Sample records for random variables

  1. Generating variable and random schedules of reinforcement using Microsoft Excel macros.

    PubMed

    Bancroft, Stacie L; Bourret, Jason C

    2008-01-01

    Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time. Generating schedule values for variable and random reinforcement schedules can be difficult. The present article describes the steps necessary to write macros in Microsoft Excel that will generate variable-ratio, variable-interval, variable-time, random-ratio, random-interval, and random-time reinforcement schedule values.

  2. Statistical optics

    NASA Astrophysics Data System (ADS)

    Goodman, J. W.

    This book is based on the thesis that some training in the area of statistical optics should be included as a standard part of any advanced optics curriculum. Random variables are discussed, taking into account definitions of probability and random variables, distribution functions and density functions, an extension to two or more random variables, statistical averages, transformations of random variables, sums of real random variables, Gaussian random variables, complex-valued random variables, and random phasor sums. Other subjects examined are related to random processes, some first-order properties of light waves, the coherence of optical waves, some problems involving high-order coherence, effects of partial coherence on imaging systems, imaging in the presence of randomly inhomogeneous media, and fundamental limits in photoelectric detection of light. Attention is given to deterministic versus statistical phenomena and models, the Fourier transform, and the fourth-order moment of the spectrum of a detected speckle image.

  3. Generating Variable and Random Schedules of Reinforcement Using Microsoft Excel Macros

    PubMed Central

    Bancroft, Stacie L; Bourret, Jason C

    2008-01-01

    Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time. Generating schedule values for variable and random reinforcement schedules can be difficult. The present article describes the steps necessary to write macros in Microsoft Excel that will generate variable-ratio, variable-interval, variable-time, random-ratio, random-interval, and random-time reinforcement schedule values. PMID:18595286

  4. An Entropy-Based Measure of Dependence between Two Groups of Random Variables. Research Report. ETS RR-07-20

    ERIC Educational Resources Information Center

    Kong, Nan

    2007-01-01

    In multivariate statistics, the linear relationship among random variables has been fully explored in the past. This paper looks into the dependence of one group of random variables on another group of random variables using (conditional) entropy. A new measure, called the K-dependence coefficient or dependence coefficient, is defined using…

  5. Contextuality in canonical systems of random variables

    NASA Astrophysics Data System (ADS)

    Dzhafarov, Ehtibar N.; Cervantes, Víctor H.; Kujala, Janne V.

    2017-10-01

    Random variables representing measurements, broadly understood to include any responses to any inputs, form a system in which each of them is uniquely identified by its content (that which it measures) and its context (the conditions under which it is recorded). Two random variables are jointly distributed if and only if they share a context. In a canonical representation of a system, all random variables are binary, and every content-sharing pair of random variables has a unique maximal coupling (the joint distribution imposed on them so that they coincide with maximal possible probability). The system is contextual if these maximal couplings are incompatible with the joint distributions of the context-sharing random variables. We propose to represent any system of measurements in a canonical form and to consider the system contextual if and only if its canonical representation is contextual. As an illustration, we establish a criterion for contextuality of the canonical system consisting of all dichotomizations of a single pair of content-sharing categorical random variables. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  6. Maximum-entropy probability distributions under Lp-norm constraints

    NASA Technical Reports Server (NTRS)

    Dolinar, S.

    1991-01-01

    Continuous probability density functions and discrete probability mass functions are tabulated which maximize the differential entropy or absolute entropy, respectively, among all probability distributions with a given L sub p norm (i.e., a given pth absolute moment when p is a finite integer) and unconstrained or constrained value set. Expressions for the maximum entropy are evaluated as functions of the L sub p norm. The most interesting results are obtained and plotted for unconstrained (real valued) continuous random variables and for integer valued discrete random variables. The maximum entropy expressions are obtained in closed form for unconstrained continuous random variables, and in this case there is a simple straight line relationship between the maximum differential entropy and the logarithm of the L sub p norm. Corresponding expressions for arbitrary discrete and constrained continuous random variables are given parametrically; closed form expressions are available only for special cases. However, simpler alternative bounds on the maximum entropy of integer valued discrete random variables are obtained by applying the differential entropy results to continuous random variables which approximate the integer valued random variables in a natural manner. All the results are presented in an integrated framework that includes continuous and discrete random variables, constraints on the permissible value set, and all possible values of p. Understanding such as this is useful in evaluating the performance of data compression schemes.

  7. On the minimum of independent geometrically distributed random variables

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco; Leemis, Lawrence M.; Nicol, David

    1994-01-01

    The expectations E(X(sub 1)), E(Z(sub 1)), and E(Y(sub 1)) of the minimum of n independent geometric, modifies geometric, or exponential random variables with matching expectations differ. We show how this is accounted for by stochastic variability and how E(X(sub 1))/E(Y(sub 1)) equals the expected number of ties at the minimum for the geometric random variables. We then introduce the 'shifted geometric distribution' and show that there is a unique value of the shift for which the individual shifted geometric and exponential random variables match expectations both individually and in the minimums.

  8. Students' Misconceptions about Random Variables

    ERIC Educational Resources Information Center

    Kachapova, Farida; Kachapov, Ilias

    2012-01-01

    This article describes some misconceptions about random variables and related counter-examples, and makes suggestions about teaching initial topics on random variables in general form instead of doing it separately for discrete and continuous cases. The focus is on post-calculus probability courses. (Contains 2 figures.)

  9. A Multivariate Randomization Text of Association Applied to Cognitive Test Results

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert; Beard, Bettina

    2009-01-01

    Randomization tests provide a conceptually simple, distribution-free way to implement significance testing. We have applied this method to the problem of evaluating the significance of the association among a number (k) of variables. The randomization method was the random re-ordering of k-1 of the variables. The criterion variable was the value of the largest eigenvalue of the correlation matrix.

  10. Biologically-variable rhythmic auditory cues are superior to isochronous cues in fostering natural gait variability in Parkinson's disease.

    PubMed

    Dotov, D G; Bayard, S; Cochen de Cock, V; Geny, C; Driss, V; Garrigue, G; Bardy, B; Dalla Bella, S

    2017-01-01

    Rhythmic auditory cueing improves certain gait symptoms of Parkinson's disease (PD). Cues are typically stimuli or beats with a fixed inter-beat interval. We show that isochronous cueing has an unwanted side-effect in that it exacerbates one of the motor symptoms characteristic of advanced PD. Whereas the parameters of the stride cycle of healthy walkers and early patients possess a persistent correlation in time, or long-range correlation (LRC), isochronous cueing renders stride-to-stride variability random. Random stride cycle variability is also associated with reduced gait stability and lack of flexibility. To investigate how to prevent patients from acquiring a random stride cycle pattern, we tested rhythmic cueing which mimics the properties of variability found in healthy gait (biological variability). PD patients (n=19) and age-matched healthy participants (n=19) walked with three rhythmic cueing stimuli: isochronous, with random variability, and with biological variability (LRC). Synchronization was not instructed. The persistent correlation in gait was preserved only with stimuli with biological variability, equally for patients and controls (p's<0.05). In contrast, cueing with isochronous or randomly varying inter-stimulus/beat intervals removed the LRC in the stride cycle. Notably, the individual's tendency to synchronize steps with beats determined the amount of negative effects of isochronous and random cues (p's<0.05) but not the positive effect of biological variability. Stimulus variability and patients' propensity to synchronize play a critical role in fostering healthier gait dynamics during cueing. The beneficial effects of biological variability provide useful guidelines for improving existing cueing treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. An instrumental variable random-coefficients model for binary outcomes

    PubMed Central

    Chesher, Andrew; Rosen, Adam M

    2014-01-01

    In this paper, we study a random-coefficients model for a binary outcome. We allow for the possibility that some or even all of the explanatory variables are arbitrarily correlated with the random coefficients, thus permitting endogeneity. We assume the existence of observed instrumental variables Z that are jointly independent with the random coefficients, although we place no structure on the joint determination of the endogenous variable X and instruments Z, as would be required for a control function approach. The model fits within the spectrum of generalized instrumental variable models, and we thus apply identification results from our previous studies of such models to the present context, demonstrating their use. Specifically, we characterize the identified set for the distribution of random coefficients in the binary response model with endogeneity via a collection of conditional moment inequalities, and we investigate the structure of these sets by way of numerical illustration. PMID:25798048

  12. Polynomial chaos expansion with random and fuzzy variables

    NASA Astrophysics Data System (ADS)

    Jacquelin, E.; Friswell, M. I.; Adhikari, S.; Dessombz, O.; Sinou, J.-J.

    2016-06-01

    A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.

  13. Computer simulation of random variables and vectors with arbitrary probability distribution laws

    NASA Technical Reports Server (NTRS)

    Bogdan, V. M.

    1981-01-01

    Assume that there is given an arbitrary n-dimensional probability distribution F. A recursive construction is found for a sequence of functions x sub 1 = f sub 1 (U sub 1, ..., U sub n), ..., x sub n = f sub n (U sub 1, ..., U sub n) such that if U sub 1, ..., U sub n are independent random variables having uniform distribution over the open interval (0,1), then the joint distribution of the variables x sub 1, ..., x sub n coincides with the distribution F. Since uniform independent random variables can be well simulated by means of a computer, this result allows one to simulate arbitrary n-random variables if their joint probability distribution is known.

  14. Measures of Residual Risk with Connections to Regression, Risk Tracking, Surrogate Models, and Ambiguity

    DTIC Science & Technology

    2015-01-07

    vector that helps to manage , predict, and mitigate the risk in the original variable. Residual risk can be exemplified as a quantification of the improved... the random variable of interest is viewed in concert with a related random vector that helps to manage , predict, and mitigate the risk in the original...measures of risk. They view a random variable of interest in concert with an auxiliary random vector that helps to manage , predict and mitigate the risk

  15. Raw and Central Moments of Binomial Random Variables via Stirling Numbers

    ERIC Educational Resources Information Center

    Griffiths, Martin

    2013-01-01

    We consider here the problem of calculating the moments of binomial random variables. It is shown how formulae for both the raw and the central moments of such random variables may be obtained in a recursive manner utilizing Stirling numbers of the first kind. Suggestions are also provided as to how students might be encouraged to explore this…

  16. A Random Variable Related to the Inversion Vector of a Partial Random Permutation

    ERIC Educational Resources Information Center

    Laghate, Kavita; Deshpande, M. N.

    2005-01-01

    In this article, we define the inversion vector of a permutation of the integers 1, 2,..., n. We set up a particular kind of permutation, called a partial random permutation. The sum of the elements of the inversion vector of such a permutation is a random variable of interest.

  17. A Geometrical Framework for Covariance Matrices of Continuous and Categorical Variables

    ERIC Educational Resources Information Center

    Vernizzi, Graziano; Nakai, Miki

    2015-01-01

    It is well known that a categorical random variable can be represented geometrically by a simplex. Accordingly, several measures of association between categorical variables have been proposed and discussed in the literature. Moreover, the standard definitions of covariance and correlation coefficient for continuous random variables have been…

  18. Multilevel Model Prediction

    ERIC Educational Resources Information Center

    Frees, Edward W.; Kim, Jee-Seon

    2006-01-01

    Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…

  19. Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability

    NASA Astrophysics Data System (ADS)

    Ordóñez Cabrera, Manuel; Volodin, Andrei I.

    2005-05-01

    From the classical notion of uniform integrability of a sequence of random variables, a new concept of integrability (called h-integrability) is introduced for an array of random variables, concerning an array of constantsE We prove that this concept is weaker than other previous related notions of integrability, such as Cesàro uniform integrability [Chandra, Sankhya Ser. A 51 (1989) 309-317], uniform integrability concerning the weights [Ordóñez Cabrera, Collect. Math. 45 (1994) 121-132] and Cesàro [alpha]-integrability [Chandra and Goswami, J. Theoret. ProbabE 16 (2003) 655-669]. Under this condition of integrability and appropriate conditions on the array of weights, mean convergence theorems and weak laws of large numbers for weighted sums of an array of random variables are obtained when the random variables are subject to some special kinds of dependence: (a) rowwise pairwise negative dependence, (b) rowwise pairwise non-positive correlation, (c) when the sequence of random variables in every row is [phi]-mixing. Finally, we consider the general weak law of large numbers in the sense of Gut [Statist. Probab. Lett. 14 (1992) 49-52] under this new condition of integrability for a Banach space setting.

  20. Qualitatively Assessing Randomness in SVD Results

    NASA Astrophysics Data System (ADS)

    Lamb, K. W.; Miller, W. P.; Kalra, A.; Anderson, S.; Rodriguez, A.

    2012-12-01

    Singular Value Decomposition (SVD) is a powerful tool for identifying regions of significant co-variability between two spatially distributed datasets. SVD has been widely used in atmospheric research to define relationships between sea surface temperatures, geopotential height, wind, precipitation and streamflow data for myriad regions across the globe. A typical application for SVD is to identify leading climate drivers (as observed in the wind or pressure data) for a particular hydrologic response variable such as precipitation, streamflow, or soil moisture. One can also investigate the lagged relationship between a climate variable and the hydrologic response variable using SVD. When performing these studies it is important to limit the spatial bounds of the climate variable to reduce the chance of random co-variance relationships being identified. On the other hand, a climate region that is too small may ignore climate signals which have more than a statistical relationship to a hydrologic response variable. The proposed research seeks to identify a qualitative method of identifying random co-variability relationships between two data sets. The research identifies the heterogeneous correlation maps from several past results and compares these results with correlation maps produced using purely random and quasi-random climate data. The comparison identifies a methodology to determine if a particular region on a correlation map may be explained by a physical mechanism or is simply statistical chance.

  1. Design approaches to experimental mediation☆

    PubMed Central

    Pirlott, Angela G.; MacKinnon, David P.

    2016-01-01

    Identifying causal mechanisms has become a cornerstone of experimental social psychology, and editors in top social psychology journals champion the use of mediation methods, particularly innovative ones when possible (e.g. Halberstadt, 2010, Smith, 2012). Commonly, studies in experimental social psychology randomly assign participants to levels of the independent variable and measure the mediating and dependent variables, and the mediator is assumed to causally affect the dependent variable. However, participants are not randomly assigned to levels of the mediating variable(s), i.e., the relationship between the mediating and dependent variables is correlational. Although researchers likely know that correlational studies pose a risk of confounding, this problem seems forgotten when thinking about experimental designs randomly assigning participants to levels of the independent variable and measuring the mediator (i.e., “measurement-of-mediation” designs). Experimentally manipulating the mediator provides an approach to solving these problems, yet these methods contain their own set of challenges (e.g., Bullock, Green, & Ha, 2010). We describe types of experimental manipulations targeting the mediator (manipulations demonstrating a causal effect of the mediator on the dependent variable and manipulations targeting the strength of the causal effect of the mediator) and types of experimental designs (double randomization, concurrent double randomization, and parallel), provide published examples of the designs, and discuss the strengths and challenges of each design. Therefore, the goals of this paper include providing a practical guide to manipulation-of-mediator designs in light of their challenges and encouraging researchers to use more rigorous approaches to mediation because manipulation-of-mediator designs strengthen the ability to infer causality of the mediating variable on the dependent variable. PMID:27570259

  2. Design approaches to experimental mediation.

    PubMed

    Pirlott, Angela G; MacKinnon, David P

    2016-09-01

    Identifying causal mechanisms has become a cornerstone of experimental social psychology, and editors in top social psychology journals champion the use of mediation methods, particularly innovative ones when possible (e.g. Halberstadt, 2010, Smith, 2012). Commonly, studies in experimental social psychology randomly assign participants to levels of the independent variable and measure the mediating and dependent variables, and the mediator is assumed to causally affect the dependent variable. However, participants are not randomly assigned to levels of the mediating variable(s), i.e., the relationship between the mediating and dependent variables is correlational. Although researchers likely know that correlational studies pose a risk of confounding, this problem seems forgotten when thinking about experimental designs randomly assigning participants to levels of the independent variable and measuring the mediator (i.e., "measurement-of-mediation" designs). Experimentally manipulating the mediator provides an approach to solving these problems, yet these methods contain their own set of challenges (e.g., Bullock, Green, & Ha, 2010). We describe types of experimental manipulations targeting the mediator (manipulations demonstrating a causal effect of the mediator on the dependent variable and manipulations targeting the strength of the causal effect of the mediator) and types of experimental designs (double randomization, concurrent double randomization, and parallel), provide published examples of the designs, and discuss the strengths and challenges of each design. Therefore, the goals of this paper include providing a practical guide to manipulation-of-mediator designs in light of their challenges and encouraging researchers to use more rigorous approaches to mediation because manipulation-of-mediator designs strengthen the ability to infer causality of the mediating variable on the dependent variable.

  3. Compliance-Effect Correlation Bias in Instrumental Variables Estimators

    ERIC Educational Resources Information Center

    Reardon, Sean F.

    2010-01-01

    Instrumental variable estimators hold the promise of enabling researchers to estimate the effects of educational treatments that are not (or cannot be) randomly assigned but that may be affected by randomly assigned interventions. Examples of the use of instrumental variables in such cases are increasingly common in educational and social science…

  4. Reliability Coupled Sensitivity Based Design Approach for Gravity Retaining Walls

    NASA Astrophysics Data System (ADS)

    Guha Ray, A.; Baidya, D. K.

    2012-09-01

    Sensitivity analysis involving different random variables and different potential failure modes of a gravity retaining wall focuses on the fact that high sensitivity of a particular variable on a particular mode of failure does not necessarily imply a remarkable contribution to the overall failure probability. The present paper aims at identifying a probabilistic risk factor ( R f ) for each random variable based on the combined effects of failure probability ( P f ) of each mode of failure of a gravity retaining wall and sensitivity of each of the random variables on these failure modes. P f is calculated by Monte Carlo simulation and sensitivity analysis of each random variable is carried out by F-test analysis. The structure, redesigned by modifying the original random variables with the risk factors, is safe against all the variations of random variables. It is observed that R f for friction angle of backfill soil ( φ 1 ) increases and cohesion of foundation soil ( c 2 ) decreases with an increase of variation of φ 1 , while R f for unit weights ( γ 1 and γ 2 ) for both soil and friction angle of foundation soil ( φ 2 ) remains almost constant for variation of soil properties. The results compared well with some of the existing deterministic and probabilistic methods and found to be cost-effective. It is seen that if variation of φ 1 remains within 5 %, significant reduction in cross-sectional area can be achieved. But if the variation is more than 7-8 %, the structure needs to be modified. Finally design guidelines for different wall dimensions, based on the present approach, are proposed.

  5. Anderson localization for radial tree-like random quantum graphs

    NASA Astrophysics Data System (ADS)

    Hislop, Peter D.; Post, Olaf

    We prove that certain random models associated with radial, tree-like, rooted quantum graphs exhibit Anderson localization at all energies. The two main examples are the random length model (RLM) and the random Kirchhoff model (RKM). In the RLM, the lengths of each generation of edges form a family of independent, identically distributed random variables (iid). For the RKM, the iid random variables are associated with each generation of vertices and moderate the current flow through the vertex. We consider extensions to various families of decorated graphs and prove stability of localization with respect to decoration. In particular, we prove Anderson localization for the random necklace model.

  6. Unbiased split variable selection for random survival forests using maximally selected rank statistics.

    PubMed

    Wright, Marvin N; Dankowski, Theresa; Ziegler, Andreas

    2017-04-15

    The most popular approach for analyzing survival data is the Cox regression model. The Cox model may, however, be misspecified, and its proportionality assumption may not always be fulfilled. An alternative approach for survival prediction is random forests for survival outcomes. The standard split criterion for random survival forests is the log-rank test statistic, which favors splitting variables with many possible split points. Conditional inference forests avoid this split variable selection bias. However, linear rank statistics are utilized by default in conditional inference forests to select the optimal splitting variable, which cannot detect non-linear effects in the independent variables. An alternative is to use maximally selected rank statistics for the split point selection. As in conditional inference forests, splitting variables are compared on the p-value scale. However, instead of the conditional Monte-Carlo approach used in conditional inference forests, p-value approximations are employed. We describe several p-value approximations and the implementation of the proposed random forest approach. A simulation study demonstrates that unbiased split variable selection is possible. However, there is a trade-off between unbiased split variable selection and runtime. In benchmark studies of prediction performance on simulated and real datasets, the new method performs better than random survival forests if informative dichotomous variables are combined with uninformative variables with more categories and better than conditional inference forests if non-linear covariate effects are included. In a runtime comparison, the method proves to be computationally faster than both alternatives, if a simple p-value approximation is used. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods

    NASA Astrophysics Data System (ADS)

    Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo

    2018-03-01

    In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.

  8. Generating Variable and Random Schedules of Reinforcement Using Microsoft Excel Macros

    ERIC Educational Resources Information Center

    Bancroft, Stacie L.; Bourret, Jason C.

    2008-01-01

    Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time.…

  9. Optimization Of Mean-Semivariance-Skewness Portfolio Selection Model In Fuzzy Random Environment

    NASA Astrophysics Data System (ADS)

    Chatterjee, Amitava; Bhattacharyya, Rupak; Mukherjee, Supratim; Kar, Samarjit

    2010-10-01

    The purpose of the paper is to construct a mean-semivariance-skewness portfolio selection model in fuzzy random environment. The objective is to maximize the skewness with predefined maximum risk tolerance and minimum expected return. Here the security returns in the objectives and constraints are assumed to be fuzzy random variables in nature and then the vagueness of the fuzzy random variables in the objectives and constraints are transformed into fuzzy variables which are similar to trapezoidal numbers. The newly formed fuzzy model is then converted into a deterministic optimization model. The feasibility and effectiveness of the proposed method is verified by numerical example extracted from Bombay Stock Exchange (BSE). The exact parameters of fuzzy membership function and probability density function are obtained through fuzzy random simulating the past dates.

  10. Random Variables: Simulations and Surprising Connections.

    ERIC Educational Resources Information Center

    Quinn, Robert J.; Tomlinson, Stephen

    1999-01-01

    Features activities for advanced second-year algebra students in grades 11 and 12. Introduces three random variables and considers an empirical and theoretical probability for each. Uses coins, regular dice, decahedral dice, and calculators. (ASK)

  11. Binomial leap methods for simulating stochastic chemical kinetics.

    PubMed

    Tian, Tianhai; Burrage, Kevin

    2004-12-01

    This paper discusses efficient simulation methods for stochastic chemical kinetics. Based on the tau-leap and midpoint tau-leap methods of Gillespie [D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001)], binomial random variables are used in these leap methods rather than Poisson random variables. The motivation for this approach is to improve the efficiency of the Poisson leap methods by using larger stepsizes. Unlike Poisson random variables whose range of sample values is from zero to infinity, binomial random variables have a finite range of sample values. This probabilistic property has been used to restrict possible reaction numbers and to avoid negative molecular numbers in stochastic simulations when larger stepsize is used. In this approach a binomial random variable is defined for a single reaction channel in order to keep the reaction number of this channel below the numbers of molecules that undergo this reaction channel. A sampling technique is also designed for the total reaction number of a reactant species that undergoes two or more reaction channels. Samples for the total reaction number are not greater than the molecular number of this species. In addition, probability properties of the binomial random variables provide stepsize conditions for restricting reaction numbers in a chosen time interval. These stepsize conditions are important properties of robust leap control strategies. Numerical results indicate that the proposed binomial leap methods can be applied to a wide range of chemical reaction systems with very good accuracy and significant improvement on efficiency over existing approaches. (c) 2004 American Institute of Physics.

  12. Do bioclimate variables improve performance of climate envelope models?

    USGS Publications Warehouse

    Watling, James I.; Romañach, Stephanie S.; Bucklin, David N.; Speroterra, Carolina; Brandt, Laura A.; Pearlstine, Leonard G.; Mazzotti, Frank J.

    2012-01-01

    Climate envelope models are widely used to forecast potential effects of climate change on species distributions. A key issue in climate envelope modeling is the selection of predictor variables that most directly influence species. To determine whether model performance and spatial predictions were related to the selection of predictor variables, we compared models using bioclimate variables with models constructed from monthly climate data for twelve terrestrial vertebrate species in the southeastern USA using two different algorithms (random forests or generalized linear models), and two model selection techniques (using uncorrelated predictors or a subset of user-defined biologically relevant predictor variables). There were no differences in performance between models created with bioclimate or monthly variables, but one metric of model performance was significantly greater using the random forest algorithm compared with generalized linear models. Spatial predictions between maps using bioclimate and monthly variables were very consistent using the random forest algorithm with uncorrelated predictors, whereas we observed greater variability in predictions using generalized linear models.

  13. Investigating Factorial Invariance of Latent Variables Across Populations When Manifest Variables Are Missing Completely

    PubMed Central

    Widaman, Keith F.; Grimm, Kevin J.; Early, Dawnté R.; Robins, Richard W.; Conger, Rand D.

    2013-01-01

    Difficulties arise in multiple-group evaluations of factorial invariance if particular manifest variables are missing completely in certain groups. Ad hoc analytic alternatives can be used in such situations (e.g., deleting manifest variables), but some common approaches, such as multiple imputation, are not viable. At least 3 solutions to this problem are viable: analyzing differing sets of variables across groups, using pattern mixture approaches, and a new method using random number generation. The latter solution, proposed in this article, is to generate pseudo-random normal deviates for all observations for manifest variables that are missing completely in a given sample and then to specify multiple-group models in a way that respects the random nature of these values. An empirical example is presented in detail comparing the 3 approaches. The proposed solution can enable quantitative comparisons at the latent variable level between groups using programs that require the same number of manifest variables in each group. PMID:24019738

  14. A unified approach for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties

    NASA Astrophysics Data System (ADS)

    Lü, Hui; Shangguan, Wen-Bin; Yu, Dejie

    2017-09-01

    Automotive brake systems are always subjected to various types of uncertainties and two types of random-fuzzy uncertainties may exist in the brakes. In this paper, a unified approach is proposed for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties. In the proposed approach, two uncertainty analysis models with mixed variables are introduced to model the random-fuzzy uncertainties. The first one is the random and fuzzy model, in which random variables and fuzzy variables exist simultaneously and independently. The second one is the fuzzy random model, in which uncertain parameters are all treated as random variables while their distribution parameters are expressed as fuzzy numbers. Firstly, the fuzziness is discretized by using α-cut technique and the two uncertainty analysis models are simplified into random-interval models. Afterwards, by temporarily neglecting interval uncertainties, the random-interval models are degraded into random models, in which the expectations, variances, reliability indexes and reliability probabilities of system stability functions are calculated. And then, by reconsidering the interval uncertainties, the bounds of the expectations, variances, reliability indexes and reliability probabilities are computed based on Taylor series expansion. Finally, by recomposing the analysis results at each α-cut level, the fuzzy reliability indexes and probabilities can be obtained, by which the brake squeal instability can be evaluated. The proposed approach gives a general framework to deal with both types of random-fuzzy uncertainties that may exist in the brakes and its effectiveness is demonstrated by numerical examples. It will be a valuable supplement to the systematic study of brake squeal considering uncertainty.

  15. Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures

    ERIC Educational Resources Information Center

    Steinley, Douglas; Brusco, Michael J.

    2008-01-01

    Eight different variable selection techniques for model-based and non-model-based clustering are evaluated across a wide range of cluster structures. It is shown that several methods have difficulties when non-informative variables (i.e., random noise) are included in the model. Furthermore, the distribution of the random noise greatly impacts the…

  16. Sampling-Based Stochastic Sensitivity Analysis Using Score Functions for RBDO Problems with Correlated Random Variables

    DTIC Science & Technology

    2010-08-01

    a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a ...SECURITY CLASSIFICATION OF: This study presents a methodology for computing stochastic sensitivities with respect to the design variables, which are the...Random Variables Report Title ABSTRACT This study presents a methodology for computing stochastic sensitivities with respect to the design variables

  17. Reward and uncertainty in exploration programs

    NASA Technical Reports Server (NTRS)

    Kaufman, G. M.; Bradley, P. G.

    1971-01-01

    A set of variables which are crucial to the economic outcome of petroleum exploration are discussed. These are treated as random variables; the values they assume indicate the number of successes that occur in a drilling program and determine, for a particular discovery, the unit production cost and net economic return if that reservoir is developed. In specifying the joint probability law for those variables, extreme and probably unrealistic assumptions are made. In particular, the different random variables are assumed to be independently distributed. Using postulated probability functions and specified parameters, values are generated for selected random variables, such as reservoir size. From this set of values the economic magnitudes of interest, net return and unit production cost are computed. This constitutes a single trial, and the procedure is repeated many times. The resulting histograms approximate the probability density functions of the variables which describe the economic outcomes of an exploratory drilling program.

  18. A single-loop optimization method for reliability analysis with second order uncertainty

    NASA Astrophysics Data System (ADS)

    Xie, Shaojun; Pan, Baisong; Du, Xiaoping

    2015-08-01

    Reliability analysis may involve random variables and interval variables. In addition, some of the random variables may have interval distribution parameters owing to limited information. This kind of uncertainty is called second order uncertainty. This article develops an efficient reliability method for problems involving the three aforementioned types of uncertain input variables. The analysis produces the maximum and minimum reliability and is computationally demanding because two loops are needed: a reliability analysis loop with respect to random variables and an interval analysis loop for extreme responses with respect to interval variables. The first order reliability method and nonlinear optimization are used for the two loops, respectively. For computational efficiency, the two loops are combined into a single loop by treating the Karush-Kuhn-Tucker (KKT) optimal conditions of the interval analysis as constraints. Three examples are presented to demonstrate the proposed method.

  19. Context-invariant quasi hidden variable (qHV) modelling of all joint von Neumann measurements for an arbitrary Hilbert space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loubenets, Elena R.

    We prove the existence for each Hilbert space of the two new quasi hidden variable (qHV) models, statistically noncontextual and context-invariant, reproducing all the von Neumann joint probabilities via non-negative values of real-valued measures and all the quantum product expectations—via the qHV (classical-like) average of the product of the corresponding random variables. In a context-invariant model, a quantum observable X can be represented by a variety of random variables satisfying the functional condition required in quantum foundations but each of these random variables equivalently models X under all joint von Neumann measurements, regardless of their contexts. The proved existence ofmore » this model negates the general opinion that, in terms of random variables, the Hilbert space description of all the joint von Neumann measurements for dimH≥3 can be reproduced only contextually. The existence of a statistically noncontextual qHV model, in particular, implies that every N-partite quantum state admits a local quasi hidden variable model introduced in Loubenets [J. Math. Phys. 53, 022201 (2012)]. The new results of the present paper point also to the generality of the quasi-classical probability model proposed in Loubenets [J. Phys. A: Math. Theor. 45, 185306 (2012)].« less

  20. Properties of behavior under different random ratio and random interval schedules: A parametric study.

    PubMed

    Dembo, M; De Penfold, J B; Ruiz, R; Casalta, H

    1985-03-01

    Four pigeons were trained to peck a key under different values of a temporally defined independent variable (T) and different probabilities of reinforcement (p). Parameter T is a fixed repeating time cycle and p the probability of reinforcement for the first response of each cycle T. Two dependent variables were used: mean response rate and mean postreinforcement pause. For all values of p a critical value for the independent variable T was found (T=1 sec) in which marked changes took place in response rate and postreinforcement pauses. Behavior typical of random ratio schedules was obtained at T 1 sec and behavior typical of random interval schedules at T 1 sec. Copyright © 1985. Published by Elsevier B.V.

  1. The Expected Sample Variance of Uncorrelated Random Variables with a Common Mean and Some Applications in Unbalanced Random Effects Models

    ERIC Educational Resources Information Center

    Vardeman, Stephen B.; Wendelberger, Joanne R.

    2005-01-01

    There is a little-known but very simple generalization of the standard result that for uncorrelated random variables with common mean [mu] and variance [sigma][superscript 2], the expected value of the sample variance is [sigma][superscript 2]. The generalization justifies the use of the usual standard error of the sample mean in possibly…

  2. Uncertain dynamic analysis for rigid-flexible mechanisms with random geometry and material properties

    NASA Astrophysics Data System (ADS)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing; Walker, Paul D.

    2017-02-01

    This paper proposes an uncertain modelling and computational method to analyze dynamic responses of rigid-flexible multibody systems (or mechanisms) with random geometry and material properties. Firstly, the deterministic model for the rigid-flexible multibody system is built with the absolute node coordinate formula (ANCF), in which the flexible parts are modeled by using ANCF elements, while the rigid parts are described by ANCF reference nodes (ANCF-RNs). Secondly, uncertainty for the geometry of rigid parts is expressed as uniform random variables, while the uncertainty for the material properties of flexible parts is modeled as a continuous random field, which is further discretized to Gaussian random variables using a series expansion method. Finally, a non-intrusive numerical method is developed to solve the dynamic equations of systems involving both types of random variables, which systematically integrates the deterministic generalized-α solver with Latin Hypercube sampling (LHS) and Polynomial Chaos (PC) expansion. The benchmark slider-crank mechanism is used as a numerical example to demonstrate the characteristics of the proposed method.

  3. Do little interactions get lost in dark random forests?

    PubMed

    Wright, Marvin N; Ziegler, Andreas; König, Inke R

    2016-03-31

    Random forests have often been claimed to uncover interaction effects. However, if and how interaction effects can be differentiated from marginal effects remains unclear. In extensive simulation studies, we investigate whether random forest variable importance measures capture or detect gene-gene interactions. With capturing interactions, we define the ability to identify a variable that acts through an interaction with another one, while detection is the ability to identify an interaction effect as such. Of the single importance measures, the Gini importance captured interaction effects in most of the simulated scenarios, however, they were masked by marginal effects in other variables. With the permutation importance, the proportion of captured interactions was lower in all cases. Pairwise importance measures performed about equal, with a slight advantage for the joint variable importance method. However, the overall fraction of detected interactions was low. In almost all scenarios the detection fraction in a model with only marginal effects was larger than in a model with an interaction effect only. Random forests are generally capable of capturing gene-gene interactions, but current variable importance measures are unable to detect them as interactions. In most of the cases, interactions are masked by marginal effects and interactions cannot be differentiated from marginal effects. Consequently, caution is warranted when claiming that random forests uncover interactions.

  4. The influence of an uncertain force environment on reshaping trial-to-trial motor variability.

    PubMed

    Izawa, Jun; Yoshioka, Toshinori; Osu, Rieko

    2014-09-10

    Motor memory is updated to generate ideal movements in a novel environment. When the environment changes every trial randomly, how does the brain incorporate this uncertainty into motor memory? To investigate how the brain adapts to an uncertain environment, we considered a reach adaptation protocol where individuals practiced moving in a force field where a noise was injected. After they had adapted, we measured the trial-to-trial variability in the temporal profiles of the produced hand force. We found that the motor variability was significantly magnified by the adaptation to the random force field. Temporal profiles of the motor variance were significantly dissociable between two different types of random force fields experienced. A model-based analysis suggests that the variability is generated by noise in the gains of the internal model. It further suggests that the trial-to-trial motor variability magnified by the adaptation in a random force field is generated by the uncertainty of the internal model formed in the brain as a result of the adaptation.

  5. Comonotonic bounds on the survival probabilities in the Lee-Carter model for mortality projection

    NASA Astrophysics Data System (ADS)

    Denuit, Michel; Dhaene, Jan

    2007-06-01

    In the Lee-Carter framework, future survival probabilities are random variables with an intricate distribution function. In large homogeneous portfolios of life annuities, value-at-risk or conditional tail expectation of the total yearly payout of the company are approximately equal to the corresponding quantities involving random survival probabilities. This paper aims to derive some bounds in the increasing convex (or stop-loss) sense on these random survival probabilities. These bounds are obtained with the help of comonotonic upper and lower bounds on sums of correlated random variables.

  6. Variance approach for multi-objective linear programming with fuzzy random of objective function coefficients

    NASA Astrophysics Data System (ADS)

    Indarsih, Indrati, Ch. Rini

    2016-02-01

    In this paper, we define variance of the fuzzy random variables through alpha level. We have a theorem that can be used to know that the variance of fuzzy random variables is a fuzzy number. We have a multi-objective linear programming (MOLP) with fuzzy random of objective function coefficients. We will solve the problem by variance approach. The approach transform the MOLP with fuzzy random of objective function coefficients into MOLP with fuzzy of objective function coefficients. By weighted methods, we have linear programming with fuzzy coefficients and we solve by simplex method for fuzzy linear programming.

  7. Exploiting Data Missingness in Bayesian Network Modeling

    NASA Astrophysics Data System (ADS)

    Rodrigues de Morais, Sérgio; Aussem, Alex

    This paper proposes a framework built on the use of Bayesian networks (BN) for representing statistical dependencies between the existing random variables and additional dummy boolean variables, which represent the presence/absence of the respective random variable value. We show how augmenting the BN with these additional variables helps pinpoint the mechanism through which missing data contributes to the classification task. The missing data mechanism is thus explicitly taken into account to predict the class variable using the data at hand. Extensive experiments on synthetic and real-world incomplete data sets reveals that the missingness information improves classification accuracy.

  8. Nonrecurrence and Bell-like inequalities

    NASA Astrophysics Data System (ADS)

    Danforth, Douglas G.

    2017-12-01

    The general class, Λ, of Bell hidden variables is composed of two subclasses ΛR and ΛN such that ΛR⋃ΛN = Λ and ΛR∩ ΛN = {}. The class ΛN is very large and contains random variables whose domain is the continuum, the reals. There are an uncountable infinite number of reals. Every instance of a real random variable is unique. The probability of two instances being equal is zero, exactly zero. ΛN induces sample independence. All correlations are context dependent but not in the usual sense. There is no "spooky action at a distance". Random variables, belonging to ΛN, are independent from one experiment to the next. The existence of the class ΛN makes it impossible to derive any of the standard Bell inequalities used to define quantum entanglement.

  9. Perturbed effects at radiation physics

    NASA Astrophysics Data System (ADS)

    Külahcı, Fatih; Şen, Zekâi

    2013-09-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.

  10. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology

    EPA Science Inventory

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, e...

  11. Benford's law and continuous dependent random variables

    NASA Astrophysics Data System (ADS)

    Becker, Thealexa; Burt, David; Corcoran, Taylor C.; Greaves-Tunnell, Alec; Iafrate, Joseph R.; Jing, Joy; Miller, Steven J.; Porfilio, Jaclyn D.; Ronan, Ryan; Samranvedhya, Jirapat; Strauch, Frederick W.; Talbut, Blaine

    2018-01-01

    Many mathematical, man-made and natural systems exhibit a leading-digit bias, where a first digit (base 10) of 1 occurs not 11% of the time, as one would expect if all digits were equally likely, but rather 30%. This phenomenon is known as Benford's Law. Analyzing which datasets adhere to Benford's Law and how quickly Benford behavior sets in are the two most important problems in the field. Most previous work studied systems of independent random variables, and relied on the independence in their analyses. Inspired by natural processes such as particle decay, we study the dependent random variables that emerge from models of decomposition of conserved quantities. We prove that in many instances the distribution of lengths of the resulting pieces converges to Benford behavior as the number of divisions grow, and give several conjectures for other fragmentation processes. The main difficulty is that the resulting random variables are dependent. We handle this by using tools from Fourier analysis and irrationality exponents to obtain quantified convergence rates as well as introducing and developing techniques to measure and control the dependencies. The construction of these tools is one of the major motivations of this work, as our approach can be applied to many other dependent systems. As an example, we show that the n ! entries in the determinant expansions of n × n matrices with entries independently drawn from nice random variables converges to Benford's Law.

  12. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhangjun; Liu, Zenghui

    2018-06-01

    This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.

  13. The living Drake equation of the Tau Zero Foundation

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2011-03-01

    The living Drake equation is our statistical generalization of the Drake equation such that it can take into account any number of factors. This new result opens up the possibility to enrich the equation by inserting more new factors as long as the scientific learning increases. The adjective "Living" refers just to this continuous enrichment of the Drake equation and is the goal of a new research project that the Tau Zero Foundation has entrusted to this author as the discoverer of the statistical Drake equation described hereafter. From a simple product of seven positive numbers, the Drake equation is now turned into the product of seven positive random variables. We call this "the Statistical Drake Equation". The mathematical consequences of this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CLT) of Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of which may be arbitrarily distributed, approaches a Gaussian (i.e. normal) random variable. This is called the Lyapunov form of the CLT, or the Lindeberg form of the CLT, depending on the mathematical constraints assumed on the third moments of the various probability distributions. In conclusion, we show that: The new random variable N, yielding the number of communicating civilizations in the Galaxy, follows the lognormal distribution. Then, the mean value, standard deviation, mode, median and all the moments of this lognormal N can be derived from the means and standard deviations of the seven input random variables. In fact, the seven factors in the ordinary Drake equation now become seven independent positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into our statistical Drake equation by allowing an arbitrary probability distribution for each factor. This is both physically realistic and practically very useful, of course. An application of our statistical Drake equation then follows. The (average) distance between any two neighbouring and communicating civilizations in the Galaxy may be shown to be inversely proportional to the cubic root of N. Then, this distance now becomes a new random variable. We derive the relevant probability density function, apparently previously unknown (dubbed "Maccone distribution" by Paul Davies). Data Enrichment Principle. It should be noticed that any positive number of random variables in the statistical Drake equation is compatible with the CLT. So, our generalization allows for many more factors to be added in the future as long as more refined scientific knowledge about each factor will be known to the scientists. This capability to make room for more future factors in the statistical Drake equation we call the "Data Enrichment Principle", and regard as the key to more profound, future results in Astrobiology and SETI.

  14. A Unifying Probability Example.

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.

    2002-01-01

    Presents an example from probability and statistics that ties together several topics including the mean and variance of a discrete random variable, the binomial distribution and its particular mean and variance, the sum of independent random variables, the mean and variance of the sum, and the central limit theorem. Uses Excel to illustrate these…

  15. Variable selection with random forest: Balancing stability, performance, and interpretation in ecological and environmental modeling

    EPA Science Inventory

    Random forest (RF) is popular in ecological and environmental modeling, in part, because of its insensitivity to correlated predictors and resistance to overfitting. Although variable selection has been proposed to improve both performance and interpretation of RF models, it is u...

  16. The Statistical Drake Equation

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2010-12-01

    We provide the statistical generalization of the Drake equation. From a simple product of seven positive numbers, the Drake equation is now turned into the product of seven positive random variables. We call this "the Statistical Drake Equation". The mathematical consequences of this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CLT) of Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable. This is called the Lyapunov Form of the CLT, or the Lindeberg Form of the CLT, depending on the mathematical constraints assumed on the third moments of the various probability distributions. In conclusion, we show that: The new random variable N, yielding the number of communicating civilizations in the Galaxy, follows the LOGNORMAL distribution. Then, as a consequence, the mean value of this lognormal distribution is the ordinary N in the Drake equation. The standard deviation, mode, and all the moments of this lognormal N are also found. The seven factors in the ordinary Drake equation now become seven positive random variables. The probability distribution of each random variable may be ARBITRARY. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into our statistical Drake equation by allowing an arbitrary probability distribution for each factor. This is both physically realistic and practically very useful, of course. An application of our statistical Drake equation then follows. The (average) DISTANCE between any two neighboring and communicating civilizations in the Galaxy may be shown to be inversely proportional to the cubic root of N. Then, in our approach, this distance becomes a new random variable. We derive the relevant probability density function, apparently previously unknown and dubbed "Maccone distribution" by Paul Davies. DATA ENRICHMENT PRINCIPLE. It should be noticed that ANY positive number of random variables in the Statistical Drake Equation is compatible with the CLT. So, our generalization allows for many more factors to be added in the future as long as more refined scientific knowledge about each factor will be known to the scientists. This capability to make room for more future factors in the statistical Drake equation, we call the "Data Enrichment Principle," and we regard it as the key to more profound future results in the fields of Astrobiology and SETI. Finally, a practical example is given of how our statistical Drake equation works numerically. We work out in detail the case, where each of the seven random variables is uniformly distributed around its own mean value and has a given standard deviation. For instance, the number of stars in the Galaxy is assumed to be uniformly distributed around (say) 350 billions with a standard deviation of (say) 1 billion. Then, the resulting lognormal distribution of N is computed numerically by virtue of a MathCad file that the author has written. This shows that the mean value of the lognormal random variable N is actually of the same order as the classical N given by the ordinary Drake equation, as one might expect from a good statistical generalization.

  17. Random effects coefficient of determination for mixed and meta-analysis models

    PubMed Central

    Demidenko, Eugene; Sargent, James; Onega, Tracy

    2011-01-01

    The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, Rr2, that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If Rr2 is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of Rr2 apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects—the model can be estimated using the dummy variable approach. We derive explicit formulas for Rr2 in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine. PMID:23750070

  18. Correlated resistive/capacitive state variability in solid TiO2 based memory devices

    NASA Astrophysics Data System (ADS)

    Li, Qingjiang; Salaoru, Iulia; Khiat, Ali; Xu, Hui; Prodromakis, Themistoklis

    2017-05-01

    In this work, we experimentally demonstrated the correlated resistive/capacitive switching and state variability in practical TiO2 based memory devices. Based on filamentary functional mechanism, we argue that the impedance state variability stems from the randomly distributed defects inside the oxide bulk. Finally, our assumption was verified via a current percolation circuit model, by taking into account of random defects distribution and coexistence of memristor and memcapacitor.

  19. Algebraic Functions of H-Functions with Specific Dependency Structure.

    DTIC Science & Technology

    1984-05-01

    a study of its characteristic function. Such analysis is reproduced in books by Springer (17), Anderson (23), Feller (34,35), Mood and Graybill (52...following linearity property for expectations of jointly distributed random variables is derived. r 1 Theorem 1.1: If X and Y are real random variables...appear in American Journal of Mathematical and Management Science. 13. Mathai, A.M., and R.K. Saxena, "On linear combinations of stochastic variables

  20. The Statistical Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    In this paper is provided the statistical generalization of the Fermi paradox. The statistics of habitable planets may be based on a set of ten (and possibly more) astrobiological requirements first pointed out by Stephen H. Dole in his book Habitable planets for man (1964). The statistical generalization of the original and by now too simplistic Dole equation is provided by replacing a product of ten positive numbers by the product of ten positive random variables. This is denoted the SEH, an acronym standing for “Statistical Equation for Habitables”. The proof in this paper is based on the Central Limit Theorem (CLT) of Statistics, stating that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable (Lyapunov form of the CLT). It is then shown that: 1. The new random variable NHab, yielding the number of habitables (i.e. habitable planets) in the Galaxy, follows the log- normal distribution. By construction, the mean value of this log-normal distribution is the total number of habitable planets as given by the statistical Dole equation. 2. The ten (or more) astrobiological factors are now positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into the SEH by allowing an arbitrary probability distribution for each factor. This is both astrobiologically realistic and useful for any further investigations. 3. By applying the SEH it is shown that the (average) distance between any two nearby habitable planets in the Galaxy may be shown to be inversely proportional to the cubic root of NHab. This distance is denoted by new random variable D. The relevant probability density function is derived, which was named the "Maccone distribution" by Paul Davies in 2008. 4. A practical example is then given of how the SEH works numerically. Each of the ten random variables is uniformly distributed around its own mean value as given by Dole (1964) and a standard deviation of 10% is assumed. The conclusion is that the average number of habitable planets in the Galaxy should be around 100 million ±200 million, and the average distance in between any two nearby habitable planets should be about 88 light years ±40 light years. 5. The SEH results are matched against the results of the Statistical Drake Equation from reference 4. As expected, the number of currently communicating ET civilizations in the Galaxy turns out to be much smaller than the number of habitable planets (about 10,000 against 100 million, i.e. one ET civilization out of 10,000 habitable planets). The average distance between any two nearby habitable planets is much smaller that the average distance between any two neighbouring ET civilizations: 88 light years vs. 2000 light years, respectively. This means an ET average distance about 20 times higher than the average distance between any pair of adjacent habitable planets. 6. Finally, a statistical model of the Fermi Paradox is derived by applying the above results to the coral expansion model of Galactic colonization. The symbolic manipulator "Macsyma" is used to solve these difficult equations. A new random variable Tcol, representing the time needed to colonize a new planet is introduced, which follows the lognormal distribution, Then the new quotient random variable Tcol/D is studied and its probability density function is derived by Macsyma. Finally a linear transformation of random variables yields the overall time TGalaxy needed to colonize the whole Galaxy. We believe that our mathematical work in deriving this STATISTICAL Fermi Paradox is highly innovative and fruitful for the future.

  1. On the distribution of a product of N Gaussian random variables

    NASA Astrophysics Data System (ADS)

    Stojanac, Željka; Suess, Daniel; Kliesch, Martin

    2017-08-01

    The product of Gaussian random variables appears naturally in many applications in probability theory and statistics. It has been known that the distribution of a product of N such variables can be expressed in terms of a Meijer G-function. Here, we compute a similar representation for the corresponding cumulative distribution function (CDF) and provide a power-log series expansion of the CDF based on the theory of the more general Fox H-functions. Numerical computations show that for small values of the argument the CDF of products of Gaussians is well approximated by the lowest orders of this expansion. Analogous results are also shown for the absolute value as well as the square of such products of N Gaussian random variables. For the latter two settings, we also compute the moment generating functions in terms of Meijer G-functions.

  2. Random parameter models for accident prediction on two-lane undivided highways in India.

    PubMed

    Dinu, R R; Veeraragavan, A

    2011-02-01

    Generalized linear modeling (GLM), with the assumption of Poisson or negative binomial error structure, has been widely employed in road accident modeling. A number of explanatory variables related to traffic, road geometry, and environment that contribute to accident occurrence have been identified and accident prediction models have been proposed. The accident prediction models reported in literature largely employ the fixed parameter modeling approach, where the magnitude of influence of an explanatory variable is considered to be fixed for any observation in the population. Similar models have been proposed for Indian highways too, which include additional variables representing traffic composition. The mixed traffic on Indian highways comes with a lot of variability within, ranging from difference in vehicle types to variability in driver behavior. This could result in variability in the effect of explanatory variables on accidents across locations. Random parameter models, which can capture some of such variability, are expected to be more appropriate for the Indian situation. The present study is an attempt to employ random parameter modeling for accident prediction on two-lane undivided rural highways in India. Three years of accident history, from nearly 200 km of highway segments, is used to calibrate and validate the models. The results of the analysis suggest that the model coefficients for traffic volume, proportion of cars, motorized two-wheelers and trucks in traffic, and driveway density and horizontal and vertical curvatures are randomly distributed across locations. The paper is concluded with a discussion on modeling results and the limitations of the present study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Bias, Confounding, and Interaction: Lions and Tigers, and Bears, Oh My!

    PubMed

    Vetter, Thomas R; Mascha, Edward J

    2017-09-01

    Epidemiologists seek to make a valid inference about the causal effect between an exposure and a disease in a specific population, using representative sample data from a specific population. Clinical researchers likewise seek to make a valid inference about the association between an intervention and outcome(s) in a specific population, based upon their randomly collected, representative sample data. Both do so by using the available data about the sample variable to make a valid estimate about its corresponding or underlying, but unknown population parameter. Random error in an experiment can be due to the natural, periodic fluctuation or variation in the accuracy or precision of virtually any data sampling technique or health measurement tool or scale. In a clinical research study, random error can be due to not only innate human variability but also purely chance. Systematic error in an experiment arises from an innate flaw in the data sampling technique or measurement instrument. In the clinical research setting, systematic error is more commonly referred to as systematic bias. The most commonly encountered types of bias in anesthesia, perioperative, critical care, and pain medicine research include recall bias, observational bias (Hawthorne effect), attrition bias, misclassification or informational bias, and selection bias. A confounding variable is a factor associated with both the exposure of interest and the outcome of interest. A confounding variable (confounding factor or confounder) is a variable that correlates (positively or negatively) with both the exposure and outcome. Confounding is typically not an issue in a randomized trial because the randomized groups are sufficiently balanced on all potential confounding variables, both observed and nonobserved. However, confounding can be a major problem with any observational (nonrandomized) study. Ignoring confounding in an observational study will often result in a "distorted" or incorrect estimate of the association or treatment effect. Interaction among variables, also known as effect modification, exists when the effect of 1 explanatory variable on the outcome depends on the particular level or value of another explanatory variable. Bias and confounding are common potential explanations for statistically significant associations between exposure and outcome when the true relationship is noncausal. Understanding interactions is vital to proper interpretation of treatment effects. These complex concepts should be consistently and appropriately considered whenever one is not only designing but also analyzing and interpreting data from a randomized trial or observational study.

  4. Random dopant fluctuations and statistical variability in n-channel junctionless FETs

    NASA Astrophysics Data System (ADS)

    Akhavan, N. D.; Umana-Membreno, G. A.; Gu, R.; Antoszewski, J.; Faraone, L.

    2018-01-01

    The influence of random dopant fluctuations on the statistical variability of the electrical characteristics of n-channel silicon junctionless nanowire transistor (JNT) has been studied using three dimensional quantum simulations based on the non-equilibrium Green’s function (NEGF) formalism. Average randomly distributed body doping densities of 2 × 1019, 6 × 1019 and 1 × 1020 cm-3 have been considered employing an atomistic model for JNTs with gate lengths of 5, 10 and 15 nm. We demonstrate that by properly adjusting the doping density in the JNT, a near ideal statistical variability and electrical performance can be achieved, which can pave the way for the continuation of scaling in silicon CMOS technology.

  5. Measures of Residual Risk with Connections to Regression, Risk Tracking, Surrogate Models, and Ambiguity

    DTIC Science & Technology

    2015-04-15

    manage , predict, and mitigate the risk in the original variable. Residual risk can be exemplified as a quantification of the improved... the random variable of interest is viewed in concert with a related random vector that helps to manage , predict, and mitigate the risk in the original... manage , predict and mitigate the risk in the original variable. Residual risk can be exemplified as a quantification of the improved situation faced

  6. Sums and Products of Jointly Distributed Random Variables: A Simplified Approach

    ERIC Educational Resources Information Center

    Stein, Sheldon H.

    2005-01-01

    Three basic theorems concerning expected values and variances of sums and products of random variables play an important role in mathematical statistics and its applications in education, business, the social sciences, and the natural sciences. A solid understanding of these theorems requires that students be familiar with the proofs of these…

  7. A Strategy to Use Soft Data Effectively in Randomized Controlled Clinical Trials.

    ERIC Educational Resources Information Center

    Kraemer, Helena Chmura; Thiemann, Sue

    1989-01-01

    Sees soft data, measures having substantial intrasubject variability due to errors of measurement or response inconsistency, as important measures of response in randomized clinical trials. Shows that using intensive design and slope of response on time as outcome measure maximizes sample retention and decreases within-group variability, thus…

  8. Statistical Analysis for Multisite Trials Using Instrumental Variables with Random Coefficients

    ERIC Educational Resources Information Center

    Raudenbush, Stephen W.; Reardon, Sean F.; Nomi, Takako

    2012-01-01

    Multisite trials can clarify the average impact of a new program and the heterogeneity of impacts across sites. Unfortunately, in many applications, compliance with treatment assignment is imperfect. For these applications, we propose an instrumental variable (IV) model with person-specific and site-specific random coefficients. Site-specific IV…

  9. Bayesian approach to non-Gaussian field statistics for diffusive broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2005-11-01

    We develop a closed-form expression for the probability distribution function for the field components of a diffusive broadband wave propagating through a random medium. We consider each spectral component to provide an individual observation of a random variable, the configurationally averaged spectral intensity. Since the intensity determines the variance of the field distribution at each frequency, this random variable serves as the Bayesian prior that determines the form of the non-Gaussian field statistics. This model agrees well with experimental results.

  10. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 1. Theory

    NASA Astrophysics Data System (ADS)

    Graham, Wendy D.; Tankersley, Claude D.

    1994-05-01

    Stochastic methods are used to analyze two-dimensional steady groundwater flow subject to spatially variable recharge and transmissivity. Approximate partial differential equations are developed for the covariances and cross-covariances between the random head, transmissivity and recharge fields. Closed-form solutions of these equations are obtained using Fourier transform techniques. The resulting covariances and cross-covariances can be incorporated into a Bayesian conditioning procedure which provides optimal estimates of the recharge, transmissivity and head fields given available measurements of any or all of these random fields. Results show that head measurements contain valuable information for estimating the random recharge field. However, when recharge is treated as a spatially variable random field, the value of head measurements for estimating the transmissivity field can be reduced considerably. In a companion paper, the method is applied to a case study of the Upper Floridan Aquifer in NE Florida.

  11. Random Effects: Variance Is the Spice of Life.

    PubMed

    Jupiter, Daniel C

    Covariates in regression analyses allow us to understand how independent variables of interest impact our dependent outcome variable. Often, we consider fixed effects covariates (e.g., gender or diabetes status) for which we examine subjects at each value of the covariate. We examine both men and women and, within each gender, examine both diabetic and nondiabetic patients. Occasionally, however, we consider random effects covariates for which we do not examine subjects at every value. For example, we examine patients from only a sample of hospitals and, within each hospital, examine both diabetic and nondiabetic patients. The random sampling of hospitals is in contrast to the complete coverage of all genders. In this column I explore the differences in meaning and analysis when thinking about fixed and random effects variables. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Sampling Strategies for Evaluating the Rate of Adventitious Transgene Presence in Non-Genetically Modified Crop Fields.

    PubMed

    Makowski, David; Bancal, Rémi; Bensadoun, Arnaud; Monod, Hervé; Messéan, Antoine

    2017-09-01

    According to E.U. regulations, the maximum allowable rate of adventitious transgene presence in non-genetically modified (GM) crops is 0.9%. We compared four sampling methods for the detection of transgenic material in agricultural non-GM maize fields: random sampling, stratified sampling, random sampling + ratio reweighting, random sampling + regression reweighting. Random sampling involves simply sampling maize grains from different locations selected at random from the field concerned. The stratified and reweighting sampling methods make use of an auxiliary variable corresponding to the output of a gene-flow model (a zero-inflated Poisson model) simulating cross-pollination as a function of wind speed, wind direction, and distance to the closest GM maize field. With the stratified sampling method, an auxiliary variable is used to define several strata with contrasting transgene presence rates, and grains are then sampled at random from each stratum. With the two methods involving reweighting, grains are first sampled at random from various locations within the field, and the observations are then reweighted according to the auxiliary variable. Data collected from three maize fields were used to compare the four sampling methods, and the results were used to determine the extent to which transgene presence rate estimation was improved by the use of stratified and reweighting sampling methods. We found that transgene rate estimates were more accurate and that substantially smaller samples could be used with sampling strategies based on an auxiliary variable derived from a gene-flow model. © 2017 Society for Risk Analysis.

  13. Random variable transformation for generalized stochastic radiative transfer in finite participating slab media

    NASA Astrophysics Data System (ADS)

    El-Wakil, S. A.; Sallah, M.; El-Hanbaly, A. M.

    2015-10-01

    The stochastic radiative transfer problem is studied in a participating planar finite continuously fluctuating medium. The problem is considered for specular- and diffusly-reflecting boundaries with linear anisotropic scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions, that are represented by the probability-density function (PDF) of the solution process. In the RVT algorithm, a simple integral transformation to the input stochastic process (the extinction function of the medium) is applied. This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the transport equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity and transmissivity at the medium boundaries. In terms of the average reflectivity and transmissivity, the average of the partial heat fluxes for the generalized problem with internal source of radiation are obtained and represented graphically.

  14. Image discrimination models predict detection in fixed but not random noise

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J. Jr; Beard, B. L.; Watson, A. B. (Principal Investigator)

    1997-01-01

    By means of a two-interval forced-choice procedure, contrast detection thresholds for an aircraft positioned on a simulated airport runway scene were measured with fixed and random white-noise masks. The term fixed noise refers to a constant, or unchanging, noise pattern for each stimulus presentation. The random noise was either the same or different in the two intervals. Contrary to simple image discrimination model predictions, the same random noise condition produced greater masking than the fixed noise. This suggests that observers seem unable to hold a new noisy image for comparison. Also, performance appeared limited by internal process variability rather than by external noise variability, since similar masking was obtained for both random noise types.

  15. Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MICE: A CALIBER Study

    PubMed Central

    Shah, Anoop D.; Bartlett, Jonathan W.; Carpenter, James; Nicholas, Owen; Hemingway, Harry

    2014-01-01

    Multivariate imputation by chained equations (MICE) is commonly used for imputing missing data in epidemiologic research. The “true” imputation model may contain nonlinearities which are not included in default imputation models. Random forest imputation is a machine learning technique which can accommodate nonlinearities and interactions and does not require a particular regression model to be specified. We compared parametric MICE with a random forest-based MICE algorithm in 2 simulation studies. The first study used 1,000 random samples of 2,000 persons drawn from the 10,128 stable angina patients in the CALIBER database (Cardiovascular Disease Research using Linked Bespoke Studies and Electronic Records; 2001–2010) with complete data on all covariates. Variables were artificially made “missing at random,” and the bias and efficiency of parameter estimates obtained using different imputation methods were compared. Both MICE methods produced unbiased estimates of (log) hazard ratios, but random forest was more efficient and produced narrower confidence intervals. The second study used simulated data in which the partially observed variable depended on the fully observed variables in a nonlinear way. Parameter estimates were less biased using random forest MICE, and confidence interval coverage was better. This suggests that random forest imputation may be useful for imputing complex epidemiologic data sets in which some patients have missing data. PMID:24589914

  16. Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study.

    PubMed

    Shah, Anoop D; Bartlett, Jonathan W; Carpenter, James; Nicholas, Owen; Hemingway, Harry

    2014-03-15

    Multivariate imputation by chained equations (MICE) is commonly used for imputing missing data in epidemiologic research. The "true" imputation model may contain nonlinearities which are not included in default imputation models. Random forest imputation is a machine learning technique which can accommodate nonlinearities and interactions and does not require a particular regression model to be specified. We compared parametric MICE with a random forest-based MICE algorithm in 2 simulation studies. The first study used 1,000 random samples of 2,000 persons drawn from the 10,128 stable angina patients in the CALIBER database (Cardiovascular Disease Research using Linked Bespoke Studies and Electronic Records; 2001-2010) with complete data on all covariates. Variables were artificially made "missing at random," and the bias and efficiency of parameter estimates obtained using different imputation methods were compared. Both MICE methods produced unbiased estimates of (log) hazard ratios, but random forest was more efficient and produced narrower confidence intervals. The second study used simulated data in which the partially observed variable depended on the fully observed variables in a nonlinear way. Parameter estimates were less biased using random forest MICE, and confidence interval coverage was better. This suggests that random forest imputation may be useful for imputing complex epidemiologic data sets in which some patients have missing data.

  17. "Congratulations, you have been randomized into the control group!(?)": issues to consider when recruiting schools for matched-pair randomized control trials of prevention programs.

    PubMed

    Ji, Peter; DuBois, David L; Flay, Brian R; Brechling, Vanessa

    2008-03-01

    Recruiting schools into a matched-pair randomized control trial (MP-RCT) to evaluate the efficacy of a school-level prevention program presents challenges for researchers. We considered which of 2 procedures would be most effective for recruiting schools into the study and assigning them to conditions. In 1 procedure (recruit and match/randomize), we would recruit schools and match them prior to randomization, and in the other (match/randomize and recruitment), we would match schools and randomize them prior to recruitment. We considered how each procedure impacted the randomization process and our ability to recruit schools into the study. After implementing the selected procedure, the equivalence of both treatment and control group schools and the participating and nonparticipating schools on school demographic variables was evaluated. We decided on the recruit and match/randomize procedure because we thought it would provide the opportunity to build rapport with the schools and prepare them for the randomization process, thereby increasing the likelihood that they would accept their randomly assigned conditions. Neither the treatment and control group schools nor the participating and nonparticipating schools exhibited statistically significant differences from each other on any of the school demographic variables. Recruitment of schools prior to matching and randomization in an MP-RCT may facilitate the recruitment of schools and thus enhance both the statistical power and the representativeness of study findings. Future research would benefit from the consideration of a broader range of variables (eg, readiness to implement a comprehensive prevention program) both in matching schools and in evaluating their representativeness to nonparticipating schools.

  18. Random effects coefficient of determination for mixed and meta-analysis models.

    PubMed

    Demidenko, Eugene; Sargent, James; Onega, Tracy

    2012-01-01

    The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, [Formula: see text], that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If [Formula: see text] is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of [Formula: see text] apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects-the model can be estimated using the dummy variable approach. We derive explicit formulas for [Formula: see text] in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine.

  19. Random vectors and spatial analysis by geostatistics for geotechnical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, D.S.

    1987-08-01

    Geostatistics is extended to the spatial analysis of vector variables by defining the estimation variance and vector variogram in terms of the magnitude of difference vectors. Many random variables in geotechnology are in vectorial terms rather than scalars, and its structural analysis requires those sample variable interpolations to construct and characterize structural models. A better local estimator will result in greater quality of input models; geostatistics can provide such estimators; kriging estimators. The efficiency of geostatistics for vector variables is demonstrated in a case study of rock joint orientations in geological formations. The positive cross-validation encourages application of geostatistics tomore » spatial analysis of random vectors in geoscience as well as various geotechnical fields including optimum site characterization, rock mechanics for mining and civil structures, cavability analysis of block cavings, petroleum engineering, and hydrologic and hydraulic modelings.« less

  20. Modeling Randomness in Judging Rating Scales with a Random-Effects Rating Scale Model

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Wilson, Mark; Shih, Ching-Lin

    2006-01-01

    This study presents the random-effects rating scale model (RE-RSM) which takes into account randomness in the thresholds over persons by treating them as random-effects and adding a random variable for each threshold in the rating scale model (RSM) (Andrich, 1978). The RE-RSM turns out to be a special case of the multidimensional random…

  1. Randomized trial of intermittent or continuous amnioinfusion for variable decelerations.

    PubMed

    Rinehart, B K; Terrone, D A; Barrow, J H; Isler, C M; Barrilleaux, P S; Roberts, W E

    2000-10-01

    To determine whether continuous or intermittent bolus amnioinfusion is more effective in relieving variable decelerations. Patients with repetitive variable decelerations were randomized to an intermittent bolus or continuous amnioinfusion. The intermittent bolus infusion group received boluses of 500 mL of normal saline, each over 30 minutes, with boluses repeated if variable decelerations recurred. The continuous infusion group received a bolus infusion of 500 mL of normal saline over 30 minutes and then 3 mL per minute until delivery occurred. The ability of the amnioinfusion to abolish variable decelerations was analyzed, as were maternal demographic and pregnancy outcome variables. Power analysis indicated that 64 patients would be required. Thirty-five patients were randomized to intermittent infusion and 30 to continuous infusion. There were no differences between groups in terms of maternal demographics, gestational age, delivery mode, neonatal outcome, median time to resolution of variable decelerations, or the number of times variable decelerations recurred. The median volume infused in the intermittent infusion group (500 mL) was significantly less than that in the continuous infusion group (905 mL, P =.003). Intermittent bolus amnioinfusion is as effective as continuous infusion in relieving variable decelerations in labor. Further investigation is necessary to determine whether either of these techniques is associated with increased occurrence of rare complications such as cord prolapse or uterine rupture.

  2. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  3. Reliability analysis of structures under periodic proof tests in service

    NASA Technical Reports Server (NTRS)

    Yang, J.-N.

    1976-01-01

    A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.

  4. Smooth conditional distribution function and quantiles under random censorship.

    PubMed

    Leconte, Eve; Poiraud-Casanova, Sandrine; Thomas-Agnan, Christine

    2002-09-01

    We consider a nonparametric random design regression model in which the response variable is possibly right censored. The aim of this paper is to estimate the conditional distribution function and the conditional alpha-quantile of the response variable. We restrict attention to the case where the response variable as well as the explanatory variable are unidimensional and continuous. We propose and discuss two classes of estimators which are smooth with respect to the response variable as well as to the covariate. Some simulations demonstrate that the new methods have better mean square error performances than the generalized Kaplan-Meier estimator introduced by Beran (1981) and considered in the literature by Dabrowska (1989, 1992) and Gonzalez-Manteiga and Cadarso-Suarez (1994).

  5. AUTOCLASSIFICATION OF THE VARIABLE 3XMM SOURCES USING THE RANDOM FOREST MACHINE LEARNING ALGORITHM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, Sean A.; Murphy, Tara; Lo, Kitty K., E-mail: s.farrell@physics.usyd.edu.au

    In the current era of large surveys and massive data sets, autoclassification of astrophysical sources using intelligent algorithms is becoming increasingly important. In this paper we present the catalog of variable sources in the Third XMM-Newton Serendipitous Source catalog (3XMM) autoclassified using the Random Forest machine learning algorithm. We used a sample of manually classified variable sources from the second data release of the XMM-Newton catalogs (2XMMi-DR2) to train the classifier, obtaining an accuracy of ∼92%. We also evaluated the effectiveness of identifying spurious detections using a sample of spurious sources, achieving an accuracy of ∼95%. Manual investigation of amore » random sample of classified sources confirmed these accuracy levels and showed that the Random Forest machine learning algorithm is highly effective at automatically classifying 3XMM sources. Here we present the catalog of classified 3XMM variable sources. We also present three previously unidentified unusual sources that were flagged as outlier sources by the algorithm: a new candidate supergiant fast X-ray transient, a 400 s X-ray pulsar, and an eclipsing 5 hr binary system coincident with a known Cepheid.« less

  6. A Probabilistic Design Method Applied to Smart Composite Structures

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1995-01-01

    A probabilistic design method is described and demonstrated using a smart composite wing. Probabilistic structural design incorporates naturally occurring uncertainties including those in constituent (fiber/matrix) material properties, fabrication variables, structure geometry and control-related parameters. Probabilistic sensitivity factors are computed to identify those parameters that have a great influence on a specific structural reliability. Two performance criteria are used to demonstrate this design methodology. The first criterion requires that the actuated angle at the wing tip be bounded by upper and lower limits at a specified reliability. The second criterion requires that the probability of ply damage due to random impact load be smaller than an assigned value. When the relationship between reliability improvement and the sensitivity factors is assessed, the results show that a reduction in the scatter of the random variable with the largest sensitivity factor (absolute value) provides the lowest failure probability. An increase in the mean of the random variable with a negative sensitivity factor will reduce the failure probability. Therefore, the design can be improved by controlling or selecting distribution parameters associated with random variables. This can be implemented during the manufacturing process to obtain maximum benefit with minimum alterations.

  7. Extended q -Gaussian and q -exponential distributions from gamma random variables

    NASA Astrophysics Data System (ADS)

    Budini, Adrián A.

    2015-05-01

    The family of q -Gaussian and q -exponential probability densities fit the statistical behavior of diverse complex self-similar nonequilibrium systems. These distributions, independently of the underlying dynamics, can rigorously be obtained by maximizing Tsallis "nonextensive" entropy under appropriate constraints, as well as from superstatistical models. In this paper we provide an alternative and complementary scheme for deriving these objects. We show that q -Gaussian and q -exponential random variables can always be expressed as a function of two statistically independent gamma random variables with the same scale parameter. Their shape index determines the complexity q parameter. This result also allows us to define an extended family of asymmetric q -Gaussian and modified q -exponential densities, which reduce to the standard ones when the shape parameters are the same. Furthermore, we demonstrate that a simple change of variables always allows relating any of these distributions with a beta stochastic variable. The extended distributions are applied in the statistical description of different complex dynamics such as log-return signals in financial markets and motion of point defects in a fluid flow.

  8. Optimal allocation of testing resources for statistical simulations

    NASA Astrophysics Data System (ADS)

    Quintana, Carolina; Millwater, Harry R.; Singh, Gulshan; Golden, Patrick

    2015-07-01

    Statistical estimates from simulation involve uncertainty caused by the variability in the input random variables due to limited data. Allocating resources to obtain more experimental data of the input variables to better characterize their probability distributions can reduce the variance of statistical estimates. The methodology proposed determines the optimal number of additional experiments required to minimize the variance of the output moments given single or multiple constraints. The method uses multivariate t-distribution and Wishart distribution to generate realizations of the population mean and covariance of the input variables, respectively, given an amount of available data. This method handles independent and correlated random variables. A particle swarm method is used for the optimization. The optimal number of additional experiments per variable depends on the number and variance of the initial data, the influence of the variable in the output function and the cost of each additional experiment. The methodology is demonstrated using a fretting fatigue example.

  9. Evaluating physical habitat and water chemistry data from statewide stream monitoring programs to establish least-impacted conditions in Washington State

    USGS Publications Warehouse

    Wilmoth, Siri K.; Irvine, Kathryn M.; Larson, Chad

    2015-01-01

    Various GIS-generated land-use predictor variables, physical habitat metrics, and water chemistry variables from 75 reference streams and 351 randomly sampled sites throughout Washington State were evaluated for effectiveness at discriminating reference from random sites within level III ecoregions. A combination of multivariate clustering and ordination techniques were used. We describe average observed conditions for a subset of predictor variables as well as proposing statistical criteria for establishing reference conditions for stream habitat in Washington. Using these criteria, we determined whether any of the random sites met expectations for reference condition and whether any of the established reference sites failed to meet expectations for reference condition. Establishing these criteria will set a benchmark from which future data will be compared.

  10. Non-manipulation quantitative designs.

    PubMed

    Rumrill, Phillip D

    2004-01-01

    The article describes non-manipulation quantitative designs of two types, correlational and causal comparative studies. Both of these designs are characterized by the absence of random assignment of research participants to conditions or groups and non-manipulation of the independent variable. Without random selection or manipulation of the independent variable, no attempt is made to draw causal inferences regarding relationships between independent and dependent variables. Nonetheless, non-manipulation studies play an important role in rehabilitation research, as described in this article. Examples from the contemporary rehabilitation literature are included. Copyright 2004 IOS Press

  11. Morinda citrifolia (Noni) as an Anti-Inflammatory Treatment in Women with Primary Dysmenorrhoea: A Randomised Double-Blind Placebo-Controlled Trial.

    PubMed

    Fletcher, H M; Dawkins, J; Rattray, C; Wharfe, G; Reid, M; Gordon-Strachan, G

    2013-01-01

    Introduction. Noni (Morinda citrifolia) has been used for many years as an anti-inflammatory agent. We tested the efficacy of Noni in women with dysmenorrhea. Method. We did a prospective randomized double-blind placebo-controlled trial in 100 university students of 18 years and older over three menstrual cycles. Patients were invited to participate and randomly assigned to receive 400 mg Noni capsules or placebo. They were assessed for baseline demographic variables such as age, parity, and BMI. They were also assessed before and after treatment, for pain, menstrual blood loss, and laboratory variables: ESR, hemoglobin, and packed cell volume. Results. Of the 1027 women screened, 100 eligible women were randomized. Of the women completing the study, 42 women were randomized to Noni and 38 to placebo. There were no significant differences in any of the variables at randomization. There were also no significant differences in mean bleeding score or pain score at randomization. Both bleeding and pain scores gradually improved in both groups as the women were observed over three menstrual cycles; however, the improvement was not significantly different in the Noni group when compared to the controls. Conclusion. Noni did not show a reduction in menstrual pain or bleeding when compared to placebo.

  12. Morinda citrifolia (Noni) as an Anti-Inflammatory Treatment in Women with Primary Dysmenorrhoea: A Randomised Double-Blind Placebo-Controlled Trial

    PubMed Central

    Fletcher, H. M.; Dawkins, J.; Rattray, C.; Wharfe, G.; Reid, M.; Gordon-Strachan, G.

    2013-01-01

    Introduction. Noni (Morinda citrifolia) has been used for many years as an anti-inflammatory agent. We tested the efficacy of Noni in women with dysmenorrhea. Method. We did a prospective randomized double-blind placebo-controlled trial in 100 university students of 18 years and older over three menstrual cycles. Patients were invited to participate and randomly assigned to receive 400 mg Noni capsules or placebo. They were assessed for baseline demographic variables such as age, parity, and BMI. They were also assessed before and after treatment, for pain, menstrual blood loss, and laboratory variables: ESR, hemoglobin, and packed cell volume. Results. Of the 1027 women screened, 100 eligible women were randomized. Of the women completing the study, 42 women were randomized to Noni and 38 to placebo. There were no significant differences in any of the variables at randomization. There were also no significant differences in mean bleeding score or pain score at randomization. Both bleeding and pain scores gradually improved in both groups as the women were observed over three menstrual cycles; however, the improvement was not significantly different in the Noni group when compared to the controls. Conclusion. Noni did not show a reduction in menstrual pain or bleeding when compared to placebo. PMID:23431314

  13. K-Means Algorithm Performance Analysis With Determining The Value Of Starting Centroid With Random And KD-Tree Method

    NASA Astrophysics Data System (ADS)

    Sirait, Kamson; Tulus; Budhiarti Nababan, Erna

    2017-12-01

    Clustering methods that have high accuracy and time efficiency are necessary for the filtering process. One method that has been known and applied in clustering is K-Means Clustering. In its application, the determination of the begining value of the cluster center greatly affects the results of the K-Means algorithm. This research discusses the results of K-Means Clustering with starting centroid determination with a random and KD-Tree method. The initial determination of random centroid on the data set of 1000 student academic data to classify the potentially dropout has a sse value of 952972 for the quality variable and 232.48 for the GPA, whereas the initial centroid determination by KD-Tree has a sse value of 504302 for the quality variable and 214,37 for the GPA variable. The smaller sse values indicate that the result of K-Means Clustering with initial KD-Tree centroid selection have better accuracy than K-Means Clustering method with random initial centorid selection.

  14. Designing management strategies for carbon dioxide storage and utilization under uncertainty using inexact modelling

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Fan, Jie; Xu, Ye; Sun, Wei; Chen, Dong

    2017-06-01

    Effective application of carbon capture, utilization and storage (CCUS) systems could help to alleviate the influence of climate change by reducing carbon dioxide (CO2) emissions. The research objective of this study is to develop an equilibrium chance-constrained programming model with bi-random variables (ECCP model) for supporting the CCUS management system under random circumstances. The major advantage of the ECCP model is that it tackles random variables as bi-random variables with a normal distribution, where the mean values follow a normal distribution. This could avoid irrational assumptions and oversimplifications in the process of parameter design and enrich the theory of stochastic optimization. The ECCP model is solved by an equilibrium change-constrained programming algorithm, which provides convenience for decision makers to rank the solution set using the natural order of real numbers. The ECCP model is applied to a CCUS management problem, and the solutions could be useful in helping managers to design and generate rational CO2-allocation patterns under complexities and uncertainties.

  15. Log-normal distribution from a process that is not multiplicative but is additive.

    PubMed

    Mouri, Hideaki

    2013-10-01

    The central limit theorem ensures that a sum of random variables tends to a Gaussian distribution as their total number tends to infinity. However, for a class of positive random variables, we find that the sum tends faster to a log-normal distribution. Although the sum tends eventually to a Gaussian distribution, the distribution of the sum is always close to a log-normal distribution rather than to any Gaussian distribution if the summands are numerous enough. This is in contrast to the current consensus that any log-normal distribution is due to a product of random variables, i.e., a multiplicative process, or equivalently to nonlinearity of the system. In fact, the log-normal distribution is also observable for a sum, i.e., an additive process that is typical of linear systems. We show conditions for such a sum, an analytical example, and an application to random scalar fields such as those of turbulence.

  16. Variable density randomized stack of spirals (VDR-SoS) for compressive sensing MRI.

    PubMed

    Valvano, Giuseppe; Martini, Nicola; Landini, Luigi; Santarelli, Maria Filomena

    2016-07-01

    To develop a 3D sampling strategy based on a stack of variable density spirals for compressive sensing MRI. A random sampling pattern was obtained by rotating each spiral by a random angle and by delaying for few time steps the gradient waveforms of the different interleaves. A three-dimensional (3D) variable sampling density was obtained by designing different variable density spirals for each slice encoding. The proposed approach was tested with phantom simulations up to a five-fold undersampling factor. Fully sampled 3D dataset of a human knee, and of a human brain, were obtained from a healthy volunteer. The proposed approach was tested with off-line reconstructions of the knee dataset up to a four-fold acceleration and compared with other noncoherent trajectories. The proposed approach outperformed the standard stack of spirals for various undersampling factors. The level of coherence and the reconstruction quality of the proposed approach were similar to those of other trajectories that, however, require 3D gridding for the reconstruction. The variable density randomized stack of spirals (VDR-SoS) is an easily implementable trajectory that could represent a valid sampling strategy for 3D compressive sensing MRI. It guarantees low levels of coherence without requiring 3D gridding. Magn Reson Med 76:59-69, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Random Item IRT Models

    ERIC Educational Resources Information Center

    De Boeck, Paul

    2008-01-01

    It is common practice in IRT to consider items as fixed and persons as random. Both, continuous and categorical person parameters are most often random variables, whereas for items only continuous parameters are used and they are commonly of the fixed type, although exceptions occur. It is shown in the present article that random item parameters…

  18. Is the Non-Dipole Magnetic Field Random?

    NASA Technical Reports Server (NTRS)

    Walker, Andrew D.; Backus, George E.

    1996-01-01

    Statistical modelling of the Earth's magnetic field B has a long history. In particular, the spherical harmonic coefficients of scalar fields derived from B can be treated as Gaussian random variables. In this paper, we give examples of highly organized fields whose spherical harmonic coefficients pass tests for independent Gaussian random variables. The fact that coefficients at some depth may be usefully summarized as independent samples from a normal distribution need not imply that there really is some physical, random process at that depth. In fact, the field can be extremely structured and still be regarded for some purposes as random. In this paper, we examined the radial magnetic field B(sub r) produced by the core, but the results apply to any scalar field on the core-mantle boundary (CMB) which determines B outside the CMB.

  19. Are glucose levels, glucose variability and autonomic control influenced by inspiratory muscle exercise in patients with type 2 diabetes? Study protocol for a randomized controlled trial.

    PubMed

    Schein, Aso; Correa, Aps; Casali, Karina Rabello; Schaan, Beatriz D

    2016-01-20

    Physical exercise reduces glucose levels and glucose variability in patients with type 2 diabetes. Acute inspiratory muscle exercise has been shown to reduce these parameters in a small group of patients with type 2 diabetes, but these results have yet to be confirmed in a well-designed study. The aim of this study is to investigate the effect of acute inspiratory muscle exercise on glucose levels, glucose variability, and cardiovascular autonomic function in patients with type 2 diabetes. This study will use a randomized clinical trial crossover design. A total of 14 subjects will be recruited and randomly allocated to two groups to perform acute inspiratory muscle loading at 2 % of maximal inspiratory pressure (PImax, placebo load) or 60 % of PImax (experimental load). Inspiratory muscle training could be a novel exercise modality to be used to decrease glucose levels and glucose variability. ClinicalTrials.gov NCT02292810 .

  20. An Integrated Probabilistic-Fuzzy Assessment of Uncertainty Associated with Human Health Risk to MSW Landfill Leachate Contamination

    NASA Astrophysics Data System (ADS)

    Mishra, H.; Karmakar, S.; Kumar, R.

    2016-12-01

    Risk assessment will not remain simple when it involves multiple uncertain variables. Uncertainties in risk assessment majorly results from (1) the lack of knowledge of input variable (mostly random), and (2) data obtained from expert judgment or subjective interpretation of available information (non-random). An integrated probabilistic-fuzzy health risk approach has been proposed for simultaneous treatment of random and non-random uncertainties associated with input parameters of health risk model. The LandSim 2.5, a landfill simulator, has been used to simulate the Turbhe landfill (Navi Mumbai, India) activities for various time horizons. Further the LandSim simulated six heavy metals concentration in ground water have been used in the health risk model. The water intake, exposure duration, exposure frequency, bioavailability and average time are treated as fuzzy variables, while the heavy metals concentration and body weight are considered as probabilistic variables. Identical alpha-cut and reliability level are considered for fuzzy and probabilistic variables respectively and further, uncertainty in non-carcinogenic human health risk is estimated using ten thousand Monte-Carlo simulations (MCS). This is the first effort in which all the health risk variables have been considered as non-deterministic for the estimation of uncertainty in risk output. The non-exceedance probability of Hazard Index (HI), summation of hazard quotients, of heavy metals of Co, Cu, Mn, Ni, Zn and Fe for male and female population have been quantified and found to be high (HI>1) for all the considered time horizon, which evidently shows possibility of adverse health effects on the population residing near Turbhe landfill.

  1. Optimizing a Sensor Network with Data from Hazard Mapping Demonstrated in a Heavy-Vehicle Manufacturing Facility.

    PubMed

    Berman, Jesse D; Peters, Thomas M; Koehler, Kirsten A

    2018-05-28

    To design a method that uses preliminary hazard mapping data to optimize the number and location of sensors within a network for a long-term assessment of occupational concentrations, while preserving temporal variability, accuracy, and precision of predicted hazards. Particle number concentrations (PNCs) and respirable mass concentrations (RMCs) were measured with direct-reading instruments in a large heavy-vehicle manufacturing facility at 80-82 locations during 7 mapping events, stratified by day and season. Using kriged hazard mapping, a statistical approach identified optimal orders for removing locations to capture temporal variability and high prediction precision of PNC and RMC concentrations. We compared optimal-removal, random-removal, and least-optimal-removal orders to bound prediction performance. The temporal variability of PNC was found to be higher than RMC with low correlation between the two particulate metrics (ρ = 0.30). Optimal-removal orders resulted in more accurate PNC kriged estimates (root mean square error [RMSE] = 49.2) at sample locations compared with random-removal order (RMSE = 55.7). For estimates at locations having concentrations in the upper 10th percentile, the optimal-removal order preserved average estimated concentrations better than random- or least-optimal-removal orders (P < 0.01). However, estimated average concentrations using an optimal-removal were not statistically different than random-removal when averaged over the entire facility. No statistical difference was observed for optimal- and random-removal methods for RMCs that were less variable in time and space than PNCs. Optimized removal performed better than random-removal in preserving high temporal variability and accuracy of hazard map for PNC, but not for the more spatially homogeneous RMC. These results can be used to reduce the number of locations used in a network of static sensors for long-term monitoring of hazards in the workplace, without sacrificing prediction performance.

  2. Variable Selection in the Presence of Missing Data: Imputation-based Methods.

    PubMed

    Zhao, Yize; Long, Qi

    2017-01-01

    Variable selection plays an essential role in regression analysis as it identifies important variables that associated with outcomes and is known to improve predictive accuracy of resulting models. Variable selection methods have been widely investigated for fully observed data. However, in the presence of missing data, methods for variable selection need to be carefully designed to account for missing data mechanisms and statistical techniques used for handling missing data. Since imputation is arguably the most popular method for handling missing data due to its ease of use, statistical methods for variable selection that are combined with imputation are of particular interest. These methods, valid used under the assumptions of missing at random (MAR) and missing completely at random (MCAR), largely fall into three general strategies. The first strategy applies existing variable selection methods to each imputed dataset and then combine variable selection results across all imputed datasets. The second strategy applies existing variable selection methods to stacked imputed datasets. The third variable selection strategy combines resampling techniques such as bootstrap with imputation. Despite recent advances, this area remains under-developed and offers fertile ground for further research.

  3. Observational studies of patients in the emergency department: a comparison of 4 sampling methods.

    PubMed

    Valley, Morgan A; Heard, Kennon J; Ginde, Adit A; Lezotte, Dennis C; Lowenstein, Steven R

    2012-08-01

    We evaluate the ability of 4 sampling methods to generate representative samples of the emergency department (ED) population. We analyzed the electronic records of 21,662 consecutive patient visits at an urban, academic ED. From this population, we simulated different models of study recruitment in the ED by using 2 sample sizes (n=200 and n=400) and 4 sampling methods: true random, random 4-hour time blocks by exact sample size, random 4-hour time blocks by a predetermined number of blocks, and convenience or "business hours." For each method and sample size, we obtained 1,000 samples from the population. Using χ(2) tests, we measured the number of statistically significant differences between the sample and the population for 8 variables (age, sex, race/ethnicity, language, triage acuity, arrival mode, disposition, and payer source). Then, for each variable, method, and sample size, we compared the proportion of the 1,000 samples that differed from the overall ED population to the expected proportion (5%). Only the true random samples represented the population with respect to sex, race/ethnicity, triage acuity, mode of arrival, language, and payer source in at least 95% of the samples. Patient samples obtained using random 4-hour time blocks and business hours sampling systematically differed from the overall ED patient population for several important demographic and clinical variables. However, the magnitude of these differences was not large. Common sampling strategies selected for ED-based studies may affect parameter estimates for several representative population variables. However, the potential for bias for these variables appears small. Copyright © 2012. Published by Mosby, Inc.

  4. Key-Generation Algorithms for Linear Piece In Hand Matrix Method

    NASA Astrophysics Data System (ADS)

    Tadaki, Kohtaro; Tsujii, Shigeo

    The linear Piece In Hand (PH, for short) matrix method with random variables was proposed in our former work. It is a general prescription which can be applicable to any type of multivariate public-key cryptosystems for the purpose of enhancing their security. Actually, we showed, in an experimental manner, that the linear PH matrix method with random variables can certainly enhance the security of HFE against the Gröbner basis attack, where HFE is one of the major variants of multivariate public-key cryptosystems. In 1998 Patarin, Goubin, and Courtois introduced the plus method as a general prescription which aims to enhance the security of any given MPKC, just like the linear PH matrix method with random variables. In this paper we prove the equivalence between the plus method and the primitive linear PH matrix method, which is introduced by our previous work to explain the notion of the PH matrix method in general in an illustrative manner and not for a practical use to enhance the security of any given MPKC. Based on this equivalence, we show that the linear PH matrix method with random variables has the substantial advantage over the plus method with respect to the security enhancement. In the linear PH matrix method with random variables, the three matrices, including the PH matrix, play a central role in the secret-key and public-key. In this paper, we clarify how to generate these matrices and thus present two probabilistic polynomial-time algorithms to generate these matrices. In particular, the second one has a concise form, and is obtained as a byproduct of the proof of the equivalence between the plus method and the primitive linear PH matrix method.

  5. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial.

    PubMed

    Spieth, Peter M; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo

    2014-05-02

    General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventilation. The PROtective VARiable ventilation trial ('PROVAR') is a single center, randomized controlled trial enrolling 50 patients who are planning for open abdominal surgery expected to last longer than 3 hours. PROVAR compares conventional (non-variable) lung protective ventilation (CV) with variable lung protective ventilation (VV) regarding pulmonary function and inflammatory response. The primary endpoint of the study is the forced vital capacity on the first postoperative day. Secondary endpoints include further lung function tests, plasma cytokine levels, spatial distribution of ventilation assessed by means of electrical impedance tomography and postoperative pulmonary complications. We hypothesize that VV improves lung function and reduces systemic inflammatory response compared to CV in patients receiving mechanical ventilation during general anesthesia for open abdominal surgery longer than 3 hours. PROVAR is the first randomized controlled trial aiming at intra- and postoperative effects of VV on lung function. This study may help to define the role of VV during general anesthesia requiring mechanical ventilation. Clinicaltrials.gov NCT01683578 (registered on September 3 3012).

  6. A Random Variable Transformation Process.

    ERIC Educational Resources Information Center

    Scheuermann, Larry

    1989-01-01

    Provides a short BASIC program, RANVAR, which generates random variates for various theoretical probability distributions. The seven variates include: uniform, exponential, normal, binomial, Poisson, Pascal, and triangular. (MVL)

  7. A Cautious Note on Auxiliary Variables That Can Increase Bias in Missing Data Problems.

    PubMed

    Thoemmes, Felix; Rose, Norman

    2014-01-01

    The treatment of missing data in the social sciences has changed tremendously during the last decade. Modern missing data techniques such as multiple imputation and full-information maximum likelihood are used much more frequently. These methods assume that data are missing at random. One very common approach to increase the likelihood that missing at random is achieved consists of including many covariates as so-called auxiliary variables. These variables are either included based on data considerations or in an inclusive fashion; that is, taking all available auxiliary variables. In this article, we point out that there are some instances in which auxiliary variables exhibit the surprising property of increasing bias in missing data problems. In a series of focused simulation studies, we highlight some situations in which this type of biasing behavior can occur. We briefly discuss possible ways how one can avoid selecting bias-inducing covariates as auxiliary variables.

  8. Detecting Random, Partially Random, and Nonrandom Minnesota Multiphasic Personality Inventory-2 Protocols

    ERIC Educational Resources Information Center

    Pinsoneault, Terry B.

    2007-01-01

    The ability of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; J. N. Butcher et al., 2001) validity scales to detect random, partially random, and nonrandom MMPI-2 protocols was investigated. Investigations included the Variable Response Inconsistency scale (VRIN), F, several potentially useful new F and VRIN subscales, and F-sub(b) - F…

  9. Uncertainty in Random Forests: What does it mean in a spatial context?

    NASA Astrophysics Data System (ADS)

    Klump, Jens; Fouedjio, Francky

    2017-04-01

    Geochemical surveys are an important part of exploration for mineral resources and in environmental studies. The samples and chemical analyses are often laborious and difficult to obtain and therefore come at a high cost. As a consequence, these surveys are characterised by datasets with large numbers of variables but relatively few data points when compared to conventional big data problems. With more remote sensing platforms and sensor networks being deployed, large volumes of auxiliary data of the surveyed areas are becoming available. The use of these auxiliary data has the potential to improve the prediction of chemical element concentrations over the whole study area. Kriging is a well established geostatistical method for the prediction of spatial data but requires significant pre-processing and makes some basic assumptions about the underlying distribution of the data. Some machine learning algorithms, on the other hand, may require less data pre-processing and are non-parametric. In this study we used a dataset provided by Kirkwood et al. [1] to explore the potential use of Random Forest in geochemical mapping. We chose Random Forest because it is a well understood machine learning method and has the advantage that it provides us with a measure of uncertainty. By comparing Random Forest to Kriging we found that both methods produced comparable maps of estimated values for our variables of interest. Kriging outperformed Random Forest for variables of interest with relatively strong spatial correlation. The measure of uncertainty provided by Random Forest seems to be quite different to the measure of uncertainty provided by Kriging. In particular, the lack of spatial context can give misleading results in areas without ground truth data. In conclusion, our preliminary results show that the model driven approach in geostatistics gives us more reliable estimates for our target variables than Random Forest for variables with relatively strong spatial correlation. However, in cases of weak spatial correlation Random Forest, as a nonparametric method, may give the better results once we have a better understanding of the meaning of its uncertainty measures in a spatial context. References [1] Kirkwood, C., M. Cave, D. Beamish, S. Grebby, and A. Ferreira (2016), A machine learning approach to geochemical mapping, Journal of Geochemical Exploration, 163, 28-40, doi:10.1016/j.gexplo.2016.05.003.

  10. Reliability Overhaul Model

    DTIC Science & Technology

    1989-08-01

    Random variables for the conditional exponential distribution are generated using the inverse transform method. C1) Generate U - UCO,i) (2) Set s - A ln...e - [(x+s - 7)/ n] 0 + [Cx-T)/n]0 c. Random variables from the conditional weibull distribution are generated using the inverse transform method. C1...using a standard normal transformation and the inverse transform method. B - 3 APPENDIX 3 DISTRIBUTIONS SUPPORTED BY THE MODEL (1) Generate Y - PCX S

  11. Performance of DS/SSMA (Direct-Sequence Spread-Spectrum Multiple-Access) Communications in Impulsive Channels.

    DTIC Science & Technology

    1986-11-01

    mother and my brother. Their support and encouragement made this research exciting and enjoyable. I am grateful to my advisor, Professor H. Vincent Poor...the model. The m! M A variance of a random variable with density given by (A. 1) is a2 KmC 2 2A(I+l’)• (A.2) With the variance of the random variable

  12. A New Approach to Extreme Value Estimation Applicable to a Wide Variety of Random Variables

    NASA Technical Reports Server (NTRS)

    Holland, Frederic A., Jr.

    1997-01-01

    Designing reliable structures requires an estimate of the maximum and minimum values (i.e., strength and load) that may be encountered in service. Yet designs based on very extreme values (to insure safety) can result in extra material usage and hence, uneconomic systems. In aerospace applications, severe over-design cannot be tolerated making it almost mandatory to design closer to the assumed limits of the design random variables. The issue then is predicting extreme values that are practical, i.e. neither too conservative or non-conservative. Obtaining design values by employing safety factors is well known to often result in overly conservative designs and. Safety factor values have historically been selected rather arbitrarily, often lacking a sound rational basis. To answer the question of how safe a design needs to be has lead design theorists to probabilistic and statistical methods. The so-called three-sigma approach is one such method and has been described as the first step in utilizing information about the data dispersion. However, this method is based on the assumption that the random variable is dispersed symmetrically about the mean and is essentially limited to normally distributed random variables. Use of this method can therefore result in unsafe or overly conservative design allowables if the common assumption of normality is incorrect.

  13. On Probability Domains IV

    NASA Astrophysics Data System (ADS)

    Frič, Roman; Papčo, Martin

    2017-12-01

    Stressing a categorical approach, we continue our study of fuzzified domains of probability, in which classical random events are replaced by measurable fuzzy random events. In operational probability theory (S. Bugajski) classical random variables are replaced by statistical maps (generalized distribution maps induced by random variables) and in fuzzy probability theory (S. Gudder) the central role is played by observables (maps between probability domains). We show that to each of the two generalized probability theories there corresponds a suitable category and the two resulting categories are dually equivalent. Statistical maps and observables become morphisms. A statistical map can send a degenerated (pure) state to a non-degenerated one —a quantum phenomenon and, dually, an observable can map a crisp random event to a genuine fuzzy random event —a fuzzy phenomenon. The dual equivalence means that the operational probability theory and the fuzzy probability theory coincide and the resulting generalized probability theory has two dual aspects: quantum and fuzzy. We close with some notes on products and coproducts in the dual categories.

  14. Tests of Hypotheses Arising In the Correlated Random Coefficient Model*

    PubMed Central

    Heckman, James J.; Schmierer, Daniel

    2010-01-01

    This paper examines the correlated random coefficient model. It extends the analysis of Swamy (1971), who pioneered the uncorrelated random coefficient model in economics. We develop the properties of the correlated random coefficient model and derive a new representation of the variance of the instrumental variable estimator for that model. We develop tests of the validity of the correlated random coefficient model against the null hypothesis of the uncorrelated random coefficient model. PMID:21170148

  15. Latin Hypercube Sampling (LHS) UNIX Library/Standalone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2004-05-13

    The LHS UNIX Library/Standalone software provides the capability to draw random samples from over 30 distribution types. It performs the sampling by a stratified sampling method called Latin Hypercube Sampling (LHS). Multiple distributions can be sampled simultaneously, with user-specified correlations amongst the input distributions, LHS UNIX Library/ Standalone provides a way to generate multi-variate samples. The LHS samples can be generated either as a callable library (e.g., from within the DAKOTA software framework) or as a standalone capability. LHS UNIX Library/Standalone uses the Latin Hypercube Sampling method (LHS) to generate samples. LHS is a constrained Monte Carlo sampling scheme. Inmore » LHS, the range of each variable is divided into non-overlapping intervals on the basis of equal probability. A sample is selected at random with respect to the probability density in each interval, If multiple variables are sampled simultaneously, then values obtained for each are paired in a random manner with the n values of the other variables. In some cases, the pairing is restricted to obtain specified correlations amongst the input variables. Many simulation codes have input parameters that are uncertain and can be specified by a distribution, To perform uncertainty analysis and sensitivity analysis, random values are drawn from the input parameter distributions, and the simulation is run with these values to obtain output values. If this is done repeatedly, with many input samples drawn, one can build up a distribution of the output as well as examine correlations between input and output variables.« less

  16. Assessing differences in groups randomized by recruitment chain in a respondent-driven sample of Seattle-area injection drug users.

    PubMed

    Burt, Richard D; Thiede, Hanne

    2014-11-01

    Respondent-driven sampling (RDS) is a form of peer-based study recruitment and analysis that incorporates features designed to limit and adjust for biases in traditional snowball sampling. It is being widely used in studies of hidden populations. We report an empirical evaluation of RDS's consistency and variability, comparing groups recruited contemporaneously, by identical methods and using identical survey instruments. We randomized recruitment chains from the RDS-based 2012 National HIV Behavioral Surveillance survey of injection drug users in the Seattle area into two groups and compared them in terms of sociodemographic characteristics, drug-associated risk behaviors, sexual risk behaviors, human immunodeficiency virus (HIV) status and HIV testing frequency. The two groups differed in five of the 18 variables examined (P ≤ .001): race (e.g., 60% white vs. 47%), gender (52% male vs. 67%), area of residence (32% downtown Seattle vs. 44%), an HIV test in the previous 12 months (51% vs. 38%). The difference in serologic HIV status was particularly pronounced (4% positive vs. 18%). In four further randomizations, differences in one to five variables attained this level of significance, although the specific variables involved differed. We found some material differences between the randomized groups. Although the variability of the present study was less than has been reported in serial RDS surveys, these findings indicate caution in the interpretation of RDS results. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes

    NASA Astrophysics Data System (ADS)

    Orsingher, Enzo; Polito, Federico

    2012-08-01

    In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.

  18. Ratio index variables or ANCOVA? Fisher's cats revisited.

    PubMed

    Tu, Yu-Kang; Law, Graham R; Ellison, George T H; Gilthorpe, Mark S

    2010-01-01

    Over 60 years ago Ronald Fisher demonstrated a number of potential pitfalls with statistical analyses using ratio variables. Nonetheless, these pitfalls are largely overlooked in contemporary clinical and epidemiological research, which routinely uses ratio variables in statistical analyses. This article aims to demonstrate how very different findings can be generated as a result of less than perfect correlations among the data used to generate ratio variables. These imperfect correlations result from measurement error and random biological variation. While the former can often be reduced by improvements in measurement, random biological variation is difficult to estimate and eliminate in observational studies. Moreover, wherever the underlying biological relationships among epidemiological variables are unclear, and hence the choice of statistical model is also unclear, the different findings generated by different analytical strategies can lead to contradictory conclusions. Caution is therefore required when interpreting analyses of ratio variables whenever the underlying biological relationships among the variables involved are unspecified or unclear. (c) 2009 John Wiley & Sons, Ltd.

  19. Screening large-scale association study data: exploiting interactions using random forests.

    PubMed

    Lunetta, Kathryn L; Hayward, L Brooke; Segal, Jonathan; Van Eerdewegh, Paul

    2004-12-10

    Genome-wide association studies for complex diseases will produce genotypes on hundreds of thousands of single nucleotide polymorphisms (SNPs). A logical first approach to dealing with massive numbers of SNPs is to use some test to screen the SNPs, retaining only those that meet some criterion for further study. For example, SNPs can be ranked by p-value, and those with the lowest p-values retained. When SNPs have large interaction effects but small marginal effects in a population, they are unlikely to be retained when univariate tests are used for screening. However, model-based screens that pre-specify interactions are impractical for data sets with thousands of SNPs. Random forest analysis is an alternative method that produces a single measure of importance for each predictor variable that takes into account interactions among variables without requiring model specification. Interactions increase the importance for the individual interacting variables, making them more likely to be given high importance relative to other variables. We test the performance of random forests as a screening procedure to identify small numbers of risk-associated SNPs from among large numbers of unassociated SNPs using complex disease models with up to 32 loci, incorporating both genetic heterogeneity and multi-locus interaction. Keeping other factors constant, if risk SNPs interact, the random forest importance measure significantly outperforms the Fisher Exact test as a screening tool. As the number of interacting SNPs increases, the improvement in performance of random forest analysis relative to Fisher Exact test for screening also increases. Random forests perform similarly to the univariate Fisher Exact test as a screening tool when SNPs in the analysis do not interact. In the context of large-scale genetic association studies where unknown interactions exist among true risk-associated SNPs or SNPs and environmental covariates, screening SNPs using random forest analyses can significantly reduce the number of SNPs that need to be retained for further study compared to standard univariate screening methods.

  20. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part I: Fundamentals

    NASA Astrophysics Data System (ADS)

    Yan, Wang-Ji; Ren, Wei-Xin

    2016-12-01

    Recent advances in signal processing and structural dynamics have spurred the adoption of transmissibility functions in academia and industry alike. Due to the inherent randomness of measurement and variability of environmental conditions, uncertainty impacts its applications. This study is focused on statistical inference for raw scalar transmissibility functions modeled as complex ratio random variables. The goal is achieved through companion papers. This paper (Part I) is dedicated to dealing with a formal mathematical proof. New theorems on multivariate circularly-symmetric complex normal ratio distribution are proved on the basis of principle of probabilistic transformation of continuous random vectors. The closed-form distributional formulas for multivariate ratios of correlated circularly-symmetric complex normal random variables are analytically derived. Afterwards, several properties are deduced as corollaries and lemmas to the new theorems. Monte Carlo simulation (MCS) is utilized to verify the accuracy of some representative cases. This work lays the mathematical groundwork to find probabilistic models for raw scalar transmissibility functions, which are to be expounded in detail in Part II of this study.

  1. Random variability explains apparent global clustering of large earthquakes

    USGS Publications Warehouse

    Michael, A.J.

    2011-01-01

    The occurrence of 5 Mw ≥ 8.5 earthquakes since 2004 has created a debate over whether or not we are in a global cluster of large earthquakes, temporarily raising risks above long-term levels. I use three classes of statistical tests to determine if the record of M ≥ 7 earthquakes since 1900 can reject a null hypothesis of independent random events with a constant rate plus localized aftershock sequences. The data cannot reject this null hypothesis. Thus, the temporal distribution of large global earthquakes is well-described by a random process, plus localized aftershocks, and apparent clustering is due to random variability. Therefore the risk of future events has not increased, except within ongoing aftershock sequences, and should be estimated from the longest possible record of events.

  2. Probabilistic evaluation of fuselage-type composite structures

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1992-01-01

    A methodology is developed to computationally simulate the uncertain behavior of composite structures. The uncertain behavior includes buckling loads, natural frequencies, displacements, stress/strain etc., which are the consequences of the random variation (scatter) of the primitive (independent random) variables in the constituent, ply, laminate and structural levels. This methodology is implemented in the IPACS (Integrated Probabilistic Assessment of Composite Structures) computer code. A fuselage-type composite structure is analyzed to demonstrate the code's capability. The probability distribution functions of the buckling loads, natural frequency, displacement, strain and stress are computed. The sensitivity of each primitive (independent random) variable to a given structural response is also identified from the analyses.

  3. Bayesian dynamic modeling of time series of dengue disease case counts.

    PubMed

    Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander

    2017-07-01

    The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health.

  4. Financial Management of a Large Multi-site Randomized Clinical Trial

    PubMed Central

    Sheffet, Alice J.; Flaxman, Linda; Tom, MeeLee; Hughes, Susan E.; Longbottom, Mary E.; Howard, Virginia J.; Marler, John R.; Brott, Thomas G.

    2014-01-01

    Background The Carotid Revascularization Endarterectomy versus Stenting Trial (CREST) received five years’ funding ($21,112,866) from the National Institutes of Health to compare carotid stenting to surgery for stroke prevention in 2,500 randomized participants at 40 sites. Aims Herein we evaluate the change in the CREST budget from a fixed to variable-cost model and recommend strategies for the financial management of large-scale clinical trials. Methods Projections of the original grant’s fixed-cost model were compared to the actual costs of the revised variable-cost model. The original grant’s fixed-cost budget included salaries, fringe benefits, and other direct and indirect costs. For the variable-cost model, the costs were actual payments to the clinical sites and core centers based upon actual trial enrollment. We compared annual direct and indirect costs and per-patient cost for both the fixed and variable models. Differences between clinical site and core center expenditures were also calculated. Results Using a variable-cost budget for clinical sites, funding was extended by no-cost extension from five to eight years. Randomizing sites tripled from 34 to 109. Of the 2,500 targeted sample size, 138 (5.5%) were randomized during the first five years and 1,387 (55.5%) during the no-cost extension. The actual per-patient costs of the variable model were 9% ($13,845) of the projected per-patient costs ($152,992) of the fixed model. Conclusions Performance-based budgets conserve funding, promote compliance, and allow for additional sites at modest additional cost. Costs of large-scale clinical trials can thus be reduced through effective management without compromising scientific integrity. PMID:24661748

  5. Financial management of a large multisite randomized clinical trial.

    PubMed

    Sheffet, Alice J; Flaxman, Linda; Tom, MeeLee; Hughes, Susan E; Longbottom, Mary E; Howard, Virginia J; Marler, John R; Brott, Thomas G

    2014-08-01

    The Carotid Revascularization Endarterectomy versus Stenting Trial (CREST) received five years' funding ($21 112 866) from the National Institutes of Health to compare carotid stenting to surgery for stroke prevention in 2500 randomized participants at 40 sites. Herein we evaluate the change in the CREST budget from a fixed to variable-cost model and recommend strategies for the financial management of large-scale clinical trials. Projections of the original grant's fixed-cost model were compared to the actual costs of the revised variable-cost model. The original grant's fixed-cost budget included salaries, fringe benefits, and other direct and indirect costs. For the variable-cost model, the costs were actual payments to the clinical sites and core centers based upon actual trial enrollment. We compared annual direct and indirect costs and per-patient cost for both the fixed and variable models. Differences between clinical site and core center expenditures were also calculated. Using a variable-cost budget for clinical sites, funding was extended by no-cost extension from five to eight years. Randomizing sites tripled from 34 to 109. Of the 2500 targeted sample size, 138 (5·5%) were randomized during the first five years and 1387 (55·5%) during the no-cost extension. The actual per-patient costs of the variable model were 9% ($13 845) of the projected per-patient costs ($152 992) of the fixed model. Performance-based budgets conserve funding, promote compliance, and allow for additional sites at modest additional cost. Costs of large-scale clinical trials can thus be reduced through effective management without compromising scientific integrity. © 2014 The Authors. International Journal of Stroke © 2014 World Stroke Organization.

  6. Visualizing Time-Varying Distribution Data in EOS Application

    NASA Technical Reports Server (NTRS)

    Shen, Han-Wei

    2004-01-01

    In this research, we have developed several novel visualization methods for spatial probability density function data. Our focus has been on 2D spatial datasets, where each pixel is a random variable, and has multiple samples which are the results of experiments on that random variable. We developed novel clustering algorithms as a means to reduce the information contained in these datasets; and investigated different ways of interpreting and clustering the data.

  7. Decisions with Uncertain Consequences—A Total Ordering on Loss-Distributions

    PubMed Central

    König, Sandra; Schauer, Stefan

    2016-01-01

    Decisions are often based on imprecise, uncertain or vague information. Likewise, the consequences of an action are often equally unpredictable, thus putting the decision maker into a twofold jeopardy. Assuming that the effects of an action can be modeled by a random variable, then the decision problem boils down to comparing different effects (random variables) by comparing their distribution functions. Although the full space of probability distributions cannot be ordered, a properly restricted subset of distributions can be totally ordered in a practically meaningful way. We call these loss-distributions, since they provide a substitute for the concept of loss-functions in decision theory. This article introduces the theory behind the necessary restrictions and the hereby constructible total ordering on random loss variables, which enables decisions under uncertainty of consequences. Using data obtained from simulations, we demonstrate the practical applicability of our approach. PMID:28030572

  8. Strategic Use of Random Subsample Replication and a Coefficient of Factor Replicability

    ERIC Educational Resources Information Center

    Katzenmeyer, William G.; Stenner, A. Jackson

    1975-01-01

    The problem of demonstrating replicability of factor structure across random variables is addressed. Procedures are outlined which combine the use of random subsample replication strategies with the correlations between factor score estimates across replicate pairs to generate a coefficient of replicability and confidence intervals associated with…

  9. Simulation of the Effects of Random Measurement Errors

    ERIC Educational Resources Information Center

    Kinsella, I. A.; Hannaidh, P. B. O.

    1978-01-01

    Describes a simulation method for measurement of errors that requires calculators and tables of random digits. Each student simulates the random behaviour of the component variables in the function and by combining the results of all students, the outline of the sampling distribution of the function can be obtained. (GA)

  10. Stochastic analysis of uncertain thermal parameters for random thermal regime of frozen soil around a single freezing pipe

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhou, Guoqing; Wang, Jianzhou; Zhou, Lei

    2018-03-01

    The artificial ground freezing method (AGF) is widely used in civil and mining engineering, and the thermal regime of frozen soil around the freezing pipe affects the safety of design and construction. The thermal parameters can be truly random due to heterogeneity of the soil properties, which lead to the randomness of thermal regime of frozen soil around the freezing pipe. The purpose of this paper is to study the one-dimensional (1D) random thermal regime problem on the basis of a stochastic analysis model and the Monte Carlo (MC) method. Considering the uncertain thermal parameters of frozen soil as random variables, stochastic processes and random fields, the corresponding stochastic thermal regime of frozen soil around a single freezing pipe are obtained and analyzed. Taking the variability of each stochastic parameter into account individually, the influences of each stochastic thermal parameter on stochastic thermal regime are investigated. The results show that the mean temperatures of frozen soil around the single freezing pipe with three analogy method are the same while the standard deviations are different. The distributions of standard deviation have a great difference at different radial coordinate location and the larger standard deviations are mainly at the phase change area. The computed data with random variable method and stochastic process method have a great difference from the measured data while the computed data with random field method well agree with the measured data. Each uncertain thermal parameter has a different effect on the standard deviation of frozen soil temperature around the single freezing pipe. These results can provide a theoretical basis for the design and construction of AGF.

  11. Compiling probabilistic, bio-inspired circuits on a field programmable analog array

    PubMed Central

    Marr, Bo; Hasler, Jennifer

    2014-01-01

    A field programmable analog array (FPAA) is presented as an energy and computational efficiency engine: a mixed mode processor for which functions can be compiled at significantly less energy costs using probabilistic computing circuits. More specifically, it will be shown that the core computation of any dynamical system can be computed on the FPAA at significantly less energy per operation than a digital implementation. A stochastic system that is dynamically controllable via voltage controlled amplifier and comparator thresholds is implemented, which computes Bernoulli random variables. From Bernoulli variables it is shown exponentially distributed random variables, and random variables of an arbitrary distribution can be computed. The Gillespie algorithm is simulated to show the utility of this system by calculating the trajectory of a biological system computed stochastically with this probabilistic hardware where over a 127X performance improvement over current software approaches is shown. The relevance of this approach is extended to any dynamical system. The initial circuits and ideas for this work were generated at the 2008 Telluride Neuromorphic Workshop. PMID:24847199

  12. Robustness-Based Design Optimization Under Data Uncertainty

    NASA Technical Reports Server (NTRS)

    Zaman, Kais; McDonald, Mark; Mahadevan, Sankaran; Green, Lawrence

    2010-01-01

    This paper proposes formulations and algorithms for design optimization under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the perspective of system robustness. The proposed formulations deal with epistemic uncertainty arising from both sparse and interval data without any assumption about the probability distributions of the random variables. A decoupled approach is proposed in this paper to un-nest the robustness-based design from the analysis of non-design epistemic variables to achieve computational efficiency. The proposed methods are illustrated for the upper stage design problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random design inputs are only available as sparse point and/or interval data. As collecting more data reduces uncertainty but increases cost, the effect of sample size on the optimality and robustness of the solution is also studied. A method is developed to determine the optimal sample size for sparse point data that leads to the solutions of the design problem that are least sensitive to variations in the input random variables.

  13. SETI and SEH (Statistical Equation for Habitables)

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2011-01-01

    The statistics of habitable planets may be based on a set of ten (and possibly more) astrobiological requirements first pointed out by Stephen H. Dole in his book "Habitable planets for man" (1964). In this paper, we first provide the statistical generalization of the original and by now too simplistic Dole equation. In other words, a product of ten positive numbers is now turned into the product of ten positive random variables. This we call the SEH, an acronym standing for "Statistical Equation for Habitables". The mathematical structure of the SEH is then derived. The proof is based on the central limit theorem (CLT) of Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of which may be arbitrarily distributed, approaches a Gaussian (i.e. normal) random variable. This is called the Lyapunov form of the CLT, or the Lindeberg form of the CLT, depending on the mathematical constraints assumed on the third moments of the various probability distributions. In conclusion, we show that The new random variable NHab, yielding the number of habitables (i.e. habitable planets) in the Galaxy, follows the lognormal distribution. By construction, the mean value of this lognormal distribution is the total number of habitable planets as given by the statistical Dole equation. But now we also derive the standard deviation, the mode, the median and all the moments of this new lognormal NHab random variable. The ten (or more) astrobiological factors are now positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into our SEH by allowing an arbitrary probability distribution for each factor. This is both astrobiologically realistic and useful for any further investigations. An application of our SEH then follows. The (average) distancebetween any two nearby habitable planets in the Galaxy may be shown to be inversely proportional to the cubic root of NHab. Then, in our approach, this distance becomes a new random variable. We derive the relevant probability density function, apparently previously unknown and dubbed "Maccone distribution" by Paul Davies in 2008. Data Enrichment Principle. It should be noticed that ANY positive number of random variables in the SEH is compatible with the CLT. So, our generalization allows for many more factors to be added in the future as long as more refined scientific knowledge about each factor will be known to the scientists. This capability to make room for more future factors in the SEH we call the "Data Enrichment Principle", and we regard it as the key to more profound future results in the fields of Astrobiology and SETI. A practical example is then given of how our SEH works numerically. We work out in detail the case where each of the ten random variables is uniformly distributed around its own mean value as given by Dole back in 1964 and has an assumed standard deviation of 10%. The conclusion is that the average number of habitable planets in the Galaxy should be around 100 million±200 million, and the average distance in between any couple of nearby habitable planets should be about 88 light years±40 light years. Finally, we match our SEH results against the results of the Statistical Drake Equation that we introduced in our 2008 IAC presentation. As expected, the number of currently communicating ET civilizations in the Galaxy turns out to be much smaller than the number of habitable planets (about 10,000 against 100 million, i.e. one ET civilization out of 10,000 habitable planets). And the average distance between any two nearby habitable planets turns out to be much smaller than the average distance between any two neighboring ET civilizations: 88 light years vs. 2000 light years, respectively. This means an ET average distance about 20 times higher than the average distance between any couple of adjacent habitable planets.

  14. Design and implementation of a dental caries prevention trial in remote Canadian Aboriginal communities.

    PubMed

    Harrison, Rosamund; Veronneau, Jacques; Leroux, Brian

    2010-05-13

    The goal of this cluster randomized trial is to test the effectiveness of a counseling approach, Motivational Interviewing, to control dental caries in young Aboriginal children. Motivational Interviewing, a client-centred, directive counseling style, has not yet been evaluated as an approach for promotion of behaviour change in indigenous communities in remote settings. Aboriginal women were hired from the 9 communities to recruit expectant and new mothers to the trial, administer questionnaires and deliver the counseling to mothers in the test communities. The goal is for mothers to receive the intervention during pregnancy and at their child's immunization visits. Data on children's dental health status and family dental health practices will be collected when children are 30-months of age. The communities were randomly allocated to test or control group by a random "draw" over community radio. Sample size and power were determined based on an anticipated 20% reduction in caries prevalence. Randomization checks were conducted between groups. In the 5 test and 4 control communities, 272 of the original target sample size of 309 mothers have been recruited over a two-and-a-half year period. A power calculation using the actual attained sample size showed power to be 79% to detect a treatment effect. If an attrition fraction of 4% per year is maintained, power will remain at 80%. Power will still be > 90% to detect a 25% reduction in caries prevalence. The distribution of most baseline variables was similar for the two randomized groups of mothers. However, despite the random assignment of communities to treatment conditions, group differences exist for stage of pregnancy and prior tooth extractions in the family. Because of the group imbalances on certain variables, control of baseline variables will be done in the analyses of treatment effects. This paper explains the challenges of conducting randomized trials in remote settings, the importance of thorough community collaboration, and also illustrates the likelihood that some baseline variables that may be clinically important will be unevenly split in group-randomized trials when the number of groups is small. This trial is registered as ISRCTN41467632.

  15. Design and implementation of a dental caries prevention trial in remote Canadian Aboriginal communities

    PubMed Central

    2010-01-01

    Background The goal of this cluster randomized trial is to test the effectiveness of a counseling approach, Motivational Interviewing, to control dental caries in young Aboriginal children. Motivational Interviewing, a client-centred, directive counseling style, has not yet been evaluated as an approach for promotion of behaviour change in indigenous communities in remote settings. Methods/design Aboriginal women were hired from the 9 communities to recruit expectant and new mothers to the trial, administer questionnaires and deliver the counseling to mothers in the test communities. The goal is for mothers to receive the intervention during pregnancy and at their child's immunization visits. Data on children's dental health status and family dental health practices will be collected when children are 30-months of age. The communities were randomly allocated to test or control group by a random "draw" over community radio. Sample size and power were determined based on an anticipated 20% reduction in caries prevalence. Randomization checks were conducted between groups. Discussion In the 5 test and 4 control communities, 272 of the original target sample size of 309 mothers have been recruited over a two-and-a-half year period. A power calculation using the actual attained sample size showed power to be 79% to detect a treatment effect. If an attrition fraction of 4% per year is maintained, power will remain at 80%. Power will still be > 90% to detect a 25% reduction in caries prevalence. The distribution of most baseline variables was similar for the two randomized groups of mothers. However, despite the random assignment of communities to treatment conditions, group differences exist for stage of pregnancy and prior tooth extractions in the family. Because of the group imbalances on certain variables, control of baseline variables will be done in the analyses of treatment effects. This paper explains the challenges of conducting randomized trials in remote settings, the importance of thorough community collaboration, and also illustrates the likelihood that some baseline variables that may be clinically important will be unevenly split in group-randomized trials when the number of groups is small. Trial registration This trial is registered as ISRCTN41467632. PMID:20465831

  16. Random trinomial tree models and vanilla options

    NASA Astrophysics Data System (ADS)

    Ganikhodjaev, Nasir; Bayram, Kamola

    2013-09-01

    In this paper we introduce and study random trinomial model. The usual trinomial model is prescribed by triple of numbers (u, d, m). We call the triple (u, d, m) an environment of the trinomial model. A triple (Un, Dn, Mn), where {Un}, {Dn} and {Mn} are the sequences of independent, identically distributed random variables with 0 < Dn < 1 < Un and Mn = 1 for all n, is called a random environment and trinomial tree model with random environment is called random trinomial model. The random trinomial model is considered to produce more accurate results than the random binomial model or usual trinomial model.

  17. Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling.

    PubMed

    Zheng, Lianqing; Chen, Mengen; Yang, Wei

    2009-06-21

    To overcome the pseudoergodicity problem, conformational sampling can be accelerated via generalized ensemble methods, e.g., through the realization of random walks along prechosen collective variables, such as spatial order parameters, energy scaling parameters, or even system temperatures or pressures, etc. As usually observed, in generalized ensemble simulations, hidden barriers are likely to exist in the space perpendicular to the collective variable direction and these residual free energy barriers could greatly abolish the sampling efficiency. This sampling issue is particularly severe when the collective variable is defined in a low-dimension subset of the target system; then the "Hamiltonian lagging" problem, which reveals the fact that necessary structural relaxation falls behind the move of the collective variable, may be likely to occur. To overcome this problem in equilibrium conformational sampling, we adopted the orthogonal space random walk (OSRW) strategy, which was originally developed in the context of free energy simulation [L. Zheng, M. Chen, and W. Yang, Proc. Natl. Acad. Sci. U.S.A. 105, 20227 (2008)]. Thereby, generalized ensemble simulations can simultaneously escape both the explicit barriers along the collective variable direction and the hidden barriers that are strongly coupled with the collective variable move. As demonstrated in our model studies, the present OSRW based generalized ensemble treatments show improved sampling capability over the corresponding classical generalized ensemble treatments.

  18. Relevance of anisotropy and spatial variability of gas diffusivity for soil-gas transport

    NASA Astrophysics Data System (ADS)

    Schack-Kirchner, Helmer; Kühne, Anke; Lang, Friederike

    2017-04-01

    Models of soil gas transport generally do not consider neither direction dependence of gas diffusivity, nor its small-scale variability. However, in a recent study, we could provide evidence for anisotropy favouring vertical gas diffusion in natural soils. We hypothesize that gas transport models based on gas diffusion data measured with soil rings are strongly influenced by both, anisotropy and spatial variability and the use of averaged diffusivities could be misleading. To test this we used a 2-dimensional model of soil gas transport to under compacted wheel tracks to model the soil-air oxygen distribution in the soil. The model was parametrized with data obtained from soil-ring measurements with its central tendency and variability. The model includes vertical parameter variability as well as variation perpendicular to the elongated wheel track. Different parametrization types have been tested: [i)]Averaged values for wheel track and undisturbed. em [ii)]Random distribution of soil cells with normally distributed variability within the strata. em [iii)]Random distributed soil cells with uniformly distributed variability within the strata. All three types of small-scale variability has been tested for [j)] isotropic gas diffusivity and em [jj)]reduced horizontal gas diffusivity (constant factor), yielding in total six models. As expected the different parametrizations had an important influence to the aeration state under wheel tracks with the strongest oxygen depletion in case of uniformly distributed variability and anisotropy towards higher vertical diffusivity. The simple simulation approach clearly showed the relevance of anisotropy and spatial variability in case of identical central tendency measures of gas diffusivity. However, until now it did not consider spatial dependency of variability, that could even aggravate effects. To consider anisotropy and spatial variability in gas transport models we recommend a) to measure soil-gas transport parameters spatially explicit including different directions and b) to use random-field stochastic models to assess the possible effects for gas-exchange models.

  19. Branching random walk with step size coming from a power law

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ayan; Subhra Hazra, Rajat; Roy, Parthanil

    2015-09-01

    In their seminal work, Brunet and Derrida made predictions on the random point configurations associated with branching random walks. We shall discuss the limiting behavior of such point configurations when the displacement random variables come from a power law. In particular, we establish that two prediction of remains valid in this setup and investigate various other issues mentioned in their paper.

  20. Effect of study design on the reported effect of cardiac resynchronization therapy (CRT) on quantitative physiological measures: stratified meta-analysis in narrow-QRS heart failure and implications for planning future studies.

    PubMed

    Jabbour, Richard J; Shun-Shin, Matthew J; Finegold, Judith A; Afzal Sohaib, S M; Cook, Christopher; Nijjer, Sukhjinder S; Whinnett, Zachary I; Manisty, Charlotte H; Brugada, Josep; Francis, Darrel P

    2015-01-06

    Biventricular pacing (CRT) shows clear benefits in heart failure with wide QRS, but results in narrow QRS have appeared conflicting. We tested the hypothesis that study design might have influenced findings. We identified all reports of CRT-P/D therapy in subjects with narrow QRS reporting effects on continuous physiological variables. Twelve studies (2074 patients) met these criteria. Studies were stratified by presence of bias-resistance steps: the presence of a randomized control arm over a single arm, and blinded outcome measurement. Change in each endpoint was quantified using a standardized effect size (Cohen's d). We conducted separate meta-analyses for each variable in turn, stratified by trial quality. In non-randomized, non-blinded studies, the majority of variables (10 of 12, 83%) showed significant improvement, ranging from a standardized mean effect size of +1.57 (95%CI +0.43 to +2.7) for ejection fraction to +2.87 (+1.78 to +3.95) for NYHA class. In the randomized, non-blinded study, only 3 out of 6 variables (50%) showed improvement. For the randomized blinded studies, 0 out of 9 variables (0%) showed benefit, ranging from -0.04 (-0.31 to +0.22) for ejection fraction to -0.1 (-0.73 to +0.53) for 6-minute walk test. Differences in degrees of resistance to bias, rather than choice of endpoint, explain the variation between studies of CRT in narrow-QRS heart failure addressing physiological variables. When bias-resistance features are implemented, it becomes clear that these patients do not improve in any tested physiological variable. Guidance from studies without careful planning to resist bias may be far less useful than commonly perceived. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. Resistance controllability and variability improvement in a TaO{sub x}-based resistive memory for multilevel storage application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, A., E-mail: amitknp@postech.ac.kr, E-mail: amit.knp02@gmail.com, E-mail: hwanghs@postech.ac.kr; Song, J.; Hwang, H., E-mail: amitknp@postech.ac.kr, E-mail: amit.knp02@gmail.com, E-mail: hwanghs@postech.ac.kr

    In order to obtain reliable multilevel cell (MLC) characteristics, resistance controllability between the different resistance levels is required especially in resistive random access memory (RRAM), which is prone to resistance variability mainly due to its intrinsic random nature of defect generation and filament formation. In this study, we have thoroughly investigated the multilevel resistance variability in a TaO{sub x}-based nanoscale (<30 nm) RRAM operated in MLC mode. It is found that the resistance variability not only depends on the conductive filament size but also is a strong function of oxygen vacancy concentration in it. Based on the gained insights through experimentalmore » observations and simulation, it is suggested that forming thinner but denser conductive filament may greatly improve the temporal resistance variability even at low operation current despite the inherent stochastic nature of resistance switching process.« less

  2. Use of allele scores as instrumental variables for Mendelian randomization

    PubMed Central

    Burgess, Stephen; Thompson, Simon G

    2013-01-01

    Background An allele score is a single variable summarizing multiple genetic variants associated with a risk factor. It is calculated as the total number of risk factor-increasing alleles for an individual (unweighted score), or the sum of weights for each allele corresponding to estimated genetic effect sizes (weighted score). An allele score can be used in a Mendelian randomization analysis to estimate the causal effect of the risk factor on an outcome. Methods Data were simulated to investigate the use of allele scores in Mendelian randomization where conventional instrumental variable techniques using multiple genetic variants demonstrate ‘weak instrument’ bias. The robustness of estimates using the allele score to misspecification (for example non-linearity, effect modification) and to violations of the instrumental variable assumptions was assessed. Results Causal estimates using a correctly specified allele score were unbiased with appropriate coverage levels. The estimates were generally robust to misspecification of the allele score, but not to instrumental variable violations, even if the majority of variants in the allele score were valid instruments. Using a weighted rather than an unweighted allele score increased power, but the increase was small when genetic variants had similar effect sizes. Naive use of the data under analysis to choose which variants to include in an allele score, or for deriving weights, resulted in substantial biases. Conclusions Allele scores enable valid causal estimates with large numbers of genetic variants. The stringency of criteria for genetic variants in Mendelian randomization should be maintained for all variants in an allele score. PMID:24062299

  3. Random Assignment of Schools to Groups in the Drug Resistance Strategies Rural Project: Some New Methodological Twists

    PubMed Central

    Pettigrew, Jonathan; Miller-Day, Michelle; Krieger, Janice L.; Zhou, Jiangxiu; Hecht, Michael L.

    2014-01-01

    Random assignment to groups is the foundation for scientifically rigorous clinical trials. But assignment is challenging in group randomized trials when only a few units (schools) are assigned to each condition. In the DRSR project, we assigned 39 rural Pennsylvania and Ohio schools to three conditions (rural, classic, control). But even with 13 schools per condition, achieving pretest equivalence on important variables is not guaranteed. We collected data on six important school-level variables: rurality, number of grades in the school, enrollment per grade, percent white, percent receiving free/assisted lunch, and test scores. Key to our procedure was the inclusion of school-level drug use data, available for a subset of the schools. Also, key was that we handled the partial data with modern missing data techniques. We chose to create one composite stratifying variable based on the seven school-level variables available. Principal components analysis with the seven variables yielded two factors, which were averaged to form the composite inflate-suppress (CIS) score which was the basis of stratification. The CIS score was broken into three strata within each state; schools were assigned at random to the three program conditions from within each stratum, within each state. Results showed that program group membership was unrelated to the CIS score, the two factors making up the CIS score, and the seven items making up the factors. Program group membership was not significantly related to pretest measures of drug use (alcohol, cigarettes, marijuana, chewing tobacco; smallest p>.15), thus verifying that pretest equivalence was achieved. PMID:23722619

  4. Eliminating Survivor Bias in Two-stage Instrumental Variable Estimators.

    PubMed

    Vansteelandt, Stijn; Walter, Stefan; Tchetgen Tchetgen, Eric

    2018-07-01

    Mendelian randomization studies commonly focus on elderly populations. This makes the instrumental variables analysis of such studies sensitive to survivor bias, a type of selection bias. A particular concern is that the instrumental variable conditions, even when valid for the source population, may be violated for the selective population of individuals who survive the onset of the study. This is potentially very damaging because Mendelian randomization studies are known to be sensitive to bias due to even minor violations of the instrumental variable conditions. Interestingly, the instrumental variable conditions continue to hold within certain risk sets of individuals who are still alive at a given age when the instrument and unmeasured confounders exert additive effects on the exposure, and moreover, the exposure and unmeasured confounders exert additive effects on the hazard of death. In this article, we will exploit this property to derive a two-stage instrumental variable estimator for the effect of exposure on mortality, which is insulated against the above described selection bias under these additivity assumptions.

  5. Estimating degradation in real time and accelerated stability tests with random lot-to-lot variation: a simulation study.

    PubMed

    Magari, Robert T

    2002-03-01

    The effect of different lot-to-lot variability levels on the prediction of stability are studied based on two statistical models for estimating degradation in real time and accelerated stability tests. Lot-to-lot variability is considered as random in both models, and is attributed to two sources-variability at time zero, and variability of degradation rate. Real-time stability tests are modeled as a function of time while accelerated stability tests as a function of time and temperatures. Several data sets were simulated, and a maximum likelihood approach was used for estimation. The 95% confidence intervals for the degradation rate depend on the amount of lot-to-lot variability. When lot-to-lot degradation rate variability is relatively large (CV > or = 8%) the estimated confidence intervals do not represent the trend for individual lots. In such cases it is recommended to analyze each lot individually. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91: 893-899, 2002

  6. Predictors for Physical Activity in Adolescent Girls Using Statistical Shrinkage Techniques for Hierarchical Longitudinal Mixed Effects Models

    PubMed Central

    Grant, Edward M.; Young, Deborah Rohm; Wu, Tong Tong

    2015-01-01

    We examined associations among longitudinal, multilevel variables and girls’ physical activity to determine the important predictors for physical activity change at different adolescent ages. The Trial of Activity for Adolescent Girls 2 study (Maryland) contributed participants from 8th (2009) to 11th grade (2011) (n=561). Questionnaires were used to obtain demographic, and psychosocial information (individual- and social-level variables); height, weight, and triceps skinfold to assess body composition; interviews and surveys for school-level data; and self-report for neighborhood-level variables. Moderate to vigorous physical activity minutes were assessed from accelerometers. A doubly regularized linear mixed effects model was used for the longitudinal multilevel data to identify the most important covariates for physical activity. Three fixed effects at the individual level and one random effect at the school level were chosen from an initial total of 66 variables, consisting of 47 fixed effects and 19 random effects variables, in additional to the time effect. Self-management strategies, perceived barriers, and social support from friends were the three selected fixed effects, and whether intramural or interscholastic programs were offered in middle school was the selected random effect. Psychosocial factors and friend support, plus a school’s physical activity environment, affect adolescent girl’s moderate to vigorous physical activity longitudinally. PMID:25928064

  7. Night-to-Night Sleep Variability in Older Adults With Chronic Insomnia: Mediators and Moderators in a Randomized Controlled Trial of Brief Behavioral Therapy (BBT-I)

    PubMed Central

    Chan, Wai Sze; Williams, Jacob; Dautovich, Natalie D.; McNamara, Joseph P.H.; Stripling, Ashley; Dzierzewski, Joseph M.; Berry, Richard B.; McCoy, Karin J.M.; McCrae, Christina S.

    2017-01-01

    Study Objectives: Sleep variability is a clinically significant variable in understanding and treating insomnia in older adults. The current study examined changes in sleep variability in the course of brief behavioral therapy for insomnia (BBT-I) in older adults who had chronic insomnia. Additionally, the current study examined the mediating mechanisms underlying reductions of sleep variability and the moderating effects of baseline sleep variability on treatment responsiveness. Methods: Sixty-two elderly participants were randomly assigned to either BBT-I or self-monitoring and attention control (SMAC). Sleep was assessed by sleep diaries and actigraphy from baseline to posttreatment and at 3-month follow-up. Mixed models were used to examine changes in sleep variability (within-person standard deviations of weekly sleep parameters) and the hypothesized mediation and moderation effects. Results: Variabilities in sleep diary-assessed sleep onset latency (SOL) and actigraphy-assessed total sleep time (TST) significantly decreased in BBT-I compared to SMAC (Pseudo R2 = .12, .27; P = .018, .008). These effects were mediated by reductions in bedtime and wake time variability and time in bed. Significant time × group × baseline sleep variability interactions on sleep outcomes indicated that participants who had higher baseline sleep variability were more responsive to BBT-I; their actigraphy-assessed TST, SOL, and sleep efficiency improved to a greater degree (Pseudo R2 = .15 to .66; P < .001 to .044). Conclusions: BBT-I is effective in reducing sleep variability in older adults who have chronic insomnia. Increased consistency in bedtime and wake time and decreased time in bed mediate reductions of sleep variability. Baseline sleep variability may serve as a marker of high treatment responsiveness to BBT-I. Clinical Trial Registration: ClinicalTrials.gov, Identifier: NCT02967185 Citation: Chan WS, Williams J, Dautovich ND, McNamara JP, Stripling A, Dzierzewski JM, Berry RB, McCoy KJ, McCrae CS. Night-to-night sleep variability in older adults with chronic insomnia: mediators and moderators in a randomized controlled trial of brief behavioral therapy (BBT-I). J Clin Sleep Med. 2017;13(11):1243–1254. PMID:28992829

  8. Pigeons' Choices between Fixed-Interval and Random-Interval Schedules: Utility of Variability?

    ERIC Educational Resources Information Center

    Andrzejewski, Matthew E.; Cardinal, Claudia D.; Field, Douglas P.; Flannery, Barbara A.; Johnson, Michael; Bailey, Kathleen; Hineline, Philip N.

    2005-01-01

    Pigeons' choosing between fixed-interval and random-interval schedules of reinforcement was investigated in three experiments using a discrete-trial procedure. In all three experiments, the random-interval schedule was generated by sampling a probability distribution at an interval (and in multiples of the interval) equal to that of the…

  9. An Alternative Method for Computing Mean and Covariance Matrix of Some Multivariate Distributions

    ERIC Educational Resources Information Center

    Radhakrishnan, R.; Choudhury, Askar

    2009-01-01

    Computing the mean and covariance matrix of some multivariate distributions, in particular, multivariate normal distribution and Wishart distribution are considered in this article. It involves a matrix transformation of the normal random vector into a random vector whose components are independent normal random variables, and then integrating…

  10. Causal Inference and Omitted Variable Bias in Financial Aid Research: Assessing Solutions

    ERIC Educational Resources Information Center

    Riegg, Stephanie K.

    2008-01-01

    This article highlights the problem of omitted variable bias in research on the causal effect of financial aid on college-going. I first describe the problem of self-selection and the resulting bias from omitted variables. I then assess and explore the strengths and weaknesses of random assignment, multivariate regression, proxy variables, fixed…

  11. A Dynamic Bayesian Network Model for the Production and Inventory Control

    NASA Astrophysics Data System (ADS)

    Shin, Ji-Sun; Takazaki, Noriyuki; Lee, Tae-Hong; Kim, Jin-Il; Lee, Hee-Hyol

    In general, the production quantities and delivered goods are changed randomly and then the total stock is also changed randomly. This paper deals with the production and inventory control using the Dynamic Bayesian Network. Bayesian Network is a probabilistic model which represents the qualitative dependence between two or more random variables by the graph structure, and indicates the quantitative relations between individual variables by the conditional probability. The probabilistic distribution of the total stock is calculated through the propagation of the probability on the network. Moreover, an adjusting rule of the production quantities to maintain the probability of a lower limit and a ceiling of the total stock to certain values is shown.

  12. Low-contrast lesion detection in tomosynthetic breast imaging using a realistic breast phantom

    NASA Astrophysics Data System (ADS)

    Zhou, Lili; Oldan, Jorge; Fisher, Paul; Gindi, Gene

    2006-03-01

    Tomosynthesis mammography is a potentially valuable technique for detection of breast cancer. In this simulation study, we investigate the efficacy of three different tomographic reconstruction methods, EM, SART and Backprojection, in the context of an especially difficult mammographic detection task. The task is the detection of a very low-contrast mass embedded in very dense fibro-glandular tissue - a clinically useful task for which tomosynthesis may be well suited. The project uses an anatomically realistic 3D digital breast phantom whose normal anatomic variability limits lesion conspicuity. In order to capture anatomical object variability, we generate an ensemble of phantoms, each of which comprises random instances of various breast structures. We construct medium-sized 3D breast phantoms which model random instances of ductal structures, fibrous connective tissue, Cooper's ligaments and power law structural noise for small scale object variability. Random instances of 7-8 mm irregular masses are generated by a 3D random walk algorithm and placed in very dense fibro-glandular tissue. Several other components of the breast phantom are held fixed, i.e. not randomly generated. These include the fixed breast shape and size, nipple structure, fixed lesion location, and a pectoralis muscle. We collect low-dose data using an isocentric tomosynthetic geometry at 11 angles over 50 degrees and add Poisson noise. The data is reconstructed using the three algorithms. Reconstructed slices through the center of the lesion are presented to human observers in a 2AFC (two-alternative-forced-choice) test that measures detectability by computing AUC (area under the ROC curve). The data collected in each simulation includes two sources of variability, that due to the anatomical variability of the phantom and that due to the Poisson data noise. We found that for this difficult task that the AUC value for EM (0.89) was greater than that for SART (0.83) and Backprojection (0.66).

  13. Arbitrary-step randomly delayed robust filter with application to boost phase tracking

    NASA Astrophysics Data System (ADS)

    Qin, Wutao; Wang, Xiaogang; Bai, Yuliang; Cui, Naigang

    2018-04-01

    The conventional filters such as extended Kalman filter, unscented Kalman filter and cubature Kalman filter assume that the measurement is available in real-time and the measurement noise is Gaussian white noise. But in practice, both two assumptions are invalid. To solve this problem, a novel algorithm is proposed by taking the following four steps. At first, the measurement model is modified by the Bernoulli random variables to describe the random delay. Then, the expression of predicted measurement and covariance are reformulated, which could get rid of the restriction that the maximum number of delay must be one or two and the assumption that probabilities of Bernoulli random variables taking the value one are equal. Next, the arbitrary-step randomly delayed high-degree cubature Kalman filter is derived based on the 5th-degree spherical-radial rule and the reformulated expressions. Finally, the arbitrary-step randomly delayed high-degree cubature Kalman filter is modified to the arbitrary-step randomly delayed high-degree cubature Huber-based filter based on the Huber technique, which is essentially an M-estimator. Therefore, the proposed filter is not only robust to the randomly delayed measurements, but robust to the glint noise. The application to the boost phase tracking example demonstrate the superiority of the proposed algorithms.

  14. Estimating overall exposure effects for the clustered and censored outcome using random effect Tobit regression models.

    PubMed

    Wang, Wei; Griswold, Michael E

    2016-11-30

    The random effect Tobit model is a regression model that accommodates both left- and/or right-censoring and within-cluster dependence of the outcome variable. Regression coefficients of random effect Tobit models have conditional interpretations on a constructed latent dependent variable and do not provide inference of overall exposure effects on the original outcome scale. Marginalized random effects model (MREM) permits likelihood-based estimation of marginal mean parameters for the clustered data. For random effect Tobit models, we extend the MREM to marginalize over both the random effects and the normal space and boundary components of the censored response to estimate overall exposure effects at population level. We also extend the 'Average Predicted Value' method to estimate the model-predicted marginal means for each person under different exposure status in a designated reference group by integrating over the random effects and then use the calculated difference to assess the overall exposure effect. The maximum likelihood estimation is proposed utilizing a quasi-Newton optimization algorithm with Gauss-Hermite quadrature to approximate the integration of the random effects. We use these methods to carefully analyze two real datasets. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Models of multidimensional discrete distribution of probabilities of random variables in information systems

    NASA Astrophysics Data System (ADS)

    Gromov, Yu Yu; Minin, Yu V.; Ivanova, O. G.; Morozova, O. N.

    2018-03-01

    Multidimensional discrete distributions of probabilities of independent random values were received. Their one-dimensional distribution is widely used in probability theory. Producing functions of those multidimensional distributions were also received.

  16. Wavevector-Frequency Analysis with Applications to Acoustics

    DTIC Science & Technology

    1994-01-01

    Turbulent Boundary Layer Pressure Measured by Microphone Arrays," Journal of the Acoustical Society of America, vol. 49, no. 3, March 1971 , pp. 862-877. 1...ARplications of Green’s FuntionsinScie,.-and Enginlering, Prentice-Hall, Inc., Englewood Hills, NJ, 1971 . 9. 3. Ffowcs-Williams et al., Modern Methods for...variables of a random process are kalled Joint w.merit ,. The m,n-th joint moment of the random variables, v and w, iz flefined by E ,N 1 f (aB) do d- where

  17. Evaluating the Bias of Alternative Cost Progress Models: Tests Using Aerospace Industry Acquisition Programs

    DTIC Science & Technology

    1992-12-01

    suspect :mat, -n2 extent predict:.on cas jas ccsiziveiv crrei:=e amonc e v:arious models, :he fandom *.;aik, learn ha r ur e, i;<ea- variable and Bemis...Functions, Production Rate Adjustment Model, Learning Curve Model. Random Walk Model. Bemis Model. Evaluating Model Bias, Cost Prediction Bias. Cost...of four cost progress models--a random walk model, the tradiuonai learning curve model, a production rate model Ifixed-variable model). and a model

  18. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways

    PubMed Central

    Burgess, Stephen; Daniel, Rhian M; Butterworth, Adam S; Thompson, Simon G

    2015-01-01

    Background: Mendelian randomization uses genetic variants, assumed to be instrumental variables for a particular exposure, to estimate the causal effect of that exposure on an outcome. If the instrumental variable criteria are satisfied, the resulting estimator is consistent even in the presence of unmeasured confounding and reverse causation. Methods: We extend the Mendelian randomization paradigm to investigate more complex networks of relationships between variables, in particular where some of the effect of an exposure on the outcome may operate through an intermediate variable (a mediator). If instrumental variables for the exposure and mediator are available, direct and indirect effects of the exposure on the outcome can be estimated, for example using either a regression-based method or structural equation models. The direction of effect between the exposure and a possible mediator can also be assessed. Methods are illustrated in an applied example considering causal relationships between body mass index, C-reactive protein and uric acid. Results: These estimators are consistent in the presence of unmeasured confounding if, in addition to the instrumental variable assumptions, the effects of both the exposure on the mediator and the mediator on the outcome are homogeneous across individuals and linear without interactions. Nevertheless, a simulation study demonstrates that even considerable heterogeneity in these effects does not lead to bias in the estimates. Conclusions: These methods can be used to estimate direct and indirect causal effects in a mediation setting, and have potential for the investigation of more complex networks between multiple interrelated exposures and disease outcomes. PMID:25150977

  19. Design of a factorial experiment with randomization restrictions to assess medical device performance on vascular tissue.

    PubMed

    Diestelkamp, Wiebke S; Krane, Carissa M; Pinnell, Margaret F

    2011-05-20

    Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the artery during transection (three types); and artery type (two types) resulting in a total of twelve possible treatment combinations. Burst pressures of porcine carotid and renal arteries sealed ex vivo were assigned as the response variable. The experimental test matrix was designed and carried out as a split-plot experiment in order to assess the contributions of several variables and their interactions while accounting for randomization restrictions present in the experimental setup. The statistical software package SAS was utilized and PROC MIXED was used to account for the randomization restrictions in the split-plot design. The combination of temperature, solution, and vessel type had a statistically significant impact on seal quality. The design and implementation of a split-plot experimental test-matrix provided a mechanism for addressing the existing technical randomization restrictions of ex vivo ultrasonic scalpel performance testing, while preserving the ability to examine the potential effects of independent factors or variables. This method for generating the experimental design and the statistical analyses of the resulting data are adaptable to a wide variety of experimental problems involving large-scale tissue-based studies of medical or experimental device efficacy and performance.

  20. Applications of Geostatistics in Plant Nematology

    PubMed Central

    Wallace, M. K.; Hawkins, D. M.

    1994-01-01

    The application of geostatistics to plant nematology was made by evaluating soil and nematode data acquired from 200 soil samples collected from the Ap horizon of a reed canary-grass field in northern Minnesota. Geostatistical concepts relevant to nematology include semi-variogram modelling, kriging, and change of support calculations. Soil and nematode data generally followed a spherical semi-variogram model, with little random variability associated with soil data and large inherent variability for nematode data. Block kriging of soil and nematode data provided useful contour maps of the data. Change of snpport calculations indicated that most of the random variation in nematode data was due to short-range spatial variability in the nematode population densities. PMID:19279938

  1. Applications of geostatistics in plant nematology.

    PubMed

    Wallace, M K; Hawkins, D M

    1994-12-01

    The application of geostatistics to plant nematology was made by evaluating soil and nematode data acquired from 200 soil samples collected from the A(p) horizon of a reed canary-grass field in northern Minnesota. Geostatistical concepts relevant to nematology include semi-variogram modelling, kriging, and change of support calculations. Soil and nematode data generally followed a spherical semi-variogram model, with little random variability associated with soil data and large inherent variability for nematode data. Block kriging of soil and nematode data provided useful contour maps of the data. Change of snpport calculations indicated that most of the random variation in nematode data was due to short-range spatial variability in the nematode population densities.

  2. Mathematical and physical meaning of the Bell inequalities

    NASA Astrophysics Data System (ADS)

    Santos, Emilio

    2016-09-01

    It is shown that the Bell inequalities are closely related to the triangle inequalities involving distance functions amongst pairs of random variables with values \\{0,1\\}. A hidden variables model may be defined as a mapping between a set of quantum projection operators and a set of random variables. The model is noncontextual if there is a joint probability distribution. The Bell inequalities are necessary conditions for its existence. The inequalities are most relevant when measurements are performed at space-like separation, thus showing a conflict between quantum mechanics and local realism (Bell's theorem). The relations of the Bell inequalities with contextuality, the Kochen-Specker theorem, and quantum entanglement are briefly discussed.

  3. A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses

    ERIC Educational Resources Information Center

    Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini

    2012-01-01

    The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…

  4. PATTERN PREDICTION OF ACADEMIC SUCCESS.

    ERIC Educational Resources Information Center

    LUNNEBORG, CLIFFORD E.; LUNNEBORG, PATRICIA W.

    A TECHNIQUE OF PATTERN ANALYSIS WHICH EMPHASIZES THE DEVELOPMENT OF MORE EFFECTIVE WAYS OF SCORING A GIVEN SET OF VARIABLES WAS FORMULATED. TO THE ORIGINAL VARIABLES WERE SUCCESSIVELY ADDED TWO, THREE, AND FOUR VARIABLE PATTERNS AND THE INCREASE IN PREDICTIVE EFFICIENCY ASSESSED. RANDOMLY SELECTED HIGH SCHOOL SENIORS WHO HAD PARTICIPATED IN THE…

  5. Measurement variability error for estimates of volume change

    Treesearch

    James A. Westfall; Paul L. Patterson

    2007-01-01

    Using quality assurance data, measurement variability distributions were developed for attributes that affect tree volume prediction. Random deviations from the measurement variability distributions were applied to 19381 remeasured sample trees in Maine. The additional error due to measurement variation and measurement bias was estimated via a simulation study for...

  6. Bias and Bias Correction in Multi-Site Instrumental Variables Analysis of Heterogeneous Mediator Effects

    ERIC Educational Resources Information Center

    Reardon, Sean F.; Unlu, Faith; Zhu, Pei; Bloom, Howard

    2013-01-01

    We explore the use of instrumental variables (IV) analysis with a multi-site randomized trial to estimate the effect of a mediating variable on an outcome in cases where it can be assumed that the observed mediator is the only mechanism linking treatment assignment to outcomes, as assumption known in the instrumental variables literature as the…

  7. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    PubMed

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  8. Testing homogeneity in Weibull-regression models.

    PubMed

    Bolfarine, Heleno; Valença, Dione M

    2005-10-01

    In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.

  9. Instrumental variables estimation of exposure effects on a time-to-event endpoint using structural cumulative survival models.

    PubMed

    Martinussen, Torben; Vansteelandt, Stijn; Tchetgen Tchetgen, Eric J; Zucker, David M

    2017-12-01

    The use of instrumental variables for estimating the effect of an exposure on an outcome is popular in econometrics, and increasingly so in epidemiology. This increasing popularity may be attributed to the natural occurrence of instrumental variables in observational studies that incorporate elements of randomization, either by design or by nature (e.g., random inheritance of genes). Instrumental variables estimation of exposure effects is well established for continuous outcomes and to some extent for binary outcomes. It is, however, largely lacking for time-to-event outcomes because of complications due to censoring and survivorship bias. In this article, we make a novel proposal under a class of structural cumulative survival models which parameterize time-varying effects of a point exposure directly on the scale of the survival function; these models are essentially equivalent with a semi-parametric variant of the instrumental variables additive hazards model. We propose a class of recursive instrumental variable estimators for these exposure effects, and derive their large sample properties along with inferential tools. We examine the performance of the proposed method in simulation studies and illustrate it in a Mendelian randomization study to evaluate the effect of diabetes on mortality using data from the Health and Retirement Study. We further use the proposed method to investigate potential benefit from breast cancer screening on subsequent breast cancer mortality based on the HIP-study. © 2017, The International Biometric Society.

  10. Condensation with two constraints and disorder

    NASA Astrophysics Data System (ADS)

    Barré, J.; Mangeolle, L.

    2018-04-01

    We consider a set of positive random variables obeying two additive constraints, a linear and a quadratic one; these constraints mimic the conservation laws of a dynamical system. In the simplest setting, without disorder, it is known that such a system may undergo a ‘condensation’ transition, whereby one random variable becomes much larger than the others; this transition has been related to the spontaneous appearance of non linear localized excitations in certain nonlinear chains, called breathers. Motivated by the study of breathers in a disordered discrete nonlinear Schrödinger equation, we study different instances of this problem in presence of a quenched disorder. Unless the disorder is too strong, the phase diagram looks like the one without disorder, with a transition separating a fluid phase, where all variables have the same order of magnitude, and a condensed phase, where one variable is much larger than the others. We then show that the condensed phase exhibits various degrees of ‘intermediate symmetry breaking’: the site hosting the condensate is chosen neither uniformly at random, nor is it fixed by the disorder realization. Throughout the article, our heuristic arguments are complemented with direct Monte Carlo simulations.

  11. An Undergraduate Research Experience on Studying Variable Stars

    NASA Astrophysics Data System (ADS)

    Amaral, A.; Percy, J. R.

    2016-06-01

    We describe and evaluate a summer undergraduate research project and experience by one of us (AA), under the supervision of the other (JP). The aim of the project was to sample current approaches to analyzing variable star data, and topics related to the study of Mira variable stars and their astrophysical importance. This project was done through the Summer Undergraduate Research Program (SURP) in astronomy at the University of Toronto. SURP allowed undergraduate students to explore and learn about many topics within astronomy and astrophysics, from instrumentation to cosmology. SURP introduced students to key skills which are essential for students hoping to pursue graduate studies in any scientific field. Variable stars proved to be an excellent topic for a research project. For beginners to independent research, it introduces key concepts in research such as critical thinking and problem solving, while illuminating previously learned topics in stellar physics. The focus of this summer project was to compare observations with structural and evolutionary models, including modelling the random walk behavior exhibited in the (O-C) diagrams of most Mira stars. We found that the random walk could be modelled by using random fluctuations of the period. This explanation agreed well with observations.

  12. Free variable selection QSPR study to predict 19F chemical shifts of some fluorinated organic compounds using Random Forest and RBF-PLS methods

    NASA Astrophysics Data System (ADS)

    Goudarzi, Nasser

    2016-04-01

    In this work, two new and powerful chemometrics methods are applied for the modeling and prediction of the 19F chemical shift values of some fluorinated organic compounds. The radial basis function-partial least square (RBF-PLS) and random forest (RF) are employed to construct the models to predict the 19F chemical shifts. In this study, we didn't used from any variable selection method and RF method can be used as variable selection and modeling technique. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. The root-mean-square errors of prediction (RMSEP) for the training set and the prediction set for the RBF-PLS and RF models were 44.70, 23.86, 29.77, and 23.69, respectively. Also, the correlation coefficients of the prediction set for the RBF-PLS and RF models were 0.8684 and 0.9313, respectively. The results obtained reveal that the RF model can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies.

  13. Rupture Propagation for Stochastic Fault Models

    NASA Astrophysics Data System (ADS)

    Favreau, P.; Lavallee, D.; Archuleta, R.

    2003-12-01

    The inversion of strong motion data of large earhquakes give the spatial distribution of pre-stress on the ruptured faults and it can be partially reproduced by stochastic models, but a fundamental question remains: how rupture propagates, constrained by the presence of spatial heterogeneity? For this purpose we investigate how the underlying random variables, that control the pre-stress spatial variability, condition the propagation of the rupture. Two stochastic models of prestress distributions are considered, respectively based on Cauchy and Gaussian random variables. The parameters of the two stochastic models have values corresponding to the slip distribution of the 1979 Imperial Valley earthquake. We use a finite difference code to simulate the spontaneous propagation of shear rupture on a flat fault in a 3D continuum elastic body. The friction law is the slip dependent friction law. The simulations show that the propagation of the rupture front is more complex, incoherent or snake-like for a prestress distribution based on Cauchy random variables. This may be related to the presence of a higher number of asperities in this case. These simulations suggest that directivity is stronger in the Cauchy scenario, compared to the smoother rupture of the Gauss scenario.

  14. Two approximations of the present value distribution of a disability annuity

    NASA Astrophysics Data System (ADS)

    Spreeuw, Jaap

    2006-02-01

    The distribution function of the present value of a cash flow can be approximated by means of a distribution function of a random variable, which is also the present value of a sequence of payments, but with a simpler structure. The corresponding random variable has the same expectation as the random variable corresponding to the original distribution function and is a stochastic upper bound of convex order. A sharper upper bound can be obtained if more information about the risk is available. In this paper, it will be shown that such an approach can be adopted for disability annuities (also known as income protection policies) in a three state model under Markov assumptions. Benefits are payable during any spell of disability whilst premiums are only due whenever the insured is healthy. The quality of the two approximations is investigated by comparing the distributions obtained with the one derived from the algorithm presented in the paper by Hesselager and Norberg [Insurance Math. Econom. 18 (1996) 35-42].

  15. Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables

    PubMed Central

    Rosenblum, Michael; van der Laan, Mark J.

    2010-01-01

    Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation. PMID:20628636

  16. Dissociable effects of practice variability on learning motor and timing skills.

    PubMed

    Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline

    2018-01-01

    Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a dissociable effect of practice variability on learning complex skills that involve both motor and timing constraints.

  17. Soil variability in engineering applications

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna

    2014-05-01

    Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random Finite Element Method (RFEM). This method has been used to investigate the random behavior of soils in the context of a variety of classical geotechnical problems. Afterward, some following studies collected the worldwide variability values of many technical parameters of soils (Phoon and Kulhawy 1999a) and their spatial correlation functions (Phoon and Kulhawy 1999b). In Italy, Cherubini et al. (2007) calculated the spatial variability structure of sandy and clayey soils from the standard cone penetration test readings. The large extent of the worldwide measured spatial variability of soils and rocks heavily affects the reliability of geotechnical designing as well as other uncertainties introduced by testing devices and engineering models. So far, several methods have been provided to deal with the preceding sources of uncertainties in engineering designing models (e.g. First Order Reliability Method, Second Order Reliability Method, Response Surface Method, High Dimensional Model Representation, etc.). Nowadays, the efforts in this field have been focusing on (1) measuring spatial variability of different rocks and soils and (2) developing numerical models that take into account the spatial variability as additional physical variable. References Cherubini C., Vessia G. and Pula W. 2007. Statistical soil characterization of Italian sites for reliability analyses. Proc. 2nd Int. Workshop. on Characterization and Engineering Properties of Natural Soils, 3-4: 2681-2706. Griffiths D.V. and Fenton G.A. 1993. Seepage beneath water retaining structures founded on spatially random soil, Géotechnique, 43(6): 577-587. Mandelbrot B.B. 1983. The Fractal Geometry of Nature. San Francisco: W H Freeman. Matheron G. 1962. Traité de Géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 p. Phoon K.K. and Kulhawy F.H. 1999a. Characterization of geotechnical variability. Can Geotech J, 36(4): 612-624. Phoon K.K. and Kulhawy F.H. 1999b. Evaluation of geotechnical property variability. Can Geotech J, 36(4): 625-639. Terzaghi K. 1943. Theoretical Soil Mechanics. New York: John Wiley and Sons. Turcotte D.L. 1986. Fractals and fragmentation. J Geophys Res, 91: 1921-1926. Vanmarcke E.H. 1977. Probabilistic modeling of soil profiles. J Geotech Eng Div, ASCE, 103: 1227-1246. Vanmarcke E.H. 1983. Random fields: analysis and synthesis. MIT Press, Cambridge.

  18. The variability of software scoring of the CDMAM phantom associated with a limited number of images

    NASA Astrophysics Data System (ADS)

    Yang, Chang-Ying J.; Van Metter, Richard

    2007-03-01

    Software scoring approaches provide an attractive alternative to human evaluation of CDMAM images from digital mammography systems, particularly for annual quality control testing as recommended by the European Protocol for the Quality Control of the Physical and Technical Aspects of Mammography Screening (EPQCM). Methods for correlating CDCOM-based results with human observer performance have been proposed. A common feature of all methods is the use of a small number (at most eight) of CDMAM images to evaluate the system. This study focuses on the potential variability in the estimated system performance that is associated with these methods. Sets of 36 CDMAM images were acquired under carefully controlled conditions from three different digital mammography systems. The threshold visibility thickness (TVT) for each disk diameter was determined using previously reported post-analysis methods from the CDCOM scorings for a randomly selected group of eight images for one measurement trial. This random selection process was repeated 3000 times to estimate the variability in the resulting TVT values for each disk diameter. The results from using different post-analysis methods, different random selection strategies and different digital systems were compared. Additional variability of the 0.1 mm disk diameter was explored by comparing the results from two different image data sets acquired under the same conditions from the same system. The magnitude and the type of error estimated for experimental data was explained through modeling. The modeled results also suggest a limitation in the current phantom design for the 0.1 mm diameter disks. Through modeling, it was also found that, because of the binomial statistic nature of the CDMAM test, the true variability of the test could be underestimated by the commonly used method of random re-sampling.

  19. Retrocausation Or Extant Indefinite Reality?

    NASA Astrophysics Data System (ADS)

    Houtkooper, Joop M.

    2006-10-01

    The possibility of retrocausation has been considered to explain the occurrence of anomalous phenomena in which the ostensible effects are preceded by their causes. A scrutiny of both experimental methodology and the experimental data is called for. A review of experimental data reveals the existence of such effects to be a serious possibility. The experimental methodology entails some conceptual difficulties, these depending on the underlying assumptions about the effects. A major point is an ambiguity between anomalous acquisition of information and retrocausation in exerted influences. A unifying theory has been proposed, based upon the fundamental randomness of quantum mechanics. Quantum mechanical randomness may be regarded as a tenacious phenomenon, that apparently is only resolved by the human observer of the random variable in question. This has led to the "observational theory" of anomalous phenomena, which is based upon the assumption that the preference of a motivated observer is able to interact with the extant indefinite random variable that is being observed. This observational theory has led to a novel prediction, which has been corroborated in experiments. Moreover, different classes of anomalous phenomena can be explained by the same basic mechanism. This foregoes retroactive causation, but, instead, requires that macroscopic physical variables remain in a state of indefinite reality and thus remain influenceable by mental efforts until these are observed. More work is needed to discover the relevant psychological and neurophysiological variables involved in effective motivated observation. Besides these practicalities, the fundamentals still have some interesting loose ends.

  20. wayGoo recommender system: personalized recommendations for events scheduling, based on static and real-time information

    NASA Astrophysics Data System (ADS)

    Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.

    2016-05-01

    wayGoo is a fully functional application whose main functionalities include content geolocation, event scheduling, and indoor navigation. However, significant information about events do not reach users' attention, either because of the size of this information or because some information comes from real - time data sources. The purpose of this work is to facilitate event management operations by prioritizing the presented events, based on users' interests using both, static and real - time data. Through the wayGoo interface, users select conceptual topics that are interesting for them. These topics constitute a browsing behavior vector which is used for learning users' interests implicitly, without being intrusive. Then, the system estimates user preferences and return an events list sorted from the most preferred one to the least. User preferences are modeled via a Naïve Bayesian Network which consists of: a) the `decision' random variable corresponding to users' decision on attending an event, b) the `distance' random variable, modeled by a linear regression that estimates the probability that the distance between a user and each event destination is not discouraging, ` the seat availability' random variable, modeled by a linear regression, which estimates the probability that the seat availability is encouraging d) and the `relevance' random variable, modeled by a clustering - based collaborative filtering, which determines the relevance of each event users' interests. Finally, experimental results show that the proposed system contribute essentially to assisting users in browsing and selecting events to attend.

  1. Bayesian dynamic modeling of time series of dengue disease case counts

    PubMed Central

    López-Quílez, Antonio; Torres-Prieto, Alexander

    2017-01-01

    The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health. PMID:28671941

  2. On the Wigner law in dilute random matrices

    NASA Astrophysics Data System (ADS)

    Khorunzhy, A.; Rodgers, G. J.

    1998-12-01

    We consider ensembles of N × N symmetric matrices whose entries are weakly dependent random variables. We show that random dilution can change the limiting eigenvalue distribution of such matrices. We prove that under general and natural conditions the normalised eigenvalue counting function coincides with the semicircle (Wigner) distribution in the limit N → ∞. This can be explained by the observation that dilution (or more generally, random modulation) eliminates the weak dependence (or correlations) between random matrix entries. It also supports our earlier conjecture that the Wigner distribution is stable to random dilution and modulation.

  3. Baseline-dependent effect of noise-enhanced insoles on gait variability in healthy elderly walkers.

    PubMed

    Stephen, Damian G; Wilcox, Bethany J; Niemi, James B; Franz, Jason R; Franz, Jason; Kerrigan, Dr; Kerrigan, D Casey; D'Andrea, Susan E

    2012-07-01

    The purpose of this study was to determine whether providing subsensory stochastic-resonance mechanical vibration to the foot soles of elderly walkers could decrease gait variability. In a randomized double-blind controlled trial, 29 subjects engaged in treadmill walking while wearing sandals customized with three actuators capable of producing stochastic-resonance mechanical vibration embedded in each sole. For each subject, we determined a subsensory level of vibration stimulation. After a 5-min acclimation period of walking with the footwear, subjects were asked to walk on the treadmill for six trials, each 30s long. Trials were pair-wise random: in three trials, actuators provided subsensory vibration; in the other trials, they did not. Subjects wore reflective markers to track body motion. Stochastic-resonance mechanical stimulation exhibited baseline-dependent effects on spatial stride-to-stride variability in gait, slightly increasing variability in subjects with least baseline variability and providing greater reductions in variability for subjects with greater baseline variability (p<.001). Thus, applying stochastic-resonance mechanical vibrations on the plantar surface of the foot reduces gait variability for subjects with more variable gait. Stochastic-resonance mechanical vibrations may provide an effective intervention for preventing falls in healthy elderly walkers. Published by Elsevier B.V.

  4. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers' Affect.

    PubMed

    Geiser, Christian; Griffin, Daniel; Shiffman, Saul

    2016-01-01

    Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT.

  5. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers' Affect

    PubMed Central

    Geiser, Christian; Griffin, Daniel; Shiffman, Saul

    2016-01-01

    Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT. PMID:27499744

  6. Comprehensive analysis of low-frequency noise variability components in bulk and fully depleted silicon-on-insulator metal–oxide–semiconductor field-effect transistor

    NASA Astrophysics Data System (ADS)

    Maekawa, Keiichi; Makiyama, Hideki; Yamamoto, Yoshiki; Hasegawa, Takumi; Okanishi, Shinobu; Sonoda, Kenichiro; Shinkawata, Hiroki; Yamashita, Tomohiro; Kamohara, Shiro; Yamaguchi, Yasuo

    2018-04-01

    The low-frequency noise (LFN) variability in bulk and fully depleted silicon-on-insulator (FDSOI) metal–oxide–semiconductor field-effect transistor (MOSFET) with silicon on thin box (SOTB) technology was investigated. LFN typically shows a flicker noise component and a signal Lorentzian component by random telegraph noise (RTN). At a weak inversion state, the random dopant fluctuation (RDF) in a channel is strongly affected to not only RTN variability but also flicker noise variability in the bulk MOSFET compared with SOTB MOSFET because of local carrier number fluctuation in the channel. On the other hand, the typical level of LFN in SOTB MOSFET is slightly larger than that in the bulk MOSFET because of an additional interface on the buried oxide layer. However, considering the tailing characteristics of LFN variability, LFN in SOTB MOSFET can be assumed to be smaller than that in the bulk MOSFET, which enables the low-voltage operation of analog circuits.

  7. Approximating prediction uncertainty for random forest regression models

    Treesearch

    John W. Coulston; Christine E. Blinn; Valerie A. Thomas; Randolph H. Wynne

    2016-01-01

    Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as...

  8. Complete convergence of randomly weighted END sequences and its application.

    PubMed

    Li, Penghua; Li, Xiaoqin; Wu, Kehan

    2017-01-01

    We investigate the complete convergence of partial sums of randomly weighted extended negatively dependent (END) random variables. Some results of complete moment convergence, complete convergence and the strong law of large numbers for this dependent structure are obtained. As an application, we study the convergence of the state observers of linear-time-invariant systems. Our results extend the corresponding earlier ones.

  9. Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory

    NASA Astrophysics Data System (ADS)

    Pato, Mauricio P.; Oshanin, Gleb

    2013-03-01

    We study the probability distribution function P(β)n(w) of the Schmidt-like random variable w = x21/(∑j = 1nx2j/n), where xj, (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P(β)n(w) converges to the Marčenko-Pastur form, i.e. is defined as P_{n}^{( \\beta )}(w) \\sim \\sqrt{(4 - w)/w} for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P(β = 2)n(w) which are valid for arbitrary n and analyse their behaviour.

  10. The study of combining Latin Hypercube Sampling method and LU decomposition method (LULHS method) for constructing spatial random field

    NASA Astrophysics Data System (ADS)

    WANG, P. T.

    2015-12-01

    Groundwater modeling requires to assign hydrogeological properties to every numerical grid. Due to the lack of detailed information and the inherent spatial heterogeneity, geological properties can be treated as random variables. Hydrogeological property is assumed to be a multivariate distribution with spatial correlations. By sampling random numbers from a given statistical distribution and assigning a value to each grid, a random field for modeling can be completed. Therefore, statistics sampling plays an important role in the efficiency of modeling procedure. Latin Hypercube Sampling (LHS) is a stratified random sampling procedure that provides an efficient way to sample variables from their multivariate distributions. This study combines the the stratified random procedure from LHS and the simulation by using LU decomposition to form LULHS. Both conditional and unconditional simulations of LULHS were develpoed. The simulation efficiency and spatial correlation of LULHS are compared to the other three different simulation methods. The results show that for the conditional simulation and unconditional simulation, LULHS method is more efficient in terms of computational effort. Less realizations are required to achieve the required statistical accuracy and spatial correlation.

  11. Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.

    ERIC Educational Resources Information Center

    Olson, Jeffery E.

    Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…

  12. Practice schedule and acquisition, retention, and transfer of a throwing task in 6-yr.-old children.

    PubMed

    Granda Vera, Juan; Montilla, Mariano Medina

    2003-06-01

    Earlier studies have raised questions about the usefulness of variable and random practice in learning motor tasks so this study was designed to investigate the effects of contextual interference in young children, and specifically to evaluate the effectiveness of variable or random practice structure in 6-yr.-old boys and girls. Participants on a variable practice schedule showed better performances than those on a blocked schedule. The differences between the two groups were significant in the acquisition, retention, and transfer phases. These results support the hypothesis that contextual interference enhances skill learning. Because the study involved groups of young children in the setting of their normally scheduled physical education class, the practical applications of the results are evident.

  13. Estimating the signal-to-noise ratio of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.

    1988-01-01

    To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random variability or noise (signal-to-noise ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption; random noise comprises sensor noise and intrapixel variability (i.e., variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate while dark current and image methods deflate the SNR. A new procedure is proposed called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semi-variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors.

  14. Effect of randomness in logistic maps

    NASA Astrophysics Data System (ADS)

    Khaleque, Abdul; Sen, Parongama

    2015-01-01

    We study a random logistic map xt+1 = atxt[1 - xt] where at are bounded (q1 ≤ at ≤ q2), random variables independently drawn from a distribution. xt does not show any regular behavior in time. We find that xt shows fully ergodic behavior when the maximum allowed value of at is 4. However , averaged over different realizations reaches a fixed point. For 1 ≤ at ≤ 4, the system shows nonchaotic behavior and the Lyapunov exponent is strongly dependent on the asymmetry of the distribution from which at is drawn. Chaotic behavior is seen to occur beyond a threshold value of q1(q2) when q2(q1) is varied. The most striking result is that the random map is chaotic even when q2 is less than the threshold value 3.5699⋯ at which chaos occurs in the nonrandom map. We also employ a different method in which a different set of random variables are used for the evolution of two initially identical x values, here the chaotic regime exists for all q1 ≠ q2 values.

  15. A general theoretical framework for interpreting patient-reported outcomes estimated from ordinally scaled item responses.

    PubMed

    Massof, Robert W

    2014-10-01

    A simple theoretical framework explains patient responses to items in rating scale questionnaires. Fixed latent variables position each patient and each item on the same linear scale. Item responses are governed by a set of fixed category thresholds, one for each ordinal response category. A patient's item responses are magnitude estimates of the difference between the patient variable and the patient's estimate of the item variable, relative to his/her personally defined response category thresholds. Differences between patients in their personal estimates of the item variable and in their personal choices of category thresholds are represented by random variables added to the corresponding fixed variables. Effects of intervention correspond to changes in the patient variable, the patient's response bias, and/or latent item variables for a subset of items. Intervention effects on patients' item responses were simulated by assuming the random variables are normally distributed with a constant scalar covariance matrix. Rasch analysis was used to estimate latent variables from the simulated responses. The simulations demonstrate that changes in the patient variable and changes in response bias produce indistinguishable effects on item responses and manifest as changes only in the estimated patient variable. Changes in a subset of item variables manifest as intervention-specific differential item functioning and as changes in the estimated person variable that equals the average of changes in the item variables. Simulations demonstrate that intervention-specific differential item functioning produces inefficiencies and inaccuracies in computer adaptive testing. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Improved high-dimensional prediction with Random Forests by the use of co-data.

    PubMed

    Te Beest, Dennis E; Mes, Steven W; Wilting, Saskia M; Brakenhoff, Ruud H; van de Wiel, Mark A

    2017-12-28

    Prediction in high dimensional settings is difficult due to the large number of variables relative to the sample size. We demonstrate how auxiliary 'co-data' can be used to improve the performance of a Random Forest in such a setting. Co-data are incorporated in the Random Forest by replacing the uniform sampling probabilities that are used to draw candidate variables by co-data moderated sampling probabilities. Co-data here are defined as any type information that is available on the variables of the primary data, but does not use its response labels. These moderated sampling probabilities are, inspired by empirical Bayes, learned from the data at hand. We demonstrate the co-data moderated Random Forest (CoRF) with two examples. In the first example we aim to predict the presence of a lymph node metastasis with gene expression data. We demonstrate how a set of external p-values, a gene signature, and the correlation between gene expression and DNA copy number can improve the predictive performance. In the second example we demonstrate how the prediction of cervical (pre-)cancer with methylation data can be improved by including the location of the probe relative to the known CpG islands, the number of CpG sites targeted by a probe, and a set of p-values from a related study. The proposed method is able to utilize auxiliary co-data to improve the performance of a Random Forest.

  17. Test-retest reliability of jump execution variables using mechanography: a comparison of jump protocols.

    PubMed

    Fitzgerald, John S; Johnson, LuAnn; Tomkinson, Grant; Stein, Jesse; Roemmich, James N

    2018-05-01

    Mechanography during the vertical jump may enhance screening and determining mechanistic causes underlying physical performance changes. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the test-retest reliability of eight jump execution variables assessed from mechanography. Thirty-two women (mean±SD: age 20.8 ± 1.3 yr) and 16 men (age 22.1 ± 1.9 yr) attended a familiarization session and two testing sessions, all one week apart. Participants performed two variations of the squat jump with squat depth self-selected and controlled using a goniometer to 80º knee flexion. Test-retest reliability was quantified as the systematic error (using effect size between jumps), random error (using coefficients of variation), and test-retest correlations (using intra-class correlation coefficients). Overall, jump execution variables demonstrated acceptable reliability, evidenced by small systematic errors (mean±95%CI: 0.2 ± 0.07), moderate random errors (mean±95%CI: 17.8 ± 3.7%), and very strong test-retest correlations (range: 0.73-0.97). Differences in random errors between controlled and self-selected protocols were negligible (mean±95%CI: 1.3 ± 2.3%). Jump execution variables demonstrated acceptable reliability, with no meaningful differences between the controlled and self-selected jump protocols. To simplify testing, a self-selected jump protocol can be used to assess force-time variables with negligible impact on measurement error.

  18. What weather variables are important in predicting heat-related mortality? A new application of statistical learning methods

    PubMed Central

    Zhang, Kai; Li, Yun; Schwartz, Joel D.; O'Neill, Marie S.

    2014-01-01

    Hot weather increases risk of mortality. Previous studies used different sets of weather variables to characterize heat stress, resulting in variation in heat-mortality- associations depending on the metric used. We employed a statistical learning method – random forests – to examine which of various weather variables had the greatest impact on heat-related mortality. We compiled a summertime daily weather and mortality counts dataset from four U.S. cities (Chicago, IL; Detroit, MI; Philadelphia, PA; and Phoenix, AZ) from 1998 to 2006. A variety of weather variables were ranked in predicting deviation from typical daily all-cause and cause-specific death counts. Ranks of weather variables varied with city and health outcome. Apparent temperature appeared to be the most important predictor of heat-related mortality for all-cause mortality. Absolute humidity was, on average, most frequently selected one of the top variables for all-cause mortality and seven cause-specific mortality categories. Our analysis affirms that apparent temperature is a reasonable variable for activating heat alerts and warnings, which are commonly based on predictions of total mortality in next few days. Additionally, absolute humidity should be included in future heat-health studies. Finally, random forests can be used to guide choice of weather variables in heat epidemiology studies. PMID:24834832

  19. Using instrumental variables to disentangle treatment and placebo effects in blinded and unblinded randomized clinical trials influenced by unmeasured confounders

    NASA Astrophysics Data System (ADS)

    Chaibub Neto, Elias

    2016-11-01

    Clinical trials traditionally employ blinding as a design mechanism to reduce the influence of placebo effects. In practice, however, it can be difficult or impossible to blind study participants and unblinded trials are common in medical research. Here we show how instrumental variables can be used to quantify and disentangle treatment and placebo effects in randomized clinical trials comparing control and active treatments in the presence of confounders. The key idea is to use randomization to separately manipulate treatment assignment and psychological encouragement conversations/interactions that increase the participants’ desire for improved symptoms. The proposed approach is able to improve the estimation of treatment effects in blinded studies and, most importantly, opens the doors to account for placebo effects in unblinded trials.

  20. A probabilistic model of a porous heat exchanger

    NASA Technical Reports Server (NTRS)

    Agrawal, O. P.; Lin, X. A.

    1995-01-01

    This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.

  1. Bayesian statistics and Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Koch, K. R.

    2018-03-01

    The Bayesian approach allows an intuitive way to derive the methods of statistics. Probability is defined as a measure of the plausibility of statements or propositions. Three rules are sufficient to obtain the laws of probability. If the statements refer to the numerical values of variables, the so-called random variables, univariate and multivariate distributions follow. They lead to the point estimation by which unknown quantities, i.e. unknown parameters, are computed from measurements. The unknown parameters are random variables, they are fixed quantities in traditional statistics which is not founded on Bayes' theorem. Bayesian statistics therefore recommends itself for Monte Carlo methods, which generate random variates from given distributions. Monte Carlo methods, of course, can also be applied in traditional statistics. The unknown parameters, are introduced as functions of the measurements, and the Monte Carlo methods give the covariance matrix and the expectation of these functions. A confidence region is derived where the unknown parameters are situated with a given probability. Following a method of traditional statistics, hypotheses are tested by determining whether a value for an unknown parameter lies inside or outside the confidence region. The error propagation of a random vector by the Monte Carlo methods is presented as an application. If the random vector results from a nonlinearly transformed vector, its covariance matrix and its expectation follow from the Monte Carlo estimate. This saves a considerable amount of derivatives to be computed, and errors of the linearization are avoided. The Monte Carlo method is therefore efficient. If the functions of the measurements are given by a sum of two or more random vectors with different multivariate distributions, the resulting distribution is generally not known. TheMonte Carlo methods are then needed to obtain the covariance matrix and the expectation of the sum.

  2. Personalized contact strategies and predictors of time to survey completion: analysis of two sequential randomized trials.

    PubMed

    Dinglas, Victor D; Huang, Minxuan; Sepulveda, Kristin A; Pinedo, Mariela; Hopkins, Ramona O; Colantuoni, Elizabeth; Needham, Dale M

    2015-01-09

    Effective strategies for contacting and recruiting study participants are critical in conducting clinical research. In this study, we conducted two sequential randomized controlled trials of mail- and telephone-based strategies for contacting and recruiting participants, and evaluated participant-related variables' association with time to survey completion and survey completion rates. Subjects eligible for this study were survivors of acute lung injury who had been previously enrolled in a 12-month observational follow-up study evaluating their physical, cognitive and mental health outcomes, with their last study visit completed at a median of 34 months previously. Eligible subjects were contacted to complete a new research survey as part of two randomized trials, initially using a randomized mail-based contact strategy, followed by a randomized telephone-based contact strategy for non-responders to the mail strategy. Both strategies focused on using either a personalized versus a generic approach. In addition, 18 potentially relevant subject-related variables (e.g., demographics, last known physical and mental health status) were evaluated for association with time to survey completion. Of 308 eligible subjects, 67% completed the survey with a median (IQR) of 3 (2, 5) contact attempts required. There was no significant difference in the time to survey completion for either randomized trial of mail- or phone-based contact strategy. Among all subject-related variables, age ≤40 years and minority race were independently associated with a longer time to survey completion. We found that age ≤40 years and minority race were associated with a longer time to survey completion, but personalized versus generic approaches to mail- and telephone-based contact strategies had no significant effect. Repeating both mail and telephone contact attempts was important for increasing survey completion rate. NCT00719446.

  3. Estimating the efficacy of Alcoholics Anonymous without self-selection bias: An instrumental variables re-analysis of randomized clinical trials

    PubMed Central

    Humphreys, Keith; Blodgett, Janet C.; Wagner, Todd H.

    2014-01-01

    Background Observational studies of Alcoholics Anonymous’ (AA) effectiveness are vulnerable to self-selection bias because individuals choose whether or not to attend AA. The present study therefore employed an innovative statistical technique to derive a selection bias-free estimate of AA’s impact. Methods Six datasets from 5 National Institutes of Health-funded randomized trials (one with two independent parallel arms) of AA facilitation interventions were analyzed using instrumental variables models. Alcohol dependent individuals in one of the datasets (n = 774) were analyzed separately from the rest of sample (n = 1582 individuals pooled from 5 datasets) because of heterogeneity in sample parameters. Randomization itself was used as the instrumental variable. Results Randomization was a good instrument in both samples, effectively predicting increased AA attendance that could not be attributed to self-selection. In five of the six data sets, which were pooled for analysis, increased AA attendance that was attributable to randomization (i.e., free of self-selection bias) was effective at increasing days of abstinence at 3-month (B = .38, p = .001) and 15-month (B = 0.42, p = .04) follow-up. However, in the remaining dataset, in which pre-existing AA attendance was much higher, further increases in AA involvement caused by the randomly assigned facilitation intervention did not affect drinking outcome. Conclusions For most individuals seeking help for alcohol problems, increasing AA attendance leads to short and long term decreases in alcohol consumption that cannot be attributed to self-selection. However, for populations with high pre-existing AA involvement, further increases in AA attendance may have little impact. PMID:25421504

  4. Estimating the efficacy of Alcoholics Anonymous without self-selection bias: an instrumental variables re-analysis of randomized clinical trials.

    PubMed

    Humphreys, Keith; Blodgett, Janet C; Wagner, Todd H

    2014-11-01

    Observational studies of Alcoholics Anonymous' (AA) effectiveness are vulnerable to self-selection bias because individuals choose whether or not to attend AA. The present study, therefore, employed an innovative statistical technique to derive a selection bias-free estimate of AA's impact. Six data sets from 5 National Institutes of Health-funded randomized trials (1 with 2 independent parallel arms) of AA facilitation interventions were analyzed using instrumental variables models. Alcohol-dependent individuals in one of the data sets (n = 774) were analyzed separately from the rest of sample (n = 1,582 individuals pooled from 5 data sets) because of heterogeneity in sample parameters. Randomization itself was used as the instrumental variable. Randomization was a good instrument in both samples, effectively predicting increased AA attendance that could not be attributed to self-selection. In 5 of the 6 data sets, which were pooled for analysis, increased AA attendance that was attributable to randomization (i.e., free of self-selection bias) was effective at increasing days of abstinence at 3-month (B = 0.38, p = 0.001) and 15-month (B = 0.42, p = 0.04) follow-up. However, in the remaining data set, in which preexisting AA attendance was much higher, further increases in AA involvement caused by the randomly assigned facilitation intervention did not affect drinking outcome. For most individuals seeking help for alcohol problems, increasing AA attendance leads to short- and long-term decreases in alcohol consumption that cannot be attributed to self-selection. However, for populations with high preexisting AA involvement, further increases in AA attendance may have little impact. Copyright © 2014 by the Research Society on Alcoholism.

  5. Alternate methods for FAAT S-curve generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, A.M.

    The FAAT (Foreign Asset Assessment Team) assessment methodology attempts to derive a probability of effect as a function of incident field strength. The probability of effect is the likelihood that the stress put on a system exceeds its strength. In the FAAT methodology, both the stress and strength are random variables whose statistical properties are estimated by experts. Each random variable has two components of uncertainty: systematic and random. The systematic uncertainty drives the confidence bounds in the FAAT assessment. Its variance can be reduced by improved information. The variance of the random uncertainty is not reducible. The FAAT methodologymore » uses an assessment code called ARES to generate probability of effect curves (S-curves) at various confidence levels. ARES assumes log normal distributions for all random variables. The S-curves themselves are log normal cumulants associated with the random portion of the uncertainty. The placement of the S-curves depends on confidence bounds. The systematic uncertainty in both stress and strength is usually described by a mode and an upper and lower variance. Such a description is not consistent with the log normal assumption of ARES and an unsatisfactory work around solution is used to obtain the required placement of the S-curves at each confidence level. We have looked into this situation and have found that significant errors are introduced by this work around. These errors are at least several dB-W/cm{sup 2} at all confidence levels, but they are especially bad in the estimate of the median. In this paper, we suggest two alternate solutions for the placement of S-curves. To compare these calculational methods, we have tabulated the common combinations of upper and lower variances and generated the relevant S-curves offsets from the mode difference of stress and strength.« less

  6. A random utility model of delay discounting and its application to people with externalizing psychopathology.

    PubMed

    Dai, Junyi; Gunn, Rachel L; Gerst, Kyle R; Busemeyer, Jerome R; Finn, Peter R

    2016-10-01

    Previous studies have demonstrated that working memory capacity plays a central role in delay discounting in people with externalizing psychopathology. These studies used a hyperbolic discounting model, and its single parameter-a measure of delay discounting-was estimated using the standard method of searching for indifference points between intertemporal options. However, there are several problems with this approach. First, the deterministic perspective on delay discounting underlying the indifference point method might be inappropriate. Second, the estimation procedure using the R2 measure often leads to poor model fit. Third, when parameters are estimated using indifference points only, much of the information collected in a delay discounting decision task is wasted. To overcome these problems, this article proposes a random utility model of delay discounting. The proposed model has 2 parameters, 1 for delay discounting and 1 for choice variability. It was fit to choice data obtained from a recently published data set using both maximum-likelihood and Bayesian parameter estimation. As in previous studies, the delay discounting parameter was significantly associated with both externalizing problems and working memory capacity. Furthermore, choice variability was also found to be significantly associated with both variables. This finding suggests that randomness in decisions may be a mechanism by which externalizing problems and low working memory capacity are associated with poor decision making. The random utility model thus has the advantage of disclosing the role of choice variability, which had been masked by the traditional deterministic model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Packet Randomized Experiments for Eliminating Classes of Confounders

    PubMed Central

    Pavela, Greg; Wiener, Howard; Fontaine, Kevin R.; Fields, David A.; Voss, Jameson D.; Allison, David B.

    2014-01-01

    Background Although randomization is considered essential for causal inference, it is often not possible to randomize in nutrition and obesity research. To address this, we develop a framework for an experimental design—packet randomized experiments (PREs), which improves causal inferences when randomization on a single treatment variable is not possible. This situation arises when subjects are randomly assigned to a condition (such as a new roommate) which varies in one characteristic of interest (such as weight), but also varies across many others. There has been no general discussion of this experimental design, including its strengths, limitations, and statistical properties. As such, researchers are left to develop and apply PREs on an ad hoc basis, limiting its potential to improve causal inferences among nutrition and obesity researchers. Methods We introduce PREs as an intermediary design between randomized controlled trials and observational studies. We review previous research that used the PRE design and describe its application in obesity-related research, including random roommate assignments, heterochronic parabiosis, and the quasi-random assignment of subjects to geographic areas. We then provide a statistical framework to control for potential packet-level confounders not accounted for by randomization. Results PREs have successfully been used to improve causal estimates of the effect of roommates, altitude, and breastfeeding on weight outcomes. When certain assumptions are met, PREs can asymptotically control for packet-level characteristics. This has the potential to statistically estimate the effect of a single treatment even when randomization to a single treatment did not occur. Conclusions Applying PREs to obesity-related research will improve decisions about clinical, public health, and policy actions insofar as it offers researchers new insight into cause and effect relationships among variables. PMID:25444088

  8. CDC6600 subroutine for normal random variables. [RVNORM (RMU, SIG)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amos, D.E.

    1977-04-01

    A value y for a uniform variable on (0,1) is generated and a table of 96-percent points for the (0,1) normal distribution is interpolated for a value of the normal variable x(0,1) on 0.02 less than or equal to y less than or equal to 0.98. For the tails, the inverse normal is computed by a rational Chebyshev approximation in an appropriate variable. Then X = x sigma + ..mu.. gives the X(..mu..,sigma) variable.

  9. Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study

    USDA-ARS?s Scientific Manuscript database

    Objective: To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal. Design: Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable...

  10. Time-variant random interval natural frequency analysis of structures

    NASA Astrophysics Data System (ADS)

    Wu, Binhua; Wu, Di; Gao, Wei; Song, Chongmin

    2018-02-01

    This paper presents a new robust method namely, unified interval Chebyshev-based random perturbation method, to tackle hybrid random interval structural natural frequency problem. In the proposed approach, random perturbation method is implemented to furnish the statistical features (i.e., mean and standard deviation) and Chebyshev surrogate model strategy is incorporated to formulate the statistical information of natural frequency with regards to the interval inputs. The comprehensive analysis framework combines the superiority of both methods in a way that computational cost is dramatically reduced. This presented method is thus capable of investigating the day-to-day based time-variant natural frequency of structures accurately and efficiently under concrete intrinsic creep effect with probabilistic and interval uncertain variables. The extreme bounds of the mean and standard deviation of natural frequency are captured through the embedded optimization strategy within the analysis procedure. Three particularly motivated numerical examples with progressive relationship in perspective of both structure type and uncertainty variables are demonstrated to justify the computational applicability, accuracy and efficiency of the proposed method.

  11. A comparison of three random effects approaches to analyze repeated bounded outcome scores with an application in a stroke revalidation study.

    PubMed

    Molas, Marek; Lesaffre, Emmanuel

    2008-12-30

    Discrete bounded outcome scores (BOS), i.e. discrete measurements that are restricted on a finite interval, often occur in practice. Examples are compliance measures, quality of life measures, etc. In this paper we examine three related random effects approaches to analyze longitudinal studies with a BOS as response: (1) a linear mixed effects (LM) model applied to a logistic transformed modified BOS; (2) a model assuming that the discrete BOS is a coarsened version of a latent random variable, which after a logistic-normal transformation, satisfies an LM model; and (3) a random effects probit model. We consider also the extension whereby the variability of the BOS is allowed to depend on covariates. The methods are contrasted using a simulation study and on a longitudinal project, which documents stroke rehabilitation in four European countries using measures of motor and functional recovery. Copyright 2008 John Wiley & Sons, Ltd.

  12. Multivariate non-normally distributed random variables in climate research - introduction to the copula approach

    NASA Astrophysics Data System (ADS)

    Schölzel, C.; Friederichs, P.

    2008-10-01

    Probability distributions of multivariate random variables are generally more complex compared to their univariate counterparts which is due to a possible nonlinear dependence between the random variables. One approach to this problem is the use of copulas, which have become popular over recent years, especially in fields like econometrics, finance, risk management, or insurance. Since this newly emerging field includes various practices, a controversial discussion, and vast field of literature, it is difficult to get an overview. The aim of this paper is therefore to provide an brief overview of copulas for application in meteorology and climate research. We examine the advantages and disadvantages compared to alternative approaches like e.g. mixture models, summarize the current problem of goodness-of-fit (GOF) tests for copulas, and discuss the connection with multivariate extremes. An application to station data shows the simplicity and the capabilities as well as the limitations of this approach. Observations of daily precipitation and temperature are fitted to a bivariate model and demonstrate, that copulas are valuable complement to the commonly used methods.

  13. Multivariate analysis: greater insights into complex systems

    USDA-ARS?s Scientific Manuscript database

    Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...

  14. Scenarios for Motivating the Learning of Variability: An Example in Finances

    ERIC Educational Resources Information Center

    Cordani, Lisbeth K.

    2013-01-01

    This article explores an example in finances in order to motivate the random variable learning to the very beginners in statistics. In addition, it offers a relationship between standard deviation and range in a very specific situation.

  15. Effect of Escitalopram on Hot Flash Interference: A Randomized, Controlled Trial

    PubMed Central

    Carpenter, Janet S.; Guthrie, Katherine A.; Larson, Joseph C.; Freeman, Ellen W.; Joffe, Hadine; Reed, Susan D.; Ensrud, Kristine E.; LaCroix, Andrea Z.

    2012-01-01

    Objectives To estimate the effect of escitalopram 10–20 mg/day versus placebo for reducing hot flash interference in daily life and understand correlates and predictors of reductions in hot flash interference, a key measure of quality of life. Design Multi-site, randomized, double-blind, placebo-controlled clinical trial. Patients 205 midlife women (46% African-American) who met criteria participated. Setting MsFLASH clinical sites in Boston, Indianapolis, Oakland, and Philadelphia. Intervention After baseline, women were randomized to 1 pill of escitalopram 10 mg/day (n=104) or placebo (n=101) with follow-up at 4- and 8-weeks. At week 4, those not achieving 50% fewer hot flashes were increased to 2 pills daily (20 mg/day or 2 placebo pills). Main outcome measures The Hot Flash Related Daily Interference Scale; Correlates were variables from hot flash diaries; Predictors were baseline demographics, clinical variables, depression, anxiety, sleep quality, and hot flashes. Results Compared to placebo, escitalopram significantly reduced hot flash interference by 6.0 points at week 4 and 3.4 points at week 8 more than placebo (p=0.012). Reductions in hot flash interference correlated with changes in hot flash diary variables. However, baseline variables did not significantly predict reductions in hot flash interference. Conclusions Escitalopram 10–20mg/day for 8 weeks improves women’s quality of life and this benefit did not vary by demographic, clinical, mood, sleep, or hot flash variables. PMID:22480818

  16. Recourse-based facility-location problems in hybrid uncertain environment.

    PubMed

    Wang, Shuming; Watada, Junzo; Pedrycz, Witold

    2010-08-01

    The objective of this paper is to study facility-location problems in the presence of a hybrid uncertain environment involving both randomness and fuzziness. A two-stage fuzzy-random facility-location model with recourse (FR-FLMR) is developed in which both the demands and costs are assumed to be fuzzy-random variables. The bounds of the optimal objective value of the two-stage FR-FLMR are derived. As, in general, the fuzzy-random parameters of the FR-FLMR can be regarded as continuous fuzzy-random variables with an infinite number of realizations, the computation of the recourse requires solving infinite second-stage programming problems. Owing to this requirement, the recourse function cannot be determined analytically, and, hence, the model cannot benefit from the use of techniques of classical mathematical programming. In order to solve the location problems of this nature, we first develop a technique of fuzzy-random simulation to compute the recourse function. The convergence of such simulation scenarios is discussed. In the sequel, we propose a hybrid mutation-based binary ant-colony optimization (MBACO) approach to the two-stage FR-FLMR, which comprises the fuzzy-random simulation and the simplex algorithm. A numerical experiment illustrates the application of the hybrid MBACO algorithm. The comparison shows that the hybrid MBACO finds better solutions than the one using other discrete metaheuristic algorithms, such as binary particle-swarm optimization, genetic algorithm, and tabu search.

  17. Stochastic reduced order models for inverse problems under uncertainty

    PubMed Central

    Warner, James E.; Aquino, Wilkins; Grigoriu, Mircea D.

    2014-01-01

    This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well. PMID:25558115

  18. Epidemics in networks: a master equation approach

    NASA Astrophysics Data System (ADS)

    Cotacallapa, M.; Hase, M. O.

    2016-02-01

    A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.

  19. Design of a factorial experiment with randomization restrictions to assess medical device performance on vascular tissue

    PubMed Central

    2011-01-01

    Background Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. Methods The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the artery during transection (three types); and artery type (two types) resulting in a total of twelve possible treatment combinations. Burst pressures of porcine carotid and renal arteries sealed ex vivo were assigned as the response variable. Results The experimental test matrix was designed and carried out as a split-plot experiment in order to assess the contributions of several variables and their interactions while accounting for randomization restrictions present in the experimental setup. The statistical software package SAS was utilized and PROC MIXED was used to account for the randomization restrictions in the split-plot design. The combination of temperature, solution, and vessel type had a statistically significant impact on seal quality. Conclusions The design and implementation of a split-plot experimental test-matrix provided a mechanism for addressing the existing technical randomization restrictions of ex vivo ultrasonic scalpel performance testing, while preserving the ability to examine the potential effects of independent factors or variables. This method for generating the experimental design and the statistical analyses of the resulting data are adaptable to a wide variety of experimental problems involving large-scale tissue-based studies of medical or experimental device efficacy and performance. PMID:21599963

  20. Benchmarking dairy herd health status using routinely recorded herd summary data.

    PubMed

    Parker Gaddis, K L; Cole, J B; Clay, J S; Maltecca, C

    2016-02-01

    Genetic improvement of dairy cattle health through the use of producer-recorded data has been determined to be feasible. Low estimated heritabilities indicate that genetic progress will be slow. Variation observed in lowly heritable traits can largely be attributed to nongenetic factors, such as the environment. More rapid improvement of dairy cattle health may be attainable if herd health programs incorporate environmental and managerial aspects. More than 1,100 herd characteristics are regularly recorded on farm test-days. We combined these data with producer-recorded health event data, and parametric and nonparametric models were used to benchmark herd and cow health status. Health events were grouped into 3 categories for analyses: mastitis, reproductive, and metabolic. Both herd incidence and individual incidence were used as dependent variables. Models implemented included stepwise logistic regression, support vector machines, and random forests. At both the herd and individual levels, random forest models attained the highest accuracy for predicting health status in all health event categories when evaluated with 10-fold cross-validation. Accuracy (SD) ranged from 0.61 (0.04) to 0.63 (0.04) when using random forest models at the herd level. Accuracy of prediction (SD) at the individual cow level ranged from 0.87 (0.06) to 0.93 (0.001) with random forest models. Highly significant variables and key words from logistic regression and random forest models were also investigated. All models identified several of the same key factors for each health event category, including movement out of the herd, size of the herd, and weather-related variables. We concluded that benchmarking health status using routinely collected herd data is feasible. Nonparametric models were better suited to handle this complex data with numerous variables. These data mining techniques were able to perform prediction of health status and could add evidence to personal experience in herd management. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. A tool for estimating impact of construction quality on life cycle performance of pavements.

    DOT National Transportation Integrated Search

    2005-11-01

    Almost every constructed road develops distresses randomly in different subsections of the pavement. One reason for the random development of distress is the variability in construction quality. As such the goal in this project is to devise a tool th...

  2. Use of adjoint methods in the probabilistic finite element approach to fracture mechanics

    NASA Technical Reports Server (NTRS)

    Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted

    1988-01-01

    The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.

  3. Enhancing sparsity of Hermite polynomial expansions by iterative rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiu; Lei, Huan; Baker, Nathan A.

    2016-02-01

    Compressive sensing has become a powerful addition to uncertainty quantification in recent years. This paper identifies new bases for random variables through linear mappings such that the representation of the quantity of interest is more sparse with new basis functions associated with the new random variables. This sparsity increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. Specifically, we consider rotation- based linear mappings which are determined iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the new method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.

  4. The Effect of Rician Fading and Partial-Band Interference on Noise- Normalized Fast Frequency-Hopped MFSK Receivers

    DTIC Science & Technology

    1994-03-01

    FSK 16. PmCI coot 17. SECURITY CLASSWsAI1OW IL SICUURW CLA$SIICATION SECURITY CLASSIICATION 20. LIMIATION Of ABSTRACT CW REPOW ? OF TiNS PAU OF ...hop k of a symbol when partial-band interference is present is obtained from (11) and the linear transformation of random variables given by (3) as...from (13) and the transformation of random variables indicated by (9) as [16] fzwjm(zwik) = f cTak!X. (Xmk, = ZmkOkI17) f~(0,kdo . -- (,.U(zk’ )fE2

  5. Quantifying and mapping spatial variability in simulated forest plots

    Treesearch

    Gavin R. Corral; Harold E. Burkhart

    2016-01-01

    We used computer simulations to test the efficacy of multivariate statistical methods to detect, quantify, and map spatial variability of forest stands. Simulated stands were developed of regularly-spaced plantations of loblolly pine (Pinus taeda L.). We assumed no affects of competition or mortality, but random variability was added to individual tree characteristics...

  6. Dynamic Quantum Allocation and Swap-Time Variability in Time-Sharing Operating Systems.

    ERIC Educational Resources Information Center

    Bhat, U. Narayan; Nance, Richard E.

    The effects of dynamic quantum allocation and swap-time variability on central processing unit (CPU) behavior are investigated using a model that allows both quantum length and swap-time to be state-dependent random variables. Effective CPU utilization is defined to be the proportion of a CPU busy period that is devoted to program processing, i.e.…

  7. Bias and Bias Correction in Multisite Instrumental Variables Analysis of Heterogeneous Mediator Effects

    ERIC Educational Resources Information Center

    Reardon, Sean F.; Unlu, Fatih; Zhu, Pei; Bloom, Howard S.

    2014-01-01

    We explore the use of instrumental variables (IV) analysis with a multisite randomized trial to estimate the effect of a mediating variable on an outcome in cases where it can be assumed that the observed mediator is the only mechanism linking treatment assignment to outcomes, an assumption known in the IV literature as the exclusion restriction.…

  8. Applied statistics in agricultural, biological, and environmental sciences.

    USDA-ARS?s Scientific Manuscript database

    Agronomic research often involves measurement and collection of multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate statistical methods encompass the simultaneous analysis of all random variables measured on each experimental or s...

  9. Critical Behavior of the Annealed Ising Model on Random Regular Graphs

    NASA Astrophysics Data System (ADS)

    Can, Van Hao

    2017-11-01

    In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.

  10. Exponential gain of randomness certified by quantum contextuality

    NASA Astrophysics Data System (ADS)

    Um, Mark; Zhang, Junhua; Wang, Ye; Wang, Pengfei; Kim, Kihwan

    2017-04-01

    We demonstrate the protocol of exponential gain of randomness certified by quantum contextuality in a trapped ion system. The genuine randomness can be produced by quantum principle and certified by quantum inequalities. Recently, randomness expansion protocols based on inequality of Bell-text and Kochen-Specker (KS) theorem, have been demonstrated. These schemes have been theoretically innovated to exponentially expand the randomness and amplify the randomness from weak initial random seed. Here, we report the experimental evidence of such exponential expansion of randomness. In the experiment, we use three states of a 138Ba + ion between a ground state and two quadrupole states. In the 138Ba + ion system, we do not have detection loophole and we apply a methods to rule out certain hidden variable models that obey a kind of extended noncontextuality.

  11. Statistically extracted fundamental watershed variables for estimating the loads of total nitrogen in small streams

    USGS Publications Warehouse

    Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia

    2016-01-01

    Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.

  12. Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much.

    PubMed

    He, Bryan; De Sa, Christopher; Mitliagkas, Ioannis; Ré, Christopher

    2016-01-01

    Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance.

  13. Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much

    PubMed Central

    He, Bryan; De Sa, Christopher; Mitliagkas, Ioannis; Ré, Christopher

    2016-01-01

    Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance. PMID:28344429

  14. Blood pressure variability of two ambulatory blood pressure monitors.

    PubMed

    Kallem, Radhakrishna R; Meyers, Kevin E C; Cucchiara, Andrew J; Sawinski, Deirdre L; Townsend, Raymond R

    2014-04-01

    There are no data on the evaluation of blood pressure (BP) variability comparing two ambulatory blood pressure monitoring monitors worn at the same time. Hence, this study was carried out to compare variability of BP in healthy untreated adults using two ambulatory BP monitors worn at the same time over an 8-h period. An Accutorr device was used to measure office BP in the dominant and nondominant arms of 24 participants.Simultaneous 8-h BP and heart rate data were measured in 24 untreated adult volunteers by Mobil-O-Graph (worn for an additional 16 h after removing the Spacelabs monitor) and Spacelabs with both random (N=12) and nonrandom (N=12) assignment of each device to the dominant arm. Average real variability (ARV), SD, coefficient of variation, and variation independent of mean were calculated for systolic blood pressure, diastolic blood pressure, mean arterial pressure, and pulse pressure (PP). Whether the Mobil-O-Graph was applied to the dominant or the nondominant arm, the ARV of mean systolic (P=0.003 nonrandomized; P=0.010 randomized) and PP (P=0.009 nonrandomized; P=0.005 randomized) remained significantly higher than the Spacelabs device, whereas the ARV of the mean arterial pressure was not significantly different. The average BP readings and ARVs for systolic blood pressure and PP obtained by the Mobil-O-Graph were considerably higher for the daytime than the night-time. Given the emerging interest in the effect of BP variability on health outcomes, the accuracy of its measurement is important. Our study raises concerns about the accuracy of pooling international ambulatory blood pressure monitoring variability data using different devices.

  15. Continuous-variable phase estimation with unitary and random linear disturbance

    NASA Astrophysics Data System (ADS)

    Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.

    2014-10-01

    We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.

  16. A random walk model for evaluating clinical trials involving serial observations.

    PubMed

    Hopper, J L; Young, G P

    1988-05-01

    For clinical trials where the variable of interest is ordered and categorical (for example, disease severity, symptom scale), and where measurements are taken at intervals, it might be possible to achieve a greater discrimination between the efficacy of treatments by modelling each patient's progress as a stochastic process. The random walk is a simple, easily interpreted model that can be fitted by maximum likelihood using a maximization routine with inference based on standard likelihood theory. In general the model can allow for randomly censored data, incorporates measured prognostic factors, and inference is conditional on the (possibly non-random) allocation of patients. Tests of fit and of model assumptions are proposed, and application to two therapeutic trials of gastroenterological disorders are presented. The model gave measures of the rate of, and variability in, improvement for patients under different treatments. A small simulation study suggested that the model is more powerful than considering the difference between initial and final scores, even when applied to data generated by a mechanism other than the random walk model assumed in the analysis. It thus provides a useful additional statistical method for evaluating clinical trials.

  17. Robust portfolio selection based on asymmetric measures of variability of stock returns

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tan, Shaohua

    2009-10-01

    This paper addresses a new uncertainty set--interval random uncertainty set for robust optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust mean-variance portfolio selection under interval random uncertainty sets in the elements of mean vector and covariance matrix. Numerical experiments with real market data indicate that our approach results in better portfolio performance.

  18. Convergence in High Probability of the Quantum Diffusion in a Random Band Matrix Model

    NASA Astrophysics Data System (ADS)

    Margarint, Vlad

    2018-06-01

    We consider Hermitian random band matrices H in d ≥slant 1 dimensions. The matrix elements H_{xy}, indexed by x, y \\in Λ \\subset Z^d, are independent, uniformly distributed random variable if |x-y| is less than the band width W, and zero otherwise. We update the previous results of the converge of quantum diffusion in a random band matrix model from convergence of the expectation to convergence in high probability. The result is uniformly in the size |Λ| of the matrix.

  19. Computer-Assisted Dieting: Effects of a Randomized Nutrition Intervention

    ERIC Educational Resources Information Center

    Schroder, Kerstin E. E.

    2011-01-01

    Objectives: To compare the effects of a computer-assisted dieting intervention (CAD) with and without self-management training on dieting among 55 overweight and obese adults. Methods: Random assignment to a single-session nutrition intervention (CAD-only) or a combined CAD plus self-management group intervention (CADG). Dependent variables were…

  20. Variable word length encoder reduces TV bandwith requirements

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1965-01-01

    Adaptive variable resolution encoding technique provides an adaptive compression pseudo-random noise signal processor for reducing television bandwidth requirements. Complementary processors are required in both the transmitting and receiving systems. The pretransmission processor is analog-to-digital, while the postreception processor is digital-to-analog.

  1. Probabilistic structural analysis methods for improving Space Shuttle engine reliability

    NASA Technical Reports Server (NTRS)

    Boyce, L.

    1989-01-01

    Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.

  2. Scaling exponents for ordered maxima

    DOE PAGES

    Ben-Naim, E.; Krapivsky, P. L.; Lemons, N. W.

    2015-12-22

    We study extreme value statistics of multiple sequences of random variables. For each sequence with N variables, independently drawn from the same distribution, the running maximum is defined as the largest variable to date. We compare the running maxima of m independent sequences and investigate the probability S N that the maxima are perfectly ordered, that is, the running maximum of the first sequence is always larger than that of the second sequence, which is always larger than the running maximum of the third sequence, and so on. The probability S N is universal: it does not depend on themore » distribution from which the random variables are drawn. For two sequences, S N~N –1/2, and in general, the decay is algebraic, S N~N –σm, for large N. We analytically obtain the exponent σ 3≅1.302931 as root of a transcendental equation. Moreover, the exponents σ m grow with m, and we show that σ m~m for large m.« less

  3. Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships.

    PubMed

    Rassen, Jeremy A; Brookhart, M Alan; Glynn, Robert J; Mittleman, Murray A; Schneeweiss, Sebastian

    2009-12-01

    The gold standard of study design for treatment evaluation is widely acknowledged to be the randomized controlled trial (RCT). Trials allow for the estimation of causal effect by randomly assigning participants either to an intervention or comparison group; through the assumption of "exchangeability" between groups, comparing the outcomes will yield an estimate of causal effect. In the many cases where RCTs are impractical or unethical, instrumental variable (IV) analysis offers a nonexperimental alternative based on many of the same principles. IV analysis relies on finding a naturally varying phenomenon, related to treatment but not to outcome except through the effect of treatment itself, and then using this phenomenon as a proxy for the confounded treatment variable. This article demonstrates how IV analysis arises from an analogous but potentially impossible RCT design, and outlines the assumptions necessary for valid estimation. It gives examples of instruments used in clinical epidemiology and concludes with an outline on estimation of effects.

  4. Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships

    PubMed Central

    Rassen, Jeremy A.; Brookhart, M. Alan; Glynn, Robert J.; Mittleman, Murray A.; Schneeweiss, Sebastian

    2010-01-01

    The gold standard of study design for treatment evaluation is widely acknowledged to be the randomized controlled trial (RCT). Trials allow for the estimation of causal effect by randomly assigning participants either to an intervention or comparison group; through the assumption of “exchangeability” between groups, comparing the outcomes will yield an estimate of causal effect. In the many cases where RCTs are impractical or unethical, instrumental variable (IV) analysis offers a nonexperimental alternative based on many of the same principles. IV analysis relies on finding a naturally varying phenomenon, related to treatment but not to outcome except through the effect of treatment itself, and then using this phenomenon as a proxy for the confounded treatment variable. This article demonstrates how IV analysis arises from an analogous but potentially impossible RCT design, and outlines the assumptions necessary for valid estimation. It gives examples of instruments used in clinical epidemiology and concludes with an outline on estimation of effects. PMID:19356901

  5. Hierarchical analysis of cardiovascular risk factors in relation to the development of acute coronary syndromes, in different parts of Greece: the CARDIO2000 study.

    PubMed

    Panagiotakos, Demosthenes B; Pitsavos, Christos; Chrysohoou, Christine; Stefanadis, Christodoulos

    2008-01-01

    During 2000 to 2002, 700 men (59 +/- 10 years) and 148 women (65 +/- 9 years) patients with first event of an ACS were randomly selected from cardiology clinics of Greek regions. Afterwards, 1078 population-based, age-matched and sex-matched controls were randomly selected from the same hospitals. The frequency ratio between men and women in the case series of patients was about 4:1, in both south and north Greek areas. Hierarchical classification analysis showed that for north Greek areas family history of coronary heart disease, hypercholesterolemia, hypertension, diabetes (explained variability 35%), and less significantly, dietary habits, smoking, body mass index, and physical activity status (explained variability 4%) were associated with the development of ACS, whereas for south Greek areas hypercholesterolemia, family history of coronary heart disease, diabetes, smoking, hypertension, dietary habits, physical activity (explained variability 34%), and less significantly body mass index (explained variability <1%), were associated with the development of the disease.

  6. A new approach used to explore associations of current Ambrosia pollen levels with current and past meteorological elements

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor

    2015-09-01

    The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season.

  7. A new approach used to explore associations of current Ambrosia pollen levels with current and past meteorological elements.

    PubMed

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor

    2015-09-01

    The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season.

  8. Phenomenological picture of fluctuations in branching random walks

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.; Munier, S.

    2014-10-01

    We propose a picture of the fluctuations in branching random walks, which leads to predictions for the distribution of a random variable that characterizes the position of the bulk of the particles. We also interpret the 1 /√{t } correction to the average position of the rightmost particle of a branching random walk for large times t ≫1 , computed by Ebert and Van Saarloos, as fluctuations on top of the mean-field approximation of this process with a Brunet-Derrida cutoff at the tip that simulates discreteness. Our analytical formulas successfully compare to numerical simulations of a particular model of a branching random walk.

  9. Selection of Common Items as an Unrecognized Source of Variability in Test Equating: A Bootstrap Approximation Assuming Random Sampling of Common Items

    ERIC Educational Resources Information Center

    Michaelides, Michalis P.; Haertel, Edward H.

    2014-01-01

    The standard error of equating quantifies the variability in the estimation of an equating function. Because common items for deriving equated scores are treated as fixed, the only source of variability typically considered arises from the estimation of common-item parameters from responses of samples of examinees. Use of alternative, equally…

  10. WWC Review of the Report "Learning the Control of Variables Strategy in Higher and Lower Achieving Classrooms: Contributions of Explicit Instruction and Experimentation"

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    The study reviewed in this paper examined three separate methods for teaching the "control of variables strategy" ("CVS"), a procedure for conducting a science experiment so that only one variable is tested and all others are held constant, or "controlled." The study analyzed data from a randomized controlled trial of…

  11. Variability And Uncertainty Analysis Of Contaminant Transport Model Using Fuzzy Latin Hypercube Sampling Technique

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Nayagum, D.; Thornton, S.; Banwart, S.; Schuhmacher2, M.; Lerner, D.

    2006-12-01

    Characterization of uncertainty associated with groundwater quality models is often of critical importance, as for example in cases where environmental models are employed in risk assessment. Insufficient data, inherent variability and estimation errors of environmental model parameters introduce uncertainty into model predictions. However, uncertainty analysis using conventional methods such as standard Monte Carlo sampling (MCS) may not be efficient, or even suitable, for complex, computationally demanding models and involving different nature of parametric variability and uncertainty. General MCS or variant of MCS such as Latin Hypercube Sampling (LHS) assumes variability and uncertainty as a single random entity and the generated samples are treated as crisp assuming vagueness as randomness. Also when the models are used as purely predictive tools, uncertainty and variability lead to the need for assessment of the plausible range of model outputs. An improved systematic variability and uncertainty analysis can provide insight into the level of confidence in model estimates, and can aid in assessing how various possible model estimates should be weighed. The present study aims to introduce, Fuzzy Latin Hypercube Sampling (FLHS), a hybrid approach of incorporating cognitive and noncognitive uncertainties. The noncognitive uncertainty such as physical randomness, statistical uncertainty due to limited information, etc can be described by its own probability density function (PDF); whereas the cognitive uncertainty such estimation error etc can be described by the membership function for its fuzziness and confidence interval by ?-cuts. An important property of this theory is its ability to merge inexact generated data of LHS approach to increase the quality of information. The FLHS technique ensures that the entire range of each variable is sampled with proper incorporation of uncertainty and variability. A fuzzified statistical summary of the model results will produce indices of sensitivity and uncertainty that relate the effects of heterogeneity and uncertainty of input variables to model predictions. The feasibility of the method is validated to assess uncertainty propagation of parameter values for estimation of the contamination level of a drinking water supply well due to transport of dissolved phenolics from a contaminated site in the UK.

  12. A Geostatistical Scaling Approach for the Generation of Non Gaussian Random Variables and Increments

    NASA Astrophysics Data System (ADS)

    Guadagnini, Alberto; Neuman, Shlomo P.; Riva, Monica; Panzeri, Marco

    2016-04-01

    We address manifestations of non-Gaussian statistical scaling displayed by many variables, Y, and their (spatial or temporal) increments. Evidence of such behavior includes symmetry of increment distributions at all separation distances (or lags) with sharp peaks and heavy tails which tend to decay asymptotically as lag increases. Variables reported to exhibit such distributions include quantities of direct relevance to hydrogeological sciences, e.g. porosity, log permeability, electrical resistivity, soil and sediment texture, sediment transport rate, rainfall, measured and simulated turbulent fluid velocity, and other. No model known to us captures all of the documented statistical scaling behaviors in a unique and consistent manner. We recently proposed a generalized sub-Gaussian model (GSG) which reconciles within a unique theoretical framework the probability distributions of a target variable and its increments. We presented an algorithm to generate unconditional random realizations of statistically isotropic or anisotropic GSG functions and illustrated it in two dimensions. In this context, we demonstrated the feasibility of estimating all key parameters of a GSG model underlying a single realization of Y by analyzing jointly spatial moments of Y data and corresponding increments. Here, we extend our GSG model to account for noisy measurements of Y at a discrete set of points in space (or time), present an algorithm to generate conditional realizations of corresponding isotropic or anisotropic random field, and explore them on one- and two-dimensional synthetic test cases.

  13. Reducing random measurement error in assessing postural load on the back in epidemiologic surveys.

    PubMed

    Burdorf, A

    1995-02-01

    The goal of this study was to design strategies to assess postural load on the back in occupational epidemiology by taking into account the reliability of measurement methods and the variability of exposure among the workers under study. Intermethod reliability studies were evaluated to estimate the systematic bias (accuracy) and random measurement error (precision) of various methods to assess postural load on the back. Intramethod reliability studies were reviewed to estimate random variability of back load over time. Intermethod surveys have shown that questionnaires have a moderate reliability for gross activities such as sitting, whereas duration of trunk flexion and rotation should be assessed by observation methods or inclinometers. Intramethod surveys indicate that exposure variability can markedly affect the reliability of estimates of back load if the estimates are based upon a single measurement over a certain time period. Equations have been presented to evaluate various study designs according to the reliability of the measurement method, the optimum allocation of the number of repeated measurements per subject, and the number of subjects in the study. Prior to a large epidemiologic study, an exposure-oriented survey should be conducted to evaluate the performance of measurement instruments and to estimate sources of variability for back load. The strategy for assessing back load can be optimized by balancing the number of workers under study and the number of repeated measurements per worker.

  14. The relationships of 'ecstasy' (MDMA) and cannabis use to impaired executive inhibition and access to semantic long-term memory.

    PubMed

    Murphy, Philip N; Erwin, Philip G; Maciver, Linda; Fisk, John E; Larkin, Derek; Wareing, Michelle; Montgomery, Catharine; Hilton, Joanne; Tames, Frank J; Bradley, Belinda; Yanulevitch, Kate; Ralley, Richard

    2011-10-01

    This study aimed to examine the relationship between the consumption of ecstasy (3,4-methylenedioxymethamphetamine (MDMA)) and cannabis, and performance on the random letter generation task which generates dependent variables drawing upon executive inhibition and access to semantic long-term memory (LTM). The participant group was a between-participant independent variable with users of both ecstasy and cannabis (E/C group, n = 15), users of cannabis but not ecstasy (CA group, n = 13) and controls with no exposure to these drugs (CO group, n = 12). Dependent variables measured violations of randomness: number of repeat sequences, number of alphabetical sequences (both drawing upon inhibition) and redundancy (drawing upon access to semantic LTM). E/C participants showed significantly higher redundancy than CO participants but did not differ from CA participants. There were no significant effects for the other dependent variables. A regression model comprising intelligence measures and estimates of ecstasy and cannabis consumption predicted redundancy scores, but only cannabis consumption contributed significantly to this prediction. Impaired access to semantic LTM may be related to cannabis consumption, although the involvement of ecstasy and other stimulant drugs cannot be excluded here. Executive inhibitory functioning, as measured by the random letter generation task, is unrelated to ecstasy and cannabis consumption. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Stochastical analysis of surfactant-enhanced remediation of denser-than-water nonaqueous phase liquid (DNAPL)-contaminated soils.

    PubMed

    Zhang, Renduo; Wood, A Lynn; Enfield, Carl G; Jeong, Seung-Woo

    2003-01-01

    Stochastical analysis was performed to assess the effect of soil spatial variability and heterogeneity on the recovery of denser-than-water nonaqueous phase liquids (DNAPL) during the process of surfactant-enhanced remediation. UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model, was used to simulate water flow and chemical transport processes in heterogeneous soils. Soil spatial variability and heterogeneity were accounted for by considering the soil permeability as a spatial random variable and a geostatistical method was used to generate random distributions of the permeability. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL transport in heterogeneous media and stochastical analysis was conducted based on the simulated results. From the analysis, an exponential relationship between average DNAPL recovery and soil heterogeneity (defined as the standard deviation of log of permeability) was established with a coefficient of determination (r2) of 0.991, which indicated that DNAPL recovery decreased exponentially with increasing soil heterogeneity. Temporal and spatial distributions of relative saturations in the water phase, DNAPL, and microemulsion in heterogeneous soils were compared with those in homogeneous soils and related to soil heterogeneity. Cleanup time and uncertainty to determine DNAPL distributions in heterogeneous soils were also quantified. The study would provide useful information to design strategies for the characterization and remediation of nonaqueous phase liquid-contaminated soils with spatial variability and heterogeneity.

  16. A stochastic-geometric model of soil variation in Pleistocene patterned ground

    NASA Astrophysics Data System (ADS)

    Lark, Murray; Meerschman, Eef; Van Meirvenne, Marc

    2013-04-01

    In this paper we examine the spatial variability of soil in parent material with complex spatial structure which arises from complex non-linear geomorphic processes. We show that this variability can be better-modelled by a stochastic-geometric model than by a standard Gaussian random field. The benefits of the new model are seen in the reproduction of features of the target variable which influence processes like water movement and pollutant dispersal. Complex non-linear processes in the soil give rise to properties with non-Gaussian distributions. Even under a transformation to approximate marginal normality, such variables may have a more complex spatial structure than the Gaussian random field model of geostatistics can accommodate. In particular the extent to which extreme values of the variable are connected in spatially coherent regions may be misrepresented. As a result, for example, geostatistical simulation generally fails to reproduce the pathways for preferential flow in an environment where coarse infill of former fluvial channels or coarse alluvium of braided streams creates pathways for rapid movement of water. Multiple point geostatistics has been developed to deal with this problem. Multiple point methods proceed by sampling from a set of training images which can be assumed to reproduce the non-Gaussian behaviour of the target variable. The challenge is to identify appropriate sources of such images. In this paper we consider a mode of soil variation in which the soil varies continuously, exhibiting short-range lateral trends induced by local effects of the factors of soil formation which vary across the region of interest in an unpredictable way. The trends in soil variation are therefore only apparent locally, and the soil variation at regional scale appears random. We propose a stochastic-geometric model for this mode of soil variation called the Continuous Local Trend (CLT) model. We consider a case study of soil formed in relict patterned ground with pronounced lateral textural variations arising from the presence of infilled ice-wedges of Pleistocene origin. We show how knowledge of the pedogenetic processes in this environment, along with some simple descriptive statistics, can be used to select and fit a CLT model for the apparent electrical conductivity (ECa) of the soil. We use the model to simulate realizations of the CLT process, and compare these with realizations of a fitted Gaussian random field. We show how statistics that summarize the spatial coherence of regions with small values of ECa, which are expected to have coarse texture and so larger saturated hydraulic conductivity, are better reproduced by the CLT model than by the Gaussian random field. This suggests that the CLT model could be used to generate an unlimited supply of training images to allow multiple point geostatistical simulation or prediction of this or similar variables.

  17. Solution of the finite Milne problem in stochastic media with RVT Technique

    NASA Astrophysics Data System (ADS)

    Slama, Howida; El-Bedwhey, Nabila A.; El-Depsy, Alia; Selim, Mustafa M.

    2017-12-01

    This paper presents the solution to the Milne problem in the steady state with isotropic scattering phase function. The properties of the medium are considered as stochastic ones with Gaussian or exponential distributions and hence the problem treated as a stochastic integro-differential equation. To get an explicit form for the radiant energy density, the linear extrapolation distance, reflectivity and transmissivity in the deterministic case the problem is solved using the Pomraning-Eddington method. The obtained solution is found to be dependent on the optical space variable and thickness of the medium which are considered as random variables. The random variable transformation (RVT) technique is used to find the first probability density function (1-PDF) of the solution process. Then the stochastic linear extrapolation distance, reflectivity and transmissivity are calculated. For illustration, numerical results with conclusions are provided.

  18. Satisfiability Test with Synchronous Simulated Annealing on the Fujitsu AP1000 Massively-Parallel Multiprocessor

    NASA Technical Reports Server (NTRS)

    Sohn, Andrew; Biswas, Rupak

    1996-01-01

    Solving the hard Satisfiability Problem is time consuming even for modest-sized problem instances. Solving the Random L-SAT Problem is especially difficult due to the ratio of clauses to variables. This report presents a parallel synchronous simulated annealing method for solving the Random L-SAT Problem on a large-scale distributed-memory multiprocessor. In particular, we use a parallel synchronous simulated annealing procedure, called Generalized Speculative Computation, which guarantees the same decision sequence as sequential simulated annealing. To demonstrate the performance of the parallel method, we have selected problem instances varying in size from 100-variables/425-clauses to 5000-variables/21,250-clauses. Experimental results on the AP1000 multiprocessor indicate that our approach can satisfy 99.9 percent of the clauses while giving almost a 70-fold speedup on 500 processors.

  19. Performance of time-varying predictors in multilevel models under an assumption of fixed or random effects.

    PubMed

    Baird, Rachel; Maxwell, Scott E

    2016-06-01

    Time-varying predictors in multilevel models are a useful tool for longitudinal research, whether they are the research variable of interest or they are controlling for variance to allow greater power for other variables. However, standard recommendations to fix the effect of time-varying predictors may make an assumption that is unlikely to hold in reality and may influence results. A simulation study illustrates that treating the time-varying predictor as fixed may allow analyses to converge, but the analyses have poor coverage of the true fixed effect when the time-varying predictor has a random effect in reality. A second simulation study shows that treating the time-varying predictor as random may have poor convergence, except when allowing negative variance estimates. Although negative variance estimates are uninterpretable, results of the simulation show that estimates of the fixed effect of the time-varying predictor are as accurate for these cases as for cases with positive variance estimates, and that treating the time-varying predictor as random and allowing negative variance estimates performs well whether the time-varying predictor is fixed or random in reality. Because of the difficulty of interpreting negative variance estimates, 2 procedures are suggested for selection between fixed-effect and random-effect models: comparing between fixed-effect and constrained random-effect models with a likelihood ratio test or fitting a fixed-effect model when an unconstrained random-effect model produces negative variance estimates. The performance of these 2 procedures is compared. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Effects of field variables on infield biomass bales aggregation strategies

    USDA-ARS?s Scientific Manuscript database

    Infield aggregation of bales, an essential logistics operation of clearing the field for subsequent cropping, is influenced by several field variables, such as field shape, area, randomness on bale layout, biomass yield per unit area, bale row spacing, number of bales handled simultaneously, collect...

  1. Random forest regression modelling for forest aboveground biomass estimation using RISAT-1 PolSAR and terrestrial LiDAR data

    NASA Astrophysics Data System (ADS)

    Mangla, Rohit; Kumar, Shashi; Nandy, Subrata

    2016-05-01

    SAR and LiDAR remote sensing have already shown the potential of active sensors for forest parameter retrieval. SAR sensor in its fully polarimetric mode has an advantage to retrieve scattering property of different component of forest structure and LiDAR has the capability to measure structural information with very high accuracy. This study was focused on retrieval of forest aboveground biomass (AGB) using Terrestrial Laser Scanner (TLS) based point clouds and scattering property of forest vegetation obtained from decomposition modelling of RISAT-1 fully polarimetric SAR data. TLS data was acquired for 14 plots of Timli forest range, Uttarakhand, India. The forest area is dominated by Sal trees and random sampling with plot size of 0.1 ha (31.62m*31.62m) was adopted for TLS and field data collection. RISAT-1 data was processed to retrieve SAR data based variables and TLS point clouds based 3D imaging was done to retrieve LiDAR based variables. Surface scattering, double-bounce scattering, volume scattering, helix and wire scattering were the SAR based variables retrieved from polarimetric decomposition. Tree heights and stem diameters were used as LiDAR based variables retrieved from single tree vertical height and least square circle fit methods respectively. All the variables obtained for forest plots were used as an input in a machine learning based Random Forest Regression Model, which was developed in this study for forest AGB estimation. Modelled output for forest AGB showed reliable accuracy (RMSE = 27.68 t/ha) and a good coefficient of determination (0.63) was obtained through the linear regression between modelled AGB and field-estimated AGB. The sensitivity analysis showed that the model was more sensitive for the major contributed variables (stem diameter and volume scattering) and these variables were measured from two different remote sensing techniques. This study strongly recommends the integration of SAR and LiDAR data for forest AGB estimation.

  2. A generator for unique quantum random numbers based on vacuum states

    NASA Astrophysics Data System (ADS)

    Gabriel, Christian; Wittmann, Christoffer; Sych, Denis; Dong, Ruifang; Mauerer, Wolfgang; Andersen, Ulrik L.; Marquardt, Christoph; Leuchs, Gerd

    2010-10-01

    Random numbers are a valuable component in diverse applications that range from simulations over gambling to cryptography. The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational unpredictability of quantum mechanics. However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique. Here we present a simple experimental setup based on homodyne measurements that uses the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably unique randomness, are important attributes for achieving high-reliability, high-speed and low-cost quantum random number generators.

  3. Global solutions to random 3D vorticity equations for small initial data

    NASA Astrophysics Data System (ADS)

    Barbu, Viorel; Röckner, Michael

    2017-11-01

    One proves the existence and uniqueness in (Lp (R3)) 3, 3/2 < p < 2, of a global mild solution to random vorticity equations associated to stochastic 3D Navier-Stokes equations with linear multiplicative Gaussian noise of convolution type, for sufficiently small initial vorticity. This resembles some earlier deterministic results of T. Kato [16] and are obtained by treating the equation in vorticity form and reducing the latter to a random nonlinear parabolic equation. The solution has maximal regularity in the spatial variables and is weakly continuous in (L3 ∩L 3p/4p - 6)3 with respect to the time variable. Furthermore, we obtain the pathwise continuous dependence of solutions with respect to the initial data. In particular, one gets a locally unique solution of 3D stochastic Navier-Stokes equation in vorticity form up to some explosion stopping time τ adapted to the Brownian motion.

  4. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1977-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  5. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1978-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  6. Research on electricity consumption forecast based on mutual information and random forests algorithm

    NASA Astrophysics Data System (ADS)

    Shi, Jing; Shi, Yunli; Tan, Jian; Zhu, Lei; Li, Hu

    2018-02-01

    Traditional power forecasting models cannot efficiently take various factors into account, neither to identify the relation factors. In this paper, the mutual information in information theory and the artificial intelligence random forests algorithm are introduced into the medium and long-term electricity demand prediction. Mutual information can identify the high relation factors based on the value of average mutual information between a variety of variables and electricity demand, different industries may be highly associated with different variables. The random forests algorithm was used for building the different industries forecasting models according to the different correlation factors. The data of electricity consumption in Jiangsu Province is taken as a practical example, and the above methods are compared with the methods without regard to mutual information and the industries. The simulation results show that the above method is scientific, effective, and can provide higher prediction accuracy.

  7. Demythologizing sex education in Oklahoma: an attitudinal study.

    PubMed

    Turner, N H

    1983-08-01

    A randomized study was conducted to determine the distribution of attitudes among Oklahomans of voting age toward sex education and to analyze the relationship of demographic, sociocultural, and attitudinal factors. The state was stratified into six regions. Forty-five percent of the sample lived in urban areas, and 55% in rural areas. Random digit dialing and random selection within households were utilized to ensure a representative sample of the population. Eighty percent of the sample was found to be favorable toward sex education in the public schools, while 20% was unfavorable. A majority of respondents in all religious groups including "fundamentalists" were favorable. Seventeen variables were found to be significant in the univariate analysis of the data; eight were not significant. In a multivariate analysis, three variables, age, Protestant denominational type and female employment, were shown to have predictive ability in determining favorability and unfavorability. Implications for building community support for sex education also are discussed.

  8. Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory

    NASA Astrophysics Data System (ADS)

    Alvarez, Diego A.; Uribe, Felipe; Hurtado, Jorge E.

    2018-02-01

    Random set theory is a general framework which comprises uncertainty in the form of probability boxes, possibility distributions, cumulative distribution functions, Dempster-Shafer structures or intervals; in addition, the dependence between the input variables can be expressed using copulas. In this paper, the lower and upper bounds on the probability of failure are calculated by means of random set theory. In order to accelerate the calculation, a well-known and efficient probability-based reliability method known as subset simulation is employed. This method is especially useful for finding small failure probabilities in both low- and high-dimensional spaces, disjoint failure domains and nonlinear limit state functions. The proposed methodology represents a drastic reduction of the computational labor implied by plain Monte Carlo simulation for problems defined with a mixture of representations for the input variables, while delivering similar results. Numerical examples illustrate the efficiency of the proposed approach.

  9. Performance analysis of MIMO wireless optical communication system with Q-ary PPM over correlated log-normal fading channel

    NASA Astrophysics Data System (ADS)

    Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua

    2018-06-01

    The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.

  10. A systematic examination of a random sampling strategy for source apportionment calculations.

    PubMed

    Andersson, August

    2011-12-15

    Estimating the relative contributions from multiple potential sources of a specific component in a mixed environmental matrix is a general challenge in diverse fields such as atmospheric, environmental and earth sciences. Perhaps the most common strategy for tackling such problems is by setting up a system of linear equations for the fractional influence of different sources. Even though an algebraic solution of this approach is possible for the common situation with N+1 sources and N source markers, such methodology introduces a bias, since it is implicitly assumed that the calculated fractions and the corresponding uncertainties are independent of the variability of the source distributions. Here, a random sampling (RS) strategy for accounting for such statistical bias is examined by investigating rationally designed synthetic data sets. This random sampling methodology is found to be robust and accurate with respect to reproducibility and predictability. This method is also compared to a numerical integration solution for a two-source situation where source variability also is included. A general observation from this examination is that the variability of the source profiles not only affects the calculated precision but also the mean/median source contributions. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Scaling of Device Variability and Subthreshold Swing in Ballistic Carbon Nanotube Transistors

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Tersoff, Jerry; Han, Shu-Jen; Penumatcha, Ashish V.

    2015-08-01

    In field-effect transistors, the inherent randomness of dopants and other charges is a major cause of device-to-device variability. For a quasi-one-dimensional device such as carbon nanotube transistors, even a single charge can drastically change the performance, making this a critical issue for their adoption as a practical technology. Here we calculate the effect of the random charges at the gate-oxide surface in ballistic carbon nanotube transistors, finding good agreement with the variability statistics in recent experiments. A combination of experimental and simulation results further reveals that these random charges are also a major factor limiting the subthreshold swing for nanotube transistors fabricated on thin gate dielectrics. We then establish that the scaling of the nanotube device uniformity with the gate dielectric, fixed-charge density, and device dimension is qualitatively different from conventional silicon transistors, reflecting the very different device physics of a ballistic transistor with a quasi-one-dimensional channel. The combination of gate-oxide scaling and improved control of fixed-charge density should provide the uniformity needed for large-scale integration of such novel one-dimensional transistors even at extremely scaled device dimensions.

  12. Verifying and Validating Simulation Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemez, Francois M.

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statisticalmore » sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.« less

  13. Predicting Outcome in Computerized Cognitive Behavioral Therapy for Depression in Primary Care: A Randomized Trial

    ERIC Educational Resources Information Center

    de Graaf, L. Esther; Hollon, Steven D.; Huibers, Marcus J. H.

    2010-01-01

    Objective: To explore pretreatment and short-term improvement variables as potential moderators and predictors of 12-month follow-up outcome of unsupported online computerized cognitive behavioral therapy (CCBT), usual care, and CCBT combined with usual care for depression. Method: Three hundred and three depressed patients were randomly allocated…

  14. Mixing Methods in Randomized Controlled Trials (RCTs): Validation, Contextualization, Triangulation, and Control

    ERIC Educational Resources Information Center

    Spillane, James P.; Pareja, Amber Stitziel; Dorner, Lisa; Barnes, Carol; May, Henry; Huff, Jason; Camburn, Eric

    2010-01-01

    In this paper we described how we mixed research approaches in a Randomized Control Trial (RCT) of a school principal professional development program. Using examples from our study we illustrate how combining qualitative and quantitative data can address some key challenges from validating instruments and measures of mediator variables to…

  15. Randomized Item Response Theory Models

    ERIC Educational Resources Information Center

    Fox, Jean-Paul

    2005-01-01

    The randomized response (RR) technique is often used to obtain answers on sensitive questions. A new method is developed to measure latent variables using the RR technique because direct questioning leads to biased results. Within the RR technique is the probability of the true response modeled by an item response theory (IRT) model. The RR…

  16. The Not-so-Random Drunkard's Walk

    ERIC Educational Resources Information Center

    Ehrhardt, George

    2013-01-01

    This dataset contains the results of a quasi-experiment, testing Karl Pearson's "drunkard's walk" analogy for an abstract random walk. Inspired by the alternate hypothesis that drunkards stumble to the side of their dominant hand, it includes data on intoxicated test subjects walking a 10' line. Variables include: the…

  17. Scaling Limit of Symmetric Random Walk in High-Contrast Periodic Environment

    NASA Astrophysics Data System (ADS)

    Piatnitski, A.; Zhizhina, E.

    2017-11-01

    The paper deals with the asymptotic properties of a symmetric random walk in a high contrast periodic medium in Z^d, d≥1. From the existing homogenization results it follows that under diffusive scaling the limit behaviour of this random walk need not be Markovian. The goal of this work is to show that if in addition to the coordinate of the random walk in Z^d we introduce an extra variable that characterizes the position of the random walk inside the period then the limit dynamics of this two-component process is Markov. We describe the limit process and observe that the components of the limit process are coupled. We also prove the convergence in the path space for the said random walk.

  18. Distributed Synchronization in Networks of Agent Systems With Nonlinearities and Random Switchings.

    PubMed

    Tang, Yang; Gao, Huijun; Zou, Wei; Kurths, Jürgen

    2013-02-01

    In this paper, the distributed synchronization problem of networks of agent systems with controllers and nonlinearities subject to Bernoulli switchings is investigated. Controllers and adaptive updating laws injected in each vertex of networks depend on the state information of its neighborhood. Three sets of Bernoulli stochastic variables are introduced to describe the occurrence probabilities of distributed adaptive controllers, updating laws and nonlinearities, respectively. By the Lyapunov functions method, we show that the distributed synchronization of networks composed of agent systems with multiple randomly occurring nonlinearities, multiple randomly occurring controllers, and multiple randomly occurring updating laws can be achieved in mean square under certain criteria. The conditions derived in this paper can be solved by semi-definite programming. Moreover, by mathematical analysis, we find that the coupling strength, the probabilities of the Bernoulli stochastic variables, and the form of nonlinearities have great impacts on the convergence speed and the terminal control strength. The synchronization criteria and the observed phenomena are demonstrated by several numerical simulation examples. In addition, the advantage of distributed adaptive controllers over conventional adaptive controllers is illustrated.

  19. Multilevel covariance regression with correlated random effects in the mean and variance structure.

    PubMed

    Quintero, Adrian; Lesaffre, Emmanuel

    2017-09-01

    Multivariate regression methods generally assume a constant covariance matrix for the observations. In case a heteroscedastic model is needed, the parametric and nonparametric covariance regression approaches can be restrictive in the literature. We propose a multilevel regression model for the mean and covariance structure, including random intercepts in both components and allowing for correlation between them. The implied conditional covariance function can be different across clusters as a result of the random effect in the variance structure. In addition, allowing for correlation between the random intercepts in the mean and covariance makes the model convenient for skewedly distributed responses. Furthermore, it permits us to analyse directly the relation between the mean response level and the variability in each cluster. Parameter estimation is carried out via Gibbs sampling. We compare the performance of our model to other covariance modelling approaches in a simulation study. Finally, the proposed model is applied to the RN4CAST dataset to identify the variables that impact burnout of nurses in Belgium. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An uncertainty model of acoustic metamaterials with random parameters

    NASA Astrophysics Data System (ADS)

    He, Z. C.; Hu, J. Y.; Li, Eric

    2018-01-01

    Acoustic metamaterials (AMs) are man-made composite materials. However, the random uncertainties are unavoidable in the application of AMs due to manufacturing and material errors which lead to the variance of the physical responses of AMs. In this paper, an uncertainty model based on the change of variable perturbation stochastic finite element method (CVPS-FEM) is formulated to predict the probability density functions of physical responses of AMs with random parameters. Three types of physical responses including the band structure, mode shapes and frequency response function of AMs are studied in the uncertainty model, which is of great interest in the design of AMs. In this computation, the physical responses of stochastic AMs are expressed as linear functions of the pre-defined random parameters by using the first-order Taylor series expansion and perturbation technique. Then, based on the linear function relationships of parameters and responses, the probability density functions of the responses can be calculated by the change-of-variable technique. Three numerical examples are employed to demonstrate the effectiveness of the CVPS-FEM for stochastic AMs, and the results are validated by Monte Carlo method successfully.

  1. Calculating radiotherapy margins based on Bayesian modelling of patient specific random errors

    NASA Astrophysics Data System (ADS)

    Herschtal, A.; te Marvelde, L.; Mengersen, K.; Hosseinifard, Z.; Foroudi, F.; Devereux, T.; Pham, D.; Ball, D.; Greer, P. B.; Pichler, P.; Eade, T.; Kneebone, A.; Bell, L.; Caine, H.; Hindson, B.; Kron, T.

    2015-02-01

    Collected real-life clinical target volume (CTV) displacement data show that some patients undergoing external beam radiotherapy (EBRT) demonstrate significantly more fraction-to-fraction variability in their displacement (‘random error’) than others. This contrasts with the common assumption made by historical recipes for margin estimation for EBRT, that the random error is constant across patients. In this work we present statistical models of CTV displacements in which random errors are characterised by an inverse gamma (IG) distribution in order to assess the impact of random error variability on CTV-to-PTV margin widths, for eight real world patient cohorts from four institutions, and for different sites of malignancy. We considered a variety of clinical treatment requirements and penumbral widths. The eight cohorts consisted of a total of 874 patients and 27 391 treatment sessions. Compared to a traditional margin recipe that assumes constant random errors across patients, for a typical 4 mm penumbral width, the IG based margin model mandates that in order to satisfy the common clinical requirement that 90% of patients receive at least 95% of prescribed RT dose to the entire CTV, margins be increased by a median of 10% (range over the eight cohorts -19% to +35%). This substantially reduces the proportion of patients for whom margins are too small to satisfy clinical requirements.

  2. Evaluation of variable selection methods for random forests and omics data sets.

    PubMed

    Degenhardt, Frauke; Seifert, Stephan; Szymczak, Silke

    2017-10-16

    Machine learning methods and in particular random forests are promising approaches for prediction based on high dimensional omics data sets. They provide variable importance measures to rank predictors according to their predictive power. If building a prediction model is the main goal of a study, often a minimal set of variables with good prediction performance is selected. However, if the objective is the identification of involved variables to find active networks and pathways, approaches that aim to select all relevant variables should be preferred. We evaluated several variable selection procedures based on simulated data as well as publicly available experimental methylation and gene expression data. Our comparison included the Boruta algorithm, the Vita method, recurrent relative variable importance, a permutation approach and its parametric variant (Altmann) as well as recursive feature elimination (RFE). In our simulation studies, Boruta was the most powerful approach, followed closely by the Vita method. Both approaches demonstrated similar stability in variable selection, while Vita was the most robust approach under a pure null model without any predictor variables related to the outcome. In the analysis of the different experimental data sets, Vita demonstrated slightly better stability in variable selection and was less computationally intensive than Boruta.In conclusion, we recommend the Boruta and Vita approaches for the analysis of high-dimensional data sets. Vita is considerably faster than Boruta and thus more suitable for large data sets, but only Boruta can also be applied in low-dimensional settings. © The Author 2017. Published by Oxford University Press.

  3. Multivariate stochastic simulation with subjective multivariate normal distributions

    Treesearch

    P. J. Ince; J. Buongiorno

    1991-01-01

    In many applications of Monte Carlo simulation in forestry or forest products, it may be known that some variables are correlated. However, for simplicity, in most simulations it has been assumed that random variables are independently distributed. This report describes an alternative Monte Carlo simulation technique for subjectively assesed multivariate normal...

  4. Sedimentation in the chaparral: how do you handle unusual events?

    Treesearch

    Raymond M. Rice

    1982-01-01

    Abstract - Processes of erosion and sedimentation in steep chaparral drainage basins of southern California are described. The word ""hyperschedastic"" is coined to describe the sedimentation regime which is highly variable because of the interaction of marginally stable drainage basins, great variability in storm inputs, and the random occurrence...

  5. Confirmation of radial velocity variability in Arcturus

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    1988-01-01

    The paper presents results of high-precision measurements of radial-velocity variations in Alpha Boo. Significant radial-velocity variability is detected well in excess of the random and systematic measurement errors. The radial velocity varies by an amount greater than 200 m/sec with a period of around 2 days.

  6. Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders

    2007-01-01

    Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide range of latent variable models. Applications considered include survival or duration models, models for rankings, small area estimation with census information, models for ordinal responses, item response models with guessing, randomized response models,…

  7. "L"-Bivariate and "L"-Multivariate Association Coefficients. Research Report. ETS RR-08-40

    ERIC Educational Resources Information Center

    Kong, Nan; Lewis, Charles

    2008-01-01

    Given a system of multiple random variables, a new measure called the "L"-multivariate association coefficient is defined using (conditional) entropy. Unlike traditional correlation measures, the L-multivariate association coefficient measures the multiassociations or multirelations among the multiple variables in the given system; that…

  8. [Gene method for inconsistent hydrological frequency calculation. I: Inheritance, variability and evolution principles of hydrological genes].

    PubMed

    Xie, Ping; Wu, Zi Yi; Zhao, Jiang Yan; Sang, Yan Fang; Chen, Jie

    2018-04-01

    A stochastic hydrological process is influenced by both stochastic and deterministic factors. A hydrological time series contains not only pure random components reflecting its inheri-tance characteristics, but also deterministic components reflecting variability characteristics, such as jump, trend, period, and stochastic dependence. As a result, the stochastic hydrological process presents complicated evolution phenomena and rules. To better understand these complicated phenomena and rules, this study described the inheritance and variability characteristics of an inconsistent hydrological series from two aspects: stochastic process simulation and time series analysis. In addition, several frequency analysis approaches for inconsistent time series were compared to reveal the main problems in inconsistency study. Then, we proposed a new concept of hydrological genes origined from biological genes to describe the inconsistent hydrolocal processes. The hydrologi-cal genes were constructed using moments methods, such as general moments, weight function moments, probability weight moments and L-moments. Meanwhile, the five components, including jump, trend, periodic, dependence and pure random components, of a stochastic hydrological process were defined as five hydrological bases. With this method, the inheritance and variability of inconsistent hydrological time series were synthetically considered and the inheritance, variability and evolution principles were fully described. Our study would contribute to reveal the inheritance, variability and evolution principles in probability distribution of hydrological elements.

  9. Bayesian data fusion for spatial prediction of categorical variables in environmental sciences

    NASA Astrophysics Data System (ADS)

    Gengler, Sarah; Bogaert, Patrick

    2014-12-01

    First developed to predict continuous variables, Bayesian Maximum Entropy (BME) has become a complete framework in the context of space-time prediction since it has been extended to predict categorical variables and mixed random fields. This method proposes solutions to combine several sources of data whatever the nature of the information. However, the various attempts that were made for adapting the BME methodology to categorical variables and mixed random fields faced some limitations, as a high computational burden. The main objective of this paper is to overcome this limitation by generalizing the Bayesian Data Fusion (BDF) theoretical framework to categorical variables, which is somehow a simplification of the BME method through the convenient conditional independence hypothesis. The BDF methodology for categorical variables is first described and then applied to a practical case study: the estimation of soil drainage classes using a soil map and point observations in the sandy area of Flanders around the city of Mechelen (Belgium). The BDF approach is compared to BME along with more classical approaches, as Indicator CoKringing (ICK) and logistic regression. Estimators are compared using various indicators, namely the Percentage of Correctly Classified locations (PCC) and the Average Highest Probability (AHP). Although BDF methodology for categorical variables is somehow a simplification of BME approach, both methods lead to similar results and have strong advantages compared to ICK and logistic regression.

  10. Diffusion Processes Satisfying a Conservation Law Constraint

    DOE PAGES

    Bakosi, J.; Ristorcelli, J. R.

    2014-03-04

    We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less

  11. Diffusion Processes Satisfying a Conservation Law Constraint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakosi, J.; Ristorcelli, J. R.

    We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less

  12. An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers' Adaptations.

    PubMed

    Martin, Guillaume; Magne, Marie-Angélina; Cristobal, Magali San

    2017-01-01

    The need to adapt to decrease farm vulnerability to adverse contextual events has been extensively discussed on a theoretical basis. We developed an integrated and operational method to assess farm vulnerability to multiple and interacting contextual changes and explain how this vulnerability can best be reduced according to farm configurations and farmers' technical adaptations over time. Our method considers farm vulnerability as a function of the raw measurements of vulnerability variables (e.g., economic efficiency of production), the slope of the linear regression of these measurements over time, and the residuals of this linear regression. The last two are extracted from linear mixed models considering a random regression coefficient (an intercept common to all farms), a global trend (a slope common to all farms), a random deviation from the general mean for each farm, and a random deviation from the general trend for each farm. Among all possible combinations, the lowest farm vulnerability is obtained through a combination of high values of measurements, a stable or increasing trend and low variability for all vulnerability variables considered. Our method enables relating the measurements, trends and residuals of vulnerability variables to explanatory variables that illustrate farm exposure to climatic and economic variability, initial farm configurations and farmers' technical adaptations over time. We applied our method to 19 cattle (beef, dairy, and mixed) farms over the period 2008-2013. Selected vulnerability variables, i.e., farm productivity and economic efficiency, varied greatly among cattle farms and across years, with means ranging from 43.0 to 270.0 kg protein/ha and 29.4-66.0% efficiency, respectively. No farm had a high level, stable or increasing trend and low residuals for both farm productivity and economic efficiency of production. Thus, the least vulnerable farms represented a compromise among measurement value, trend, and variability of both performances. No specific combination of farmers' practices emerged for reducing cattle farm vulnerability to climatic and economic variability. In the least vulnerable farms, the practices implemented (stocking rate, input use…) were more consistent with the objective of developing the properties targeted (efficiency, robustness…). Our method can be used to support farmers with sector-specific and local insights about most promising farm adaptations.

  13. An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers’ Adaptations

    PubMed Central

    Martin, Guillaume; Magne, Marie-Angélina; Cristobal, Magali San

    2017-01-01

    The need to adapt to decrease farm vulnerability to adverse contextual events has been extensively discussed on a theoretical basis. We developed an integrated and operational method to assess farm vulnerability to multiple and interacting contextual changes and explain how this vulnerability can best be reduced according to farm configurations and farmers’ technical adaptations over time. Our method considers farm vulnerability as a function of the raw measurements of vulnerability variables (e.g., economic efficiency of production), the slope of the linear regression of these measurements over time, and the residuals of this linear regression. The last two are extracted from linear mixed models considering a random regression coefficient (an intercept common to all farms), a global trend (a slope common to all farms), a random deviation from the general mean for each farm, and a random deviation from the general trend for each farm. Among all possible combinations, the lowest farm vulnerability is obtained through a combination of high values of measurements, a stable or increasing trend and low variability for all vulnerability variables considered. Our method enables relating the measurements, trends and residuals of vulnerability variables to explanatory variables that illustrate farm exposure to climatic and economic variability, initial farm configurations and farmers’ technical adaptations over time. We applied our method to 19 cattle (beef, dairy, and mixed) farms over the period 2008–2013. Selected vulnerability variables, i.e., farm productivity and economic efficiency, varied greatly among cattle farms and across years, with means ranging from 43.0 to 270.0 kg protein/ha and 29.4–66.0% efficiency, respectively. No farm had a high level, stable or increasing trend and low residuals for both farm productivity and economic efficiency of production. Thus, the least vulnerable farms represented a compromise among measurement value, trend, and variability of both performances. No specific combination of farmers’ practices emerged for reducing cattle farm vulnerability to climatic and economic variability. In the least vulnerable farms, the practices implemented (stocking rate, input use…) were more consistent with the objective of developing the properties targeted (efficiency, robustness…). Our method can be used to support farmers with sector-specific and local insights about most promising farm adaptations. PMID:28900435

  14. Leveraging prognostic baseline variables to gain precision in randomized trials

    PubMed Central

    Colantuoni, Elizabeth; Rosenblum, Michael

    2015-01-01

    We focus on estimating the average treatment effect in a randomized trial. If baseline variables are correlated with the outcome, then appropriately adjusting for these variables can improve precision. An example is the analysis of covariance (ANCOVA) estimator, which applies when the outcome is continuous, the quantity of interest is the difference in mean outcomes comparing treatment versus control, and a linear model with only main effects is used. ANCOVA is guaranteed to be at least as precise as the standard unadjusted estimator, asymptotically, under no parametric model assumptions and also is locally semiparametric efficient. Recently, several estimators have been developed that extend these desirable properties to more general settings that allow any real-valued outcome (e.g., binary or count), contrasts other than the difference in mean outcomes (such as the relative risk), and estimators based on a large class of generalized linear models (including logistic regression). To the best of our knowledge, we give the first simulation study in the context of randomized trials that compares these estimators. Furthermore, our simulations are not based on parametric models; instead, our simulations are based on resampling data from completed randomized trials in stroke and HIV in order to assess estimator performance in realistic scenarios. We provide practical guidance on when these estimators are likely to provide substantial precision gains and describe a quick assessment method that allows clinical investigators to determine whether these estimators could be useful in their specific trial contexts. PMID:25872751

  15. Probabilistic finite elements for transient analysis in nonlinear continua

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Mani, A.

    1985-01-01

    The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

  16. Probabilistic simulation of multi-scale composite behavior

    NASA Technical Reports Server (NTRS)

    Liaw, D. G.; Shiao, M. C.; Singhal, S. N.; Chamis, Christos C.

    1993-01-01

    A methodology is developed to computationally assess the probabilistic composite material properties at all composite scale levels due to the uncertainties in the constituent (fiber and matrix) properties and in the fabrication process variables. The methodology is computationally efficient for simulating the probability distributions of material properties. The sensitivity of the probabilistic composite material property to each random variable is determined. This information can be used to reduce undesirable uncertainties in material properties at the macro scale of the composite by reducing the uncertainties in the most influential random variables at the micro scale. This methodology was implemented into the computer code PICAN (Probabilistic Integrated Composite ANalyzer). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in the material properties of a typical laminate and comparing the results with the Monte Carlo simulation method. The experimental data of composite material properties at all scales fall within the scatters predicted by PICAN.

  17. Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos

    PubMed Central

    Santonja, F.; Chen-Charpentier, B.

    2012-01-01

    Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows us to obtain an auxiliary system of differential equations, which is then integrated numerically to obtain the first-and the second-order moments of the output stochastic processes. A sensitivity analysis based on the polynomial chaos approach is also performed to determine which parameters have the greatest influence on the results. As an example, we will apply the approach to an obesity epidemic model. PMID:22927889

  18. A large-scale study of the random variability of a coding sequence: a study on the CFTR gene.

    PubMed

    Modiano, Guido; Bombieri, Cristina; Ciminelli, Bianca Maria; Belpinati, Francesca; Giorgi, Silvia; Georges, Marie des; Scotet, Virginie; Pompei, Fiorenza; Ciccacci, Cinzia; Guittard, Caroline; Audrézet, Marie Pierre; Begnini, Angela; Toepfer, Michael; Macek, Milan; Ferec, Claude; Claustres, Mireille; Pignatti, Pier Franco

    2005-02-01

    Coding single nucleotide substitutions (cSNSs) have been studied on hundreds of genes using small samples (n(g) approximately 100-150 genes). In the present investigation, a large random European population sample (average n(g) approximately 1500) was studied for a single gene, the CFTR (Cystic Fibrosis Transmembrane conductance Regulator). The nonsynonymous (NS) substitutions exhibited, in accordance with previous reports, a mean probability of being polymorphic (q > 0.005), much lower than that of the synonymous (S) substitutions, but they showed a similar rate of subpolymorphic (q < 0.005) variability. This indicates that, in autosomal genes that may have harmful recessive alleles (nonduplicated genes with important functions), genetic drift overwhelms selection in the subpolymorphic range of variability, making disadvantageous alleles behave as neutral. These results imply that the majority of the subpolymorphic nonsynonymous alleles of these genes are selectively negative or even pathogenic.

  19. Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random.

    PubMed

    Pritikin, Joshua N; Brick, Timothy R; Neale, Michael C

    2018-04-01

    A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.

  20. Impact of random discrete dopant in extension induced fluctuation in gate-source/drain underlap FinFET

    NASA Astrophysics Data System (ADS)

    Wang, Yijiao; Huang, Peng; Xin, Zheng; Zeng, Lang; Liu, Xiaoyan; Du, Gang; Kang, Jinfeng

    2014-01-01

    In this work, three dimensional technology computer-aided design (TCAD) simulations are performed to investigate the impact of random discrete dopant (RDD) including extension induced fluctuation in 14 nm silicon-on-insulator (SOI) gate-source/drain (G-S/D) underlap fin field effect transistor (FinFET). To fully understand the RDD impact in extension, RDD effect is evaluated in channel and extension separately and together. The statistical variability of FinFET performance parameters including threshold voltage (Vth), subthreshold slope (SS), drain induced barrier lowering (DIBL), drive current (Ion), and leakage current (Ioff) are analyzed. The results indicate that RDD in extension can lead to substantial variability, especially for SS, DIBL, and Ion and should be taken into account together with that in channel to get an accurate estimation on RDF. Meanwhile, higher doping concentration of extension region is suggested from the perspective of overall variability control.

  1. Identification of Genes Involved in Breast Cancer Metastasis by Integrating Protein-Protein Interaction Information with Expression Data.

    PubMed

    Tian, Xin; Xin, Mingyuan; Luo, Jian; Liu, Mingyao; Jiang, Zhenran

    2017-02-01

    The selection of relevant genes for breast cancer metastasis is critical for the treatment and prognosis of cancer patients. Although much effort has been devoted to the gene selection procedures by use of different statistical analysis methods or computational techniques, the interpretation of the variables in the resulting survival models has been limited so far. This article proposes a new Random Forest (RF)-based algorithm to identify important variables highly related with breast cancer metastasis, which is based on the important scores of two variable selection algorithms, including the mean decrease Gini (MDG) criteria of Random Forest and the GeneRank algorithm with protein-protein interaction (PPI) information. The new gene selection algorithm can be called PPIRF. The improved prediction accuracy fully illustrated the reliability and high interpretability of gene list selected by the PPIRF approach.

  2. Allelic variability in species and stocks of Lake Superior ciscoes (Coregoninae)

    USGS Publications Warehouse

    Todd, Thomas N.

    1981-01-01

    Starch gel electrophoresis was used as a means of recognizing species and stocks in Lake Superior Coregonus. Allelic variability at isocitrate dehydrogenase and glycerol-3-phosphate dehydrogenase loci was recorded for samples of lake herring (Coregonus artedii), bloater (C. hoyi), kiyi (C. kiyi), and shortjaw cisco (C. zenithicus) from five Lake Superior localities. The observed frequencies of genotypes within each subsample did not differ significantly from those expected on the basis of random mating, and suggested that each subsample represented either a random sample from a larger randomly mating population or an independent and isolated subpopulation within which mating was random. Significant contingency X2 values for comparisons between both localities and species suggested that more than one randomly mating population occurred among the Lake Superior ciscoes, but did not reveal how many such populations there were. In contrast to the genetic results of this study, morphology seems to be a better descriptor of cisco stocks, and identification of cisco stocks and species will still have to be based on morphological criteria until more data are forthcoming. Where several species are sympatric, management should strive to preserve the least abundant. Failure to do so could result in the extinction or depletion of the rarer forms.

  3. A Methodology for Multihazards Load Combinations of Earthquake and Heavy Trucks for Bridges

    PubMed Central

    Wang, Xu; Sun, Baitao

    2014-01-01

    Issues of load combinations of earthquakes and heavy trucks are important contents in multihazards bridge design. Current load resistance factor design (LRFD) specifications usually treat extreme hazards alone and have no probabilistic basis in extreme load combinations. Earthquake load and heavy truck load are considered as random processes with respective characteristics, and the maximum combined load is not the simple superimposition of their maximum loads. Traditional Ferry Borges-Castaneda model that considers load lasting duration and occurrence probability well describes random process converting to random variables and load combinations, but this model has strict constraint in time interval selection to obtain precise results. Turkstra's rule considers one load reaching its maximum value in bridge's service life combined with another load with its instantaneous value (or mean value), which looks more rational, but the results are generally unconservative. Therefore, a modified model is presented here considering both advantages of Ferry Borges-Castaneda's model and Turkstra's rule. The modified model is based on conditional probability, which can convert random process to random variables relatively easily and consider the nonmaximum factor in load combinations. Earthquake load and heavy truck load combinations are employed to illustrate the model. Finally, the results of a numerical simulation are used to verify the feasibility and rationality of the model. PMID:24883347

  4. Point-Sampling and Line-Sampling Probability Theory, Geometric Implications, Synthesis

    Treesearch

    L.R. Grosenbaugh

    1958-01-01

    Foresters concerned with measuring tree populations on definite areas have long employed two well-known methods of representative sampling. In list or enumerative sampling the entire tree population is tallied with a known proportion being randomly selected and measured for volume or other variables. In area sampling all trees on randomly located plots or strips...

  5. An Introduction to Recursive Partitioning: Rationale, Application, and Characteristics of Classification and Regression Trees, Bagging, and Random Forests

    ERIC Educational Resources Information Center

    Strobl, Carolin; Malley, James; Tutz, Gerhard

    2009-01-01

    Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…

  6. Missing Not at Random Models for Latent Growth Curve Analyses

    ERIC Educational Resources Information Center

    Enders, Craig K.

    2011-01-01

    The past decade has seen a noticeable shift in missing data handling techniques that assume a missing at random (MAR) mechanism, where the propensity for missing data on an outcome is related to other analysis variables. Although MAR is often reasonable, there are situations where this assumption is unlikely to hold, leading to biased parameter…

  7. Monte Carlo Simulation Using HyperCard and Lotus 1-2-3.

    ERIC Educational Resources Information Center

    Oulman, Charles S.; Lee, Motoko Y.

    Monte Carlo simulation is a computer modeling procedure for mimicking observations on a random variable. A random number generator is used in generating the outcome for the events that are being modeled. The simulation can be used to obtain results that otherwise require extensive testing or complicated computations. This paper describes how Monte…

  8. An Empirical Comparison of Randomized Control Trials and Regression Discontinuity Estimations

    ERIC Educational Resources Information Center

    Barrera-Osorio, Felipe; Filmer, Deon; McIntyre, Joe

    2014-01-01

    Randomized controlled trials (RCTs) and regression discontinuity (RD) studies both provide estimates of causal effects. A major difference between the two is that RD only estimates local average treatment effects (LATE) near the cutoff point of the forcing variable. This has been cited as a drawback to RD designs (Cook & Wong, 2008).…

  9. Measurement Error Correction Formula for Cluster-Level Group Differences in Cluster Randomized and Observational Studies

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Preacher, Kristopher J.

    2016-01-01

    Multilevel modeling (MLM) is frequently used to detect cluster-level group differences in cluster randomized trial and observational studies. Group differences on the outcomes (posttest scores) are detected by controlling for the covariate (pretest scores) as a proxy variable for unobserved factors that predict future attributes. The pretest and…

  10. Sensitivity Analysis for Multivalued Treatment Effects: An Example of a Cross-Country Study of Teacher Participation and Job Satisfaction

    ERIC Educational Resources Information Center

    Chang, Chi

    2015-01-01

    It is known that interventions are hard to assign randomly to subjects in social psychological studies, because randomized control is difficult to implement strictly and precisely. Thus, in nonexperimental studies and observational studies, controlling the impact of covariates on the dependent variables and addressing the robustness of the…

  11. Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics.

    PubMed

    Cheng, Sen; Sabes, Philip N

    2007-04-01

    The sensorimotor calibration of visually guided reaching changes on a trial-to-trial basis in response to random shifts in the visual feedback of the hand. We show that a simple linear dynamical system is sufficient to model the dynamics of this adaptive process. In this model, an internal variable represents the current state of sensorimotor calibration. Changes in this state are driven by error feedback signals, which consist of the visually perceived reach error, the artificial shift in visual feedback, or both. Subjects correct for > or =20% of the error observed on each movement, despite being unaware of the visual shift. The state of adaptation is also driven by internal dynamics, consisting of a decay back to a baseline state and a "state noise" process. State noise includes any source of variability that directly affects the state of adaptation, such as variability in sensory feedback processing, the computations that drive learning, or the maintenance of the state. This noise is accumulated in the state across trials, creating temporal correlations in the sequence of reach errors. These correlations allow us to distinguish state noise from sensorimotor performance noise, which arises independently on each trial from random fluctuations in the sensorimotor pathway. We show that these two noise sources contribute comparably to the overall magnitude of movement variability. Finally, the dynamics of adaptation measured with random feedback shifts generalizes to the case of constant feedback shifts, allowing for a direct comparison of our results with more traditional blocked-exposure experiments.

  12. Exposure to bisphenol A from drinking canned beverages increases blood pressure: randomized crossover trial.

    PubMed

    Bae, Sanghyuk; Hong, Yun-Chul

    2015-02-01

    Bisphenol A (BPA) is a chemical used in plastic bottles and inner coating of beverage cans, and its exposure is almost ubiquitous. BPA has been associated with hypertension and decreased heart rate variability in the previous studies. The aim of the present study was to determine whether increased BPA exposure from consumption of canned beverage actually affects blood pressure and heart rate variability. We conducted a randomized crossover trial with noninstitutionalized adults, who were aged ≥60 years and recruited from a local community center. A total of 60 participants visited the study site 3 times, and they were provided the same beverage in 2 glass bottles, 2 cans, or 1 can and 1 glass bottle at a time. The sequence of the beverage was randomized. We then measured urinary BPA concentration, blood pressure, and heart rate variability 2 hours after the consumption of each beverage. The paired t test and mixed model were used to compare the differences. The urinary BPA concentration increased after consuming canned beverages by >1600% compared with that after consuming glass bottled beverages. Systolic blood pressure adjusted for daily variance increased by ≈4.5 mm Hg after consuming 2 canned beverages compared with that after consuming 2 glass bottled beverages, and the difference was statistically significant. The parameters of the heart rate variability did not show statistically significant differences.The present study demonstrated that consuming canned beverage and consequent increase of BPA exposure increase blood pressure acutely. © 2014 American Heart Association, Inc.

  13. Ranking of patient and surgeons' perspectives for endpoints in randomized controlled trials--lessons learned from the POVATI trial [ISRCTN 60734227].

    PubMed

    Fischer, Lars; Deckert, Andreas; Diener, Markus K; Zimmermann, Johannes B; Büchler, Markus W; Seiler, Christoph M

    2011-10-01

    Surgical trials focus mainly on mortality and morbidity rates, which may be not the most important endpoints from the patient's perspective. Evaluation of expectations and needs of patients enrolled in clinical trials can be analyzed using a procedure called ranking. Within the Postsurgical Pain Outcome of Vertical and Transverse Abdominal Incision randomized trial (POVATI), the perspectives of participating patients and surgeons were assessed as well as the influence of the surgical intervention on patients' needs. All included patients of the POVATI trial were asked preoperatively and postoperatively to rank predetermined outcome variables concerning the upcoming surgical procedure (e.g., pain, complication, cosmetic result) hierarchically according to their importance. Preoperatively, the surgeons were asked to do the same. One hundred eighty two out of 200 randomized patients (71 females, 111 males; mean age 59 years) returned the ranking questionnaire preoperatively and 152 patients (67 females, 85 males; mean age 60 years) on the day of discharge. There were no differences between the two groups with respect to the distribution of ranking variables (p > 0.05). Thirty-five surgeons (7 residents, 6 fellows, and 22 consultants) completed the same ranking questionnaire. The order of the four most important ranking variables for both patients and surgeons were death, avoiding of postoperative complications, avoiding of intraoperative complications, and pain. Surgeons ranked the variable "cosmetic result" significantly as more important compared to patients (p = 0.034, Fisher's exact test). Patients and surgeons did not differ in ranking predetermined outcomes in the POVATI trial. Only the variable "cosmetic result" is significantly more important from the surgeon's than from the patient's perspective. Ranking of outcomes might be a beneficial tool and can be a proper addition to RCTs.

  14. A random effects meta-analysis model with Box-Cox transformation.

    PubMed

    Yamaguchi, Yusuke; Maruo, Kazushi; Partlett, Christopher; Riley, Richard D

    2017-07-19

    In a random effects meta-analysis model, true treatment effects for each study are routinely assumed to follow a normal distribution. However, normality is a restrictive assumption and the misspecification of the random effects distribution may result in a misleading estimate of overall mean for the treatment effect, an inappropriate quantification of heterogeneity across studies and a wrongly symmetric prediction interval. We focus on problems caused by an inappropriate normality assumption of the random effects distribution, and propose a novel random effects meta-analysis model where a Box-Cox transformation is applied to the observed treatment effect estimates. The proposed model aims to normalise an overall distribution of observed treatment effect estimates, which is sum of the within-study sampling distributions and the random effects distribution. When sampling distributions are approximately normal, non-normality in the overall distribution will be mainly due to the random effects distribution, especially when the between-study variation is large relative to the within-study variation. The Box-Cox transformation addresses this flexibly according to the observed departure from normality. We use a Bayesian approach for estimating parameters in the proposed model, and suggest summarising the meta-analysis results by an overall median, an interquartile range and a prediction interval. The model can be applied for any kind of variables once the treatment effect estimate is defined from the variable. A simulation study suggested that when the overall distribution of treatment effect estimates are skewed, the overall mean and conventional I 2 from the normal random effects model could be inappropriate summaries, and the proposed model helped reduce this issue. We illustrated the proposed model using two examples, which revealed some important differences on summary results, heterogeneity measures and prediction intervals from the normal random effects model. The random effects meta-analysis with the Box-Cox transformation may be an important tool for examining robustness of traditional meta-analysis results against skewness on the observed treatment effect estimates. Further critical evaluation of the method is needed.

  15. Finite-sample corrected generalized estimating equation of population average treatment effects in stepped wedge cluster randomized trials.

    PubMed

    Scott, JoAnna M; deCamp, Allan; Juraska, Michal; Fay, Michael P; Gilbert, Peter B

    2017-04-01

    Stepped wedge designs are increasingly commonplace and advantageous for cluster randomized trials when it is both unethical to assign placebo, and it is logistically difficult to allocate an intervention simultaneously to many clusters. We study marginal mean models fit with generalized estimating equations for assessing treatment effectiveness in stepped wedge cluster randomized trials. This approach has advantages over the more commonly used mixed models that (1) the population-average parameters have an important interpretation for public health applications and (2) they avoid untestable assumptions on latent variable distributions and avoid parametric assumptions about error distributions, therefore, providing more robust evidence on treatment effects. However, cluster randomized trials typically have a small number of clusters, rendering the standard generalized estimating equation sandwich variance estimator biased and highly variable and hence yielding incorrect inferences. We study the usual asymptotic generalized estimating equation inferences (i.e., using sandwich variance estimators and asymptotic normality) and four small-sample corrections to generalized estimating equation for stepped wedge cluster randomized trials and for parallel cluster randomized trials as a comparison. We show by simulation that the small-sample corrections provide improvement, with one correction appearing to provide at least nominal coverage even with only 10 clusters per group. These results demonstrate the viability of the marginal mean approach for both stepped wedge and parallel cluster randomized trials. We also study the comparative performance of the corrected methods for stepped wedge and parallel designs, and describe how the methods can accommodate interval censoring of individual failure times and incorporate semiparametric efficient estimators.

  16. On Adaptation, Maximization, and Reinforcement Learning among Cognitive Strategies

    ERIC Educational Resources Information Center

    Erev, Ido; Barron, Greg

    2005-01-01

    Analysis of binary choice behavior in iterated tasks with immediate feedback reveals robust deviations from maximization that can be described as indications of 3 effects: (a) a payoff variability effect, in which high payoff variability seems to move choice behavior toward random choice; (b) underweighting of rare events, in which alternatives…

  17. ASSESSMENT OF THE WRITTEN LANGUAGE OF DEAF STUDENTS.

    ERIC Educational Resources Information Center

    MARKS, CLAUDE H.; STUCKLESS, E. ROSS

    THIS INVESTIGATION WAS CONDUCTED TO DESCRIBE THE WRITTEN LANGUAGE OF DEAF STUDENTS BETWEEN 10 AND 18 YEARS OF AGE IN TERMS OF SIX MEASURABLE VARIABLES, AND TO RELATE THESE VARIABLES TO TEACHER JUDGMENTS OF QUALITY OF LANGUAGE. TEN STRATIFIED RANDOM SAMPLES OF COMPOSITIONS BY DEAF STUDENTS WERE SELECTED FROM 14 RESIDENTIAL AND DAY EDUCATIONAL…

  18. Rational Variability in Children's Causal Inferences: The Sampling Hypothesis

    ERIC Educational Resources Information Center

    Denison, Stephanie; Bonawitz, Elizabeth; Gopnik, Alison; Griffiths, Thomas L.

    2013-01-01

    We present a proposal--"The Sampling Hypothesis"--suggesting that the variability in young children's responses may be part of a rational strategy for inductive inference. In particular, we argue that young learners may be randomly sampling from the set of possible hypotheses that explain the observed data, producing different hypotheses with…

  19. Pedological memory in forest soil development

    Treesearch

    Jonathan D. Phillips; Daniel A. Marion

    2004-01-01

    Individual trees may have significant impacts on soil morphology. If these impacts are non-random such that some microsites are repeatedly preferentially affected by trees, complex local spatial variability of soils would result. A model of self-reinforcing pedologic influences of trees (SRPIT) is proposed to explain patterns of soil variability in the Ouachita...

  20. The Paired Availability Design and Related Instrumental Variable Meta-analyses | Division of Cancer Prevention

    Cancer.gov

    Stuart G. Baker, 2017 Introduction This software computes meta-analysis and extrapolation estimates for an instrumental variable meta-analysis of randomized trial or before-and-after studies (the latter also known as the paired availability design). The software also checks on the assumptions if sufficient data are available. |

  1. Sound Effects for Children's Comprehension of Variably-Paced Television Programs.

    ERIC Educational Resources Information Center

    Calvert, Sandra L.; Scott, M. Catherine

    In this study, children's selective attention to, and comprehension of, variably-paced television programs were examined as a function of sound effects. Sixty-four children, equally distributed by sex and by preschool and fourth grades, were randomly assigned to one of four treatment conditions which crossed two levels of sound effects (presence…

  2. Teacher and Child Predictors of Achieving IEP Goals of Children with Autism

    ERIC Educational Resources Information Center

    Ruble, Lisa; McGrew, John H.

    2013-01-01

    It is encouraging that children with autism show a strong response to early intervention, yet more research is needed for understanding the variability in responsiveness to specialized programs. Treatment predictor variables from 47 teachers and children who were randomized to receive the COMPASS intervention (Ruble et al. in "The…

  3. Structural Relationships between Variables of Elementary School Students' Intention of Accepting Digital Textbooks

    ERIC Educational Resources Information Center

    Joo, Young Ju; Joung, Sunyoung; Choi, Se-Bin; Lim, Eugene; Go, Kyung Yi

    2014-01-01

    The purpose of this study is to explore variables affecting the acceptance of digital textbooks in the elementary school environment and provide basic information and resources to increase the intention of acceptance. Based on the above research purposes. Surveys were conducted using Google Docs targeting randomly selected elementary school…

  4. Copula Models for Sociology: Measures of Dependence and Probabilities for Joint Distributions

    ERIC Educational Resources Information Center

    Vuolo, Mike

    2017-01-01

    Often in sociology, researchers are confronted with nonnormal variables whose joint distribution they wish to explore. Yet, assumptions of common measures of dependence can fail or estimating such dependence is computationally intensive. This article presents the copula method for modeling the joint distribution of two random variables, including…

  5. Testing the Effectiveness of a Career Education Program for Potential Dropouts.

    ERIC Educational Resources Information Center

    Schmidt, Wesley I.; Dykeman, Bruce F.

    1979-01-01

    Using a randomized two group pre-test/post-test research design, the study found that (1) significant results occurred on those variables measuring levels of vocational maturity, days of school attendance, and numbers of disciplinary referrals and (2) non-significant results occurred on those variables measuring proportions of students dropping…

  6. Relationships between Teacher Organizational Commitment, Psychological Hardiness and Some Demographic Variables in Turkish Primary Schools

    ERIC Educational Resources Information Center

    Sezgin, Ferudun

    2009-01-01

    Purpose: The purpose of this paper is to examine the relationships between teachers' organizational commitment perceptions and both their psychological hardiness and some demographic variables in a sample of Turkish primary schools. Design/methodology/approach: A total of 405 randomly selected teachers working at primary schools in Ankara…

  7. Computational simulation of coupled material degradation processes for probabilistic lifetime strength of aerospace materials

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.

    1992-01-01

    The research included ongoing development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primative variables. These primative variable may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above described constitutive equation using actual experimental materials data together with linear regression of that data, thereby predicting values for the empirical material constraints for each effect or primative variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from the open literature for materials typically of interest to those studying aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  8. A Bayesian ridge regression analysis of congestion's impact on urban expressway safety.

    PubMed

    Shi, Qi; Abdel-Aty, Mohamed; Lee, Jaeyoung

    2016-03-01

    With the rapid growth of traffic in urban areas, concerns about congestion and traffic safety have been heightened. This study leveraged both Automatic Vehicle Identification (AVI) system and Microwave Vehicle Detection System (MVDS) installed on an expressway in Central Florida to explore how congestion impacts the crash occurrence in urban areas. Multiple congestion measures from the two systems were developed. To ensure more precise estimates of the congestion's effects, the traffic data were aggregated into peak and non-peak hours. Multicollinearity among traffic parameters was examined. The results showed the presence of multicollinearity especially during peak hours. As a response, ridge regression was introduced to cope with this issue. Poisson models with uncorrelated random effects, correlated random effects, and both correlated random effects and random parameters were constructed within the Bayesian framework. It was proven that correlated random effects could significantly enhance model performance. The random parameters model has similar goodness-of-fit compared with the model with only correlated random effects. However, by accounting for the unobserved heterogeneity, more variables were found to be significantly related to crash frequency. The models indicated that congestion increased crash frequency during peak hours while during non-peak hours it was not a major crash contributing factor. Using the random parameter model, the three congestion measures were compared. It was found that all congestion indicators had similar effects while Congestion Index (CI) derived from MVDS data was a better congestion indicator for safety analysis. Also, analyses showed that the segments with higher congestion intensity could not only increase property damage only (PDO) crashes, but also more severe crashes. In addition, the issues regarding the necessity to incorporate specific congestion indicator for congestion's effects on safety and to take care of the multicollinearity between explanatory variables were also discussed. By including a specific congestion indicator, the model performance significantly improved. When comparing models with and without ridge regression, the magnitude of the coefficients was altered in the existence of multicollinearity. These conclusions suggest that the use of appropriate congestion measure and consideration of multicolilnearity among the variables would improve the models and our understanding about the effects of congestion on traffic safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Quantifying networks complexity from information geometry viewpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felice, Domenico, E-mail: domenico.felice@unicam.it; Mancini, Stefano; INFN-Sezione di Perugia, Via A. Pascoli, I-06123 Perugia

    We consider a Gaussian statistical model whose parameter space is given by the variances of random variables. Underlying this model we identify networks by interpreting random variables as sitting on vertices and their correlations as weighted edges among vertices. We then associate to the parameter space a statistical manifold endowed with a Riemannian metric structure (that of Fisher-Rao). Going on, in analogy with the microcanonical definition of entropy in Statistical Mechanics, we introduce an entropic measure of networks complexity. We prove that it is invariant under networks isomorphism. Above all, considering networks as simplicial complexes, we evaluate this entropy onmore » simplexes and find that it monotonically increases with their dimension.« less

  10. Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation.

    PubMed

    Qi, Bing

    2006-09-15

    We propose a new quantum key distribution protocol in which information is encoded on continuous variables of a single photon. In this protocol, Alice randomly encodes her information on either the central frequency of a narrowband single-photon pulse or the time delay of a broadband single-photon pulse, while Bob randomly chooses to do either frequency measurement or time measurement. The security of this protocol rests on the energy-time uncertainty relation, which prevents Eve from simultaneously determining both frequency and time information with arbitrarily high resolution. Since no interferometer is employed in this scheme, it is more robust against various channel noises, such as polarization and phase fluctuations.

  11. Factorization of Observables

    NASA Astrophysics Data System (ADS)

    Eliaš, Peter; Frič, Roman

    2017-12-01

    Categorical approach to probability leads to better understanding of basic notions and constructions in generalized (fuzzy, operational, quantum) probability, where observables—dual notions to generalized random variables (statistical maps)—play a major role. First, to avoid inconsistencies, we introduce three categories L, S, and P, the objects and morphisms of which correspond to basic notions of fuzzy probability theory and operational probability theory, and describe their relationships. To illustrate the advantages of categorical approach, we show that two categorical constructions involving observables (related to the representation of generalized random variables via products, or smearing of sharp observables, respectively) can be described as factorizing a morphism into composition of two morphisms having desired properties. We close with a remark concerning products.

  12. Probabilistic Fiber Composite Micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, Thomas A.

    1996-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. The variables in which uncertainties are accounted for include constituent and void volume ratios, constituent elastic properties and strengths, and fiber misalignment. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material property variations induced by random changes expected at the material micro level. Regression results are presented to show the relative correlation between predictor and response variables in the study. These computational procedures make possible a formal description of anticipated random processes at the intra-ply level, and the related effects of these on composite properties.

  13. A comparison of rule-based and machine learning approaches for classifying patient portal messages.

    PubMed

    Cronin, Robert M; Fabbri, Daniel; Denny, Joshua C; Rosenbloom, S Trent; Jackson, Gretchen Purcell

    2017-09-01

    Secure messaging through patient portals is an increasingly popular way that consumers interact with healthcare providers. The increasing burden of secure messaging can affect clinic staffing and workflows. Manual management of portal messages is costly and time consuming. Automated classification of portal messages could potentially expedite message triage and delivery of care. We developed automated patient portal message classifiers with rule-based and machine learning techniques using bag of words and natural language processing (NLP) approaches. To evaluate classifier performance, we used a gold standard of 3253 portal messages manually categorized using a taxonomy of communication types (i.e., main categories of informational, medical, logistical, social, and other communications, and subcategories including prescriptions, appointments, problems, tests, follow-up, contact information, and acknowledgement). We evaluated our classifiers' accuracies in identifying individual communication types within portal messages with area under the receiver-operator curve (AUC). Portal messages often contain more than one type of communication. To predict all communication types within single messages, we used the Jaccard Index. We extracted the variables of importance for the random forest classifiers. The best performing approaches to classification for the major communication types were: logistic regression for medical communications (AUC: 0.899); basic (rule-based) for informational communications (AUC: 0.842); and random forests for social communications and logistical communications (AUCs: 0.875 and 0.925, respectively). The best performing classification approach of classifiers for individual communication subtypes was random forests for Logistical-Contact Information (AUC: 0.963). The Jaccard Indices by approach were: basic classifier, Jaccard Index: 0.674; Naïve Bayes, Jaccard Index: 0.799; random forests, Jaccard Index: 0.859; and logistic regression, Jaccard Index: 0.861. For medical communications, the most predictive variables were NLP concepts (e.g., Temporal_Concept, which maps to 'morning', 'evening' and Idea_or_Concept which maps to 'appointment' and 'refill'). For logistical communications, the most predictive variables contained similar numbers of NLP variables and words (e.g., Telephone mapping to 'phone', 'insurance'). For social and informational communications, the most predictive variables were words (e.g., social: 'thanks', 'much', informational: 'question', 'mean'). This study applies automated classification methods to the content of patient portal messages and evaluates the application of NLP techniques on consumer communications in patient portal messages. We demonstrated that random forest and logistic regression approaches accurately classified the content of portal messages, although the best approach to classification varied by communication type. Words were the most predictive variables for classification of most communication types, although NLP variables were most predictive for medical communication types. As adoption of patient portals increases, automated techniques could assist in understanding and managing growing volumes of messages. Further work is needed to improve classification performance to potentially support message triage and answering. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Coordinative structuring of gait kinematics during adaptation to variable and asymmetric split-belt treadmill walking - A principal component analysis approach.

    PubMed

    Hinkel-Lipsker, Jacob W; Hahn, Michael E

    2018-06-01

    Gait adaptation is a task that requires fine-tuned coordination of all degrees of freedom in the lower limbs by the central nervous system. However, when individuals change their gait it is unknown how this coordination is organized, and how it can be influenced by contextual interference during practice. Such knowledge could provide information about measurement of gait adaptation during rehabilitation. Able-bodied individuals completed an acute bout of asymmetric split-belt treadmill walking, where one limb was driven at a constant velocity and the other according to one of three designed practice paradigms: serial practice, where the variable limb belt velocity increased over time; random blocked practice, where every 20 strides the variable limb belt velocity changed randomly; random practice, where every stride the variable limb belt velocity changed randomly. On the second day, subjects completed one of two different transfer tests; one with a belt asymmetry close to that experienced on the acquisition day (transfer 1; 1.5:1), and one with a greater asymmetry (transfer 2; 2:1) . To reduce this inherently high-dimensional dataset, principal component analyses were used for kinematic data collected throughout the acquisition and transfer phases; resulting in extraction of the first two principal components (PCs). For acquisition, PC1 and PC2 were related to sagittal and frontal plane control. For transfer 1, PC1 and PC2 were related to frontal plane control of the base of support and whole-body center of mass. For transfer 2, PC1 did not have any variables with high enough coefficients deemed to be relevant, and PC2 was related to sagittal plane control. Observations of principal component scores indicate that variance structuring differs among practice groups during acquisition and transfer 1, but not transfer 2. These results demonstrate the main kinematic coordinative structures that exist during gait adaptation, and that control of sagittal plane and frontal plane motion are perhaps a trade-off during acquisition of a novel asymmetric gait pattern. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effect of Arrangement of Stick Figures on Estimates of Proportion in Risk Graphics

    PubMed Central

    Ancker, Jessica S.; Weber, Elke U.; Kukafka, Rita

    2017-01-01

    Background Health risks are sometimes illustrated with stick figures, with a certain proportion colored to indicate they are affected by the disease. Perception of these graphics may be affected by whether the affected stick figures are scattered randomly throughout the group or arranged in a block. Objective To assess the effects of stick-figure arrangement on first impressions of estimates of proportion, under a 10-s deadline. Design Questionnaire. Participants and Setting Respondents recruited online (n = 100) or in waiting rooms at an urban hospital (n = 65). Intervention Participants were asked to estimate the proportion represented in 6 unlabeled graphics, half randomly arranged and half sequentially arranged. Measurements Estimated proportions. Results Although average estimates were fairly good, the variability of estimates was high. Overestimates of random graphics were larger than overestimates of sequential ones, except when the proportion was near 50%; variability was also higher with random graphics. Although the average inaccuracy was modest, it was large enough that more than one quarter of respondents confused 2 graphics depicting proportions that differed by 11 percentage points. Low numeracy and educational level were associated with inaccuracy. Limitations Participants estimated proportions but did not report perceived risk. Conclusions Randomly arranged arrays of stick figures should be used with care because viewers’ ability to estimate the proportion in these graphics is so poor that moderate differences between risks may not be visible. In addition, random arrangements may create an initial impression that proportions, especially large ones, are larger than they are. PMID:20671209

  16. Aquatic Exercise Therapy for People With Parkinson Disease: A Randomized Controlled Trial.

    PubMed

    Carroll, Louise M; Volpe, Daniele; Morris, Meg E; Saunders, Jean; Clifford, Amanda M

    2017-04-01

    To evaluate the effects of aquatic exercise therapy on gait variability and disability compared with usual care for people with Parkinson disease (PD). Single-blind randomized controlled trial. Community-based hydrotherapy pool. Individuals with PD (Hoehn-Yahr stages I-III) (N=21). Participants were randomly assigned to either an aquatic exercise therapy group (45min, twice a week for 6wk) or a group that received usual care. The primary outcome measure was gait variability as measured using a motion capture system. Secondary outcomes were quality of life measured on the Parkinson's Disease Questionnaire-39 and freezing of gait and motor disability quantified by the Unified Parkinson's Disease Rating Scale. Feasibility was evaluated by measuring safety, adverse events, and participant satisfaction. People in the aquatic therapy group and usual care group showed similar small improvements in gait variability. The aquatic therapy group showed greater improvements in disability than the usual care group (P<.01). No differences between groups or over time were identified for freezing of gait or quality of life. Aquatic therapy sessions were safe and enjoyable with no adverse events. Aquatic therapy appears feasible and safe for some people in the early stages of PD. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Physical activity, mindfulness meditation, or heart rate variability biofeedback for stress reduction: a randomized controlled trial.

    PubMed

    van der Zwan, Judith Esi; de Vente, Wieke; Huizink, Anja C; Bögels, Susan M; de Bruin, Esther I

    2015-12-01

    In contemporary western societies stress is highly prevalent, therefore the need for stress-reducing methods is great. This randomized controlled trial compared the efficacy of self-help physical activity (PA), mindfulness meditation (MM), and heart rate variability biofeedback (HRV-BF) in reducing stress and its related symptoms. We randomly allocated 126 participants to PA, MM, or HRV-BF upon enrollment, of whom 76 agreed to participate. The interventions consisted of psycho-education and an introduction to the specific intervention techniques and 5 weeks of daily exercises at home. The PA exercises consisted of a vigorous-intensity activity of free choice. The MM exercises consisted of guided mindfulness meditation. The HRV-BF exercises consisted of slow breathing with a heart rate variability biofeedback device. Participants received daily reminders for their exercises and were contacted weekly to monitor their progress. They completed questionnaires prior to, directly after, and 6 weeks after the intervention. Results indicated an overall beneficial effect consisting of reduced stress, anxiety and depressive symptoms, and improved psychological well-being and sleep quality. No significant between-intervention effect was found, suggesting that PA, MM, and HRV-BF are equally effective in reducing stress and its related symptoms. These self-help interventions provide easily accessible help for people with stress complaints.

  18. Quantum probabilistic logic programming

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan

    2015-05-01

    We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.

  19. The Relations of Cognitive, Behavioral, and Physical Activity Variables to Depression Severity in Traumatic Brain Injury: Reanalysis of Data From a Randomized Controlled Trial.

    PubMed

    Bombardier, Charles H; Fann, Jesse R; Ludman, Evette J; Vannoy, Steven D; Dyer, Joshua R; Barber, Jason K; Temkin, Nancy R

    To explore the relations of cognitive, behavioral, and physical activity variables to depression severity among people with traumatic brain injury (TBI) undergoing a depression treatment trial. Community. Adults (N = 88) who sustained complicated mild to severe TBI within the past 10 years, met criteria for major depressive disorder, and completed study measures. Randomized controlled trial. Participants were randomized to cognitive-behavioral therapy (n = 58) or usual care (n = 42). Outcomes were measured at baseline and 16 weeks. We combined the groups and used regressions to explore the relations among theoretical variables and depression outcomes. Depression severity was measured with the Hamilton Depression Rating Scale and Symptom Checklist-20. Theory-based measures were the Dysfunctional Attitudes Scale (DAS), Automatic Thoughts Questionnaire (ATQ), Environmental Rewards Observation Scale (EROS), and the International Physical Activity Questionnaire (IPAQ). Compared with non-TBI norms, baseline DAS and ATQ scores were high and EROS and IPAQ scores were low. All outcomes improved from baseline to 16 weeks except the DAS. The ATQ was an independent predictor of baseline depression. An increase in EROS scores was correlated with decreased depression. Increasing participation in meaningful roles and pleasant activities may be a promising approach to treating depression after TBI.

  20. Latent class instrumental variables: A clinical and biostatistical perspective

    PubMed Central

    Baker, Stuart G.; Kramer, Barnett S.; Lindeman, Karen S.

    2015-01-01

    In some two-arm randomized trials, some participants receive the treatment assigned to the other arm as a result of technical problems, refusal of a treatment invitation, or a choice of treatment in an encouragement design. In some before-and-after studies, the availability of a new treatment changes from one time period to this next. Under assumptions that are often reasonable, the latent class instrumental variable (IV) method estimates the effect of treatment received in the aforementioned scenarios involving all-or-none compliance and all-or-none availability. Key aspects are four initial latent classes (sometimes called principal strata) based on treatment received if in each randomization group or time period, the exclusion restriction assumption (in which randomization group or time period is an instrumental variable), the monotonicity assumption (which drops an implausible latent class from the analysis), and the estimated effect of receiving treatment in one latent class (sometimes called efficacy, the local average treatment effect, or the complier average causal effect). Since its independent formulations in the biostatistics and econometrics literatures, the latent class IV method (which has no well-established name) has gained increasing popularity. We review the latent class IV method from a clinical and biostatistical perspective, focusing on underlying assumptions, methodological extensions, and applications in our fields of obstetrics and cancer research. PMID:26239275

  1. Poisson process stimulation of an excitable membrane cable model.

    PubMed Central

    Goldfinger, M D

    1986-01-01

    The convergence of multiple inputs within a single-neuronal substrate is a common design feature of both peripheral and central nervous systems. Typically, the result of such convergence impinges upon an intracellularly contiguous axon, where it is encoded into a train of action potentials. The simplest representation of the result of convergence of multiple inputs is a Poisson process; a general representation of axonal excitability is the Hodgkin-Huxley/cable theory formalism. The present work addressed multiple input convergence upon an axon by applying Poisson process stimulation to the Hodgkin-Huxley axonal cable. The results showed that both absolute and relative refractory periods yielded in the axonal output a random but non-Poisson process. While smaller amplitude stimuli elicited a type of short-interval conditioning, larger amplitude stimuli elicited impulse trains approaching Poisson criteria except for the effects of refractoriness. These results were obtained for stimulus trains consisting of pulses of constant amplitude and constant or variable durations. By contrast, with or without stimulus pulse shape variability, the post-impulse conditional probability for impulse initiation in the steady-state was a Poisson-like process. For stimulus variability consisting of randomly smaller amplitudes or randomly longer durations, mean impulse frequency was attenuated or potentiated, respectively. Limitations and implications of these computations are discussed. PMID:3730505

  2. Testing the effectiveness of in-home behavioral economics strategies to increase vegetable intake, liking, and variety among children residing in households that receive food assistance.

    PubMed

    Leak, Tashara M; Swenson, Alison; Vickers, Zata; Mann, Traci; Mykerezi, Elton; Redden, Joseph P; Rendahl, Aaron; Reicks, Marla

    2015-01-01

    To test the effectiveness of behavioral economics strategies for increasing vegetable intake, variety, and liking among children residing in homes receiving food assistance. A randomized controlled trial with data collected at baseline, once weekly for 6 weeks, and at study conclusion. Family homes. Families with a child (9-12 years) will be recruited through community organizations and randomly assigned to an intervention (n = 36) or control (n = 10) group. The intervention group will incorporate a new behavioral economics strategy during home dinner meal occasions each week for 6 weeks. Strategies are simple and low-cost. The primary dependent variable will be child's dinner meal vegetable consumption based on weekly reports by caregivers. Fixed independent variables will include the strategy and week of strategy implementation. Secondary dependent variables will include vegetable liking and variety of vegetables consumed based on data collected at baseline and study conclusion. Mean vegetable intake for each strategy across families will be compared using a mixed-model analysis of variance with a random effect for child. In additionally, overall mean changes in vegetable consumption, variety, and liking will be compared between intervention and control groups. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  3. Random Initialisation of the Spectral Variables: an Alternate Approach for Initiating Multivariate Curve Resolution Alternating Least Square (MCR-ALS) Analysis.

    PubMed

    Kumar, Keshav

    2017-11-01

    Multivariate curve resolution alternating least square (MCR-ALS) analysis is the most commonly used curve resolution technique. The MCR-ALS model is fitted using the alternate least square (ALS) algorithm that needs initialisation of either contribution profiles or spectral profiles of each of the factor. The contribution profiles can be initialised using the evolve factor analysis; however, in principle, this approach requires that data must belong to the sequential process. The initialisation of the spectral profiles are usually carried out using the pure variable approach such as SIMPLISMA algorithm, this approach demands that each factor must have the pure variables in the data sets. Despite these limitations, the existing approaches have been quite a successful for initiating the MCR-ALS analysis. However, the present work proposes an alternate approach for the initialisation of the spectral variables by generating the random variables in the limits spanned by the maxima and minima of each spectral variable of the data set. The proposed approach does not require that there must be pure variables for each component of the multicomponent system or the concentration direction must follow the sequential process. The proposed approach is successfully validated using the excitation-emission matrix fluorescence data sets acquired for certain fluorophores with significant spectral overlap. The calculated contribution and spectral profiles of these fluorophores are found to correlate well with the experimental results. In summary, the present work proposes an alternate way to initiate the MCR-ALS analysis.

  4. Simulation Of Research And Development Projects

    NASA Technical Reports Server (NTRS)

    Miles, Ralph F.

    1987-01-01

    Measures of preference for alternative project plans calculated. Simulation of Research and Development Projects (SIMRAND) program aids in optimal allocation of research and development resources needed to achieve project goals. Models system subsets or project tasks as various network paths to final goal. Each path described in terms of such task variables as cost per hour, cost per unit, and availability of resources. Uncertainty incorporated by treating task variables as probabilistic random variables. Written in Microsoft FORTRAN 77.

  5. Why we should use simpler models if the data allow this: relevance for ANOVA designs in experimental biology.

    PubMed

    Lazic, Stanley E

    2008-07-21

    Analysis of variance (ANOVA) is a common statistical technique in physiological research, and often one or more of the independent/predictor variables such as dose, time, or age, can be treated as a continuous, rather than a categorical variable during analysis - even if subjects were randomly assigned to treatment groups. While this is not common, there are a number of advantages of such an approach, including greater statistical power due to increased precision, a simpler and more informative interpretation of the results, greater parsimony, and transformation of the predictor variable is possible. An example is given from an experiment where rats were randomly assigned to receive either 0, 60, 180, or 240 mg/L of fluoxetine in their drinking water, with performance on the forced swim test as the outcome measure. Dose was treated as either a categorical or continuous variable during analysis, with the latter analysis leading to a more powerful test (p = 0.021 vs. p = 0.159). This will be true in general, and the reasons for this are discussed. There are many advantages to treating variables as continuous numeric variables if the data allow this, and this should be employed more often in experimental biology. Failure to use the optimal analysis runs the risk of missing significant effects or relationships.

  6. Making statistical inferences about software reliability

    NASA Technical Reports Server (NTRS)

    Miller, Douglas R.

    1988-01-01

    Failure times of software undergoing random debugging can be modelled as order statistics of independent but nonidentically distributed exponential random variables. Using this model inferences can be made about current reliability and, if debugging continues, future reliability. This model also shows the difficulty inherent in statistical verification of very highly reliable software such as that used by digital avionics in commercial aircraft.

  7. Project SUCCESS' Effects on Substance Use-Related Attitudes and Behaviors: A Randomized Controlled Trial in Alternative High Schools

    ERIC Educational Resources Information Center

    Clark, Heddy Kovach; Ringwalt, Chris L.; Shamblen, Stephen R.; Hanley, Sean M.

    2011-01-01

    Using a randomized controlled effectiveness trial, we examined the effects of Project SUCCESS on a range of secondary outcomes, including the program's mediating variables. Project SUCCESS, which is based both on the Theory of Reasoned Action and on Cognitive Behavior Theory, is a school-based substance use prevention program that targets…

  8. Estimating Individual Influences of Behavioral Intentions: An Application of Random-Effects Modeling to the Theory of Reasoned Action.

    ERIC Educational Resources Information Center

    Hedeker, Donald; And Others

    1996-01-01

    Methods are proposed and described for estimating the degree to which relations among variables vary at the individual level. As an example, M. Fishbein and I. Ajzen's theory of reasoned action is examined. This article illustrates the use of empirical Bayes methods based on a random-effects regression model to estimate individual influences…

  9. Examination of Individual Differences in Outcomes from a Randomized Controlled Clinical Trial Comparing Formal and Informal Individual Auditory Training Programs

    ERIC Educational Resources Information Center

    Smith, Sherri L.; Saunders, Gabrielle H.; Chisolm, Theresa H.; Frederick, Melissa; Bailey, Beth A.

    2016-01-01

    Purpose: The purpose of this study was to determine if patient characteristics or clinical variables could predict who benefits from individual auditory training. Method: A retrospective series of analyses were performed using a data set from a large, multisite, randomized controlled clinical trial that compared the treatment effects of at-home…

  10. Evaluation of Model Specification, Variable Selection, and Adjustment Methods in Relation to Propensity Scores and Prognostic Scores in Multilevel Data

    ERIC Educational Resources Information Center

    Yu, Bing; Hong, Guanglei

    2012-01-01

    This study uses simulation examples representing three types of treatment assignment mechanisms in data generation (the random intercept and slopes setting, the random intercept setting, and a third setting with a cluster-level treatment and an individual-level outcome) in order to determine optimal procedures for reducing bias and improving…

  11. Examining the Missing Completely at Random Mechanism in Incomplete Data Sets: A Multiple Testing Approach

    ERIC Educational Resources Information Center

    Raykov, Tenko; Lichtenberg, Peter A.; Paulson, Daniel

    2012-01-01

    A multiple testing procedure for examining implications of the missing completely at random (MCAR) mechanism in incomplete data sets is discussed. The approach uses the false discovery rate concept and is concerned with testing group differences on a set of variables. The method can be used for ascertaining violations of MCAR and disproving this…

  12. Implementation of a Manualized Communication Intervention for School-Aged Children with Pragmatic and Social Communication Needs in a Randomized Controlled Trial: The Social Communication Intervention Project

    ERIC Educational Resources Information Center

    Adams, Catherine; Lockton, Elaine; Gaile, Jacqueline; Earl, Gillian; Freed, Jenny

    2012-01-01

    Background: Speech-language interventions are often complex in nature, involving multiple observations, variable outcomes and individualization in treatment delivery. The accepted procedure associated with randomized controlled trials (RCT) of such complex interventions is to develop and implement a manual of intervention in order that reliable…

  13. A Clustered Randomized Controlled Trial to Determine Impacts of the Harvest of the Month Program

    ERIC Educational Resources Information Center

    LaChausse, Robert G.

    2017-01-01

    The study purpose was to examine the impact of the Harvest of the Month (HOTM) program on fruit and vegetable (FV) consumption, FV preferences, other eating behaviors, physical activity and other variables related to healthy eating. A clustered randomized controlled trial was employed in 28 elementary schools. After parental consent was obtained,…

  14. Comparative Evaluation of the Efficacy of Probiotic, Herbal and Chlorhexidine Mouthwash on Gingival Health: A Randomized Clinical Trial

    PubMed Central

    Dodamani, Arun Suresh; Karibasappa, Gundabaktha; Khairnar, Mahesh Ravindra; Naik, Rahul Gaybarao; Jadhav, Harish Chaitram

    2017-01-01

    Introduction Due to inherent limitations of Chlorhexidine (CHX), search for an effective and potentially safe anti-plaque agent has led to emergence of alternative products. Aim The present study evaluated the comparative efficacy of probiotic, herbal and CHX mouthwashes on gingival health of healthy individuals. Materials and Methods The present study was randomized parallel group controlled trial. A group of 45 healthy subjects in the age group of 18-21 years received complete supragingival scaling at baseline and study variables viz., Oral Hygiene Index – Simplified (OHI-S), Plaque Index (PI) and Gingival Index (GI) were recorded. Subjects were then randomly divided into three groups (15 in each group) and were randomly intervened with three different mouthwashes i.e., HiOra mouthwash, CHX mouthwash and Probiotic mouthwash. Variables were again recorded on the seventh and 14th day after use of mouthwashes and data obtained was subjected to statistical analysis. Results There was no significant difference in the efficacy of CHX, HiOra regular and probiotic mouthwashes on plaque accumulation, gingival health and oral hygiene status. Conclusion Herbal and probiotic mouthwashes can prove to be effective alternatives to CHX with minimal side effects. PMID:28511500

  15. Mum, why do you keep on growing? Impacts of environmental variability on optimal growth and reproduction allocation strategies of annual plants.

    PubMed

    De Lara, Michel

    2006-05-01

    In their 1990 paper Optimal reproductive efforts and the timing of reproduction of annual plants in randomly varying environments, Amir and Cohen considered stochastic environments consisting of i.i.d. sequences in an optimal allocation discrete-time model. We suppose here that the sequence of environmental factors is more generally described by a Markov chain. Moreover, we discuss the connection between the time interval of the discrete-time dynamic model and the ability of the plant to rebuild completely its vegetative body (from reserves). We formulate a stochastic optimization problem covering the so-called linear and logarithmic fitness (corresponding to variation within and between years), which yields optimal strategies. For "linear maximizers'', we analyse how optimal strategies depend upon the environmental variability type: constant, random stationary, random i.i.d., random monotonous. We provide general patterns in terms of targets and thresholds, including both determinate and indeterminate growth. We also provide a partial result on the comparison between ;"linear maximizers'' and "log maximizers''. Numerical simulations are provided, allowing to give a hint at the effect of different mathematical assumptions.

  16. Mendelian Randomization.

    PubMed

    Grover, Sandeep; Del Greco M, Fabiola; Stein, Catherine M; Ziegler, Andreas

    2017-01-01

    Confounding and reverse causality have prevented us from drawing meaningful clinical interpretation even in well-powered observational studies. Confounding may be attributed to our inability to randomize the exposure variable in observational studies. Mendelian randomization (MR) is one approach to overcome confounding. It utilizes one or more genetic polymorphisms as a proxy for the exposure variable of interest. Polymorphisms are randomly distributed in a population, they are static throughout an individual's lifetime, and may thus help in inferring directionality in exposure-outcome associations. Genome-wide association studies (GWAS) or meta-analyses of GWAS are characterized by large sample sizes and the availability of many single nucleotide polymorphisms (SNPs), making GWAS-based MR an attractive approach. GWAS-based MR comes with specific challenges, including multiple causality. Despite shortcomings, it still remains one of the most powerful techniques for inferring causality.With MR still an evolving concept with complex statistical challenges, the literature is relatively scarce in terms of providing working examples incorporating real datasets. In this chapter, we provide a step-by-step guide for causal inference based on the principles of MR with a real dataset using both individual and summary data from unrelated individuals. We suggest best possible practices and give recommendations based on the current literature.

  17. Non-random mating and convergence over time for alcohol consumption, smoking, and exercise: the Nord-Trøndelag Health Study.

    PubMed

    Ask, Helga; Rognmo, Kamilla; Torvik, Fartein Ask; Røysamb, Espen; Tambs, Kristian

    2012-05-01

    Spouses tend to have similar lifestyles. We explored the degree to which spouse similarity in alcohol use, smoking, and physical exercise is caused by non-random mating or convergence. We used data collected for the Nord-Trøndelag Health Study from 1984 to 1986 and prospective registry information about when and with whom people entered marriage/cohabitation between 1970 and 2000. Our sample included 19,599 married/cohabitating couples and 1,551 future couples that were to marry/cohabitate in the 14-16 years following data collection. All couples were grouped according to the duration between data collection and entering into marriage/cohabitation. Age-adjusted polychoric spouse correlations were used as the dependent variables in non-linear segmented regression analysis; the independent variable was time. The results indicate that spouse concordance in lifestyle is due to both non-random mating and convergence. Non-random mating appeared to be strongest for smoking. Convergence in alcohol use and smoking was evident during the period prior to marriage/cohabitation, whereas convergence in exercise was evident throughout life. Reduced spouse similarity in smoking with relationship duration may reflect secular trends.

  18. Margins of stability in young adults with traumatic transtibial amputation walking in destabilizing environments✫

    PubMed Central

    Beltran, Eduardo J.; Dingwell, Jonathan B.; Wilken, Jason M.

    2014-01-01

    Understanding how lower-limb amputation affects walking stability, specifically in destabilizing environments, is essential for developing effective interventions to prevent falls. This study quantified mediolateral margins of stability (MOS) and MOS sub-components in young individuals with traumatic unilateral transtibial amputation (TTA) and young able-bodied individuals (AB). Thirteen AB and nine TTA completed five 3-minute walking trials in a Computer Assisted Rehabilitation ENvironment (CAREN) system under three each of three test conditions: no perturbations, pseudo-random mediolateral translations of the platform, and pseudo-random mediolateral translations of the visual field. Compared to the unperturbed trials, TTA exhibited increased mean MOS and MOS variability during platform and visual field perturbations (p < 0.010). Also, AB exhibited increased mean MOS during visual field perturbations and increased MOS variability during both platform and visual field perturbations (p < 0.050). During platform perturbations, TTA exhibited significantly greater values than AB for mean MOS (p < 0.050) and MOS variability (p < 0.050); variability of the lateral distance between the center of mass (COM) and base of support at initial contact (p < 0.005); mean and variability of the range of COM motion (p < 0.010); and variability of COM peak velocity (p < 0.050). As determined by mean MOS and MOS variability, young and otherwise healthy individuals with transtibial amputation achieved stability similar to that of their able-bodied counterparts during unperturbed and visually-perturbed walking. However, based on mean and variability of MOS, unilateral transtibial amputation was shown to have affected walking stability during platform perturbations. PMID:24444777

  19. Patient characteristics and variability in adherence and competence in cognitive-behavioral therapy for panic disorder.

    PubMed

    Boswell, James F; Gallagher, Matthew W; Sauer-Zavala, Shannon E; Bullis, Jacqueline; Gorman, Jack M; Shear, M Katherine; Woods, Scott; Barlow, David H

    2013-06-01

    Although associations with outcome have been inconsistent, therapist adherence and competence continues to garner attention, particularly within the context of increasing interest in the dissemination, implementation, and sustainability of evidence-based treatments. To date, research on therapist adherence and competence has focused on average levels across therapists. With a few exceptions, research has failed to address multiple sources of variability in adherence and competence, identify important factors that might account for variability, or take these sources of variability into account when examining associations with symptom change. (a) statistically demonstrate between- and within-therapist variability in adherence and competence ratings and examine patient characteristics as predictors of this variability and (b) examine the relationship between adherence/competence and symptom change. Randomly selected audiotaped sessions from a randomized controlled trial of cognitive-behavioral therapy for panic disorder were rated for therapist adherence and competence. Patients completed a self-report measure of panic symptom severity prior to each session and the Inventory of Interpersonal Problems-Personality Disorder Scale prior to the start of treatment. Significant between- and within-therapist variability in adherence and competence were observed. Adherence and competence deteriorated significantly over the course of treatment. Higher patient interpersonal aggression was associated with decrements in both adherence and competence. Neither adherence nor competence predicted subsequent panic severity. Variability and "drift" in adherence and competence can be observed in controlled trials. Training and implementation efforts should involve continued consultation over multiple cases in order to account for relevant patient factors and promote sustainability across sessions and patients.

  20. [Study on correction of data bias caused by different missing mechanisms in survey of medical expenditure among students enrolling in Urban Resident Basic Medical Insurance].

    PubMed

    Zhang, Haixia; Zhao, Junkang; Gu, Caijiao; Cui, Yan; Rong, Huiying; Meng, Fanlong; Wang, Tong

    2015-05-01

    The study of the medical expenditure and its influencing factors among the students enrolling in Urban Resident Basic Medical Insurance (URBMI) in Taiyuan indicated that non response bias and selection bias coexist in dependent variable of the survey data. Unlike previous studies only focused on one missing mechanism, a two-stage method to deal with two missing mechanisms simultaneously was suggested in this study, combining multiple imputation with sample selection model. A total of 1 190 questionnaires were returned by the students (or their parents) selected in child care settings, schools and universities in Taiyuan by stratified cluster random sampling in 2012. In the returned questionnaires, 2.52% existed not missing at random (NMAR) of dependent variable and 7.14% existed missing at random (MAR) of dependent variable. First, multiple imputation was conducted for MAR by using completed data, then sample selection model was used to correct NMAR in multiple imputation, and a multi influencing factor analysis model was established. Based on 1 000 times resampling, the best scheme of filling the random missing values is the predictive mean matching (PMM) method under the missing proportion. With this optimal scheme, a two stage survey was conducted. Finally, it was found that the influencing factors on annual medical expenditure among the students enrolling in URBMI in Taiyuan included population group, annual household gross income, affordability of medical insurance expenditure, chronic disease, seeking medical care in hospital, seeking medical care in community health center or private clinic, hospitalization, hospitalization canceled due to certain reason, self medication and acceptable proportion of self-paid medical expenditure. The two-stage method combining multiple imputation with sample selection model can deal with non response bias and selection bias effectively in dependent variable of the survey data.

  1. Demonstration of the Application of Composite Load Spectra (CLS) and Probabilistic Structural Analysis (PSAM) Codes to SSME Heat Exchanger Turnaround Vane

    NASA Technical Reports Server (NTRS)

    Rajagopal, Kadambi R.; DebChaudhury, Amitabha; Orient, George

    2000-01-01

    This report describes a probabilistic structural analysis performed to determine the probabilistic structural response under fluctuating random pressure loads for the Space Shuttle Main Engine (SSME) turnaround vane. It uses a newly developed frequency and distance dependent correlation model that has features to model the decay phenomena along the flow and across the flow with the capability to introduce a phase delay. The analytical results are compared using two computer codes SAFER (Spectral Analysis of Finite Element Responses) and NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) and with experimentally observed strain gage data. The computer code NESSUS with an interface to a sub set of Composite Load Spectra (CLS) code is used for the probabilistic analysis. A Fatigue code was used to calculate fatigue damage due to the random pressure excitation. The random variables modeled include engine system primitive variables that influence the operating conditions, convection velocity coefficient, stress concentration factor, structural damping, and thickness of the inner and outer vanes. The need for an appropriate correlation model in addition to magnitude of the PSD is emphasized. The study demonstrates that correlation characteristics even under random pressure loads are capable of causing resonance like effects for some modes. The study identifies the important variables that contribute to structural alternate stress response and drive the fatigue damage for the new design. Since the alternate stress for the new redesign is less than the endurance limit for the material, the damage due high cycle fatigue is negligible.

  2. Statistical theory of nucleation in the presence of uncharacterized impurities

    NASA Astrophysics Data System (ADS)

    Sear, Richard P.

    2004-08-01

    First order phase transitions proceed via nucleation. The rate of nucleation varies exponentially with the free-energy barrier to nucleation, and so is highly sensitive to variations in this barrier. In practice, very few systems are absolutely pure, there are typically some impurities present which are rather poorly characterized. These interact with the nucleus, causing the barrier to vary, and so must be taken into account. Here the impurity-nucleus interactions are modelled by random variables. The rate then has the same form as the partition function of Derrida’s random energy model, and as in this model there is a regime in which the behavior is non-self-averaging. Non-self-averaging nucleation is nucleation with a rate that varies significantly from one realization of the random variables to another. In experiment this corresponds to variation in the nucleation rate from one sample to another. General analytic expressions are obtained for the crossover from a self-averaging to a non-self-averaging rate of nucleation.

  3. A dynamic programming-based particle swarm optimization algorithm for an inventory management problem under uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zeng, Ziqiang; Han, Bernard; Lei, Xiao

    2013-07-01

    This article presents a dynamic programming-based particle swarm optimization (DP-based PSO) algorithm for solving an inventory management problem for large-scale construction projects under a fuzzy random environment. By taking into account the purchasing behaviour and strategy under rules of international bidding, a multi-objective fuzzy random dynamic programming model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform fuzzy random parameters into fuzzy variables that are subsequently defuzzified by using an expected value operator with optimistic-pessimistic index. The iterative nature of the authors' model motivates them to develop a DP-based PSO algorithm. More specifically, their approach treats the state variables as hidden parameters. This in turn eliminates many redundant feasibility checks during initialization and particle updates at each iteration. Results and sensitivity analysis are presented to highlight the performance of the authors' optimization method, which is very effective as compared to the standard PSO algorithm.

  4. Synthesis of hover autopilots for rotary-wing VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Hall, W. E.; Bryson, A. E., Jr.

    1972-01-01

    The practical situation is considered where imperfect information on only a few rotor and fuselage state variables is available. Filters are designed to estimate all the state variables from noisy measurements of fuselage pitch/roll angles and from noisy measurements of both fuselage and rotor pitch/roll angles. The mean square response of the vehicle to a very gusty, random wind is computed using various filter/controllers and is found to be quite satisfactory although, of course, not so good as when one has perfect information (idealized case). The second part of the report considers precision hover over a point on the ground. A vehicle model without rotor dynamics is used and feedback signals in position and integral of position error are added. The mean square response of the vehicle to a very gusty, random wind is computed, assuming perfect information feedback, and is found to be excellent. The integral error feedback gives zero position error for a steady wind, and smaller position error for a random wind.

  5. Comparative analysis of used car price evaluation models

    NASA Astrophysics Data System (ADS)

    Chen, Chuancan; Hao, Lulu; Xu, Cong

    2017-05-01

    An accurate used car price evaluation is a catalyst for the healthy development of used car market. Data mining has been applied to predict used car price in several articles. However, little is studied on the comparison of using different algorithms in used car price estimation. This paper collects more than 100,000 used car dealing records throughout China to do empirical analysis on a thorough comparison of two algorithms: linear regression and random forest. These two algorithms are used to predict used car price in three different models: model for a certain car make, model for a certain car series and universal model. Results show that random forest has a stable but not ideal effect in price evaluation model for a certain car make, but it shows great advantage in the universal model compared with linear regression. This indicates that random forest is an optimal algorithm when handling complex models with a large number of variables and samples, yet it shows no obvious advantage when coping with simple models with less variables.

  6. Investigating Organizational Alienation Behavior in Terms of Some Variables

    ERIC Educational Resources Information Center

    Dagli, Abidin; Averbek, Emel

    2017-01-01

    The aim of this study is to detect the perceptions of public primary school teachers regarding organizational alienation behaviors in terms of some variables (gender, marital status and seniority). Survey model was used in this study. The research sample consists of randomly selected 346 teachers from 40 schools in the central district of Mardin,…

  7. Child Predictors of Learning to Control Variables via Instruction or Self-Discovery

    ERIC Educational Resources Information Center

    Wagensveld, Barbara; Segers, Eliane; Kleemans, Tijs; Verhoeven, Ludo

    2015-01-01

    We examined the role child factors on the acquisition and transfer of learning the control of variables strategy (CVS) via instruction or self-discovery. Seventy-six fourth graders and 43 sixth graders were randomly assigned to a group receiving direct CVS instruction or a discovery learning group. Prior to the intervention, cognitive, scientific,…

  8. Forest-floor disturbance reduces chipmunk (Tamias spp.) abundance two years after variable-retention harvest of Pacific Northwestern forests

    Treesearch

    Randall J. Wilk; Timothy B. Harrington; Robert A. Gitzen; Chris C. Maguire

    2015-01-01

    We evaluated the two-year effects of variable-retention harvest on chipmunk (Tamias spp.) abundance (N^) and habitat in mature coniferous forests in western Oregon and Washington because wildlife responses to density/pattern of retained trees remain largely unknown. In a randomized complete-block design, six...

  9. Risk Factors for Sexual Violence in the Military: An Analysis of Sexual Assault and Sexual Harassment Incidents and Reporting

    DTIC Science & Technology

    2017-03-01

    53 ix LIST OF TABLES Table 1. Descriptive Statistics for Control Variables by... Statistics for Control Variables by Gender (Random Subsample with Complete Survey) ............................................................30 Table...empirical analysis. Chapter IV describes the summary statistics and results. Finally, Chapter V offers concluding thoughts, study limitations, and

  10. Prediction of Response to Medication and Cognitive Therapy in the Treatment of Moderate to Severe Depression

    ERIC Educational Resources Information Center

    Fournier, Jay C.; DeRubeis, Robert J.; Shelton, Richard C.; Hollon, Steven D.; Amsterdam, Jay D.; Gallop, Robert

    2009-01-01

    A recent randomized controlled trial found nearly equivalent response rates for antidepressant medications and cognitive therapy in a sample of moderate to severely depressed outpatients. In this article, the authors seek to identify the variables that were associated with response across both treatments as well as variables that predicted…

  11. Modeling Signal-Noise Processes Supports Student Construction of a Hierarchical Image of Sample

    ERIC Educational Resources Information Center

    Lehrer, Richard

    2017-01-01

    Grade 6 (modal age 11) students invented and revised models of the variability generated as each measured the perimeter of a table in their classroom. To construct models, students represented variability as a linear composite of true measure (signal) and multiple sources of random error. Students revised models by developing sampling…

  12. On the Extraction of Components and the Applicability of the Factor Model.

    ERIC Educational Resources Information Center

    Dziuban, Charles D.; Harris, Chester W.

    A reanalysis of Shaycroft's matrix of intercorrelations of 10 test variables plus 4 random variables is discussed. Three different procedures were used in the reanalysis: (1) Image Component Analysis, (2) Uniqueness Rescaling Factor Analysis, and (3) Alpha Factor Analysis. The results of these analyses are presented in tables. It is concluded from…

  13. Psychosocial Variables as Predictors of School Adjustment of Gifted Students with Learning Disabilities in Nigeria

    ERIC Educational Resources Information Center

    Fakolade, O. A.; Oyedokun, S. O.

    2015-01-01

    The paper considered several psychosocial variables as predictors of school adjustment of 40 gifted students with learning disabilities in Junior Secondary School in Ikenne Local Government Council Area of Ogun State, Nigeria. Purposeful random sampling was employed to select four schools from 13 junior secondary schools in the area, six…

  14. PROGRAMED LEARNING--A COMPARATIVE EVALUATION OF STUDENT PERFORMANCE VARIABLES UNDER COMBINATIONS OF CONVENTIONAL AND AUTOMATED INSTRUCTION.

    ERIC Educational Resources Information Center

    FLINT, LANNING L.; HATCH, RICHARD S.

    STUDENT PERFORMANCE VARIABLES UNDER AUTOMATED, CONVENTIONAL, AND A COMBINATION OF AUTOMATED AND CONVENTIONAL CONDITIONS OF INSTRUCTION WERE INVESTIGATED. RECOMMENDATIONS FOR THE INTEGRATION OF PROGRAMED MATERIAL INTO THE CLASSROOM WERE SOUGHT. THREE GROUPS OF JUNIOR COLLEGE STUDENTS WERE USED IN THE EXPERIMENT. THE GROUPS WERE CHOSEN AT RANDOM.…

  15. Students, Teachers, and Schools as Sources of Variability, Integrity, and Sustainability in Implementing Progress Monitoring

    ERIC Educational Resources Information Center

    Bolt, Daniel M.; Ysseldyke, Jim; Patterson, Michael J.

    2010-01-01

    A three-level variance decomposition analysis was used to examine the sources of variability in implementation of a technology-enhanced progress monitoring system within each year of a 2-year study using a randomized-controlled design. We show that results of technology-enhanced progress monitoring are not necessarily a measure of student…

  16. Automatic Classification of Time-variable X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ~97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7-500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  17. Ensemble survival tree models to reveal pairwise interactions of variables with time-to-events outcomes in low-dimensional setting

    PubMed Central

    Dazard, Jean-Eudes; Ishwaran, Hemant; Mehlotra, Rajeev; Weinberg, Aaron; Zimmerman, Peter

    2018-01-01

    Unraveling interactions among variables such as genetic, clinical, demographic and environmental factors is essential to understand the development of common and complex diseases. To increase the power to detect such variables interactions associated with clinical time-to-events outcomes, we borrowed established concepts from random survival forest (RSF) models. We introduce a novel RSF-based pairwise interaction estimator and derive a randomization method with bootstrap confidence intervals for inferring interaction significance. Using various linear and nonlinear time-to-events survival models in simulation studies, we first show the efficiency of our approach: true pairwise interaction-effects between variables are uncovered, while they may not be accompanied with their corresponding main-effects, and may not be detected by standard semi-parametric regression modeling and test statistics used in survival analysis. Moreover, using a RSF-based cross-validation scheme for generating prediction estimators, we show that informative predictors may be inferred. We applied our approach to an HIV cohort study recording key host gene polymorphisms and their association with HIV change of tropism or AIDS progression. Altogether, this shows how linear or nonlinear pairwise statistical interactions of variables may be efficiently detected with a predictive value in observational studies with time-to-event outcomes. PMID:29453930

  18. How are palliative care cancer populations characterized in randomized controlled trials? A literature review.

    PubMed

    Sigurdardottir, Katrin Ruth; Oldervoll, Line; Hjermstad, Marianne Jensen; Kaasa, Stein; Knudsen, Anne Kari; Løhre, Erik Torbjørn; Loge, Jon Håvard; Haugen, Dagny Faksvåg

    2014-05-01

    The difficulties in defining a palliative care patient accentuate the need to provide stringent descriptions of the patient population in palliative care research. To conduct a systematic literature review with the aim of identifying which key variables have been used to describe adult palliative care cancer populations in randomized controlled trials (RCTs). The data sources used were MEDLINE (1950 to January 25, 2010) and Embase (1980 to January 25, 2010), limited to RCTs in adult cancer patients with incurable disease. Forty-three variables were systematically extracted from the eligible articles. The review includes 336 articles reporting RCTs in palliative care cancer patients. Age (98%), gender (90%), cancer diagnosis (89%), performance status (45%), and survival (45%) were the most frequently reported variables. A large number of other variables were much less frequently reported. A substantial variation exists in how palliative care cancer populations are described in RCTs. Few variables are consistently registered and reported. There is a clear need to standardize the reporting. The results from this work will serve as the basis for an international Delphi process with the aim of reaching consensus on a minimum set of descriptors to characterize a palliative care cancer population. Copyright © 2014 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  19. Ensemble survival tree models to reveal pairwise interactions of variables with time-to-events outcomes in low-dimensional setting.

    PubMed

    Dazard, Jean-Eudes; Ishwaran, Hemant; Mehlotra, Rajeev; Weinberg, Aaron; Zimmerman, Peter

    2018-02-17

    Unraveling interactions among variables such as genetic, clinical, demographic and environmental factors is essential to understand the development of common and complex diseases. To increase the power to detect such variables interactions associated with clinical time-to-events outcomes, we borrowed established concepts from random survival forest (RSF) models. We introduce a novel RSF-based pairwise interaction estimator and derive a randomization method with bootstrap confidence intervals for inferring interaction significance. Using various linear and nonlinear time-to-events survival models in simulation studies, we first show the efficiency of our approach: true pairwise interaction-effects between variables are uncovered, while they may not be accompanied with their corresponding main-effects, and may not be detected by standard semi-parametric regression modeling and test statistics used in survival analysis. Moreover, using a RSF-based cross-validation scheme for generating prediction estimators, we show that informative predictors may be inferred. We applied our approach to an HIV cohort study recording key host gene polymorphisms and their association with HIV change of tropism or AIDS progression. Altogether, this shows how linear or nonlinear pairwise statistical interactions of variables may be efficiently detected with a predictive value in observational studies with time-to-event outcomes.

  20. Testing concordance of instrumental variable effects in generalized linear models with application to Mendelian randomization

    PubMed Central

    Dai, James Y.; Chan, Kwun Chuen Gary; Hsu, Li

    2014-01-01

    Instrumental variable regression is one way to overcome unmeasured confounding and estimate causal effect in observational studies. Built on structural mean models, there has been considerale work recently developed for consistent estimation of causal relative risk and causal odds ratio. Such models can sometimes suffer from identification issues for weak instruments. This hampered the applicability of Mendelian randomization analysis in genetic epidemiology. When there are multiple genetic variants available as instrumental variables, and causal effect is defined in a generalized linear model in the presence of unmeasured confounders, we propose to test concordance between instrumental variable effects on the intermediate exposure and instrumental variable effects on the disease outcome, as a means to test the causal effect. We show that a class of generalized least squares estimators provide valid and consistent tests of causality. For causal effect of a continuous exposure on a dichotomous outcome in logistic models, the proposed estimators are shown to be asymptotically conservative. When the disease outcome is rare, such estimators are consistent due to the log-linear approximation of the logistic function. Optimality of such estimators relative to the well-known two-stage least squares estimator and the double-logistic structural mean model is further discussed. PMID:24863158

  1. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glide-Hurst, Carri K.; Gopan, Ellen; Department of Radiation Oncology Wayne State University, Detroit, MI

    2010-07-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroidmore » position was <2.0 mm. Interfraction population variability was 3.6-6.7 mm (systematic) and 3.1-3.9 mm (random) for the GTV centroid and 1.0-3.3 mm (systematic) and 1.5-2.6 mm (random) for the lungs. Tumor volume regressed 44.6% {+-} 23.2%. Gross tumor volume border variability was patient specific and demonstrated anisotropic shape change in some subjects. Interfraction GTV positional variability was associated with tumor volume regression and contralateral lung volume (p < 0.05). Inter-breath-hold reproducibility was unaffected by time point in the treatment course (p > 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.« less

  2. Centre-related variability in hospital admissions of patients with spondyloarthritis.

    PubMed

    Andrés, Mariano; Sivera, Francisca; Pérez-Vicente, Sabina; Carmona, Loreto; Vela, Paloma

    2016-09-01

    The aim of this study was to explore the variability in hospital admissions of patients with spondyloarthritis (SpA) in Spain, and the centre factors that may influence that variability. Descriptive cross-sectional study, part of the emAR II study, performed in Spain (2009-2010). Health records of patients with a diagnosis of SpA and at least one visit to the rheumatology units within the previous 2 years were reviewed. Variables related to hospital admissions, to the SpA, and to the patient and centre were collected. A multilevel logistic regression analysis of random intercept with non-random slopes was performed to assess variability between centres. From 45 centres, 1168 patients' health records were reviewed. Main SpA forms were ankylosing spondylitis (55.2 %) and psoriatic arthritis (22.2 %). A total of 248 admissions were registered for 196 patients (19.2 %, n = 1020). An adjusted variability of 17.6 % in hospitalizations between centres was noted. The following hospital-related factors showed a significant association with admissions: the total number of admissions of the centre, the existence of electronic admission, and the availability of ultrasound in rheumatology. However, these factors only explained 42.9 % of the inter-centre variability. The risk of a patient with SpA of being admitted could double (median OR 2.09), depending on the hospital where the patient was being managed. Hospital admissions of patients with SpA varied between hospitals due to centre characteristics. Further studies are needed to ascertain which specific factors may be causing the variation, as studied variables explained less than half of the variability.

  3. Pilot Study on the Applicability of Variance Reduction Techniques to the Simulation of a Stochastic Combat Model

    DTIC Science & Technology

    1987-09-01

    inverse transform method to obtain unit-mean exponential random variables, where Vi is the jth random number in the sequence of a stream of uniform random...numbers. The inverse transform method is discussed in the simulation textbooks listed in the reference section of this thesis. X(b,c,d) = - P(b,c,d...Defender ,C * P(b,c,d) We again use the inverse transform method to obtain the conditions for an interim event to occur and to induce the change in

  4. Quantifying the value of redundant measurements at GCOS Reference Upper-Air Network sites

    DOE PAGES

    Madonna, F.; Rosoldi, M.; Güldner, J.; ...

    2014-11-19

    The potential for measurement redundancy to reduce uncertainty in atmospheric variables has not been investigated comprehensively for climate observations. We evaluated the usefulness of entropy and mutual correlation concepts, as defined in information theory, for quantifying random uncertainty and redundancy in time series of the integrated water vapour (IWV) and water vapour mixing ratio profiles provided by five highly instrumented GRUAN (GCOS, Global Climate Observing System, Reference Upper-Air Network) stations in 2010–2012. Results show that the random uncertainties on the IWV measured with radiosondes, global positioning system, microwave and infrared radiometers, and Raman lidar measurements differed by less than 8%.more » Comparisons of time series of IWV content from ground-based remote sensing instruments with in situ soundings showed that microwave radiometers have the highest redundancy with the IWV time series measured by radiosondes and therefore the highest potential to reduce the random uncertainty of the radiosondes time series. Moreover, the random uncertainty of a time series from one instrument can be reduced by ~ 60% by constraining the measurements with those from another instrument. The best reduction of random uncertainty is achieved by conditioning Raman lidar measurements with microwave radiometer measurements. In conclusion, specific instruments are recommended for atmospheric water vapour measurements at GRUAN sites. This approach can be applied to the study of redundant measurements for other climate variables.« less

  5. Interpreting findings from Mendelian randomization using the MR-Egger method.

    PubMed

    Burgess, Stephen; Thompson, Simon G

    2017-05-01

    Mendelian randomization-Egger (MR-Egger) is an analysis method for Mendelian randomization using summarized genetic data. MR-Egger consists of three parts: (1) a test for directional pleiotropy, (2) a test for a causal effect, and (3) an estimate of the causal effect. While conventional analysis methods for Mendelian randomization assume that all genetic variants satisfy the instrumental variable assumptions, the MR-Egger method is able to assess whether genetic variants have pleiotropic effects on the outcome that differ on average from zero (directional pleiotropy), as well as to provide a consistent estimate of the causal effect, under a weaker assumption-the InSIDE (INstrument Strength Independent of Direct Effect) assumption. In this paper, we provide a critical assessment of the MR-Egger method with regard to its implementation and interpretation. While the MR-Egger method is a worthwhile sensitivity analysis for detecting violations of the instrumental variable assumptions, there are several reasons why causal estimates from the MR-Egger method may be biased and have inflated Type 1 error rates in practice, including violations of the InSIDE assumption and the influence of outlying variants. The issues raised in this paper have potentially serious consequences for causal inferences from the MR-Egger approach. We give examples of scenarios in which the estimates from conventional Mendelian randomization methods and MR-Egger differ, and discuss how to interpret findings in such cases.

  6. The ASAS-SN Catalog of Variable Stars I: The Serendipitous Survey

    NASA Astrophysics Data System (ADS)

    Jayasinghe, T.; Kochanek, C. S.; Stanek, K. Z.; Shappee, B. J.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Pawlak, M.; Shields, J. V.; Pojmanski, G.; Otero, S.; Britt, C. A.; Will, D.

    2018-04-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to routinely monitor the whole sky with a cadence of ˜2 - 3 days down to V≲ 17 mag. ASAS-SN has monitored the whole sky since 2014, collecting ˜100 - 500 epochs of observations per field. The V-band light curves for candidate variables identified during the search for supernovae are classified using a random forest classifier and visually verified. We present a catalog of 66,533 bright, new variable stars discovered during our search for supernovae, including 27,753 periodic variables and 38,780 irregular variables. V-band light curves for the ASAS-SN variables are available through the ASAS-SN variable stars database (https://asas-sn.osu.edu/variables). The database will begin to include the light curves of known variable stars in the near future along with the results for a systematic, all-sky variability survey.

  7. ADAPTIVE MATCHING IN RANDOMIZED TRIALS AND OBSERVATIONAL STUDIES

    PubMed Central

    van der Laan, Mark J.; Balzer, Laura B.; Petersen, Maya L.

    2014-01-01

    SUMMARY In many randomized and observational studies the allocation of treatment among a sample of n independent and identically distributed units is a function of the covariates of all sampled units. As a result, the treatment labels among the units are possibly dependent, complicating estimation and posing challenges for statistical inference. For example, cluster randomized trials frequently sample communities from some target population, construct matched pairs of communities from those included in the sample based on some metric of similarity in baseline community characteristics, and then randomly allocate a treatment and a control intervention within each matched pair. In this case, the observed data can neither be represented as the realization of n independent random variables, nor, contrary to current practice, as the realization of n/2 independent random variables (treating the matched pair as the independent sampling unit). In this paper we study estimation of the average causal effect of a treatment under experimental designs in which treatment allocation potentially depends on the pre-intervention covariates of all units included in the sample. We define efficient targeted minimum loss based estimators for this general design, present a theorem that establishes the desired asymptotic normality of these estimators and allows for asymptotically valid statistical inference, and discuss implementation of these estimators. We further investigate the relative asymptotic efficiency of this design compared with a design in which unit-specific treatment assignment depends only on the units’ covariates. Our findings have practical implications for the optimal design and analysis of pair matched cluster randomized trials, as well as for observational studies in which treatment decisions may depend on characteristics of the entire sample. PMID:25097298

  8. A modified hybrid uncertain analysis method for dynamic response field of the LSOAAC with random and interval parameters

    NASA Astrophysics Data System (ADS)

    Zi, Bin; Zhou, Bin

    2016-07-01

    For the prediction of dynamic response field of the luffing system of an automobile crane (LSOAAC) with random and interval parameters, a hybrid uncertain model is introduced. In the hybrid uncertain model, the parameters with certain probability distribution are modeled as random variables, whereas, the parameters with lower and upper bounds are modeled as interval variables instead of given precise values. Based on the hybrid uncertain model, the hybrid uncertain dynamic response equilibrium equation, in which different random and interval parameters are simultaneously included in input and output terms, is constructed. Then a modified hybrid uncertain analysis method (MHUAM) is proposed. In the MHUAM, based on random interval perturbation method, the first-order Taylor series expansion and the first-order Neumann series, the dynamic response expression of the LSOAAC is developed. Moreover, the mathematical characteristics of extrema of bounds of dynamic response are determined by random interval moment method and monotonic analysis technique. Compared with the hybrid Monte Carlo method (HMCM) and interval perturbation method (IPM), numerical results show the feasibility and efficiency of the MHUAM for solving the hybrid LSOAAC problems. The effects of different uncertain models and parameters on the LSOAAC response field are also investigated deeply, and numerical results indicate that the impact made by the randomness in the thrust of the luffing cylinder F is larger than that made by the gravity of the weight in suspension Q . In addition, the impact made by the uncertainty in the displacement between the lower end of the lifting arm and the luffing cylinder a is larger than that made by the length of the lifting arm L .

  9. Simulation of Crack Propagation in Engine Rotating Components under Variable Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Bonacuse, P. J.; Ghosn, L. J.; Telesman, J.; Calomino, A. M.; Kantzos, P.

    1998-01-01

    The crack propagation life of tested specimens has been repeatedly shown to strongly depend on the loading history. Overloads and extended stress holds at temperature can either retard or accelerate the crack growth rate. Therefore, to accurately predict the crack propagation life of an actual component, it is essential to approximate the true loading history. In military rotorcraft engine applications, the loading profile (stress amplitudes, temperature, and number of excursions) can vary significantly depending on the type of mission flown. To accurately assess the durability of a fleet of engines, the crack propagation life distribution of a specific component should account for the variability in the missions performed (proportion of missions flown and sequence). In this report, analytical and experimental studies are described that calibrate/validate the crack propagation prediction capability ]or a disk alloy under variable amplitude loading. A crack closure based model was adopted to analytically predict the load interaction effects. Furthermore, a methodology has been developed to realistically simulate the actual mission mix loading on a fleet of engines over their lifetime. A sequence of missions is randomly selected and the number of repeats of each mission in the sequence is determined assuming a Poisson distributed random variable with a given mean occurrence rate. Multiple realizations of random mission histories are generated in this manner and are used to produce stress, temperature, and time points for fracture mechanics calculations. The result is a cumulative distribution of crack propagation lives for a given, life limiting, component location. This information can be used to determine a safe retirement life or inspection interval for the given location.

  10. Uncertainty Quantification of the FUN3D-Predicted NASA CRM Flutter Boundary

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Massey, Steven J.

    2017-01-01

    A nonintrusive point collocation method is used to propagate parametric uncertainties of the flexible Common Research Model, a generic transport configuration, through the unsteady aeroelastic CFD solver FUN3D. A range of random input variables are considered, including atmospheric flow variables, structural variables, and inertial (lumped mass) variables. UQ results are explored for a range of output metrics (with a focus on dynamic flutter stability), for both subsonic and transonic Mach numbers, for two different CFD mesh refinements. A particular focus is placed on computing failure probabilities: the probability that the wing will flutter within the flight envelope.

  11. Random walk in nonhomogeneous environments: A possible approach to human and animal mobility

    NASA Astrophysics Data System (ADS)

    Srokowski, Tomasz

    2017-03-01

    The random walk process in a nonhomogeneous medium, characterized by a Lévy stable distribution of jump length, is discussed. The width depends on a position: either before the jump or after that. In the latter case, the density slope is affected by the variable width and the variance may be finite; then all kinds of the anomalous diffusion are predicted. In the former case, only the time characteristics are sensitive to the variable width. The corresponding Langevin equation with different interpretations of the multiplicative noise is discussed. The dependence of the distribution width on position after jump is interpreted in terms of cognitive abilities and related to such problems as migration in a human population and foraging habits of animals.

  12. Reliability of stiffened structural panels: Two examples

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Davis, D. Dale, Jr.; Maring, Lise D.; Krishnamurthy, Thiagaraja; Elishakoff, Isaac

    1992-01-01

    The reliability of two graphite-epoxy stiffened panels that contain uncertainties is examined. For one panel, the effect of an overall bow-type initial imperfection is studied. The size of the bow is assumed to be a random variable. The failure mode is buckling. The benefits of quality control are explored by using truncated distributions. For the other panel, the effect of uncertainties in a strain-based failure criterion is studied. The allowable strains are assumed to be random variables. A geometrically nonlinear analysis is used to calculate a detailed strain distribution near an elliptical access hole in a wing panel that was tested to failure. Calculated strains are used to predict failure. Results are compared with the experimental failure load of the panel.

  13. Psychometric Functioning of the MMPI-2-RF VRIN-r and TRIN-r Scales with Varying Degrees of Randomness, Acquiescence, and Counter-Acquiescence

    ERIC Educational Resources Information Center

    Handel, Richard W.; Ben-Porath, Yossef S.; Tellegen, Auke; Archer, Robert P.

    2010-01-01

    In the present study, the authors evaluated the effects of increasing degrees of simulated non-content-based (random or fixed) responding on scores on the newly developed Variable Response Inconsistency-Revised (VRIN-r) and True Response Inconsistency-Revised (TRIN-r) scales of the Minnesota Multiphasic Personality Inventory-2 Restructured Form…

  14. The Relative Effects and Equity of Inquiry-Based and Commonplace Science Teaching on Students' Knowledge, Reasoning, and Argumentation

    ERIC Educational Resources Information Center

    Wilson, Christopher D.; Taylor, Joseph A.; Kowalski, Susan M.; Carlson, Janet

    2010-01-01

    We conducted a laboratory-based randomized control study to examine the effectiveness of inquiry-based instruction. We also disaggregated the data by student demographic variables to examine if inquiry can provide equitable opportunities to learn. Fifty-eight students aged 14-16 years old were randomly assigned to one of two groups. Both groups of…

  15. Estimates of Intraclass Correlation for Variables Related to Behavioral HIV/STD Prevention in a Predominantly African American and Hispanic Sample of Young Women

    ERIC Educational Resources Information Center

    Pals, Sherri L.; Beaty, Brenda L.; Posner, Samuel F.; Bull, Sheana S.

    2009-01-01

    Studies designed to evaluate HIV and STD prevention interventions often involve random assignment of groups such as neighborhoods or communities to study conditions (e.g., to intervention or control). Investigators who design group-randomized trials (GRTs) must take the expected intraclass correlation coefficient (ICC) into account in sample size…

  16. Detecting Intervention Effects in a Cluster-Randomized Design Using Multilevel Structural Equation Modeling for Binary Responses

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Preacher, Kristopher J.; Bottge, Brian A.

    2015-01-01

    Multilevel modeling (MLM) is frequently used to detect group differences, such as an intervention effect in a pre-test--post-test cluster-randomized design. Group differences on the post-test scores are detected by controlling for pre-test scores as a proxy variable for unobserved factors that predict future attributes. The pre-test and post-test…

  17. Comparing Learning Style to Performance in On-Line Teaching: Impact of Proctored v. Un-Proctored Testing

    ERIC Educational Resources Information Center

    Wellman, Gregory S.

    2005-01-01

    The purpose of this study was to examine the impact that proctored versus un-proctored testing would have on learning for an on-line content module; and examine the relationship between LASSI variables and learning. A randomized, pre-test/post-test control group design was employed. College students in a pharmacy curriculum, were randomized to two…

  18. Conceptualizing and Testing Random Indirect Effects and Moderated Mediation in Multilevel Models: New Procedures and Recommendations

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Preacher, Kristopher J.; Gil, Karen M.

    2006-01-01

    The authors propose new procedures for evaluating direct, indirect, and total effects in multilevel models when all relevant variables are measured at Level 1 and all effects are random. Formulas are provided for the mean and variance of the indirect and total effects and for the sampling variances of the average indirect and total effects.…

  19. Influence of therapist competence and quantity of cognitive behavioural therapy on suicidal behaviour and inpatient hospitalisation in a randomised controlled trial in borderline personality disorder: further analyses of treatment effects in the BOSCOT study.

    PubMed

    Norrie, John; Davidson, Kate; Tata, Philip; Gumley, Andrew

    2013-09-01

    We investigated the treatment effects reported from a high-quality randomized controlled trial of cognitive behavioural therapy (CBT) for 106 people with borderline personality disorder attending community-based clinics in the UK National Health Service - the BOSCOT trial. Specifically, we examined whether the amount of therapy and therapist competence had an impact on our primary outcome, the number of suicidal acts, using instrumental variables regression modelling. Randomized controlled trial. Participants from across three sites (London, Glasgow, and Ayrshire/Arran) were randomized equally to CBT for personality disorders (CBTpd) plus Treatment as Usual or to Treatment as Usual. Treatment as Usual varied between sites and individuals, but was consistent with routine treatment in the UK National Health Service at the time. CBTpd comprised an average 16 sessions (range 0-35) over 12 months. We used instrumental variable regression modelling to estimate the impact of quantity and quality of therapy received (recording activities and behaviours that took place after randomization) on number of suicidal acts and inpatient psychiatric hospitalization. A total of 101 participants provided full outcome data at 2 years post randomization. The previously reported intention-to-treat (ITT) results showed on average a reduction of 0.91 (95% confidence interval 0.15-1.67) suicidal acts over 2 years for those randomized to CBT. By incorporating the influence of quantity of therapy and therapist competence, we show that this estimate of the effect of CBTpd could be approximately two to three times greater for those receiving the right amount of therapy from a competent therapist. Trials should routinely control for and collect data on both quantity of therapy and therapist competence, which can be used, via instrumental variable regression modelling, to estimate treatment effects for optimal delivery of therapy. Such estimates complement rather than replace the ITT results, which are properly the principal analysis results from such trials. © 2013 The British Psychological Society.

  20. Variability in Postarrest Targeted Temperature Management Practice: Implications of the 2015 Guidelines.

    PubMed

    Leary, Marion; Blewer, Audrey L; Delfin, Gail; Abella, Benjamin S

    2015-12-01

    In 2002 postarrest care was significantly altered when multiple randomized controlled trials found that therapeutic hypothermia at a goal temperature of 32-34°C significantly improved survival and neurologic outcomes. In 2013, targeted temperature management (TTM) was reexamined via a randomized controlled trial between 33°C and 36°C in post-cardiac arrest patients and found similar outcomes in both cohorts. Before the release of the 2015 American Heart Association (AHA) Guidelines, our group found that across hospitals in the United States, and even within the same institution, TTM protocol variability existed. After the 2013 TTM trial, it was anticipated that the 2015 Guidelines would clarify which target temperature should be used during postarrest care. The AHA released their updates for post-cardiac arrest TTM recently and, based on the literature available, have recommended the use of TTM at a goal temperature between 32°C and 36°C. Whether this variability has an effect on TTM implementation or patient outcomes is unknown.

  1. Improvements in sub-grid, microphysics averages using quadrature based approaches

    NASA Astrophysics Data System (ADS)

    Chowdhary, K.; Debusschere, B.; Larson, V. E.

    2013-12-01

    Sub-grid variability in microphysical processes plays a critical role in atmospheric climate models. In order to account for this sub-grid variability, Larson and Schanen (2013) propose placing a probability density function on the sub-grid cloud microphysics quantities, e.g. autoconversion rate, essentially interpreting the cloud microphysics quantities as a random variable in each grid box. Random sampling techniques, e.g. Monte Carlo and Latin Hypercube, can be used to calculate statistics, e.g. averages, on the microphysics quantities, which then feed back into the model dynamics on the coarse scale. We propose an alternate approach using numerical quadrature methods based on deterministic sampling points to compute the statistical moments of microphysics quantities in each grid box. We have performed a preliminary test on the Kessler autoconversion formula, and, upon comparison with Latin Hypercube sampling, our approach shows an increased level of accuracy with a reduction in sample size by almost two orders of magnitude. Application to other microphysics processes is the subject of ongoing research.

  2. Evidence of Deterministic Components in the Apparent Randomness of GRBs: Clues of a Chaotic Dynamic

    PubMed Central

    Greco, G.; Rosa, R.; Beskin, G.; Karpov, S.; Romano, L.; Guarnieri, A.; Bartolini, C.; Bedogni, R.

    2011-01-01

    Prompt γ-ray emissions from gamma-ray bursts (GRBs) exhibit a vast range of extremely complex temporal structures with a typical variability time-scale significantly short – as fast as milliseconds. This work aims to investigate the apparent randomness of the GRB time profiles making extensive use of nonlinear techniques combining the advanced spectral method of the Singular Spectrum Analysis (SSA) with the classical tools provided by the Chaos Theory. Despite their morphological complexity, we detect evidence of a non stochastic short-term variability during the overall burst duration – seemingly consistent with a chaotic behavior. The phase space portrait of such variability shows the existence of a well-defined strange attractor underlying the erratic prompt emission structures. This scenario can shed new light on the ultra-relativistic processes believed to take place in GRB explosions and usually associated with the birth of a fast-spinning magnetar or accretion of matter onto a newly formed black hole. PMID:22355609

  3. Evidence of deterministic components in the apparent randomness of GRBs: clues of a chaotic dynamic.

    PubMed

    Greco, G; Rosa, R; Beskin, G; Karpov, S; Romano, L; Guarnieri, A; Bartolini, C; Bedogni, R

    2011-01-01

    Prompt γ-ray emissions from gamma-ray bursts (GRBs) exhibit a vast range of extremely complex temporal structures with a typical variability time-scale significantly short - as fast as milliseconds. This work aims to investigate the apparent randomness of the GRB time profiles making extensive use of nonlinear techniques combining the advanced spectral method of the Singular Spectrum Analysis (SSA) with the classical tools provided by the Chaos Theory. Despite their morphological complexity, we detect evidence of a non stochastic short-term variability during the overall burst duration - seemingly consistent with a chaotic behavior. The phase space portrait of such variability shows the existence of a well-defined strange attractor underlying the erratic prompt emission structures. This scenario can shed new light on the ultra-relativistic processes believed to take place in GRB explosions and usually associated with the birth of a fast-spinning magnetar or accretion of matter onto a newly formed black hole.

  4. Enhancing Multimedia Imbalanced Concept Detection Using VIMP in Random Forests.

    PubMed

    Sadiq, Saad; Yan, Yilin; Shyu, Mei-Ling; Chen, Shu-Ching; Ishwaran, Hemant

    2016-07-01

    Recent developments in social media and cloud storage lead to an exponential growth in the amount of multimedia data, which increases the complexity of managing, storing, indexing, and retrieving information from such big data. Many current content-based concept detection approaches lag from successfully bridging the semantic gap. To solve this problem, a multi-stage random forest framework is proposed to generate predictor variables based on multivariate regressions using variable importance (VIMP). By fine tuning the forests and significantly reducing the predictor variables, the concept detection scores are evaluated when the concept of interest is rare and imbalanced, i.e., having little collaboration with other high level concepts. Using classical multivariate statistics, estimating the value of one coordinate using other coordinates standardizes the covariates and it depends upon the variance of the correlations instead of the mean. Thus, conditional dependence on the data being normally distributed is eliminated. Experimental results demonstrate that the proposed framework outperforms those approaches in the comparison in terms of the Mean Average Precision (MAP) values.

  5. Hierarchical Bayesian spatial models for predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large inventory datasets

    USGS Publications Warehouse

    Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.

    2013-01-01

    In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.

  6. Learning planar Ising models

    DOE PAGES

    Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael; ...

    2016-12-01

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less

  7. Learning planar Ising models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less

  8. A prospective, randomized, controlled study comparing Gynemesh, a synthetic mesh, and Pelvicol, a biologic graft, in the surgical treatment of recurrent cystocele.

    PubMed

    Natale, F; La Penna, C; Padoa, A; Agostini, M; De Simone, E; Cervigni, M

    2009-01-01

    We compared safety and efficacy of Gynemesh PS and Pelvicol for recurrent cystocele repair. One hundred ninety patients were randomly divided into Gynemesh PS and Pelvicol groups and underwent tension-free cystocele repair. The Chi-square test was used to compare categorical variables, the paired t test for continuous parametric variables, and the Mann-Whitney test for continuous nonparametric variables. Ninety-six Gynemesh PS patients and 94 Pelvicol patients were studied. Mesh erosions occurred in 6.3% of Gynemesh PS patients. No erosions were observed in Pelvicol patients (p = 0.02). Objective cure was 71.9% for Gynemesh PS and 56.4% for Pelvicol (p = 0.06). Subjective cure was the same in both groups except for better sexuality in the Pelvicol group. At 24 months follow-up, only Gynemesh PS patients had mesh erosions. Anatomical outcome was similar in the two groups. Pelvicol gave a better impact on voiding and sexuality.

  9. The Modern Design of Experiments for Configuration Aerodynamics: A Case Study

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2006-01-01

    The effects of slowly varying and persisting covariate effects on the accuracy and precision of experimental result is reviewed, as is the rationale for run-order randomization as a quality assurance tactic employed in the Modern Design of Experiments (MDOE) to defend against such effects. Considerable analytical complexity is introduced by restrictions on randomization in configuration aerodynamics tests because they involve hard-to-change configuration variables that cannot be randomized conveniently. Tradeoffs are examined between quality and productivity associated with varying degrees of rigor in accounting for such randomization restrictions. Certain characteristics of a configuration aerodynamics test are considered that may justify a relaxed accounting for randomization restrictions to achieve a significant reduction in analytical complexity with a comparably negligible adverse impact on the validity of the experimental results.

  10. Evaluation of Kurtosis into the product of two normally distributed variables

    NASA Astrophysics Data System (ADS)

    Oliveira, Amílcar; Oliveira, Teresa; Seijas-Macías, Antonio

    2016-06-01

    Kurtosis (κ) is any measure of the "peakedness" of a distribution of a real-valued random variable. We study the evolution of the Kurtosis for the product of two normally distributed variables. Product of two normal variables is a very common problem for some areas of study, like, physics, economics, psychology, … Normal variables have a constant value for kurtosis (κ = 3), independently of the value of the two parameters: mean and variance. In fact, the excess kurtosis is defined as κ- 3 and the Normal Distribution Kurtosis is zero. The product of two normally distributed variables is a function of the parameters of the two variables and the correlation between then, and the range for kurtosis is in [0, 6] for independent variables and in [0, 12] when correlation between then is allowed.

  11. Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.

    PubMed

    Hougaard, P; Lee, M L; Whitmore, G A

    1997-12-01

    Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.

  12. Quantum random bit generation using energy fluctuations in stimulated Raman scattering.

    PubMed

    Bustard, Philip J; England, Duncan G; Nunn, Josh; Moffatt, Doug; Spanner, Michael; Lausten, Rune; Sussman, Benjamin J

    2013-12-02

    Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.

  13. Optimal partitioning of random programs across two processors

    NASA Technical Reports Server (NTRS)

    Nicol, D. M.

    1986-01-01

    The optimal partitioning of random distributed programs is discussed. It is concluded that the optimal partitioning of a homogeneous random program over a homogeneous distributed system either assigns all modules to a single processor, or distributes the modules as evenly as possible among all processors. The analysis rests heavily on the approximation which equates the expected maximum of a set of independent random variables with the set's maximum expectation. The results are strengthened by providing an approximation-free proof of this result for two processors under general conditions on the module execution time distribution. It is also shown that use of this approximation causes two of the previous central results to be false.

  14. Anomalous diffusion analysis of the lifting events in the event-chain Monte Carlo for the classical XY models

    NASA Astrophysics Data System (ADS)

    Kimura, Kenji; Higuchi, Saburo

    2017-11-01

    We introduce a novel random walk model that emerges in the event-chain Monte Carlo (ECMC) of spin systems. In the ECMC, the lifting variable specifying the spin to be updated changes its value to one of its interacting neighbor spins. This movement can be regarded as a random walk in a random environment with a feedback. We investigate this random walk numerically in the case of the classical XY model in 1, 2, and 3 dimensions to find that it is superdiffusive near the critical point of the underlying spin system. It is suggested that the performance improvement of the ECMC is related to this anomalous behavior.

  15. Prediction of Baseflow Index of Catchments using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Yadav, B.; Hatfield, K.

    2017-12-01

    We present the results of eight machine learning techniques for predicting the baseflow index (BFI) of ungauged basins using a surrogate of catchment scale climate and physiographic data. The tested algorithms include ordinary least squares, ridge regression, least absolute shrinkage and selection operator (lasso), elasticnet, support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Our work seeks to identify the dominant controls of BFI that can be readily obtained from ancillary geospatial databases and remote sensing measurements, such that the developed techniques can be extended to ungauged catchments. More than 800 gauged catchments spanning the continental United States were selected to develop the general methodology. The BFI calculation was based on the baseflow separated from daily streamflow hydrograph using HYSEP filter. The surrogate catchment attributes were compiled from multiple sources including digital elevation model, soil, landuse, climate data, other publicly available ancillary and geospatial data. 80% catchments were used to train the ML algorithms, and the remaining 20% of the catchments were used as an independent test set to measure the generalization performance of fitted models. A k-fold cross-validation using exhaustive grid search was used to fit the hyperparameters of each model. Initial model development was based on 19 independent variables, but after variable selection and feature ranking, we generated revised sparse models of BFI prediction that are based on only six catchment attributes. These key predictive variables selected after the careful evaluation of bias-variance tradeoff include average catchment elevation, slope, fraction of sand, permeability, temperature, and precipitation. The most promising algorithms exceeding an accuracy score (r-square) of 0.7 on test data include support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Considering both the accuracy and the computational complexity of these algorithms, we identify the extremely randomized trees as the best performing algorithm for BFI prediction in ungauged basins.

  16. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology.

    PubMed

    Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H

    2017-07-01

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in using RF to develop predictive models with large environmental data sets.

  17. Describing temporal variability of the mean Estonian precipitation series in climate time scale

    NASA Astrophysics Data System (ADS)

    Post, P.; Kärner, O.

    2009-04-01

    Applicability of the random walk type models to represent the temporal variability of various atmospheric temperature series has been successfully demonstrated recently (e.g. Kärner, 2002). Main problem in the temperature modeling is connected to the scale break in the generally self similar air temperature anomaly series (Kärner, 2005). The break separates short-range strong non-stationarity from nearly stationary longer range variability region. This is an indication of the fact that several geophysical time series show a short-range non-stationary behaviour and a stationary behaviour in longer range (Davis et al., 1996). In order to model series like that the choice of time step appears to be crucial. To characterize the long-range variability we can neglect the short-range non-stationary fluctuations, provided that we are able to model properly the long-range tendencies. The structure function (Monin and Yaglom, 1975) was used to determine an approximate segregation line between the short and the long scale in terms of modeling. The longer scale can be called climate one, because such models are applicable in scales over some decades. In order to get rid of the short-range fluctuations in daily series the variability can be examined using sufficiently long time step. In the present paper, we show that the same philosophy is useful to find a model to represent a climate-scale temporal variability of the Estonian daily mean precipitation amount series over 45 years (1961-2005). Temporal variability of the obtained daily time series is examined by means of an autoregressive and integrated moving average (ARIMA) family model of the type (0,1,1). This model is applicable for daily precipitation simulating if to select an appropriate time step that enables us to neglet the short-range non-stationary fluctuations. A considerably longer time step than one day (30 days) is used in the current paper to model the precipitation time series variability. Each ARIMA (0,1,1) model can be interpreted to be consisting of random walk in a noisy environment (Box and Jenkins, 1976). The fitted model appears to be weakly non-stationary, that gives us the possibility to use stationary approximation if only the noise component from that sum of white noise and random walk is exploited. We get a convenient routine to generate a stationary precipitation climatology with a reasonable accuracy, since the noise component variance is much larger than the dispersion of the random walk generator. This interpretation emphasizes dominating role of a random component in the precipitation series. The result is understandable due to a small territory of Estonia that is situated in the mid-latitude cyclone track. References Box, J.E.P. and G. Jenkins 1976: Time Series Analysis, Forecasting and Control (revised edn.), Holden Day San Francisco, CA, 575 pp. Davis, A., Marshak, A., Wiscombe, W. and R. Cahalan 1996: Multifractal characterizations of intermittency in nonstationary geophysical signals and fields.in G. Trevino et al. (eds) Current Topics in Nonsstationarity Analysis. World-Scientific, Singapore, 97-158. Kärner, O. 2002: On nonstationarity and antipersistency in global temperature series. J. Geophys. Res. D107; doi:10.1029/2001JD002024. Kärner, O. 2005: Some examples on negative feedback in the Earth climate system. Centr. European J. Phys. 3; 190-208. Monin, A.S. and A.M. Yaglom 1975: Statistical Fluid Mechanics, Vol 2. Mechanics of Turbulence , MIT Press Boston Mass, 886 pp.

  18. Predicting Eight Grade Students' Equation Solving Performances via Concepts of Variable and Equality

    ERIC Educational Resources Information Center

    Ertekin, Erhan

    2017-01-01

    This study focused on how two algebraic concepts- equality and variable- predicted 8th grade students' equation solving performance. In this study, predictive design as a correlational research design was used. Randomly selected 407 eight-grade students who were from the central districts of a city in the central region of Turkey participated in…

  19. Factors Related to Instructional Leadership Perception and Effect of Instructional Leadership on Organizational Variables: A Meta-Analysis

    ERIC Educational Resources Information Center

    Sisman, Mehmet

    2016-01-01

    In this meta-analysis, effects of teacher characteristics on instructional leadership perceptions and some organizational variables is tested. Findings of the total of 67 independent studies are gathered in the meta-analysis which represents a population of 36,756. According to the findings of this meta-analysis performed by using random effects…

  20. Quiet Eye Duration Is Responsive to Variability of Practice and to the Axis of Target Changes

    ERIC Educational Resources Information Center

    Horn, Robert R.; Okumura, Michelle S.; Alexander, Melissa G. F.; Gardin, Fredrick A.; Sylvester, Curtis T.

    2012-01-01

    We tested the hypothesis that quiet eye, the final fixation before the initiation of a movement in aiming tasks, is used to scale the movement's parameters. Two groups of 12 participants (N = 24) threw darts to targets in the horizontal and vertical axes under conditions of higher (random) or lower (blocked) target variability. Supporting our…

  1. An Analysis of Methods Used To Reduce Nonresponse Bias in Survey Research.

    ERIC Educational Resources Information Center

    Johnson, Victoria A.

    The effectiveness of five methods used to estimate the population parameters of a variable of interest from a random sample in the presence of non-response to mail surveys was tested in conditions that vary the return rate and the relationship of the variable of interest to the likelihood of response. Data from 125,092 adult Alabama residents in…

  2. Correlations between Learners' Initial EFL Proficiency and Variables of Clicker-Aided Flipped EFL Class

    ERIC Educational Resources Information Center

    Yu, Zhonggen; Yu, Liheng

    2017-01-01

    Although the flipped class has been hotly discussed, the clicker-aided flipped EFL class (CFEC) still remains a mystery for most scholars. This study aims to determine the correlations between the initial EFL proficiency and other variables of the clicker-aided EFL flipped class. The sample was made up of randomly selected 79 participants (Female…

  3. The Role of Socio-Cognitive Variables in Predicting Learning Satisfaction in Smart Schools

    ERIC Educational Resources Information Center

    Firoozi, Mohammad Reza; Kazemi, Ali; Jokar, Maryam

    2017-01-01

    The present study aimed to investigate the role of Socio-Cognitive variables in predicting learning satisfaction in Smart Schools. The population was all the primary school students studying in smart schools in the city of Shiraz in the school year 2014-2015. The sample, randomly chosen through multi-stage cluster sampling, was 383 primary school…

  4. Ecological impacts and management strategies for western larch in the face of climate-change

    Treesearch

    Gerald E. Rehfeldt; Barry C. Jaquish

    2010-01-01

    Approximately 185,000 forest inventory and ecological plots from both USA and Canada were used to predict the contemporary distribution of western larch (Larix occidentalis Nutt.) from climate variables. The random forests algorithm, using an 8-variable model, produced an overall error rate of about 2.9 %, nearly all of which consisted of predicting presence at...

  5. Rationales of a Shift towards Knowledge Economy in Jordan from the Viewpoint of Educational Experts and Relationship with Some Variables

    ERIC Educational Resources Information Center

    Al Zboon, Mohammad Saleem; Al Ahmad, Suliman Diab Ali; Al Zboon, Saleem Odeh

    2009-01-01

    The purpose of the present study was to identify rationales underlying a shift towards knowledge economy in education as perceived by the educational experts in Jordan and relationship with some variables. The random stratum sample (n = 90) consisted of educational experts representing faculty members in the Jordanian universities and top leaders…

  6. Probability techniques for reliability analysis of composite materials

    NASA Technical Reports Server (NTRS)

    Wetherhold, Robert C.; Ucci, Anthony M.

    1994-01-01

    Traditional design approaches for composite materials have employed deterministic criteria for failure analysis. New approaches are required to predict the reliability of composite structures since strengths and stresses may be random variables. This report will examine and compare methods used to evaluate the reliability of composite laminae. The two types of methods that will be evaluated are fast probability integration (FPI) methods and Monte Carlo methods. In these methods, reliability is formulated as the probability that an explicit function of random variables is less than a given constant. Using failure criteria developed for composite materials, a function of design variables can be generated which defines a 'failure surface' in probability space. A number of methods are available to evaluate the integration over the probability space bounded by this surface; this integration delivers the required reliability. The methods which will be evaluated are: the first order, second moment FPI methods; second order, second moment FPI methods; the simple Monte Carlo; and an advanced Monte Carlo technique which utilizes importance sampling. The methods are compared for accuracy, efficiency, and for the conservativism of the reliability estimation. The methodology involved in determining the sensitivity of the reliability estimate to the design variables (strength distributions) and importance factors is also presented.

  7. The effect of newly induced mutations on the fitness of genotypes and populations of yeast (Saccharomyces cerevisiae).

    PubMed

    Orthen, E; Lange, P; Wöhrmann, K

    1984-12-01

    This paper analyses the fate of artificially induced mutations and their importance to the fitness of populations of the yeast, Saccharomyces cerevisiae, an increasingly important model organism in population genetics. Diploid strains, treated with UV and EMS, were cultured asexually for approximately 540 generations and under conditions where the asexual growth was interrupted by a sexual phase. Growth rates of 100 randomly sampled diploid clones were estimated at the beginning and at the end of the experiment. After the induction of sporulation the growth rates of 100 randomly sampled spores were measured. UV and EMS treatment decreases the average growth rate of the clones significantly but increases the variability in comparison to the untreated control. After selection over approximately 540 generations, variability in growth rates was reduced to that of the untreated control. No increase in mean population fitness was observed. However, the results show that after selection there still exists a large amount of hidden genetic variability in the populations which is revealed when the clones are cultivated in environments other than those in which selection took place. A sexual phase increased the reduction of the induced variability.

  8. Reducing Dropout in Treatment for Depression: Translating Dropout Predictors Into Individualized Treatment Recommendations.

    PubMed

    Zilcha-Mano, Sigal; Keefe, John R; Chui, Harold; Rubin, Avinadav; Barrett, Marna S; Barber, Jacques P

    2016-12-01

    Premature discontinuation of therapy is a widespread problem that hampers the delivery of mental health treatment. A high degree of variability has been found among rates of premature treatment discontinuation, suggesting that rates may differ depending on potential moderators. In the current study, our aim was to identify demographic and interpersonal variables that moderate the association between treatment assignment and dropout. Data from a randomized controlled trial conducted from November 2001 through June 2007 (N = 156) comparing supportive-expressive therapy, antidepressant medication, and placebo for the treatment of depression (based on DSM-IV criteria) were used. Twenty prerandomization variables were chosen based on previous literature. These variables were subjected to exploratory bootstrapped variable selection and included in the logistic regression models if they passed variable selection. Three variables were found to moderate the association between treatment assignment and dropout: age, pretreatment therapeutic alliance expectations, and the presence of vindictive tendencies in interpersonal relationships. When patients were divided into those randomly assigned to their optimal treatment and those assigned to their least optimal treatment, dropout rates in the optimal treatment group (24.4%) were significantly lower than those in the least optimal treatment group (47.4%; P = .03). Present findings suggest that a patient's age and pretreatment interpersonal characteristics predict the association between common depression treatments and dropout rate. If validated by further studies, these characteristics can assist in reducing dropout through targeted treatment assignment. Secondary analysis of data from ClinicalTrials.gov identifier: NCT00043550. © Copyright 2016 Physicians Postgraduate Press, Inc.

  9. Scaling the Poisson Distribution

    ERIC Educational Resources Information Center

    Farnsworth, David L.

    2014-01-01

    We derive the additive property of Poisson random variables directly from the probability mass function. An important application of the additive property to quality testing of computer chips is presented.

  10. Objectifying Tactics: Athlete and Race Variability in Elite Short-Track Speed Skating.

    PubMed

    Konings, Marco J; Hettinga, Florentina J

    2018-02-01

    To objectively capture and understand tactical considerations in a race, the authors explored whether race-to-race variation of an athlete and the variation of competitors within a race could provide insight into how and when athletes modify their pacing decisions in response to other competitors. Lap times of elite 500-, 1000-, and 1500-m short-track speed-skating competitions from 2011 to 2016 (N = 6965 races) were collected. Log-transformed lap and finishing times were analyzed with mixed linear models. To determine within-athlete race-to-race variability, athlete identity (between-athletes differences) and the residual (within-athlete race-to-race variation) were added as random effects. To determine race variability, race identity (between-races differences) and the residual (within-race variation) were added as random effects. Separate analyses were performed for each event. Within-athlete race-to-race variability of the finishing times increased with prolonged distance of the event (500-m, CV = 1.6%; 1000-m, CV = 2.8%; 1500-m, CV = 4.1%), mainly due to higher within-athlete race-to-race variability in the initial phase of 1000-m (3.3-6.9%) and 1500-m competitions (8.7-12.2%). During these early stages, within-race variability is relatively low in 1000-m (1.1-1.4%) and 1500-m (1.3-2.8%) competitions. The present study demonstrated how analyses of athlete and race variability could provide insight into tactical pacing decisions in sports where finishing position is emphasized over finishing time. The high variability of short-track skaters is a result of the decision to alter initial pacing behavior based on the behavior of other competitors in their race, emphasizing the importance of athlete-environment interactions in the context of pacing.

  11. Multiple imputation in the presence of non-normal data.

    PubMed

    Lee, Katherine J; Carlin, John B

    2017-02-20

    Multiple imputation (MI) is becoming increasingly popular for handling missing data. Standard approaches for MI assume normality for continuous variables (conditionally on the other variables in the imputation model). However, it is unclear how to impute non-normally distributed continuous variables. Using simulation and a case study, we compared various transformations applied prior to imputation, including a novel non-parametric transformation, to imputation on the raw scale and using predictive mean matching (PMM) when imputing non-normal data. We generated data from a range of non-normal distributions, and set 50% to missing completely at random or missing at random. We then imputed missing values on the raw scale, following a zero-skewness log, Box-Cox or non-parametric transformation and using PMM with both type 1 and 2 matching. We compared inferences regarding the marginal mean of the incomplete variable and the association with a fully observed outcome. We also compared results from these approaches in the analysis of depression and anxiety symptoms in parents of very preterm compared with term-born infants. The results provide novel empirical evidence that the decision regarding how to impute a non-normal variable should be based on the nature of the relationship between the variables of interest. If the relationship is linear in the untransformed scale, transformation can introduce bias irrespective of the transformation used. However, if the relationship is non-linear, it may be important to transform the variable to accurately capture this relationship. A useful alternative is to impute the variable using PMM with type 1 matching. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. A new numerical benchmark for variably saturated variable-density flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Guevara, Carlos; Graf, Thomas

    2016-04-01

    In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.

  13. Probabilistic micromechanics of woven ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Goldsmith, Marlana

    Woven ceramic matrix composites are a special class of composite materials that are of current interest for harsh thermo-structural conditions such as those encountered by hypersonic vehicle systems and turbine engine components. Testing of the materials is expensive, especially as materials are constantly redesigned. Randomness in the tow architecture, as well as the randomly shaped and spaced voids that are produced as a result of the manufacturing process, are features that contribute to variability in stiffness and strength. The goal of the research is to lay a foundation in which characteristics of the geometry can be translated into material properties. The research first includes quantifying the architectural variability based on 2D micrographs of a 5 harness satin CVI (Chemical Vapor Infiltration) SiC/SiC composite. The architectural variability is applied to a 2D representative volume element (RVE) in order to evaluate which aspects of the architecture are important to model in order to capture the variability found in the cross sections. Tow width, tow spacing, and tow volume fraction were found to have some effect on the variability, but voids were found to have a large influence on transverse stiffness, and a separate study was conducted to determine which characteristics of the voids are most critical to model. It was found that the projected area of the void perpendicular to the transverse direction and the number of voids modeled had a significant influence on the stiffness. The effect of varying architecture on the variability of in-plane tensile strength was also studied using the Brittle Cracking Model for Concrete in the commercial finite element software, Abaqus. A maximum stress criterion is used to evaluate failure, and the stiffness of failed elements is gradually degraded such that the energy required to open a crack (fracture energy) is dissipated during this degradation process. While the varying architecture did not create variability in the in-plane stiffness, it does contribute significantly to the variability of in-plane strength as measured by a 0.02% offset method. Applying spatially random strengths for the constituents did not contribute to variability in strength as measured by the 0.02% offset. The results of this research may be of interest to those designing materials, as well as those using the material in their design. Having an idea about which characteristics of the architecture affect variability in stiffness may provide guidance to the material designer with respect to which aspects of the architecture can be controlled or improved to decrease the variability of the material properties. The work will also be useful to those desiring to use the complex materials by determining how to link the architectural properties to the mechanical properties with the ultimate goal of reducing the required number of tests.

  14. Latent class instrumental variables: a clinical and biostatistical perspective.

    PubMed

    Baker, Stuart G; Kramer, Barnett S; Lindeman, Karen S

    2016-01-15

    In some two-arm randomized trials, some participants receive the treatment assigned to the other arm as a result of technical problems, refusal of a treatment invitation, or a choice of treatment in an encouragement design. In some before-and-after studies, the availability of a new treatment changes from one time period to this next. Under assumptions that are often reasonable, the latent class instrumental variable (IV) method estimates the effect of treatment received in the aforementioned scenarios involving all-or-none compliance and all-or-none availability. Key aspects are four initial latent classes (sometimes called principal strata) based on treatment received if in each randomization group or time period, the exclusion restriction assumption (in which randomization group or time period is an instrumental variable), the monotonicity assumption (which drops an implausible latent class from the analysis), and the estimated effect of receiving treatment in one latent class (sometimes called efficacy, the local average treatment effect, or the complier average causal effect). Since its independent formulations in the biostatistics and econometrics literatures, the latent class IV method (which has no well-established name) has gained increasing popularity. We review the latent class IV method from a clinical and biostatistical perspective, focusing on underlying assumptions, methodological extensions, and applications in our fields of obstetrics and cancer research. Copyright © 2015 John Wiley & Sons, Ltd.

  15. A Fast Numerical Method for Max-Convolution and the Application to Efficient Max-Product Inference in Bayesian Networks.

    PubMed

    Serang, Oliver

    2015-08-01

    Observations depending on sums of random variables are common throughout many fields; however, no efficient solution is currently known for performing max-product inference on these sums of general discrete distributions (max-product inference can be used to obtain maximum a posteriori estimates). The limiting step to max-product inference is the max-convolution problem (sometimes presented in log-transformed form and denoted as "infimal convolution," "min-convolution," or "convolution on the tropical semiring"), for which no O(k log(k)) method is currently known. Presented here is an O(k log(k)) numerical method for estimating the max-convolution of two nonnegative vectors (e.g., two probability mass functions), where k is the length of the larger vector. This numerical max-convolution method is then demonstrated by performing fast max-product inference on a convolution tree, a data structure for performing fast inference given information on the sum of n discrete random variables in O(nk log(nk)log(n)) steps (where each random variable has an arbitrary prior distribution on k contiguous possible states). The numerical max-convolution method can be applied to specialized classes of hidden Markov models to reduce the runtime of computing the Viterbi path from nk(2) to nk log(k), and has potential application to the all-pairs shortest paths problem.

  16. Suicide prevention after traumatic brain injury: a randomized controlled trial of a program for the psychological treatment of hopelessness.

    PubMed

    Simpson, Grahame K; Tate, Robyn L; Whiting, Diane L; Cotter, Rachel E

    2011-01-01

    To evaluate the efficacy of a psychological treatment to reduce moderate to severe hopelessness after severe traumatic brain injury (TBI). Randomized controlled trial. Participants were aged between 18 and 65 years, experienced posttraumatic amnesia more than 1day and moderate to severe hopelessness (Beck Hopelessness Scale [BHS]) and/or suicide ideation. Intervention comprised a 20-hour manualized group cognitive behavior therapy program. Participants were randomly allocated using concealed allocation (treatment n = 8; wait-list n = 9); all remained in their allocated group. Outcome variables were collected by assessors blind to group allocation. No between-groups differences were observed on demographic, injury, cognitive, and psychosocial variables at baseline (time 1). A significant group-by-time interaction was found for BHS in the treatment group (F1,15 = 13.20, P = .002), reflecting a reduction in mean BHS scores between time 1 and time 2 (posttreatment) with no main effects for group or time. At 3-month follow-up (time 3), the treatment gains were maintained or improved for 75% (6/8) of participants. Secondary outcome variables (suicide ideation, depression, social problem solving, self-esteem, hopefulness) displayed no significant group-by-time interactions or main effects. This trial provides initial evidence for the efficacy of a psychological intervention in reducing hopelessness among long-term survivors with severe TBI.

  17. Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes

    PubMed Central

    Soltani, Mohammad; Vargas-Garcia, Cesar A.; Antunes, Duarte; Singh, Abhyudai

    2016-01-01

    Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable to the cell-cycle length, randomness in cell-division times generates additional intercellular variability in protein levels. Moreover, as many mRNA/protein species are expressed at low-copy numbers, errors incurred in partitioning of molecules between two daughter cells are significant. We derive analytical formulas for the total noise in protein levels when the cell-cycle duration follows a general class of probability distributions. Using a novel hybrid approach the total noise is decomposed into components arising from i) stochastic expression; ii) partitioning errors at the time of cell division and iii) random cell-division events. These formulas reveal that random cell-division times not only generate additional extrinsic noise, but also critically affect the mean protein copy numbers and intrinsic noise components. Counter intuitively, in some parameter regimes, noise in protein levels can decrease as cell-division times become more stochastic. Computations are extended to consider genome duplication, where transcription rate is increased at a random point in the cell cycle. We systematically investigate how the timing of genome duplication influences different protein noise components. Intriguingly, results show that noise contribution from stochastic expression is minimized at an optimal genome-duplication time. Our theoretical results motivate new experimental methods for decomposing protein noise levels from synchronized and asynchronized single-cell expression data. Characterizing the contributions of individual noise mechanisms will lead to precise estimates of gene expression parameters and techniques for altering stochasticity to change phenotype of individual cells. PMID:27536771

  18. Non-stationarities in the relationships of heavy precipitation events in the Mediterranean area and the large-scale circulation in the second half of the 20th century

    NASA Astrophysics Data System (ADS)

    Merkenschlager, Christian; Hertig, Elke; Jacobeit, Jucundus

    2017-04-01

    In the context of analyzing temporal varying relationships of heavy precipitation events in the Mediterranean area and associated anomalies of the large-scale circulation, quantile regression models were established. The models were calibrated using different circulation and thermodynamic variables at the 700 hPa and 850 hPa levels as predictors as well as daily precipitation time series at different stations in the Mediterranean area as predictand. Analyses were done for the second half of the 20th century. In the scope of assessing non-stationarities in the predictor-predictand relationships the time series were divided into calibration and validation periods. 100 randomized subsamples were used to calibrate/validate the models under stationary conditions. The highest and lowest skill score of the 100 random samples was used to determine the range of random variability. The model performance under non-stationary conditions was derived from the skill scores of cross-validated running subintervals. If the skill scores of several consecutive years are outside the range of random variability a non-stationarity was declaimed. Particularly the Iberian Peninsula and the Levant region were affected by non-stationarities, the former with significant positive deviations of the skill scores, the latter with significant negative deviations. By means of a case study for the Levant region we determined three possible reasons for non-stationary behavior in the predictor-predictand relationships. The Mediterranean Oscillation as a superordinate system affects the cyclone activity in the Mediterranean basin and the location and intensity of the Cyprus low. Overall, it is demonstrated that non-stationarities have to be taken into account within statistical downscaling model development.

  19. Nasal Jet-CPAP (variable flow) versus Bubble-CPAP in preterm infants with respiratory distress: an open label, randomized controlled trial.

    PubMed

    Bhatti, A; Khan, J; Murki, S; Sundaram, V; Saini, S S; Kumar, P

    2015-11-01

    To compare the failure rates between Jet continuous positive airway pressure device (J-CPAP-variable flow) and Bubble continuous positive airway device (B-CPAP) in preterm infants with respiratory distress. Preterm newborns <34 weeks gestation with onset of respiratory distress within 6 h of life were randomized to receive J-CPAP (a variable flow device) or B-CPAP (continuous flow device). A standardized protocol was followed for titration, weaning and removal of CPAP. Pressure was monitored close to the nares in both the devices every 6 hours and settings were adjusted to provide desired CPAP. The primary outcome was CPAP failure rate within 72 h of life. Secondary outcomes were CPAP failure within 7 days of life, need for surfactant post-randomization, time to CPAP failure, duration of CPAP and complications of prematurity. An intention to treat analysis was done. One-hundred seventy neonates were randomized, 80 to J-CPAP and 90 to B-CPAP. CPAP failure rates within 72 h were similar in infants who received J-CPAP and in those who received B-CPAP (29 versus 21%; relative risks 1.4 (0.8 to 2.3), P=0.25). Mean (95% confidence intervals) time to CPAP failure was 59 h (54 to 64) in the Jet CPAP group in comparison with 65 h (62 to 68) in the Bubble CPAP group (log rank P=0.19). All other secondary outcomes were similar between the two groups. In preterm infants with respiratory distress starting within 6 h of life, CPAP failure rates were similar with Jet CPAP and Bubble CPAP.

  20. Gaming in risk-adjusted mortality rates: effect of misclassification of risk factors in the benchmarking of cardiac surgery risk-adjusted mortality rates.

    PubMed

    Siregar, Sabrina; Groenwold, Rolf H H; Versteegh, Michel I M; Noyez, Luc; ter Burg, Willem Jan P P; Bots, Michiel L; van der Graaf, Yolanda; van Herwerden, Lex A

    2013-03-01

    Upcoding or undercoding of risk factors could affect the benchmarking of risk-adjusted mortality rates. The aim was to investigate the effect of misclassification of risk factors on the benchmarking of mortality rates after cardiac surgery. A prospective cohort was used comprising all adult cardiac surgery patients in all 16 cardiothoracic centers in The Netherlands from January 1, 2007, to December 31, 2009. A random effects model, including the logistic European system for cardiac operative risk evaluation (EuroSCORE) was used to benchmark the in-hospital mortality rates. We simulated upcoding and undercoding of 5 selected variables in the patients from 1 center. These patients were selected randomly (nondifferential misclassification) or by the EuroSCORE (differential misclassification). In the random patients, substantial misclassification was required to affect benchmarking: a 1.8-fold increase in prevalence of the 4 risk factors changed an underperforming center into an average performing one. Upcoding of 1 variable required even more. When patients with the greatest EuroSCORE were upcoded (ie, differential misclassification), a 1.1-fold increase was sufficient: moderate left ventricular function from 14.2% to 15.7%, poor left ventricular function from 8.4% to 9.3%, recent myocardial infarction from 7.9% to 8.6%, and extracardiac arteriopathy from 9.0% to 9.8%. Benchmarking using risk-adjusted mortality rates can be manipulated by misclassification of the EuroSCORE risk factors. Misclassification of random patients or of single variables will have little effect. However, limited upcoding of multiple risk factors in high-risk patients can greatly influence benchmarking. To minimize "gaming," the prevalence of all risk factors should be carefully monitored. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  1. Inconsistent Responding in a Criminal Forensic Setting: An Evaluation of the VRIN-r and TRIN-r Scales of the MMPI-2-RF.

    PubMed

    Gu, Wen; Reddy, Hima B; Green, Debbie; Belfi, Brian; Einzig, Shanah

    2017-01-01

    Criminal forensic evaluations are complicated by the risk that examinees will respond in an unreliable manner. Unreliable responding could occur due to lack of personal investment in the evaluation, severe mental illness, and low cognitive abilities. In this study, 31% of Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/2011) profiles were invalid due to random or fixed-responding (T score ≥ 80 on the VRIN-r or TRIN-r scales) in a sample of pretrial criminal defendants evaluated in the context of treatment for competency restoration. Hierarchical regression models showed that symptom exaggeration variables, as measured by inconsistently reported psychiatric symptoms, contributed over and above education and intellectual functioning in their prediction of both random responding and fixed responding. Psychopathology variables, as measured by mood disturbance, better predicted fixed responding after controlling for estimates of cognitive abilities, but did not improve the prediction for random responding. These findings suggest that random responding and fixed responding are not only affected by education and intellectual functioning, but also by intentional exaggeration and aspects of psychopathology. Measures of intellectual functioning and effort and response style should be considered for administration in conjunction with self-report personality measures to rule out rival hypotheses of invalid profiles.

  2. Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.

    2013-02-01

    Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modeling. In this paper we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modeling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalization property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally very efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analyzed on two real-world case studies (Marina catchment (Singapore) and Canning River (Western Australia)) representing two different morphoclimatic contexts comparatively with other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.

  3. Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.

    2013-07-01

    Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modelling. In this paper, we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modelling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalisation property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analysed on two real-world case studies - Marina catchment (Singapore) and Canning River (Western Australia) - representing two different morphoclimatic contexts. The evaluation is performed against other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.

  4. Errors in causal inference: an organizational schema for systematic error and random error.

    PubMed

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Estimation and classification by sigmoids based on mutual information

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1994-01-01

    An estimate of the probability density function of a random vector is obtained by maximizing the mutual information between the input and the output of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's s method, applied to an estimated density, yields a recursive maximum likelihood estimator, consisting of a single internal layer of sigmoids, for a random variable or a random sequence. Applications to the diamond classification and to the prediction of a sun-spot process are demonstrated.

  6. A unifying framework for marginalized random intercept models of correlated binary outcomes

    PubMed Central

    Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian M.

    2013-01-01

    We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood-based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data with exchangeable correlation structures. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized random intercept models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts. PMID:25342871

  7. Analysis of causality from observational studies and its application in clinical research in Intensive Care Medicine.

    PubMed

    Coscia Requena, C; Muriel, A; Peñuelas, O

    2018-02-28

    Random allocation of treatment or intervention is the key feature of clinical trials and divides patients into treatment groups that are approximately balanced for baseline, and therefore comparable covariates except for the variable treatment of the study. However, in observational studies, where treatment allocation is not random, patients in the treatment and control groups often differ in covariates that are related to intervention variables. These imbalances in covariates can lead to biased estimates of the treatment effect. However, randomized clinical trials are sometimes not feasible for ethical, logistical, economic or other reasons. To resolve these situations, interest in the field of clinical research has grown in designing studies that are most similar to randomized experiments using observational (i.e. non-random) data. Observational studies using propensity score analysis methods have been increasing in the scientific papers of Intensive Care. Propensity score analyses attempt to control for confounding in non-experimental studies by adjusting for the likelihood that a given patient is exposed. However, studies with propensity indexes may be confusing, and intensivists are not familiar with this methodology and may not fully understand the importance of this technique. The objectives of this review are: to describe the fundamentals of propensity index methods; to present the techniques to adequately evaluate propensity index models; to discuss the advantages and disadvantages of these techniques. Copyright © 2018 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  8. Automatic classification of time-variable X-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, andmore » other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.« less

  9. Non-equilibrium Green's functions study of discrete dopants variability on an ultra-scaled FinFET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valin, R., E-mail: r.valinferreiro@swansea.ac.uk; Martinez, A., E-mail: a.e.Martinez@swansea.ac.uk; Barker, J. R., E-mail: john.barker@glasgow.ac.uk

    In this paper, we study the effect of random discrete dopants on the performance of a 6.6 nm channel length silicon FinFET. The discrete dopants have been distributed randomly in the source/drain region of the device. Due to the small dimensions of the FinFET, a quantum transport formalism based on the non-equilibrium Green's functions has been deployed. The transfer characteristics for several devices that differ in location and number of dopants have been calculated. Our results demonstrate that discrete dopants modify the effective channel length and the height of the source/drain barrier, consequently changing the channel control of the charge. Thismore » effect becomes more significant at high drain bias. As a consequence, there is a strong effect on the variability of the on-current, off-current, sub-threshold slope, and threshold voltage. Finally, we have also calculated the mean and standard deviation of these parameters to quantify their variability. The obtained results show that the variability at high drain bias is 1.75 larger than at low drain bias. However, the variability of the on-current, off-current, and sub-threshold slope remains independent of the drain bias. In addition, we have found that a large source to drain current by tunnelling current occurs at low gate bias.« less

  10. Input variable selection and calibration data selection for storm water quality regression models.

    PubMed

    Sun, Siao; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Storm water quality models are useful tools in storm water management. Interest has been growing in analyzing existing data for developing models for urban storm water quality evaluations. It is important to select appropriate model inputs when many candidate explanatory variables are available. Model calibration and verification are essential steps in any storm water quality modeling. This study investigates input variable selection and calibration data selection in storm water quality regression models. The two selection problems are mutually interacted. A procedure is developed in order to fulfil the two selection tasks in order. The procedure firstly selects model input variables using a cross validation method. An appropriate number of variables are identified as model inputs to ensure that a model is neither overfitted nor underfitted. Based on the model input selection results, calibration data selection is studied. Uncertainty of model performances due to calibration data selection is investigated with a random selection method. An approach using the cluster method is applied in order to enhance model calibration practice based on the principle of selecting representative data for calibration. The comparison between results from the cluster selection method and random selection shows that the former can significantly improve performances of calibrated models. It is found that the information content in calibration data is important in addition to the size of calibration data.

  11. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation

    PubMed Central

    Müller, Eike H.; Scheichl, Rob; Shardlow, Tony

    2015-01-01

    This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy. PMID:27547075

  12. Effect of signal jitter on the spectrum of rotor impulsive noise

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    1987-01-01

    The effect of randomness or jitter of the acoustic waveform on the spectrum of rotor impulsive noise is studied because of its importance for data interpretation. An acoustic waveform train is modelled representing rotor impulsive noise. The amplitude, shape, and period between occurrences of individual pulses are allowed to be randomized assuming normal probability distributions. Results, in terms of the standard deviations of the variable quantities, are given for the autospectrum as well as special processed spectra designed to separate harmonic and broadband rotor noise components. Consideration is given to the effect of accuracy in triggering or keying to a rotor one per revolution signal. An example is given showing the resultant spectral smearing at the high frequencies due to the pulse signal period variability.

  13. Effect of signal jitter on the spectrum of rotor impulsive noise

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    1988-01-01

    The effect of randomness or jitter of the acoustic waveform on the spectrum of rotor impulsive noise is studied because of its importance for data interpretation. An acoustic waveform train is modeled representing rotor impulsive noise. The amplitude, shape, and period between occurrences of individual pulses are allowed to be randomized assuming normal probability distributions. Results, in terms of the standard deviations of the variable quantities, are given for the autospectrum as well as special processed spectra designed to separate harmonic and broadband rotor noise components. Consideration is given to the effect of accuracy in triggering or keying to a rotor one per revolution signal. An example is given showing the resultant spectral smearing at the high frequencies due to the pulse signal period variability.

  14. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation.

    PubMed

    Müller, Eike H; Scheichl, Rob; Shardlow, Tony

    2015-04-08

    This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.

  15. Worst case encoder-decoder policies for a communication system in the presence of an unknown probabilistic jammer

    NASA Astrophysics Data System (ADS)

    Cascio, David M.

    1988-05-01

    States of nature or observed data are often stochastically modelled as Gaussian random variables. At times it is desirable to transmit this information from a source to a destination with minimal distortion. Complicating this objective is the possible presence of an adversary attempting to disrupt this communication. In this report, solutions are provided to a class of minimax and maximin decision problems, which involve the transmission of a Gaussian random variable over a communications channel corrupted by both additive Gaussian noise and probabilistic jamming noise. The jamming noise is termed probabilistic in the sense that with nonzero probability 1-P, the jamming noise is prevented from corrupting the channel. We shall seek to obtain optimal linear encoder-decoder policies which minimize given quadratic distortion measures.

  16. Suppression of threshold voltage variability in MOSFETs by adjustment of ion implantation parameters

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyun; Chang, Tae-sig; Kim, Minsuk; Woo, Sola; Kim, Sangsig

    2018-01-01

    In this study, we investigate threshold voltage (VTH) variability of metal-oxide-semiconductor field-effect transistors induced by random dopant fluctuation (RDF). Our simulation work demonstrates not only the influence of the implantation parameters such as its dose, tilt angle, energy, and rotation angle on the RDF-induced VTH variability, but also the solution to reduce the effect of this variability. By adjusting the ion implantation parameters, the 3σ (VTH) is reduced from 43.8 mV to 28.9 mV. This 34% reduction is significant, considering that our technique is very cost effective and facilitates easy fabrication, increasing availability.

  17. Applying New Methods to the Measurement of Fidelity of Implementation: Examining the Critical Ingredients of the Responsive Classroom Approach in Relation to Mathematics Achievement

    ERIC Educational Resources Information Center

    Abry, Tashia D. S.; Rimm-Kaufman, Sara E.; Larsen, Ross A.; Brewer, Alix J.

    2011-01-01

    The present study examines data collected during the second year of a three-year longitudinal cluster randomized controlled trial, the Responsive Classroom Efficacy Study (RCES). In the context of and RCT, the research questions address naturally occurring variability in the independent variables of interest (i.e., teachers' (fidelity of…

  18. Variable- and Person-Centered Approaches to the Analysis of Early Adolescent Substance Use: Linking Peer, Family, and Intervention Effects with Developmental Trajectories

    ERIC Educational Resources Information Center

    Connell, Arin M.; Dishion, Thomas J.; Deater-Deckard, Kirby

    2006-01-01

    This 4-year study of 698 young adolescents examined the covariates of early onset substance use from Grade 6 through Grade 9. The youth were randomly assigned to a family-centered Adolescent Transitions Program (ATP) condition. Variable-centered (zero-inflated Poisson growth model) and person-centered (latent growth mixture model) approaches were…

  19. A Structural Examination of Academic Integration, Perceived Stress, Academic Performance, and Goal Commitment from an Elaborated Model of Adult Student Persistence.

    ERIC Educational Resources Information Center

    Sandler, Martin E.

    The effects of selected variables on the academic persistence of adult students were examined in a study of a random sample of 469 adult students aged 24 years or older enrolled in a four-year college. The survey questionnaire, the Adult Student Experiences Survey, collected data regarding 12 endogenous variables and 13 exogenous variables…

  20. Examination of the Diurnal Assumptions of the Test of Variables of Attention for Elementary Students

    ERIC Educational Resources Information Center

    Hurford, David P.; Lasater, Kara A.; Erickson, Sara E.; Kiesling, Nicole E.

    2013-01-01

    Objective: To examine the diurnal assumptions of the Test of Variables of Attention (TOVA). Method: The present study assessed 122 elementary students aged 5.5 to 10.0 years who were randomly assigned to one of four different groups based on time of administration (M-M: Morning-Morning, M-A: Morning-Afternoon, A-M: Afternoon-Morning, and A-A:…

  1. Problems Accompanied Individuals with Learning Disability and Its Relationship to Gender and Family Economic Status Variables in a Jordanian Sample

    ERIC Educational Resources Information Center

    Al-Oweidi, Alia M.

    2015-01-01

    The purpose of this study is to investigate the relationship between problems that accompany individuals with learning disability and the variables of gender and family economic status for a selected sample of Jordanians. The sample of the study, which consisted of (239) male and female students, was chosen randomly. To achieve this aim, the…

  2. A note on nonlinearity bias and dichotomous choice CVM: implications for aggregate benefits estimation

    Treesearch

    R.A. Souter; J. Michael Bowker

    1996-01-01

    It is a generally known statistical fact that the mean of a nonlinear function of a set of random variables is not equivalent to the function evaluated at the means of the variables. However, in dichotomous choice contingent valuation studies, a common practice is to calculate an overall mean (or median) by integrating over offer space (numerically or analytically) an...

  3. Inward Leakage Variability between Respirator Fit Test Panels – Part I. Deterministic Approach

    PubMed Central

    Zhuang, Ziqing; Liu, Yuewei; Coffey, Christopher C.; Miller, Colleen; Szalajda, Jonathan

    2015-01-01

    Inter-panel variability has never been investigated. The objective of this study was to determine the variability between different anthropometric panels used to determine the inward leakage (IL) of N95 filtering facepiece respirators (FFRs) and elastomeric half-mask respirators (EHRs). A total of 144 subjects, who were both experienced and non-experienced N95 FFR users, were recruited. Five N95 FFRs and five N95 EHRs were randomly selected from among those models tested previously in our laboratory. The PortaCount Pro+ (without N95-Companion) was used to measure IL of the ambient particles with a detectable size range of 0.02 to 1 μm. The Occupational Safety and Health Administration standard fit test exercises were used for this study. IL test were performed for each subject using each of the 10 respirators. Each respirator/subject combination was tested in duplicate, resulting in a total 20 IL tests for each subject. Three 35-member panels were randomly selected without replacement from the 144 study subjects stratified by the National Institute for Occupational Safety and Health bivariate panel cell for conducting statistical analyses. The geometric mean (GM) IL values for all 10 studied respirators were not significantly different among the three randomly selected 35-member panels. Passing rate was not significantly different among the three panels for all respirators combined or by each model. This was true for all IL pass/fail levels of 1%, 2%, and 5%. Using 26 or more subjects to pass the IL test, all three panels had consistent passing/failing results for pass/fail levels of 1% and 5%. Some disagreement was observed for the 2% pass/fail level. Inter-panel variability exists, but it is small relative to the other sources of variation in fit testing data. The concern about inter-panel variability and other types of variability can be alleviated by properly selecting: pass/fail level (IL 1–5%); panel size (e.g., 25 or 35); and minimum number of subjects required to pass (e.g., 26 of 35 or 23 of 35). PMID:26011282

  4. Record statistics of a strongly correlated time series: random walks and Lévy flights

    NASA Astrophysics Data System (ADS)

    Godrèche, Claude; Majumdar, Satya N.; Schehr, Grégory

    2017-08-01

    We review recent advances on the record statistics of strongly correlated time series, whose entries denote the positions of a random walk or a Lévy flight on a line. After a brief survey of the theory of records for independent and identically distributed random variables, we focus on random walks. During the last few years, it was indeed realized that random walks are a very useful ‘laboratory’ to test the effects of correlations on the record statistics. We start with the simple one-dimensional random walk with symmetric jumps (both continuous and discrete) and discuss in detail the statistics of the number of records, as well as of the ages of the records, i.e. the lapses of time between two successive record breaking events. Then we review the results that were obtained for a wide variety of random walk models, including random walks with a linear drift, continuous time random walks, constrained random walks (like the random walk bridge) and the case of multiple independent random walkers. Finally, we discuss further observables related to records, like the record increments, as well as some questions raised by physical applications of record statistics, like the effects of measurement error and noise.

  5. A review of selection-based tests of abiotic surrogates for species representation.

    PubMed

    Beier, Paul; Sutcliffe, Patricia; Hjort, Jan; Faith, Daniel P; Pressey, Robert L; Albuquerque, Fabio

    2015-06-01

    Because conservation planners typically lack data on where species occur, environmental surrogates--including geophysical settings and climate types--have been used to prioritize sites within a planning area. We reviewed 622 evaluations of the effectiveness of abiotic surrogates in representing species in 19 study areas. Sites selected using abiotic surrogates represented more species than an equal number of randomly selected sites in 43% of tests (55% for plants) and on average improved on random selection of sites by about 8% (21% for plants). Environmental diversity (ED) (42% median improvement on random selection) and biotically informed clusters showed promising results and merit additional testing. We suggest 4 ways to improve performance of abiotic surrogates. First, analysts should consider a broad spectrum of candidate variables to define surrogates, including rarely used variables related to geographic separation, distance from coast, hydrology, and within-site abiotic diversity. Second, abiotic surrogates should be defined at fine thematic resolution. Third, sites (the landscape units prioritized within a planning area) should be small enough to ensure that surrogates reflect species' environments and to produce prioritizations that match the spatial resolution of conservation decisions. Fourth, if species inventories are available for some planning units, planners should define surrogates based on the abiotic variables that most influence species turnover in the planning area. Although species inventories increase the cost of using abiotic surrogates, a modest number of inventories could provide the data needed to select variables and evaluate surrogates. Additional tests of nonclimate abiotic surrogates are needed to evaluate the utility of conserving nature's stage as a strategy for conservation planning in the face of climate change. © 2015 Society for Conservation Biology.

  6. Cognitive mechanisms of sleep outcomes in a randomized clinical trial of internet-based cognitive behavioral therapy for insomnia.

    PubMed

    Chow, Philip I; Ingersoll, Karen S; Thorndike, Frances P; Lord, Holly R; Gonder-Frederick, Linda; Morin, Charles M; Ritterband, Lee M

    2018-07-01

    The aim of this study was to investigate in a randomized clinical trial the role of sleep-related cognitive variables in the long-term efficacy of an online, fully automated cognitive behavioral therapy intervention for insomnia (CBT-I) (Sleep Healthy Using the Internet [SHUTi]). Three hundred and three participants (M age  = 43.3 years; SD = 11.6) were randomly assigned to SHUTi or an online patient education condition and assessed at baseline, postintervention (nine weeks after baseline), and six and 12 months after the intervention period. Cognitive variables were self-reported internal and chance sleep locus of control, dysfunctional beliefs and attitudes about sleep (DBAS), sleep specific self-efficacy, and insomnia knowledge. Primary outcomes were self-reported online ratings of insomnia severity (Insomnia Severity Index), and sleep onset latency and wake after sleep onset from online sleep diaries, collected 12 months after the intervention period. Those who received SHUTi had, at postassessment, higher levels of insomnia knowledge (95% confidence interval [CI] = 0.10-0.16) and internal sleep locus of control (95% CI = 0.04-0.55) as well as lower DBAS (95% CI = 1.52-2.39) and sleep locus of control attributed to chance (95% CI = 0.15-0.71). Insomnia knowledge, chance sleep locus of control, and DBAS mediated the relationship between condition and at least one 12-month postassessment sleep outcome. Within the SHUTi condition, changes in each cognitive variable (with the exception of internal sleep locus of control) predicted improvement in at least one sleep outcome one year later. Online CBT-I may reduce the enormous public health burden of insomnia by changing underlying cognitive variables that lead to long-term changes in sleep outcomes. Published by Elsevier B.V.

  7. Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks.

    PubMed

    Adalsteinsson, David; McMillen, David; Elston, Timothy C

    2004-03-08

    Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA) molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. We have developed the software package Biochemical Network Stochastic Simulator (BioNetS) for efficiently and accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous) for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solves the appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  8. Non-Gaussian Multi-resolution Modeling of Magnetosphere-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Fan, M.; Paul, D.; Lee, T. C. M.; Matsuo, T.

    2016-12-01

    The most dynamic coupling between the magnetosphere and ionosphere occurs in the Earth's polar atmosphere. Our objective is to model scale-dependent stochastic characteristics of high-latitude ionospheric electric fields that originate from solar wind magnetosphere-ionosphere interactions. The Earth's high-latitude ionospheric electric field exhibits considerable variability, with increasing non-Gaussian characteristics at decreasing spatio-temporal scales. Accurately representing the underlying stochastic physical process through random field modeling is crucial not only for scientific understanding of the energy, momentum and mass exchanges between the Earth's magnetosphere and ionosphere, but also for modern technological systems including telecommunication, navigation, positioning and satellite tracking. While a lot of efforts have been made to characterize the large-scale variability of the electric field in the context of Gaussian processes, no attempt has been made so far to model the small-scale non-Gaussian stochastic process observed in the high-latitude ionosphere. We construct a novel random field model using spherical needlets as building blocks. The double localization of spherical needlets in both spatial and frequency domains enables the model to capture the non-Gaussian and multi-resolutional characteristics of the small-scale variability. The estimation procedure is computationally feasible due to the utilization of an adaptive Gibbs sampler. We apply the proposed methodology to the computational simulation output from the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) magnetosphere model. Our non-Gaussian multi-resolution model results in characterizing significantly more energy associated with the small-scale ionospheric electric field variability in comparison to Gaussian models. By accurately representing unaccounted-for additional energy and momentum sources to the Earth's upper atmosphere, our novel random field modeling approach will provide a viable remedy to the current numerical models' systematic biases resulting from the underestimation of high-latitude energy and momentum sources.

  9. The Newcomb-Benford law in its relation to some common distributions.

    PubMed

    Formann, Anton K

    2010-05-07

    An often reported, but nevertheless persistently striking observation, formalized as the Newcomb-Benford law (NBL), is that the frequencies with which the leading digits of numbers occur in a large variety of data are far away from being uniform. Most spectacular seems to be the fact that in many data the leading digit 1 occurs in nearly one third of all cases. Explanations for this uneven distribution of the leading digits were, among others, scale- and base-invariance. Little attention, however, found the interrelation between the distribution of the significant digits and the distribution of the observed variable. It is shown here by simulation that long right-tailed distributions of a random variable are compatible with the NBL, and that for distributions of the ratio of two random variables the fit generally improves. Distributions not putting most mass on small values of the random variable (e.g. symmetric distributions) fail to fit. Hence, the validity of the NBL needs the predominance of small values and, when thinking of real-world data, a majority of small entities. Analyses of data on stock prices, the areas and numbers of inhabitants of countries, and the starting page numbers of papers from a bibliography sustain this conclusion. In all, these findings may help to understand the mechanisms behind the NBL and the conditions needed for its validity. That this law is not only of scientific interest per se, but that, in addition, it has also substantial implications can be seen from those fields where it was suggested to be put into practice. These fields reach from the detection of irregularities in data (e.g. economic fraud) to optimizing the architecture of computers regarding number representation, storage, and round-off errors.

  10. Attention Measures of Accuracy, Variability, and Fatigue Detect Early Response to Donepezil in Alzheimer's Disease: A Randomized, Double-blind, Placebo-Controlled Pilot Trial.

    PubMed

    Vila-Castelar, Clara; Ly, Jenny J; Kaplan, Lillian; Van Dyk, Kathleen; Berger, Jeffrey T; Macina, Lucy O; Stewart, Jennifer L; Foldi, Nancy S

    2018-04-09

    Donepezil is widely used to treat Alzheimer's disease (AD), but detecting early response remains challenging for clinicians. Acetylcholine is known to directly modulate attention, particularly under high cognitive conditions, but no studies to date test whether measures of attention under high load can detect early effects of donepezil. We hypothesized that load-dependent attention tasks are sensitive to short-term treatment effects of donepezil, while global and other domain-specific cognitive measures are not. This longitudinal, randomized, double-blind, placebo-controlled pilot trial (ClinicalTrials.gov Identifier: NCT03073876) evaluated 23 participants newly diagnosed with AD initiating de novo donepezil treatment (5 mg). After baseline assessment, participants were randomized into Drug (n = 12) or Placebo (n = 11) groups, and retested after approximately 6 weeks. Cognitive assessment included: (a) attention tasks (Foreperiod Effect, Attentional Blink, and Covert Orienting tasks) measuring processing speed, top-down accuracy, orienting, intra-individual variability, and fatigue; (b) global measures (Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental Status Examination, Dementia Rating Scale); and (c) domain-specific measures (memory, language, visuospatial, and executive function). The Drug but not the Placebo group showed benefits of treatment at high-load measures by preserving top-down accuracy, improving intra-individual variability, and averting fatigue. In contrast, other global or cognitive domain-specific measures could not detect treatment effects over the same treatment interval. The pilot-study suggests that attention measures targeting accuracy, variability, and fatigue under high-load conditions could be sensitive to short-term cholinergic treatment. Given the central role of acetylcholine in attentional function, load-dependent attentional measures may be valuable cognitive markers of early treatment response.

  11. Statistical auditing and randomness test of lotto k/N-type games

    NASA Astrophysics Data System (ADS)

    Coronel-Brizio, H. F.; Hernández-Montoya, A. R.; Rapallo, F.; Scalas, E.

    2008-11-01

    One of the most popular lottery games worldwide is the so-called “lotto k/N”. It considers N numbers 1,2,…,N from which k are drawn randomly, without replacement. A player selects k or more numbers and the first prize is shared amongst those players whose selected numbers match all of the k randomly drawn. Exact rules may vary in different countries. In this paper, mean values and covariances for the random variables representing the numbers drawn from this kind of game are presented, with the aim of using them to audit statistically the consistency of a given sample of historical results with theoretical values coming from a hypergeometric statistical model. The method can be adapted to test pseudorandom number generators.

  12. Finite-time stability of neutral-type neural networks with random time-varying delays

    NASA Astrophysics Data System (ADS)

    Ali, M. Syed; Saravanan, S.; Zhu, Quanxin

    2017-11-01

    This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.

  13. Inference for binomial probability based on dependent Bernoulli random variables with applications to meta‐analysis and group level studies

    PubMed Central

    Bakbergenuly, Ilyas; Morgenthaler, Stephan

    2016-01-01

    We study bias arising as a result of nonlinear transformations of random variables in random or mixed effects models and its effect on inference in group‐level studies or in meta‐analysis. The findings are illustrated on the example of overdispersed binomial distributions, where we demonstrate considerable biases arising from standard log‐odds and arcsine transformations of the estimated probability p^, both for single‐group studies and in combining results from several groups or studies in meta‐analysis. Our simulations confirm that these biases are linear in ρ, for small values of ρ, the intracluster correlation coefficient. These biases do not depend on the sample sizes or the number of studies K in a meta‐analysis and result in abysmal coverage of the combined effect for large K. We also propose bias‐correction for the arcsine transformation. Our simulations demonstrate that this bias‐correction works well for small values of the intraclass correlation. The methods are applied to two examples of meta‐analyses of prevalence. PMID:27192062

  14. 77 FR 49411 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ....) Exclusive Economic Zone (EEZ)). Information about revenues, variable and fixed costs, capital investment and other socioeconomic information is collected from a random sample of permit holders. This data...

  15. The ASAS-SN catalogue of variable stars I: The Serendipitous Survey

    NASA Astrophysics Data System (ADS)

    Jayasinghe, T.; Kochanek, C. S.; Stanek, K. Z.; Shappee, B. J.; Holoien, T. W.-S.; Thompson, Toda A.; Prieto, J. L.; Dong, Subo; Pawlak, M.; Shields, J. V.; Pojmanski, G.; Otero, S.; Britt, C. A.; Will, D.

    2018-07-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to routinely monitor the whole sky with a cadence of ˜2-3 d down to V ≲ 17 mag. ASAS-SN has monitored the whole sky since 2014, collecting ˜100-500 epochs of observations per field. The V-band light curves for candidate variables identified during the search for supernovae are classified using a random forest classifier and visually verified. We present a catalogue of 66 179 bright, new variable stars discovered during our search for supernovae, including 27 479 periodic variables and 38 700 irregular variables. V-band light curves for the ASAS-SN variables are available through the ASAS-SN variable stars data base (https://asas-sn.osu.edu/variables). The data base will begin to include the light curves of known variable stars in the near future along with the results for a systematic, all-sky variability survey.

  16. Does Mother Know Best? Treatment Adherence as a Function of Anticipated Treatment Benefit

    PubMed Central

    Glymour, M. Maria; Nguyen, Quynh; Matsouaka, Roland; Tchetgen Tchetgen, Eric J.; Schmidt, Nicole M.; Osypuk, Theresa L.

    2016-01-01

    Background We describe bias resulting from individualized treatment selection, which occurs when treatment has heterogeneous effects and individuals selectively choose treatments of greatest benefit to themselves. This pernicious bias may confound estimates from observational studies and lead to important misinterpretation of intent-to-treat analyses of randomized trials. Despite the potentially serious threat to inferences, individualized treatment selection has rarely been formally described or assessed. Methods The Moving to Opportunity (MTO) trial randomly assigned subsidized rental vouchers to low-income families in high-poverty public housing. We assessed the Kessler-6 psychological distress and Behavior Problems Index outcomes for 2,829 adolescents 4–7 years after randomization. Among families randomly assigned to receive vouchers, we estimated probability of moving (treatment), predicted by pre-randomization characteristics (c-statistic=0.63). We categorized families into tertiles of this estimated probability of moving, and compared instrumental variable effect estimates for moving on Behavior Problems Index and Kessler-6 across tertiles. Results Instrumental variable estimated effects of moving on behavioral problems index were most adverse for boys least likely to move (b=0.93; 95% CI: 0.33, 1.53) compared to boys most likely to move (b=0.14; 95% CI: −0.15, 0.44; p=.02 for treatment*tertile interaction). Effects on Kessler-6 were more beneficial for girls least likely to move compared to girls most likely to move (−0.62 vs. 0.02; interaction p=.03). Conclusions Evidence of Individualized treatment selection differed by child gender and outcome and should be evaluated in randomized trial reports, especially when heterogeneous treatment effects are likely and non-adherence is common. PMID:26628424

  17. A random sampling approach for robust estimation of tissue-to-plasma ratio from extremely sparse data.

    PubMed

    Chu, Hui-May; Ette, Ene I

    2005-09-02

    his study was performed to develop a new nonparametric approach for the estimation of robust tissue-to-plasma ratio from extremely sparsely sampled paired data (ie, one sample each from plasma and tissue per subject). Tissue-to-plasma ratio was estimated from paired/unpaired experimental data using independent time points approach, area under the curve (AUC) values calculated with the naïve data averaging approach, and AUC values calculated using sampling based approaches (eg, the pseudoprofile-based bootstrap [PpbB] approach and the random sampling approach [our proposed approach]). The random sampling approach involves the use of a 2-phase algorithm. The convergence of the sampling/resampling approaches was investigated, as well as the robustness of the estimates produced by different approaches. To evaluate the latter, new data sets were generated by introducing outlier(s) into the real data set. One to 2 concentration values were inflated by 10% to 40% from their original values to produce the outliers. Tissue-to-plasma ratios computed using the independent time points approach varied between 0 and 50 across time points. The ratio obtained from AUC values acquired using the naive data averaging approach was not associated with any measure of uncertainty or variability. Calculating the ratio without regard to pairing yielded poorer estimates. The random sampling and pseudoprofile-based bootstrap approaches yielded tissue-to-plasma ratios with uncertainty and variability. However, the random sampling approach, because of the 2-phase nature of its algorithm, yielded more robust estimates and required fewer replications. Therefore, a 2-phase random sampling approach is proposed for the robust estimation of tissue-to-plasma ratio from extremely sparsely sampled data.

  18. Design of healthy hearts in the heartland (H3): A practice-randomized, comparative effectiveness study.

    PubMed

    Ciolino, Jody D; Jackson, Kathryn L; Liss, David T; Brown, Tiffany; Walunas, Theresa L; Murakami, Linda; Chung, Isabel; Persell, Stephen D; Kho, Abel N

    2018-06-02

    The Healthy Hearts in the Heartland (H3) study is part of a nationwide effort, EvidenceNOW, seeking to better understand the ability of small primary care practices to improve "ABCS" clinical quality measures: appropriate Aspirin therapy, Blood pressure control, Cholesterol management, and Smoking cessation. H3 aimed to assess feasibility of implementing Point-of-Care (POC) or POC plus Population Management (POC + PM) quality improvement (QI) strategies to improve ABCS at practices in Illinois, Indiana, and Wisconsin. We describe the design and randomization of the H3 study. We conducted a two-arm (1:1, POC:POC + PM), practice-randomized, comparative effectiveness study in 226 primary care practices across four "waves" of randomization with a 12-month intervention period, followed by a six-month sustainability period. Randomization controlled imbalance in nine baseline variables through a modified constrained algorithm. Among others, we used initial, unverified estimates of baseline ABCS values. We randomized 112 and 114 practices to POC and POC + PM arms, respectively. Randomization ensured baseline comparability for all nine key variables, including the ABCS measures indicating proportion of patients at the practice level meeting each quality measure. Median(Inner Quartile Range) values were A: 0.78(0.66-0.86) in POC arm vs. 0.77(0.63-0.86) in POC + PM arm, B: 0.64(0.53-0.73) vs. 0.64(0.53-0.75), C: 0.78(0.63-0.86) vs. 0.75(0.64-0.81), S: 0.80(0.65-0.81) vs. 0.79(0.61-0.91). Surrogate estimates for the true ABCS at baseline coupled with the unique randomization logic achieved adequate baseline balance on these outcomes. Similar practice- or cluster-randomized trials may consider adaptations of this design. Final analyses on 12- and 18-month ABCS outcomes for the H3 study are forthcoming. This trial is registered on ClinicalTrials.gov (Initial post: 11/05/2015; identifier: NCT02598284; https://clinicaltrials.gov/ct2/show/NCT02598284?term=NCT02598284&rank=1). Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Understanding Recombination.

    ERIC Educational Resources Information Center

    Zimmerman, Ira

    2003-01-01

    Describes a science activity on the importance of meiosis for variability. Uses a coin flip to demonstrate the random arrangement of genetic materials and explains how this results in zygotes with a new DNA combination. (YDS)

  20. Persistant Spectral Hole-Burning: Photon-Gating and Fundamental Statistical Limits

    DTIC Science & Technology

    1989-11-03

    pentacene inhomogeneous line that results from tile statistics of independent, additive random variables. For this data, Nil - 10’. The rms amplitude...features in inhomogencous lines. To illustrate this, Figure 5 shows a portion of the optical spectrum of pentacene in p-terphenyl before and after a...contained in each irradiated spot of recording medium. The stress-induced variations in the local environment of the storage centers are random in nature

  1. CMOS-based Stochastically Spiking Neural Network for Optimization under Uncertainties

    DTIC Science & Technology

    2017-03-01

    inverse tangent characteristics at varying input voltage (VIN) [Fig. 3], thereby it is suitable for Kernel function implementation. By varying bias...cost function/constraint variables are generated based on inverse transform on CDF. In Fig. 5, F-1(u) for uniformly distributed random number u [0, 1...extracts random samples of x varying with CDF of F(x). In Fig. 6, we present a successive approximation (SA) circuit to evaluate inverse

  2. Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines.

    PubMed

    Carvajal, Thaddeus M; Viacrusis, Katherine M; Hernandez, Lara Fides T; Ho, Howell T; Amalin, Divina M; Watanabe, Kozo

    2018-04-17

    Several studies have applied ecological factors such as meteorological variables to develop models and accurately predict the temporal pattern of dengue incidence or occurrence. With the vast amount of studies that investigated this premise, the modeling approaches differ from each study and only use a single statistical technique. It raises the question of whether which technique would be robust and reliable. Hence, our study aims to compare the predictive accuracy of the temporal pattern of Dengue incidence in Metropolitan Manila as influenced by meteorological factors from four modeling techniques, (a) General Additive Modeling, (b) Seasonal Autoregressive Integrated Moving Average with exogenous variables (c) Random Forest and (d) Gradient Boosting. Dengue incidence and meteorological data (flood, precipitation, temperature, southern oscillation index, relative humidity, wind speed and direction) of Metropolitan Manila from January 1, 2009 - December 31, 2013 were obtained from respective government agencies. Two types of datasets were used in the analysis; observed meteorological factors (MF) and its corresponding delayed or lagged effect (LG). After which, these datasets were subjected to the four modeling techniques. The predictive accuracy and variable importance of each modeling technique were calculated and evaluated. Among the statistical modeling techniques, Random Forest showed the best predictive accuracy. Moreover, the delayed or lag effects of the meteorological variables was shown to be the best dataset to use for such purpose. Thus, the model of Random Forest with delayed meteorological effects (RF-LG) was deemed the best among all assessed models. Relative humidity was shown to be the top-most important meteorological factor in the best model. The study exhibited that there are indeed different predictive outcomes generated from each statistical modeling technique and it further revealed that the Random forest model with delayed meteorological effects to be the best in predicting the temporal pattern of Dengue incidence in Metropolitan Manila. It is also noteworthy that the study also identified relative humidity as an important meteorological factor along with rainfall and temperature that can influence this temporal pattern.

  3. Logistic quantile regression provides improved estimates for bounded avian counts: A case study of California Spotted Owl fledgling production

    USGS Publications Warehouse

    Cade, Brian S.; Noon, Barry R.; Scherer, Rick D.; Keane, John J.

    2017-01-01

    Counts of avian fledglings, nestlings, or clutch size that are bounded below by zero and above by some small integer form a discrete random variable distribution that is not approximated well by conventional parametric count distributions such as the Poisson or negative binomial. We developed a logistic quantile regression model to provide estimates of the empirical conditional distribution of a bounded discrete random variable. The logistic quantile regression model requires that counts are randomly jittered to a continuous random variable, logit transformed to bound them between specified lower and upper values, then estimated in conventional linear quantile regression, repeating the 3 steps and averaging estimates. Back-transformation to the original discrete scale relies on the fact that quantiles are equivariant to monotonic transformations. We demonstrate this statistical procedure by modeling 20 years of California Spotted Owl fledgling production (0−3 per territory) on the Lassen National Forest, California, USA, as related to climate, demographic, and landscape habitat characteristics at territories. Spotted Owl fledgling counts increased nonlinearly with decreasing precipitation in the early nesting period, in the winter prior to nesting, and in the prior growing season; with increasing minimum temperatures in the early nesting period; with adult compared to subadult parents; when there was no fledgling production in the prior year; and when percentage of the landscape surrounding nesting sites (202 ha) with trees ≥25 m height increased. Changes in production were primarily driven by changes in the proportion of territories with 2 or 3 fledglings. Average variances of the discrete cumulative distributions of the estimated fledgling counts indicated that temporal changes in climate and parent age class explained 18% of the annual variance in owl fledgling production, which was 34% of the total variance. Prior fledgling production explained as much of the variance in the fledgling counts as climate, parent age class, and landscape habitat predictors. Our logistic quantile regression model can be used for any discrete response variables with fixed upper and lower bounds.

  4. A data mining approach to derive flood-related economic vulnerability of companies

    NASA Astrophysics Data System (ADS)

    Sieg, Tobias; Kreibich, Heidi; Vogel, Kristin; Merz, Bruno

    2017-04-01

    The assessment of vulnerability gained more and more attention in flood risk research during the recent years. However, there is still not much knowledge available about flood vulnerability of companies and its influencing factors. This study follows the natural sciences concept which defines vulnerability as the degree of loss to a given element at risk resulting from flooding of a given magnitude. Machine learning algorithms like Random Forests (RFs) are promising approaches, since they consider many influencing variables and as such allow for a detailed assessment of flood vulnerability. Only these variables which are meaningful for the differentiation of a certain target variable are used by the derived models. This allows for an identification of relevant damage influencing variables and hence for a more detailed picture of flood vulnerability of companies. This study aims to identify relevant damage influencing variables by means of the variable importance provided by Random Forests. The data sets used are taken from two surveys conducted after the floods in the Elbe and Danube catchments in the years 2002 and 2013 in Germany. Damage to buildings (n = 430), equipment (n = 651) as well as goods and stock (n = 530) are taken into account. The analysis is done for the entire data set as well as for four groups of different company sectors and the corresponding data subsets. Relevant damage influencing variables separated by sector and assets are identified as, for example, the degree of contamination or precautionary measures undertaken before the flood event. The results provide insight into the damage processes and improve data-acquisition in future surveys by, for instance, asking specific questions for company sectors and assets.

  5. Echocardiographic agreement in the diagnostic evaluation for infective endocarditis.

    PubMed

    Lauridsen, Trine Kiilerich; Selton-Suty, Christine; Tong, Steven; Afonso, Luis; Cecchi, Enrico; Park, Lawrence; Yow, Eric; Barnhart, Huiman X; Paré, Carlos; Samad, Zainab; Levine, Donald; Peterson, Gail; Stancoven, Amy Butler; Johansson, Magnus Carl; Dickerman, Stuart; Tamin, Syahidah; Habib, Gilbert; Douglas, Pamela S; Bruun, Niels Eske; Crowley, Anna Lisa

    2016-07-01

    Echocardiography is essential for the diagnosis and management of infective endocarditis (IE). However, the reproducibility for the echocardiographic assessment of variables relevant to IE is unknown. Objectives of this study were: (1) To define the reproducibility for IE echocardiographic variables and (2) to describe a methodology for assessing quality in an observational cohort containing site-interpreted data. IE reproducibility was assessed on a subset of echocardiograms from subjects enrolled in the International Collaboration on Endocarditis registry. Specific echocardiographic case report forms were used. Intra-observer agreement was assessed from six site readers on ten randomly selected echocardiograms. Inter-observer agreement between sites and an echocardiography core laboratory was assessed on a separate random sample of 110 echocardiograms. Agreement was determined using intraclass correlation (ICC), coverage probability (CP), and limits of agreement for continuous variables and kappa statistics (κweighted) and CP for categorical variables. Intra-observer agreement for LVEF was excellent [ICC = 0.93 ± 0.1 and all pairwise differences for LVEF (CP) were within 10 %]. For IE categorical echocardiographic variables, intra-observer agreement was best for aortic abscess (κweighted = 1.0, CP = 1.0 for all readers). Highest inter-observer agreement for IE categorical echocardiographic variables was obtained for vegetation location (κweighted = 0.95; 95 % CI 0.92-0.99) and lowest agreement was found for vegetation mobility (κweighted = 0.69; 95 % CI 0.62-0.86). Moderate to excellent intra- and inter-observer agreement is observed for echocardiographic variables in the diagnostic assessment of IE. A pragmatic approach for determining echocardiographic data reproducibility in a large, multicentre, site interpreted observational cohort is feasible.

  6. What makes patients with fibromyalgia feel better? Correlations between Patient Global Impression of Improvement and changes in clinical symptoms and function: a pooled analysis of 4 randomized placebo-controlled trials of duloxetine.

    PubMed

    Hudson, James I; Arnold, Lesley M; Bradley, Laurence A; Choy, Ernest H S; Mease, Philip J; Wang, Fujun; Ahl, Jonna; Wohlreich, Madelaine M

    2009-11-01

    To investigate the relationship between changes in clinical rating scale items and endpoint Patient Global Impression of Improvement (PGI-I). Data were pooled from 4 randomized, double-blind, placebo-controlled studies of duloxetine in patients with fibromyalgia (FM). Variables included in the analyses were those that assessed symptoms in FM domains of pain, fatigue, sleep, cognitive difficulties, emotional well-being, physical function, and impact on daily living. The association of endpoint PGI-I with changes from baseline in individual variables was assessed using Pearson product-moment correlations (r). Stepwise linear regression was used to identify those variables for which changes from baseline were statistically significant independent predictors of the endpoint PGI-I ratings. Changes in pain variables and interference of symptoms with the ability to work were highly correlated (r >or= 0.5 or r

  7. Controls on the spatial variability of key soil properties: comparing field data with a mechanistic soilscape evolution model

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, T.; Román, A.; Giraldez, J. V.

    2016-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  8. Within-day variability on short and long walking tests in persons with multiple sclerosis.

    PubMed

    Feys, Peter; Bibby, Bo; Romberg, Anders; Santoyo, Carme; Gebara, Benoit; de Noordhout, Benoit Maertens; Knuts, Kathy; Bethoux, Francois; Skjerbæk, Anders; Jensen, Ellen; Baert, Ilse; Vaney, Claude; de Groot, Vincent; Dalgas, Ulrik

    2014-03-15

    To compare within-day variability of short (10 m walking test at usual and fastest speed; 10MWT) and long (2 and 6-minute walking test; 2MWT/6MWT) tests in persons with multiple sclerosis. Observational study. MS rehabilitation and research centers in Europe and US within RIMS (European network for best practice and research in MS rehabilitation). Ambulatory persons with MS (Expanded Disability Status Scale 0-6.5). Subjects of different centers performed walking tests at 3 time points during a single day. 10MWT, 2MWT and 6MWT at fastest speed and 10MWT at usual speed. Ninety-five percent limits of agreement were computed using a random effects model with individual pwMS as random effect. Following this model, retest scores are with 95% certainty within these limits of baseline scores. In 102 subjects, within-day variability was constant in absolute units for the 10MWT, 2MWT and 6MWT at fastest speed (+/-0.26, 0.16 and 0.15m/s respectively, corresponding to +/-19.2m and +/-54 m for the 2MWT and 6MWT) independent on the severity of ambulatory dysfunction. This implies a greater relative variability with increasing disability level, often above 20% depending on the applied test. The relative within-day variability of the 10MWT at usual speed was +/-31% independent of ambulatory function. Absolute values of within-day variability on walking tests at fastest speed were independent of disability level and greater with short compared to long walking tests. Relative within-day variability remained overall constant when measured at usual speed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  9. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    PubMed Central

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP) when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis). Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons). Neurons (including the post-synaptic neuron) in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV) induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV) induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1) synchronous firing and burstiness tend to increase DiffV, (2) heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3) heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our work important for understanding functional processes of neuronal networks (such as memory) and neural development. PMID:26941634

  10. [Biometric bases: basic concepts of probability calculation].

    PubMed

    Dinya, E

    1998-04-26

    The author gives or outline of the basic concepts of probability theory. The bases of the event algebra, definition of the probability, the classical probability model and the random variable are presented.

  11. Joint probabilities and quantum cognition

    NASA Astrophysics Data System (ADS)

    de Barros, J. Acacio

    2012-12-01

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  12. Multilevel resistive information storage and retrieval

    DOEpatents

    Lohn, Andrew; Mickel, Patrick R.

    2016-08-09

    The present invention relates to resistive random-access memory (RRAM or ReRAM) systems, as well as methods of employing multiple state variables to form degenerate states in such memory systems. The methods herein allow for precise write and read steps to form multiple state variables, and these steps can be performed electrically. Such an approach allows for multilevel, high density memory systems with enhanced information storage capacity and simplified information retrieval.

  13. Lossy Information Exchange and Instantaneous Communications

    DTIC Science & Technology

    2015-09-17

    Renyi  maximal  correlation.  In...1959,   Renyi  proposed  a  measure  of  the  dependence   between  two  random  variables,  by  finding  a  pair  of...one  variable   corresponds  to  the  user,  the  other  to  the  service.  Finding  the   Renyi  correlation  in  

  14. Awareness of the Faculty Members at Al-Balqa' Applied University to the Concept of Time Management and Its Relation to Some Variables

    ERIC Educational Resources Information Center

    Sabha, Raed Adel; Al-Assaf, Jamal Abdel-Fattah

    2012-01-01

    The study aims to investigate how extent is the time management awareness of the faculty members of the Al-Balqa' Applied university, and its relation to some variables. The study conducted on (150) teachers were selected randomly. For achieving the study goals an appropriate instrument has been built up based on the educational literature and…

  15. Controlling dust from concrete saw cutting.

    PubMed

    Shepherd, Susan; Woskie, Susan

    2013-01-01

    Cutting concrete with gas-powered saws is ubiquitous in the construction industry and a source of exposure to respirable crystalline silica. Volunteers from the New England Laborers Training Center were recruited to participate in a field experiment examining dust reductions through the use of water, from a hose and from a sprayer, as a dust control. In four series of tests, reinforced concrete pipe was cut under both "dry" and "wet" control conditions. Overall, the geometric mean respirable dust concentration for "dry" cutting (14.396 mg/m³) exceeded both types of water-based controls by more than tenfold. Wet cutting reduced the respirable dust concentration by 85% compared with dry cutting when comparing tests paired by person and saw blade (n = 79 pairs). Using a respirable cyclone, a total of 178 samples were taken. Due to the high variability in dust exposure found in this and other studies of saw cutting, the data were examined for potential exposure determinants that contribute to that variability. Using mixed models, three fixed effects were statistically significant: control condition, worker experience, and location. A random effect for subject was included in the model to account for repeated measures. When each of the significant fixed effects was included with the random effect, it was apparent that inclusion of worker experience or location reduced the between-worker component of exposure variability, while inclusion of control condition (wet vs. dry) explained a large portion of the within-subject variability. Overall, the fixed effect variable for control condition explained the largest fraction of the total exposure variability.

  16. Cross-country transferability of multi-variable damage models

    NASA Astrophysics Data System (ADS)

    Wagenaar, Dennis; Lüdtke, Stefan; Kreibich, Heidi; Bouwer, Laurens

    2017-04-01

    Flood damage assessment is often done with simple damage curves based only on flood water depth. Additionally, damage models are often transferred in space and time, e.g. from region to region or from one flood event to another. Validation has shown that depth-damage curve estimates are associated with high uncertainties, particularly when applied in regions outside the area where the data for curve development was collected. Recently, progress has been made with multi-variable damage models created with data-mining techniques, i.e. Bayesian Networks and random forest. However, it is still unknown to what extent and under which conditions model transfers are possible and reliable. Model validations in different countries will provide valuable insights into the transferability of multi-variable damage models. In this study we compare multi-variable models developed on basis of flood damage datasets from Germany as well as from The Netherlands. Data from several German floods was collected using computer aided telephone interviews. Data from the 1993 Meuse flood in the Netherlands is available, based on compensations paid by the government. The Bayesian network and random forest based models are applied and validated in both countries on basis of the individual datasets. A major challenge was the harmonization of the variables between both datasets due to factors like differences in variable definitions, and regional and temporal differences in flood hazard and exposure characteristics. Results of model validations and comparisons in both countries are discussed, particularly in respect to encountered challenges and possible solutions for an improvement of model transferability.

  17. Controlled assessment of the efficacy of occlusal stabilization splints on sleep bruxism.

    PubMed

    van der Zaag, Jacques; Lobbezoo, Frank; Wicks, Darrel J; Visscher, Corine M; Hamburger, Hans L; Naeije, Machiel

    2005-01-01

    To assess the efficacy of occlusal stabilization splints in the management of sleep bruxism (SB) in a double-blind, parallel, controlled, randomized clinical trial. Twenty-one participants were randomly assigned to an occlusal splint group (n = 11; mean age = 34.2 +/- 13.1 years) or a palatal splint (ie, an acrylic palatal coverage) group (n = 10; mean age = 34.9 +/- 11.2 years). Two polysomnographic recordings that included bilateral masseter electromyographic activity were made: one prior to treatment, the other after a treatment period of 4 weeks. The number of bruxism episodes per hour of sleep (Epi/h), the number of bursts per hour (Bur/h), and the bruxism time index (ie, the percentage of total sleep time spent bruxing) were established as outcome variables at a 10% maximum voluntary contraction threshold level. A general linear model was used to test both the effects between splint groups and within the treatment phase as well as their interaction for each outcome variable. Neither occlusal stabilization splints nor palatal splints had an influence on the SB outcome variables or on the sleep variables measured on a group level. In individual cases, variable outcomes were found: Some patients had an increase (33% to 48% of the cases), while others showed no change (33% to 48%) or a decrease (19% to 29%) in SB outcome variables. The absence of significant group effects of splints in the management of SB indicates that caution is required when splints are indicated, apart from their role in the protection against dental wear. The application of splints should therefore be considered at the individual patient level.

  18. Stochastic effects in EUV lithography: random, local CD variability, and printing failures

    NASA Astrophysics Data System (ADS)

    De Bisschop, Peter

    2017-10-01

    Stochastic effects in lithography are usually quantified through local CD variability metrics, such as line-width roughness or local CD uniformity (LCDU), and these quantities have been measured and studied intensively, both in EUV and optical lithography. Next to the CD-variability, stochastic effects can also give rise to local, random printing failures, such as missing contacts or microbridges in spaces. When these occur, there often is no (reliable) CD to be measured locally, and then such failures cannot be quantified with the usual CD-measuring techniques. We have developed algorithms to detect such stochastic printing failures in regular line/space (L/S) or contact- or dot-arrays from SEM images, leading to a stochastic failure metric that we call NOK (not OK), which we consider a complementary metric to the CD-variability metrics. This paper will show how both types of metrics can be used to experimentally quantify dependencies of stochastic effects to, e.g., CD, pitch, resist, exposure dose, etc. As it is also important to be able to predict upfront (in the OPC verification stage of a production-mask tape-out) whether certain structures in the layout are likely to have a high sensitivity to stochastic effects, we look into the feasibility of constructing simple predictors, for both stochastic CD-variability and printing failure, that can be calibrated for the process and exposure conditions used and integrated into the standard OPC verification flow. Finally, we briefly discuss the options to reduce stochastic variability and failure, considering the entire patterning ecosystem.

  19. Not accounting for interindividual variability can mask habitat selection patterns: a case study on black bears.

    PubMed

    Lesmerises, Rémi; St-Laurent, Martin-Hugues

    2017-11-01

    Habitat selection studies conducted at the population scale commonly aim to describe general patterns that could improve our understanding of the limiting factors in species-habitat relationships. Researchers often consider interindividual variation in selection patterns to control for its effects and avoid pseudoreplication by using mixed-effect models that include individuals as random factors. Here, we highlight common pitfalls and possible misinterpretations of this strategy by describing habitat selection of 21 black bears Ursus americanus. We used Bayesian mixed-effect models and compared results obtained when using random intercept (i.e., population level) versus calculating individual coefficients for each independent variable (i.e., individual level). We then related interindividual variability to individual characteristics (i.e., age, sex, reproductive status, body condition) in a multivariate analysis. The assumption of comparable behavior among individuals was verified only in 40% of the cases in our seasonal best models. Indeed, we found strong and opposite responses among sampled bears and individual coefficients were linked to individual characteristics. For some covariates, contrasted responses canceled each other out at the population level. In other cases, interindividual variability was concealed by the composition of our sample, with the majority of the bears (e.g., old individuals and bears in good physical condition) driving the population response (e.g., selection of young forest cuts). Our results stress the need to consider interindividual variability to avoid misinterpretation and uninformative results, especially for a flexible and opportunistic species. This study helps to identify some ecological drivers of interindividual variability in bear habitat selection patterns.

  20. Patient or treatment centre? Where are efforts invested to improve cancer patients' psychosocial outcomes?

    PubMed Central

    Carey, ML; Clinton-McHarg, T; Sanson-Fisher, RW; Campbell, S; Douglas, HE

    2011-01-01

    The psychosocial outcomes of cancer patients may be influenced by individual-level, social and treatment centre predictors. This paper aimed to examine the extent to which individual, social and treatment centre variables have been examined as predictors or targets of intervention for psychosocial outcomes of cancer patients. Medline was searched to find studies in which the psychological outcomes of cancer patient were primary variables. Papers published in English between 1999 and 2009 that reported primary data relevant to psychosocial outcomes for cancer patients were included, with 20% randomly selected for further coding. Descriptive studies were coded for inclusion of individual, social or treatment centre variables. Intervention studies were coded to determine if the unit of intervention was the individual patient, social unit or treatment centre. After random sampling, 412 publications meeting the inclusion criteria were identified, 169 were descriptive and 243 interventions. Of the descriptive papers 95.0% included individual predictors, and 5.0% social predictors. None of the descriptive papers examined treatment centre variables as predictors of psychosocial outcomes. Similarly, none of the interventions evaluated the effectiveness of treatment centre interventions for improving psychosocial outcomes. Potential reasons for the overwhelming dominance of individual predictors and individual-focused interventions in psychosocial literature are discussed. PMID:20646035

Top