1 transcription factors are required to maintain the peripheral taste system
Shandilya, Jayasha; Gao, Yankun; Nayak, Tapan K; Roberts, Stefan G E; Medler, Kathryn F
2016-01-01
The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance. PMID:27787515
β-Catenin signaling regulates temporally discrete phases of anterior taste bud development
Thirumangalathu, Shoba; Barlow, Linda A.
2015-01-01
The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. PMID:26525674
Age-Related Changes in Mouse Taste Bud Morphology, Hormone Expression, and Taste Responsivity
Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Martin, Bronwen
2012-01-01
Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact. PMID:22056740
Bachmanov, Alexander A.; Bosak, Natalia P.; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R.; Nelson, Theodore M.
2016-01-01
Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical “tastes” as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383
Quantitative analysis of taste bud cell numbers in fungiform and soft palate taste buds of mice.
Ohtubo, Yoshitaka; Yoshii, Kiyonori
2011-01-07
Mammalian taste bud cells (TBCs) consist of several cell types equipped with different taste receptor molecules, and hence the ratio of cell types in a taste bud constitutes the taste responses of the taste bud. Here we show that the population of immunohistochemically identified cell types per taste bud is proportional to the number of total TBCs in the taste bud or the area of the taste bud in fungiform papillae, and that the proportions differ among cell types. This result is applicable to soft palate taste buds. However, the density of almost all cell types, the population of cell types divided by the area of the respective taste buds, is significantly higher in soft palates. These results suggest that the turnover of TBCs is regulated to keep the ratio of each cell type constant, and that taste responsiveness is different between fungiform and soft palate taste buds. Copyright © 2010 Elsevier B.V. All rights reserved.
Age-related changes in mouse taste bud morphology, hormone expression, and taste responsivity.
Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Egan, Josephine M; Martin, Bronwen
2012-04-01
Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact.
A test for measuring gustatory function.
Smutzer, Gregory; Lam, Si; Hastings, Lloyd; Desai, Hetvi; Abarintos, Ray A; Sobel, Marc; Sayed, Nabil
2008-08-01
The purpose of this study was to determine the usefulness of edible taste strips for measuring human gustatory function. The physical properties of edible taste strips were examined to determine their potential for delivering threshold and suprathreshold amounts of taste stimuli to the oral cavity. Taste strips were then assayed by fluorescence to analyze the uniformity and distribution of bitter tastant in the strips. Finally, taste recognition thresholds for sweet taste were examined to determine whether or not taste strips could detect recognition thresholds that were equal to or better than those obtained from aqueous tests. Edible strips were prepared from pullulan-hydroxypropyl methylcellulose solutions that were dried to a thin film. The maximal amount of a tastant that could be incorporated in a 2.54 cm2 taste strip was identified by including representative taste stimuli for each class of tastant (sweet, sour, salty, bitter, and umami) during strip formation. Distribution of the bitter tastant quinine hydrochloride in taste strips was assayed by fluorescence emission spectroscopy. The efficacy of taste strips for evaluating human gustatory function was examined by using a single series ascending method of limits protocol. Sucrose taste recognition threshold data from edible strips was then compared with results that were obtained from a standard "sip and spit" recognition threshold test. Edible films that formed from a pullulan-hydroxypropyl methylcellulose polymer mixture can be used to prepare clear, thin strips that have essentially no background taste and leave no physical presence after release of tastant. Edible taste strips could uniformly incorporate up to 5% of their composition as tastant. Taste recognition thresholds for sweet taste were over one order of magnitude lower with edible taste strips when compared with an aqueous taste test. Edible taste strips are a highly sensitive method for examining taste recognition thresholds in humans. This new means of presenting taste stimuli should have widespread applications for examining human taste function in the laboratory, in the clinic, or at remote locations.
Typology of alcohol mixed with energy drink consumers: motivations for use.
Peacock, Amy; Droste, Nicolas; Pennay, Amy; Miller, Peter; Lubman, Dan I; Bruno, Raimondo
2015-06-01
Previous research on alcohol mixed with energy drinks (AmED) has shown that use is typically driven by hedonistic, social, functional, and intoxication-related motives, with differential associations with alcohol-related harm across these constructs. There has been no research looking at whether there are subgroups of consumers based on patterns of motivations. Consequently, the aims were to determine the typology of motivations for AmED use among a community sample and to identify correlates of subgroup membership. In addition, we aimed to determine whether this structure of motivations applied to a university student sample. Data were used from an Australian community sample (n = 731) and an Australian university student sample (n = 594) who were identified as AmED consumers when completing an online survey about their alcohol and ED use. Participants reported their level of agreement with 14 motivations for AmED use; latent classes of AmED consumers were identified based on patterns of motivation endorsement using latent class analysis. A 4-class model was selected using data from the community sample: (i) taste consumers (31%): endorsed pleasurable taste; (ii) energy-seeking consumers (24%): endorsed functional and taste motives; (iii) hedonistic consumers (33%): endorse pleasure and sensation-seeking motives, as well as functional and taste motives; and (iv) intoxication-related consumers (12%): endorsed motives related to feeling in control of intoxication, as well as hedonistic, functional, and taste motives. The consumer subgroups typically did not differ on demographics, other drug use, alcohol and ED use, and AmED risk taking. The patterns of motivations for the 4-class model were similar for the university student sample. This study indicated the existence of 4 subgroups of AmED consumers based on their patterns of motivations for AmED use consistently structured across the community and university student sample. These findings lend support to the growing conceptualization of AmED consumers as a heterogeneous group in regard to motivations for use, with a hierarchical and cumulative class order in regard to the number of types of motivation for AmED use. Prospective research may endeavor to link session-specific motives and outcomes, as it is apparent that primary consumption motives may be fluid between sessions. Copyright © 2015 by the Research Society on Alcoholism.
β-Catenin signaling regulates temporally discrete phases of anterior taste bud development.
Thirumangalathu, Shoba; Barlow, Linda A
2015-12-15
The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh(+) placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh(+) precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. © 2015. Published by The Company of Biologists Ltd.
Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi
2015-06-01
Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.
Ranney, Leah M.; Lazard, Allison J.; Kim, KyungSu; Queen, Tara L.; Avishai, Aya; Boynton, Marcella H.; Sheeran, Paschal J.; Goldstein, Adam O.
2018-01-01
Introduction Product packaging has long been used by the tobacco industry to target consumers and manipulate product perceptions. This study examines the extent to which cigarillo packaging influences perceptions of product flavor, taste, smell, and appeal. Methods A web-based experiment was conducted among young adults. Participants viewed three randomly selected cigarillo packs, varying on pack flavor descriptor, color, type, branding, and warning—totaling 180 pack images. Mixed-effects models were used to estimate the effect of pack elements on product perceptions. Results A total of 2,664 current, ever, and never little cigar and cigarillo users participated. Cigarillo packs with a flavor descriptor were perceived as having a more favorable taste (β = 0.21, p < .001) and smell (β = 0.14, p < .001) compared to packs with no flavor descriptor. Compared to packs with no color, pink and purple packs were more likely to be perceived as containing a flavor (β = 0.11, p < .001), and were rated more favorably on taste (β = 0.17, p < .001), smell (β = 0.15, p < .001), and appeal (β = 0.16, p < .001). While warnings on packs decreased favorable perceptions of product taste (pictorial: β = -0.07, p = .03) and smell (text-only: β = -0.08, p = .01; pictorial: β = -0.09, p = .007), warnings did not moderate the effects of flavor descriptor or color. Conclusions To our knowledge, this study provides the first quantitative evidence that cigarillo packaging alters consumers’ cognitive responses, and warnings on packs do not suffice to overcome the effects of product packaging. The findings support efforts at federal, state, and local levels to prohibit flavor descriptors and their associated product flavoring in non-cigarette products such as cigarillos, along with new data that supports restrictions on flavor cues and colors. PMID:29672604
Neither fixed nor random: weighted least squares meta-analysis.
Stanley, T D; Doucouliagos, Hristos
2015-06-15
This study challenges two core conventional meta-analysis methods: fixed effect and random effects. We show how and explain why an unrestricted weighted least squares estimator is superior to conventional random-effects meta-analysis when there is publication (or small-sample) bias and better than a fixed-effect weighted average if there is heterogeneity. Statistical theory and simulations of effect sizes, log odds ratios and regression coefficients demonstrate that this unrestricted weighted least squares estimator provides satisfactory estimates and confidence intervals that are comparable to random effects when there is no publication (or small-sample) bias and identical to fixed-effect meta-analysis when there is no heterogeneity. When there is publication selection bias, the unrestricted weighted least squares approach dominates random effects; when there is excess heterogeneity, it is clearly superior to fixed-effect meta-analysis. In practical applications, an unrestricted weighted least squares weighted average will often provide superior estimates to both conventional fixed and random effects. Copyright © 2015 John Wiley & Sons, Ltd.
Chan, D S; Demers, D M; Bass, J W
1996-02-01
To rate the perception of taste, texture, smell and aftertaste of various brands of penicillin VK and amoxicillin. Oral, liquid formulations of three brands of penicillin VK (PenVee K, V-Cillin-K, VeeTids) and three brands of amoxicillin (Amoxil, Trimox, Wymox) were evaluated for smell, texture, taste, and aftertaste by 30 volunteers in a blind study. Each category was scored on a scale of 1 to 5. The order in which the drugs were sampled was randomized for the first three groups of five participants. The order then was reversed for the remaining three groups of participants. A 537-bed US Army teaching hospital. Participants included 30 healthy adult volunteers from the Departments of Pediatrics, Nursing, and Pharmacy. Drugs received cumulative scores in each category, as well as an overall total score ranking. The data were analyzed using one-way ANOVA for repeated measures with a post hoc Duncan's multiple range test to determine significant differences between individual means. Overall, Trimox and Amoxil scored significantly higher than the remaining drugs. Although V-Cillin-K scored highest in the smell category, its score was significantly below those of Trimox and Amoxil in the texture, taste, aftertaste, and overall categories. Overall, the three penicillin VK solutions scored lower than the three amoxicillin suspensions, with PenVee K ranking the lowest. Among the penicillin VK solutions, V-Cillin-K scored significantly higher overall than the other two penicillin VK solutions. Overall, all three amoxicillin oral, liquid suspensions that were studied scored significantly better than the three penicillin VK solutions.
Taste the feeling or feel the tasting: Tactile exposure to food texture promotes food acceptance.
Nederkoorn, Chantal; Theiβen, Julia; Tummers, Michelle; Roefs, Anne
2018-01-01
The texture of food can be a reason why children reject it: It matters if food is crispy, slimy, smooth or has pips and bits in it. In general, mere exposure is the best method to increase acceptance of food: becoming more familiar with a food by repeated exposure increases liking for it. However, exposure to texture can be difficult, as children can be reluctant to try tasting it. In the current study, it is tested if acceptance of a food with a specific texture is improved after exposure to the feel of it, with hands only. Sixty-six children (between 3 and 10 years old) were randomly assigned to either the exposure or control condition. In the exposure condition, children played with an colourless and odourless jelly with their hands and in the control group, children played a board game. Afterwards, children were asked to taste 3 desserts (in balanced order): smooth strawberry yoghurt, strawberry yoghurt with pieces and strawberry jelly. Results showed that the children in the exposure condition ate specifically more of the jelly dessert - the texture of which they had been pre-exposed to - compared to the children in control condition. No group differences were found for the other two desserts. The results imply that feeling the texture of a food with hands increases the acceptance of food with the same texture. Playing with food with hands seems therefore be a first step in getting familiar with food and might help to increase variety of food intake. Copyright © 2017 Elsevier Ltd. All rights reserved.
Taste buds: cells, signals and synapses
Roper, Stephen D.; Chaudhari, Nirupa
2018-01-01
The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding. PMID:28655883
Taste buds: cells, signals and synapses.
Roper, Stephen D; Chaudhari, Nirupa
2017-08-01
The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.
Costanzo, Andrew; Nowson, Caryl; Orellana, Liliana; Bolhuis, Dieuwerke; Duesing, Konsta; Keast, Russell
2018-05-01
Individuals with impaired fat taste (FT) sensitivity have reduced satiety responses after consuming fatty foods, leading to increased dietary fat intake. Habitual consumption of dietary fat may modulate sensitivity to FT, with high consumption decreasing sensitivity [increasing fatty acid taste threshold (FATT)] and low consumption increasing sensitivity (decreasing FATT). However, some individuals may be less susceptible to diet-mediated changes in FATT due to variations in gene expression. The objective of this study was to determine the effect of an 8-wk low-fat or high-fat diet on FATT while maintaining baseline weight (<2.0 kg variation) to assess heritability and to explore the effect of genetics on diet-mediated changes in FATT. A co-twin randomized controlled trial including 44 pairs (mean ± SD age: 43.7 ± 15.4 y; 34 monozygotic, 10 dizygotic; 33 women, 10 men, 1 gender-discordant) was conducted. Twins within a pair were randomly allocated to an 8-wk low-fat (<20% of energy from fat) or high-fat (>35% of energy from fat) diet. FATT was assessed by a 3-alternate forced choice methodology and transformed to an ordinal scale (FT rank) at baseline and at 4 and 8 wk. Linear mixed models were fit to assess diet effect on FT rank and diet effect modification due to zygosity. A variance components model was fit to calculate baseline heritability. There was a significant time × diet interaction for FT rank after the 8-wk trial (P < 0.001), with the same conclusions for the subset of participants maintaining baseline weight (low-fat; n = 32; high-fat: n = 35). There was no evidence of zygosity effect modification (interaction of time × diet × zygosity: P = 0.892). Heritability of baseline FT rank was 8%. There appears to be little to no genetic contribution on heritability of FATT or diet-mediated changes to FATT. Rather, environment, specifically dietary fat intake, is the main influencer of FT sensitivity, regardless of body weight. This trial was registered with the Australian New Zealand Clinical Trials Registry at http://www.anzctr.org.au/ as ACTRN12613000466741.
Processing umami and other tastes in mammalian taste buds.
Roper, Stephen D; Chaudhari, Nirupa
2009-07-01
Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.
Exploring taste hyposensitivity in Japanese senior high school students.
Ohnuki, Mari; Shinada, Kayoko; Ueno, Masayuki; Zaitsu, Takashi; Wright, Fredrick Allan Clive; Kawaguchi, Yoko
2012-02-01
The main objective of this study was to investigate the prevalence of taste hyposensitivity and the relationships between sex, oral health status, and eating habits with taste hyposensitivity in Japanese senior high school students. Oral examinations, sweet and salt whole-mouth taste tests, and a questionnaire about eating habits were conducted on 234 senior high school students. Factors affecting taste hyposensitivity were investigated using a multivariate analysis. Sweet-taste hyposensitivity was observed in 7.3% of the students, and salt-taste hyposensitivity in 22.2%. Approximately 3% of the students had both sweet- and salt-taste hyposensitivity, and 22.6% had either sweet- or salt-taste hyposensitivity. In total, 26% had a taste hyposensitivity. There were significant relationships between the intake of instant noodles with sweet-taste hyposensitivity, and the intake of vegetables or isotonic drinks with salt-taste hyposensitivity. There was a significant association between eating habits and taste hyposensitivity in Japanese senior high school students. Taste tests would be a helpful adjunct for students to recognize variations in taste sensitivity, and a questionnaire about their eating habits might provide an effective self-review of their eating habits, and therefore, provide motivation to change. © 2011 Blackwell Publishing Asia Pty Ltd.
β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.
Gaillard, Dany; Bowles, Spencer G; Salcedo, Ernesto; Xu, Mingang; Millar, Sarah E; Barlow, Linda A
2017-08-01
Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.
Preparation before colonoscopy: a randomized controlled trial comparing different regimes.
Jansen, Sita V; Goedhard, Jelle G; Winkens, Bjorn; van Deursen, Cees Th B M
2011-10-01
A good bowel preparation is essential for optimal visualization of the large intestine. Several preparations with a difference in composition and volume are available. We compared five methods for bowel cleansing quality and patients' acceptability. Adult ambulatory outpatients scheduled for elective colonoscopy were randomized to receive 4-l polyethylene glycol (PEG) solution (Klean-prep), 2-l PEG solution+ascorbic acid (Moviprep), or a sodium phosphate (NaP) solution, Phosphoral. Patients with the PEG solutions were also randomized to receive simethicone (Aeropax), to investigate whether this improves the bowel cleansing efficacy. Before colonoscopy patients completed a questionnaire about the acceptability and tolerability of the preparation. Endoscopists blinded to the type of preparation gave a bowel cleansing score. Data were available for 461 patients. 2-l PEG+ascorbic acid was noninferior to 4-l PEG in bowel cleansing quality of rectosigmoid and colon. NaP was noninferior to 4-l PEG in bowel cleansing quality of rectosigmoid but inferior for the whole colon. Compliance was significantly less in the group with 4-l PEG compared with the 2-l PEG and NaP group. No difference was found for abdominal cramps. Taste was significantly better in the 2-l PEG group. Simethicone did not improve the bowel cleansing quality. 2-l PEG+ascorbic acid was noninferior to the 4-l PEG solution in bowel cleansing quality and was better in taste and compliance. NaP was inferior to 4-l PEG in bowel cleansing quality. Addition of simethicone gave no improvement.
Changes in Gustatory Function and Taste Preference Following Weight Loss.
Sauer, Helene; Ohla, Kathrin; Dammann, Dirk; Teufel, Martin; Zipfel, Stephan; Enck, Paul; Mack, Isabelle
2017-03-01
To investigate taste changes of obese children during an inpatient weight reduction treatment in comparison with normal weight children. Obese (n = 60) and normal weight (n = 27) children aged 9-17 years were assessed for gustatory functions using taste strips (taste identification test for the taste qualities sour, salty, sweet, and bitter), taste preferences, and experienced taste sensitivity. Obese children were examined upon admission (T1) and before discharge (T2). Normal weight children served as the control group. Irrespective of taste quality, obese children exhibited a lower ability to identify taste (total taste score) than normal weight children (P < .01); this overall score remained stable during inpatient treatment in obese children. Group and treatment effects were seen when evaluating individual taste qualities. In comparison with normal weight children, obese children exhibited poorer sour taste identification performance (P < .01). Obese children showed improvement in sour taste identification (P < .001) and deterioration in sweet taste identification (P < .001) following treatment. Subjective reports revealed a lower preference for sour taste in obese children compared with normal weight children (P < .05). The sweet and bitter taste ability at T1 predicted the body mass index z score at T2 (R 2 = .23, P < .01). We identified differences in the ability to discriminate tastes and in subjective taste perception between groups. Our findings of increased sour and reduced sweet taste discrimination after the intervention in obese children are indicative of an exposure-related effect on taste performance, possibly mediated by increased acid and reduced sugar consumption during the intervention. Because the sweet and bitter taste ability at T1 predicted weight loss, addressing gustatory function could be relevant in individualized obesity treatment approaches. Germanctr.de: DRKS00005122. Copyright © 2016 Elsevier Inc. All rights reserved.
Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123
Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun
2015-01-01
Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405
Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.
Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F
2015-01-01
Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.
The Role of Cholecystokinin in Peripheral Taste Signaling in Mice
Yoshida, Ryusuke; Shin, Misa; Yasumatsu, Keiko; Takai, Shingo; Inoue, Mayuko; Shigemura, Noriatsu; Takiguchi, Soichi; Nakamura, Seiji; Ninomiya, Yuzo
2017-01-01
Cholecystokinin (CCK) is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cβ2, and transient receptor potential channel M5. Furthermore, a small subset (~30%) of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues. PMID:29163209
Cohn, Zachary J; Kim, Agnes; Huang, Liquan; Brand, Joseph; Wang, Hong
2010-06-10
The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS)-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and interleukin (IL)-6, in mouse circumvallate and foliate papillae. TNF-alpha and IFN-gamma immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds, the niche for taste progenitor cells. PCR array experiments showed that the expression of cyclin B2 and E2F1, two key cell cycle regulators, was markedly downregulated by LPS in the circumvallate and foliate epithelia. Our results show that LPS-induced inflammation inhibits taste progenitor cell proliferation and interferes with taste cell renewal. LPS accelerates cell turnover and modestly shortens the average life span of taste cells. These effects of inflammation may contribute to the development of taste disorders associated with infections.
Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds.
Huang, Anthony Y; Wu, Sandy Y
2018-04-01
Capsaicin-mediated modulation of taste nerve responses is thought to be produced indirectly by the actions of neuropeptides, for example, CGRP and substance P (SP), on taste cells implying they play a role in taste sensitivity. During the processing of gustatory information in taste buds, CGRP shapes peripheral taste signals via serotonergic signalling. The underlying assumption has been that SP exerts its effects on taste transmitter secretion in taste buds of mice. To test this assumption, we investigated the net effect of SP on taste-evoked ATP secretion from mouse taste buds, using functional calcium imaging with CHO cells expressing high-affinity transmitter receptors as cellular biosensors. Our results showed that SP elicited PLC activation-dependent intracellular Ca 2+ transients in taste cells via neurokinin 1 receptors, most likely on glutamate-aspartate transporter-expressing Type I cells. Furthermore, SP caused Type I cells to secrete GABA. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the current results indicate that SP elicited secretion of GABA, which provided negative feedback onto Type II (receptor) cells to reduce taste-evoked ATP secretion. These findings are consistent with a role for SP as an inhibitory transmitter that shapes the peripheral taste signals, via GABAergic signalling, during the processing of gustatory information in taste buds. Notably, the results suggest that SP is intimately associated with GABA in mammalian taste signal processing and demonstrate an unanticipated route for sensory information flow within the taste bud. © 2018 The British Pharmacological Society.
Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J.; Klein, Ophir D.; Barlow, Linda A.
2014-01-01
Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. PMID:24993944
Gustatory sensation of (L)- and (D)-amino acids in humans.
Kawai, Misako; Sekine-Hayakawa, Yuki; Okiyama, Atsushi; Ninomiya, Yuzo
2012-12-01
Amino acids are known to elicit complex taste, but most human psychophysical studies on the taste of amino acids have focused on a single basic taste, such as umami (savory) taste, sweetness, or bitterness. In this study, we addressed the potential relationship between the structure and the taste properties of amino acids by measuring the human gustatory intensity and quality in response to aqueous solutions of proteogenic amino acids in comparison to D-enantiomers. Trained subjects tasted aqueous solution of each amino acid and evaluated the intensities of total taste and each basic taste using a category-ratio scale. Each basic taste of amino acids showed the dependency on its hydrophobicity, size, charge, functional groups on the side chain, and chirality of the alpha carbon. In addition, the overall taste of amino acid was found to be the combination of basic tastes according to the partial structure. For example, hydrophilic non-charged middle-sized amino acids elicited sweetness, and L-enantiomeric hydrophilic middle-sized structure was necessary for umami taste. For example, L-serine had mainly sweet and minor umami taste, and D-serine was sweet. We further applied Stevens' psychophysical function to relate the total-taste intensity and the concentration, and found that the slope values depended on the major quality of taste (e.g., bitter large, sour small).
Manzi, Brian; Hummel, Thomas
2014-02-01
To compare various methods to apply regional taste stimuli to the tongue. "Taste strips" are a clinical tool to determine gustatory function. How a patient perceives the chemical environment in the mouth is a result of many factors such as taste bud distribution and interactions between the cranial nerves. To date, there have been few studies describing the different approaches to administer taste strips to maximize taste identification accuracy and intensity. This is a normative value acquisition pilot and single-center study. The investigation involved 30 participants reporting a normal sense of smell and taste (18 women, 12 men, mean age 33 years). The taste test was based on spoon-shaped filter paper strips impregnated with four taste qualities (sweet, sour, salty, and bitter) at concentrations shown to be easily detectable by young healthy subjects. The strips were administered in three methods (held stationary on the tip of the tongue, applied across the tongue, held in the mouth), resulting in a total of 12 trials per participant. Subjects identified the taste from a list of four descriptors, (sweet, sour, salty, bitter) and ranked the intensity on a scale from 0 to 10. Statistical analyses were performed on the accuracy of taste identification and rated intensities. The participants perceived in order of most to least intense: salt, sour, bitter, sweet. Of the four tastes, sour consistently was least accurately identified. Presenting the taste strip inside the closed mouth of the participants produced the least accurate taste identification, whereas moving the taste strip across the tongue led to a significant increase in intensity for the sweet taste. In this study of 30 subjects at the second concentration, optimized accuracy and intensity of taste identification was observed through administration of taste strips laterally across the anterior third of the extended tongue. Further studies are required on more subjects and the additional concentrations prior to determining the ideal taste strip application method.
β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice
Gaillard, Dany; Xu, Mingang; Millar, Sarah E.
2017-01-01
Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687
CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes.
Taruno, Akiyuki; Vingtdeux, Valérie; Ohmoto, Makoto; Ma, Zhongming; Dvoryanchikov, Gennady; Li, Ang; Adrien, Leslie; Zhao, Haitian; Leung, Sze; Abernethy, Maria; Koppel, Jeremy; Davies, Peter; Civan, Mortimer M; Chaudhari, Nirupa; Matsumoto, Ichiro; Hellekant, Göran; Tordoff, Michael G; Marambaud, Philippe; Foskett, J Kevin
2013-03-14
Recognition of sweet, bitter and umami tastes requires the non-vesicular release from taste bud cells of ATP, which acts as a neurotransmitter to activate afferent neural gustatory pathways. However, how ATP is released to fulfil this function is not fully understood. Here we show that calcium homeostasis modulator 1 (CALHM1), a voltage-gated ion channel, is indispensable for taste-stimuli-evoked ATP release from sweet-, bitter- and umami-sensing taste bud cells. Calhm1 knockout mice have severely impaired perceptions of sweet, bitter and umami compounds, whereas their recognition of sour and salty tastes remains mostly normal. Calhm1 deficiency affects taste perception without interfering with taste cell development or integrity. CALHM1 is expressed specifically in sweet/bitter/umami-sensing type II taste bud cells. Its heterologous expression induces a novel ATP permeability that releases ATP from cells in response to manipulations that activate the CALHM1 ion channel. Knockout of Calhm1 strongly reduces voltage-gated currents in type II cells and taste-evoked ATP release from taste buds without affecting the excitability of taste cells by taste stimuli. Thus, CALHM1 is a voltage-gated ATP-release channel required for sweet, bitter and umami taste perception.
Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.
Huang, Yijen A; Grant, Jeff; Roper, Stephen
2012-01-01
Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.
Musical Taste Cultures and Tase Publics
ERIC Educational Resources Information Center
Fox, William A.; Wince, Michael H.
1975-01-01
An analysis of the material tastes of college students support Gan's concepts of taste culture and taste public. While Gan's contention that class has a major effect upon involvement with taste culture, this requires qualification where musical tastes of college students are concerned. (Author/AM)
Le Bihan, Nicolas; Margerin, Ludovic
2009-07-01
In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.
Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance.
Castillo-Azofeifa, David; Losacco, Justin T; Salcedo, Ernesto; Golden, Erin J; Finger, Thomas E; Barlow, Linda A
2017-09-01
The integrity of taste buds is intimately dependent on an intact gustatory innervation, yet the molecular nature of this dependency is unknown. Here, we show that differentiation of new taste bud cells, but not progenitor proliferation, is interrupted in mice treated with a hedgehog (Hh) pathway inhibitor (HPI), and that gustatory nerves are a source of sonic hedgehog (Shh) for taste bud renewal. Additionally, epithelial taste precursor cells express Shh transiently, and provide a local supply of Hh ligand that supports taste cell renewal. Taste buds are minimally affected when Shh is lost from either tissue source. However, when both the epithelial and neural supply of Shh are removed, taste buds largely disappear. We conclude Shh supplied by taste nerves and local taste epithelium act in concert to support continued taste bud differentiation. However, although neurally derived Shh is in part responsible for the dependence of taste cell renewal on gustatory innervation, neurotrophic support of taste buds likely involves a complex set of factors. © 2017. Published by The Company of Biologists Ltd.
Gli3 is a negative regulator of Tas1r3-expressing taste cells
Jyotaki, Masafumi; Redding, Kevin; Jiang, Peihua
2018-01-01
Mouse taste receptor cells survive from 3–24 days, necessitating their regeneration throughout adulthood. In anterior tongue, sonic hedgehog (SHH), released by a subpopulation of basal taste cells, regulates transcription factors Gli2 and Gli3 in stem cells to control taste cell regeneration. Using single-cell RNA-Seq we found that Gli3 is highly expressed in Tas1r3-expressing taste receptor cells and Lgr5+ taste stem cells in posterior tongue. By PCR and immunohistochemistry we found that Gli3 was expressed in taste buds in all taste fields. Conditional knockout mice lacking Gli3 in the posterior tongue (Gli3CKO) had larger taste buds containing more taste cells than did control wild-type (Gli3WT) mice. In comparison to wild-type mice, Gli3CKO mice had more Lgr5+ and Tas1r3+ cells, but fewer type III cells. Similar changes were observed ex vivo in Gli3CKO taste organoids cultured from Lgr5+ taste stem cells. Further, the expression of several taste marker and Gli3 target genes was altered in Gli3CKO mice and/or organoids. Mirroring these changes, Gli3CKO mice had increased lick responses to sweet and umami stimuli, decreased lick responses to bitter and sour taste stimuli, and increased glossopharyngeal taste nerve responses to sweet and bitter compounds. Our results indicate that Gli3 is a suppressor of stem cell proliferation that affects the number and function of mature taste cells, especially Tas1r3+ cells, in adult posterior tongue. Our findings shed light on the role of the Shh pathway in adult taste cell regeneration and may help devise strategies for treating taste distortions from chemotherapy and aging. PMID:29415007
Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation.
Kumari, Archana; Ermilov, Alexandre N; Allen, Benjamin L; Bradley, Robert M; Dlugosz, Andrzej A; Mistretta, Charlotte M
2015-02-01
Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs. Copyright © 2015 the American Physiological Society.
Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A
2012-05-11
Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.
Distribution of α-Gustducin and Vimentin in premature and mature taste buds in chickens.
Venkatesan, Nandakumar; Rajapaksha, Prasangi; Payne, Jason; Goodfellow, Forrest; Wang, Zhonghou; Kawabata, Fuminori; Tabata, Shoji; Stice, Steven; Beckstead, Robert; Liu, Hong-Xiang
2016-10-14
The sensory organs for taste in chickens (Gallus sp.) are taste buds in the oral epithelium of the palate, base of the oral cavity, and posterior tongue. Although there is not a pan-taste cell marker that labels all chicken taste bud cells, α-Gustducin and Vimentin each label a subpopulation of taste bud cells. In the present study, we used both α-Gustducin and Vimentin to further characterize chicken taste buds at the embryonic and post-hatching stages (E17-P5). We found that both α-Gustducin and Vimentin label distinct and overlapping populations of, but not all, taste bud cells. A-Gustducin immunosignals were observed as early as E18 and were consistently distributed in early and mature taste buds in embryos and hatchlings. Vimentin immunoreactivity was initially sparse at the embryonic stages then became apparent in taste buds after hatch. In hatchlings, α-Gustducin and Vimentin immunosignals largely co-localized in taste buds. A small subset of taste bud cells were labeled by either α-Gustducin or Vimentin or were not labeled. Importantly, each of the markers was observed in all of the examined taste buds. Our data suggest that the early onset of α-Gustducin in taste buds might be important for enabling chickens to respond to taste stimuli immediately after hatch and that distinctive population of taste bud cells that are labeled by different molecular markers might represent different cell types or different phases of taste bud cells. Additionally, α-Gustducin and Vimentin can potentially be used as molecular markers of all chicken taste buds in whole mount tissue. Copyright © 2016 Elsevier Inc. All rights reserved.
Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.
2012-01-01
Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142
Innervation of single fungiform taste buds during development in rat.
Krimm, R F; Hill, D L
1998-08-17
To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.
Kansei Biosensor and IT Society
NASA Astrophysics Data System (ADS)
Toko, Kiyoshi
A taste sensor with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information of taste substances into electric signal. The sensor output shows different patterns for chemical substances which have different taste qualities such as saltiness and sourness. Taste interactions such as suppression effect, which occurs between bitterness and sweetness, can be detected and quantified using the taste sensor. The taste and also smell of foodstuffs such as beer, coffee, mineral water, soup and milk can be discussed quantitatively. The taste sensor provides the objective scale for the human sensory expression. Multi-modal communication becomes possible using a taste/smell recognition microchip, which produces virtual taste. We are now standing at the beginning of a new age of communication using digitized taste.
NASA Astrophysics Data System (ADS)
Toko, Kiyoshi
A taste sensor with global selectivity, i. e., electronic tongue, is composed of several kinds of lipid/polymer membranes for transforming information of taste substances into electric signal. The sensor output shows different patterns for chemical substances which have different taste qualities such as saltiness and sourness. Taste interactions such as suppression effect, which occurs between bitterness and sweetness, can be detected and quantified using the taste sensor. Amino acids can be classified into several groups according to their own tastes from sensor outputs. The taste of foodstuffs such as beer, coffee, mineral water and milk can be discussed quantitatively. The taste sensor provides the objective scale for the human sensory expression. We are now standing at the beginning of a new age of communication using digitized taste.
Bitter or not? BitterPredict, a tool for predicting taste from chemical structure.
Dagan-Wiener, Ayana; Nissim, Ido; Ben Abu, Natalie; Borgonovo, Gigliola; Bassoli, Angela; Niv, Masha Y
2017-09-21
Bitter taste is an innately aversive taste modality that is considered to protect animals from consuming toxic compounds. Yet, bitterness is not always noxious and some bitter compounds have beneficial effects on health. Hundreds of bitter compounds were reported (and are accessible via the BitterDB http://bitterdb.agri.huji.ac.il/dbbitter.php ), but numerous additional bitter molecules are still unknown. The dramatic chemical diversity of bitterants makes bitterness prediction a difficult task. Here we present a machine learning classifier, BitterPredict, which predicts whether a compound is bitter or not, based on its chemical structure. BitterDB was used as the positive set, and non-bitter molecules were gathered from literature to create the negative set. Adaptive Boosting (AdaBoost), based on decision trees machine-learning algorithm was applied to molecules that were represented using physicochemical and ADME/Tox descriptors. BitterPredict correctly classifies over 80% of the compounds in the hold-out test set, and 70-90% of the compounds in three independent external sets and in sensory test validation, providing a quick and reliable tool for classifying large sets of compounds into bitter and non-bitter groups. BitterPredict suggests that about 40% of random molecules, and a large portion (66%) of clinical and experimental drugs, and of natural products (77%) are bitter.
Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.
Guagliardo, Nick A; Hill, David L
2007-09-10
Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (<1 mm) of the tongue. By 5 days after nerve transection taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used. (c) 2007 Wiley-Liss, Inc.
Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A
2014-08-01
Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. © 2014. Published by The Company of Biologists Ltd.
E-tongue: a tool for taste evaluation.
Gupta, Himanshu; Sharma, Aarti; Kumar, Suresh; Roy, Saroj K
2010-01-01
Taste has an important role in the development of oral pharmaceuticals. With respect to patient acceptability and compliance, taste is one of the prime factors determining the market penetration and commercial success of oral formulations, especially in pediatric medicine. Taste assessment is one important quality-control parameter for evaluating taste-masked formulations. Hence, pharmaceutical industries invest time, money and resources into developing palatable and pleasant-tasting products. The primary method for the taste measurement of a drug substance or a formulation is by human sensory evaluation, in which tasting a sample is relayed to inspectors. However, this method is impractical for early stage drug development because the test in humans is expensive and the taste of a drug candidate may not be important to the final product. Therefore, taste-sensing analytical devices, which can detect tastes, have been replacing the taste panelists. In the present review we are presenting different aspect of electronic tongue. The review article also discussed some useful patents and instrument with respect to E-tongue.
A distributed scheduling algorithm for heterogeneous real-time systems
NASA Technical Reports Server (NTRS)
Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi
1991-01-01
Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.
NASA Astrophysics Data System (ADS)
Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi
2007-04-01
We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.
Measuring the effects of heterogeneity on distributed systems
NASA Technical Reports Server (NTRS)
El-Toweissy, Mohamed; Zeineldine, Osman; Mukkamala, Ravi
1991-01-01
Distributed computer systems in daily use are becoming more and more heterogeneous. Currently, much of the design and analysis studies of such systems assume homogeneity. This assumption of homogeneity has been mainly driven by the resulting simplicity in modeling and analysis. A simulation study is presented which investigated the effects of heterogeneity on scheduling algorithms for hard real time distributed systems. In contrast to previous results which indicate that random scheduling may be as good as a more complex scheduler, this algorithm is shown to be consistently better than a random scheduler. This conclusion is more prevalent at high workloads as well as at high levels of heterogeneity.
Epidemic transmission on random mobile network with diverse infection periods
NASA Astrophysics Data System (ADS)
Li, Kezan; Yu, Hong; Zeng, Zhaorong; Ding, Yong; Ma, Zhongjun
2015-05-01
The heterogeneity of individual susceptibility and infectivity and time-varying topological structure are two realistic factors when we study epidemics on complex networks. Current research results have shown that the heterogeneity of individual susceptibility and infectivity can increase the epidemic threshold in a random mobile dynamical network with the same infection period. In this paper, we will focus on random mobile dynamical networks with diverse infection periods due to people's different constitutions and external circumstances. Theoretical results indicate that the epidemic threshold of the random mobile network with diverse infection periods is larger than the counterpart with the same infection period. Moreover, the heterogeneity of individual susceptibility and infectivity can play a significant impact on disease transmission. In particular, the homogeneity of individuals will avail to the spreading of epidemics. Numerical examples verify further our theoretical results very well.
REVIEW ARTICLE: A taste sensor
NASA Astrophysics Data System (ADS)
Toko, Kiyoshi
1998-12-01
A multichannel taste sensor, namely an electronic tongue, with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information about substances producing taste into electrical signals, which are input to a computer. The sensor output exhibits different patterns for chemical substances which have different taste qualities such as saltiness, sourness and bitterness, whereas it exhibits similar patterns for chemical substances with similar tastes. The sensor responds to the taste itself, as can be understood from the fact that taste interactions such as the suppression effect, which appears for mixtures of sweet and bitter substances, can be reproduced well. The suppression of the bitterness of quinine and a drug substance by sucrose can be quantified. Amino acids can be classified into several groups according to their own tastes on the basis of sensor outputs. The tastes of foodstuffs such as beer, coffee, mineral water, milk, sake, rice, soybean paste and vegetables can be discussed quantitatively using the taste sensor, which provides the objective scale for the human sensory expression. The flavour of a wine is also discriminated using the taste-odour sensory fusion conducted by combining the taste sensor and an odour-sensor array using conducting polymer elements. The taste sensor can also be applied to measurements of water pollution. Miniaturization of the taste sensor using FET produces the same characteristics as those of the above taste sensor by measuring the gate-source voltage. Use of the taste sensor will lead to a new era of food and environmental sciences.
Understanding taste dysfunction in patients with cancer.
McLaughlin, Laura; Mahon, Suzanne M
2012-04-01
Taste dysfunction is a significant but underestimated issue for patients with cancer. Impaired taste results in changes in diet and appetite, early satiety, and impaired social interactions. Nurses can play a key role in educating patients and families on the pathophysiology of taste dysfunction by suggesting interventions to treat the consequences of taste dysfunction, when available, and offering psychosocial support as patients cope with this often devastating consequence of treatment. Taste recognition helps humans identify the nutritional quality of food and signals the digestive tract to begin secreting enzymes. Spoiled or tainted foods typically are recognized by their bad taste. Along with the other sensory systems, taste is crucial for helping patients treated for cancer feel normal. This article will review the anatomy and physiology of taste; define the different types of taste dysfunction, including the underlying pathophysiologic basis related to cancer treatment; and discuss potential nursing interventions to manage the consequences of taste dysfunction.
The number of taste buds is related to bitter taste sensitivity in layer and broiler chickens.
Kudo, Ken-ichi; Shiraishi, Jun-ichi; Nishimura, Shotaro; Bungo, Takashi; Tabata, Shoji
2010-04-01
The relationship between taste sensitivity and the number of taste buds using a bitter tastant, quinine hydrochloride, was investigated in White Leghorn, Rhode Island Red, and broiler chickens. The White Leghorn and Rhode Island Red strains were able to perceive 2.0 mmol/L quinine hydrochloride, but the taste sensitivity of Rhode Island Red chickens was higher than that of White Leghorn chickens. Broiler chickens perceived 0.5 mmol/L quinine hydrochloride. The number of taste buds in the White Leghorn strain was the lowest, then the Rhode Island Red strain, with the number of taste buds highest in the broiler chickens. The number of taste buds was well correlated with bitter taste sensitivity. Therefore, we suggest that the number of taste buds is a vital factor in the perception of bitter taste and may be useful in selecting appropriate feeds for chickens.
(+)-(S)-alapyridaine--a general taste enhancer?
Soldo, Tomislav; Blank, Imre; Hofmann, Thomas
2003-06-01
N-(1-Carboxyethyl)-6-hydroxymethyl-pyridinium-3-ol inner salt (alapyridaine), recently identified in heated sugar/amino acid mixtures as well as in beef bouillon, has been shown to exhibit general taste-enhancing activities, although tasteless on its own. Differing from other taste enhancers reported so far, racemic (R/S)-alapyridaine and, to an even greater extent (+)-(S)-alapyridaine, the physiologically active enantiomer, are able to enhance more than one basic taste quality. The threshold concentrations for the sweet taste of glucose and sucrose, for the umami taste of monosodium L-glutamate (MSG) and guanosine-5'-monophosphate (GMP), as well as the salty taste of NaCl, were significantly decreased when alapyridaine was present. In contrast, perception of the bitter tastes of caffeine and L-phenylalanine, as well as of sour-tasting citric acid, was unaffected. Furthermore, alapyridaine was shown to intensify known taste synergies such as, for example, the enhancing effect of L-arginine on the salty taste of NaCl, as well as that of GMP on the umami taste of MSG. The activity of (+)-(S)-alapyridaine could be observed not only in solutions of single taste compounds, but also in more complex tastant mixtures; for example, the umami, sweet and salty taste of a solution containing MSG, sucrose, NaCl and caffeine was significantly modulated, thus indicating that alapyridaine is a general taste enhancer.
Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong
2012-01-01
Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2−/−/TLR4−/− double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions. PMID:22905218
Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong
2012-01-01
Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2(-/-)/TLR4(-/-) double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions.
Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.
Ermilov, Alexandre N; Kumari, Archana; Li, Libo; Joiner, Ariell M; Grachtchouk, Marina A; Allen, Benjamin L; Dlugosz, Andrzej A; Mistretta, Charlotte M
2016-11-01
For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae.
Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling
Mistretta, Charlotte M.
2016-01-01
For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae. PMID:27893742
Final comprehensive report of overall activities of AEC contract AT(30-1)- 3269 from its initiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-01-01
Research accomplishments are reported for the following projects: determination of the minimum level of x radiation in rats to alter the taste threshold; determination of the permanency of such alteration; determination of the dose and time dependency of the alteration; changes in hypothalamic function following low doses of ionizing radiation; development of new behavioral technique for determination of taste thresholds; correlation of taste sensitivity changes with alteration in taste bud morphology; effects of olfaction on taste thresholds; properties of taste material that influence x radiation effects on taste; determination of effects of in utero x-irradiation on taste function in themore » adult rat; and effects of ingestion of heavy metals on taste acuity and response of taste sensitivity to x radiation. (HLW)« less
Peterson, Christine M; Lin, Michael; Pilgram, Thomas; Heiken, Jay P
2011-01-01
To compare the efficacy and patient tolerance of iohexol and meglumine sodium diatrizoate as oral contrast agents for computed tomography (CT). One hundred patients were randomly assigned to drink 1000 mL of either meglumine sodium diatrizoate or iohexol 350 before their abdominopelvic CT examination. The images were evaluated independently and in a blinded fashion by 2 radiologists who scored the extent and density of bowel opacification. Attenuation value measurements were obtained in representative areas of each gastrointestinal tract segment (stomach, duodenum, jejunum, ileum, and colon) by a research technologist. Patients' tolerance of the oral contrast agent was assessed through a questionnaire administered immediately after the CT and with a follow-up phone call 2 to 3 days later. For most of the bowel, there was no statistically significant difference in the extent or degree of opacification between the 2 contrast agents. Opacification of the ileum was better with iohexol. There was no statistically significant difference between the 2 agents in adverse effects. Patients had a small but statistically significant preference for the taste of iohexol. Iohexol 350 is a satisfactory oral contrast agent for abdominopelvic CT. It opacifies the gastrointestinal tract as well as meglumine sodium diatrizoate does, and patients prefer the taste of iohexol to that of diatrizoate.
[Influence of a high-carbohydrate meal on taste perception].
Suchecka, Wanda; Klimacka-Nawrot, Ewa; Gałazka, Andrzej; Hartman, Magdalena; Błońska-Fajfrowska, Barbara
2011-01-01
Taste sensitivity varies greatly in individuals and depends on many external and metabolic conditions. The studied group consisted of healthy, non-smoking 41 women and 40 men, aged 19-29. The volunteers were examined in fasting state and after a high-carbohydrate meal. Taste sensitivity to sweet, salty and sour as well as hedonic response to taste were examined by means of gustometry examination recommended by Polski Komitet Normalizacyjny (Polish Committee for Standardization). It has been shown that in women the meal did not influence the intensity of sweet taste perception of saccharose solutions or the hedonic response to taste, whereas in men it caused a statistically significant decrease in the intensity of taste perception and in the hedonic response to the sweet taste of suprathreshold saccharose solutions. The meal did not influence the salty taste perception in a statistically significant way, neither in men nor in women. After the meal, the women perceived the sour taste with more intensity than in fasting state, whereas in men such influence was not observed. 1. The consumption of a high-carbohydrate meal influences the sweet and sour taste perception and the effect is sex-dependent: - in men, both the taste sensitivity to saccharose and the hedonic response to sweet taste were decreased, whereas in women such influence was not observed; - in women, the taste sensitivity to citric acid increased and the hedonic response to sour taste decreased, whereas in men such influence was not observed. 2. There is negative correlation between the intensity of taste perception and the hedonic response to the sweet taste both in men and in women after a high-carbohydrate meal, whereas in fasting state such correlation was not observed.
Adenosine enhances sweet taste through A2B receptors in the taste bud
Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.
2012-01-01
Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293
A preference test for sweet taste that uses edible strips.
Smutzer, Gregory; Patel, Janki Y; Stull, Judith C; Abarintos, Ray A; Khan, Neiladri K; Park, Kevin C
2014-02-01
A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Adenosine enhances sweet taste through A2B receptors in the taste bud.
Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D
2012-01-04
Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.
Inflammation activates the interferon signaling pathways in taste bud cells.
Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan
2007-10-03
Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.
Landis, Basile Nicolas; Welge-Luessen, Antje; Brämerson, Annika; Bende, Mats; Mueller, Christian Albert; Nordin, Steven; Hummel, Thomas
2009-02-01
To elaborate normative values for a clinical psychophysical taste test ("Taste Strips"). The "Taste Strips" are a psychophysical chemical taste test. So far, no definitive normative data had been published and only a fairly small sample size has been investigated. In light of this shortcoming for this easy, reliable and quick taste testing device, we attempted to provide normative values suitable for the clinical use. Normative value acquisition study, multicenter study. The investigation involved 537 participants reporting a normal sense of smell and taste (318 female, 219 male, mean age 44 years, age range 18-87 years). The taste test was based on spoon-shaped filter paper strips ("Taste Strips") impregnated with the four (sweet, sour, salty, and bitter) taste qualities in four different concentrations. The strips were placed on the left or right side of the anterior third of the extended tongue, resulting in a total of 32 trials. With their tongue still extended, patients had to identify the taste from a list of four descriptors, i. e., sweet, sour, salty, and bitter (multiple forced-choice). To obtain an impression of overall gustatory function, the number of correctly identified tastes was summed up for a "taste score". Taste function decreased significantly with age. Women exhibited significantly higher taste scores than men which was true for all age groups. The taste score at the 10(th) percentile was selected as a cut-off value to distinguish normogeusia from hypogeusia. Results from a small series of patients with ageusia confirmed the clinical usefulness of the proposed normative values. The present data provide normative values for the "Taste Strips" based on over 500 subjects tested.
A Preference Test for Sweet Taste That Uses Edible Strips
Smutzer, Gregory; Patel, Janki Y.; Stull, Judith C.; Abarintos, Ray A.; Khan, Neiladri K.; Park, Kevin C.
2014-01-01
A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. PMID:24225255
New Thermal Taste Actuation Technology for Future Multisensory Virtual Reality and Internet.
Karunanayaka, Kasun; Johari, Nurafiqah; Hariri, Surina; Camelia, Hanis; Bielawski, Kevin Stanley; Cheok, Adrian David
2018-04-01
Today's virtual reality (VR) applications such as gaming, multisensory entertainment, remote dining, and online shopping are mainly based on audio, visual, and touch interactions between humans and virtual worlds. Integrating the sense of taste into VR is difficult since humans are dependent on chemical-based taste delivery systems. This paper presents the 'Thermal Taste Machine', a new digital taste actuation technology that can effectively produce and modify thermal taste sensations on the tongue. It modifies the temperature of the surface of the tongue within a short period of time (from 25°C to 40 °C while heating, and from 25°C to 10 °C while cooling). We tested this device on human subjects and described the experience of thermal taste using 20 known (taste and non-taste) sensations. Our results suggested that rapidly heating the tongue produces sweetness, fatty/oiliness, electric taste, warmness, and reduces the sensibility for metallic taste. Similarly, cooling the tongue produced mint taste, pleasantness, and coldness. By conducting another user study on the perceived sweetness of sucrose solutions after the thermal stimulation, we found that heating the tongue significantly enhances the intensity of sweetness for both thermal tasters and non-thermal tasters. Also, we found that faster temperature rises on the tongue produce more intense sweet sensations for thermal tasters. This technology will be useful in two ways: First, it can produce taste sensations without using chemicals for the individuals who are sensitive to thermal taste. Second, the temperature rise of the device can be used as a way to enhance the intensity of sweetness. We believe that this technology can be used to digitally produce and enhance taste sensations in future virtual reality applications. The key novelties of this paper are as follows: 1. Development of a thermal taste actuation technology for stimulating the human taste receptors, 2. Characterization of the thermal taste produced by the device using taste-related sensations and non-taste related sensations, 3. Research on enhancing the intensity for sucrose solutions using thermal stimulation, 4. Research on how different speeds of heating affect the intensity of sweetness produced by thermal stimulation.
Umami Responses in Mouse Taste Cells Indicate More than One Receptor
Maruyama, Yutaka; Pereira, Elizabeth; Margolskee, Robert F.; Chaudhari, Nirupa; Roper, Stephen D.
2013-01-01
A number of gustatory receptors have been proposed to underlie umami, the taste of L-glutamate, and certain other amino acids and nucleotides. However, the response profiles of these cloned receptors have not been validated against responses recorded from taste receptor cells that are the native detectors of umami taste. We investigated umami taste responses in mouse circumvallate taste buds in an intact slice preparation, using confocal calcium imaging. Approximately 5% of taste cells selectively responded to L-glutamate when it was focally applied to the apical chemosensitive tips of receptor cells. The concentration–response range for L-glutamate fell approximately within the physiologically relevant range for taste behavior in mice, namely 10 mM and above. Inosine monophosphate enhanced taste cell responses to L-glutamate, a characteristic feature of umami taste. Using pharmacological agents, ion substitution, and immunostaining, we showed that intracellular pathways downstream of receptor activation involve phospholipase C β2. Each of the above features matches those predicted by studies of cloned and expressed receptors. However, the ligand specificity of each of the proposed umami receptors [taste metabotropic glutamate receptor 4, truncated metabotropic glutamate receptor 1, or taste receptor 1 (T1R1) and T1R3 dimers], taken alone, did not appear to explain the taste responses observed in mouse taste cells. Furthermore, umami responses were still observed in mutant mice lacking T1R3. A full explanation of umami taste transduction may involve novel combinations of the proposed receptors and/or as-yet-undiscovered taste receptors. PMID:16495449
NASA Astrophysics Data System (ADS)
Emoto, K.; Saito, T.; Shiomi, K.
2017-12-01
Short-period (<1 s) seismograms are strongly affected by small-scale (<10 km) heterogeneities in the lithosphere. In general, short-period seismograms are analysed based on the statistical method by considering the interaction between seismic waves and randomly distributed small-scale heterogeneities. Statistical properties of the random heterogeneities have been estimated by analysing short-period seismograms. However, generally, the small-scale random heterogeneity is not taken into account for the modelling of long-period (>2 s) seismograms. We found that the energy of the coda of long-period seismograms shows a spatially flat distribution. This phenomenon is well known in short-period seismograms and results from the scattering by small-scale heterogeneities. We estimate the statistical parameters that characterize the small-scale random heterogeneity by modelling the spatiotemporal energy distribution of long-period seismograms. We analyse three moderate-size earthquakes that occurred in southwest Japan. We calculate the spatial distribution of the energy density recorded by a dense seismograph network in Japan at the period bands of 8-16 s, 4-8 s and 2-4 s and model them by using 3-D finite difference (FD) simulations. Compared to conventional methods based on statistical theories, we can calculate more realistic synthetics by using the FD simulation. It is not necessary to assume a uniform background velocity, body or surface waves and scattering properties considered in general scattering theories. By taking the ratio of the energy of the coda area to that of the entire area, we can separately estimate the scattering and the intrinsic absorption effects. Our result reveals the spectrum of the random inhomogeneity in a wide wavenumber range including the intensity around the corner wavenumber as P(m) = 8πε2a3/(1 + a2m2)2, where ε = 0.05 and a = 3.1 km, even though past studies analysing higher-frequency records could not detect the corner. Finally, we estimate the intrinsic attenuation by modelling the decay rate of the energy. The method proposed in this study is suitable for quantifying the statistical properties of long-wavelength subsurface random inhomogeneity, which leads the way to characterizing a wider wavenumber range of spectra, including the corner wavenumber.
Taste bud cell dynamics during normal and sodium-restricted development.
Hendricks, Susan J; Brunjes, Peter C; Hill, David L
2004-04-26
Taste bud volume increases over the postnatal period to match the number of neurons providing innervation. To clarify age-related changes in fungiform taste bud volume, the current study investigated developmental changes in taste bud cell number, proliferation rate, and life span. Taste bud growth can largely be accounted for by addition of cytokeratin-19-positive taste bud cells. Examination of taste bud cell kinetics with 3H-thymidine autoradiography revealed that cell life span and turnover periods were not altered during normal development but that cells were produced more rapidly in young rats, a prominent modification that could lead to increased taste bud size. By comparison, dietary sodium restriction instituted during pre- and postnatal development results in small taste buds at adulthood as a result of fewer cytokeratin-19-positive cells. The dietary manipulation also had profound influences on taste bud growth kinetics, including an increased latency for cells to enter the taste bud and longer life span and turnover periods. These studies provide fundamental, new information about taste bud development under normal conditions and after environmental manipulations that impact nerve/target matching. Copyright 2004 Wiley-Liss, Inc.
Cross-modal Associations between Real Tastes and Colors.
Saluja, Supreet; Stevenson, Richard J
2018-06-02
People make reliable and consistent matches between taste and color. However, in contrast to other cross-modal correspondences, all of the research to date has used only taste words (and often color words too), potentially limiting our understanding of how taste-color matches arise. Here, participants sampled the five basic tastes, at three concentration steps, and selected their best matching color from a color-wheel. This test was repeated, and in addition, participants evaluated the valence of the taste and their color choice, as well as the qualities/intensities of the taste stimuli. Participants were then presented with taste names and asked to generate the best matching color name, as well as reporting how they made their earlier choices. Color selections were reliable and consistent, and closely followed those based on taste word matches obtained in this and prior studies. Most participants reported basing their color choices on their associated taste-object (often foods). There was marked similarity in valence between taste and color choices, and the saturation of color choices was related to tastant concentration. We discuss what drives color-taste pairings, with learning suggested as one possible mechanism.
Ortiz, Selena E; Zimmerman, Frederick J; Adler, Gary J
2016-05-01
Support for policies to combat obesity is often undermined by a public sense that obesity is largely a matter of personal responsibility. Industry rhetoric is a major contributor to this perception, as the soda/fast food/big food companies emphasize choice and individual agency in their efforts to neutralize policies that are burdensome. Yet obesity experts recognize that environmental forces play a major role in obesity. We investigate whether exposure to a taste-engineering frame increases support for food and beverage policies that address obesity. A taste-engineering frame details strategies used by the food industry to engineer preferences and increase the over-consumption of processed foods and sugary beverages. We also examine the effects of exposure to two contextualized values that have recently been promoted in expert discourse-consumer knowledge and consumer safety - on public support of policies. Our research shows how causal frames and contextualized values may effectively produce support for new obesity policies. We use an online survey experiment to test the effects of exposure to a taste-engineering frame (TEF), the value of consumer knowledge (CK), or the value of consumer safety (CS), on level of support for a range of policies. A random sample of adults, age 18 + living in the United States was included in the study (N = 2580). Ordered logistic regression was used to measure the effects of treatment exposure. The primary outcome was level-of-support for four (4) food-industry related, obesity prevention policies (aka food and beverage policies): 1) require food-manufacturers to disclose the amount of additives in food products on food packaging; 2) require food-manufacturers to advertise food products in accordance with their actual nutritional value; 3) prohibit all high-fat, high-sugar food advertising on television programming watched primarily by children; and 4) increase healthy food availability in work sites, schools, and hospitals. These data suggest that a taste-engineering frame and contextualized values significantly increase public support for many of the food and beverage policies tested. Applying a taste-engineering frame and/or contextualized values to address obesity advances a population-based policy agenda to counteract the effects of food-industry strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
A National Test of Taste and Smell
... Javascript on. Feature: Taste, Smell, Hearing, Language, Voice, Balance At Last: A National Test of Taste and ... smell. Read More "Taste, Smell, Hearing, Language, Voice, Balance" Articles At Last: A National Test of Taste ...
A new time domain random walk method for solute transport in 1-D heterogeneous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banton, O.; Delay, F.; Porel, G.
A new method to simulate solute transport in 1-D heterogeneous media is presented. This time domain random walk method (TDRW), similar in concept to the classical random walk method, calculates the arrival time of a particle cloud at a given location (directly providing the solute breakthrough curve). The main advantage of the method is that the restrictions on the space increments and the time steps which exist with the finite differences and random walk methods are avoided. In a homogeneous zone, the breakthrough curve (BTC) can be calculated directly at a given distance using a few hundred particles or directlymore » at the boundary of the zone. Comparisons with analytical solutions and with the classical random walk method show the reliability of this method. The velocity and dispersivity calculated from the simulated results agree within two percent with the values used as input in the model. For contrasted heterogeneous media, the random walk can generate high numerical dispersion, while the time domain approach does not.« less
Ehlers-Danlos syndrome in a young woman with anorexia nervosa and complex somatic symptoms.
Lee, Michelle; Strand, Mattias
2018-03-01
The Ehler-Danlos syndromes (EDS) are a group of clinically heterogeneous connective tissue disorders characterized by joint hypermobility, hyperextensibility of the skin, and a general connective tissue fragility that can induce symptoms from multiple organ systems. We present a case of comorbid anorexia nervosa and EDS in a 23-year old woman with a multitude of somatic symptoms that were initially attributed to the eating disorder but that were likely caused by the underlying EDS. Various EDS symptoms, such as gastrointestinal complaints, smell and taste abnormalities, and altered somatosensory awareness may resemble or mask an underlying eating disorder, and vice versa. Because of the large clinical heterogeneity, correctly identifying symptoms of EDS presents a challenge for clinicians, who should be aware of this group of underdiagnosed and potentially serious syndromes. The Beighton Hypermobility Score is an easily applicable screening instrument in assessing potential EDS in patients with joint hypermobility. © 2017 Wiley Periodicals, Inc.
Tordoff, Michael G.
2017-01-01
Many people avidly consume foods and drinks containing caffeine, despite its bitter taste. Here, we review what is known about caffeine as a bitter taste stimulus. Topics include caffeine's action on the canonical bitter taste receptor pathway and caffeine's action on noncanonical receptor-dependent and -independent pathways in taste cells. Two conclusions are that (1) caffeine is a poor prototypical bitter taste stimulus because it acts on bitter taste receptor-independent pathways, and (2) caffeinated products most likely stimulate “taste” receptors in nongustatory cells. This review is relevant for taste researchers, manufacturers of caffeinated products, and caffeine consumers. PMID:28660093
Soy sauce and its umami taste: a link from the past to current situation.
Lioe, Hanifah Nuryani; Selamat, Jinap; Yasuda, Masaaki
2010-04-01
Soy sauce taste has become a focus of umami taste research. Umami taste is a 5th basic taste, which is associated to a palatable and pleasurable taste of food. Soy sauce has been used as an umami seasoning since the ancient time in Asia. The complex fermentation process occurred to soy beans, as the raw material in the soy sauce production, gives a distinct delicious taste. The recent investigation on Japanese and Indonesian soy sauces revealed that this taste is primarily due to umami components which have molecular weights lower than 500 Da. Free amino acids are the low molecular compounds that have an important role to the taste, in the presence of sodium salt. The intense umami taste found in the soy sauces may also be a result from the interaction between umami components and other tastants. Small peptides are also present, but have very low, almost undetected umami taste intensities investigated in their fractions.
Aihara, Eitaro; Mahe, Maxime M; Schumacher, Michael A; Matthis, Andrea L; Feng, Rui; Ren, Wenwen; Noah, Taeko K; Matsu-ura, Toru; Moore, Sean R; Hong, Christian I; Zavros, Yana; Herness, Scott; Shroyer, Noah F; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A; Montrose, Marshall H
2015-11-24
Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5(+)) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5(+) cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration.
Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid
Aihara, Eitaro; Mahe, Maxime M.; Schumacher, Michael A.; Matthis, Andrea L.; Feng, Rui; Ren, Wenwen; Noah, Taeko K.; Matsu-ura, Toru; Moore, Sean R.; Hong, Christian I.; Zavros, Yana; Herness, Scott; Shroyer, Noah F.; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A.; Montrose, Marshall H.
2015-01-01
Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5+) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5+ cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration. PMID:26597788
BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section.
Meng, Lingbin; Huang, Tao; Sun, Chengsan; Hill, David L; Krimm, Robin
2017-07-01
Taste nerves readily regenerate to reinnervate denervated taste buds; however, factors required for regeneration have not yet been identified. When the chorda tympani nerve is sectioned, expression of brain-derived neurotrophic factor (BDNF) remains high in the geniculate ganglion and lingual epithelium, despite the loss of taste buds. These observations suggest that BDNF is present in the taste system after nerve section and may support taste nerve regeneration. To test this hypothesis, we inducibly deleted Bdnf during adulthood in mice. Shortly after Bdnf gene recombination, the chorda tympani nerve was unilaterally sectioned causing a loss of both taste buds and neurons, irrespective of BDNF levels. Eight weeks after nerve section, however, regeneration was differentially affected by Bdnf deletion. In control mice, there was regeneration of the chorda tympani nerve and taste buds reappeared with innervation. In contrast, few taste buds were reinnervated in mice lacking normal Bdnf expression such that taste bud number remained low. In all genotypes, taste buds that were reinnervated were normal-sized, but non-innervated taste buds remained small and atrophic. On the side of the tongue contralateral to the nerve section, taste buds for some genotypes became larger and all taste buds remained innervated. Our findings suggest that BDNF is required for nerve regeneration following gustatory nerve section. Copyright © 2017 Elsevier Inc. All rights reserved.
A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds
Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.
2012-01-01
In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866
Saito, Takehisa; Ito, Tetsufumi; Narita, Norihiko; Yamada, Takechiyo; Manabe, Yasuhiro
2011-11-01
The aim of this study was to evaluate the mean number of regenerated fungiform taste buds per papilla and perform light and electron microscopic observation of taste buds in patients with recovered taste function after severing the chorda tympani nerve during middle ear surgery. We performed a biopsy on the fungiform papillae (FP) in the midlateral region of the dorsal surface of the tongue from 5 control volunteers (33 total FP) and from 7 and 5 patients with and without taste recovery (34 and 29 FP, respectively) 3 years 6 months to 18 years after surgery. The specimens were observed by light and transmission electron microscopy. The taste function was evaluated by electrogustometry. The mean number of taste buds in the FP of patients with completely recovered taste function was significantly smaller (1.9 +/- 1.4 per papilla; p < 0.01) than that of the control subjects (3.8 +/- 2.2 per papilla). By transmission electron microscopy, 4 distinct types of cell (type I, II, III, and basal cells) were identified in the regenerated taste buds. Nerve fibers and nerve terminals were also found in the taste buds. It was clarified that taste buds containing taste cells and nerve endings do regenerate in the FP of patients with recovered taste function.
A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.
Kataoka, Shinji; Baquero, Arian; Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C; Finger, Thomas E
2012-01-01
In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.
Ahn, Sae Ryun; An, Ji Hyun; Song, Hyun Seok; Park, Jin Wook; Lee, Sang Hun; Kim, Jae Hyun; Jang, Jyongsik; Park, Tai Hyun
2016-08-23
For several decades, significant efforts have been made in developing artificial taste sensors to recognize the five basic tastes. So far, the well-established taste sensor is an E-tongue, which is constructed with polymer and lipid membranes. However, the previous artificial taste sensors have limitations in various food, beverage, and cosmetic industries because of their failure to mimic human taste reception. There are many interactions between tastants. Therefore, detecting the interactions in a multiplexing system is required. Herein, we developed a duplex bioelectronic tongue (DBT) based on graphene field-effect transistors that were functionalized with heterodimeric human umami taste and sweet taste receptor nanovesicles. Two types of nanovesicles, which have human T1R1/T1R3 for the umami taste and human T1R2/T1R3 for the sweet taste on their membranes, immobilized on micropatterned graphene surfaces were used for the simultaneous detection of the umami and sweet tastants. The DBT platform led to highly sensitive and selective recognition of target tastants at low concentrations (ca. 100 nM). Moreover, our DBT was able to detect the enhancing effect of taste enhancers as in a human taste sensory system. This technique can be a useful tool for the detection of tastes instead of sensory evaluation and development of new artificial tastants in the food and beverage industry.
Preexposure to Salty and Sour Taste Enhances Conditioned Taste Aversion to Novel Sucrose
ERIC Educational Resources Information Center
Flores, Veronica L.; Moran, Anan; Bernstein, Max; Katz, Donald B.
2016-01-01
Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty--the fact that preexposure to the taste conditioned stimulus (CS)…
Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo
Ren, Wenwen; Lewandowski, Brian C.; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A.; Margolskee, Robert F.; Jiang, Peihua
2014-01-01
Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5+) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5+ or Lgr6+ cells from taste tissue can generate continuously expanding 3D structures (“organoids”). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2’-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5+ cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6+ cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5+ or Lgr6+ cells, validating the use of this model for the study of taste cell generation. PMID:25368147
Miura, Hirohito; Kusakabe, Yuko; Hashido, Kento; Hino, Akihiro; Ooki, Makoto; Harada, Shuitsu
2014-09-19
Tastants reach the tip of taste bud cells through taste pores which are openings in the epithelium. We found Sprr2a is selectively expressed in the upper layer of the epithelium surrounding taste buds in the circumvallate papilla (CV) where the epithelium is organized into taste pores. Sprr2a is a member of a small proline-rich protein family, which is suggested to be involved in the restitution/migration phase of epithelial wound healing. The expression of Sprr2a was restricted to the upper layer and largely segregated with Ptch1 expression that is restricted to the basal side of the epithelium around the taste buds. Denervation resulted in the gradual loss of Sprr2a-expressing cells over 10 days similarly to that of taste bud cells which is in contrast to the rapid loss of Ptch1 expression. We also found that denervation caused an increase of Keratin (Krt)13 expression around taste buds that corresponded with the disappearance of Sprr2a and Ptch1 expression. Taste buds were surrounded by Krt13-negative cells in the CV in control mice. However, at 6 days post-denervation, taste buds were tightly surrounded by Krt13-positive cells. During taste bud development, taste bud cells emerged together with Krt13-negtive cells, and Sprr2a expression was increased along with the progress of taste bud development. These results demonstrate that regional gene expression surrounding taste buds is associated with taste bud formation and controlled by the innervating taste nerve. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo.
Ren, Wenwen; Lewandowski, Brian C; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A; Margolskee, Robert F; Jiang, Peihua
2014-11-18
Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5(+)) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5(+) or Lgr6(+) cells from taste tissue can generate continuously expanding 3D structures ("organoids"). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2'-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5(+) cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6(+) cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5(+) or Lgr6(+) cells, validating the use of this model for the study of taste cell generation.
Shoji, Noriaki; Satoh-Ku Riwada, Shizuko; Sasano, Takashi
2016-01-01
Loss of umami taste sensation affects quality of life and causes weight loss and health problems, particularly in the elderly. We recently expanded the use of the filter paper disc method to include assessment of umami taste sensitivity, using monosodium glutamate as the test solution. This test showed high diagnostic performance for discriminating between normal taste function and disorders in sensation of the umami taste, according to established cut-off values. The test also revealed: (1) some elderly patients suffered from specific loss of umami taste sensation with preservation of the other four taste sensations (sweet, salty, sour, and bitter); (2) umami taste disorder caused a loss of appetite and decline in weight, resulting in poor health; (3) appetite, weight and overall health improved after appropriate treatment for umami taste disorder. Because of the subjective nature of the test, however, it may not be useful for patients who cannot express which taste sensation is induced by a tastant, such as those with dementia. Most recently, using tissue samples collected from the tongue by scraping the foliate papillae, we showed that evaluation of umami taste receptor gene expression may be clinically useful for the objective genetic diagnosis of umami taste disorders.
Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets
Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F.; Payne, Jason; Swetenburg, Raymond L.; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J.; Stice, Steven L.; Beckstead, Robert; Liu, Hong-Xiang
2016-01-01
In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240–360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors. PMID:27853250
Developing and regenerating a sense of taste
Barlow, Linda A.; Klein, Ophir D.
2015-01-01
Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depends on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. PMID:25662267
Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets.
Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F; Payne, Jason; Swetenburg, Raymond L; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J; Stice, Steven L; Beckstead, Robert; Liu, Hong-Xiang
2016-11-17
In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240-360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.
MedlinePlus Videos and Cool Tools
... about 10,000 taste buds. The taste buds are linked to the brain by nerve fibers. Food particles are detected by the taste buds, which send nerve ... to the brain. Certain areas of the tongue are more sensitive to certain tastes, like bitter, sour, ...
Norepinephrine is coreleased with serotonin in mouse taste buds.
Huang, Yijen A; Maruyama, Yutaka; Roper, Stephen D
2008-12-03
ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.
Recalled taste intensity, liking and habitual intake of commonly consumed foods.
Cornelis, Marilyn C; Tordoff, Michael G; El-Sohemy, Ahmed; van Dam, Rob M
2017-02-01
Taste intensity and quality affect the liking of foods, and determine food choice and consumption. We aimed to 1) classify commonly consumed foods based on recalled taste intensity for bitter, sweet, salty, sour, and fatty taste, and 2) examine the associations among recalled taste intensity, liking, and habitual consumption of foods. In Stage 1, 62 Canadian adults recalled the taste intensity of 120 common foods. Their responses were used to identify sets of 20-25 foods classified as strongly bitter, sweet, salty, sour or fatty-tasting. In Stage 2, 287 U.S. adults validated these selections, and let us reduce them to sets of 11-13 foods. Ratings of recalled taste intensity were consistent across age, sex and overweight status, with the exceptions that sweet, bitter and fatty-tasting foods were rated as more intense by women than by men. The recalled intensity ratings of the most bitter, salty and fatty foods (but not sour or sweet foods) were inversely correlated with liking and intake. The negative correlation between fatty taste intensity and fatty food liking was stronger among normal weight than among overweight participants. Our results suggest that the recalled taste intensity of foods is associated with food liking and habitual consumption, but the strength of these relationships varies by taste. The food lists based on taste intensity ratings provide a resource to efficiently calculate indices of exposure to the different tastes in future studies. Copyright © 2016. Published by Elsevier Ltd.
Recalled taste intensity, liking and habitual intake of commonly consumed foods
Cornelis, Marilyn C.; Tordoff, Michael G.; El-Sohemy, Ahmed; van Dam, Rob M.
2016-01-01
Taste intensity and quality affect the liking of foods, and determine food choice and consumption. We aimed to 1) classify commonly consumed foods based on recalled taste intensity for bitter, sweet, salty, sour, and fatty taste, and 2) examine the associations among recalled taste intensity, liking, and habitual consumption of foods. In Stage 1, 62 Canadian adults recalled the taste intensity of 120 common foods. Their responses were used to identify sets of 20–25 foods classified as strongly bitter, sweet, salty, sour or fatty-tasting. In Stage 2, 287 U.S. adults validated these selections, and let us reduce them to sets of 11–13 foods. Ratings of recalled taste intensity were consistent across age, sex and overweight status, with the exceptions that sweet, bitter and fatty-tasting foods were rated as more intense by women than by men. The recalled intensity ratings of the most bitter, salty and fatty foods (but not sour or sweet foods) were inversely correlated with liking and intake. The negative correlation between fatty taste intensity and fatty food liking was stronger among normal weight than among overweight participants. Our results suggest that the recalled taste intensity of foods is associated with food liking and habitual consumption, but the strength of these relationships varies by taste. The food lists based on taste intensity ratings provide a resource to efficiently calculate indices of exposure to the different tastes in future studies. PMID:27915079
The Impact of Pregnancy on Taste Function.
Choo, Ezen; Dando, Robin
2017-05-01
It is common for women to report a change in taste (for instance an increased bitter or decreased sweet response) during pregnancy, however specifics of any variation in taste with pregnancy remain elusive. Here we review studies of taste in pregnancy, and discuss how physiological changes occurring during pregnancy may influence taste signaling. We aim to consolidate studies of human pregnancy and "taste function" (studies of taste thresholds, discrimination, and intensity perception, rather than hedonic response or self-report), discussing differences in methodology and findings. Generally, the majority of studies report either no change, or an increase in threshold/decrease in perceived taste intensity, particularly in the early stages of pregnancy, suggesting a possible decrease in taste acuity when pregnant. We further discuss several non-human studies of taste and pregnancy that may extend our understanding. Findings demonstrate that taste buds express receptors for many of the same hormones and circulating factors that vary with pregnancy. Circulating gonadal hormones or other contributions from the endocrine system, as well as physiological changes in weight and immune response could all bear some responsibility for such a modulation of taste during pregnancy. Given our growing understanding of taste, we propose that a change in taste function during pregnancy may not be solely driven by hormonal fluctuations of progesterone and estrogen, as many have suggested. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Effective dynamics of a random walker on a heterogeneous ring: Exact results
NASA Astrophysics Data System (ADS)
Masharian, S. R.
2018-07-01
In this paper, by considering a biased random walker hopping on a one-dimensional lattice with a ring geometry, we investigate the fluctuations of the speed of the random walker. We assume that the lattice is heterogeneous i.e. the hopping rate of the random walker between the first and the last lattice sites is different from the hopping rate of the random walker between the other links of the lattice. Assuming that the average speed of the random walker in the steady-state is v∗, we have been able to find the unconditional effective dynamics of the random walker where the absolute value of the average speed of the random walker is -v∗. Using a perturbative method in the large system-size limit, we have also been able to show that the effective hopping rates of the random walker near the defective link are highly site-dependent.
Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.
Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D
2008-06-15
Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.
Oxytocin signaling in mouse taste buds.
Sinclair, Michael S; Perea-Martinez, Isabel; Dvoryanchikov, Gennady; Yoshida, Masahide; Nishimori, Katsuhiko; Roper, Stephen D; Chaudhari, Nirupa
2010-08-05
The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite regulation that employ circulating homeostatic and satiety signals.
Developing and regenerating a sense of taste.
Barlow, Linda A; Klein, Ophir D
2015-01-01
Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depend on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. © 2015 Elsevier Inc. All rights reserved.
Cai, Huan; Daimon, Caitlin M; Cong, Wei-Na; Wang, Rui; Chirdon, Patrick; de Cabo, Rafael; Sévigny, Jean; Maudsley, Stuart; Martin, Bronwen
2014-05-01
Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste-related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste-related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR.
Gaillard, Dany; Barlow, Linda A.
2012-01-01
Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of type I, II and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25 week-old mice compared to 10 week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. PMID:21328519
Gaillard, Dany; Barlow, Linda A
2011-04-01
Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of Type I, II, and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25-week-old mice compared with 10-week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. Copyright © 2011 Wiley-Liss, Inc.
Effects of streptozotocin-induced diabetes on taste buds in rat vallate papillae.
Pai, Man-Hui; Ko, Tsui-Ling; Chou, Hsiu-Chu
2007-01-01
Some studies have documented taste changes in patients with diabetes mellitus (DM). In order to understand the relationships between taste disorders caused by DM and the innervation and morphologic changes in the taste buds, we studied the vallate papillae and their taste buds in rats with DM. DM was induced in these rats with streptozotocin (STZ), which causes the death of beta cells of the pancreas. The rats were sacrificed and the vallate papillae were dissected for morphometric and quantitative immunohistochemical analyses. The innervations of the vallate papillae and taste buds in diabetic and control rats were detected using immunohistochemistry employing antibodies directed against protein gene product 9.5 (PGP 9.5) and calcitonin gene-related peptide (CGRP). The results showed that PGP 9.5- and CGRP-immunoreactive nerve fibers in the trench wall of diabetic vallate papillae, as well as taste cells in the taste buds, gradually decreased both intragemmally and intergemmally. The morphometry revealed no significant difference in papilla size between the control and diabetic groups, but there were fewer taste buds per papilla (per animal). The quantification of innervation in taste buds of the diabetic rats supported the visual assessment of immunohistochemical labeling, that the innervation of taste cells was significantly reduced in diabetic animals. These findings suggest that taste impairment in diabetic subjects may be caused by neuropathy defects and/or morphological changes in the taste buds.
Preexposure to salty and sour taste enhances conditioned taste aversion to novel sucrose
Flores, Veronica L.; Moran, Anan; Bernstein, Max
2016-01-01
Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty—the fact that preexposure to the taste conditioned stimulus (CS) reduces its associability. The effect of exposure to tastes other than the CS has, in contrast, received little investigation. Here, we exposed rats to sodium chloride (N) and citric acid (C), either before or within a conditioning session involving novel sucrose (S). Presentation of this taste array within the conditioning session weakened the resultant S aversion, as expected. The opposite effect, however, was observed when exposure to the taste array was provided in sessions that preceded conditioning: such experience enhanced the eventual S aversion—a result that was robust to differences in CS delivery method and number of tastes presented in conditioning sessions. This “non-CS preexposure effect” scaled with the number of tastes in the exposure array (experience with more stimuli was more effective than experience with fewer) and with the amount of exposure sessions (three preexposure sessions were more effective than two). Together, our results provide evidence that exposure and experience with the realm of tastes changes an animal's future handling of even novel tastes. PMID:27084929
Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases.
Friede, Tim; Röver, Christian; Wandel, Simon; Neuenschwander, Beat
2017-07-01
Random-effects meta-analyses are used to combine evidence of treatment effects from multiple studies. Since treatment effects may vary across trials due to differences in study characteristics, heterogeneity in treatment effects between studies must be accounted for to achieve valid inference. The standard model for random-effects meta-analysis assumes approximately normal effect estimates and a normal random-effects model. However, standard methods based on this model ignore the uncertainty in estimating the between-trial heterogeneity. In the special setting of only two studies and in the presence of heterogeneity, we investigate here alternatives such as the Hartung-Knapp-Sidik-Jonkman method (HKSJ), the modified Knapp-Hartung method (mKH, a variation of the HKSJ method) and Bayesian random-effects meta-analyses with priors covering plausible heterogeneity values; R code to reproduce the examples is presented in an appendix. The properties of these methods are assessed by applying them to five examples from various rare diseases and by a simulation study. Whereas the standard method based on normal quantiles has poor coverage, the HKSJ and mKH generally lead to very long, and therefore inconclusive, confidence intervals. The Bayesian intervals on the whole show satisfying properties and offer a reasonable compromise between these two extremes. © 2016 The Authors. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical Generation of Dense Plume Fingers in Unsaturated Homogeneous Porous Media
NASA Astrophysics Data System (ADS)
Cremer, C.; Graf, T.
2012-04-01
In nature, the migration of dense plumes typically results in the formation of vertical plume fingers. Flow direction in fingers is downwards, which is counterbalanced by upwards flow of less dense fluid between fingers. In heterogeneous media, heterogeneity itself is known to trigger the formation of fingers. In homogeneous media, however, fingers are also created even if all grains had the same diameter. The reason is that pore-scale heterogeneity leading to different flow velocities also exists in homogeneous media due to two effects: (i) Grains of identical size may randomly arrange differently, e.g. forming tetrahedrons, hexahedrons or octahedrons. Each arrangement creates pores of varying diameter, thus resulting in different average flow velocities. (ii) Random variations of solute concentration lead to varying buoyancy effects, thus also resulting in different velocities. As a continuation of previously made efforts to incorporate pore-scale heterogeneity into fully saturated soil such that dense fingers are realistically generated (Cremer and Graf, EGU Assembly, 2011), the current paper extends the research scope from saturated to unsaturated soil. Perturbation methods are evaluated by numerically re-simulating a laboratory-scale experiment of plume transport in homogeneous unsaturated sand (Simmons et al., Transp. Porous Media, 2002). The following 5 methods are being discussed: (i) homogeneous sand, (ii) initial perturbation of solute concentration, (iii) spatially random, time-constant perturbation of solute source, (iv) spatially and temporally random noise of simulated solute concentration, and (v) random K-field that introduces physically insignificant but numerically significant heterogeneity. Results demonstrate that, as opposed to saturated flow, perturbing the solute source will not result in plume fingering. This is because the location of the perturbed source (domain top) and the location of finger generation (groundwater surface) do not coincide. Alternatively, similar to saturated flow, applying either a random concentration noise (iv) or a random K-field (v) generates realistic plume fingering. Future work will focus on the generation mechanisms of plume finger splitting.
Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M
2015-02-01
Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Yang, Hyekyung; Cong, Wei-na; Yoon, Jeong Seon; Egan, Josephine M
2015-01-01
Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. PMID:25354792
Wilson, Courtney E; Finger, Thomas E; Kinnamon, Sue C
2017-10-31
Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Inoue, Masashi; Glendinning, John I.; Theodorides, Maria L.; Harkness, Sarah; Li, Xia; Bosak, Natalia; Beauchamp, Gary K.; Bachmanov, Alexander A.
2008-01-01
The Tas1r3 gene encodes the T1R3 receptor protein, which is involved in sweet taste transduction. To characterize ligand specificity of the T1R3 receptor and the genetic architecture of sweet taste responsiveness, we analyzed taste responses of 129.B6-Tas1r3 congenic mice to a variety of chemically diverse sweeteners and glucose polymers with three different measures: consumption in 48-h two-bottle preference tests, initial licking responses, and responses of the chorda tympani nerve. The results were generally consistent across the three measures. Allelic variation of the Tas1r3 gene influenced taste responsiveness to nonnutritive sweeteners (saccharin, acesulfame-K, sucralose, SC-45647), sugars (sucrose, maltose, glucose, fructose), sugar alcohols (erythritol, sorbitol), and some amino acids (d-tryptophan, d-phenylalanine, l-proline). Tas1r3 genotype did not affect taste responses to several sweet-tasting amino acids (l-glutamine, l-threonine, l-alanine, glycine), glucose polymers (Polycose, maltooligosaccharide), and nonsweet NaCl, HCl, quinine, monosodium glutamate, and inosine 5′-monophosphate. Thus Tas1r3 polymorphisms affect taste responses to many nutritive and nonnutritive sweeteners (all of which must interact with a taste receptor involving T1R3), but not to all carbohydrates and amino acids. In addition, we found that the genetic architecture of sweet taste responsiveness changes depending on the measure of taste response and the intensity of the sweet taste stimulus. Variation in the T1R3 receptor influenced peripheral taste responsiveness over a wide range of sweetener concentrations, but behavioral responses to higher concentrations of some sweeteners increasingly depended on mechanisms that could override input from the peripheral taste system. PMID:17911381
Shteingart, Hanan; Loewenstein, Yonatan
2016-01-01
There is a long history of experiments in which participants are instructed to generate a long sequence of binary random numbers. The scope of this line of research has shifted over the years from identifying the basic psychological principles and/or the heuristics that lead to deviations from randomness, to one of predicting future choices. In this paper, we used generalized linear regression and the framework of Reinforcement Learning in order to address both points. In particular, we used logistic regression analysis in order to characterize the temporal sequence of participants' choices. Surprisingly, a population analysis indicated that the contribution of the most recent trial has only a weak effect on behavior, compared to more preceding trials, a result that seems irreconcilable with standard sequential effects that decay monotonously with the delay. However, when considering each participant separately, we found that the magnitudes of the sequential effect are a monotonous decreasing function of the delay, yet these individual sequential effects are largely averaged out in a population analysis because of heterogeneity. The substantial behavioral heterogeneity in this task is further demonstrated quantitatively by considering the predictive power of the model. We show that a heterogeneous model of sequential dependencies captures the structure available in random sequence generation. Finally, we show that the results of the logistic regression analysis can be interpreted in the framework of reinforcement learning, allowing us to compare the sequential effects in the random sequence generation task to those in an operant learning task. We show that in contrast to the random sequence generation task, sequential effects in operant learning are far more homogenous across the population. These results suggest that in the random sequence generation task, different participants adopt different cognitive strategies to suppress sequential dependencies when generating the "random" sequences.
Modulation of taste sensitivity by GLP-1 signaling in taste buds.
Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D
2009-07-01
Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.
Progress and renewal in gustation: new insights into taste bud development
Barlow, Linda A.
2015-01-01
The sense of taste, or gustation, is mediated by taste buds, which are housed in specialized taste papillae found in a stereotyped pattern on the surface of the tongue. Each bud, regardless of its location, is a collection of ∼100 cells that belong to at least five different functional classes, which transduce sweet, bitter, salt, sour and umami (the taste of glutamate) signals. Taste receptor cells harbor functional similarities to neurons but, like epithelial cells, are rapidly and continuously renewed throughout adult life. Here, I review recent advances in our understanding of how the pattern of taste buds is established in embryos and discuss the cellular and molecular mechanisms governing taste cell turnover. I also highlight how these findings aid our understanding of how and why many cancer therapies result in taste dysfunction. PMID:26534983
Calcitonin Gene-Related Peptide Reduces Taste-Evoked ATP Secretion from Mouse Taste Buds.
Huang, Anthony Y; Wu, Sandy Y
2015-09-16
Immunoelectron microscopy revealed that peripheral afferent nerve fibers innervating taste buds contain calcitonin gene-related peptide (CGRP), which may be as an efferent transmitter released from peripheral axon terminals. In this report, we determined the targets of CGRP within taste buds and studied what effect CGRP exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura-2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings showed that a subset of Presynaptic (Type III) taste cells (53%) responded to 0.1 μm CGRP with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 0.1 μm CGRP. Using pharmacological tools, the actions of CGRP were probed and elucidated by the CGRP receptor antagonist CGRP(8-37). We demonstrated that this effect of CGRP was dependent on phospholipase C activation and was prevented by the inhibitor U73122. Moreover, applying CGRP caused taste buds to secrete serotonin (5-HT), a Presynaptic (Type III) cell transmitter, but not ATP, a Receptor (Type II) cell transmitter. Further, our previous studies showed that 5-HT released from Presynaptic (Type III) cells provides negative paracrine feedback onto Receptor (Type II) cells by activating 5-HT1A receptors, and reducing ATP secretion. Our data showed that CGRP-evoked 5-HT release reduced taste-evoked ATP secretion. The findings are consistent with a role for CGRP as an inhibitory transmitter that shapes peripheral taste signals via serotonergic signaling during processing gustatory information in taste buds. The taste sensation is initiated with a highly complex set of interactions between a variety of cells located within the taste buds before signal propagation to the brain. Afferent signals from the oral cavity are carried to the brain in chemosensory fibers that contribute to chemesthesis, the general chemical sensitivity of the mucus membranes in the oronasal cavities and being perceived as pungency, irritation, or heat. This is a study of a fundamental question in neurobiology: how are signals processed in sensory end organs, taste buds? More specifically, taste-modifying interactions, via transmitters, between gustatory and chemosensory afferents inside taste buds will help explain how a coherent output is formed before being transmitted to the brain. Copyright © 2015 the authors 0270-6474/15/3512714-11$15.00/0.
... on your tongue and allow you to experience tastes that are sweet, salty, sour, and bitter. How exactly do your taste ... send messages to the brain about how something tastes, so you know if it's sweet, sour, bitter, or salty. The average person has about 10,000 taste ...
Quantitative anatomical study of taste buds in fungiform papillae of young and old Fischer rats.
Mistretta, C M; Oakley, I A
1986-05-01
To determine if differences in neural taste responses relate to taste bud loss in old age, taste buds were counted in fungiform papillae of Fischer 344 rats aged 4 to 6 months, 20 to 24 months, and 30 to 37 months. Papillae anterior to the intermolar eminence on one half of the tongue were examined in serial sections. Presence or absence of a taste bud was noted and taste bud diameter was measured. Average percentages of papillae that contained a taste bud in the three groups were 99.6, 99.3, and 94.7%. This is a significant age-related difference but actual number of taste buds lost in the oldest rats was small. Taste bud diameter did not differ with age and general anatomical characteristics of buds were similar in all groups. Thus, anatomical observations on taste bud maintenance in rats over a wide age range, coupled with neurophysiological data, demonstrate that the integrity of the peripheral gustatory system is not altered greatly in old age.
Preference heterogeneity in a count data model of demand for off-highway vehicle recreation
Thomas P Holmes; Jeffrey E Englin
2010-01-01
This paper examines heterogeneity in the preferences for OHV recreation by applying the random parameters Poisson model to a data set of off-highway vehicle (OHV) users at four National Forest sites in North Carolina. The analysis develops estimates of individual consumer surplus and finds that estimates are systematically affected by the random parameter specification...
Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds
Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F.
2015-01-01
Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor–deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. PMID:26116698
Glucagon-like peptide-1 is specifically involved in sweet taste transmission.
Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo
2015-06-01
Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice. © FASEB.
Ito, Kumiko; Kohzuki, Masahiro; Takahashi, Tamao; Ebihara, Satoru
2014-10-01
Weight loss is common in patients with chronic obstructive pulmonary disease (COPD). Anorexia, postulated to be associated with alteration in taste sensitivity, may contribute to weight loss in these patients. Pulmonary rehabilitation is known to lead to improved exercise performance in patients with COPD. However, the relationship between pulmonary rehabilitation and taste sensitivity has not been evaluated. The objective of this study was to compare taste sensitivity before and after pulmonary rehabilitation in patients with COPD. Single-group intervention trial. Twenty-two patients with COPD. The six-min walk distance (6MWD), COPD assessment test, body mass index, fat mass index, fat-free mass index and taste test were conducted before and after 4-week pulmonary rehabilitation. Taste sensitivity was evaluated using the filter-paper disc method for 4 taste stimuli. Taste stimuli were salty, sweet, sour, and bitter tastes. Taste sensitivity was evaluated before and after pulmonary rehabilitation using the taste recognition threshold. Following pulmonary rehabilitation, the 6MWD, COPD assessment test, salty recognition threshold, sweet recognition threshold and bitter recognition threshold improved significantly, whereas there were no significant improvements in body mass index, fat mass index, fat-free mass index or sour recognition threshold. Pulmonary rehabilitation may improve taste sensitivity in patients with COPD.
Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E.; Barlow, Linda A.
2015-01-01
Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells. PMID:26020789
Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E; Barlow, Linda A
2015-05-01
Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.
Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Manabe, Yasuhiro
2016-05-01
To elucidate the regeneration process of fungiform taste buds after severing the chorda tympani nerve (CTN) by confocal laser scanning microscopy in vivo. In 7 consecutive patients whose CTN was severed during tympanoplasty, an average of 10 fungiform papillae in the midlateral region of the tongue were periodically observed, and the number of taste buds was counted until 12 to 24 months after surgery. Gustatory function was assessed by EGM. EGM thresholds showed no response within 1 month after surgery in any patient. All taste buds had disappeared until 13 to 71 days after surgery. Regenerated taste buds were first detected 5 to 8 months after surgery in 5 of the 7 patients. EGM thresholds recovered to their preoperative values in 2 patients. In these 2 patients, the number of regenerated taste buds gradually increased in combination with a recovered taste function. However, a time lag existed between taste bud regeneration and taste function recovery. EGM thresholds did not recover in the other 3 patients with regenerated taste buds, suggesting that these taste buds were immature without gustatory function. The long-term regeneration process of fungiform taste buds could be clarified using confocal laser scanning microscopy. © The Author(s) 2015.
The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse.
Kataoka, Shinji; Yang, Ruibiao; Ishimaru, Yoshiro; Matsunami, Hiroaki; Sévigny, Jean; Kinnamon, John C; Finger, Thomas E
2008-03-01
The transient receptor potential channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCbeta2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1-positive cells are immunoreactive for neural cell adhesion molecule, serotonin, PGP-9.5 (ubiquitin carboxy-terminal transferase), and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about "sour", but have little or no role in transmission of taste information of other taste qualities.
The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse
Kataoka, Shinji; Yang, Ruibiao; Ishimaru, Yoshiro; Matsunami, Hiroaki; Kinnamon, John C.; Finger, Thomas E.
2008-01-01
The transient receptor potential (TRP) channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCβ2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1 positive cells are immunoreactive for NCAM, serotonin, PGP-9.5 (ubiquitin carboxy terminal transferase) and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about “sour”, but have little or no role in transmission of taste information of other taste qualities. PMID:18156604
Pelletier, Cathy A; Steele, Catriona M
2014-02-01
This study examined whether the perceived taste intensity of liquids with chemesthetic properties influenced lingua-palatal pressures and submental surface electromyography (sEMG) in swallowing, compared with water. Swallowing was studied in 80 healthy women, stratified by age group and genetic taste status. General Labeled Magnitude Scale ratings of taste intensity were collected for deionized water; carbonated water; 2.7% w/v citric acid; and diluted ethanol. These stimuli were swallowed, with measurement of tongue-palate pressures and submental sEMG. Path analysis differentiated stimulus, genetic taste status, age, and perceived taste intensity effects on swallowing. Signal amplitude during effortful saliva swallowing served as a covariate representing participant strength. Significant differences (p < .05) in taste intensity were seen across liquids: citric acid > ethanol > carbonated water > water. Supertasters perceived greater taste intensity than did nontasters. Lingua-palatal pressure and sEMG amplitudes were correlated with the strength covariate. Anterior palate pressures and sEMG amplitudes were significantly higher for the citric acid stimulus. Perceived taste intensity was a significant mediator of stimulus differences. These data provide confirmatory evidence that high-intensity sour stimuli do influence swallowing behaviors. In addition, taste genetics influence the perception of taste intensity for stimuli with chemesthetic properties, which modulates behavioral responses.
Pre-Treatment with Amifostine Protects against Cyclophosphamide-Induced Disruption of Taste in Mice
Mukherjee, Nabanita; Carroll, Brittany L.; Spees, Jeffrey L.; Delay, Eugene R.
2013-01-01
Cyclophosphamide (CYP), a commonly prescribed chemotherapy drug, has multiple adverse side effects including alteration of taste. The effects on taste are a cause of concern for patients as changes in taste are often associated with loss of appetite, malnutrition, poor recovery and reduced quality of life. Amifostine is a cytoprotective agent that was previously shown to be effective in preventing chemotherapy-induced mucositis and nephrotoxicity. Here we determined its ability to protect against chemotherapy-induced damage to taste buds using a mouse model of CYP injury. We conducted detection threshold tests to measure changes in sucrose taste sensitivity and found that administration of amifostine 30 mins prior to CYP injection protected against CYP-induced loss in taste sensitivity. Morphological studies showed that pre-treatment with amifostine prevented CYP-induced reduction in the number of fungiform taste papillae and increased the number of taste buds. Immunohistochemical assays for markers of the cell cycle showed that amifostine administration prevented CYP-induced inhibition of cell proliferation and also protected against loss of mature taste cells after CYP exposure. Our results indicate that treatment of cancer patients with amifostine prior to chemotherapy may improve their sensitivity for taste stimuli and protect the taste system from the detrimental effects of chemotherapy. PMID:23626702
Battjes-Fries, Marieke C E; Haveman-Nies, Annemien; Zeinstra, Gertrude G; van Dongen, Ellen J I; Meester, Hante J; van den Top-Pullen, Rinelle; Van't Veer, Pieter; de Graaf, Kees
2017-02-01
This study assessed the effectiveness of the Dutch school programme Taste Lessons with and without additional experiential learning activities on children's willingness to taste unfamiliar vegetables. Thirty-three primary schools (877 children in grades 6-7 with a mean age of 10.3 years) participated in Taste Lessons Vegetable Menu (TLVM, lessons and extra activities), Taste Lessons (TL, lessons), or a control group. A baseline and follow-up measurement was used to assess for each child: number of four familiar and four unfamiliar vegetables tasted, quantity tasted, choice of vegetable of which to eat more, and number of vegetables willing to taste again later. Furthermore, children filled out a questionnaire on daily vegetable intake and food neophobia. Multilevel and Cox regression analyses were conducted to compare changes in the outcome measures between the three study groups. No significant intervention effects were found on willingness to taste unfamiliar vegetables. Neither were effects found on familiar vegetables, except for number of familiar vegetables tasted (p < 0.05). Furthermore, no significant intervention effects were found on daily vegetable consumption and food neophobia. These results indicate that more intensive school-based nutrition education activities are needed to increase children's willingness to taste unfamiliar vegetables and increase their vegetable intake. Copyright © 2016. Published by Elsevier Ltd.
Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G
2016-11-01
Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Budzik, Karolina A; Żuwała, Krystyna; Kerney, Ryan
2016-07-01
The latest research on direct developing caecilian and anuran species indicate presence of only one generation of taste organs during their ontogeny. This is distinct from indirect developing batrachians studied thus far, which possess taste buds in larvae and anatomically distinct taste discs in metamorphs. This study is a description of the tongue and taste organ morphology and development in direct developing salamander Plethodon cinereus (Plethodontidae) using histology and electron microscopy techniques. The results reveal two distinct stages tongue morphology (primary and secondary), similar to metamorphic urodeles, although only one stage of taste organ morphology. Taste disc sensory zones emerge on the surface of the oropharyngeal epithelium by the end of embryonic development, which coincides with maturation of the soft tongue. Taste organs occur in the epithelium of the tongue pad (where they are situated on the dermal papillae), the palate and the inner surface of the mandible and the maxilla. Plethodon cinereus embryos only possess taste disc type taste organs. Similar to the direct developing anuran Eleutherodactylus coqui (Eleutherodactylidae), these salamanders do not recapitulate larval taste bud morphology as an embryo. The lack of taste bud formation is probably a broadly distributed feature characteristic to direct developing batrachians. J. Morphol. 277:906-915, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Yoshida, Yuta; Kawabata, Fuminori; Kawabata, Yuko; Nishimura, Shotaro; Tabata, Shoji
2018-07-01
Umami taste is one of the five basic tastes (sweet, umami, bitter, sour, and salty), and is elicited by l-glutamate salts and 5'-ribonucleotides. In chickens, the elucidation of the umami taste sense is an important step in the production of new feedstuff for the animal industry. Although previous studies found that chickens show a preference for umami compounds in long-term behavioral tests, there are limitations to our understanding of the role of the umami taste sense in chicken oral tissues because the long-term tests partly reflected post-ingestive effects. Here, we performed a short-term test and observed agonists of chicken umami taste receptor, l-alanine and l-serine, affected the solution intakes of chickens. Using this method, we found that chickens could respond to umami solutions containing monosodium l-glutamate (MSG) + inosine 5'-monophosphate (IMP) within 5 min. We also demonstrated that chickens were successfully conditioned to avoid umami solution by the conditioned taste aversion test. It is noted that conditioning to umami solution was generalized to salty and sweet solutions. Thus, chickens may perceive umami taste as a salty- and sweet-like taste. In addition, we found that umami taste receptor candidates were differentially expressed in different regions of the chicken oral tissues. Taken together, the present results strongly suggest that chickens have a sense of umami taste and have umami taste receptors in their oral tissue. Copyright © 2018 Elsevier Inc. All rights reserved.
Differences in taste sensitivity between obese and non-obese children and adolescents.
Overberg, Johanna; Hummel, Thomas; Krude, Heiko; Wiegand, Susanna
2012-12-01
Taste sensitivity varies between individuals. Several studies describe differences between obese and non-obese subjects concerning their taste perception. However, data are partly contradictory and insufficient. Therefore, in this study taste sensitivity of obese and non-obese children/adolescents was analysed. In a cross-sectional study gustatory sensitivity of n=99 obese subjects (body mass index (BMI) >97th percentile) and n=94 normal weight subjects (BMI <90th percentile), 6-18 years of age, was compared. Sensitivity for the taste qualities sweet, sour, salty, umami and bitter was analysed by means of impregnated 'taste strips' in different concentrations. A total score was determined for all taste qualities combined as well as for each separately. Furthermore, the possible influence of sex, age and ethnicity on taste perception was analysed. An intensity rating for sweet was performed on a 5-point rating scale. Obese subjects showed-compared to the control group-a significantly lower ability to identify the correct taste qualities regarding the total score (p<0.001). Regarding individual taste qualities there was a significantly lower detection rate for salty, umami and bitter by obese subjects. Furthermore, the determinants age and sex had a significant influence on taste perception: older age and female sex was associated with better ability to identify taste qualities. Concerning the sweet intensity rating obese children gave significantly lower intensity ratings to three of the four concentrations. Obese and non-obese children and adolescents differ in their taste perception. Obese subjects could identify taste qualities less precisely than children and adolescents of normal weight.
Study of Odours and taste for Space Food
NASA Astrophysics Data System (ADS)
Katayama, Naomi; Space Agriculture Task Force; Nakata, Seiichi; Teranishi, Masaaki; Sone, Michihiko; Nakashima, Tsutomu; Hamajima, Nobuyuki; Ito, Yoshihiro
2012-07-01
The sense of taste and smell come under some kind of influences in the space environment. In the space, the astronaut was changed their food habits from light taste and smell food to like strong taste and smells food. When an astronaut live in the space comes to have weak bone like osteoporosis. It may become the physiologic condition like the old man on the earth. Therefore this study performed fact-finding of the smell and the taste in the old man on the earth as test bed of astronaut in space. Based on this finding, it was intended to predict the taste and the olfactory change of the astronaut in the space. The study included 179 males and 251 females aged 30-90 years in Yakumo Town, Hokkaido, Japan. Odours were tested using a ``standard odours by odour stick identification''method of organoleptic testing. Taste were tested using a ``standard taste by taste disc identification'' method of chemical testing. Correct answers for identification odours consisted of average 6.0±3.0 in male subjects and average 6.9±2.8 in female subjects. Correct answers for identification of sweet taste consisted of 81% males and 87% females, salty taste consisted of 86% males and 91%, sour taste consisted of 75% males and 78% females, bitter taste consisted of 76% males and 88% females. It became clear that overall approximately 20% were in some kind of abnormality in sense of smell and taste. I want to perform the investigation that continued more in future.
The effect of imiquimod on taste bud calcium transients and transmitter secretion.
Huang, Anthony Y; Wu, Sandy Y
2016-11-01
Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell-cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste-evoked ATP secretion from mouse taste buds. Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca 2+ concentrations. These Ca 2 + responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca 2 + -ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca 2 + mobilization elicited by imiquimod was dependent on release from internal Ca 2 + stores. Moreover, combining studies of Ca 2 + imaging with cellular biosensors showed that imiquimod evoked secretion of 5-HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste-evoked ATP secretion. Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5-HT signalling. © 2016 The British Pharmacological Society.
Monje Moreno, José Manuel; Alvarez Amor, Leticia; Ruiz-Prieto, Inmaculada; Bolaños-Ríos, Patricia; Jáuregui-Lobera, Ignacio
2014-05-01
It has been found that the olfactorygustatory function is altered in patients with eating disorders, with an impairment affecting the perception of olfactory and gustatory stimuli. The aim was to explore the subjective reactivity after the exposure and tasting of foods with different gradient of sweetness and different fats textures. In addition, changes in the thought-shape fusion (TSF) cognitive distortion were assessed after tasting those different presentations as well as the correlations between the initial scores on TSF-Questionnaire (TSF-Q) and the different responses after that tasting. A total of 15 healthy controls and 23 outpatients with anorexia nervosa underwent two sessions of tasting (sweets with different gradient of sweetness and fats with different textures) and they filled several questionnaires (pre- and post-tasting) to measure their responses after tasting. Participants showed less "self-control" after tasting sweets. The score on TSF-Q increased significantly after the sweets tasting in the patients group. Patients had the worst response after tasting presentations with more quantity of glucose (less gradient of sweetness) than after tasting those with more amount of sucrose (much more sweetness). With respect to the fats, patients showed the worst reaction after tasting the most unfamiliar texture. Pre fats tasting TSF-Q scores correlated significantly with all responses in the patients group. Both psychological and biological (e.g. genetic) factors could be involved in the reactions of patients with anorexia nervosa after tasting sweets and fats. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Tiwari, Roshan V.; Polk, Ashley N.; Patil, Hemlata; Ye, Xingyou; Pimparade, Manjeet B.; Repka, Michael A.
2017-01-01
Developing a pediatric oral formulation with an age-appropriate dosage form and taste masking of naturally bitter active pharmaceutical ingredients (APIs) are key challenges for formulation scientists. Several techniques are used for taste masking of bitter APIs to improve formulation palatability; however, not all the techniques are applicable to pediatric dosage forms because of the limitations on the kind and concentration of the excipients that can be used. Hot-melt extrusion (HME) technology is used successfully for taste masking of bitter APIs, and overcomes some of the limitations of the existing taste masking techniques. Likewise, analytical taste assessment is an important quality control parameter evaluated by several in vivo and in vitro methods, such as the human taste panel, electrophysiological methods, electronic sensor, and animal preference tests to aid in selecting a taste-masked formulation. However, the most appropriate in-vivo method to assess the taste-masking efficacy of pediatric formulations remains unknown, because it is not known to what extent the human taste panel/electronic tongue can predict the palatability in the pediatric patients. The purpose of this study was to develop taste-masked caffeine citrate extrudates via HME, and to demonstrate the wide applicability of a single bottle-test rat model to record and compare the volume consumed of the taste-masked solutions to that of the pure API. Thus, this rat model can be considered as a low-cost alternative taste-assessment method to the most commonly used expensive human taste panel/electronic tongue method for pediatric formulations. PMID:26573158
Yee, Karen K; Sukumaran, Sunil K; Kotha, Ramana; Gilbertson, Timothy A; Margolskee, Robert F
2011-03-29
Although the heteromeric combination of type 1 taste receptors 2 and 3 (T1r2 + T1r3) is well established as the major receptor for sugars and noncaloric sweeteners, there is also evidence of T1r-independent sweet taste in mice, particularly so for sugars. Before the molecular cloning of the T1rs, it had been proposed that sweet taste detection depended on (a) activation of sugar-gated cation channels and/or (b) sugar binding to G protein-coupled receptors to initiate second-messenger cascades. By either mechanism, sugars would elicit depolarization of sweet-responsive taste cells, which would transmit their signal to gustatory afferents. We examined the nature of T1r-independent sweet taste; our starting point was to determine if taste cells express glucose transporters (GLUTs) and metabolic sensors that serve as sugar sensors in other tissues. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we determined that several GLUTs (GLUT2, GLUT4, GLUT8, and GLUT9), a sodium-glucose cotransporter (SGLT1), and two components of the ATP-gated K(+) (K(ATP)) metabolic sensor [sulfonylurea receptor (SUR) 1 and potassium inwardly rectifying channel (Kir) 6.1] were expressed selectively in taste cells. Consistent with a role in sweet taste, GLUT4, SGLT1, and SUR1 were expressed preferentially in T1r3-positive taste cells. Electrophysiological recording determined that nearly 20% of the total outward current of mouse fungiform taste cells was composed of K(ATP) channels. Because the overwhelming majority of T1r3-expressing taste cells also express SUR1, and vice versa, it is likely that K(ATP) channels constitute a major portion of K(+) channels in the T1r3 subset of taste cells. Taste cell-expressed glucose sensors and K(ATP) may serve as mediators of the T1r-independent sweet taste of sugars.
Espin cytoskeletal proteins in the sensory cells of rodent taste buds
Sekerková, Gabriella; Freeman, David; Mugnaini, Enrico; Bartles, James R.
2010-01-01
Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste bud cells contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of rat circumvallate taste buds. In confocal images, we counted 21.5±0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7±1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP3R3),α-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP3R3, PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP3R3, α-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of ~3 μm-long microvilli occupying the taste pore, was separated by an espin-depleted zone from a second espin-positive zone situated lower within the taste pit. This latter zone included espin-positive rod-like structures that occasionally extended basally to a depth of 10-12 μm into the cytoplasm of taste cells. We propose that the espin-positive zone in the taste pit coincides with actin bundles in association with the microvilli of type II taste cells, whereas the espin-positive microvilli in the taste pore are the single microvilli of type III taste cells. PMID:16841162
Costa, M P; Balthazar, C F; Franco, R M; Mársico, E T; Cruz, A G; Conte, C A
2014-05-01
Goat milk yogurt is an excellent source of fatty acids, protein, and minerals; however, it is not well accepted by many consumers, due to its typical flavor derived from caprylic, capric, and caproic acids present in this milk and dairy products. Recently, the repeated-exposure test has been used to increase the consumption of particular foods. This methodology has been used to increase children's willingness to eat food in some settings and has also been used to reduce sodium in soup. Based on these considerations, the aim of this study was to investigate whether repeated exposures may increase acceptance of both goat milk yogurt and probiotic goat milk yogurt. In a pre-exposure session, a total of 45 panelists (28 females and 17 males) from southeastern Brazil, who were not used to consuming dairy goat milk, evaluated the expected taste perception and the perceived liking after tasting 3 yogurt preparations. Then, consumers were randomly divided into 3 groups and participated in rapidly repeated exposure sessions performed within 6 d. Each panelist consumed only the yogurt that he or she would be exposed to. The day after the exposure sessions, all panelists returned to participate in the postexposure session and were asked to evaluate acceptance, familiarity, and the "goaty taste" characteristic of each yogurt. Regarding the expected liking before tasting, results showed higher expectations for cow milk yogurt compared with goat milk yogurt, which proved that consumers were not familiar with the goat milk yogurt. Likewise, only cow milk yogurt presented high acceptance and familiarity rates, confirming that these panelists were used to consuming cow milk products. With respect to the rapidly repeated exposure, 6 d were enough to significantly increase the consumers' familiarity with goat milk yogurt and probiotic goat milk yogurt. However, this method was not suitable to significantly increase the acceptance of such products. Nonetheless, a correlation existed between the exposure sessions and the increase in acceptance of the exposure groups. Thus, hypothetically, the increasing of exposure sessions could be a strategy to increase goat milk product acceptance. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Taste Receptor Cells That Discriminate Between Bitter Stimuli
Caicedo, Alejandro; Roper, Stephen D.
2013-01-01
Recent studies showing that single taste bud cells express multiple bitter taste receptors have reignited a long-standing controversy over whether single gustatory receptor cells respond selectively or broadly to tastants. We examined calcium responses of rat taste receptor cells in situ to a panel of bitter compounds to determine whether individual cells distinguish between bitter stimuli. Most bitter-responsive taste cells were activated by only one out of five compounds tested. In taste cells that responded to multiple stimuli, there were no significant associations between any two stimuli. Bitter sensation does not appear to occur through the activation of a homogeneous population of broadly tuned bitter-sensitive taste cells. Instead, different bitter stimuli may activate different subpopulations of bitter-sensitive taste cells. PMID:11222863
O'Mahony, M; Ishii, R
1986-05-01
Everyday taste descriptions for a range of stimuli were obtained from selected groups of American and Japanese subjects, using a variety of stimuli, stimulus presentation procedures and response conditions. In English there was a tendency to use a quadrapartite classification system: 'sweet', 'sour', 'salty' and 'bitter'. The Japanese had a different strategy, adding a fifth label: 'Ajinomoto', referring to the taste of monosodium glutamate. This label was generally replaced by umami--the scientific term--by Japanese who were workers or trained tasters involved with glutamate manufacture. Cultural differences in taste language have consequences for taste psychophysicists who impose a quadrapartite restriction on allowable taste descriptions. Stimulus presentation by filter-paper or aqueous solution elicited the same response trends. Language codability was only an indicator of degree of taste mixedness/singularity if used statistically with samples of sufficient size; it had little value as an indicator for individual subjects.
Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.
Takeda, Norifumi; Jain, Rajan; Li, Deqiang; Li, Li; Lu, Min Min; Epstein, Jonathan A
2013-01-01
Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.
Progress and renewal in gustation: new insights into taste bud development.
Barlow, Linda A
2015-11-01
The sense of taste, or gustation, is mediated by taste buds, which are housed in specialized taste papillae found in a stereotyped pattern on the surface of the tongue. Each bud, regardless of its location, is a collection of ∼100 cells that belong to at least five different functional classes, which transduce sweet, bitter, salt, sour and umami (the taste of glutamate) signals. Taste receptor cells harbor functional similarities to neurons but, like epithelial cells, are rapidly and continuously renewed throughout adult life. Here, I review recent advances in our understanding of how the pattern of taste buds is established in embryos and discuss the cellular and molecular mechanisms governing taste cell turnover. I also highlight how these findings aid our understanding of how and why many cancer therapies result in taste dysfunction. © 2015. Published by The Company of Biologists Ltd.
Stevenson, Richard J; Mahmut, Mehmet K
2011-10-01
Odor "sweetness" may arise from experiencing odors and tastes together, resulting in a flavor memory that is later reaccessed by the odor. Forming a flavor memory may be impaired if the taste and odor elements are apparent during exposure, suggesting that configural processing may underpin learning. Using a new procedure, participants made actual flavor discriminations for one odor-taste pair (e.g., Taste A vs. Odor X-Taste A) and mock discriminations for another (e.g., Odor Y-Taste B vs. Odor Y-Taste B). Participants, who were successful at detecting the actual flavor discriminations, demonstrated equal amounts of learning for both odor-taste pairings. These results suggest that although a capacity to discriminate flavor into its elements may be necessary to support learning, whether participants experience a configural or elemental flavor representation may not.
Enhancement of Combined Umami and Salty Taste by Glutathione in the Human Tongue and Brain.
Goto, Tazuko K; Yeung, Andy Wai Kan; Tanabe, Hiroki C; Ito, Yuki; Jung, Han-Sung; Ninomiya, Yuzo
2016-09-01
Glutathione, a natural substance, acts on calcium receptors on the tongue and is known to enhance basic taste sensations. However, the effects of glutathione on brain activity associated with taste sensation on the tongue have not been determined under standardized taste delivery conditions. In this study, we investigated the sensory effect of glutathione on taste with no effect of the smell when glutathione added to a combined umami and salty taste stimulus. Twenty-six volunteers (12 women and 14 men; age 19-27 years) performed a sensory evaluation of taste of a solution of monosodium L-glutamate and sodium chloride, with and without glutathione. The addition of glutathione changed taste qualities and significantly increased taste intensity ratings under standardized taste delivery conditions (P < 0.001). Functional magnetic resonance imaging showed that glutathione itself elicited significant activation in the left ventral insula. These results are the first to demonstrate the enhancing effect of glutathione as reflected by brain data while tasting an umami and salty mixture. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genomic and Genetic Evidence for the Loss of Umami Taste in Bats
Zhao, Huabin; Xu, Dong; Zhang, Shuyi; Zhang, Jianzhi
2012-01-01
Umami taste is responsible for sensing monosodium glutamate, nucleotide enhancers, and other amino acids that are appetitive to vertebrates and is one of the five basic tastes that also include sour, salty, sweet, and bitter. To study how ecological factors, especially diets, impact the evolution of the umami taste, we examined the umami taste receptor gene Tas1r1 in a phylogenetically diverse group of bats including fruit eaters, insect eaters, and blood feeders. We found that Tas1r1 is absent, unamplifiable, or pseudogenized in each of the 31 species examined, including the genome sequences of two species, suggesting the loss of the umami taste in most, if not all, bats regardless of their food preferences. Most strikingly, vampire bats have also lost the sweet taste receptor gene Tas1r2 and the gene required for both umami and sweet tastes (Tas1r3), being the first known mammalian group to lack two of the five tastes. The puzzling absence of the umami taste in bats calls for a better understanding of the roles that this taste plays in the daily life of vertebrates. PMID:22117084
Genetics of sweet taste preferences†
Bachmanov, Alexander A; Bosak, Natalia P; Floriano, Wely B; Inoue, Masashi; Li, Xia; Lin, Cailu; Murovets, Vladimir O; Reed, Danielle R; Zolotarev, Vasily A; Beauchamp, Gary K
2011-01-01
Sweet taste is a powerful factor influencing food acceptance. There is considerable variation in sweet taste perception and preferences within and among species. Although learning and homeostatic mechanisms contribute to this variation in sweet taste, much of it is genetically determined. Recent studies have shown that variation in the T1R genes contributes to within- and between-species differences in sweet taste. In addition, our ongoing studies using the mouse model demonstrate that a significant portion of variation in sweetener preferences depends on genes that are not involved in peripheral taste processing. These genes are likely involved in central mechanisms of sweet taste processing, reward and/or motivation. Genetic variation in sweet taste not only influences food choice and intake, but is also associated with proclivity to drink alcohol. Both peripheral and central mechanisms of sweet taste underlie correlation between sweet-liking and alcohol consumption in animal models and humans. All these data illustrate complex genetics of sweet taste preferences and its impact on human nutrition and health. Identification of genes responsible for within- and between-species variation in sweet taste can provide tools to better control food acceptance in humans and other animals. PMID:21743773
Bioelectronic tongue of taste buds on microelectrode array for salt sensing.
Liu, Qingjun; Zhang, Fenni; Zhang, Diming; Hu, Ning; Wang, Hua; Hsia, K Jimmy; Wang, Ping
2013-02-15
Taste has received great attention for its potential applications. In this work, we combine the biological tissue with micro-chips to establish a novel bioelectronic tongue system for salt taste detection. Before experiment, we established a computational model of action potential in salt taste receptor cell, simulating the responsive results to natural salt stimuli of NaCl solution with various concentrations. Then 36-channel microelectrode arrays (MEA) with the diameter of 30 μm were fabricated on the glass substrate, and taste epithelium was stripped from rat and fixed on MEA. When stimulated by the salt stimuli, electrophysiological activities of taste receptor cells in taste buds were measured through a multi-channel recording system. Both simulation and experiment results showed a dose-dependent increase in NaCl-induced potentials of taste receptor cells, which indicated good applications in salt measurements. The multi-channel analysis demonstrated that different groups of MEA channels were activated during stimulations, indicating non-overlapping populations of receptor cells in taste buds involved in salt taste perception. The study provides an effective and reliable biosensor platform to help recognize and distinguish salt taste components. Copyright © 2012 Elsevier B.V. All rights reserved.
Woods, Andy T.; Spence, Charles
2015-01-01
We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences. PMID:27551365
Wang, Qian Janice; Woods, Andy T; Spence, Charles
2015-12-01
We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences.
Effect of Age and Severity of Facial Palsy on Taste Thresholds in Bell's Palsy Patients
Park, Jung Min; Kim, Myung Gu; Jung, Junyang; Kim, Sung Su; Jung, A Ra; Kim, Sang Hoon
2017-01-01
Background and Objectives To investigate whether taste thresholds, as determined by electrogustometry (EGM) and chemical taste tests, differ by age and the severity of facial palsy in patients with Bell's palsy. Subjects and Methods This study included 29 patients diagnosed with Bell's palsy between January 2014 and May 2015 in our hospital. Patients were assorted into age groups and by severity of facial palsy, as determined by House-Brackmann Scale, and their taste thresholds were assessed by EGM and chemical taste tests. Results EGM showed that taste thresholds at four locations on the tongue and one location on the central soft palate, 1 cm from the palatine uvula, were significantly higher in Bell's palsy patients than in controls (p<0.05). In contrast, chemical taste tests showed no significant differences in taste thresholds between the two groups (p>0.05). The severity of facial palsy did not affect taste thresholds, as determined by both EGM and chemical taste tests (p>0.05). The overall mean electrical taste thresholds on EGM were higher in younger Bell's palsy patients than in healthy subjects, with the difference at the back-right area of the tongue differing significantly (p<0.05). In older individuals, however, no significant differences in taste thresholds were observed between Bell's palsy patients and healthy subjects (p>0.05). Conclusions Electrical taste thresholds were higher in Bell's palsy patients than in controls. These differences were observed in younger, but not in older, individuals. PMID:28417103
Mechanisms of taste bud cell loss after head and neck irradiation.
Nguyen, Ha M; Reyland, Mary E; Barlow, Linda A
2012-03-07
Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of x-ray irradiation to the head and neck, and analyzed taste epithelium at 1-21 d postirradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1-3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5-7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5-6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using 5-bromo-2-deoxyuridine birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1-2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. In contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement, underlies taste loss after irradiation.
Mechanisms of taste bud cell loss after head and neck irradiation
Nguyen, Ha M.; Reyland, Mary E.; Barlow, Linda A.
2012-01-01
Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on a progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of X-ray irradiation to the head and neck, and analyzed taste epithelium at 1–21 days post-irradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1–3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5–7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5–6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using BrdU birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1–2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. By contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement underlies taste loss after irradiation. PMID:22399770
Yoshida, Takashi; Monk, Kevin J.; Katz, Donald B.
2013-01-01
The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions. PMID:23719813
Li, Jennifer X; Yoshida, Takashi; Monk, Kevin J; Katz, Donald B
2013-05-29
The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions.
CREB regulates memory allocation in the insular cortex
Sano, Yoshitake; Shobe, Justin L.; Zhou, Miou; Huang, Shan; Shuman, Tristan; Cai, Denise J.; Golshani, Peyman; Kamata, Masakazu; Silva, Alcino J.
2016-01-01
Summary The molecular and cellular mechanisms of memory storage have attracted a great deal of attention. By comparison, little is known about memory allocation, the process that determines which specific neurons in a neural network will store a given memory [1, 2]. Previous studies demonstrated that memory allocation is not random in the amygdala; these studies showed that amygdala neurons with higher levels of the cAMP response element binding protein (CREB) are more likely to be recruited into encoding and storing fear memory [3–6]. To determine whether specific mechanisms also regulate memory allocation in other brain regions, and whether CREB also has a role in this process, we studied insular cortical memory representations for conditioned taste aversion (CTA). In this task, an animal learns to associate a taste (CS) with the experience of malaise (such as that induced by LiCl; US). The insular cortex is required for CTA memory formation and retrieval [7–12]. CTA learning activates a subpopulation of neurons in this structure [13–15], and the insular cortex and the basolateral amygdala (BLA) interact during CTA formation [16, 17]. Here, we used a combination of approaches, including viral vector transfections of insular cortex, arc Fluorescence In Situ Hybridization (FISH) and Designer Receptors Exclusively Activated by Designer Drugs (DREADD) system, to show that CREB levels determine which insular cortical neurons go on to encode a given conditioned taste memory. PMID:25454591
Piloting an online grocery store simulation to assess children's food choices.
Heard, Amy M; Harris, Jennifer L; Liu, Sai; Schwartz, Marlene B; Li, Xun
2016-01-01
Public health interventions must address poor diet among U.S. children, but research is needed to better understand factors influencing children's food choices. Using an online grocery store simulation, this research piloted a novel method to assess children's snack selection in a controlled but naturalistic laboratory setting, evaluate predictors of choice, and experimentally test whether promotions on food packages altered choices. Children (7-12 years, N = 61) were randomly assigned to one of three conditions: promotions on healthy products; promotions on unhealthy products; and no promotions (control). They selected from a variety of healthy and unhealthy foods and beverages and rated all products on healthfulness and taste. Promotions on food packaging did not affect snack selection in this study, but findings supported our other hypothesis that perceived taste would be the strongest predictor of food choice. Children accurately rated product healthfulness, but these ratings did not predict healthy snack choices or taste ratings for healthy or unhealthy snacks. These results suggest that interventions to improve children's food choices should focus on increasing availability of healthy options and identifying opportunities to enhance children's liking of healthy options. However, nutrition education alone is unlikely to improve children's diets. Further testing is required, but the simulated online grocery store method shows potential for measuring children's food choices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Iwaniak, Anna; Minkiewicz, Piotr; Darewicz, Małgorzata; Hrynkiewicz, Monika
2016-11-01
Taste is one of the factors based on which the organism makes the selection of what to ingest. It also protects humans from ingesting toxic compounds and is one of the main attributes when thinking about food quality. Five basic taste sensations are recognized by humans: bitter, salty, sour, sweet, and umami. The taste of foods is affected by some molecules of some specific chemical nature. One of them are peptides derived from food proteins. Although they are not the major natural compounds originating from food sources that are responsible for the taste, they are in the area of scientific research due to the specific composition of amino acids which are well-known for their sensory properties. Literature data implicate that sweet, bitter, and umami are the tastes attributable to peptides. Moreover, the bitter peptide tastants are the dominant among the other tastes. Additionally, other biological activities like, e.g., inhibiting enzymes that regulate the body functions and acting as preventive food agents of civilization diseases, are also associated with the taste of peptides. The advance in information technologies has contributed to the elaboration of internet archives (databases) as well as in silico tools for the analysis of biological compounds. It also concerns peptides - namely taste carriers originating from foods. Thus, our paper provides a summary of knowledge about peptides as tastants with special attention paid to the following aspects: a) basis of taste perception, b) taste peptides detected in food protein sequences with special emphasis put on the role of bitter peptides, c) peptides that may enhance/suppress the taste of foods, d) databases as well as bioinformatic approaches suitable to study the taste of peptides, e) taste-taste interactions, f) basis of sensory analysis in the evaluation of the taste of molecules, including peptides, and g) the methodology applied to reduce/eliminate the undesired taste of peptides. The list of taste peptides serving some biological functions is presented in the Supplement file. The information provided includes database resources, whereas peptide sequences are given with InChiKeys, which is aimed at facilitating the Google® search. Our collection of data regarding taste peptides may be supportive for the scientists working with the set of peptide data in the context of structure-function activity of peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Role of the ectonucleotidase NTPDase2 in taste bud function
Vandenbeuch, Aurelie; Anderson, Catherine B.; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C.; Finger, Thomas E.; Kinnamon, Sue C.
2013-01-01
Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses. PMID:23959882
Sorokowska, Agnieszka; Pellegrino, Robert; Butovskaya, Marina; Marczak, Michalina; Niemczyk, Agnieszka; Huanca, Tomas; Sorokowski, Piotr
2017-09-01
Biological significance of food components suggests that preferences for basic tastes should be similar across cultures. On the other hand, cultural factors play an important role in diet and can consequently influence individual preference for food. To date, very few studies have compared basic tastes preferences among populations of very diverse environmental and cultural conditions, and research rather did not involve traditional populations for whom the biological significance of different food components might be the most pronounced. Hence, our study focused on basic taste preferences in three populations, covering a broad difference in diet due to environmental and cultural conditions, market availability, dietary habits and food acquirement: 1) a modern society (Poles, n = 200), 2) forager-horticulturalists from Amazon/Bolivia (Tsimane', n = 138), and 3) hunter-gatherers from Tanzania (Hadza, n = 85). The preferences for basic tastes were measured with sprays containing supra-threshold levels of sweet, sour, bitter, salty, and umami taste solutions. We observed several interesting differences between participating societies. We found that Tsimane' and Polish participants liked the sweet taste more than other tastes, while Hadza participants liked salty and sour tastes more than the remaining tastes. Further, Polish people found bitter taste particularly aversive, which was not observed in the traditional societies. Interestingly, no cross-cultural differences were observed for relative liking of umami taste - it was rated closely to neutral by members of all participating societies. Additionally, Hadza showed a pattern to like basic tastes that are more common to their current diet than societies with access to different food sources. These findings demonstrate the impact of diet and market availability on preference for basic tastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kist, Ralf; Watson, Michelle; Crosier, Moira; Robinson, Max; Fuchs, Jennifer; Reichelt, Julia; Peters, Heiko
2014-10-01
In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.
Wang, Hong; Iguchi, Naoko; Rong, Qi; Zhou, Minliang; Ogunkorode, Martina; Inoue, Masashi; Pribitkin, Edmund A; Bachmanov, Alexander A; Margolskee, Robert F; Pfeifer, Karl; Huang, Liquan
2009-01-20
Vertebrate taste buds undergo continual cell turnover. To understand how the gustatory progenitor cells in the stratified lingual epithelium migrate and differentiate into different types of mature taste cells, we sought to identify genes that were selectively expressed in taste cells at different maturation stages. Here we report the expression of the voltage-gated potassium channel KCNQ1 in mammalian taste buds of mouse, rat, and human. Immunohistochemistry and nuclear staining showed that nearly all rodent and human taste cells express this channel. Double immunostaining with antibodies against type II and III taste cell markers validated the presence of KCNQ1 in these two types of cells. Co-localization studies with cytokeratin 14 indicated that KCNQ1 is also expressed in type IV basal precursor cells. Null mutation of the kcnq1 gene in mouse, however, did not alter the gross structure of taste buds or the expression of taste signaling molecules. Behavioral assays showed that the mutant mice display reduced preference to some umami substances, but not to any other taste compounds tested. Gustatory nerve recordings, however, were unable to detect any significant change in the integrated nerve responses of the mutant mice to umami stimuli. These results suggest that although it is expressed in nearly all taste bud cells, the function of KCNQ1 is not required for gross taste bud development or peripheral taste transduction pathways, and the reduced preference of kcnq1-null mice in the behavioral assays may be attributable to the deficiency in the central nervous system or other organs.
Role of the ectonucleotidase NTPDase2 in taste bud function.
Vandenbeuch, Aurelie; Anderson, Catherine B; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C; Finger, Thomas E; Kinnamon, Sue C
2013-09-03
Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses.
Cellular mechanisms of cyclophosphamide-induced taste loss in mice
Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J.
2017-01-01
Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system’s capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake. PMID:28950008
Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan
2014-01-01
Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system. PMID:24523558
Oxaliplatin Alters Expression of T1R2 Receptor and Sensitivity to Sweet Taste in Rats.
Ohishi, Akihiro; Nishida, Kentaro; Yamanaka, Yuri; Miyata, Ai; Ikukawa, Akiko; Yabu, Miharu; Miyamoto, Karin; Bansho, Saho; Nagasawa, Kazuki
2016-01-01
As one of the adverse effects of oxaliplatin, a key agent in colon cancer chemotherapy, a taste disorder is a severe issue in a clinical situation because it decreases the quality of life of patients. However, there is little information on the mechanism underlying the oxaliplatin-induced taste disorder. Here, we examined the molecular and behavioral characteristics of the oxaliplatin-induced taste disorder in rats. Oxaliplatin (4-16 mg/kg) was administered to Sprague-Dawley (SD) rats intraperitoneally for 2 d. Expression levels of mRNA and protein of taste receptors in circumvallate papillae (CP) were measured by real-time quantitative polymerase chain reaction (PCR) and immunohistochemistry, respectively. Taste sensitivity was assessed by their behavioral change using a brief-access test. Morphological change of the taste buds in CP was evaluated by hematoxyline-eosin (HE) staining, and the number of taste cells in taste buds was counted by immunohistochemical analysis. Among taste receptors, the expression levels of mRNA and protein of T1R2, a sweet taste receptor subunit, were increased transiently in CP of oxaliplatin-administered rats on day 7. In a brief-access test, the lick ratio was decreased in oxaliplatin-administered rats on day 7 and the alteration was recovered to the control level on day 14. There was no detectable alteration in the morphology of taste buds, number of taste cells or plasma zinc level in oxaliplatin-administered rats. These results suggest that decreased sensitivity to sweet taste in oxaliplatin-administered rats is due, at least in part, to increased expression of T1R2, while these alterations are reversible.
Cellular mechanisms of cyclophosphamide-induced taste loss in mice.
Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J; Delay, Eugene R
2017-01-01
Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.
Feng, Pu; Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan; Wang, Hong
2014-02-12
Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system.
Preis, Maren; Grother, Leon; Axe, Philip; Breitkreutz, Jörg
2015-08-01
The use of solid oral dosage forms is typically favored with regard to stability and ease of administration. The aim of this study was to investigate whether cyclodextrins (CD) or ion exchange resins (IER) could be used to taste-mask cetirizine HCl when formulated in a freeze-dried oral formulation. The oral lyophilisates were produced using the Zydis(®) technology that offer the opportunity to produce the dosage form directly in the aluminum laminate blister packs. This study confirmed that a pre-formed resinate of cetirizine HCl and various cyclodextrins can be successfully incorporated into the Zydis(®) oral lyophilisate. A chemically stable product with acceptable release profile was obtained in the case of cyclodextrin. This study has also demonstrated that the Insent(®) taste sensing system is a useful technique for predicting the taste-masking potential of Zydis(®) formulations. The electronic taste sensing system (e-tongue) data can be used to provide guidance on the selection of taste-masked formulations. Principal component analysis (PCA) of sensor data by plotting the PCA scores revealed the effects of used taste-masking techniques on the e-tongue sensors, indicating the successful taste improvement. The PCA plot of the taste sensor data revealed larger distances between the non-taste-masked sample and the CD- and IER-loaded samples, and the shift toward the drug-free formulations and excipient signals indicates a modification of the product taste. The human taste trial confirms the acceptability of the selected promising formulations. The taste evaluation results showed that an effectively taste-masked formulation has been achieved using β-cyclodextrin and cherry/sucralose flavor system with over 80% of volunteers finding the tablet to be acceptable. Copyright © 2015 Elsevier B.V. All rights reserved.
Melis, Melania; Tomassini Barbarossa, Iole
2017-05-25
Behavioral reaction to different taste qualities affects nutritional status and health. 6- n -Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors.
Melis, Melania; Tomassini Barbarossa, Iole
2017-01-01
Behavioral reaction to different taste qualities affects nutritional status and health. 6-n-Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors. PMID:28587069
Yamashita, Atsuko; Kondo, Kaori; Kunishima, Yoshimi; Iseki, Sachiko; Kondo, Takashi; Ota, Masato S
2018-01-22
Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB. Copyright © 2017 Elsevier Inc. All rights reserved.
Volumetry of human taste buds using laser scanning microscopy.
Just, T; Srur, E; Stachs, O; Pau, H W
2009-10-01
In vivo laser scanning confocal microscopy is a relatively new, non-invasive method for assessment of oral cavity epithelia. The penetration depth of approximately 200-400 microm allows visualisation of fungiform papillae and their taste buds. This paper describes the technique of in vivo volumetry of human taste buds. Confocal laser scanning microscopy used a diode laser at 670 nm for illumination. Digital laser scanning confocal microscopy equipment consisted of the Heidelberg Retina Tomograph HRTII and the Rostock Cornea Module. Volume scans of fungiform papillae were used for three-dimensional reconstruction of the taste bud. This technique supplied information on taste bud structure and enabled measurement and calculation of taste bud volume. Volumetric data from a 23-year-old man over a nine-day period showed only a small deviation in values. After three to four weeks, phenomenological changes in taste bud structures were found (i.e. a significant increase in volume, followed by disappearance of the taste bud and appearance of a new taste bud). The data obtained indicate the potential application of this non-invasive imaging modality: to evaluate variation of taste bud volume in human fungiform papillae with ageing; to study the effects of chorda tympani nerve transection on taste bud volume; and to demonstrate recovery of taste buds in patients with a severed chorda tympani nerve who show recovery of gustatory sensibility after surgery.
Nilsson, B
1979-01-01
The taste acuity at the midline of the hard and soft palate near their junction and, for comparison, on representative areas of the tongue was determined in 80 subjects aged 11-79 years by applying test solutions of the four basic tastes. Twenty-one subjects (26%) could identify at least one taste on the hard palate but none could recognize all four tastes. Seventy subjects (87%) could identify at least one taste on the soft palate and 37 subjects (46%) could recognize all four tastes. Taste thresholds were much higher on the hard palate than on the tongue and were in most cases higher on the soft palate than on the tongue. The ability to recognize all four tastes was less frequent in older than in younger subjects and the difference was greatest on the soft palate and least at the foliate papillae. The differences were greatest for citric acid and least for sucrose. There was a tendency to lower thresholds for women compared to men for all four tastes on all areas examined which was most pronounced on the soft palate. No differences in taste thresholds were found between denture wearers and subjects with natural dentition. Smokers had higher thresholds than non-smokers only for salt on the soft palate and the base of the tongue.
Differences in taste between two polyethylene glycol preparations.
Szojda, Maria M; Mulder, Chris J J; Felt-Bersma, Richelle J F
2007-12-01
Polyethylene glycol preparations (PEG) are increasingly used for chronic constipation in both adults and children. There are some suggestions that PEG 4000 with orange flavour (Forlax) tastes better than PEG 3350 which contains salt (Movicolon). Poor taste is an important factor for non-compliance and is one of the leading causes of therapy failure. The aim of the study was to compare the taste of two commonly used PEG preparations, PEG 4000 and PEG 3350. A double-blind, cross over randomised trial. A hundred people were recruited by advertisement. All tasted both preparations without swallowing and after tasting each of the preparations, they rinsed their mouths. Then a score, on a 5-point scale, was given for both preparations. 100 volunteers were included (27 males and 73 females, mean age 36). The taste score for PEG 4000 (mean 3.9, SD 0.7) was significantly better than for PEG 3350 (mean 2.7, SD 0.7) (p<0.0001, Wilcoxon matched pairs test). No difference in gender or age was observed. The volunteers which tasted PEG 3350 liked it more, when they tasted it first rather than when they tasted it after PEG 4000 (p<0.0001). The order in which volunteers tested PEG 4000 had no influence on the taste results. PEG 4000 tastes better than PEG 3350. This may have implications for patient compliance and effectiveness of treatment in patients with chronic constipation.
Taste Identification in Adults with Autism Spectrum Conditions
ERIC Educational Resources Information Center
Tavassoli, T.; Baron-Cohen, S.
2012-01-01
Sensory issues are widely reported in Autism Spectrum Conditions (ASC). Since taste perception is one of the least studied senses in ASC we explored taste identification in adults with ASC (12 males, 11 females) compared to control participants (14 males, 12 females). "Taste strips" were used to measure taste identification overall, as well as…
ERIC Educational Resources Information Center
Pineno, Oskar
2010-01-01
Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…
ERIC Educational Resources Information Center
Fontanini, Alfredo; Katz, Donald B.; Wang, Yunyan
2006-01-01
Lesions of the basolateral amygdala (BLA) have long been associated with abnormalities of taste-related behaviors and with failure in a variety of taste- and odor-related learning paradigms, including taste-potentiated odor aversion, conditioned taste preference, and conditioned taste aversion. Still, the general role of the amygdala in…
Calcium Signaling in Taste Cells
Medler, Kathryn F.
2014-01-01
The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977
Galvanic Tongue Stimulation Inhibits Five Basic Tastes Induced by Aqueous Electrolyte Solutions.
Aoyama, Kazuma; Sakurai, Kenta; Sakurai, Satoru; Mizukami, Makoto; Maeda, Taro; Ando, Hideyuki
2017-01-01
Galvanic tongue stimulation (GTS) modulates taste sensation. However, the effect of GTS is contingent on the electrode polarity in the proximity of the tongue. If an anodal electrode is attached in the proximity of the tongue, an electrical or metallic taste is elicited. On the other hand, if only cathodal electrode is attached in the proximity of the tongue, the salty taste, which is induced by electrolyte materials, is inhibited. The mechanism of this taste inhibition is not adequately understood. In this study, we aim to demonstrate that the inhibition is cause by ions, which elicit taste and which migrate from the taste sensors on the tongue by GTS. We verified the inhibitory effect of GTS on all five basic tastes induced by electrolyte materials. This technology is effective for virtual reality systems and interfaces to support dietary restrictions. Our findings demonstrate that cathodal-GTS inhibits all the five basic tastes. The results also support our hypothesis that the effects of cathodal-GTS are caused by migrating tasting ions in the mouth.
Electronic tongue: An analytical gustatory tool
Latha, Rewanthwar Swathi; Lakshmi, P. K.
2012-01-01
Taste is an important organoleptic property governing acceptance of products for administration through mouth. But majority of drugs available are bitter in taste. For patient acceptability and compliance, bitter taste drugs are masked by adding several flavoring agents. Thus, taste assessment is one important quality control parameter for evaluating taste-masked formulations. The primary method for the taste measurement of drug substances and formulations is by human panelists. The use of sensory panelists is very difficult and problematic in industry and this is due to the potential toxicity of drugs and subjectivity of taste panelists, problems in recruiting taste panelists, motivation and panel maintenance are significantly difficult when working with unpleasant products. Furthermore, Food and Drug Administration (FDA)-unapproved molecules cannot be tested. Therefore, analytical taste-sensing multichannel sensory system called as electronic tongue (e-tongue or artificial tongue) which can assess taste have been replacing the sensory panelists. Thus, e-tongue includes benefits like reducing reliance on human panel. The present review focuses on the electrochemical concepts in instrumentation, performance qualification of E-tongue, and applications in various fields. PMID:22470887
Responses of primate taste cortex neurons to the astringent tastant tannic acid.
Critchley, H D; Rolls, E T
1996-04-01
In order to advance knowledge of the neural control of feeding, we investigated the cortical representation of the taste of tannic acid, which produces the taste of astringency. It is a dietary component of biological importance particularly to arboreal primates. Recordings were made from 74 taste responsive neurons in the orbitofrontal cortex. Single neurons were found that were tuned to respond to 0.001 M tannic acid, and represented a subpopulation of neurons that was distinct from neurons responsive to the tastes of glucose (sweet), NaCl (salty), HCl (sour), quinine (bitter) and monosodium glutamate (umami). In addition, across the population of 74 neurons, tannic acid was as well represented as the tastes of NaCl, HCl quinine or monosodium glutamate. Multidimensional scaling analysis of the neuronal responses to the tastants indicates that tannic acid lies outside the boundaries of the four conventional taste qualities (sweet, sour, bitter and salty). Taken together these data indicate that the astringent taste of tannic acid should be considered as a taste quality, which receives a separate representation from sweet, salt, bitter and sour in the primate cortical taste areas.
The discovery and mechanism of sweet taste enhancers.
Li, Xiaodong; Servant, Guy; Tachdjian, Catherine
2011-08-01
Excess sugar intake posts several health problems. Artificial sweeteners have been used for years to reduce dietary sugar content, but they are not ideal substitutes for sugar owing to their off-taste. A new strategy focused on allosteric modulation of the sweet taste receptor led to identification of sweet taste 'enhancers' for the first time. The enhancer molecules do not taste sweet, but greatly potentiate the sweet taste of sucrose and sucralose selectively. Following a similar mechanism as the natural umami taste enhancers, the sweet enhancer molecules cooperatively bind with the sweeteners to the Venus flytrap domain of the human sweet taste receptor and stabilize the active conformation. Now that the approach has proven successful, enhancers for other sweeteners and details of the molecular mechanism for the enhancement are being actively pursued.
Using Single Colors and Color Pairs to Communicate Basic Tastes.
Woods, Andy T; Spence, Charles
2016-01-01
Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.
Voltage-gated sodium channels in taste bud cells.
Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D
2009-03-12
Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.
Effects of zinc deficiency on the vallate papillae and taste buds in rats.
Chou, H C; Chien, C L; Huang, H L; Lu, K S
2001-05-01
Zinc deficiency is associated with multiple clinical complications, including taste disturbance, anorexia, growth retardation, skin changes, and hypogonadism. We investigated the zinc-deficiency-induced morphologic changes in the vallate taste buds of weanling and young adult male Wistar rats. A total of 24 weanling and 30 young adult rats were used. Each age group was further divided into a control group fed a zinc-adequate (50 ppm) diet, a zinc-deficient (< 1 ppm) diet group, and a zinc-adequate pair-fed group who were fed the same amount of food as that taken by the zinc-deficient group. Weanling rats were fed for 4 weeks and young adult rats were fed for 6 weeks. The morphometry and morphologic changes of vallate taste buds were analyzed using light and transmission electron microscopy. Light microscopy revealed no significant difference in papilla size and morphology among the various groups. In both weanling and young adult rats in the zinc-deficient diet and pair-fed groups, the number of taste buds per papilla (per animal) and the average profile area of the taste bud were significantly smaller than those of the corresponding controls (p < 0.05). Ultrastructural changes were seen only in the taste buds of weanling rats fed the zinc-deficient diet, with derangement of the architecture of the taste bud and widening of the intercellular space between taste bud cells. The proportion of type I taste bud cells in the taste buds of weanling rats fed the zinc-deficient diet decreased from 59% to 39%, and that of type II taste bud cells decreased from 25% to 12%. No obvious changes in the ultrastructure of type III taste bud cells were observed. The main effects of zinc deficiency in weanling and young adult rats and in adequate diet pair-fed rats were changes in the number and size of taste buds, and fine structure changes in the taste bud cells, especially during the accelerated growth stage after weaning.
New method for evaluating astringency in red wine.
Llaudy, María C; Canals, Roser; Canals, Joan-Miquel; Rozés, Nicolas; Arola, Lluís; Zamora, Fernando
2004-02-25
Astringency is an important sensory attribute of red wine. It is usually estimated by tasting and is subject to a certain subjectivity. It can also be estimated by using the gelatin index. This procedure is not very reproducible because there are many gelatins on the market with a heterogeneous composition. Furthermore, the gelatin index determines procyanidin concentration by acid hydrolysis that gives only an approximate result. This paper proposes a new and reproducible method that determines astringency by using ovalbumin as the precipitation agent and tannic acid solutions as standards. Statistical analysis of the results indicates that this method is more reproducible (RSD = 5%) than the gelatin index (RSD = 12%) and correlates better with sensorial analysis.
Glucagon-like peptide-1 is specifically involved in sweet taste transmission
Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J.; Margolskee, Robert F.; Ninomiya, Yuzo
2015-01-01
Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice.—Takai, S., Yasumatsu, K., Inoue, M., Iwata, S., Yoshida, R., Shigemura, N., Yanagawa, Y., Drucker, D. J., Margolskee, R. F., Ninomiya, Y. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. PMID:25678625
Massive Losses of Taste Receptor Genes in Toothed and Baleen Whales
Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J.; Wang, Ding; Zhao, Huabin
2014-01-01
Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. PMID:24803572
Taste quality decoding parallels taste sensations.
Crouzet, Sébastien M; Busch, Niko A; Ohla, Kathrin
2015-03-30
In most species, the sense of taste is key in the distinction of potentially nutritious and harmful food constituents and thereby in the acceptance (or rejection) of food. Taste quality is encoded by specialized receptors on the tongue, which detect chemicals corresponding to each of the basic tastes (sweet, salty, sour, bitter, and savory [1]), before taste quality information is transmitted via segregated neuronal fibers [2], distributed coding across neuronal fibers [3], or dynamic firing patterns [4] to the gustatory cortex in the insula. In rodents, both hardwired coding by labeled lines [2] and flexible, learning-dependent representations [5] and broadly tuned neurons [6] seem to coexist. It is currently unknown how, when, and where taste quality representations are established in the cortex and whether these representations are used for perceptual decisions. Here, we show that neuronal response patterns allow to decode which of four tastants (salty, sweet, sour, and bitter) participants tasted in a given trial by using time-resolved multivariate pattern analyses of large-scale electrophysiological brain responses. The onset of this prediction coincided with the earliest taste-evoked responses originating from the insula and opercular cortices, indicating that quality is among the first attributes of a taste represented in the central gustatory system. These response patterns correlated with perceptual decisions of taste quality: tastes that participants discriminated less accurately also evoked less discriminated brain response patterns. The results therefore provide the first evidence for a link between taste-related decision-making and the predictive value of these brain response patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.
Genetics of Amino Acid Taste and Appetite.
Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K
2016-07-01
The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. © 2016 American Society for Nutrition.
TRPs in Taste and Chemesthesis
2015-01-01
TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca2+ release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa. PMID:24961971
Barreiro-Iglesias, Antón; Villar-Cerviño, Verona; Villar-Cheda, Begoña; Anadón, Ramón; Rodicio, María Celina
2008-12-01
Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys. (c) 2008 Wiley-Liss, Inc.
TRPs in taste and chemesthesis.
Roper, Stephen D
2014-01-01
TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca(2+) release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa.
Genetics of Amino Acid Taste and Appetite123
Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Beauchamp, Gary K
2016-01-01
The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. PMID:27422518
Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M.
2012-01-01
The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from “local epithelium”, in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. PMID:22659543
Stenström, Helena; Li, Xin; Hunt, Melvin C; Lundström, Kerstin
2014-02-01
The objective of this study was to determine which ageing treatment of beef was sensorially preferred by consumers and how their preference changed when given information about the ageing treatment used. Longissimus thoracis et lumborum from four young bulls were randomly assigned three ageing treatments: dry ageing, vacuum ageing and ageing in a highly moisture permeable bag (bag dry-ageing); each was aged at 1.6 °C for another 13 days. A preference test (171 consumers) with questions about overall liking, tenderness, and juiciness was performed. Thereafter, a deceptive test (61 consumers) was performed with two taste samples, the first taste sample with correct information about ageing treatment and the second with false information. In the preference test, consumers preferred dry ageing and bag dry-ageing to vacuum ageing. In the deceptive test, dry ageing was preferred, but the information given influenced preference. © 2013.
University of Delaware at TREC 2014
2014-11-01
order, i.e. the keyword with the highest weight first, will make sure that places from categories that a user prefers more will occur at higher ranks...create sentences in two different ways. Here are two examples of actual descriptions that were generated and included in our runs: Sweet Beginnings...randomly selected. 2.2 Submitted runs Our main idea is to maintain diversity among all the genres that suit the user’s taste . We have submitted two runs
Jilani, Hannah; Ahrens, Wohlfgang; Buchecker, Kirsten; Russo, Paola; Hebestreit, Antje
2017-01-01
Background : To measure sensory taste perception in children with an accurate and reproducible method is challenging and objective measurement methods are scarce. Objective : Aim was to characterize sensory taste perception, by measuring the number of fungiform papillae (FP) and to investigate whether the number of FP is associated with sensitivity for bitter taste and with taste preferences for sweet, salty, fatty or umami in children between 8 and 11 years of age. Design : Number of FP was measured with a digital camera in 83 children in a German subsample of the IDEFICS study. Among those 56 children performed a taste threshold test for bitter and taste preference tests for sweet, salty, fatty and umami. The association between the number of FP and sensory taste perception was analysed. Results : There is a tendency towards a lower number of FP in children with a higher fat preference (30 vs. 25 papillae, p=0.06). Results show no association between the number of FP and neither the bitter taste thresholds nor taste preferences for sweet, salty and umami. Conclusion : Bitter taste threshold might be independent of the number of FP, while the perception of fat was associated with the number of FP.
Is Sweet Taste Perception Associated with Sweet Food Liking and Intake?
Jayasinghe, Shakeela N.; Kruger, Rozanne; Walsh, Daniel C. I.; Cao, Guojiao; Rivers, Stacey; Richter, Marilize; Breier, Bernhard H.
2017-01-01
A range of psychophysical taste measurements are used to characterize an individual’s sweet taste perception and to assess links between taste perception and dietary intake. The aims of this study were to investigate the relationship between four different psychophysical measurements of sweet taste perception, and to explore which measures of sweet taste perception relate to sweet food intake. Forty-four women aged 20–40 years were recruited for the study. Four measures of sweet taste perception (detection and recognition thresholds, and sweet taste intensity and hedonic liking of suprathreshold concentrations) were assessed using glucose as the tastant. Dietary measurements included a four-day weighed food record, a sweet food-food frequency questionnaire and a sweet beverage liking questionnaire. Glucose detection and recognition thresholds showed no correlation with suprathreshold taste measurements or any dietary intake measurement. Importantly, sweet taste intensity correlated negatively with total energy and carbohydrate (starch, total sugar, fructose, glucose) intakes, frequency of sweet food intake and sweet beverage liking. Furthermore, sweet hedonic liking correlated positively with total energy and carbohydrate (total sugar, fructose, glucose) intakes. The present study shows a clear link between sweet taste intensity and hedonic liking with sweet food liking, and total energy, carbohydrate and sugar intake. PMID:28708085
Evaluation of taste-masking effects of pharmaceutical sweeteners with an electronic tongue system.
Choi, Du Hyung; Kim, Nam Ah; Nam, Tack Soo; Lee, Sangkil; Jeong, Seong Hoon
2014-03-01
Electronic tongue systems have been developed for taste measurement of bitter drug substances in accurate taste comparison to development palatable oral formulations. This study was to evaluate the taste masking effect of conventional pharmaceutical sweeteners such as neohesperidin dihydrochalcone, sucrose, sucralose and aspartame. The model drugs were acetaminophen, ibuprofen, tramadol hydrochloride, and sildenafil citrate (all at 20 mM). The degree of bitterness was measured by a multichannel taste sensor system (an electronic tongue). The data was collected by seven sensors and analyzed by a statistical method of principal components analysis (PCA). The effect of taste masking excipient was dependent on the type of model drug. Changing the concentration of taste masking excipients affected the sensitivity of taste masking effect according to the type of drug. As the excipient concentration increased, the effect of taste masking increased. Moreover, most of the sensors showed a concentration-dependent pattern of the taste-masking agents as higher concentration provided higher selectivity. This might indicate that the sensors can detect small concentration changes of a chemical in solution. These results suggest that the taste masking could be evaluated based on the data of the electronic tongue system and that the formulation development process could be performed in a more efficient way.
Ohla, Kathrin; Toepel, Ulrike; le Coutre, Johannes; Hudry, Julie
2012-01-01
Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.
Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.
2014-01-01
Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958
A taste for ATP: neurotransmission in taste buds
Kinnamon, Sue C.; Finger, Thomas E.
2013-01-01
Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952
Ohla, Kathrin; Toepel, Ulrike; le Coutre, Johannes; Hudry, Julie
2012-01-01
Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation. PMID:22431974
Goldberg, Jeanne P.; Folta, Sara C.; Eliasziw, Misha; Koch-Weser, Susan; Economos, Christina D.; Hubbard, Kristie L.; Peterson, Lindsay A.; Wright, Catherine M.; Must, Aviva
2015-01-01
Objective Great Taste, Less Waste (GTLW), a communications campaign, capitalized on the synergy between healthy eating and eco-friendly behaviors to motivate children to bring more fruits and vegetables and fewer sugar-sweetened beverages (SSBs) to school. Methods A cluster-randomized trial in Eastern Massachusetts elementary schools in 2011–2012 tested the hypothesis that GTLW would improve the quality of foods from home more than a nutrition-only campaign – Foods 2 Choose (F2C) – or control. Lunch and snack items from home were measured at baseline and 7 months later using digital photography. Mixed linear models compared change in mean servings of fruits, vegetables, and SSBs among groups, and change in mean prevalence of packaging type. Change in prevalence of food items of interest was compared among groups using generalized linear models. Results 582 third and fourth graders from 82 classrooms in 12 schools participated. At follow-up, no significant differences were observed between groups in change in mean servings or change in prevalence of items of interest. No packaging differences were observed. Conclusion GTLW was well-received but no significant changes were observed in the quality of food brought to school. Whether classrooms are an effective environment for change remains to be explored. PMID:25735605
Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.
Biggs, Bradley T; Tang, Tao; Krimm, Robin F
2016-01-01
Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.
Insights on consciousness from taste memory research.
Gallo, Milagros
2016-01-01
Taste research in rodents supports the relevance of memory in order to determine the content of consciousness by modifying both taste perception and later action. Associated with this issue is the fact that taste and visual modalities share anatomical circuits traditionally related to conscious memory. This challenges the view of taste memory as a type of non-declarative unconscious memory.
Taste bud development and patterning in sighted and blind morphs of Astyanax mexicanus.
Varatharasan, Nirupa; Croll, Roger P; Franz-Odendaal, Tamara
2009-12-01
In the blind cave-dwelling morph of A. mexicanus, the eye degenerates while other sensory systems, such as gustation, are expanded compared to their sighted (surface-dwelling) ancestor. This study compares the development of taste buds along the jaws of each morph. To determine whether cavefish have an altered onset or rate of taste bud development, we fluorescently labeled basal and receptor cells within taste buds over a developmental series. Our results show that taste bud number increases during development in both morphs. The rate of development is, however, accelerated in cavefish; a small difference in taste bud number exists at 5 dpf reaching threefold by 22 dpf. The expansion of taste buds in cavefish is, therefore, detectable after the onset of eye degeneration. This study provides important insights into the timing of taste bud expansion in cavefish as well as enhances our understanding of taste bud development in teleosts in general. (c) 2009 Wiley-Liss, Inc.
The chemistry and physiology of sour taste--a review.
Ramos Da Conceicao Neta, Edith Ramos; Johanningsmeier, Suzanne D; McFeeters, Roger F
2007-03-01
Sour taste is the key element in the flavor profile of food acidulants. Understanding the chemistry and physiology of sour taste is critical for efficient control of flavor in the formulation of acid and acidified foods. After a brief introduction to the main applications of food acidulants, several chemical parameters associated with sour taste are discussed. Special emphasis is given to hydrogen ions, protonated (undissociated) acid species, titratable acidity, anions, molar concentration, and physical and chemical properties of organic acids. This article also presents an overview of the physiology of sour taste and proposed theories for the transduction mechanisms for sour taste. The physiology of sour taste perception remains controversial and significant diversity exists among species with regard to cellular schemes used for detection of stimuli. The variety of mechanisms proposed, even within individual species, highlights the complexity of elucidating sour taste transduction. However, recent evidence suggests that at least one specific sour taste receptor protein has been identified.
Research progress of the bitter taste receptor genes in primates.
Feng, Ping; Luo, Rui-Jian
2018-02-20
Among the five basic tastes (umami, sweet, bitter, salty and sour), the perception of bitterness is believed to protect animals from digesting toxic and harmful substances, thus it is vital for animal survival. The taste of bitterness is triggered by the interaction between bitter substances and bitter taste receptors, which are encoded by Tas2rs. The gene numbers vary largely across species to meet different demands. So far, several ligands of bitter receptors have been identified in primates. They also discovered that the selective pressure of certain bitter taste receptor genes vary across taxa, genes or even different functional regions of the gene. In this review, we summarize the research progress of bitter taste receptor genes in primates by introducing the functional diversity of bitter receptors, the specific interaction between bitter taste receptors and ligands, the relationship between the evolutionary pattern of bitter taste receptors and diets, and the adaptive evolution of bitter taste receptor genes. We aim to provide a reference for further research on bitter receptor genes in primates.
Taste buds as peripheral chemosensory processors
Roper, Stephen D.
2012-01-01
Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50–100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds – Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell–cell communication shapes taste bud signaling via these transmitters. PMID:23261954
Taste buds as peripheral chemosensory processors.
Roper, Stephen D
2013-01-01
Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell-cell communication shapes taste bud signaling via these transmitters. Copyright © 2012 Elsevier Ltd. All rights reserved.
PTC/PROP tasting: anatomy, psychophysics, and sex effects.
Bartoshuk, L M; Duffy, V B; Miller, I J
1994-12-01
Taste worlds of humans vary because of taste blindness to phenylthiocarbamide (PTC) and its chemical relative, 6-n-propylthiouracil (PROP). We review early PTC studies and apply modern statistical analyses to show that a higher frequency of women tasted PTC crystals, and were tasters (threshold classification). In our laboratory, scaling of PROP bitterness led to the identification of a subset of tasters (supertasters) who rate PROP as intensely bitter. Supertasters also perceive stronger tastes from a variety of bitter and sweet substances, and perceive more burn from oral irritants (alcohol and capsaicin). The density of taste receptors on the anterior tongue (fungiform papillae, taste buds) correlate significantly with perceived bitterness of PROP and support the supertaster concept. Psychophysical data from studies in our laboratory also show a sex effect; women are supertasters more frequently. The anatomical data also support the sex difference; women have more fungiform papillae and more taste buds. Future investigations of PTC/PROP tasting and food behaviors should include scaling to identify supertasters and separate sex effects.
Calcium signaling in taste cells: regulation required.
Medler, Kathryn F
2010-11-01
Peripheral taste receptor cells depend on distinct calcium signals to generate appropriate cellular responses that relay taste information to the central nervous system. Some taste cells have conventional chemical synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release from stores to formulate an output signal through a hemichannel. Despite the importance of calcium signaling in taste cells, little is known about how these signals are regulated. This review summarizes recent studies that have identified 2 calcium clearance mechanisms expressed in taste cells, including mitochondrial calcium uptake and sodium/calcium exchangers (NCXs). These studies identified a unique constitutive calcium influx that contributes to maintaining appropriate calcium homeostasis in taste cells and the role of the mitochondria and exchangers in this process. The additional role of NCXs in the regulation of evoked calcium responses is also discussed. Clearly, calcium signaling is a dynamic process in taste cells and appears to be more complex than has previously been appreciated.
The chemistry of sour taste and the strategy to reduce the sour taste of beer.
Li, Hong; Liu, Fang
2015-10-15
The contributions of free hydrogen ions, undissociated hydrogen ions in protonated acid species, and anionic acid species to sour taste were studied through sensory experiments. According to tasting results, it can be inferred that the basic substance producing a sour taste is the hydrogen ion, including free hydrogen ions and undissociated hydrogen ions. The intensity of a sour taste is determined by the total concentration of free hydrogen ions and undissociated hydrogen ions. The anionic acid species (without hydrogen ions) does not produce a sour taste but can intensify or weaken the intensity of a sour taste. It seems that hydroxyl or conjugated groups in anionic acid species can intensify the sour taste produced by hydrogen ions. The following strategy to reduce the sensory sourness is advanced: not only reduce free hydrogen ions, namely elevate pH value, but also reduce the undissociated hydrogen ions contained in protonated acid species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nguyen, Ha M; Barlow, Linda A
2010-10-13
Bone Morphogenetic Protein 4 (BMP4) is a diffusible factor which regulates embryonic taste organ development. However, the role of BMP4 in taste buds of adult mice is unknown. We utilized transgenic mice with LacZ under the control of the BMP4 promoter to reveal the expression of BMP4 in the tongues of adult mice. Further we evaluate the pattern of BMP4 expression with that of markers of specific taste bud cell types and cell proliferation to define and compare the cell populations expressing BMP4 in anterior (fungiform papillae) and posterior (circumvallate papilla) tongue. BMP4 is expressed in adult fungiform and circumvallate papillae, i.e., lingual structures composed of non-taste epithelium and taste buds. Unexpectedly, we find both differences and similarities with respect to expression of BMP4-driven ß-galactosidase. In circumvallate papillae, many fusiform cells within taste buds are BMP4-ß-gal positive. Further, a low percentage of BMP4-expressing cells within circumvallate taste buds is immunopositive for markers of each of the three differentiated taste cell types (I, II and III). BMP4-positive intragemmal cells also expressed a putative marker of immature taste cells, Sox2, and consistent with this finding, intragemmal cells expressed BMP4-ß-gal within 24 hours after their final mitosis, as determined by BrdU birthdating. By contrast, in fungiform papillae, BMP4-ß-gal positive cells are never encountered within taste buds. However, in both circumvallate and fungiform papillae, BMP4-ß-gal expressing cells are located in the perigemmal region, comprising basal and edge epithelial cells adjacent to taste buds proper. This region houses the proliferative cell population that gives rise to adult taste cells. However, perigemmal BMP4-ß-gal cells appear mitotically silent in both fungiform and circumvallate taste papillae, as we do not find evidence of their active proliferation using cell cycle immunomarkers and BrdU birthdating. Our data suggest that intragemmal BMP4-ß-gal cells in circumvallate papillae are immature taste cells which eventually differentiate into each of the 3 taste cell types, whereas perigemmal BMP4-ß-gal cells in both circumvallate and fungiform papillae may be slow cycling stem cells, or belong to the stem cell niche to regulate taste cell renewal from the proliferative cell population.
[A Rare Case of Cerebellar Hemangioblastoma Causing Taste Disorder].
Nakashiro, Hiroko; Kawashima, Masatou; Yoshioka, Fumitaka; Nakahara, Yukiko; Takase, Yukinori; Ogata, Atsushi; Shimokawa, Shoko; Masuoka, Jun; Abe, Tatsuya; Matsushima, Toshio
2017-03-01
Taste(gustation)is one of the five senses, and comprises the types: sweet, bitter, salty, sour, and umami. Taste disorders, such as dysgeusia and parageusia, are classified into 2 types: those with peripheral origin and those with central origin. The peripheral origin-type taste disorder is caused by zinc deficiency, mouth dryness, a side effect of radiotherapy or complication of systemic diseases such as, diabetes, hepatopathy, and nephropathy. The central origin-type taste disorder is reported to be caused due to demyelinating disease, pontine hemorrhage, pontine infarction, and thalamic infarction; it is very rarely caused by a brain tumor. We surgically treated a 69-year-old man with cerebellar hemangioblastoma who had developed taste disorder. The tumor compressed the solitary nucleus, which includes the taste tract in the central nervous system. On removal of the tumor, the taste disorder gradually improved.
Intravital Microscopic Interrogation of Peripheral Taste Sensation
NASA Astrophysics Data System (ADS)
Choi, Myunghwan; Lee, Woei Ming; Yun, Seok Hyun
2015-03-01
Intravital microscopy is a powerful tool in neuroscience but has not been adapted to the taste sensory organ due to anatomical constraint. Here we developed an imaging window to facilitate microscopic access to the murine tongue in vivo. Real-time two-photon microscopy allowed the visualization of three-dimensional microanatomy of the intact tongue mucosa and functional activity of taste cells in response to topically administered tastants in live mice. Video microscopy also showed the calcium activity of taste cells elicited by small-sized tastants in the blood circulation. Molecular kinetic analysis suggested that intravascular taste sensation takes place at the microvilli on the apical side of taste cells after diffusion of the molecules through the pericellular capillaries and tight junctions in the taste bud. Our results demonstrate the capabilities and utilities of the new tool for taste research in vivo.
Intravital microscopic interrogation of peripheral taste sensation.
Choi, Myunghwan; Lee, Woei Ming; Yun, Seok Hyun
2015-03-02
Intravital microscopy is a powerful tool in neuroscience but has not been adapted to the taste sensory organ due to anatomical constraint. Here we developed an imaging window to facilitate microscopic access to the murine tongue in vivo. Real-time two-photon microscopy allowed the visualization of three-dimensional microanatomy of the intact tongue mucosa and functional activity of taste cells in response to topically administered tastants in live mice. Video microscopy also showed the calcium activity of taste cells elicited by small-sized tastants in the blood circulation. Molecular kinetic analysis suggested that intravascular taste sensation takes place at the microvilli on the apical side of taste cells after diffusion of the molecules through the pericellular capillaries and tight junctions in the taste bud. Our results demonstrate the capabilities and utilities of the new tool for taste research in vivo.
Using Single Colors and Color Pairs to Communicate Basic Tastes
Spence, Charles
2016-01-01
Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed. PMID:27698979
Glucagon signaling modulates sweet taste responsiveness.
Elson, Amanda E T; Dotson, Cedrick D; Egan, Josephine M; Munger, Steven D
2010-10-01
The gustatory system provides critical information about the quality and nutritional value of food before it is ingested. Thus, physiological mechanisms that modulate taste function in the context of nutritional needs or metabolic status could optimize ingestive decisions. We report that glucagon, which plays important roles in the maintenance of glucose homeostasis, enhances sweet taste responsiveness through local actions in the mouse gustatory epithelium. Using immunohistochemistry and confocal microscopy, we found that glucagon and its receptor (GlucR) are coexpressed in a subset of mouse taste receptor cells. Most of these cells also express the T1R3 taste receptor implicated in sweet and/or umami taste. Genetic or pharmacological disruption of glucagon signaling in behaving mice indicated a critical role for glucagon in the modulation of taste responsiveness. Scg5(-/-) mice, which lack mature glucagon, had significantly reduced responsiveness to sucrose as compared to wild-type littermates in brief-access taste tests. No significant differences were seen in responses to prototypical salty, sour, or bitter stimuli. Taste responsiveness to sucrose was similarly reduced upon acute and local disruption of glucagon signaling by the GlucR antagonist L-168,049. Together, these data indicate a role for local glucagon signaling in the peripheral modulation of sweet taste responsiveness.
Involvement of the Calcium-sensing Receptor in Human Taste Perception
Ohsu, Takeaki; Amino, Yusuke; Nagasaki, Hiroaki; Yamanaka, Tomohiko; Takeshita, Sen; Hatanaka, Toshihiro; Maruyama, Yutaka; Miyamura, Naohiro; Eto, Yuzuru
2010-01-01
By human sensory analyses, we found that various extracellular calcium-sensing receptor (CaSR) agonists enhance sweet, salty, and umami tastes, although they have no taste themselves. These characteristics are known as “kokumi taste” and often appear in traditional Japanese cuisine. Although GSH is a typical kokumi taste substance (taste enhancer), its mode of action is poorly understood. Here, we demonstrate how the kokumi taste is enhanced by the CaSR, a close relative of the class C G-protein-coupled receptors T1R1, T1R2, and T1R3 (sweet and umami receptors). We identified a large number of CaSR agonist γ-glutamyl peptides, including GSH (γ-Glu-Cys-Gly) and γ-Glu-Val-Gly, and showed that these peptides elicit the kokumi taste. Further analyses revealed that some known CaSR agonists such as Ca2+, protamine, polylysine, l-histidine, and cinacalcet (a calcium-mimetic drug) also elicit the kokumi taste and that the CaSR-specific antagonist, NPS-2143, significantly suppresses the kokumi taste. This is the first report indicating a distinct function of the CaSR in human taste perception. PMID:19892707
Maruyama, Yutaka; Yasuda, Reiko; Kuroda, Motonaka; Eto, Yuzuru
2012-01-01
Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca2+ concentration ([Ca2+]i) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami. PMID:22511946
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1987-01-01
Three experiments were run to assess the role of the area postrema in taste-aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning to intact ratsmore » and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less-severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste-aversion learning may involve area post-remamediated mechanisms, particularly at the lower doses, but an intact area postrema is not a necessary condition of the acquisition of an amphetamine-induced taste aversion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1987-08-01
Three experiments were run to assess the role of the area postrema in taste aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning in intactmore » rats and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste aversion learning may involve area postrema-mediated mechanisms, particularly at the lower doses, but that an intact area postrema is not a necessary condition for the acquisition of an amphetamine-induced taste aversion.« less
Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.
Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang
2016-04-01
Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number.
Taste and pheromone perception in the fruit fly Drosophila melanogaster.
Ebbs, Michelle L; Amrein, Hubert
2007-08-01
Taste is an essential sense for detection of nutrient-rich food and avoidance of toxic substances. The Drosophila melanogaster gustatory system provides an excellent model to study taste perception and taste-elicited behaviors. "The fly" is unique in the animal kingdom with regard to available experimental tools, which include a wide repertoire of molecular-genetic analyses (i.e., efficient production of transgenics and gene knockouts), elegant behavioral assays, and the possibility to conduct electrophysiological investigations. In addition, fruit flies, like humans, recognize sugars as a food source, but avoid bitter tasting substances that are often toxic to insects and mammals alike. This paper will present recent research progress in the field of taste and contact pheromone perception in the fruit fly. First, we shall describe the anatomical properties of the Drosophila gustatory system and survey the family of taste receptors to provide an appropriate background. We shall then review taste and pheromone perception mainly from a molecular genetic perspective that includes behavioral, electrophysiological and imaging analyses of wild type flies and flies with genetically manipulated taste cells. Finally, we shall provide an outlook of taste research in this elegant model system for the next few years.
Noh, Hwayoung; Paik, Hee-Young; Kim, Jihye; Chung, Jayong
2013-01-01
Salty taste perception affects salt intake, of which excess amounts is a major public health concern. Gene polymorphisms in salty taste receptors, zinc status and their interaction may affect salty taste perception. In this study, we examined the relationships among the α-epithelial sodium channel (αENaC) A663T genotype, zinc intake, and salty taste perception including salty taste acuity and preference in healthy young adults. The αENaC A663T genotype was determined by the PCR-restriction fragment length polymorphism in 207 adults. Zinc intake was examined by one 24-h recall and a two-day dietary record. Salty taste acuity and preference were determined by measuring the salty taste recognition threshold and the preferred salinity of beansprout soup, respectively. Men had significantly higher thresholds and preferences for salty taste than women did (p < 0.05). In women, the salty taste threshold was significantly lower in the highest tertile of available zinc intake than in the lowest tertile (12.2 mM and 17.6 mM, respectively, p = 0.02). Interestingly, a significant inverse association between available zinc intake and salty taste threshold was found only in women with αENaC AA homozygotes (β = −0.833, p = 0.02), and no such association was found in T663 allele carriers. The salty taste preference was not associated with the αENaC A663T genotype or available zinc intake in either sex. In conclusion, our data suggest that gene-nutrient interactions between the αENaC A663T genotype and available zinc intake play a role in determining the salty taste acuity in young women. PMID:24317554
Massive losses of taste receptor genes in toothed and baleen whales.
Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J; Wang, Ding; Zhao, Huabin
2014-05-06
Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Wang, Qian Janice; Wang, Sheila; Spence, Charles
2016-05-01
People intuitively match basic tastes to sounds of different pitches, and the matches that they make tend to be consistent across individuals. It is, though, not altogether clear what governs such crossmodal mappings between taste and auditory pitch. Here, we assess whether variations in taste intensity influence the matching of taste to pitch as well as the role of emotion in mediating such crossmodal correspondences. Participants were presented with 5 basic tastants at 3 concentrations. In Experiment 1, the participants rated the tastants in terms of their emotional arousal and valence/pleasantness, and selected a musical note (from 19 possible pitches ranging from C2 to C8) and loudness that best matched each tastant. In Experiment 2, the participants made emotion ratings and note matches in separate blocks of trials, then made emotion ratings for all 19 notes. Overall, the results of the 2 experiments revealed that both taste quality and concentration exerted a significant effect on participants' loudness selection, taste intensity rating, and valence and arousal ratings. Taste quality, not concentration levels, had a significant effect on participants' choice of pitch, but a significant positive correlation was observed between individual perceived taste intensity and pitch choice. A significant and strong correlation was also demonstrated between participants' valence assessments of tastants and their valence assessments of the best-matching musical notes. These results therefore provide evidence that: 1) pitch-taste correspondences are primarily influenced by taste quality, and to a lesser extent, by perceived intensity; and 2) such correspondences may be mediated by valence/pleasantness. © The Author 2016. Published by Oxford University Press.
Taste does not determine daily intake of dilute sugar solutions in mice
Beltran, F.; Benton, L.; Cheng, S.; Gieseke, J.; Gillman, J.; Spain, H. N.
2010-01-01
When a rodent licks a sweet-tasting solution, taste circuits in the central nervous system that facilitate stimulus identification, motivate intake, and prepare the body for digestion are activated. Here, we asked whether taste also determines daily intake of sugar solutions in C57BL/6 mice. We tested several dilute concentrations of glucose (167, 250, and 333 mM) and fructose (167, 250, and 333 mM). In addition, we tested saccharin (38 mM), alone and in binary mixture with each of the sugar concentrations, to manipulate sweet taste intensity while holding caloric value constant. In experiment 1, we measured taste responsiveness to the sweetener solutions in two ways: chorda tympani nerve responses and short-term lick tests. For both measures, the mice exhibited the following relative magnitude of responsiveness: binary mixtures > saccharin > individual sugars. In experiment 2, we asked whether the taste measures reliably predicted daily intake of the sweetener solutions. No such relationship was observed. The glucose solutions elicited weak taste responses but high daily intakes, whereas the fructose solutions elicited weak taste responses and low daily intakes. On the other hand, the saccharin + glucose solutions elicited strong taste responses and high daily intakes, while the saccharin + fructose solutions elicited strong taste responses but low daily intakes. Overall, we found that 1) daily intake of the sweetener solutions varied independently of the magnitude of the taste responses and 2) the solutions containing glucose stimulated substantially higher daily intakes than did the solutions containing isomolar concentrations of fructose. Given prior work demonstrating greater postoral stimulation of feeding by glucose than fructose, we propose that the magnitude of postoral nutritive stimulation plays a more important role than does taste in determining daily intake of dilute sugar solutions. PMID:20702804
Nakayama, Ayumi; Miura, Hirohito; Ooki, Makoto; Harada, Shuitsu
2015-03-01
Sox2 is proposed to regulate the differentiation of bipotential progenitor cells into taste bud cells. However, detailed expression of Sox2 remains unclear. In this report, Sox2 expression during taste bud development in the fungiform (FF), circumvallate (CV) and soft palate (SP) areas is examined together with Prox1. First, we immunohistochemically checked Prox1 expression in adults and found that almost all taste bud cells are Prox1-positive. During FF development, intense Sox2 expression was restricted to taste bud primordia expressing Prox1 at E12.5. However, at E14.5, Sox2 was intensely expressed outside the developing taste buds resolving to perigemmal Sox2 expression in adults. In the SP, at E14.5, taste bud primordia emerged as Prox1-expressing cell clusters. However, intense Sox2 expression was not restricted to taste bud primordia but was detected widely in the epithelium. During development, Sox2 expression outside developing taste buds was generally down-regulated but was retained in the perigemmal region similarly to that in the FF. In the CV, the initial stage of taste bud development remained unclear because of the lack of taste bud primordia comparable to that in the FF and SP. Here, we show that Prox1-expressing cells appear in the apical epithelium at E12.5, in the inner trench wall at E17.5 and in the outer trench wall at E18.5. Sox2 was again not restricted to developing taste bud cells expressing Prox1 during CV development. The expression patterns support that Sox2 does not serve as a cell fate selector between taste bud cells and surrounding keratinocytes but rather may contribute to them both.
Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M
2012-08-15
The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. Copyright © 2012 Elsevier Inc. All rights reserved.
Variation in human fungiform taste bud densities among regions and subjects.
Miller, I J
1986-12-01
Taste sensitivity is known to vary among regions of the tongue and between subjects. The distribution of taste buds on the human tongue is examined in this report to determine if interregional and intersubject variation of taste bud density might account for some of the variation in human taste sensitivity. The subjects were ten males, aged 22-80 years, who died from acute trauma or an acute cardiovascular episode. Specimens were obtained as anatomical gifts or from autopsy. A sample of tissue about 1 cm2 was taken from the tongue tip and midlateral region; frozen sections were prepared for light microscopy; and serial sections were examined by light microscopy to count the taste buds. The average taste bud (tb) density on the tongue tip was 116 tb/cm2 with a range from 3.6 to 514 among subjects. The number of gustatory papillae on the tip averaged 24.5 papillae/cm2 with a range from 2.4 to 80. Taste bud density in the midregion averaged 25.2 tb/cm2 (range: 0-85.9), and the mean number of gustatory papillae was 8.25/cm2 (range: 0-28). The mean number of taste buds per papilla was 3.8 +/- 2.2 (s.d.) on the tip and 2.6 +/- 1.5 (s.d.) on the midregion. Subjects with the highest taste bud densities on the tip also had the highest densities in the midregion and the highest number of taste buds per papilla. Taste bud density was 4.6 times higher on the tip than the midregion, which probably accounts for some of the regional difference in taste sensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)
Sharafi, Mastaneh; Rawal, Shristi; Fernandez, Maria Luz; Huedo-Medina, Tania B; Duffy, Valerie B
2018-05-08
Sensations from foods and beverages drive dietary choices, which in turn, affect risk of diet-related diseases. Perception of these sensation varies with environmental and genetic influences. This observational study aimed to examine associations between chemosensory phenotype, diet and cardiovascular disease (CVD) risk. Reportedly healthy women (n = 110, average age 45 ± 9 years) participated in laboratory-based measures of chemosensory phenotype (taste and smell function, propylthiouracil (PROP) bitterness) and CVD risk factors (waist circumference, blood pressure, serum lipids). Diet variables included preference and intake of sweet/high-fat foods, dietary restraint, and diet quality based on reported preference (Healthy Eating Preference Index-HEPI) and intake (Healthy Eating Index-HEI). We found that females who reported high preference yet low consumption of sweet/high-fat foods had the highest dietary restraint and depressed quinine taste function. PROP nontasters were more likely to report lower diet quality; PROP supertasters more likely to consume but not like a healthy diet. Multivariate structural models were fitted to identify predictors of CVD risk factors. Reliable latent taste (quinine taste function, PROP tasting) and smell (odor intensity) variables were identified, with taste explaining more variance in the CVD risk factors. Lower bitter taste perception was associated with elevated risk. In multivariate models, the HEPI completely mediated the taste-adiposity and taste-HDL associations and partially mediated the taste-triglyceride or taste-systolic blood pressure associations. The taste-LDL pathway was significant and direct. The HEI could not replace HEPI in adequate models. However, using a latent diet quality variable with HEPI and HEI, increased the strength of association between diet quality and adiposity or CVD risk factors. In conclusion, bitter taste phenotype was associated with CVD risk factors via diet quality, particularly when assessed by level of food liking/disliking. Copyright © 2018 Elsevier Inc. All rights reserved.
Cai, Huan; Daimon, Caitlin M.; Cong, Wei-na; Wang, Rui; Chirdon, Patrick; de Cabo, Rafael; Sévigny, Jean; Maudsley, Stuart; Martin, Bronwen
2014-01-01
Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste–related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste–related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR. PMID:24077597
The Influence of Color on the Consumer’s Experience of Beer
Carvalho, Felipe Reinoso; Moors, Pieter; Wagemans, Johan; Spence, Charles
2017-01-01
Visual appearance (e.g., color) cues set expectations regarding the likely taste and flavor properties of food and drink. These expectations may, in turn, anchor the subsequent tasting experience. In the present study, we examined the influence of the color of a beer on the consumer’s experience. Dark and pale beers were evaluated both before and after tasting. Importantly, these beers were indistinguishable in terms of their taste/flavor when tasted without any visual cues. The results indicate that the differing visual appearance of the beers led to clear differences in expected taste/flavor. However, after tasting, no differences in flavor ratings were observed, indicating that the expectations based on visual cues did not influence the actual tasting experience. The participants also expected the dark beer to be more expensive than the pale one. These outcomes suggest that changes in the visual appearance of a beer lead to significant changes in the way in which consumers expect the beer to taste. At the same time, however, our findings also suggest the need for more evidence to be collected in order to determine the boundary conditions on when such crossmodal expectations may vs. may not affect the tasting experience. Highlights: The expected flavor of a beer is affected by its visual appearance. No differences in flavor ratings were observed on tasting. Consumers expect dark beers to be more expensive than pale/amber beers. PMID:29312065
The Influence of Color on the Consumer's Experience of Beer.
Carvalho, Felipe Reinoso; Moors, Pieter; Wagemans, Johan; Spence, Charles
2017-01-01
Visual appearance (e.g., color) cues set expectations regarding the likely taste and flavor properties of food and drink. These expectations may, in turn, anchor the subsequent tasting experience. In the present study, we examined the influence of the color of a beer on the consumer's experience. Dark and pale beers were evaluated both before and after tasting. Importantly, these beers were indistinguishable in terms of their taste/flavor when tasted without any visual cues. The results indicate that the differing visual appearance of the beers led to clear differences in expected taste/flavor. However, after tasting, no differences in flavor ratings were observed, indicating that the expectations based on visual cues did not influence the actual tasting experience. The participants also expected the dark beer to be more expensive than the pale one. These outcomes suggest that changes in the visual appearance of a beer lead to significant changes in the way in which consumers expect the beer to taste. At the same time, however, our findings also suggest the need for more evidence to be collected in order to determine the boundary conditions on when such crossmodal expectations may vs. may not affect the tasting experience. Highlights: The expected flavor of a beer is affected by its visual appearance. No differences in flavor ratings were observed on tasting. Consumers expect dark beers to be more expensive than pale/amber beers.
Martin, Bronwen; Shin, Yu-Kyong; White, Caitlin M; Ji, Sunggoan; Kim, Wook; Carlson, Olga D; Napora, Joshua K; Chadwick, Wayne; Chapter, Megan; Waschek, James A; Mattson, Mark P; Maudsley, Stuart; Egan, Josephine M
2010-05-01
It is becoming apparent that there is a strong link between taste perception and energy homeostasis. Recent evidence implicates gut-related hormones in taste perception, including glucagon-like peptide 1 and vasoactive intestinal peptide (VIP). We used VIP knockout mice to investigate VIP's specific role in taste perception and connection to energy regulation. Body weight, food intake, and plasma levels of multiple energy-regulating hormones were measured and pancreatic morphology was determined. In addition, the immunocytochemical profile of taste cells and gustatory behavior were examined in wild-type and VIP knockout mice. VIP knockout mice demonstrate elevated plasma glucose, insulin, and leptin levels, with no islet beta-cell number/topography alteration. VIP and its receptors (VPAC1, VPAC2) were identified in type II taste cells of the taste bud, and VIP knockout mice exhibit enhanced taste preference to sweet tastants. VIP knockout mouse taste cells show a significant decrease in leptin receptor expression and elevated expression of glucagon-like peptide 1, which may explain sweet taste preference of VIP knockout mice. This study suggests that the tongue can play a direct role in modulating energy intake to correct peripheral glycemic imbalances. In this way, we could view the tongue as a sensory mechanism that is bidirectionally regulated and thus forms a bridge between available foodstuffs and the intricate hormonal balance in the animal itself.
Ito, Akira; Nosrat, Christopher A
2009-09-01
Taste buds and the peripheral nerves innervating them are two important components of the peripheral gustatory system. They require appropriate connections for the taste system to function. Neurotrophic factors play crucial roles in the innervation of peripheral sensory organs and tissues. Both brain-derived neurotrophic factor (BDNF) null-mutated and neurotrophin-4 (NT-4) null-mutated mice exhibit peripheral gustatory deficits. BDNF and NT-4 bind to a common high affinity tyrosine kinase receptor, TrkB (NTRK-2), and a common p75 neurotrophin receptor (NGFR). We are currently using a transgenic mouse model to study peripheral taste system development and innervation in the absence of both TrkB ligands. We show that taste cell progenitors express taste cell markers during early stages of taste bud development in both BDNF(-/-)xNT-4(-/-) and wild-type mice. At early embryonic stages, taste bud progenitors express Troma-1, Shh, and Sox2 in all mice. At later stages, lack of innervation becomes a prominent feature in BDNF(-/-)xNT-4(-/-) mice leading to a decreasing number of fungiform papillae and morphologically degenerating taste cells. A total loss of vallate taste cells also occurs in postnatal transgenic mice. Our data indicate an initial independence but a later permissive and essential role for innervation in taste bud development and maintenance.
Coevolutionary patterning of teeth and taste buds
Bloomquist, Ryan F.; Parnell, Nicholas F.; Phillips, Kristine A.; Fowler, Teresa E.; Yu, Tian Y.; Sharpe, Paul T.; Streelman, J. Todd
2015-01-01
Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium. PMID:26483492
Salt taste inhibition by cathodal current.
Hettinger, Thomas P; Frank, Marion E
2009-09-28
Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities. The taste of NaCl, the salty and bitter tastes of the other chloride salts and the taste of NaNO(3) was inhibited, suggesting the current displaced stimulatory cations from salty and bitter receptors. However, bitter tastes of non-halide sodium salts were not inhibited, likely because other bitter receptors respond to anions. A discharge current at cathode-off ubiquitously evoked a metallic taste reminiscent of anodal taste used in clinical electrogustometry. Analogous effects on ambient NaCl responses were recorded from the hamster chorda tympani nerve. Increases in tastes of the saccharin and benzoate anions were not evoked during current flow, suggesting that cathodal current does not carry stimulatory anions to sweet receptors. Cathodal current may selectively inhibit salty and bitter-salty tastes for which proximal stimuli are cations.
Change of the human taste bud volume over time.
Srur, Ehab; Stachs, Oliver; Guthoff, Rudolf; Witt, Martin; Pau, Hans Wilhelm; Just, Tino
2010-08-01
The specific aim of this study is to measure the taste volume in healthy human subjects over a 2.5-month period and to demonstrate morphological changes of the peripheral taste organs. Eighteen human taste buds in four fungiform papillae (fPap) were examined over a 10-week period. The fungiform papillae investigated were selected based on the form of the papillae or the arrangement of surface taste pores. Measurements were performed over 10 consecutive weeks, with five scans in a day once a week. The following parameters were measured: height and diameter of the taste bud, diameter of the fungiform papilla and diameter of the taste pore. The findings of this exploratory study indicated that (1) taste bud volumes changed over a 10-week period, (2) the interval between two volume maxima within the 10-week period was 3-5 weeks, and (3) the diameter of the fPap did not correlate with the volume of a single taste bud or with the volume of all taste buds in the fPap within the 10-week period. This exploratory in vivo study revealed changes in taste bud volumes in healthy humans with age-related gustatory sensitivity. These findings need to be considered when studying the effect of denervation of fungiform papillae in vivo using confocal microscopy. Crown Copyright 2009. Published by Elsevier Ireland Ltd. All rights reserved.
Age and sex differences in the taste sensitivity of young adult, young-old and old-old Japanese.
Yoshinaka, Masaki; Ikebe, Kazunori; Uota, Masahiro; Ogawa, Taiji; Okada, Tadashi; Inomata, Chisato; Takeshita, Hajime; Mihara, Yusuke; Gondo, Yasuyuki; Masui, Yukie; Kamide, Kei; Arai, Yasumichi; Takahashi, Ryutaro; Maeda, Yoshinobu
2016-12-01
The present study examined sex and age differences in taste sensitivity among young adult, young-old and old-old Japanese. Participants were divided into three groups comprising 477 men and 519 women in the young-old group (aged 69-71 years), 449 men and 500 women in the old-old group (aged 79-81 years), and 35 men and 35 women in the young adult group (aged 24-32 years). Recognition thresholds for the four basic tastes were measured using the 1-mL whole mouth gustatory test, in which taste solutions of the four basic tastes were tested in five concentrations. Young adults showed significantly lower recognition thresholds than the young-old group, and the young-old group showed significantly lower recognition thresholds than the old-old group. Among the young-old and old-old groups, women showed significantly lower recognition thresholds than males for sour, salty and bitter tastes, but there was no sex difference in the sweet taste threshold between the two groups. The present study confirmed that there are age and sex differences in taste sensitivity for the four basic tastes among young adult, young-old, and old-old Japanese, and that the sensitivity of sweet taste is more robust than the other tastes. Geriatr Gerontol Int 2016; 16: 1281-1288. © 2015 Japan Geriatrics Society.
Coevolutionary patterning of teeth and taste buds.
Bloomquist, Ryan F; Parnell, Nicholas F; Phillips, Kristine A; Fowler, Teresa E; Yu, Tian Y; Sharpe, Paul T; Streelman, J Todd
2015-11-03
Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.
Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya
2010-01-01
Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.
Oleogustus: The Unique Taste of Fat.
Running, Cordelia A; Craig, Bruce A; Mattes, Richard D
2015-09-01
Considerable mechanistic data indicate there may be a sixth basic taste: fat. However, evidence demonstrating that the sensation of nonesterified fatty acids (NEFA, the proposed stimuli for "fat taste") differs qualitatively from other tastes is lacking. Using perceptual mapping, we demonstrate that medium and long-chain NEFA have a taste sensation that is distinct from other basic tastes (sweet, sour, salty, and bitter). Although some overlap was observed between these NEFA and umami taste, this overlap is likely due to unfamiliarity with umami sensations rather than true similarity. Shorter chain fatty acids stimulate a sensation similar to sour, but as chain length increases this sensation changes. Fat taste oral signaling, and the different signals caused by different alkyl chain lengths, may hold implications for food product development, clinical practice, and public health policy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Thoma, Vladimiros; Knapek, Stephan; Arai, Shogo; Hartl, Marion; Kohsaka, Hiroshi; Sirigrivatanawong, Pudith; Abe, Ayako; Hashimoto, Koichi; Tanimoto, Hiromu
2016-01-01
Finding food sources is essential for survival. Insects detect nutrients with external taste receptor neurons. Drosophila possesses multiple taste organs that are distributed throughout its body. However, the role of different taste organs in feeding remains poorly understood. By blocking subsets of sweet taste receptor neurons, we show that receptor neurons in the legs are required for immediate sugar choice. Furthermore, we identify two anatomically distinct classes of sweet taste receptor neurons in the leg. The axonal projections of one class terminate in the thoracic ganglia, whereas the other projects directly to the brain. These two classes are functionally distinct: the brain-projecting neurons are involved in feeding initiation, whereas the thoracic ganglia-projecting neurons play a role in sugar-dependent suppression of locomotion. Distinct receptor neurons for the same taste quality may coordinate early appetitive responses, taking advantage of the legs as the first appendages to contact food. PMID:26893070
Choi, Hyun-Seok; Chung, Jun-Won; Lee, Ji Won; Lim, Min Young; Park, Dong Kyun; Kim, Yoon Jae; Kwon, Kwang Ahn; Kim, Jung Ho
2016-04-01
This study was aimed to evaluate the efficacy and safety of two low-volume agents, polyethylene glycol (PEG)-3350 plus ascorbic acid (PEG + Asc) and sodium picosulfate with magnesium citrate (SPMC), for bowel preparation. We performed a prospective, endoscopist-blinded, single-center, randomized controlled trial comparing PEG + Asc with SPMC to evaluate the bowel cleansing efficacy of the two regimens using the modified Ottawa bowel preparation scale (OBPS) and the Aronchick scale. Patients' taste and overall tolerance were assessed with a questionnaire. In total, 200 patients were randomized to receive either PEG + Asc (n = 98) or SPMC (n = 102). Both treatments were similarly efficacious in bowel cleansing, based on the modified OBSP (PEG + Asc 4.01 ± 2.29 vs SPMC 3.86 ± 2.47, P = 0.62) and Aronchick scale (PEG + Asc 1.96 ± 0.70 vs SPMC 1.89 ± 0.70, P = 0.42). Patient-reported taste and tolerance of each regimen, as reported by the questionnaire, were significantly greater in the PEG + Asc group than in the SPMC group (P = 0.01). In terms of adverse events, dizziness was more frequently observed in the PEG + Asc group (P = 0.03), whereas nausea was more common in the SPMC group (P = 0.02). PEG + Asc and SPMC show similar efficacy for bowel preparation. However, patient's overall tolerance is higher in the PEG + Asc group. © 2016 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
The Impact of Oral Health on Taste Ability in Acutely Hospitalized Elderly
Solemdal, Kirsten; Sandvik, Leiv; Willumsen, Tiril; Mowe, Morten; Hummel, Thomas
2012-01-01
Objective To investigate to what extent various oral health variables are associated with taste ability in acutely hospitalized elderly. Background Impaired taste may contribute to weight loss in elderly. Many frail elderly have poor oral health characterized by caries, poor oral hygiene, and dry mouth. However, the possible influence of such factors on taste ability in acutely hospitalized elderly has not been investigated. Materials and Methods The study was cross-sectional. A total of 174 (55 men) acutely hospitalized elderly, coming from their own homes and with adequate cognitive function, were included. Dental status, decayed teeth, oral bacteria, oral hygiene, dry mouth and tongue changes were recorded. Growth of oral bacteria was assessed with CRT® Bacteria Kit. Taste ability was evaluated with 16 taste strips impregnated with sweet, sour, salty and bitter taste solutions in 4 concentrations each. Correct identification was given score 1, and maximum total taste score was 16. Results Mean age was 84 yrs. (range 70–103 yrs.). Total taste score was significantly and markedly reduced in patients with decayed teeth, poor oral hygiene, high growth of oral bacteria and dry mouth. Sweet and salty taste were particularly impaired in patients with dry mouth. Sour taste was impaired in patients with high growth of oral bacteria. Conclusion This study shows that taste ability was reduced in acutely hospitalized elderly with caries activity, high growth of oral bacteria, poor oral hygiene, and dry mouth. Our findings indicate that good oral health is important for adequate gustatory function. Maintaining proper oral hygiene in hospitalized elderly should therefore get high priority among hospital staff. PMID:22570725
Drašković, Milica; Medarević, Djordje; Aleksić, Ivana; Parojčić, Jelena
2017-05-01
Considering that bitter taste of drugs incorporated in orally disintegrating tablets (ODTs) can be the main reason for avoiding drug therapy, it is of the utmost importance to achieve successful taste-masking. The evaluation of taste-masking effectiveness is still a major challenge. The objective of this study was to mask bitter taste of the selected model drugs by drug particle coating with Eudragit ® E PO, as well as to evaluate taste-masking effectiveness of prepared ODTs using compendial dissolution testing, dissolution in the small-volume shake-flask assembly and trained human taste panel. Model drugs were coated in fluidized bed. Disintequik™ ODT was used as a novel co-processed excipient for ODT preparation. Selected formulations were investigated in vitro and in vivo using techniques for taste-masking assessment. Significantly slower drug dissolution was observed from tablets with coated drug particles during the first 3 min of investigation. Results of in vivo taste-masking assessment demonstrated significant improvement in drug bitterness suppression in formulations with coated drug. Strong correlation between the results of drug dissolution in the small-volume shake-flask assembly and in vivo evaluation data was established (R ≥ 0.970). Drug particle coating with Eudragit ® E PO can be a suitable approach for bitter taste-masking. Strong correlation between in vivo and in vitro results implicate that small-volume dissolution method may be used as surrogate for human panel taste-masking assessment, in the case of physical taste-masking approach application.
Reyes-López, J; Nuñez-Jaramillo, L; Morán-Guel, E; Miranda, M I
2010-08-11
The medial prefrontal cortex (mPFC) is a brain area crucial for memory, attention, and decision making. Specifically, the noradrenergic system in this cortex is involved in aversive learning, as well as in the retrieval of these memories. Some evidence suggests that this area has an important role during taste memory, particularly during conditioned taste aversion (CTA), a model of aversive memory. Despite some previous evidence, there is scarce information about the role of adrenergic receptors in the mPFC during formation of aversive taste memory and appetitive/incidental taste memory. The goal of this research was to evaluate the role of mPFC beta-adrenergic receptors during CTA acquisition/consolidation or CTA retrieval, as well as during incidental taste memory formation using the model of latent inhibition of CTA. The results showed that infusions in the mPFC of the beta-adrenergic antagonist propranolol before CTA acquisition impaired both short- and long-term aversive taste memory formation, and also that propranolol infusions before the memory test impaired CTA retrieval. However, propranolol infusions before pre-exposure to the taste during the latent inhibition procedure had no effect on incidental taste memory acquisition or consolidation. These data indicate that beta-adrenergic receptors in the mPFC have different functions during taste memory formation: they have an important role during aversive taste association as well as during aversive retrieval but not during incidental taste memory formation. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Han, Pengfei; Mohebbi, Mohebbat; Unrath, Manja; Hummel, Cornelia; Hummel, Thomas
2018-07-15
There is a large inter-individual variation for umami taste perception. However the neural mechanism for this variability is not well understood. This study investigated brain responses to umami and salty taste among individuals with different umami identification abilities and the effect of repeated oral umami exposure on umami identification and neural processing of taste perceptions. Fifteen participants with high umami identification ability ("High Tasters, HT) and fifteen with low umami identification ability ("Low Tasters", LT) underwent three weeks of controlled exposure to umami taste (umami training). Prior to and after the training, participants underwent fMRI scans during which the umami taste solution and a control taste (salty) solution were delivered to their mouth using a gustometer. Taste intensity and pleasantness were rated after each scan. Umami taste identification was assessed before and after the umami training using "Taste Strips" test. Neuroimaging results showed different central processing of umami and salty taste based on umami identification ability, in which the umami LT had stronger activation in the thalamus and hippocampus while the umami HT showed stronger activation in the primary gustatory cortex. In addition, umami identification was significantly improved after umami training for LT. However, it was not reflected in changes in neural activation. The current study shows that attention and association/memory related brain structures play a significant role in the perception of umami taste; and with reference to the results of repeated umami exposure, the presence of very subtle changes regarding the neural processing. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, Hideomi; Nakagawa, Keiichi; Nakamura, Naoki
2006-12-01
Purpose: Taste loss is a major cause of morbidity in patients undergoing head-and-neck irradiation. The relationship between the time course and the degree of taste disorder was studied in both acute and late phases. Methods and Materials: Taste ability was measured by the taste threshold for the four basic tastes using a filter paper disc method in patients before, during, and after radiotherapy. The subjects were divided into two groups. In Group A, Radiation fields included most of the tongue (n = 100), and in Group B Radiation fields did not include the tip of the tongue (n = 18).more » Results: In Group A, there was a significant impairment of the threshold of all four basic tastes at 3 weeks after starting radiotherapy (RT), and this impairment remained at 8 weeks (p < 0.05). This was not seen in Group B. In Group A, there was no significant difference in the patterns of taste sensitivity change between the high-dose (>20 Gy) and low-dose ({<=}20 Gy) groups. In the late phase, recovery of taste loss was seen in both groups since 4 months after completing RT. Conclusions: Unless the anterior part of the tongue was irradiated, taste loss was not observed during RT. When the anterior part of the tongue was irradiated, a difference by radiation dose was not observed in the taste loss pattern. Additionally, radiation-induced taste dysfunction appears to be a temporal effect.« less
The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction
Ye, Wenlei; Chang, Rui B.; Bushman, Jeremy D.; Tu, Yu-Hsiang; Mulhall, Eric M.; Wilson, Courtney E.; Cooper, Alexander J.; Chick, Wallace S.; Hill-Eubanks, David C.; Nelson, Mark T.; Kinnamon, Sue C.; Liman, Emily R.
2016-01-01
Sour taste is detected by a subset of taste cells on the tongue and palate epithelium that respond to acids with trains of action potentials. Entry of protons through a Zn2+-sensitive proton conductance that is specific to sour taste cells has been shown to be the initial event in sour taste transduction. Whether this conductance acts in concert with other channels sensitive to changes in intracellular pH, however, is not known. Here, we show that intracellular acidification generates excitatory responses in sour taste cells, which can be attributed to block of a resting K+ current. We identify KIR2.1 as the acid-sensitive K+ channel in sour taste cells using pharmacological and RNA expression profiling and confirm its contribution to sour taste with tissue-specific knockout of the Kcnj2 gene. Surprisingly, acid sensitivity is not conferred on sour taste cells by the specific expression of Kir2.1, but by the relatively small magnitude of the current, which makes the cells exquisitely sensitive to changes in intracellular pH. Consistent with a role of the K+ current in amplifying the sensory response, entry of protons through the Zn2+-sensitive conductance produces a transient block of the KIR2.1 current. The identification in sour taste cells of an acid-sensitive K+ channel suggests a mechanism for amplification of sour taste and may explain why weak acids that produce intracellular acidification, such as acetic acid, taste more sour than strong acids. PMID:26627720
Pragmatically on the sense of taste - a short treatise based on culinary art.
Waluga, Marek; Jonderko, Krzysztof; Buschhaus, Magdalena
2013-01-01
The sense of taste is essential for proper functioning of the organism. The authors describe, in an accessible way, the complex mechanisms of taste perception. The structure of particular taste receptors, variants of their activation, as well as physical and chemical factors modifying the sensation of taste, are presented. Exquisite culinary examples are given in order to facilitate the reader with the understanding of why, at the level of the cerebral cortex, a virtually infinite number of combinations of taste sensations can be perceived. The discourse is spiced up by reflections of the eminent philosopher of taste, J.A. Brillat-Savarin, who convinces us that food intake should be not only a physiological act, but also a refined pleasure.
Bachmanov, Alexander A.; Beauchamp, Gary K.
2009-01-01
In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812
Pragmatically on the sense of taste – a short treatise based on culinary art
Jonderko, Krzysztof; Buschhaus, Magdalena
2013-01-01
The sense of taste is essential for proper functioning of the organism. The authors describe, in an accessible way, the complex mechanisms of taste perception. The structure of particular taste receptors, variants of their activation, as well as physical and chemical factors modifying the sensation of taste, are presented. Exquisite culinary examples are given in order to facilitate the reader with the understanding of why, at the level of the cerebral cortex, a virtually infinite number of combinations of taste sensations can be perceived. The discourse is spiced up by reflections of the eminent philosopher of taste, J.A. Brillat-Savarin, who convinces us that food intake should be not only a physiological act, but also a refined pleasure. PMID:24868281
Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds
Biggs, Bradley T.; Tang, Tao; Krimm, Robin F.
2016-01-01
Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling. PMID:26901525
Sun, Chengsan; Hummler, Edith; Hill, David L
2017-01-18
Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. Copyright © 2017 the authors 0270-6474/17/370660-13$15.00/0.
Sukumaran, Sunil K.; Margolskee, Robert F.; Bachmanov, Alexander A.
2016-01-01
Responses in the amiloride-insensitive (AI) pathway, one of the two pathways mediating salty taste in mammals, are modulated by the size of the anion of a salt. This “anion effect” has been hypothesized to result from inhibitory transepithelial potentials (TPs) generated across the lingual epithelium as cations permeate through tight junctions and leave their larger and less permeable anions behind (Ye et al., 1991). We tested directly the necessity of TPs for the anion effect by measuring responses to NaCl and Na-gluconate (small and large anion sodium salts, respectively) in isolated taste cells from mouse circumvallate papillae. Using calcium imaging, we identified AI salt-responsive type III taste cells and demonstrated that they compose a subpopulation of acid-responsive taste cells. Even in the absence of TPs, many (66%) AI salt-responsive type III taste cells still exhibited the anion effect, demonstrating that some component of the transduction machinery for salty taste in type III cells is sensitive to anion size. We hypothesized that osmotic responses could explain why a minority of type III cells (34%) had AI salt responses but lacked anion sensitivity. All AI type III cells had osmotic responses to cellobiose, which were significantly modulated by extracellular sodium concentration, suggesting the presence of a sodium-conducting osmotically sensitive ion channel. However, these responses were significantly larger in AI type III cells that did not exhibit the anion effect. These findings indicate that multiple mechanisms could underlie AI salt responses in type III taste cells, one of which may contribute to the anion effect. SIGNIFICANCE STATEMENT Understanding the mechanisms underlying salty taste will help inform strategies to combat the health problems associated with NaCl overconsumption by humans. Of the two pathways underlying salty taste in mammals, the amiloride-insensitive (AI) pathway is the least understood. Using calcium imaging of isolated mouse taste cells, we identify two separate populations of AI salt-responsive type III taste cells distinguished by their sensitivity to anion size and show that these cells compose subpopulations of acid-responsive taste cells. We also find evidence that a sodium-conducting osmotically sensitive mechanism contributes to salt responses in type III taste cells. Our data not only provide new insights into the transduction mechanisms of AI salt taste but also have important implications for general theories of taste encoding. PMID:26865617
Sun, Chengsan; Hummler, Edith
2017-01-01
Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. PMID:28100747
The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves
Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C.; Finger, Thomas E.
2015-01-01
Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT3A promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT3A mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μm 5-HT and this response is blocked by 1 μm ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μm m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. SIGNIFICANCE STATEMENT Historically, serotonin (5-hydroxytryptamine; 5-HT) has been described as a candidate neurotransmitter in the gustatory system and recent studies show that type III taste receptor cells release 5-HT in response to various taste stimuli. In the present study, we demonstrate that a subset of gustatory sensory neurons express functional 5-HT3 receptors that play a significant role in the neurotransmission of taste information from taste buds to nerves. In addition, we show that the anesthetic pentobarbital, widely used in taste nerve recordings, blocks 5-HT3 signaling. Therefore, many conclusions drawn from those data need to be reexamined in light of this anesthetic effect. PMID:26631478
Differences in taste detection thresholds between normal-weight and obese young adults.
Park, Dong Choon; Yeo, Joon Hyung; Ryu, In Yong; Kim, Sang Hoon; Jung, Junyang; Yeo, Seung Geun
2015-05-01
Compared with normal-weight individuals, obese young adults exhibited a significantly higher taste threshold for salty taste. Smoking also affected taste functions in this population. The aim of this study was to investigate the differences in taste detection thresholds between normal-weight and obese young adults. Taste threshold was measured using electrogustometry (EGM) and chemically with sucrose, NaCl, citric acid, and quinine hydrochloride in 41 volunteers in their twenties, 23 with body mass index (BMI) <23 kg/m(2) (normal-weight group) and 18 with BMI >25 kg/m(2) (obese group). BMI was significantly higher in the obese than in the normal-weight group (p < 0.05). The obese group exhibited significantly higher EGM thresholds than the normal-weight group on the right (p < 0.05) and left (p < 0.05) posterior tongue. In chemical taste tests, the obese group had higher thresholds for sweet, salty, sour, and bitter tastes than the normal-weight group, although the difference in threshold was significant only for salty taste (p < 0.05). Smoking had an impact on taste threshold, with smokers having higher thresholds than non-smokers, with significantly higher EGM thresholds on the right anterior and posterior and the left anterior tongue (p < 0.05 each).
Modulation of sweet responses of taste receptor cells.
Yoshida, Ryusuke; Niki, Mayu; Jyotaki, Masafumi; Sanematsu, Keisuke; Shigemura, Noriatsu; Ninomiya, Yuzo
2013-03-01
Taste receptor cells play a major role in detection of chemical compounds in the oral cavity. Information derived from taste receptor cells, such as sweet, bitter, salty, sour and umami is important for evaluating the quality of food components. Among five basic taste qualities, sweet taste is very attractive for animals and influences food intake. Recent studies have demonstrated that sweet taste sensitivity in taste receptor cells would be affected by leptin and endocannabinoids. Leptin is an anorexigenic mediator that reduces food intake by acting on leptin receptor Ob-Rb in the hypothalamus. Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known as orexigenic mediators that act via cannabinoid receptor 1 (CB1) in the hypothalamus and limbic forebrain to induce appetite and stimulate food intake. At the peripheral gustatory organs, leptin selectively suppresses and endocannabinoids selectively enhance sweet taste sensitivity via Ob-Rb and CB1 expressed in sweet sensitive taste cells. Thus leptin and endocannabinoids not only regulate food intake via central nervous systems but also modulate palatability of foods by altering peripheral sweet taste responses. Such reciprocal modulation of leptin and endocannabinoids on peripheral sweet sensitivity may play an important role in regulating energy homeostasis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nagai, Ayako; Kubota, Masaru; Sakai, Midori; Higashiyama, Yukie
2014-01-01
This study was conducted to determine the relationship between 6-n-propylthiouracil sensitivity and taste characteristics in female students at Nara Women's University. Participants (n=135) were screened for 6-npropylthiouracil sensitivity using a taste test with 0.56 mM 6-n-propylthiouracil solution, and the sensitivity was confirmed by an assay for the bitter-taste receptor gene, TAS2R38. Based on the screening results, 33 6-npropylthiouracil tasters and 21 non-tasters were enrolled. The basic characteristics that are thought to influence taste acuity, including body mass index, saliva volume and serum micronutrient concentrations (iron, zinc and copper), were similar between the two groups. In an analysis using a filter-paper disc method, there were no differences in the acuity for four basic tastes (sweet, salty, sour and bitter) between 6-n-propylthiouracil tasters and non-tasters. In addition, the taste preference for the four basic tastes as measured by a visual analogue scale was also comparable between the two groups. This is the first study to demonstrate that 6-n-propylthiouracil nontasters have taste sensitivity for the four basic tastes similar to that in 6-n-propylthiouracil tasters, at least in female adolescents, as measured by the gustatory test using a filter-paper disc method.
Music Influences Hedonic and Taste Ratings in Beer
Reinoso Carvalho, Felipe; Velasco, Carlos; van Ee, Raymond; Leboeuf, Yves; Spence, Charles
2016-01-01
The research presented here focuses on the influence of background music on the beer-tasting experience. An experiment is reported in which different groups of customers tasted a beer under three different conditions (N = 231). The control group was presented with an unlabeled beer, the second group with a labeled beer, and the third group with a labeled beer together with a customized sonic cue (a short clip from an existing song). In general, the beer-tasting experience was rated as more enjoyable with music than when the tasting was conducted in silence. In particular, those who were familiar with the band that had composed the song, liked the beer more after having tasted it while listening to the song, than those who knew the band, but only saw the label while tasting. These results support the idea that customized sound-tasting experiences can complement the process of developing novel beverage (and presumably also food) events. We suggest that involving musicians and researchers alongside brewers in the process of beer development, offers an interesting model for future development. Finally, we discuss the role of attention in sound-tasting experiences, and the importance that a positive hedonic reaction toward a song can have for the ensuing tasting experience. PMID:27199862
Taste receptors and gustatory associated G proteins in channel catfish, Ictalurus punctatus.
Gao, Sen; Liu, Shikai; Yao, Jun; Zhou, Tao; Li, Ning; Li, Qi; Dunham, Rex; Liu, Zhanjiang
2017-03-01
Taste sensation plays a pivotal role in nutrient identification and acquisition. This is particularly true for channel catfish (Ictalurus punctatus) that live in turbid waters with limited visibility. This biological process is mainly mediated by taste receptors expressed in taste buds that are distributed in several organs and tissues, including the barbels and skin. In the present study, we identified a complete repertoire of taste receptor and gustatory associated G protein genes in the channel catfish genome. A total of eight taste receptor genes were identified, including five type I and three type II taste receptor genes. Their genomic locations, phylogenetic relations, orthologies and expression were determined. Phylogenetic and collinear analyses provided understanding of the evolution dynamics of this gene family. Furthermore, the motif and dN/dS analyses indicated that selection pressures of different degrees were imposed on these receptors. Additionally, four genes of gustatory associated G proteins were also identified. It was indicated that expression patterns of catfish taste receptors and gustatory associated G proteins across organs mirror the distribution of taste buds across organs. Finally, the expression comparison between catfish and zebrafish organs provided evidence of potential roles of catfish skin and gill involved in taste sensation. Copyright © 2016 Elsevier Inc. All rights reserved.
Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E.
2013-01-01
Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates. PMID:23466675
GABA, its receptors, and GABAergic inhibition in mouse taste buds
Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D.
2012-01-01
Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals — glial-like Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Using a combination of Ca2+ imaging, single cell RT-PCR, and immunostaining, we show that γ-amino butyric acid (GABA) is an inhibitory transmitter in mouse taste buds, acting on GABA-A and GABA-B receptors to suppress transmitter (ATP) secretion from Receptor cells during taste stimulation. Specifically, Receptor cells express GABA-A receptor subunits β2, δ, π, as well as GABA-B receptors. In contrast, Presynaptic cells express the GABA-Aβ3 subunit and only occasionally GABA-B receptors. In keeping with the distinct expression pattern of GABA receptors in Presynaptic cells, we detected no GABAergic suppression of transmitter release from Presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in Type I taste cells as well as by GAD67 in Presynaptic (Type III) taste cells and is stored in both those two cell types. We conclude that GABA is released during taste stimulation and possibly also during growth and differentiation of taste buds. PMID:21490220
Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E
2013-03-06
Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.
Immunocytochemical analysis of syntaxin-1 in rat circumvallate taste buds.
Yang, Ruibiao; Ma, Huazhi; Thomas, Stacey M; Kinnamon, John C
2007-06-20
Mammalian buds contain a variety of morphological taste cell types, but the type III taste cell is the only cell type that has synapses onto nerve processes. We hypothesize that taste cell synapses utilize the SNARE protein machinery syntaxin, SNAP-25, and synaptobrevin, as is used by synapses in the central nervous system (CNS) for Ca2+-dependent exocytosis. Previous studies have shown that taste cells with synapses display SNAP-25- and synaptobrevin-2-like immunoreactivity (LIR) (Yang et al. [2000a] J Comp Neurol 424:205-215, [2004] J Comp Neurol 471:59-71). In the present study we investigated the presynaptic membrane protein, syntaxin-1, in circumvallate taste buds of the rat. Our results indicate that diffuse cytoplasmic and punctate syntaxin-1-LIR are present in different subsets of taste cells. Diffuse, cytoplasmic syntaxin-1-LIR is present in type III cells while punctate syntaxin-1-LIR is present in type II cells. The punctate syntaxin-1-LIR is believed to be associated with Golgi bodies. All of the synapses associated with syntaxin-1-LIR taste cells are from type III cells onto nerve processes. These results support the proposition that taste cell synapses use classical SNARE machinery such as syntaxin-1 for neurotransmitter release in rat circumvallate taste buds. (c) 2007 Wiley-Liss, Inc.
GABA, its receptors, and GABAergic inhibition in mouse taste buds.
Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D
2011-04-13
Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.
Cholinergic dependence of taste memory formation: evidence of two distinct processes.
Gutiérrez, Ranier; Rodriguez-Ortiz, Carlos J; De La Cruz, Vanesa; Núñez-Jaramillo, Luis; Bermudez-Rattoni, Federico
2003-11-01
Learning the aversive or positive consequences associated with novel taste solutions has a strong significance for an animal's survival. A lack of recognition of a taste's consequences could prevent ingestion of potential edibles or encounter death. We used conditioned taste aversion (CTA) and attenuation of neophobia (AN) to study aversive and safe taste memory formation. To determine if muscarinic receptors in the insular cortex participate differentially in both tasks, we infused the muscarinic antagonists scopolamine at distinct times before or after the presentation of a strong concentration of saccharin, followed by either an i.p. injection of a malaise-inducing agent or no injection. Our results showed that blockade of muscarinic receptors before taste presentation disrupts both learning tasks. However, the same treatment after the taste prevents AN but not CTA. These results clearly demonstrate that cortical cholinergic activity participates in the acquisition of both safe and aversive memory formation, and that cortical muscarinic receptors seem to be necessary for safe but not for aversive taste memory consolidation. These results suggest that the taste memory trace is processed in the insular cortex simultaneously by at least two independent mechanisms, and that their interaction would determine the degree of aversion or preference learned to a novel taste.
Kindleysides, Sophie; Beck, Kathryn L; Walsh, Daniel C I; Henderson, Lisa; Jayasinghe, Shakeela N; Golding, Matt; Breier, Bernhard H
2017-08-15
Perception of fat taste, aroma, and texture are proposed to influence food preferences, thus shaping dietary intake and eating behaviour and consequently long-term health. In this study, we investigated associations between fatty acid taste, olfaction, mouthfeel of fat, dietary intake, eating behaviour, and body mass index (BMI). Fifty women attended three sessions to assess oleic acid taste and olfaction thresholds, the olfactory threshold for n -butanol and subjective mouthfeel ratings of custard samples. Dietary intake and eating behaviour were evaluated using a Food Frequency and Three-Factor Eating Questionnaire, respectively. Binomial regression analysis was used to model fat taste and olfaction data. Taste and olfactory detection for oleic acid were positively correlated ( r = 0.325; p < 0.02). Oleic acid taste hypersensitive women had significantly increased n -butanol olfactory sensitivity ( p < 0.03). The eating behaviour disinhibition and BMI were higher in women who were hyposensitive to oleic acid taste ( p < 0.05). Dietary intake of nuts, nut spreads, and seeds were significantly correlated with high olfactory sensitivity to oleic acid ( p < 0.01). These findings demonstrate a clear link between fatty acid taste sensitivity and olfaction and suggest that fat taste perception is associated with specific characteristics of eating behaviour and body composition.
The taste-visual cross-modal Stroop effect: An event-related brain potential study.
Xiao, X; Dupuis-Roy, N; Yang, X L; Qiu, J F; Zhang, Q L
2014-03-28
Event-related potentials (ERPs) were recorded to explore, for the first time, the electrophysiological correlates of the taste-visual cross-modal Stroop effect. Eighteen healthy participants were presented with a taste stimulus and a food image, and asked to categorize the image as "sweet" or "sour" by pressing the relevant button as quickly as possible. Accurate categorization of the image was faster when it was presented with a congruent taste stimulus (e.g., sour taste/image of lemon) than with an incongruent one (e.g., sour taste/image of ice cream). ERP analyses revealed a negative difference component (ND430-620) between 430 and 620ms in the taste-visual cross-modal Stroop interference. Dipole source analysis of the difference wave (incongruent minus congruent) indicated that two generators localized in the prefrontal cortex and the parahippocampal gyrus contributed to this taste-visual cross-modal Stroop effect. This result suggests that the prefrontal cortex is associated with the process of conflict control in the taste-visual cross-modal Stroop effect. Also, we speculate that the parahippocampal gyrus is associated with the process of discordant information in the taste-visual cross-modal Stroop effect. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Kubota, Masaru; Toda, Chikako; Nagai-Moriyama, Ayako
2018-01-01
Although there are many studies on the umami receptor and its signaling pathway, literature on the effect of umami taste acuity on dietary choices in healthy subjects is limited. The current study aims to clarify the relationship between umami taste acuity with sweet or bitter taste acuity, food preference and intake. Forty-two healthy Japanese female university students were enrolled. The acuity for umami, sweet, and bitter tastes was evaluated using the filter-paper disc method. The study population was divided into 32 umami normal tasters and 10 hypo-tasters based on the taste acuity at the posterior part of the tongue using monosodium glutamate. Umami hypo-tasters exhibited a significantly lower sensitivity to sweet tastes than normal tasters. However, the sensitivity to bitter taste was comparable between the two groups. Food preference was examined by the food preference checklist consisted of 81 food items. Among them, umami tasters preferred shellfish, tomato, carrot, milk, low fat milk, cheese, dried shiitake, and kombu significantly more than umami hypo-tasters did. A self-reported food frequency questionnaire revealed no significant differences in the intake of calories and three macronutrients between the two groups; however, umami tasters were found to eat more seaweeds and less sugar than umami hypo-tasters. These data together may indicate the possibility that umami taste acuity has an effect on a dietary life. Therefore, training umami taste acuity from early childhood is important for a healthy diet later in life.
Taniguchi, Ryo; Shi, Lei; Honma, Shiho; Fujii, Masae; Ueda, Katsura; El-Sharaby, Ashraf; Wakisaka, Satoshi
2004-09-01
To understand the development of the gustatory structures necessitates a reliable marker for both immature and mature taste buds. It has been reported that the intragemmal cells within the taste buds of adult rats were bound to Ulex europaeus agglutinin-I (UEA-I), a specific lectin for alpha-linked fucose, but it has not been determined whether immature taste buds, i.e. taste buds without an apparent taste pore, are labeled with UEA-I. The present study was conducted to examine the UEA-I binding pattern during the development of the rat gustatory epithelium. In adult animals, UEA-I bound to the membrane of taste buds in all examined regions of the gustatory epithelium. Within the individual taste buds, UEA-I labeled almost all intragemmal cells. The binding of UEA-I was occasionally detected below the keratinized layer of the trench wall epithelium but could not be found in the lingual epithelium of the adult animal. During the development of circumvallate papilla, some cells within the immature taste buds were also labeled with UEA-I. The developmental changes in the UEA-I binding pattern in fungiform papillae were almost identical to those in the circumvallate papilla: both immature and mature taste buds were labeled with UEA-I. The present results indicate that UEA-I is a specific lectin for the intragemmal cells of both immature and mature taste buds and, thus, UEA-I can be used as a reliable marker for all taste buds in the rat.
Kobayashi, Yoshikazu; Habara, Masaaki; Ikezazki, Hidekazu; Chen, Ronggang; Naito, Yoshinobu; Toko, Kiyoshi
2010-01-01
Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets. PMID:22319306
Endocannabinoids selectively enhance sweet taste.
Yoshida, Ryusuke; Ohkuri, Tadahiro; Jyotaki, Masafumi; Yasuo, Toshiaki; Horio, Nao; Yasumatsu, Keiko; Sanematsu, Keisuke; Shigemura, Noriatsu; Yamamoto, Tsuneyuki; Margolskee, Robert F; Ninomiya, Yuzo
2010-01-12
Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known orexigenic mediators that act via CB(1) receptors in hypothalamus and limbic forebrain to induce appetite and stimulate food intake. Circulating endocannabinoid levels inversely correlate with plasma levels of leptin, an anorexigenic mediator that reduces food intake by acting on hypothalamic receptors. Recently, taste has been found to be a peripheral target of leptin. Leptin selectively suppresses sweet taste responses in wild-type mice but not in leptin receptor-deficient db/db mice. Here, we show that endocannabinoids oppose the action of leptin to act as enhancers of sweet taste. We found that administration of AEA or 2-AG increases gustatory nerve responses to sweeteners in a concentration-dependent manner without affecting responses to salty, sour, bitter, and umami compounds. The cannabinoids increase behavioral responses to sweet-bitter mixtures and electrophysiological responses of taste receptor cells to sweet compounds. Mice genetically lacking CB(1) receptors show no enhancement by endocannnabinoids of sweet taste responses at cellular, nerve, or behavioral levels. In addition, the effects of endocannabinoids on sweet taste responses of taste cells are diminished by AM251, a CB(1) receptor antagonist, but not by AM630, a CB(2) receptor antagonist. Immunohistochemistry shows that CB(1) receptors are expressed in type II taste cells that also express the T1r3 sweet taste receptor component. Taken together, these observations suggest that the taste organ is a peripheral target of endocannabinoids. Reciprocal regulation of peripheral sweet taste reception by endocannabinoids and leptin may contribute to their opposing actions on food intake and play an important role in regulating energy homeostasis.
Klimacka-Nawrot, Ewa; Suchecka, Wanda; Błońska-Fajfrowska, Barbara
2007-01-01
There are various methods of taste substances application in gustometry examination. The Polish Committee of Standards (Polski Komitet Normalizacyjny--PKN) recommends the performance of sensitivity taste examinations with the use of method based on rinsing out the mouth with water solutions of taste substances (sip-and-spit method) at their growing concentrations. The aim of the present research was to assess the usefulness of taste substances dilutions, whose concentrations were consistent with guidelines of the PKN for the evaluation of the results of examination of sweet, salty and sour taste sensitivity. 795 volunteers, i.e. 473 women and 322 men, aged 18-66, were the subject of study. The range of concentrations in sucrose solutions (0.34-12.00 g/l) as well as in sodium chloride solutions (0.16-2.00 g/l) were proper for examination in order to recognize taste threshold with the most volunteers. However, the use of concentrations in citric acid solutions (in the range 0.13-0.60 g/l) did not enable to investigate the taste sensitivity by reason of the large percentage of persons (85.2%) who correctly recognized the sour taste of the solution with the lowest citric acid concentration. The range of citric acid concentration (0.0036-0.2000 g/l) appeared to be more proper for examination of the sour taste sensitivity. The concentrations of sucrose and sodium chloride solutions recommended by PKN are proper for the examination of sweet and salty taste sensitivity with the use of sip-and-spit method however concentrations of citric acid solutions should be lower than recommended.
The development of basic taste sensitivity and preferences in children.
Fry Vennerød, Frida Felicia; Nicklaus, Sophie; Lien, Nanna; Almli, Valérie L
2018-08-01
This study aims at understanding how preference and sensitivity to the basic tastes develop in the preschool years, and how the two relate to each other. To expand on the existing literature regarding taste preferences conducted in cross-sectional studies, a longitudinal design was applied with children from age four to six years old. During the springs of 2015, 2016, and 2017, 131 children born in 2011 were tested in their kindergartens. To investigate preferences for sweet, sour and bitter tastes, the children performed ranking-by-elimination procedures on fruit-flavored beverages and chocolates with three taste intensity levels. The beverages varied in either sucrose, citric acid, or the bitter component isolone. The chocolates varied in the bitter component theobromine from cocoa and sucrose content. Each year, the children also performed paired-comparison tasks opposing plain water to tastant dilutions at four concentrations. The stimuli consisted of the five basic tastes: sweet (sucrose) sour (citric acid monohydrate) umami (monosodium glutamate), salty (sodium chloride), and bitter (quinine hydrochloride dihydrate). Preference for sweetness levels increased with age, while preference for bitterness and sourness levels were stable. Concerning taste sensitivity, the children showed an increase in sensitivity for sourness and saltiness, a decrease for sweetness, and stability for umami and bitterness. A negative association was found between sweetness sensitivity and preference for sweetness. The study highlights different trajectories of sensitivity and preferences across tastes. On average, a reduction in sweetness sensitivity combined with an increase in preference for higher sweetness was observed from the age of four to six. The weak relationship between taste sensitivity and taste preference in our data suggests that taste preference development is shaped by a multitude of factors in addition to taste sensitivity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Xiao-juan; Wang, Yu-qing; Long, Yang; Wang, Lei; Li, Yun; Gao, Fa-bao; Tian, Hao-ming
2013-09-01
Exenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is effective in inducing weight loss. The exact mechanisms are not fully understood. Reduced appetite and food intake may play important roles. Sweet taste contributes to food palatability, which promotes appetite. Interestingly, GLP-1 and its receptor are expressed in the taste buds of rodents and their interaction has an effect on mediating sweet taste sensitivity. Our aim was to investigate whether sweet taste will be changed after long term treatment with exenatide. The results showed that high-fat diet induced obese rats (HF-C) presented metabolic disorders in food intake, body weight, blood glucose and lipid metabolism compared with long term exenatide treated obese rats (EX) and normal chow fed control rats (NC). Meanwhile, greater preference for sweet taste was observed in HF-C rats but not in EX rats. Compared with NC rats, brain activities induced by sweet taste stimulation were stronger in HF-C rats, however these stronger activities were not found in EX rats. We further found reduced sweet taste receptor T1R3 in circumvallte taste buds of HF-C rats, while GLP-1 was increased. Besides, serum leptin was evaluated in HF-C rats with decreased leptin receptor expressed in taste buds. These changes were not observed in EX rats, which suggest them to be the underlying hormone and molecular mechanisms responsible for alterations in sweet taste of HF-C rats and EX rats. In summary, our results suggest that long term treatment with exenatide could benefit dietary obese rats partially by reversing sweet taste changes. Copyright © 2013 Elsevier Inc. All rights reserved.
Wang, Sheila; Spence, Charles
2016-01-01
People intuitively match basic tastes to sounds of different pitches, and the matches that they make tend to be consistent across individuals. It is, though, not altogether clear what governs such crossmodal mappings between taste and auditory pitch. Here, we assess whether variations in taste intensity influence the matching of taste to pitch as well as the role of emotion in mediating such crossmodal correspondences. Participants were presented with 5 basic tastants at 3 concentrations. In Experiment 1, the participants rated the tastants in terms of their emotional arousal and valence/pleasantness, and selected a musical note (from 19 possible pitches ranging from C2 to C8) and loudness that best matched each tastant. In Experiment 2, the participants made emotion ratings and note matches in separate blocks of trials, then made emotion ratings for all 19 notes. Overall, the results of the 2 experiments revealed that both taste quality and concentration exerted a significant effect on participants’ loudness selection, taste intensity rating, and valence and arousal ratings. Taste quality, not concentration levels, had a significant effect on participants’ choice of pitch, but a significant positive correlation was observed between individual perceived taste intensity and pitch choice. A significant and strong correlation was also demonstrated between participants’ valence assessments of tastants and their valence assessments of the best-matching musical notes. These results therefore provide evidence that: 1) pitch–taste correspondences are primarily influenced by taste quality, and to a lesser extent, by perceived intensity; and 2) such correspondences may be mediated by valence/pleasantness. PMID:26873934
Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers
Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin
2018-01-01
Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB− fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. PMID:28600222
The effect of imiquimod on taste bud calcium transients and transmitter secretion
Wu, Sandy Y
2016-01-01
Background and Purpose Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell–cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. Experimental Approach Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste‐evoked ATP secretion from mouse taste buds. Key Results Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca2+ concentrations. These Ca2 + responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca2 +‐ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca2 + mobilization elicited by imiquimod was dependent on release from internal Ca2 + stores. Moreover, combining studies of Ca2 + imaging with cellular biosensors showed that imiquimod evoked secretion of 5‐HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste‐evoked ATP secretion. Conclusion and Implications Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5‐HT signalling. PMID:27464850
Ogawa, H; Murayama, N; Hasegawa, K
1992-01-01
Receptive fields (RFs) of 59 cortical taste neurons (35 in the granular insular area, area GI, 21 in the dysgranular insular area, area DI, and 3 in the agranular insular area, area AI) were identified in the oral cavity of the rat. The fraction of the neurons with RFs in the anterior oral cavity only was significantly larger in area GI (74.3%) than in area DI (42.9%). On the other hand, the fraction of neurons with RFs in both the anterior and posterior oral cavity was larger in area DI (42.9%) than in area GI (11.4%). On the whole, it is suggested that area GI is involved in discrimination of several taste stimuli in the oral cavity, whereas in area DI taste information originating from various regions of the oral cavity is integrated. When neurons were classified according to the best stimulus which most excited the neuron among the four basic tastes, different categories of taste neurons had RFs in different parts of the oral cavity. It is suggested that, in either taste area, different categories of taste neurons are involved in different sorts of taste coding. The majority of neurons in both areas had bilateral RFs. In area GI, neurons with RFs on single subpopulations of taste buds were significantly more numerous at the rostral region of the cortex than at the caudal region. There was no such relation between RF types and cortical localization in area DI. Otherwise, topographic representation of the oral cavity by taste neurons on the cortical surface was not obvious. RF features of taste neurons did not differ across layers in either cortical area.
Expression of aquaporin water channels in rat taste buds.
Watson, Kristina J; Kim, Insook; Baquero, Arian F; Burks, Catherine A; Liu, Lidong; Gilbertson, Timothy A
2007-06-01
In order to gain insight into the molecular mechanisms that allow taste cells to respond to changes in their osmotic environment, we have used primarily immunocytochemical and molecular approaches to look for evidence of the presence of aquaporin-like water channels in taste cells. Labeling of isolated taste buds from the fungiform, foliate, and vallate papillae in rat tongue with antibodies against several of the aquaporins (AQPs) revealed the presence of AQP1, AQP2, and AQP5 in taste cells from these areas. AQP3 antibodies failed to label isolated taste buds from any of the papillae. There was an apparent difference in the regional localization of AQP labeling within the taste bud. Antibodies against AQP1 and AQP2 labeled predominantly the basolateral membrane, whereas the AQP5 label was clearly evident on both the apical and basolateral membranes of cells within the taste bud. Double labeling revealed that AQP1 and AQP2 labeled many, but not all, of the same taste cells. Similar double-labeling experiments with anti-AQP2 and anti-AQP5 clearly showed that AQP5 was expressed on or near the apical membranes whereas AQP2 was absent from this area. The presence of these 3 types of AQPs in taste buds but not in non-taste bud-containing epithelia was confirmed using reverse transcription-polymerase chain reaction. Experiments using patch clamp recording showed that the AQP inhibitor, tetraethylammonium, significantly reduced hypoosmotic-induced currents in rat taste cells. We hypothesize that the AQPs may play roles both in the water movement underlying compensatory mechanisms for changes in extracellular osmolarity and, in the case of AQP5 in particular, in the gustatory response to water.
Walliczek-Dworschak, Ute; Schöps, Franz; Feron, Gilles; Brignot, Helene; Hähner, Antje; Hummel, Thomas
2017-10-01
This study investigated the relation of the fungiform taste papillae density and saliva composition with the taste perception of patients suffering from diagnosed taste disorders. For this purpose, 81 patients and 40 healthy subjects were included. Taste was measured by means of regional and whole mouth chemosensory tests, and electrogustometry. Olfaction was assessed using the Sniffin Sticks. Fungiform papillae were quantified using the "Denver Papillae Protocol for Objective Analysis of Fungiform Papillae". In addition, salivary parameters [flow rate, total proteins, catalase, total anti-oxidative capacity (TAC), carbonic anhydrase VI (caVI), and pH] were determined and the Beck Depression Inventory was administered. Patients showed less taste papillae compared to healthy subjects. The number of papillae correlated with total taste strip score and salivary flow rate. Regarding salivary parameters, the flow rate, protein concentration, and TAC of patients were higher compared to controls. In addition, salivary flow rate, protease, caVI, and catalase values correlated with the summed taste strip score. Regarding various taste disorders, salty-dysgeusia patients showed the lowest taste test scores compared to those with bitter or metal-dysgeusia. Olfactory function of patients was significantly worse compared to healthy controls. This difference was most pronounced for ageusia patients. Compared to controls, patients also exhibited higher depressive symptoms. The density of fungiform papillae seemed to be positively associated with taste perception. Furthermore, patients exhibited changes in saliva composition (higher salivary flow rate, increased protein concentration, proteolysis, and TAC) compared to controls indicating that assessment of saliva may be critical for the diagnostic procedure in taste disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Boughter, John D; Bachmanov, Alexander A
2007-01-01
This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste. PMID:17903279
Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity
NASA Astrophysics Data System (ADS)
Amaral, Marco A.; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K. L.
2016-04-01
Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from this assumption by considering mixed games, where the game played at each interaction is drawn uniformly at random from a set of two different games. While in well-mixed populations the random mixture of the two games is always equivalent to the average single game, in structured populations this is not always the case. We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which often involves the promotion of cooperation. The presented results support preceding research that highlights the favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population structure in amplifying facilitators of cooperation.
Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity.
Amaral, Marco A; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K L
2016-04-01
Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from this assumption by considering mixed games, where the game played at each interaction is drawn uniformly at random from a set of two different games. While in well-mixed populations the random mixture of the two games is always equivalent to the average single game, in structured populations this is not always the case. We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which often involves the promotion of cooperation. The presented results support preceding research that highlights the favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population structure in amplifying facilitators of cooperation.
Ontogeny and innervation of taste buds in mouse palatal gustatory epithelium.
Rashwan, Ahmed; Konishi, Hiroyuki; El-Sharaby, Ashraf; Kiyama, Hiroshi
2016-01-01
We investigated the relationship between mouse taste bud development and innervation of the soft palate. We employed scanning electron microscopy and immunohistochemistry using antibodies against protein gene product 9.5 and peripherin to detect sensory nerves, and cytokeratin 8 and α-gustducin to stain palatal taste buds. At E14, nerve fibers were observed along the medial border of the palatal shelves that tracked toward the epithelium. At E15.5, primordial stages of taste buds in the basal lamina of the soft palate first appeared. At E16, the taste buds became large spherical masses of columnar cells scattered in the soft palate basal lamina. At E17, the morphology and also the location of taste buds changed. At E18-19, some taste buds acquired a more elongated shape with a short neck, extending a variable distance from the soft palate basal lamina toward the surface epithelium. At E18, mature taste buds with taste pores and perigemmal nerve fibers were observed on the surface epithelium of the soft palate. The expression of α-gustducin was demonstrated at postnatal day 1 and the number of pored taste buds increased with age and they became pear-shaped at 8 weeks. The percent of pored fungiform-like papillae at birth was 58.3% of the whole palate; this increased to 83.8% at postnatal day 8 and reached a maximum of 95.7% at 12 weeks. The innervation of the soft palate was classified into three types of plexuses in relation to taste buds: basal nerve plexus, intragemmal and perigemmal nerve fibers. This study reveals that the nerve fibers preceded the development of taste buds in the palate of mice, and therefore the nerve fibers have roles in the initial induction of taste buds in the soft palate. Copyright © 2015 Elsevier B.V. All rights reserved.
Tactile interaction with taste localization: influence of gustatory quality and intensity.
Lim, Juyun; Green, Barry G
2008-02-01
Taste is always accompanied by tactile stimulation, but little is known about how touch interacts with taste. One exception is evidence that taste can be "referred" to nearby tactile stimulation. It was recently found (Lim J, and Green BG. 2007. The psychophysical relationship between bitter taste and burning sensation: evidence of qualitative similarity. Chem Senses. 32:31-39) that spatial discrimination of taste was poorer for bitterness than for other tastes when the perceived intensities were matched. We hypothesized that this difference may have been caused by greater referral of bitterness by touch. The present study tested this hypothesis by comparing localization of quinine sulfate and sucrose under conditions that minimized and maximized the opportunity for referral. In both conditions, stimulation was produced by 5 cotton swabs spaced 1 cm apart and arranged in an arc to enable simultaneous contact with the front edge of the tongue. Only one swab contained the taste stimulus, whereas the rest were saturated with deionized water. In both conditions, the swabs were stroked up-and-down against the tongue 5 times. Subjects were asked to identify which swab contained the taste stimulus 1) 5 s after the fifth stroke (touch-removed condition) and 2) immediately at the end of the fifth stroke, with the swabs still in contact with the tongue (touch-maintained condition). Ratings of taste intensity were obtained to assess the possible effect of perceived intensity on spatial localization. Taste localization was surprisingly accurate, especially for sucrose, with errors of localization in the range of 1 cm or less. For both stimuli, localization tended to be poorer when the tactile stimulus was present while subjects made their judgments, but the difference between conditions was significant only for the lower concentration of quinine. The results are discussed in terms of both the surprisingly good spatial acuity of taste and the possibility of having a close perceptual relationship between touch and bitter taste.
Accuracy of self-report in detecting taste dysfunction.
Soter, Ana; Kim, John; Jackman, Alexis; Tourbier, Isabelle; Kaul, Arti; Doty, Richard L
2008-04-01
To determine the sensitivity, specificity, and positive and negative predictive value of responses to the following questionnaire statements in detecting taste loss: "I can detect salt in chips, pretzels, or salted nuts," "I can detect sourness in vinegar, pickles, or lemon," "I can detect sweetness in soda, cookies, or ice cream," and "I can detect bitterness, in coffee, beer, or tonic water." Responses to an additional item, "I can detect chocolate in cocoa, cake or candy," was examined to determine whether patients clearly differentiate between taste loss and flavor loss secondary to olfactory dysfunction. A total of 469 patients (207 men, mean age = 54 years, standard deviation = 15 years; and 262 women, mean age = 54 years, standard deviation = 14 years) were administered a questionnaire containing these questions with the response categories of "easily," "somewhat," and "not at all," followed by a comprehensive taste and smell test battery. The questionnaire items poorly detected bona fide taste problems. However, they were sensitive in detecting persons without such problems (i.e., they exhibited low positive but high negative predictive value). Dysfunction categories of the University of Pennsylvania Smell Identification Test (UPSIT) were not meaningfully related to subjects' responses to the questionnaire statements. Both sex and age influenced performance on most of the taste tests, with older persons performing more poorly than younger ones and women typically outperforming men. Although it is commonly assumed that straight-forward questions concerning taste may be useful in detecting taste disorders, this study suggests this is not the case. However, patients who specifically report having no problems with taste perception usually do not exhibit taste dysfunction. The difficulty in detecting true taste problems by focused questionnaire items likely reflects a combination of factors. These include the relatively low prevalence of taste deficits in the general population and the tendency of patients to confuse loss of olfaction-related flavor sensations with taste-bud mediated deficits.
Li, Qiang; Cui, Yuanting; Jin, Rongbing; Lang, Hongmei; Yu, Hao; Sun, Fang; He, Chengkang; Ma, Tianyi; Li, Yingsha; Zhou, Xunmei; Liu, Daoyan; Jia, Hongbo; Chen, Xiaowei; Zhu, Zhiming
2017-12-01
High salt intake is a major risk factor for hypertension and is associated with cardiovascular events. Most countries exhibit a traditionally high salt intake; thus, identification of an optimal strategy for salt reduction at the population level may have a major impact on public health. In this multicenter, random-order, double-blind observational and interventional study, subjects with a high spice preference had a lower salt intake and blood pressure than subjects who disliked spicy food. The enjoyment of spicy flavor enhanced salt sensitivity and reduced salt preference. Salt intake and salt preference were related to the regional metabolic activity in the insula and orbitofrontal cortex (OFC) of participants. Administration of capsaicin-the major spicy component of chili pepper-enhanced the insula and OFC metabolic activity in response to high-salt stimuli, which reversed the salt intensity-dependent differences in the metabolism of the insula and OFC. In animal study, OFC activity was closely associated with salt preference, and salty-taste information processed in the OFC was affected in the presence of capsaicin. Thus, interventions related to this region may alter the salt preference in mice through fiber fluorometry and optogenetic techniques. In conclusion, enjoyment of spicy foods may significantly reduce individual salt preference, daily salt intake, and blood pressure by modifying the neural processing of salty taste in the brain. Application of spicy flavor may be a promising behavioral intervention for reducing high salt intake and blood pressure. © 2017 American Heart Association, Inc.
Taste acuity, plasma zinc levels, and weight loss during radiotherapy: a study of relationships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolze, M.S.; Fosmire, G.J.; Stryker, J.A.
1982-07-01
Thirty-five patients who were to undergo radiotherapy and 13 normal subjects were evaluated with taste questionnaires, taste acuity tests, and plasma zinc analyses. The studies were repeated on the patients in the fifth week of radiotherapy. The mean taste thresholds for NaCl (salt), sucrose (sweet), HCl (sour), and urea (bitter) were elevated and the plasma zinc levels were lower (77.2 +/- 11.8 vs. 94.6 +/- 30.1 g/100 ml, p = 0.055) for the patients than for the controls. However, there was not a significant correlation between the taste thresholds and plasma zinc levels at any time. The mean weight lossmore » experienced by the 14 patients who reported subjective taste alteration in the fifth week was 3.1 kg versus 0.1 kg (p = 0.005) for those who did not report taste alteration. The data suggest that alterations in taste acuity, but not plasma zinc levels, are associated with weight loss during radiotherapy.« less
Taste acuity, plasma zinc levels, and weight loss during radiotherapy: a study of relationships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolze, M.S.; Fosmire, G.J.; Stryker, J.A.
1982-07-01
Thirty-five patients who were to undergo radiotherapy and 13 normal subjects were evaluated with taste questionnaires, taste acuity tests, and plasma zinc analyses. The studies were repeated on the patients in the fifth week of radiotherapy. The mean taste thresholds for NaCl (salt), sucrose (sweet), HCl (sour), and urea (bitter) were elevated and the plasma zinc levels were lower (77.2 +/- 11.8 vs. 94.6 +/- 30.1 g/100 ml, p . 0.055) for the patients than for the controls. However, there was not a significant correlation between the taste thresholds and plasma zinc levels at any time. The mean weight lossmore » experienced by the 14 patients who reported subjective taste alteration in the fifth week was 3.1 kg versus 0.1 kg (p . 0.005) for those who did not report taste alteration. The data suggest that alterations in taste acuity, but not plasma zinc levels, are associated with weight loss during radiotherapy.« less
Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.
Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A
2013-03-01
In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Grant, Virginia L; McDonald, Sarah V; Sheppard, Robyn C; Caldwell, Catherine L; Heeley, Thomas H; Brown, Adam R; Martin, Gerard M
2012-06-01
It is well established that wheel running in rats produces conditioned taste avoidance; that is, rats that run in wheels after consuming a novel-tasting solution later consume less of that solution than rats that do not run. In experiment 1, we found that wheel running also produces conditioned disgust reactions, indicated by gapes elicited by both the taste and context that were experienced before running. Experiment 2 showed that the conditioned disgust reactions were likely not due to running itself but to a by-product of running, the rocking of the wheel that occurs when the running stops. When rocking was reduced, the disgust reactions were also reduced, but consumption of the taste solution was not changed, showing dissociation of conditioned taste avoidance and disgust. These findings indicate that the taste avoidance induced by wheel running itself is more like the taste avoidance produced by rewarding drugs than that produced by nausea-inducing drugs. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
The science and complexity of bitter taste.
Drewnowski, A
2001-06-01
Food choices and eating habits are largely influenced by how foods taste. Without being the dominant taste sensation, bitter taste contributes to the complexity and enjoyment of beverages and foods. Compounds that are perceived as bitter do not share a similar chemical structure. In addition to peptides and salts, bitter compounds in foods may include plant-derived phenols and polyphenols, flavonoids, catechins, and caffeine. Recent studies have shown that humans possess a multitude of bitter taste receptors and that the transduction of bitter taste may differ between one compound and another. Studies of mixture interactions suggest further that bitter compounds suppress or enhance sweet and sour tastes and interact with volatile flavor molecules. Caffeine, a natural ingredient of tea, coffee, and chocolate, has a unique flavor profile. Used as a flavoring agent, it enhances the sensory appeal of beverages. Research developments on the genetics and perception of bitter taste add to our understanding of the role of bitterness in relation to food preference.
Saito, Takehisa; Ito, Tetsufumi; Kato, Yuji; Yamada, Takechiyo; Manabe, Yasuhiro; Narita, Norihiko
2014-03-01
To evaluate whether regenerated fungiform taste buds after severing the chorda tympani nerve can be detected by confocal laser scanning microscopy in vivo. Retrospective study. University hospital. Six patients with a normal gustatory function (Group 1), 9 patients with taste function recovery after severing the CTN (Group 2), and 5 patients without taste function recovery (Group 3) were included. In Groups 2 and 3, canal wall up (closed) tympanoplasty or canal wall down with canal reconstruction tympanoplasty was performed in all patients. Diagnostic. The severed nerves were readapted or approximated on the temporalis muscle fascia used to reconstruct the eardrum during surgery. Preoperative and postoperative gustatory functions were assessed using electrogustometry. Twelve to 260 months after severing the CTN, the surface of the midlateral region of the tongue was observed with a confocal laser microscope. EGM thresholds showed no response 1 month after surgery in all patients of Groups 2 and 3. In Group 2, EGM thresholds showed recovery 1 to 2 years after surgery and before confocal microscopy (-1.3 ± 6.5 dB). There was a significant difference between Group 1 (-5.7 ± 2.0 dB; p < 0.01) and Group 2. In Group 3, EGM thresholds showed no response for more than 2 years. In the control group (Group 1), 0 to 16 taste buds were observed in each FP, and 55 (79.7%) of 69 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 3.7 ± 3.6. In patients with a recovered taste function (Group 2), 0 to 8 taste buds were observed in each FP. In this group, 54 (56.2%) of 94 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 2.0 ± 2.2 (p < 0.01). In Group 3, without recovery, the FP was atrophied, and no taste bud was observed. Regenerated fungiform taste bud could be observed in vivo using confocal laser scanning microscopy, indicating that regenerated taste bud can be detected without biopsy.
De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E
2016-01-01
This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sugars, Sweet Taste Receptors, and Brain Responses.
Lee, Allen A; Owyang, Chung
2017-06-24
Sweet taste receptors are composed of a heterodimer of taste 1 receptor member 2 (T1R2) and taste 1 receptor member 3 (T1R3). Accumulating evidence shows that sweet taste receptors are ubiquitous throughout the body, including in the gastrointestinal tract as well as the hypothalamus. These sweet taste receptors are heavily involved in nutrient sensing, monitoring changes in energy stores, and triggering metabolic and behavioral responses to maintain energy balance. Not surprisingly, these pathways are heavily regulated by external and internal factors. Dysfunction in one or more of these pathways may be important in the pathogenesis of common diseases, such as obesity and type 2 diabetes mellitus.
O'Mahony, M
1979-01-01
The paper reviews how adaptation to sodium chloride, changing in concentration as a result of various experimental procedures, affects measurements of the sensitivity, intensity, and quality of the salt taste. The development of and evidence for the current model that the salt taste depends on an adaptation level (taste zero) determined by the sodium cation concentration is examined and found to be generally supported, despite great methodological complications. It would seem that lower adaptation levels elicit lower thresholds, higher intensity estimates, and altered quality descriptions with predictable effects on psychophysical measures.
Representation of sweet and salty taste intensity in the brain.
Spetter, M S; Smeets, P A M; de Graaf, C; Viergever, M A
2010-11-01
The intensity of the taste of a food is affected mostly by the amount of sugars (mono- and disaccharides) or salt it contains. To season savory-tasting foods mainly table salt (NaCl) is used and to sweeten foods, sugars like sucrose are used. Foods with highly intense tastes are consumed in smaller amounts. The optimal taste intensity of a food is the intensity at which it is perceived as most pleasant. When taste intensity decreases or increases from optimal, the pleasantness of a food decreases. Here, we investigated the brain representation of sweet and salty taste intensity using functional magnetic resonance imaging. Fifteen subjects visited twice and tasted a range of 4 watery solutions (0-1 M) of either sucrose or NaCl in water. Middle insula activation increased with increasing concentration for both NaCl and sucrose. Despite similar subjective intensity ratings, anterior insula activation by NaCl increased more with concentration than that by sucrose. Amygdala activation increased with increasing NaCl concentration but not sucrose concentration. In conclusion, sweet and salty taste intensity are represented in the middle insula. Amygdala activation is only modulated by saltiness. Further research will need to extrapolate these results from simple solutions to real foods.
Rojas, Sebastián; Diaz-Galarce, Raúl; Jerez-Baraona, Juan Manuel; Quintana-Donoso, Daisy; Moraga-Amaro, Rodrigo; Stehberg, Jimmy
2015-01-01
Reluctance to try novel tastes (neophobia) can be exacerbated in arousing situations, such as when children are under social stress or in rodents, when the new taste is presented in a high arousal context (HA) compared to a low arousal context (LA). The present study aimed at determining whether adrenergic transmission at the Insula regulates the reluctance to try novel tastes induced by arousing contexts. To this end, a combination of systemic and intra-insular manipulations of adrenergic activity was performed before the novel taste (saccharin 0.1%) was presented either in LA or HA contexts in rats. Our results show that systemic adrenergic activity modulates reluctance to try novel tastes. Moreover, intra-insular microinjections of propranolol or norepinephrine (NE) were found to modulate the effects of arousing contexts on reluctance to try novel tastes. Finally, intra-insular propranolol blocked epinephrine-induced increased reluctance, while intra-insular NE blocked oral propranolol-induced decreases in reluctance and increased the reluctance to try novel tastes presented in low arousing contexts. In conclusion, our results suggest that the insula is a critical site for regulating the effects of arousal in the reluctance to try novel tastes via the adrenergic system. PMID:26175672
Isolation of chicken taste buds for real-time Ca2+ imaging.
Kudo, Ken-ichi; Kawabata, Fuminori; Nomura, Toumi; Aridome, Ayumi; Nishimura, Shotaro; Tabata, Shoji
2014-10-01
We isolated chicken taste buds and used a real-time Ca2+ imaging technique to investigate the functions of the taste cells. With RT-PCR, we found that isolated chicken taste bud-like cell subsets express chicken gustducin messenger RNA. Immunocytochemical techniques revealed that the cell subsets were also immunopositive for chicken gustducin. These results provided strong evidence that the isolated cell subsets contain chicken taste buds. The isolated cell subsets were spindle-shaped and approximately 61-75 μm wide and 88-98 μm long, and these characteristics are similar to those of sectional chicken taste buds. Using Ca2+ imaging, we observed the buds' response to 2 mmol/L quinine hydrochloride (a bitter substance) and their response to a mixture of 25 mmol/L L-glutamic acid monopotassium salt monohydrate and 1 mmol/L inosine 5'-monophosphate disodium salt, umami substances. The present study is the first morphological demonstration of isolated chicken taste buds, and our results indicate that the isolated taste buds were intact and functional approaches for examining the taste senses of the chicken using Ca2+ imaging can be informative. © 2014 Japanese Society of Animal Science.
Common sense about taste: from mammals to insects.
Yarmolinsky, David A; Zuker, Charles S; Ryba, Nicholas J P
2009-10-16
The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities.
Modulation of taste responsiveness by the satiation hormone peptide YY
La Sala, Michael S.; Hurtado, Maria D.; Brown, Alicia R.; Bohórquez, Diego V.; Liddle, Rodger A.; Herzog, Herbert; Zolotukhin, Sergei; Dotson, Cedrick D.
2013-01-01
It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.—La Sala, M. S., Hurtado, M. D., Brown, A. R., Bohórquez, D. V., Liddle, R. A., Herzog, H., Zolotukhin, S., Dotson, C. D. Modulation of taste responsiveness by the satiation hormone peptide YY. PMID:24043261
Analysis and Evaluation of the Characteristic Taste Components in Portobello Mushroom.
Wang, Jinbin; Li, Wen; Li, Zhengpeng; Wu, Wenhui; Tang, Xueming
2018-05-10
To identify the characteristic taste components of the common cultivated mushroom (brown; Portobello), Agaricus bisporus, taste components in the stipe and pileus of Portobello mushroom harvested at different growth stages were extracted and identified, and principal component analysis (PCA) and taste active value (TAV) were used to reveal the characteristic taste components during the each of the growth stages of Portobello mushroom. In the stipe and pileus, 20 and 14 different principal taste components were identified, respectively, and they were considered as the principal taste components of Portobello mushroom fruit bodies, which included most amino acids and 5'-nucleotides. Some taste components that were found at high levels, such as lactic acid and citric acid, were not detected as Portobello mushroom principal taste components through PCA. However, due to their high content, Portobello mushroom could be used as a source of organic acids. The PCA and TAV results revealed that 5'-GMP, glutamic acid, malic acid, alanine, proline, leucine, and aspartic acid were the characteristic taste components of Portobello mushroom fruit bodies. Portobello mushroom was also found to be rich in protein and amino acids, so it might also be useful in the formulation of nutraceuticals and functional food. The results in this article could provide a theoretical basis for understanding and regulating the characteristic flavor components synthesis process of Portobello mushroom. © 2018 Institute of Food Technologists®.
Ulex Europaeus Agglutinin-1 Is a Reliable Taste Bud Marker for In Situ Hybridization Analyses.
Yoshimoto, Joto; Okada, Shinji; Kishi, Mikiya; Misaka, Takumi
2016-03-01
Taste signals are received by taste buds. To better understand the taste reception system, expression patterns of taste-related molecules are determined by in situ hybridization (ISH) analyses at the histological level. Nevertheless, even though ISH is essential for determining mRNA expression, few taste bud markers can be applied together with ISH. Ulex europaeus agglutinin-1 (UEA-1) appears to be a reliable murine taste bud marker based on immunohistochemistry (IHC) analyses. However, there is no evidence as to whether UEA-1 can be used for ISH. Thus, the present study evaluated UEA-1 using various histochemical methods, especially ISH. When lectin staining was performed after ISH procedures, UEA-1 clearly labeled taste cellular membranes and distinctly indicated boundaries between taste buds and the surrounding epithelial cells. Additionally, UEA-1 was determined as a taste bud marker not only when used in single-colored ISH but also when employed with double-labeled ISH or during simultaneous detection using IHC and ISH methods. These results suggest that UEA-1 is a useful marker when conducting analyses based on ISH methods. To clarify UEA-1 staining details, multi-fluorescent IHC (together with UEA-1 staining) was examined, resulting in more than 99% of cells being labeled by UEA-1 and overlapping with KCNQ1-expressing cells. © 2016 The Histochemical Society.
Ulex Europaeus Agglutinin-1 Is a Reliable Taste Bud Marker for In Situ Hybridization Analyses
Yoshimoto, Joto; Okada, Shinji; Kishi, Mikiya; Misaka, Takumi
2015-01-01
Taste signals are received by taste buds. To better understand the taste reception system, expression patterns of taste-related molecules are determined by in situ hybridization (ISH) analyses at the histological level. Nevertheless, even though ISH is essential for determining mRNA expression, few taste bud markers can be applied together with ISH. Ulex europaeus agglutinin-1 (UEA-1) appears to be a reliable murine taste bud marker based on immunohistochemistry (IHC) analyses. However, there is no evidence as to whether UEA-1 can be used for ISH. Thus, the present study evaluated UEA-1 using various histochemical methods, especially ISH. When lectin staining was performed after ISH procedures, UEA-1 clearly labeled taste cellular membranes and distinctly indicated boundaries between taste buds and the surrounding epithelial cells. Additionally, UEA-1 was determined as a taste bud marker not only when used in single-colored ISH but also when employed with double-labeled ISH or during simultaneous detection using IHC and ISH methods. These results suggest that UEA-1 is a useful marker when conducting analyses based on ISH methods. To clarify UEA-1 staining details, multi-fluorescent IHC (together with UEA-1 staining) was examined, resulting in more than 99% of cells being labeled by UEA-1 and overlapping with KCNQ1-expressing cells. PMID:26718243
Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.
Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C
2015-09-01
Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice
Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo
2015-01-01
Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1: AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA administration, while they showed no significant changes in CT responses after AM251. In contrast, db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid (2-arachidonoyl-sn-glycerol (2-AG)) levels in the taste organ, and enhanced expression of a biosynthesizing enzyme (diacylglycerol lipase α (DAGLα)) of 2-AG in taste cells. In DIO mice, the LA effect was gradually decreased and the AM251 effect was increased during the course of obesity. Taken together, our results suggest that circulating leptin, but not local endocannabinoids, may be a dominant modulator for sweet taste in lean mice; however, endocannabinoids may become more effective modulators of sweet taste under conditions of deficient leptin signalling, possibly due to increased production of endocannabinoids in taste tissue. Key points Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. PMID:25728242
Gravina, Stephen A; Yep, Gregory L; Khan, Mehmood
2013-01-01
Taste or gustation is one of the 5 traditional senses including hearing, sight, touch, and smell. The sense of taste has classically been limited to the 5 basic taste qualities: sweet, salty, sour, bitter, and umami or savory. Advances from the Human Genome Project and others have allowed the identification and determination of many of the genes and molecular mechanisms involved in taste biology. The ubiquitous G protein-coupled receptors (GPCRs) make up the sweet, umami, and bitter receptors. Although less clear in humans, transient receptor potential ion channels are thought to mediate salty and sour taste; however, other targets have been identified. Furthermore, taste receptors have been located throughout the body and appear to be involved in many regulatory processes. An emerging interplay is revealed between chemical sensing in the periphery, cortical processing, performance, and physiology and likely the pathophysiology of diseases such as diabetes.
Engel, E; Nicklaus, S; Septier, C; Salles, C; Le Quéré, J L
2001-06-01
The objective of this study was to characterize the effect of ripening on the taste of a typically bitter Camembert cheese. The first step was to select a typically bitter cheese among several products obtained by different processes supposed to enhance this taste defect. Second, the evolution of cheese taste during ripening was characterized from a sensory point of view. Finally, the relative impact of fat, proteins, and water-soluble molecules on cheese taste was determined by using omission tests performed on a reconstituted cheese. These omission tests showed that cheese taste resulted mainly from the gustatory properties of water-soluble molecules but was modulated by a matrix effect due to fat, proteins, and cheese structure. The evolution of this matrix effect during ripening was discussed for each taste characteristic.
Network model of chemical-sensing system inspired by mouse taste buds.
Tateno, Katsumi; Igarashi, Jun; Ohtubo, Yoshitaka; Nakada, Kazuki; Miki, Tsutomu; Yoshii, Kiyonori
2011-07-01
Taste buds endure extreme changes in temperature, pH, osmolarity, so on. Even though taste bud cells are replaced in a short span, they contribute to consistent taste reception. Each taste bud consists of about 50 cells whose networks are assumed to process taste information, at least preliminarily. In this article, we describe a neural network model inspired by the taste bud cells of mice. It consists of two layers. In the first layer, the chemical stimulus is transduced into an irregular spike train. The synchronization of the output impulses is induced by the irregular spike train at the second layer. These results show that the intensity of the chemical stimulus is encoded as the degree of the synchronization of output impulses. The present algorithms for signal processing result in a robust chemical-sensing system.
It tastes better because … consumer understandings of UK farmers' market food.
Spiller, Keith
2012-08-01
In the social sciences there has been much exciting and informative work on farmers' markets and this paper contributes to this literature by considering how the place of farmers' markets affects the way consumers understand the taste of food. I draw on the difficulty faced by many consumers in articulating the taste of food, especially when food is perceived to taste good. I explore how consumers demonstrate their evaluations of taste, whether through descriptions of taste that are metaphor-laden or through beliefs and values emboldened by food knowledges and opinions. I argue these are how farmers' market consumers understand and perform taste in relation to market food. The findings that inform the paper are taken from interviews with farmers' market consumers in the UK. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Effect of Temperature on Umami Taste
Alvarado, Cynthia; Andrew, Kendra; Nachtigal, Danielle
2016-01-01
The effect of temperature on umami taste has not been previously studied in humans. Reported here are 3 experiments in which umami taste was measured for monopotassium glutamate (MPG) and monosodium glutamate (MSG) at solution temperatures between 10 and 37 °C. Experiment 1 showed that for subjects sensitive to MPG on the tongue tip, 1) cooling reduced umami intensity whether sampled with the tongue tip or in the whole mouth, but 2) had no effect on the rate of umami adaptation on the tongue tip. Experiment 2 showed that temperature had similar effects on the umami taste of MSG and MPG on the tongue tip but not in the whole mouth, and that contrary to umami taste, cooling to 10 °C increased rather than decreased the salty taste of both stimuli. Experiment 3 was designed to investigate the contribution of the hT1R1–hT1R3 glutamate receptor to the cooling effect on umami taste by using the T1R3 inhibitor lactisole. However, lactisole failed to block the umami taste of MPG at any temperature, which supports prior evidence that lactisole does not block umami taste for all ligands of the hT1R1–hT1R3 receptor. We conclude that temperature can affect sensitivity to the umami and salty tastes of glutamates, but in opposite directions, and that the magnitude of these effects can vary across stimuli and modes of tasting (i.e., whole mouth vs. tongue tip exposures). PMID:27102813
The bogus taste test: Validity as a measure of laboratory food intake.
Robinson, Eric; Haynes, Ashleigh; Hardman, Charlotte A; Kemps, Eva; Higgs, Suzanne; Jones, Andrew
2017-09-01
Because overconsumption of food contributes to ill health, understanding what affects how much people eat is of importance. The 'bogus' taste test is a measure widely used in eating behaviour research to identify factors that may have a causal effect on food intake. However, there has been no examination of the validity of the bogus taste test as a measure of food intake. We conducted a participant level analysis of 31 published laboratory studies that used the taste test to measure food intake. We assessed whether the taste test was sensitive to experimental manipulations hypothesized to increase or decrease food intake. We examined construct validity by testing whether participant sex, hunger and liking of taste test food were associated with the amount of food consumed in the taste test. In addition, we also examined whether BMI (body mass index), trait measures of dietary restraint and over-eating in response to palatable food cues were associated with food consumption. Results indicated that the taste test was sensitive to experimental manipulations hypothesized to increase or decrease food intake. Factors that were reliably associated with increased consumption during the taste test were being male, have a higher baseline hunger, liking of the taste test food and a greater tendency to overeat in response to palatable food cues, whereas trait dietary restraint and BMI were not. These results indicate that the bogus taste test is likely to be a valid measure of food intake and can be used to identify factors that have a causal effect on food intake. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Nakamura, Tatsufumi; Matsuyama, Naoki; Kirino, Masato; Kasai, Masanori; Kiyohara, Sadao; Ikenaga, Takanori
2017-01-01
The gustatory system of the sea catfish Plotosus japonicus, like that of other catfishes, is highly developed. To clarify the details of the morphology of the peripheral gustatory system of Plotosus, we used whole-mount immunohistochemistry to investigate the distribution and innervation of the taste buds within multiple organs including the barbels, oropharyngeal cavity, fins (pectoral, dorsal, and caudal), and trunk. Labeled taste buds could be observed in all the organs examined. The density of the taste buds was higher along the leading edges of the barbels and fins; this likely increases the chance of detecting food. In all the fins, the taste buds were distributed in linear arrays parallel to the fin rays. Labeling of nerve fibers by anti-acetylated tubulin antibody showed that the taste buds within each sensory field are innervated in different ways. In the barbels, large nerve bundles run along the length of the organ, with fascicles branching off to innervate polygonally organized groups of taste buds. In the fins, nerve bundles run along the axis of fin rays to innervate taste buds lying in a line. In each case, small fascicles of fibers branch from large bundles and terminate within the basal portions of the taste buds. Serotonin immunohistochemistry demonstrated that most of the taste buds in all the organs examined contained disk-shaped serotonin-immunopositive cells in their basal region. This indicates a similar organization of the taste buds, in terms of the existence of serotonin-immunopositive basal cells, across the different sensory fields in this species. © 2017 S. Karger AG, Basel.
Subtype-dependent postnatal development of taste receptor cells in mouse fungiform taste buds.
Ohtubo, Yoshitaka; Iwamoto, Masafumi; Yoshii, Kiyonori
2012-06-01
Taste buds contain two types of taste receptor cells, inositol 1,4,5-triphosphate receptor type 3-immunoreactive cells (type II cells) and synaptosomal-associating protein-25-immunoreactive cells (type III cells). We investigated their postnatal development in mouse fungiform taste buds immunohistochemically and electrophysiologically. The cell density, i.e. the number of cells per taste bud divided by the maximal area of the horizontal cross-section of the taste bud, of type II cells increased by postnatal day (PD)49, where as that of type III cells was unchanged throughout the postnatal observation period and was equal to that of the adult cells at PD1. The immunoreactivity of taste bud cell subtypes was the same as that of their respective subtypes in adult mice throughout the postnatal observation period. Almost all type II cells were immunoreactive to gustducin at PD1, and then the ratio of gustducin-immunoreactive type II cells to all type II cells decreased to a saturation level, ∼60% of all type II cells, by PD15. Type II and III cells generated voltage-gated currents similar to their respective adult cells even at PD3. These results show that infant taste receptor cells are as excitable as those of adults and propagate in a subtype-dependent manner. The relationship between the ratio of each taste receptor cell subtype to all cells and taste nerve responses are discussed. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Kato, Yuji; Manabe, Yasuhiro; Narita, Norihiko
2015-03-01
To elucidate the degeneration process of fungiform taste buds after severing the chorda tympani nerve (CTN) by confocal laser scanning microscopy in vivo. Prospective study. University hospital. Seven consecutive patients whose CTN was severed during tympanoplasty for middle ear cholesteatoma. Diagnostic. Preoperative and postoperative gustatory functions were assessed by electrogustometry (EGM). An average of 10 fungiform papillae (FP) in the midlateral region of the tongue were periodically observed, and the number of taste buds was counted using a confocal laser microscope. Among them, 2 to 3 reference FPs were selected based on the typical form of the FP or characteristic arrangements of taste pores. Observation was performed before surgery, 1 or 2 days after surgery, 2 or 3 times a week until 2 weeks after surgery, once a week between 2 and 4 weeks, and every 2 to 4 weeks thereafter until all taste buds had disappeared. EGM thresholds showed no response within 1 month after surgery in all patients. The initial change in the degeneration process was the disappearance of taste pores. The surface of taste buds became covered with epithelium. Finally, taste buds themselves atrofied and disappeared. The time course of degeneration differed depending upon individuals, each FP, and each taste bud. By employing the generalized linear mixed model under the Poisson distribution, it was calculated that all taste buds would disappear at around 50 days after surgery. Confocal laser scanning microscopy was useful for clarifying the degeneration process of fungiform taste buds.
Prevalence of common disease-associated variants in Asian Indians
Pemberton, Trevor J; Mehta, Niyati U; Witonsky, David; Di Rienzo, Anna; Allayee, Hooman; Conti, David V; Patel, Pragna I
2008-01-01
Background Asian Indians display a high prevalence of diseases linked to changes in diet and environment that have arisen as their lifestyle has become more westernized. Using 1200 genome-wide polymorphisms in 432 individuals from 15 Indian language groups, we have recently shown that: (i) Indians constitute a distinct population-genetic cluster, and (ii) despite the geographic and linguistic diversity of the groups they exhibit a relatively low level of genetic heterogeneity. Results We investigated the prevalence of common polymorphisms that have been associated with diseases, such as atherosclerosis (ALOX5), hypertension (CYP3A5, AGT, GNB3), diabetes (CAPN10, TCF7L2, PTPN22), prostate cancer (DG8S737, rs1447295), Hirschsprung disease (RET), and age-related macular degeneration (CFH, LOC387715). In addition, we examined polymorphisms associated with skin pigmentation (SLC24A5) and with the ability to taste phenylthiocarbamide (TAS2R38). All polymorphisms were studied in a cohort of 576 India-born Asian Indians sampled in the United States. This sample consisted of individuals whose mother tongue is one of 14 of the 22 "official" languages recognized in India as well as individuals whose mother tongue is Parsi, a cultural group that has resided in India for over 1000 years. Analysis of the data revealed that allele frequency differences between the different Indian language groups were small, and interestingly the variant alleles of ALOX5 g.8322G>A and g.50778G>A, and PTPN22 g.36677C>T were present only in a subset of the Indian language groups. Furthermore, a latitudinal cline was identified both for the allele frequencies of the SNPs associated with hypertension (CYP3A5, AGT, GNB3), as well as for those associated with the ability to taste phenylthiocarbamide (TAS2R38). Conclusion Although caution is warranted due to the fact that this US-sampled Indian cohort may not represent a random sample from India, our results will hopefully assist in the design of future studies that investigate the genetic causes of these diseases in India. Our results also support the inclusion of the Indian population in disease-related genetic studies, as it exhibits unique genotype as well as phenotype characteristics that may yield new insights into the underlying causes of common diseases that are not available in other populations. PMID:18248681
Patient centric formulations for paediatrics and geriatrics: Similarities and differences.
Hanning, Sara M; Lopez, Felipe L; Wong, Ian C K; Ernest, Terry B; Tuleu, Catherine; Orlu Gul, Mine
2016-10-30
Paediatrics and geriatrics both represent highly heterogenous populations and require special consideration when developing appropriate dosage forms. This paper discusses similarities, differences and considerations with respect to the development of appropriate medicine formulations for paediatrics and geriatrics. Arguably the most significant compliance challenge in older people is polypharmacy, whereas for children the largest barrier is taste. Pharmaceutical technology has progressed rapidly and technologies including FDCs, multi-particulates and orodispersible dosage forms provide unprecedented opportunities to develop novel and appropriate formulations for both old and new drugs. However, it is important for the formulation scientists to work closely with patients, carers and clinicians to develop such formulations for both the paediatric and geriatric population. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of Simplifying Choice Tasks on Estimates of Taste Heterogeneity in Stated-Choice Surveys
Johnson, F. Reed; Ozdemir, Semra; Phillips, Kathryn A
2011-01-01
Researchers usually employ orthogonal arrays or D-optimal designs with little or no attribute overlap in stated-choice surveys. The challenge is to balance statistical efficiency and respondent burden to minimize the overall error in the survey responses. This study examined whether simplifying the choice task, by using a design with more overlap, provides advantages over standard minimum-overlap methods. We administered two designs for eliciting HIV test preferences to split samples. Surveys were undertaken at four HIV testing locations in San Francisco, California. Personal characteristics had different effects on willingness to pay for the two treatments, and gains in statistical efficiency in the minimal-overlap version more than compensated for possible imprecision from increased measurement error. PMID:19880234
Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation
ERIC Educational Resources Information Center
Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico
2004-01-01
The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…
[Molecular receptors of taste agents].
Giliarov, D A; Sakharova, T A; Buzdin, A A
2009-01-01
All representatives of higher eukaryotes can probably differentially perceive nutrients and poisonous substances. Molecular mechanisms of transduction of taste information have been best studied for mammals and for the fruit fly Drosophila. Here, we consider receptor mechanisms and conjugated primary signal processes of stimulation of taste receptor cells by stimuli of various taste modalities.
NASA Astrophysics Data System (ADS)
Azimzade, Youness; Mashaghi, Alireza
2017-12-01
Efficient search acts as a strong selective force in biological systems ranging from cellular populations to predator-prey systems. The search processes commonly involve finding a stationary or mobile target within a heterogeneously structured environment where obstacles limit migration. An open generic question is whether random or directionally biased motions or a combination of both provide an optimal search efficiency and how that depends on the motility and density of targets and obstacles. To address this question, we develop a simple model that involves a random walker searching for its targets in a heterogeneous medium of bond percolation square lattice and used mean first passage time (〈T 〉 ) as an indication of average search time. Our analysis reveals a dual effect of directional bias on the minimum value of 〈T 〉 . For a homogeneous medium, directionality always decreases 〈T 〉 and a pure directional migration (a ballistic motion) serves as the optimized strategy, while for a heterogeneous environment, we find that the optimized strategy involves a combination of directed and random migrations. The relative contribution of these modes is determined by the density of obstacles and motility of targets. Existence of randomness and motility of targets add to the efficiency of search. Our study reveals generic and simple rules that govern search efficiency. Our findings might find application in a number of areas including immunology, cell biology, ecology, and robotics.
Chang, Cheng-Ho; Tseng, Ping-Tao; Chen, Nai-Yu; Lin, Pei-Chin; Lin, Pao-Yen; Chang, Jane Pei-Chen; Kuo, Feng-Yu; Lin, Jenshinn; Wu, Ming-Chang; Su, Kuan-Pin
2018-02-01
Omega-3 fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] are widely recommended for health promotion. Over the last decade, prescription omega-3 fatty acid products (RxOME3FAs) have been approved for medical indications. Nonetheless, there is no comprehensive analysis of safety and tolerability of RxOME3FAs so far. A systematic review of randomized controlled trials (RCTs) was carried out based on searches in six electronic databases. The studies involving marketed RxOME3FA products were included, and adverse-effect data were extracted for meta-analysis. Subgroup analysis and meta-regression were conducted to explore the sources of potential heterogeneity. Among the 21 included RCTs (total 24,460 participants; 12,750 from RxOME3FA treatment cohort and 11,710 from control cohort), there was no definite evidence of any RxOME3FA-emerging serious adverse event. Compared with the control group, RxOME3FAs were associated with more treatment-related dysgeusia (fishy taste; p = 0.011) and skin abnormalities (eruption, itching, exanthema, or eczema; p < 0.001). Besides, RxOME3FAs had mild adverse effects upon some non-lipid laboratory measurements [elevated fasting blood sugar (p = 0.005); elevated alanine transaminase (p = 0.022); elevated blood urea nitrogen (p = 0.047); decreased hemoglobin (p = 0.002); decreased hematocrit (p = 0.009)]. Subgroup analysis revealed that EPA/DHA combination products were associated with more treatment-related gastrointestinal adverse events [eructation (belching; p = 0.010); nausea (p = 0.044)] and low-density lipoprotein cholesterol elevation (p = 0.009; difference in means = 4.106mg/dL). RxOME3FAs are generally safe and well tolerated but not free of adverse effects. Post-marketing surveillance and observational studies are still necessary to identify long-term adverse effects and to confirm the safety and tolerability profiles of RxOME3FAs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Prior Consumption of a Fat Meal in Healthy Adults Modulates the Brain’s Response to Fat123
Eldeghaidy, Sally; Hort, Joanne; Hollowood, Tracey; Singh, Gulzar; Bush, Debbie; Foster, Tim; Taylor, Andy J; Busch, Johanneke; Spiller, Robin C
2016-01-01
Background: The consumption of fat is regulated by reward and homeostatic pathways, but no studies to our knowledge have examined the role of high-fat meal (HFM) intake on subsequent brain activation to oral stimuli. Objective: We evaluated how prior consumption of an HFM or water load (WL) modulates reward, homeostatic, and taste brain responses to the subsequent delivery of oral fat. Methods: A randomized 2-way crossover design spaced 1 wk apart was used to compare the prior consumption of a 250-mL HFM (520 kcal) [rapeseed oil (440 kcal), emulsifier, sucrose, flavor cocktail] or noncaloric WL on brain activation to the delivery of repeated trials of a flavored no-fat control stimulus (CS) or flavored fat stimulus (FS) in 17 healthy adults (11 men) aged 25 ± 2 y and with a body mass index (in kg/m2) of 22.4 ± 0.8. We tested differences in brain activation to the CS and FS and baseline cerebral blood flow (CBF) after the HFM and WL. We also tested correlations between an individual’s plasma cholecystokinin (CCK) concentration after the HFM and blood oxygenation level–dependent (BOLD) activation of brain regions. Results: Compared to the WL, consuming the HFM led to decreased anterior insula taste activation in response to both the CS (36.3%; P < 0.05) and FS (26.5%; P < 0.05). The HFM caused reduced amygdala activation (25.1%; P < 0.01) in response to the FS compared to the CS (fat-related satiety). Baseline CBF significantly reduced in taste (insula: 5.7%; P < 0.01), homeostatic (hypothalamus: 9.2%, P < 0.01; thalamus: 5.1%, P < 0.05), and reward areas (striatum: 9.2%; P < 0.01) after the HFM. An individual’s plasma CCK concentration correlated negatively with brain activation in taste and oral somatosensory (ρ = −0.39; P < 0.05) and reward areas (ρ = −0.36; P < 0.05). Conclusions: Our results in healthy adults show that an HFM suppresses BOLD activation in taste and reward areas compared to a WL. This understanding will help inform the reformulation of reduced-fat foods that mimic the brain’s response to high-fat counterparts and guide future interventions to reduce obesity. PMID:27655761
Prior Consumption of a Fat Meal in Healthy Adults Modulates the Brain's Response to Fat.
Eldeghaidy, Sally; Marciani, Luca; Hort, Joanne; Hollowood, Tracey; Singh, Gulzar; Bush, Debbie; Foster, Tim; Taylor, Andy J; Busch, Johanneke; Spiller, Robin C; Gowland, Penny A; Francis, Susan T
2016-11-01
The consumption of fat is regulated by reward and homeostatic pathways, but no studies to our knowledge have examined the role of high-fat meal (HFM) intake on subsequent brain activation to oral stimuli. We evaluated how prior consumption of an HFM or water load (WL) modulates reward, homeostatic, and taste brain responses to the subsequent delivery of oral fat. A randomized 2-way crossover design spaced 1 wk apart was used to compare the prior consumption of a 250-mL HFM (520 kcal) [rapeseed oil (440 kcal), emulsifier, sucrose, flavor cocktail] or noncaloric WL on brain activation to the delivery of repeated trials of a flavored no-fat control stimulus (CS) or flavored fat stimulus (FS) in 17 healthy adults (11 men) aged 25 ± 2 y and with a body mass index (in kg/m 2 ) of 22.4 ± 0.8. We tested differences in brain activation to the CS and FS and baseline cerebral blood flow (CBF) after the HFM and WL. We also tested correlations between an individual's plasma cholecystokinin (CCK) concentration after the HFM and blood oxygenation level-dependent (BOLD) activation of brain regions. Compared to the WL, consuming the HFM led to decreased anterior insula taste activation in response to both the CS (36.3%; P < 0.05) and FS (26.5%; P < 0.05). The HFM caused reduced amygdala activation (25.1%; P < 0.01) in response to the FS compared to the CS (fat-related satiety). Baseline CBF significantly reduced in taste (insula: 5.7%; P < 0.01), homeostatic (hypothalamus: 9.2%, P < 0.01; thalamus: 5.1%, P < 0.05), and reward areas (striatum: 9.2%; P < 0.01) after the HFM. An individual's plasma CCK concentration correlated negatively with brain activation in taste and oral somatosensory (ρ = -0.39; P < 0.05) and reward areas (ρ = -0.36; P < 0.05). Our results in healthy adults show that an HFM suppresses BOLD activation in taste and reward areas compared to a WL. This understanding will help inform the reformulation of reduced-fat foods that mimic the brain's response to high-fat counterparts and guide future interventions to reduce obesity.
Common Sense about Taste: From Mammals to Insects
Yarmolinsky, David A.; Zuker, Charles S.; Ryba, Nicholas J.P.
2013-01-01
The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities. PMID:19837029
Sugars, Sweet Taste Receptors, and Brain Responses
Lee, Allen A.; Owyang, Chung
2017-01-01
Sweet taste receptors are composed of a heterodimer of taste 1 receptor member 2 (T1R2) and taste 1 receptor member 3 (T1R3). Accumulating evidence shows that sweet taste receptors are ubiquitous throughout the body, including in the gastrointestinal tract as well as the hypothalamus. These sweet taste receptors are heavily involved in nutrient sensing, monitoring changes in energy stores, and triggering metabolic and behavioral responses to maintain energy balance. Not surprisingly, these pathways are heavily regulated by external and internal factors. Dysfunction in one or more of these pathways may be important in the pathogenesis of common diseases, such as obesity and type 2 diabetes mellitus. PMID:28672790
Taste preferences of the common vampire bat (Desmodus rotundus).
Thompson, R D; Elias, D J; Shumake, S A; Gaddis, S E
1982-04-01
Taste preference tests, with simultaneous presentation of treated and untreated food, were administered to 24 common vampire bats (Desmodus rotundus). The bats received brief exposures to four different stimuli representing sweet, salty, sour, and bitter tastes, each at four different concentrations. Despite a strong location bias, the bats significantly (P < 0.01) avoided the highest concentrations of the salty, sour, and bitter tastes. Consumption of the sweet stimulus at all concentrations was similar to that of the untreated standard. Vampires evidently can discriminate based on taste, although their ability is apparently poorly developed when compared with some euryphagous species such as the rat. Hence, taste is probably not a factor in host selection by the vampire.
Inflammation arising from obesity reduces taste bud abundance and inhibits renewal.
Kaufman, Andrew; Choo, Ezen; Koh, Anna; Dando, Robin
2018-03-01
Despite evidence that the ability to taste is weakened by obesity and can be rescued with weight loss intervention, few studies have investigated the molecular effects of obesity on the taste system. Taste bud cells undergo continual turnover even in adulthood, exhibiting an average life span of only a few weeks, tightly controlled by a balance of proliferation and cell death. Recent data reveal that an acute inflammation event can alter this balance. We demonstrate that chronic low-grade inflammation brought on by obesity reduces the number of taste buds in gustatory tissues of mice-and is likely the cause of taste dysfunction seen in obese populations-by upsetting this balance of renewal and cell death.
Kapsimali, Marika; Barlow, Linda A.
2012-01-01
Taste buds are found in a distributed array on the tongue surface, and are innervated by cranial nerves that convey taste information to the brain. For nearly a century, taste buds were thought to be induced by nerves late in embryonic development. However, this view has shifted dramatically. A host of studies now indicate that taste bud development is initiated and proceeds via processes that are nerve-independent, occur long before birth, and governed by cellular and molecular mechanisms intrinsic to the developing tongue. Here we review the state of our understanding of the molecular and cellular regulation of taste bud development, incorporating important new data obtained through the use of two powerful genetic systems, mouse and zebrafish. PMID:23182899
Conditioned taste aversion, drugs of abuse and palatability
Lin, Jian-You; Arthurs, Joe; Reilly, Steve
2014-01-01
LIN, J.-Y., J. Arthurs and S. Reilly. Conditioned taste aversion: Palatability and drugs of abuse. NEUROSCI BIOBEHAV REV XX(x) XXX-XXX, 2014. – We consider conditioned taste aversion to involve a learned reduction in the palatability of a taste (and hence in amount consumed) based on the association that develops when a taste experience is followed by gastrointestinal malaise. The present article evaluates the well-established finding that drugs of abuse, at doses that are otherwise considered rewarding and self-administered, cause intake suppression. Our recent work using lick pattern analysis shows that drugs of abuse also cause a palatability downshift and, therefore, support conditioned taste aversion learning. PMID:24813806
Mogensen, Stine; Treldal, Charlotte; Feldager, Erik; Pulis, Sylvia; Jacobsen, Jette; Andersen, Ove; Rasmussen, Mette
2012-01-01
Objective To evaluate the effect and acceptance of a new lidocaine lozenge compared with a lidocaine viscous oral solution as a pharyngeal anesthetic before upper gastrointestinal endoscopy (UGE), a diagnostic procedure commonly performed worldwide during which many patients experience severe discomfort mostly because of the gag reflex. Participants The single-blinded, randomized, controlled study involved 110 adult patients undergoing diagnostic UGE at the Department of Gastroenterology, Hvidovre University Hospital, Denmark. Methods The patients were randomized to receive either 100 mg lidocaine as a lozenge or 5 mL lidocaine viscous oral solution 2%. Intravenous midazolam was administered if needed. The effect of a lidocaine lozenge in reducing patient discomfort, including the gag reflex, during UGE compared with a lidocaine oral solution was assessed. Results Questionnaires from the patients showed that the gag reflex was acceptable for 64% in the lozenge group compared with 33% in the oral solution group (P = 0.0072). UGE was evaluated as acceptable by 69% in the lozenge group compared with 39% in the oral solution group (P = 0.0092). The taste was evaluated as good by 78% in the lozenge group (P < 0.0001), and 82% found the lozenge to have good texture (P < 0.0001). Conclusion The lozenge reduced the gag reflex, diminished patients’ discomfort during UGE, and was evaluated as having a good taste and texture. The lozenge improved patients’ acceptance of UGE. PMID:22915898
Grotz, V Lee; Pi-Sunyer, Xavier; Porte, Daniel; Roberts, Ashley; Richard Trout, J
2017-08-01
The discovery of gut sweet taste receptors has led to speculations that non-nutritive sweeteners, including sucralose, may affect glucose control. A double-blind, parallel, randomized clinical trial, reported here and previously submitted to regulatory agencies, helps to clarify the role of sucralose in this regard. This was primarily an out-patient study, with 4-week screening, 12-week test, and 4-week follow-up phases. Normoglycemic male volunteers (47) consumed ∼333.3 mg encapsulated sucralose or placebo 3x/day at mealtimes. HbA1c, fasting glucose, insulin, and C-peptide were measured weekly. OGTTs were conducted in-clinic overnight, following overnight fasting twice during screening phase, twice during test phase, and once at follow-up. Throughout the study, glucose, insulin, C-peptide and HbA1c levels were within normal range. No statistically significant differences between sucralose and placebo groups in change from baseline for fasting glucose, insulin, C-peptide and HbA1c, no clinically meaningful differences in time to peak levels or return towards basal levels in OGTTs, and no treatment group differences in mean glucose, insulin, or C-peptide AUC change from baseline were observed. The results of other relevant clinical trials and studies of gastrointestinal sweet taste receptors are compared to these findings. The collective evidence supports that sucralose has no effect on glycemic control. Copyright © 2017 Heartland Food Products Group. Published by Elsevier Inc. All rights reserved.
Rheker, Julia; Winkler, Alexander; Doering, Bettina K; Rief, Winfried
2017-02-01
Side effects play a key role in patients' failure to take antidepressants. There is evidence that verbal suggestions and informed consent elicit expectations that can in turn trigger the occurrence of side effects. Prior experience or learning mechanisms are also assumed to contribute to the development of side effects, although their role has not been thoroughly investigated. In this study, we examined whether an antidepressant's side effects can be learned via Pavlovian conditioning. Participants (n = 39) were randomly allocated to one of two groups and were exposed to a classical conditioning procedure. During acquisition, 19 participants received amitriptyline and 20 participants received a placebo pill. Pills were taken for four nights together with a novel-tasting drink. After a washout phase, both groups received a placebo pill together with the novel-tasting drink (evocation). Side effects were assessed via the Generic Assessment of Side Effects Scale prior to acquisition (baseline), after acquisition, and after evocation. A score of antidepressant-specific side effects was calculated. Participants taking amitriptyline reported significantly more antidepressant-specific side effects after acquisition compared to both baseline and the placebo group. After evocation, participants who underwent the conditioning procedure with amitriptyline reported significantly more antidepressant-specific side effects than those who never received amitriptyline, even though both groups received a placebo. Our results indicate that antidepressant side effects can be learned using a conditioning paradigm and evoked via a placebo pill when applied with the same contextual factors as the verum.
When music is salty: The crossmodal associations between sound and taste.
Guetta, Rachel; Loui, Psyche
2017-01-01
Here we investigate associations between complex auditory and complex taste stimuli. A novel piece of music was composed and recorded in four different styles of musical articulation to reflect the four basic tastes groups (sweet, sour, salty, bitter). In Experiment 1, participants performed above chance at pairing the music clips with corresponding taste words. Experiment 2 uses multidimensional scaling to interpret how participants categorize these musical stimuli, and to show that auditory categories can be organized in a similar manner as taste categories. Experiment 3 introduces four different flavors of custom-made chocolate ganache and shows that participants can match music clips with the corresponding taste stimuli with above-chance accuracy. Experiment 4 demonstrates the partial role of pleasantness in crossmodal mappings between sound and taste. The present findings confirm that individuals are able to make crossmodal associations between complex auditory and gustatory stimuli, and that valence may mediate multisensory integration in the general population.
Further evidence for conditioned taste aversion induced by forced swimming.
Masaki, Takahisa; Nakajima, Sadahiko
2005-01-31
A series of experiments with rats reported that aversion to a taste solution can be established by forced swimming in a water pool. Experiment 1 demonstrated that correlation of taste and swimming is a critical factor for this phenomenon, indicating associative (i.e., Pavlovian) nature of this learning. Experiment 2 showed that this learning obeys the Pavlovian law of strength, by displaying a positive relationship between the duration of water immersion in training and the taste aversion observed in subsequent testing. Experiment 3 revealed that swimming rather than being wet is the critical agent, because a water shower did not endow rats with taste aversion. Experiment 4 found that taste aversion was a positive function of water level of the pools in training (0, 12 or 32 cm). These results, taken together, suggest that energy expenditure caused by physical exercise might be involved in the development of taste aversion.
Taste Responses to Linoleic Acid: A Crowdsourced Population Study.
Garneau, Nicole L; Nuessle, Tiffany M; Tucker, Robin M; Yao, Mengjie; Santorico, Stephanie A; Mattes, Richard D
2017-10-31
Dietary fats serve multiple essential roles in human health but may also contribute to acute and chronic health complications. Thus, understanding mechanisms that influence fat ingestion are critical. All sensory systems may contribute relevant cues to fat detection, with the most recent evidence supporting a role for the sense of taste. Taste detection thresholds for fat vary markedly between individuals and responses are not normally distributed. Genetics may contribute to these observations. Using crowdsourced data obtained from families visiting the Denver Museum of Nature & Science, our objective was to estimate the heritability of fat taste (oleogustus). A pedigree analysis was conducted with 106 families (643 individuals) who rated the fat taste intensity of graded concentrations of linoleic acid (LA) embedded in taste strips. The findings estimate that 19% (P = 0.043) of the variability of taste response to LA relative to baseline is heritable at the highest concentration tested. © The Author 2017. Published by Oxford University Press.
Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology
2017-01-01
More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed. PMID:28642799
Taste Responses to Linoleic Acid: A Crowdsourced Population Study
Nuessle, Tiffany M; Tucker, Robin M; Yao, Mengjie; Santorico, Stephanie A; Mattes, Richard D
2017-01-01
Abstract Dietary fats serve multiple essential roles in human health but may also contribute to acute and chronic health complications. Thus, understanding mechanisms that influence fat ingestion are critical. All sensory systems may contribute relevant cues to fat detection, with the most recent evidence supporting a role for the sense of taste. Taste detection thresholds for fat vary markedly between individuals and responses are not normally distributed. Genetics may contribute to these observations. Using crowdsourced data obtained from families visiting the Denver Museum of Nature & Science, our objective was to estimate the heritability of fat taste (oleogustus). A pedigree analysis was conducted with 106 families (643 individuals) who rated the fat taste intensity of graded concentrations of linoleic acid (LA) embedded in taste strips. The findings estimate that 19% (P = 0.043) of the variability of taste response to LA relative to baseline is heritable at the highest concentration tested. PMID:28968903
Evaluation of taste solutions by sensor fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, Yohichiro; Sato, Eriko; Atobe, Masahiko
In our previous studies, properties of taste solutions were discriminated based on sound velocity and amplitude of ultrasonic waves propagating through the solutions. However, to make this method applicable to beverages which contain many taste substances, further studies are required. In this study, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through a solution was measured and subjected to frequency analysis. Further, taste sensors require various techniques of sensor fusion to effectively obtain chemical and physical parameter of taste solutions. A sensor fusion method of ultrasonic wave sensor and various sensors, such as the surfacemore » plasmon resonance (SPR) sensor, to estimate tastes were proposed and examined in this report. As a result, differences among pure water and two basic taste solutions were clearly observed as differences in their properties. Furthermore, a self-organizing neural network was applied to obtained data which were used to clarify the differences among solutions.« less
Using sound-taste correspondences to enhance the subjective value of tasting experiences.
Reinoso Carvalho, Felipe; Van Ee, Raymond; Rychtarikova, Monika; Touhafi, Abdellah; Steenhaut, Kris; Persoone, Dominique; Spence, Charles
2015-01-01
The soundscapes of those places where we eat and drink can influence our perception of taste. Here, we investigated whether contextual sound would enhance the subjective value of a tasting experience. The customers in a chocolate shop were invited to take part in an experiment in which they had to evaluate a chocolate's taste while listening to an auditory stimulus. Four different conditions were presented in a between-participants design. Envisioning a more ecological approach, a pre-recorded piece of popular music and the shop's own soundscape were used as the sonic stimuli. The results revealed that not only did the customers report having a significantly better tasting experience when the sounds were presented as part of the food's identity, but they were also willing to pay significantly more for the experience. The method outlined here paves a new approach to dealing with the design of multisensory tasting experiences, and gastronomic situations.
Extinction, Spontaneous Recovery and Renewal of Flavor Preferences Based on Taste-Taste Learning
ERIC Educational Resources Information Center
Diaz, Estrella; De la Casa, L. G.
2011-01-01
This paper presents evidence of extinction, spontaneous recovery and renewal in a conditioned preferences paradigm based on taste-taste associations. More specifically, in three experiments rats exposed to a simultaneous compound of citric acid-saccharin solution showed a preference for the citric solution when the preference was measured with a…
Effect of chemical compounds on electronic tongue response to citrus juices
USDA-ARS?s Scientific Manuscript database
The electronic tongue system mimics the process of taste detection by human taste buds and recognition by the brain, hence helping in prediction of taste. With this unique capability, the electronic tongue has been used for taste detection of a wide range of food products. As a preliminary step in p...
Sequence analysis of a bitter taste receptor gene repertoires in different ruminant species
USDA-ARS?s Scientific Manuscript database
Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste r...
Taste preference and psychopathology.
Aguayo, G A; Vaillant, M T; Arendt, C; Bachim, S; Pull, C B
2012-01-01
Excessive food intake has been linked to many factors including taste preference and the presence of psychopathology. The purpose of this study was to investigate the association between sweet and salty taste preference and psychopathology in patients with severe obesity. A consecutive series of patients applying for bariatric surgery was recruited for the study. Taste preference was self-reported. Psychopathology was assessed using the revised version of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2). 190 patients were included in the study. In comparison with patients who had salty taste preference, patients with sweet taste preference had significantly higher elevations on the depression (OD: 4.090, p = 0.010) and the hysteria (OD: 2.951, p = 0.026) clinical scales of the MMPI-2. The results suggest the presence of an association between taste preference and psychopathology. The findings may be of interest for clinicians who are involved in the treatment of obesity. In particular, they may wish to pay increased attention to patients with sweet taste preference or who have a strong attraction for both sweet and salty foods, in order to detect psychopathology and to adapt the treatment.
Barba, Carmen; Beno, Noelle; Guichard, Elisabeth; Thomas-Danguin, Thierry
2018-08-15
Gas chromatography/olfactometry-associated taste (GC/O-AT) analysis combined with mass spectrometry allowed identification of odorant compounds associated with taste attributes (sweet, salty, bitter and sour) in a multi-fruit juice. Nine compounds were selected for their odor-associated sweetness enhancement in a multi-fruit juice odor context using Olfactoscan and for their odor-induced sweet taste enhancement in sucrose solution and sugar-reduced fruit juice through sensory tests. Sweetness of the fruit juice odor was significantly enhanced by methyl 2-methylbutanoate, ethyl butanoate, ethyl 2-methylbutanoate and linalool; sweet perception was significantly enhanced in 7% sucrose solution by ethyl 2-methylbutanoate, furaneol and γ-decalactone, and in 32% sugar-reduced fruit juice by ethyl 2-methylbutanoate. GC/O-AT analysis is a novel, efficient approach to select odorants associated with a given taste. The further screening of taste-associated odorants by Olfactoscan helps to identify the most efficient odorants to enhance a target taste perception and may be used to find new ways to modulate taste perception in foods and beverages. Copyright © 2018 Elsevier Ltd. All rights reserved.
Amelian, Aleksandra; Szekalska, Marta; Ciosek, Patrycja; Basa, Anna; Winnicka, Katarzyna
2017-03-01
Taste of a pharmaceutical formulation is an important parameter for the effectiveness of pharmacotherapy. Cetirizine dihydrochloride (CET) is a second-generation antihistamine that is commonly administered in allergy treatment. CET is characterized by extremely bitter taste and it is a great challenge to successfully mask its taste; therefore the goal of this work was to formulate and characterize the microparticles obtained by the spray drying method with CET and poly(butyl methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl methacrylate 1:2:1 copolymer (Eudragit E PO) as a barrier coating. Assessment of taste masking by the electronic tongue has revealed that designed formulations created an effective taste masking barrier. Taste masking effect was also confirmed by the in vivo model and the in vitro release profile of CET. Obtained data have shown that microparticles with a drug/polymer ratio (0.5:1) are promising CET carriers with efficient taste masking potential and might be further used in designing orodispersible dosage forms with CET.
What Does Diabetes "Taste" Like?
Neiers, Fabrice; Canivenc-Lavier, Marie-Chantal; Briand, Loïc
2016-06-01
The T1R2 (taste type 1 receptor, member 2)/T1R3 (taste type 1 receptor, member 3) sweet taste receptor is expressed in taste buds on the tongue, where it allows the detection of energy-rich carbohydrates of food. This single receptor responds to all compounds perceived as sweet by humans, including natural sugars and natural and artificial sweeteners. Importantly, the T1R2/T1R3 sweet taste receptor is also expressed in extra-oral tissues, including the stomach, pancreas, gut, liver, and brain. Although its physiological role remains to be established in numerous organs, T1R2/T1R3 is suspected to be involved in the regulation of metabolic processes, such as sugar sensing, glucose homeostasis, and satiety hormone release. In this review, the physiological role of the sweet taste receptor in taste perception and metabolic regulation is discussed by focusing on dysfunctions leading to diabetes. Current knowledge of T1R2/T1R3 inhibitors making this receptor a promising therapeutic target for the treatment of type 2 diabetes is also summarized and discussed.
Fabrication of taste sensor for education
NASA Astrophysics Data System (ADS)
Wu, Xiao; Tahara, Yusuke; Toko, Kiyoshi; Kuriyaki, Hisao
2017-03-01
In order to solve the unconcern to usefulness of learning science among high school students in Japan, we developed a simple fabricated taste sensor with sensitivity and selectivity to each taste quality, which can be applied in science class. A commercialized Teflon membrane was used as the polymer membrane holding lipids. In addition, a non-adhesive method is considered to combine the membrane and the sensor electrode using a plastic cap which is easily accessible. The taste sensor for education fabricated in this way showed a good selectivity and sensitivity. By adjusting the composition of trioctylmethylammonium chloride (TOMA) and phosphoric acid di(2-ethylhexyl) ester (PAEE) included in lipid solution, we improved the selectivity of this simple taste sensor to saltiness and sourness. To verify this taste sensor as a useful science teaching material for science class, we applied this taste sensor into a science class for university students. By comparing the results between the sensory test and the sensor response, humans taste showed the same tendency just as the sensor response, which proved the sensor as a useful teaching material for science class.
Influence of licensed characters on children's taste and snack preferences.
Roberto, Christina A; Baik, Jenny; Harris, Jennifer L; Brownell, Kelly D
2010-07-01
The goal was to study how popular licensed cartoon characters appearing on food packaging affect young children's taste and snack preferences. Forty 4- to 6-year-old children tasted 3 pairs of identical foods (graham crackers, gummy fruit snacks, and carrots) presented in packages either with or without a popular cartoon character. Children tasted both food items in each pair and indicated whether the 2 foods tasted the same or one tasted better. Children then selected which of the food items they would prefer to eat for a snack. Children significantly preferred the taste of foods that had popular cartoon characters on the packaging, compared with the same foods without characters. The majority of children selected the food sample with a licensed character on it for their snack, but the effects were weaker for carrots than for gummy fruit snacks and graham crackers. Branding food packages with licensed characters substantially influences young children's taste preferences and snack selection and does so most strongly for energy-dense, nutrient-poor foods. These findings suggest that the use of licensed characters to advertise junk food to children should be restricted.
Leptin's effect on taste bud calcium responses and transmitter secretion.
Meredith, Tricia L; Corcoran, Alan; Roper, Stephen D
2015-05-01
Leptin, a peptide hormone released by adipose tissue, acts on the hypothalamus to control cravings and appetite. Leptin also acts to decrease taste responses to sweet substances, though there is little detailed information regarding where leptin acts in the taste transduction cascade. The present study examined the effects of leptin on sweet-evoked responses and neuro transmitter release from isolated taste buds. Our results indicate that leptin moderately decreased sweet-evoked calcium mobilization in isolated mouse taste buds. We also employed Chinese hamster ovary biosensor cells to examine taste transmitter release from isolated taste buds. Leptin reduced ATP and increased serotonin release in response to sweet stimulation. However, leptin has no effect on bitter-evoked transmitter release, further showing that the action of leptin is sweet specific. Our results support those of previous studies, which state that leptin acts on taste tissue via the leptin receptor, most likely on Type II (Receptor) cells, but also possibly on Type III (Presynaptic) cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Taste responses to monosodium glutamate after alcohol exposure.
Wrobel, Elzbieta; Skrok-Wolska, Dominika; Ziolkowski, Marcin; Korkosz, Agnieszka; Habrat, Boguslaw; Woronowicz, Bohdan; Kukwa, Andrzej; Kostowski, Wojciech; Bienkowski, Przemyslaw; Scinska, Anna
2005-01-01
The aim of the present study was to evaluate the effects of acute and chronic exposure to alcohol on taste responses to a prototypic umami substance, monosodium glutamate (MSG). The rated intensity and pleasantness of MSG taste (0.03-10.0%) was compared in chronic male alcoholics (n = 35) and control subjects (n = 25). In a separate experiment, the effects of acute exposure of the oral mucosa to ethanol rinse (0.5-4.0%) on MSG taste (0.3-3.0%) were studied in 10 social drinkers. The alcoholic and control group did not differ in terms of the rated intensity and pleasantness of MSG taste. Electrogustometric thresholds were significantly (P < 0.01) higher, i.e. worse, in the alcohol-dependent subjects. The difference remained significant after controlling for between-group differences in cigarette smoking and coffee drinking. Rinsing with ethanol did not alter either intensity or pleasantness of MSG taste in social drinkers. The present results suggest that: (i) neither acute nor chronic alcohol exposure modifies taste responses to MSG; (ii) alcohol dependence may be associated with deficit in threshold taste reactivity, as assessed by electrogustometry.
Taste-dependent sociophobia: when food and company do not mix.
Guitton, Matthieu J; Klin, Yael; Dudai, Yadin
2008-08-22
Using a combination of the paradigm of conditioned taste aversion (CTA) and of the paradigm of social interactions, we report here that in the rat, eating while anxious may result in long-term alterations in social behavior. In the conventional CTA, the subject learns to associate a tastant (the conditioned stimulus, CS) with delayed toxicosis (an unconditioned stimulus, UCS) to yield taste aversion (the conditioned response, CR). However, the association of taste with delayed negative internal states that could generate CRs that are different from taste aversion should not be neglected. Such associations may contribute to the ontogenesis, reinforcement and symptoms of some types of taste- and food-related disorders. We have recently reported that a delayed anxiety-like state, induced by the anxiogenic drug meta-chlorophenylpiperazine (mCPP), can specifically associate with taste to produce CTA. We now show that a similar protocol results in a marked lingering impairment in social interactions in response to the conditioned taste. This is hence a learned situation in which food and company do not mix well.
Sanseau, Ana; Sampaolesi, Juan; Suzuki, Emilio Rintaro; Lopes, Joao Franca; Borel, Hector
2013-01-01
To assess ocular discomfort upon instillation and patient preference for brinzolamide/timolol relative to dorzolamide/timolol, in patients with open-angle glaucoma or ocular hypertension. This was a multicenter, prospective, patient-masked, randomized, crossover study. On day 0, patients received one drop of brinzolamide/timolol in one eye and one drop of dorzolamide/timolol in the contralateral eye. On day 1, patients were randomly assigned to receive one drop of either brinzolamide/timolol or dorzolamide/timolol in both eyes; on day 2, patients received one drop of the alternate treatment in both eyes. Measures included a patient preference question on day 2 (primary) and mean ocular discomfort scale scores on days 1 and 2 (secondary). Safety assessments included adverse events, visual acuity, and slit-lamp examinations. Of 120 patients who enrolled, 115 completed the study. Of these, 112 patients instilled both medications and expressed a study medication preference on day 2. A significantly greater percentage preferred brinzolamide/timolol to dorzolamide/timolol (67.0% versus 30.4%; P < 0.001). The ocular discomfort (expressed as mean [standard deviation]) with brinzolamide/timolol was significantly lower than with dorzolamide/timolol (day 2:1.9 [2.3] versus 3.7 [2.8], respectively [P = 0.0003]; both days combined: 2.1 [2.5] versus 3.5 [2.9], respectively [P = 0.00014]). On day 1, five patients receiving brinzolamide/timolol reported five nonserious adverse events (AEs): flu (n = 1), bitter taste (n = 2), and headache (n = 2). Four events, bitter taste (two events) and headache (two events), were considered related to brinzolamide/timolol. Events were mild in intensity, except bitter taste of moderate intensity reported by one patient. No AEs were reported at day 2. All AEs resolved without additional treatment. No clinically relevant changes from baseline were observed in best-corrected visual acuity or slit-lamp examinations of ocular signs. Patients had less discomfort with brinzolamide/timolol than with dorzolamide/timolol, and more expressed a preference for brinzolamide/timolol. Both treatments were generally safe and well tolerated.
Spector, Alan C.; le Roux, Carel W; Munger, Steven D.; Travers, Susan P.; Sclafani, Anthony; Mennella, Julie A.
2016-01-01
This paper summarizes research findings from six experts in the field of taste and feeding that were presented at the 2015 ASPEN Research Workshop. The theme was focused on the interaction of taste signals with those of a postingestive origin and how this contributes to regulation of food intake through both physiological and learning processes. Gastric bypass results in exceptional loss of fat mass, increases in circulating levels of key gut peptides, some of which are also expressed along with their cognate receptors in taste buds. Changes in taste preference and food selection in both bariatric surgery patients and rodent models have been reported. Accordingly, the effects of this surgery on taste-related behavior were examined. The conservation of receptor and peptide signaling mechanisms in gustatory and extraoral tissues was discussed in the context of taste responsiveness and the regulation of metabolism. New findings detailing the features of neural circuits between the caudal nucleus of the solitary tract (NST), receiving visceral input from the vagus nerve, and the rostral NST, receiving taste input, were discussed, as was how early life experience with taste stimuli and learned associations between flavor and postoral consequences of nutrients can exert potent and long-lasting effects on feeding PMID:26598504
Why do we like sweet taste: A bitter tale?
Beauchamp, Gary K.
2016-01-01
Sweet is widely considered to be one of a small number of basic or primary taste qualities. Liking for sweet tasting substances is innate, although postnatal experiences can shape responses. The power of sweet taste to induce consumption and to motivate behavior is profound, suggesting the importance of this sense for many species. Most investigators presume that the ability to identify sweet molecules through the sense of taste evolved to allow organisms to detect sources of readily available glucose from plants. Perhaps the best evidence supporting this presumption are recent discoveries in comparative biology demonstrating that species in the order Carnivora that do not consume plants also do not perceive sweet taste due to the pseudogenization of a component of the primary sweet taste receptor. However, arguing against this idea is the observation that the sweetness of a plant, or the amount of easily metabolizable sugars contained in the plant, provides little quantitative indication of the plant’s energy or broadly conceived food value. Here it is suggested that the perceptual ratio of sweet taste to bitter taste (a signal for toxicity) may be a better gauge of a plant’s broadly conceived food value than sweetness alone and that it is this ratio that helps guide selection or rejection of a potential plant food. PMID:27174610
Mash1-expressing cells could differentiate to type III cells in adult mouse taste buds.
Takagi, Hiroki; Seta, Yuji; Kataoka, Shinji; Nakatomi, Mitsushiro; Toyono, Takashi; Kawamoto, Tatsuo
2018-03-10
The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system. We found that the cells expressing type III cell markers-aromatic L-amino acid decarboxylase (AADC), carbonic anhydrase 4 (CA4), glutamate decarboxylase 67 (GAD67), neural cell adhesion molecule (NCAM), and synaptosomal-associated protein 25 (SNAP25)-were significantly reduced in the circumvallate taste buds after the administration of tamoxifen. However, gustducin and phospholipase C beta2 (PLC beta2)-markers of type II taste bud cells-were not significantly changed in the circumvallate taste buds after the administration of tamoxifen. These results suggest that Mash1-positive cells could be differentiated to type III cells, not type II cells in the taste buds.
Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats.
Zhang, Xiao-Juan; Zhou, Li-Hong; Ban, Xiang; Liu, Dian-Xin; Jiang, Wei; Liu, Xiao-Min
2011-10-01
Mammals spontaneously prefer lipid rich foods. Overconsumption of high-fat diet leads to obesity and related diseases. Recent findings indicate that taste may participate in the orosensory perception of dietary lipids and the fatty taste may contribute to a preference for and excessive consumption of dietary fat. CD36, a trans-membrane glycoprotein, which is located in the taste buds of circumvallate papillae of rodents, appears to be a plausible receptor for this fatty taste. Obese subjects present a stronger preference for fatty foods, though the mechanisms involved are complex and are not fully investigated. Our data from immunofluorescence and real-time RT-PCR showed that the expression levels of CD36 in circumvallate taste buds were significantly lower in high-fat diet induced obese rats as compared with that of control rats fed a normal diet. These results suggest that decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats may be associated with diminished fatty taste sensitivity and in order to compensate the preference for dietary fat, rats consume more fatty foods. Therapeutic strategies designed to alter or manipulate CD36 expression or function in taste buds may have important implications in treating obesity and related diseases. Copyright © 2010 Elsevier GmbH. All rights reserved.
Immunohistochemical Analysis of Human Vallate Taste Buds
Tizzano, Marco; Grigereit, Laura; Shultz, Nicole; Clary, Matthew S.
2015-01-01
The morphology of the vallate papillae from postmortem human samples was investigated with immunohistochemistry. Microscopically, taste buds were present along the inner wall of the papilla, and in some cases in the outer wall as well. The typical taste cell markers PLCβ2, GNAT3 (gustducin) and the T1R3 receptor stain elongated cells in human taste buds consistent with the Type II cells in rodents. In the human tissue, taste bud cells that stain with Type II cell markers, PLCβ2 and GNAT3, also stain with villin antibody. Two typical immunochemical markers for Type III taste cells in rodents, PGP9.5 and SNAP25, fail to stain any taste bud cells in the human postmortem tissue, although these antibodies do stain numerous nerve fibers throughout the specimen. Car4, another Type III cell marker, reacted with only a few taste cells in our samples. Finally, human vallate papillae have a general network of innervation similar to rodents and antibodies directed against SNAP25, PGP9.5, acetylated tubulin and P2X3 all stain free perigemmal nerve endings as well as intragemmal taste fibers. We conclude that with the exception of certain molecular features of Type III cells, human vallate papillae share the structural, morphological, and molecular features observed in rodents. PMID:26400924
Nakamura, Yuko; Goto, Tazuko K; Tokumori, Kenji; Yoshiura, Takashi; Kobayashi, Koji; Nakamura, Yasuhiko; Honda, Hiroshi; Ninomiya, Yuzo; Yoshiura, Kazunori
2012-04-18
It remains unclear how the cerebral cortex of humans perceives taste temporally, and whether or not such objective data about the brain show a correlation with the current widely used conventional methods of taste-intensity sensory evaluation. The aim of this study was to investigate the difference in the time-intensity profile between salty and sweet tastes in the human brain. The time-intensity profiles of functional MRI (fMRI) data of the human taste cortex were analyzed using finite impulse response analysis for a direct interpretation in terms of the peristimulus time signal. Also, time-intensity sensory evaluations for tastes were performed under the same condition as fMRI to confirm the reliability of the temporal profile in the fMRI data. The time-intensity profile for the brain activations due to a salty taste changed more rapidly than those due to a sweet taste in the human brain cortex and was also similar to the time-intensity sensory evaluation, confirming the reliability of the temporal profile of the fMRI data. In conclusion, the time-intensity profile using finite impulse response analysis for fMRI data showed that there was a temporal difference in the neural responses between salty and sweet tastes over a given period of time. This indicates that there might be taste-specific temporal profiles of activations in the human brain.
Sweet Preference Associated with the Risk of Hypercholesterolemia Among Middle-Aged Women in Korea.
Shin, Yoonjin; Lee, Soojin; Kim, Yangha
2018-04-05
Sweet preference has been reported to be associated with various health problems. This study examined the influence of sweet taste preference on the risk of dyslipidemia in Korean middle-aged women. The study selected 3,609 middle-aged women from the Korean Genome and Epidemiology Study (KoGES) and classified them into two groups on the basis of whether or not they preferred sweet taste. Dietary intake was analyzed using a semiquantitative food frequency questionnaire. Serum lipid profiles and anthropometric variables were measured. Subjects who preferred the sweet taste had significantly higher intakes of sugar products and sweet drink than those who did not prefer the sweet taste. Subjects who preferred the sweet taste showed higher carbohydrate and fat intake and less fiber intake than those who did not prefer the sweet taste. The serum concentrations of total cholesterol and low-density lipoprotein (LDL) cholesterol were significantly higher in subjects who preferred the sweet taste than those who did not prefer. Furthermore, subjects who preferred the sweet taste showed a significantly higher odds ratio (OR) for hypercholesterolemia (OR 1.22; 95% CI (1.01-1.45)) and hyper-LDL cholesterolemia (OR 1.33; 95% CI (1.11-1.60)) than those who did not prefer the sweet taste. Our results suggested that preference for sweet taste may increase the consumption of sugar products and sweet drinks, which is partially linked to the risk of hypercholesterolemia and hyper-LDL cholesterolemia in Korean middle-aged women.
Krimm, R F; Hill, D L
1999-05-01
Dietary sodium restriction has profound effects on the development of peripheral taste function and central taste system anatomy. This study examined whether early dietary sodium restriction also affects innervation of taste buds. The number of geniculate ganglion cells that innervate single fungiform taste buds were quantified for the midregion of the tongue in two groups of rats: those fed either a low-sodium diet and those fed a sodium replete diet (control rats) from early prenatal development through adulthood. The same mean number of ganglion cells in developmentally sodium-restricted and control adult rats innervated taste buds on the midregion of the tongue. However, the characteristic relationship of the larger the taste bud, the more neurons that innervate it did not develop in sodium-restricted rats. The failure to form such a relationship in experimental rats was likely due to a substantially smaller mean taste bud volume than controls and probably not to changes in innervation. Further experiments demonstrated that the altered association between number of innervating neurons and taste bud size in restricted rats was reversible. Feeding developmentally sodium-restricted rats a sodium replete diet at adulthood resulted in an increase in taste bud size. Accordingly, the high correlation between taste bud volume and innervation was established in sodium-replete rats. Findings from the current study reveal that early dietary manipulations influence neuron-target interactions; however, the effects of dietary sodium restriction on peripheral gustatory anatomy can be completely restored, even in adult animals.
Metallic taste in cancer patients treated with chemotherapy.
IJpma, I; Renken, R J; Ter Horst, G J; Reyners, A K L
2015-02-01
Metallic taste is a taste alteration frequently reported by cancer patients treated with chemotherapy. Attention to this side effect of chemotherapy is limited. This review addresses the definition, assessment methods, prevalence, duration, etiology, and management strategies of metallic taste in chemotherapy treated cancer patients. Literature search for metallic taste and chemotherapy was performed in PubMed up to September 2014, resulting in 184 articles of which 13 articles fulfilled the inclusion criteria: English publications addressing metallic taste in cancer patients treated with FDA-approved chemotherapy. An additional search in Google Scholar, in related articles of both search engines, and subsequent in the reference lists, resulted in 13 additional articles included in this review. Cancer patient forums were visited to explore management strategies. Prevalence of metallic taste ranged from 9.7% to 78% among patients with various cancers, chemotherapy treatments, and treatment phases. No studies have been performed to investigate the influence of metallic taste on dietary intake, body weight, and quality of life. Several management strategies can be recommended for cancer patients: using plastic utensils, eating cold or frozen foods, adding strong herbs, spices, sweetener or acid to foods, eating sweet and sour foods, using 'miracle fruit' supplements, and rinsing with chelating agents. Although metallic taste is a frequent side effect of chemotherapy and a much discussed topic on cancer patient forums, literature regarding metallic taste among chemotherapy treated cancer patients is scarce. More awareness for this side effect can improve the support for these patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sarco/Endoplasmic Reticulum Ca2+-ATPases (SERCA) Contribute to GPCR-Mediated Taste Perception
Iguchi, Naoko; Ohkuri, Tadahiro; Slack, Jay P.; Zhong, Ping; Huang, Liquan
2011-01-01
The sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory), bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular events in taste bud cells, particularly the requirement of increased cytosolic free Ca2+ concentration ([Ca2+]c) for normal taste signal transduction and transmission. Little, however, is known about the mechanisms controlling the removal of elevated [Ca2+]c from the cytosol of taste receptor cells (TRCs) and how the disruption of these mechanisms affects taste perception. To investigate the molecular mechanism of Ca2+ clearance in TRCs, we sought the molecules involved in [Ca2+]c regulation using a single-taste-cell transcriptome approach. We found that Serca3, a member of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) family that sequesters cytosolic Ca2+ into endoplasmic reticulum, is exclusively expressed in sweet/umami/bitter TRCs, which rely on intracellular Ca2+ release for signaling. Serca3-knockout (KO) mice displayed significantly increased aversive behavioral responses and greater gustatory nerve responses to bitter taste substances but not to sweet or umami taste substances. Further studies showed that Serca2 was mainly expressed in the T1R3-expressing sweet and umami TRCs, suggesting that the loss of function of Serca3 was possibly compensated by Serca2 in these TRCs in the mutant mice. Our data demonstrate that the SERCA family members play an important role in the Ca2+ clearance in TRCs and that mutation of these proteins may alter bitter and perhaps sweet and umami taste perception. PMID:21829714
IJpma, Irene; Renken, Remco J; Gietema, Jourik A; Slart, Riemer H J A; Mensink, Manon G J; Lefrandt, Joop D; Ter Horst, Gert J; Reyners, Anna K L
2017-12-01
Taste and smell changes due to chemotherapy may contribute to the high prevalence of overweight in testicular cancer patients (TCPs). This study investigates the taste and smell function, dietary intake, food preference, and body composition in TCPs before, during, and up to 1 year after cisplatin-based chemotherapy. Twenty-one consecutive TCPs participated. At baseline TCPs were compared to healthy controls (N = 48). Taste strips and 'Sniffin' Sticks' were used to determine psychophysical taste and smell function. Subjective taste, smell, appetite, and hunger were assessed using a questionnaire. Dietary intake was analyzed using a food frequency questionnaire. Food preference was assessed using food pictures varying in taste (sweet/savoury) and fat or protein content. A Dual-Energy X-ray Absorptiometry (DEXA) scan was performed to measure whole body composition. Compared to controls, TCPs had a lower smell threshold (P = 0.045) and lower preference for high fat sweet foods at baseline (P = 0.024). Over time, intra-individual psychophysical taste and smell function was highly variable. The salty taste threshold increased at completion of chemotherapy compared to baseline (P = 0.006). A transient decrease of subjective taste, appetite, and hunger feelings was observed per chemotherapy cycle. The percentage of fat mass increased during chemotherapy compared to baseline, while the lean mass and bone density decreased (P < 0.05). Coping strategies regarding subjective taste impairment should especially be provided during the first week of each chemotherapy cycle. Since the body composition of TCPs already had changed at completion of chemotherapy, intervention strategies to limit the impact of cardiovascular risk factors should probably start during treatment. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Liu, Bo; Ha, Matthew; Meng, Xuan-Yu; Khaleduzzaman, Mohammed; Zhang, Zhe; Li, Xia; Cui, Meng
2012-01-01
The family C G protein-coupled receptor (GPCR) T1R2 and T1R3 heterodimer functions as a broadly acting sweet taste receptor. Perception of sweet taste is a species-dependent physiological process. It has been widely reported that New World monkeys and rodents can not perceive some of the artificial sweeteners and sweet-tasting proteins that can be perceived by humans, apes, and Old World monkeys. Until now, only the sweet receptors of humans, mice and rats have been functionally characterized. Here we report characterization of the sweet taste receptor (T1R2/T1R3) from a species of New World squirrel monkey. Our results show that the heterodimeric receptor of squirrel monkey does not respond to artificial sweeteners aspartame, neotame, cyclamate, saccharin and sweet-tasting protein monellin, but surprisingly, it does respond to thaumatin at high concentrations (>18 μM). This is the first report that New World monkey species can perceive some specific sweet-tasting proteins. Furthermore, the receptor responses to the sweeteners cannot be inhibited by the sweet inhibitor lactisole. We compared the response differences of the squirrel monkey and human receptors and found that the residues in T1R2 determine species-dependent sweet taste toward saccharin, while the residues in either T1R2 or T1R3 are responsible for the sweet taste difference between humans and squirrel monkeys toward monellin. Molecular models indicated that electrostatic properties of the receptors probably mediate the species-dependent response to sweet-tasting proteins. PMID:23000410
Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation
Huang, Tao; Ma, Liqun; Krimm, Robin F
2015-01-01
The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in BdnflacZ/+ mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656
Knocking out P2X receptors reduces transmitter secretion in taste buds
Huang, Yijen A.; Stone, Leslie M.; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C.; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E.; Kinnamon, Sue C.; Roper, Stephen D.
2011-01-01
In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors (P2X2 and P2X3 double knockout, or “DKO” mice). The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca2+ in taste Receptor (Type II) cells from DKO mice, as from wild type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we employed reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion. PMID:21940456